

 PCI-8512

https://www.apexwaves.com/modular-systems/national-instruments/pci-can-interfaces/PCI-8512?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/pci-can-interfaces/PCI-8512?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/pci-can-interfaces/PCI-8512?aw_referrer=pdf

XNET

NI-XNET Hardware and Software Manual

NI-XNET Hardware and Software Manual

July 2015

372840K-01

Support

Worldwide Technical Support and Product Information

ni.com

Worldwide Offices

Visit ni.com/niglobal to access the branch office Websites, which provide up-to-date contact information,

support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the NI Services appendix. To comment on National Instruments

documentation, refer to the National Instruments website at ni.com/info and enter the Info Code feedback.

© 2009–2015 National Instruments. All rights reserved.

 Legal Information

Limited Warranty
This document is provided ‘as is’ and is subject to being changed, without notice, in future editions. For the latest version, refer to ni.com/manuals.

NI reviews this document carefully for technical accuracy; however, NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE
ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS.

NI warrants that its hardware products will be free of defects in materials and workmanship that cause the product to fail to substantially conform
to the applicable NI published specifications for one (1) year from the date of invoice.

For a period of ninety (90) days from the date of invoice, NI warrants that (i) its software products will perform substantially in accordance with the
applicable documentation provided with the software and (ii) the software media will be free from defects in materials and workmanship.

If NI receives notice of a defect or non-conformance during the applicable warranty period, NI will, in its discretion: (i) repair or replace the affected
product, or (ii) refund the fees paid for the affected product. Repaired or replaced Hardware will be warranted for the remainder of the original
warranty period or ninety (90) days, whichever is longer. If NI elects to repair or replace the product, NI may use new or refurbished parts or products
that are equivalent to new in performance and reliability and are at least functionally equivalent to the original part or product.

You must obtain an RMA number from NI before returning any product to NI. NI reserves the right to charge a fee for examining and testing
Hardware not covered by the Limited Warranty.

This Limited Warranty does not apply if the defect of the product resulted from improper or inadequate maintenance, installation, repair, or
calibration (performed by a party other than NI); unauthorized modification; improper environment; use of an improper hardware or software key;
improper use or operation outside of the specification for the product; improper voltages; accident, abuse, or neglect; or a hazard such as lightning,
flood, or other act of nature.

THE REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND THE CUSTOMER’S SOLE REMEDIES, AND SHALL APPLY EVEN IF
SUCH REMEDIES FAIL OF THEIR ESSENTIAL PURPOSE.

EXCEPT AS EXPRESSLY SET FORTH HEREIN, PRODUCTS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND AND NI
DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO THE PRODUCTS, INCLUDING ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, AND ANY
WARRANTIES THAT MAY ARISE FROM USAGE OF TRADE OR COURSE OF DEALING. NI DOES NOT WARRANT, GUARANTEE,
OR MAKE ANY REPRESENTATIONS REGARDING THE USE OF OR THE RESULTS OF THE USE OF THE PRODUCTS IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NI DOES NOT WARRANT THAT THE OPERATION OF THE
PRODUCTS WILL BE UNINTERRUPTED OR ERROR FREE.

In the event that you and NI have a separate signed written agreement with warranty terms covering the products, then the warranty terms in the
separate agreement shall control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National Instruments
Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software
only to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:

� Notices are located in the <National Instruments>_Legal Information and <National Instruments> directories.

� EULAs are located in the <National Instruments>\Shared\MDF\Legal\license directory.

� Review <National Instruments>_Legal Information.txt for information on including legal information in installers built with NI
products.

U.S. Government Restricted Rights
If you are an agency, department, or other entity of the United States Government (“Government”), the use, duplication, reproduction, release,
modification, disclosure or transfer of the technical data included in this manual is governed by the Restricted Rights provisions under Federal
Acquisition Regulation 52.227-14 for civilian agencies and Defense Federal Acquisition Regulation Supplement Section 252.227-7014 and
252.227-7015 for military agencies.

Trademarks
Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for more information on National Instruments trademarks.

ARM, Keil, and µVision are trademarks or registered of ARM Ltd or its subsidiaries.

LEGO, the LEGO logo, WEDO, and MINDSTORMS are trademarks of the LEGO Group.

TETRIX by Pitsco is a trademark of Pitsco, Inc.

FIELDBUS FOUNDATION™ and FOUNDATION™ are trademarks of the Fieldbus Foundation.

EtherCAT® is a registered trademark of and licensed by Beckhoff Automation GmbH.

CANopen® is a registered Community Trademark of CAN in Automation e.V.

DeviceNet™ and EtherNet/IP™ are trademarks of ODVA.

Go!, SensorDAQ, and Vernier are registered trademarks of Vernier Software & Technology. Vernier Software & Technology and vernier.com

are trademarks or trade dress.

Xilinx is the registered trademark of Xilinx, Inc.

Taptite and Trilobular are registered trademarks of Research Engineering & Manufacturing Inc.

FireWire® is the registered trademark of Apple Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Handle Graphics®, MATLAB®, Real-Time Workshop®, Simulink®, Stateflow®, and xPC TargetBox® are registered trademarks, and TargetBox™
and Target Language Compiler™ are trademarks of The MathWorks, Inc.

Tektronix®, Tek, and Tektronix, Enabling Technology are registered trademarks of Tektronix, Inc.

The Bluetooth® word mark is a registered trademark owned by the Bluetooth SIG, Inc.

The ExpressCard™ word mark and logos are owned by PCMCIA and any use of such marks by National Instruments is under license.

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the
United States and other countries.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency,
partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt
file on your media, or the National Instruments Patent Notice at ni.com/patents.

Export Compliance Information
Refer to the Export Compliance Information at ni.com/legal/export-compliance for the National Instruments global trade compliance policy
and how to obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
YOU ARE ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY AND RELIABILITY OF THE
PRODUCTS WHENEVER THE PRODUCTS ARE INCORPORATED IN YOUR SYSTEM OR APPLICATION, INCLUDING THE
APPROPRIATE DESIGN, PROCESS, AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

PRODUCTS ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS,
HAZARDOUS ENVIRONMENTS OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING IN THE
OPERATION OF NUCLEAR FACILITIES; AIRCRAFT NAVIGATION; AIR TRAFFIC CONTROL SYSTEMS; LIFE SAVING OR LIFE
SUSTAINING SYSTEMS OR SUCH OTHER MEDICAL DEVICES; OR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE
PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL
HARM (COLLECTIVELY, “HIGH-RISK USES”). FURTHER, PRUDENT STEPS MUST BE TAKEN TO PROTECT AGAINST FAILURES,
INCLUDING PROVIDING BACK-UP AND SHUT-DOWN MECHANISMS. NI EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES.

 Compliance

Electromagnetic Compatibility Information
This hardware has been tested and found to comply with the applicable regulatory requirements and limits for electromagnetic

compatibility (EMC) as indicated in the hardware’s Declaration of Conformity (DoC)1. These requirements and limits are
designed to provide reasonable protection against harmful interference when the hardware is operated in the intended
electromagnetic environment. In special cases, for example when either highly sensitive or noisy hardware is being used in close
proximity, additional mitigation measures may have to be employed to minimize the potential for electromagnetic interference.

While this hardware is compliant with the applicable regulatory EMC requirements, there is no guarantee that interference will

not occur in a particular installation. To minimize the potential for the hardware to cause interference to radio and television
reception or to experience unacceptable performance degradation, install and use this hardware in strict accordance with the

instructions in the hardware documentation and the DoC1.

If this hardware does cause interference with licensed radio communications services or other nearby electronics, which can be
determined by turning the hardware off and on, you are encouraged to try to correct the interference by one or more of the
following measures:

• Reorient the antenna of the receiver (the device suffering interference).

• Relocate the transmitter (the device generating interference) with respect to the receiver.

• Plug the transmitter into a different outlet so that the transmitter and the receiver are on different branch circuits.

Some hardware may require the use of a metal, shielded enclosure (windowless version) to meet the EMC requirements for
special EMC environments such as, for marine use or in heavy industrial areas. Refer to the hardware’s user documentation and

the DoC1 for product installation requirements.

When the hardware is connected to a test object or to test leads, the system may become more sensitive to disturbances or may
cause interference in the local electromagnetic environment.

Operation of this hardware in a residential area is likely to cause harmful interference. Users are required to correct the
interference at their own expense or cease operation of the hardware.

Changes or modifications not expressly approved by National Instruments could void the user’s right to operate the hardware
under the local regulatory rules.

1 The Declaration of Conformity (DoC) contains important EMC compliance information and instructions for the user or
installer. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and
click the appropriate link in the Certification column.

© National Instruments vii NI-XNET Hardware and Software Manual

Contents

About This Manual
Related Documentation..xxxiii

Chapter 1
Introduction

Chapter 2
Installation and Configuration

Safety Information ...2-1

Measurement & Automation Explorer (MAX) ...2-3

Verifying NI-XNET Hardware Installation ...2-4

XNET C Series Modules Firmware Update ..2-5

Configuring NI-XNET Interfaces ..2-7

LabVIEW Real-Time (RT) Configuration ..2-7

Getting Started with CompactRIO...2-8

Tools ..2-12

System Configuration API...2-13

Chapter 3
NI-XNET Hardware Overview

Overview..3-1

NI-XNET FlexRay Hardware ..3-1

FlexRay Physical Layer...3-1

Transceiver..3-1

Bus Power Requirements ..3-1

Cabling Requirements for FlexRay...3-1

Cable Lengths and Number of Devices ..3-2

Termination...3-2

Pinout...3-2

NI-XNET CAN Hardware ...3-3

NI-XNET Transceiver Cables ...3-3

XS Software Selectable Physical Layer ..3-3

High-Speed Physical Layer ...3-4

Transceiver..3-4

Bus Power Requirements ..3-4

Cabling Requirements for High-Speed CAN....................................3-5

Cable Lengths ...3-5

Contents

NI-XNET Hardware and Software Manual viii ni.com

Number of Devices ... 3-5

Cable Termination .. 3-5

Cabling Example .. 3-7

Low-Speed/Fault-Tolerant Physical Layer ... 3-7

Transceiver ... 3-7

Bus Power Requirements.. 3-8

Cabling Requirements for Low-Speed/ Fault-Tolerant CAN........... 3-8

Number of Devices ... 3-9

Termination .. 3-9

Determining the Necessary Termination Resistance for the Board.. 3-10

Single Wire CAN Physical Layer ... 3-11

Transceiver ... 3-11

Bus Power Requirements.. 3-12

Cabling Requirements for Single Wire CAN 3-12

Cable Length... 3-12

Number of Devices ... 3-12

Termination (Bus Loading) .. 3-12

External CAN Transceiver.. 3-12

Pinouts... 3-13

PXI-8511/8512/8513 and PCI-8511/8512/8513............................... 3-13

C Series NI 9861/9862 ... 3-14

NI-XNET LIN Hardware .. 3-14

LIN Physical Layer ... 3-14

Transceiver ... 3-15

Bus Power Requirements.. 3-15

Cabling Requirements for LIN ... 3-15

Cable Lengths ... 3-15

Number of Devices ... 3-16

Termination .. 3-16

Pinout .. 3-16

PXI-8516 and PCI-8516 ... 3-16

C Series NI 9866 and NI-XNET LIN Transceiver Cable................. 3-17

Isolation ... 3-17

LEDs.. 3-18

Synchronization... 3-20

PXI NI-XNET and PCI NI-XNET.. 3-20

C Series and NI-XNET Transceiver Cables ... 3-20

Contents

© National Instruments ix NI-XNET Hardware and Software Manual

Chapter 4
NI-XNET API for LabVIEW

Getting Started ...4-1

LabVIEW Project ..4-1

Examples ...4-1

Palettes...4-2

Basic Programming Model ..4-3

Interfaces..4-4

What Is an Interface?...4-4

How Do I View Available Interfaces? ..4-5

Measurement and Automation Explorer (MAX)4-5

I/O Name...4-6

LabVIEW Project..4-6

System Node ...4-6

Databases ...4-7

What Is a Database? ..4-7

What Is an Alias?...4-8

Database Programming ...4-9

Already Have File? ...4-9

Can Use File As Is?...4-9

Select From File ..4-10

Edit and Select ..4-11

Want to Use a File?...4-12

Create New File Using the Database Editor4-12

Create in Memory ...4-12

Multiple Databases Simultaneously..4-13

Sessions..4-13

What Is a Session?...4-13

Session Modes ...4-14

Frame Input Queued Mode ...4-15

Frame Input Single-Point Mode..4-18

Frame Input Stream Mode ..4-19

Frame Output Queued Mode...4-22

Frame Output Single-Point Mode ...4-24

Frame Output Stream Mode..4-27

Signal Input Single-Point Mode..4-29

Signal Input Waveform Mode...4-32

Signal Input XY Mode..4-35

Signal Output Single-Point Mode ...4-37

Signal Output Waveform Mode..4-38

Signal Output XY Mode ...4-41

Conversion Mode..4-45

Contents

NI-XNET Hardware and Software Manual x ni.com

How Do I Create a Session? ... 4-47

LabVIEW Project ... 4-48

XNET Create Session.vi... 4-48

Using CAN .. 4-48

Understanding CAN Frame Timing.. 4-48

Configuring Frame I/O Stream Sessions .. 4-49

Using FlexRay ... 4-50

Starting Communication ... 4-50

Understanding FlexRay Frame Timing... 4-51

Protocol Data Unit (PDU)... 4-51

Using LIN.. 4-51

Changing the LIN Schedule .. 4-51

Understanding LIN Frame Timing ... 4-52

LIN Diagnostics .. 4-52

Special Considerations for Using Stream Output Mode with LIN 4-52

Using LabVIEW Real-Time.. 4-53

High Priority Loops .. 4-53

XNET I/O Names.. 4-54

Deploying Databases... 4-54

Memory Use for Databases... 4-54

FlexRay Timing Source .. 4-55

Creating a Built Real-Time Application ... 4-55

J1939 Sessions... 4-55

Compatibility Issue ... 4-56

J1939 Basics.. 4-57

Node Addresses in NI-XNET ... 4-58

Address Claiming Procedure .. 4-59

Transmitting Frames ... 4-59

Transmitting Frames without Granted Node Address 4-59

Mixing J1939 and CAN Messages.. 4-59

Transport Protocol (TP) .. 4-60

NI-XNET Sessions.. 4-60

Not Supported in the Current NI-XNET Version ... 4-60

Signal Ranges ... 4-60

NI-XNET API for LabVIEW Reference... 4-61

XNET Session Constant.. 4-61

XNET Create Session.vi ... 4-62

XNET Create Session (Conversion).vi... 4-63

XNET Create Session (Frame Input Queued).vi 4-64

XNET Create Session (Frame Input Single-Point).vi 4-65

XNET Create Session (Frame Input Stream).vi 4-66

XNET Create Session (PDU Input Queued).vi 4-68

XNET Create Session (PDU Input Single Point).vi 4-68

XNET Create Session (Frame Output Queued).vi 4-69

Contents

© National Instruments xi NI-XNET Hardware and Software Manual

XNET Create Session (Frame Output Single-Point).vi4-70

XNET Create Session (Frame Output Stream).vi4-71

XNET Create Session (PDU Output Queued).vi4-73

XNET Create Session (PDU Output Single-Point).vi4-73

XNET Create Session (Generic).vi ...4-74

XNET Create Session (Signal Input Single-Point).vi4-76

XNET Create Session (Signal Input Waveform).vi..........................4-77

XNET Create Session (Signal Input XY).vi4-78

XNET Create Session (Signal Output Single-Point).vi4-79

XNET Create Session (Signal Output Waveform).vi4-80

XNET Create Session (Signal Output XY).vi4-81

XNET Session Property Node...4-82

Interface Properties ...4-83

CAN Interface Properties ...4-83

Interface:CAN:External Transceiver Config4-84

Interface:CAN:FD Baud Rate4-87

Interface:CAN:I/O Mode4-89

Interface:CAN:Listen Only?4-90

Interface:CAN:Pending Transmit Order4-91

Interface:CAN:Single Shot Transmit?4-93

Interface:CAN:Termination4-94

Interface:CAN:Transceiver State4-96

Interface:CAN:Transceiver Type.........................4-99

Interface:CAN:Transmit I/O Mode......................4-101

FlexRay Interface Properties ..4-102

Interface:FlexRay:Accepted Startup Range4-102

Interface:FlexRay:Allow Halt Due To Clock?.....4-103

Interface:FlexRay:Allow Passive to Active4-104

Interface:FlexRay:Auto Asleep When Stopped ...4-105

Interface:FlexRay:Cluster Drift Damping............4-106

Interface:FlexRay:Coldstart?4-107

Interface:FlexRay:Connected Channels...............4-108

Interface:FlexRay:Decoding Correction4-109

Interface:FlexRay:Delay Compensation Ch A.....4-110

Interface:FlexRay:Delay Compensation Ch B.....4-111

Interface:FlexRay:Key Slot Identifier..................4-112

Interface:FlexRay:Latest Tx.................................4-114

Interface:FlexRay:Listen Timeout4-115

Interface:FlexRay:Macro Initial Offset Ch A4-116

Interface:FlexRay:Macro Initial Offset Ch B.......4-117

Interface:FlexRay:Max Drift................................4-118

Interface:FlexRay:Micro Initial Offset Ch A4-119

Interface:FlexRay:Micro Initial Offset Ch B4-120

Interface:FlexRay:Microtick4-121

Contents

NI-XNET Hardware and Software Manual xii ni.com

Interface:FlexRay:Null Frames To

Input Stream? .. 4-122

Interface:FlexRay:Offset Correction 4-123

Interface:FlexRay:Offset Correction Out 4-124

Interface:FlexRay:Rate Correction 4-125

Interface:FlexRay:Rate Correction Out 4-126

Interface:FlexRay:Samples Per Microtick........... 4-127

Interface:FlexRay:Single Slot Enabled?.............. 4-128

Interface:FlexRay:Sleep....................................... 4-129

Interface:FlexRay:Statistics Enabled? 4-131

Interface:FlexRay:Symbol Frames To

Input Stream? .. 4-132

Interface:FlexRay:Sync Frames

Channel A Even .. 4-133

Interface:FlexRay:Sync Frames

Channel A Odd ... 4-134

Interface:FlexRay:Sync Frames

Channel B Even .. 4-135

Interface:FlexRay:Sync Frames

Channel B Odd.. 4-136

Interface:FlexRay:Sync Frame Status 4-137

Interface:FlexRay:Termination............................ 4-138

Interface:FlexRay:Wakeup Channel.................... 4-139

Interface:FlexRay:Wakeup Pattern...................... 4-140

LIN Interface Properties... 4-141

Interface:LIN:Break Length 4-141

Interface:LIN:DiagP2min 4-142

Interface:LIN:DiagSTmin.................................... 4-143

Interface:LIN:Master? ... 4-144

Interface:LIN:Output Stream Slave

Response List By NAD..................................... 4-145

Interface:LIN:Schedules 4-146

Interface:LIN:Sleep ... 4-147

Interface:LIN:Start Allowed without

Bus Power? ... 4-150

Interface:LIN:Termination................................... 4-151

Source Terminal Interface Properties................................. 4-152

Interface:Source Terminal:Start Trigger.............. 4-152

Interface:Baud Rate.. 4-153

Interface:Echo Transmit? ... 4-156

Interface:I/O Name... 4-157

Interface:Output Stream List .. 4-158

Interface:Output Stream List By ID 4-159

Interface:Output Stream Timing .. 4-160

Contents

© National Instruments xiii NI-XNET Hardware and Software Manual

Interface:Start Trigger Frames to Input Stream?4-164

Interface:Bus Error Frames to Input Stream?.....................4-164

Session:Application Protocol ...4-165

SAE J1939:ECU ...4-166

SAE J1939:ECU Busy..4-167

SAE J1939:Hold Time Th ..4-168

SAE J1939:Maximum Repeat CTS....................................4-169

SAE J1939:Node Address ..4-170

SAE J1939:NodeName...4-171

SAE J1939:Number of Packets Received4-172

SAE J1939:Number of Packets Response4-173

SAE J1939:Response Time Tr_GD....................................4-174

SAE J1939:Response Time Tr_SD4-175

SAE J1939:Timeout T1 ..4-176

SAE J1939:Timeout T2 ..4-177

SAE J1939:Timeout T3 ..4-178

SAE J1939:Timeout T4 ..4-179

Frame Properties ...4-180

CAN Frame Properties ...4-180

Frame:CAN:Start Time Offset4-180

Frame:CAN:Transmit Time4-181

Frame:Active ..4-182

Frame:LIN:Transmit N Corrupted Checksums4-183

Frame:Skip N Cyclic Frames ...4-184

Auto Start? ..4-185

Cluster ...4-186

Database ..4-187

List of Frames ...4-188

List of Signals ...4-189

Mode ...4-190

Number in List ..4-190

Number of Values Pending ...4-191

Number of Values Unused..4-192

Payload Length Maximum..4-193

Protocol ...4-194

Queue Size ..4-195

Resample Rate...4-201

XNET Read.vi ...4-202

XNET Read (Frame CAN).vi ...4-204

XNET Read (Frame FlexRay).vi ..4-208

XNET Read (Frame LIN).vi ...4-213

XNET Read (Frame Raw).vi ..4-218

XNET Read (Signal Single-Point).vi..4-221

XNET Read (Signal Waveform).vi...4-222

Contents

NI-XNET Hardware and Software Manual xiv ni.com

XNET Read (Signal XY).vi.. 4-224

XNET Read (State CAN Comm).vi ... 4-227

XNET Read (State FlexRay Comm).vi .. 4-231

XNET Read (State LIN Comm).vi ... 4-235

XNET Read (State FlexRay Cycle Macrotick).vi 4-240

XNET Read (State FlexRay Statistics).vi... 4-242

XNET Read (State Time Comm).vi ... 4-244

XNET Read (State Time Current).vi .. 4-245

XNET Read (State Time Start).vi... 4-246

XNET Read (State Session Info).vi.. 4-248

XNET Write.vi.. 4-249

XNET Write (Signal Single-Point).vi .. 4-251

XNET Write (Signal Waveform).vi ... 4-252

XNET Write (Signal XY).vi... 4-254

XNET Write (Frame CAN).vi .. 4-256

XNET Write (Frame FlexRay).vi ... 4-260

XNET Write (Frame LIN).vi.. 4-264

XNET Write (Frame Raw).vi ... 4-268

XNET Write (State FlexRay Symbol).vi.. 4-271

XNET Write (State LIN Schedule Change).vi 4-272

XNET Write (State LIN Diagnostic Schedule Change).vi 4-275

Database Subpalette .. 4-278

XNET Database Property Node.. 4-278

Clusters... 4-279

ShowInvalidFromOpen? .. 4-280

XNET Database Constant... 4-281

XNET Cluster Property Node... 4-281

FlexRay Properties ... 4-282

FlexRay:Action Point Offset 4-282

FlexRay:CAS Rx Low Max................................. 4-283

FlexRay:Channels .. 4-284

FlexRay:Cluster Drift Damping........................... 4-285

FlexRay:Cold Start Attempts............................... 4-286

FlexRay:Cycle ... 4-287

FlexRay:Dynamic Segment Start......................... 4-288

FlexRay:Dynamic Slot Idle Phase 4-289

FlexRay:Latest Guaranteed Dynamic Slot 4-290

FlexRay:Latest Usable Dynamic Slot.................. 4-291

FlexRay:Listen Noise .. 4-292

FlexRay:Macro Per Cycle.................................... 4-293

FlexRay:Macrotick .. 4-294

FlexRay:Max Without Clock Correction Fatal.... 4-295

FlexRay:Max Without Clock

Correction Passive .. 4-296

Contents

© National Instruments xv NI-XNET Hardware and Software Manual

FlexRay:Minislot Action Point Offset4-297

FlexRay:Minislot..4-298

FlexRay:Network Management Vector Length ...4-299

FlexRay:NIT Start ..4-300

FlexRay:NIT...4-301

FlexRay:Number of Minislots..............................4-302

FlexRay:Number of Static Slots...........................4-303

FlexRay:Offset Correction Start...........................4-304

FlexRay:Payload Length Dynamic Maximum.....4-305

FlexRay:Payload Length Maximum4-306

FlexRay:Payload Length Static............................4-307

FlexRay:Static Slot...4-308

FlexRay:Symbol Window Start4-309

FlexRay:Symbol Window....................................4-310

FlexRay:Sync Node Max4-311

FlexRay:TSS Transmitter.....................................4-312

FlexRay:Use Wakeup...4-313

FlexRay:Wakeup Symbol Rx Idle........................4-314

FlexRay:Wakeup Symbol Rx Low4-315

FlexRay:Wakeup Symbol Rx Window................4-316

FlexRay:Wakeup Symbol Tx Idle........................4-317

FlexRay:Wakeup Symbol Tx Low.......................4-318

Application Protocol...4-319

Baud Rate ...4-320

CAN:FD Baud Rate ...4-321

CAN:I/O Mode...4-322

Comment ..4-323

Configuration Status ...4-323

Database..4-324

ECUs...4-324

Frames ..4-325

LIN:Schedules ..4-326

LIN:Tick ...4-327

Name (Short) ..4-328

PDUs...4-330

PDUs Required? ...4-331

Protocol...4-333

Signals ..4-333

XNET Cluster Constant ..4-334

XNET ECU Property Node...4-334

Cluster...4-335

FlexRay:Coldstart? ...4-335

FlexRay:Connected Channels...4-336

FlexRay:Startup Frame...4-336

Contents

NI-XNET Hardware and Software Manual xvi ni.com

FlexRay:Wakeup Channels .. 4-337

FlexRay:Wakeup Pattern.. 4-337

Comment .. 4-339

Configuration Status... 4-339

Frames Received .. 4-340

Frames Transmitted.. 4-340

LIN:Master? ... 4-341

LIN:Protocol Version... 4-341

LIN:Initial NAD... 4-342

LIN:Configured NAD .. 4-342

LIN:Supplier ID ... 4-343

LIN:Function ID... 4-343

LIN:P2min.. 4-344

LIN:STmin ... 4-344

Name (Short) .. 4-345

XNET ECU Constant ... 4-347

XNET Frame Property Node .. 4-347

CAN:Extended Identifier?.. 4-347

CAN:Timing Type ... 4-348

CAN:Transmit Time .. 4-350

Application Protocol .. 4-351

Cluster .. 4-352

Comment .. 4-352

Configuration Status... 4-353

Default Payload .. 4-354

FlexRay:Base Cycle ... 4-356

FlexRay:Channel Assignment.. 4-358

FlexRay:Cycle Repetition .. 4-359

FlexRay:Payload Preamble? .. 4-361

FlexRay:Startup?.. 4-362

FlexRay:Sync? ... 4-363

FlexRay:Timing Type .. 4-364

FlexRay:In Cycle Repetitions:Channel Assignments 4-365

FlexRay:In Cycle Repetitions:Enabled? 4-366

FlexRay:In Cycle Repetitions:Identifiers........................... 4-367

Identifier ... 4-368

LIN:Checksum ... 4-370

Mux:Data Multiplexer Signal... 4-371

Mux:Is Data Multiplexed? ... 4-371

Mux:Static Signals ... 4-372

Mux:Subframes .. 4-372

Name (Short) .. 4-373

Payload Length... 4-375

Contents

© National Instruments xvii NI-XNET Hardware and Software Manual

PDU_Mapping..4-376

Signals ..4-377

XNET Frame Constant..4-378

XNET PDU Property Node...4-378

Cluster...4-379

Comment ..4-379

Configuration Status ...4-380

Frames ..4-381

Mux:Data Multiplexer Signal ...4-381

Mux:Is Data Multiplexed?..4-382

Mux:Static Signals..4-382

Mux:Subframes ..4-383

Name (Short) ..4-384

Payload Length ...4-385

Signals ..4-386

XNET PDU Constant..4-386

XNET Subframe Property Node ...4-387

Dynamic Signals...4-388

Frame ..4-388

Multiplexer Value...4-389

Name (Short) ..4-390

PDU ..4-392

XNET Signal Property Node ..4-393

Byte Order ..4-394

Comment ..4-396

Configuration Status ...4-397

Data Type ...4-398

Default Value..4-399

Mux:Dynamic? ...4-400

Frame ..4-401

Maximum Value ...4-401

Minimum Value..4-402

Mux:Multiplexer Value ..4-402

Mux:Data Multiplexer? ..4-403

Name (Short) ..4-404

Number of Bits ...4-406

PDU ..4-407

Scaling Factor ...4-408

Scaling Offset ...4-408

Start Bit...4-409

Mux:Subframe ..4-411

Unit ...4-411

XNET Signal Constant..4-412

XNET Database Open.vi...4-412

Contents

NI-XNET Hardware and Software Manual xviii ni.com

XNET Database Close.vi.. 4-413

XNET Database Close (Cluster).vi 4-414

XNET Database Close (Database).vi 4-415

XNET Database Close (ECU).vi.. 4-416

XNET Database Close (Frame).vi 4-417

XNET Database Close (PDU).vi.. 4-418

XNET Database Close (Signal).vi 4-419

XNET Database Close (Subframe).vi 4-420

XNET Database Close (LIN Schedule).vi 4-421

XNET Database Close (LIN Schedule Entry).vi 4-422

XNET Database Create Object.vi... 4-423

XNET Database Create (Cluster).vi................................... 4-424

XNET Database Create (Dynamic Signal).vi 4-426

XNET Database Create (ECU).vi 4-428

XNET Database Create (Frame).vi 4-429

XNET Database Create (PDU).vi 4-430

XNET Database Create (Signal).vi 4-431

XNET Database Create (Subframe).vi............................... 4-432

XNET Database Create (LIN Schedule).vi 4-434

XNET Database Create (LIN Schedule Entry).vi 4-435

XNET Database Delete Object.vi... 4-437

XNET Database Delete (Cluster).vi................................... 4-438

XNET Database Delete (ECU).vi 4-439

XNET Database Delete (Frame).vi 4-440

XNET Database Delete (PDU).vi 4-441

XNET Database Delete (Signal).vi 4-442

XNET Database Delete (Subframe).vi............................... 4-443

XNET Database Delete (LIN Schedule).vi 4-444

XNET Database Delete (LIN Schedule Entry).vi 4-445

XNET Database Merge.vi .. 4-446

XNET Database Merge (Frame).vi 4-447

XNET Database Merge (PDU).vi 4-449

XNET Database Merge (ECU).vi 4-451

XNET Database Merge (LIN Schedule).vi 4-453

XNET Database Merge (Cluster).vi................................... 4-455

XNET Database Save.vi ... 4-457

XNET Database Export.vi .. 4-458

File Management Subpalette .. 4-459

XNET Database Add Alias.vi .. 4-459

XNET Database Remove Alias.vi...................................... 4-461

XNET Database Get List.vi ... 4-462

XNET Database Deploy.vi... 4-464

XNET Database Undeploy.vi... 4-466

Contents

© National Instruments xix NI-XNET Hardware and Software Manual

XNET LIN Schedule Property Node ..4-467

Cluster...4-467

Comment ..4-468

Configuration Status ...4-469

Entries ...4-470

Name (Short) ..4-471

Priority ..4-472

Run Mode ...4-473

XNET LIN Schedule Entry Property Node4-474

Collision Resolving Schedule...4-475

Delay...4-476

Event Identifier ...4-476

Frames ..4-477

Name (Short) ..4-478

Node Configuration:Free Format:Data Bytes.....................4-479

Schedule..4-480

Type ..4-481

XNET Database Get DBC Attribute.vi...4-482

Notify Subpalette...4-484

XNET Wait.vi ...4-484

XNET Wait (Transmit Complete).vi4-485

XNET Wait (Interface Communicating).vi4-486

XNET Wait (CAN Remote Wakeup).vi.............................4-488

XNET Wait (LIN Remote Wakeup).vi...............................4-489

XNET Create Timing Source.vi..4-490

XNET Create Timing Source (FlexRay Cycle).vi..............4-490

Advanced Subpalette ...4-499

XNET Start.vi ...4-499

XNET Stop.vi..4-502

XNET Clear.vi ..4-504

XNET Flush.vi ..4-505

XNET Connect Terminals.vi ..4-506

XNET Disconnect Terminals.vi..4-513

XNET Terminal Constant ...4-514

XNET System Property Node...4-514

Devices ...4-515

Interfaces (FlexRay) ...4-515

Interfaces (All)..4-516

Interfaces (CAN) ..4-516

Interfaces (LIN) ..4-517

Version:Build..4-518

Version:Major...4-519

Version:Minor ..4-520

Contents

NI-XNET Hardware and Software Manual xx ni.com

Version:Phase... 4-521

Version:Update... 4-522

XNET Device Property Node... 4-523

Form Factor .. 4-523

Interfaces .. 4-524

Number of Ports ... 4-525

Product Name... 4-525

Product Number ... 4-526

Serial Number .. 4-526

Slot Number ... 4-527

XNET Interface Property Node .. 4-527

CAN.Termination Capability ... 4-528

CAN.Transceiver Capability.. 4-529

Device... 4-530

Name .. 4-530

Number... 4-531

Port Number ... 4-532

Protocol .. 4-533

XNET Interface Constant ... 4-534

XNET Blink.vi.. 4-534

XNET System Close.vi... 4-536

XNET String to IO Name.vi... 4-537

XNET Convert.vi.. 4-538

XNET Convert (Frame CAN to Signal).vi......................... 4-539

XNET Convert (Frame FlexRay to Signal).vi 4-542

XNET Convert (Frame LIN to Signal).vi 4-545

XNET Convert (Frame Raw to Signal).vi.......................... 4-547

XNET Convert (Signal to Frame CAN).vi......................... 4-549

XNET Convert (Signal to Frame FlexRay).vi 4-551

XNET Convert (Signal to Frame LIN).vi 4-554

XNET Convert (Signal to Frame Raw).vi.......................... 4-556

Controls Palette ... 4-558

XNET Session Control ... 4-558

Database Controls... 4-558

System Controls.. 4-559

Additional Topics .. 4-560

Overall... 4-560

Creating a Built Application... 4-560

Cyclic and Event Timing .. 4-561

Error Handling .. 4-562

Fault Handling .. 4-563

Multiplexed Signals .. 4-565

Raw Frame Format ... 4-567

Special Frames.. 4-572

Contents

© National Instruments xxi NI-XNET Hardware and Software Manual

Required Properties...4-577

State Models..4-579

TDMS..4-587

CAN...4-592

NI-CAN...4-592

CAN Timing Type and Session Mode..4-594

CAN Transceiver State Machine ..4-598

FlexRay..4-600

FlexRay Timing Type and Session Mode...4-600

Protocol Data Units (PDUs) in NI-XNET ..4-603

FlexRay Startup/Wakeup ..4-606

LIN ..4-609

LIN Frame Timing and Session Mode..4-609

XNET I/O Names ..4-613

I/O Name Classes..4-614

XNET Cluster I/O Name...4-615

XNET Database I/O Name ...4-618

XNET Device I/O Name...4-621

XNET ECU I/O Name ..4-621

XNET Frame I/O Name..4-624

XNET Interface I/O Name..4-627

XNET Session I/O Name..4-628

XNET Signal I/O Name..4-630

XNET Subframe I/O Name...4-633

XNET Terminal I/O Name ...4-634

XNET LIN Schedule I/O Name..4-635

XNET LIN Schedule Entry I/O Name..4-637

XNET PDU I/O Name ..4-638

Chapter 5
NI-XNET API for C

Getting Started ...5-1

LabWindows/CVI..5-1

Examples...5-1

Visual C++ ..5-2

Examples...5-3

Interfaces..5-3

What Is an Interface?...5-3

How Do I View Available Interfaces? ..5-4

Measurement and Automation Explorer (MAX)5-4

Databases ...5-4

What Is a Database? ..5-4

What Is an Alias?...5-5

Contents

NI-XNET Hardware and Software Manual xxii ni.com

Database Programming ... 5-6

Already Have File? ... 5-6

Can I Use File as Is? ... 5-6

Select From File.. 5-7

Edit and Select .. 5-7

Want to Use a File? .. 5-7

Create New File Using the Database Editor 5-7

Create in Memory ... 5-7

Sessions ... 5-8

What Is a Session? .. 5-8

Session Modes... 5-9

Frame Input Queued Mode... 5-10

Frame Input Single-Point Mode ... 5-12

Frame Input Stream Mode.. 5-13

Frame Output Queued Mode .. 5-16

Frame Output Single-Point Mode... 5-18

Frame Output Stream Mode ... 5-21

Signal Input Single-Point Mode ... 5-24

Signal Input Waveform Mode .. 5-26

Signal Input XY Mode ... 5-28

Signal Output Single-Point Mode... 5-30

Signal Output Waveform Mode ... 5-31

Signal Output XY Mode... 5-34

Conversion Mode ... 5-38

J1939 Sessions... 5-41

Compatibility Issue ... 5-41

J1939 Basics.. 5-42

Node Addresses in NI-XNET ... 5-43

Address Claiming Procedure .. 5-44

Transmitting Frames ... 5-45

Transmitting Frames without Granted Node Address 5-45

Mixing J1939 and CAN Messages.. 5-45

Transport Protocol (TP) .. 5-45

NI-XNET Sessions.. 5-46

Not Supported in the Current NI-XNET Version ... 5-46

Signal Ranges ... 5-46

NI-XNET API for C Reference... 5-47

Functions... 5-47

nxBlink ... 5-47

nxClear.. 5-49

nxConnectTerminals... 5-50

nxConvertFramesToSignalsSinglePoint... 5-57

nxConvertSignalsToFramesSinglePoint... 5-59

nxCreateSession.. 5-61

Contents

© National Instruments xxiii NI-XNET Hardware and Software Manual

nxCreateSessionByRef..5-66

nxdbAddAlias ...5-68

nxdbCloseDatabase...5-70

nxdbCreateObject..5-71

nxdbDeleteObject..5-73

nxdbDeploy...5-74

nxdbFindObject...5-76

nxdbGetDatabaseList ..5-78

nxdbGetDatabaseListSizes..5-80

nxdbGetDBCAttribute ..5-82

nxdbGetDBCAttributeSize ...5-84

nxdbGetProperty ...5-85

nxdbGetPropertySize ..5-86

nxdbMerge ..5-87

nxdbOpenDatabase ...5-90

nxdbRemoveAlias ...5-91

nxdbSaveDatabase ..5-92

nxdbSetProperty..5-94

nxdbUndeploy...5-95

nxDisconnectTerminals ..5-96

nxFlush..5-98

nxGetProperty ...5-99

nxGetPropertySize ..5-101

nxGetSubProperty...5-102

nxGetSubPropertySize ..5-103

nxReadFrame ..5-104

nxReadSignalSinglePoint..5-107

nxReadSignalWaveform ...5-109

nxReadSignalXY ..5-111

nxReadState ..5-113

nxSetProperty..5-125

nxSetSubProperty..5-126

nxStart ...5-127

nxStatusToString...5-129

nxStop ...5-130

nxSystemClose..5-132

nxSystemOpen ..5-133

nxWait ...5-134

nxWriteFrame ...5-136

nxWriteSignalSinglePoint...5-139

nxWriteSignalWaveform ..5-140

nxWriteSignalXY..5-142

nxWriteState..5-144

Contents

NI-XNET Hardware and Software Manual xxiv ni.com

Properties .. 5-147

XNET Cluster Properties.. 5-147

Baud Rate ... 5-147

CAN:FD Baud Rate ... 5-148

CAN:I/O Mode... 5-149

Comment .. 5-150

Configuration Status... 5-150

Database ... 5-151

ECUs .. 5-151

FlexRay:Action Point Offset .. 5-152

FlexRay:CAS Rx Low Max ... 5-153

FlexRay:Channels .. 5-154

FlexRay:Cluster Drift Damping ... 5-155

FlexRay:Cold Start Attempts ... 5-156

FlexRay:Cycle.. 5-157

FlexRay:Dynamic Segment Start 5-158

FlexRay:Dynamic Slot Idle Phase...................................... 5-159

FlexRay:Latest Guaranteed Dynamic Slot 5-160

FlexRay:Latest Usable Dynamic Slot 5-161

FlexRay:Listen Noise... 5-162

FlexRay:Macro Per Cycle .. 5-163

FlexRay:Macrotick... 5-164

FlexRay:Max Without Clock Correction Fatal 5-165

FlexRay:Max Without Clock Correction Passive 5-166

FlexRay:Minislot.. 5-167

FlexRay:Minislot Action Point Offset 5-168

FlexRay:Network Management Vector Length 5-169

FlexRay:NIT... 5-170

FlexRay:NIT Start .. 5-171

FlexRay:Number of Minislots.. 5-172

FlexRay:Number of Static Slots... 5-173

FlexRay:Offset Correction Start... 5-174

FlexRay:Payload Length Dynamic Maximum................... 5-175

FlexRay:Payload Length Maximum 5-176

FlexRay:Payload Length Static.. 5-177

FlexRay:Static Slot... 5-178

FlexRay:Symbol Window.. 5-179

FlexRay:Symbol Window Start ... 5-180

FlexRay:Sync Node Max ... 5-181

FlexRay:TSS Transmitter... 5-182

FlexRay:Use Wakeup... 5-183

FlexRay:Wakeup Symbol Rx Idle...................................... 5-184

FlexRay:Wakeup Symbol Rx Low 5-185

FlexRay:Wakeup Symbol Rx Window.............................. 5-186

Contents

© National Instruments xxv NI-XNET Hardware and Software Manual

FlexRay:Wakeup Symbol Tx Idle5-187

FlexRay:Wakeup Symbol Tx Low5-188

Frames ..5-189

Name (Short) ..5-190

PDUs...5-191

PDUs Required? ...5-192

Protocol...5-194

Schedules ..5-194

Signals ..5-195

Tick ...5-196

Application Protocol...5-197

XNET Database Properties ...5-198

Clusters ...5-198

ShowInvalidFromOpen?...5-199

XNET Device Properties ..5-200

Form Factor ..5-200

Interfaces ..5-201

Number of Ports..5-201

Product Name ...5-202

Product Number..5-202

Serial Number...5-203

Slot Number..5-203

XNET ECU Properties..5-204

Cluster...5-204

Comment ..5-204

Configuration Status ...5-205

FlexRay:Coldstart? ...5-206

FlexRay:Connected Channels...5-206

FlexRay:Startup Frame...5-207

FlexRay:Wakeup Channels ..5-207

FlexRay:Wakeup Pattern ..5-208

Frames Received...5-208

Frames Transmitted ..5-209

LIN Master ...5-209

LIN Version ..5-210

LIN:Initial NAD ...5-210

LIN:Configured NAD...5-211

LIN:Supplier ID..5-211

LIN:Function ID ...5-212

LIN:P2min ..5-212

LIN:STmin..5-213

Name (Short) ..5-214

Contents

NI-XNET Hardware and Software Manual xxvi ni.com

XNET Frame Properties ... 5-215

CAN:Extended Identifier?.. 5-215

CAN:Timing Type ... 5-216

CAN:Transmit Time .. 5-218

Cluster .. 5-219

Comment .. 5-219

Configuration Status... 5-220

Default Payload .. 5-221

FlexRay:Base Cycle ... 5-223

FlexRay:Channel Assignment.. 5-225

FlexRay:Cycle Repetition .. 5-226

FlexRay:In Cycle Repetitions:Channel Assignments 5-228

FlexRay:In Cycle Repetitions:Enabled? 5-229

FlexRay:In Cycle Repetitions:Identifiers........................... 5-230

FlexRay:Payload Preamble? .. 5-231

FlexRay:Startup?.. 5-232

FlexRay:Sync? ... 5-233

FlexRay:Timing Type .. 5-234

Identifier ... 5-235

LIN:Checksum ... 5-237

Mux:Data Multiplexer Signal... 5-238

Mux:Is Data Multiplexed? ... 5-238

Mux:Static Signals ... 5-239

Mux:Subframes .. 5-239

Name (Short) .. 5-240

Payload Length... 5-241

PDU References ... 5-242

PDU Start Bits.. 5-243

PDU Update Bits .. 5-244

Signals .. 5-245

Application Protocol .. 5-246

XNET Interface Properties ... 5-247

CAN.Termination Capability ... 5-247

CAN.Transceiver Capability.. 5-248

Device... 5-249

Name .. 5-249

Number... 5-250

Port Number ... 5-251

Protocol .. 5-252

XNET LIN Schedule Properties ... 5-253

Cluster .. 5-253

Comment .. 5-253

Configuration Status... 5-254

Entries... 5-255

Contents

© National Instruments xxvii NI-XNET Hardware and Software Manual

Name...5-255

Priority ..5-256

Run Mode ...5-257

XNET LIN Schedule Entry Properties..5-258

Collision Resolving Schedule...5-258

Delay...5-258

Event Identifier ...5-259

Frames ..5-260

Name...5-261

Name Unique to Cluster ...5-262

Node Configuration:Free Format:Data Bytes.....................5-263

Schedule..5-264

Type ..5-265

XNET PDU Properties..5-266

Cluster...5-266

Comment ..5-266

Configuration Status ...5-267

Frames ..5-268

Mux:Data Multiplexer Signal ...5-268

Mux:Is Data Multiplexed?..5-269

Mux:Static Signals..5-269

Mux:Subframes ..5-270

Name (Short) ..5-270

Payload Length ...5-271

Signals ..5-272

XNET Session Properties..5-273

Interface Properties...5-273

CAN Interface Properties5-273

Interface:CAN:External Transceiver

Config ...5-273

Interface:CAN:FD Baud Rate................5-276

Interface:CAN:I/O Mode.......................5-278

Interface:CAN:Listen Only?..................5-279

Interface:CAN:Pending Transmit

Order ...5-280

Interface:CAN:Single Shot Transmit?...5-282

Interface:CAN:Termination...................5-283

Interface:CAN:Transceiver State...........5-285

Interface:CAN:Transceiver Type5-288

Interface:CAN:Transmit I/O Mode5-290

FlexRay Interface Properties................................5-291

Interface:FlexRay:Accepted Startup

Range ..5-291

Contents

NI-XNET Hardware and Software Manual xxviii ni.com

Interface:FlexRay:Allow Halt

Due To Clock?.................................... 5-292

Interface:FlexRay:Allow Passive to

Active ... 5-293

Interface:FlexRay:

AutoAsleepWhenStopped 5-294

Interface:FlexRay:Cluster Drift

Damping ... 5-295

Interface:FlexRay:Coldstart?................. 5-296

Interface:FlexRay:Connected

Channels ... 5-297

Interface:FlexRay:Decoding

Correction ... 5-298

Interface:FlexRay:Delay Compensation

Ch A.. 5-299

Interface:FlexRay:Delay Compensation

Ch B.. 5-300

Interface:FlexRay:Key Slot Identifier ... 5-301

Interface:FlexRay:Latest Tx.................. 5-303

Interface:FlexRay:Listen Timeout 5-304

Interface:FlexRay:Macro Initial Offset

Ch A.. 5-305

Interface:FlexRay:Macro Initial Offset

Ch B.. 5-306

Interface:FlexRay:Max Drift 5-307

Interface:FlexRay:Micro Initial Offset

Ch A.. 5-308

Interface:FlexRay:Micro Initial Offset

Ch B.. 5-309

Interface:FlexRay:Microtick 5-310

Interface:FlexRay:Null Frames To Input

Stream? ... 5-311

Interface:FlexRay:Offset Correction 5-312

Interface:FlexRay:Offset Correction

Out .. 5-313

Interface:FlexRay:Rate Correction........ 5-314

Interface:FlexRay:Rate Correction

Out .. 5-315

Interface:FlexRay:Samples Per

Microtick .. 5-316

Interface:FlexRay:Single Slot

Enabled? ... 5-317

Interface:FlexRay:Sleep 5-318

Interface:FlexRay:Statistics Enabled?... 5-320

Contents

© National Instruments xxix NI-XNET Hardware and Software Manual

Interface:FlexRay:Symbol Frames To

|Input Stream?5-321

Interface:FlexRay:Sync Frame Status ...5-322

Interface:FlexRay:Sync Frames

Channel A Even5-323

Interface:FlexRay:Sync Frames

Channel A Odd5-324

Interface:FlexRay:Sync Frames

Channel B Even5-325

Interface:FlexRay:Sync Frames

Channel B Odd....................................5-326

Interface:FlexRay:Termination..............5-327

Interface:FlexRay:Wakeup Channel......5-328

Interface:FlexRay:Wakeup Pattern........5-329

LIN Interface Properties.......................................5-330

Interface:LIN:Break Length5-330

Interface:LIN:DiagP2min5-331

Interface:LIN:DiagSTmin......................5-332

Interface:LIN:Master?5-333

Interface:LIN:Output Stream Slave

Response List By NAD.......................5-334

Interface:LIN:Schedule Names..............5-335

Interface:LIN:Sleep5-336

Interface:LIN:Start Allowed without

Bus Power? ...5-339

Interface:LIN:Termination.....................5-340

Source Terminal Interface Properties...................5-341

Interface:Source Terminal:Start

Trigger...5-341

Interface:Baud Rate..5-342

Interface:Echo Transmit?5-345

Interface:Output Stream List5-346

Interface:Output Stream List By ID5-347

Interface:Output Stream Timing5-348

Interface:Start Trigger Frames to Input

Stream?..5-352

Interface:Bus Error Frames to Input Stream?5-353

Session:Application Protocol ...5-353

SAE J1939:ECU ...5-354

SAE J1939:ECU Busy..5-355

SAE J1939:Hold Time Th ..5-356

SAE J1939:Maximum Repeat CTS....................................5-357

SAE J1939:Node Address ..5-358

SAE J1939:NodeName...5-359

Contents

NI-XNET Hardware and Software Manual xxx ni.com

SAE J1939:Number of Packets Received 5-360

SAE J1939:Number of Packets Response.......................... 5-361

SAE J1939:Response Time Tr_GD 5-362

SAE J1939:Response Time Tr_SD.................................... 5-363

SAE J1939:Timeout T1.. 5-364

SAE J1939:Timeout T2.. 5-365

SAE J1939:Timeout T3.. 5-366

SAE J1939:Timeout T4.. 5-367

Frame Properties .. 5-368

CAN Frame Properties... 5-368

Frame:CAN:Start Time Offset 5-368

Frame:CAN:Transmit Time 5-369

Frame:LIN:Transmit N Corrupted Checksums ... 5-370

Frame:Skip N Cyclic Frames............................... 5-371

Auto Start?.. 5-372

ClusterName... 5-373

DatabaseName.. 5-373

List.. 5-374

Mode... 5-374

Number in List ... 5-375

Number of Values Pending .. 5-375

Number of Values Unused ... 5-377

Payload Length Maximum ... 5-378

Protocol .. 5-378

Queue Size.. 5-380

Resample Rate.. 5-386

XNET Signal Properties ... 5-387

Byte Order .. 5-387

Comment .. 5-389

Configuration Status... 5-390

Data Type ... 5-391

Default Value ... 5-392

Frame.. 5-393

Maximum Value... 5-393

Minimum Value ... 5-394

Mux:Data Multiplexer? .. 5-395

Mux:Dynamic?... 5-396

Mux:Multiplexer Value.. 5-397

Mux:Subframe.. 5-397

Name (Short) .. 5-398

Name Unique to Cluster ... 5-399

Number of Bits ... 5-400

PDU.. 5-401

Scaling Factor... 5-401

Contents

© National Instruments xxxi NI-XNET Hardware and Software Manual

Scaling Offset ...5-402

Start Bit...5-403

Unit ...5-405

XNET Subframe Properties ..5-405

Dynamic Signals...5-405

Frame ..5-406

Multiplexer Value...5-407

Name (Short) ..5-408

Name Unique to Cluster ...5-409

PDU ..5-409

XNET System Properties ..5-410

Devices ...5-410

Interfaces (All)..5-411

Interfaces (CAN) ..5-411

Interfaces (FlexRay) ...5-412

Interfaces (LIN) ..5-412

Version:Build..5-413

Version:Major...5-414

Version:Minor ..5-415

Version:Phase ...5-416

Version:Update ...5-417

Additional Topics ..5-418

Overall ...5-418

Cyclic and Event Timing ..5-418

Multiplexed Signals ..5-419

Raw Frame Format..5-421

Special Frames ..5-429

Required Properties...5-432

State Models..5-434

CAN...5-441

NI-CAN...5-441

CAN Timing Type and Session Mode..5-443

CAN Transceiver State Machine ..5-447

FlexRay..5-449

FlexRay Timing Type and Session Mode...5-449

Protocol Data Units (PDUs) in NI-XNET ..5-452

FlexRay Startup/Wakeup ..5-455

LIN ..5-457

LIN Frame Timing and Session Mode..5-457

Contents

NI-XNET Hardware and Software Manual xxxii ni.com

Chapter 6
Troubleshooting and Common Questions

Appendix A
Summary of the CAN Standard

Appendix B
Summary of the FlexRay Standard

Appendix C
Summary of the LIN Standard

Appendix D
Specifications

Appendix E
LabVIEW Project Provider

Appendix F
Bus Monitor

Appendix G
Database Editor

Appendix H
NI Services

Index

© National Instruments xxxiii NI-XNET Hardware and Software Manual

About This Manual

This manual describes how to install and configure the NI-XNET hardware

and software and summarizes the CAN, FlexRay, and LIN standards. It also

includes the NI-XNET LabVIEW and C API reference.

Related Documentation

The following documents contain information that you may find helpful as

you read this manual:

• NI-XNET Hardware and Software Help

• NI-XNET Tools and Utilities Help

• NI-XNET Hardware and Software Installation Guide

© National Instruments 1-1 NI-XNET Hardware and Software Manual

1
Introduction

Welcome to NI-XNET, the National Instruments software for CAN,

FlexRay, and LIN products.

NI-XNET is designed to meet the following goals:

• Ease of use: NI-XNET features provide fundamental concepts so that

you can get started with programming.

• Consistency: NI-XNET uses common industry concepts for

embedded networks such as CAN. These concepts help to abstract the

differences between protocols, so you can focus on your application.

• Completeness: NI-XNET provides a broad spectrum of features, from

easy-to-use signal I/O, down to more advanced streaming of raw

frames. You can use these features simultaneously on the same

interface: input along with output and signal I/O along with frame I/O.

• Performance: Read and Write functions are designed to

execute quickly, without loss of data. Performance for LabVIEW

Real-Time (RT) applications is a key focus of NI-XNET software and

hardware architecture.

If you are new to the CAN protocol, refer to Appendix A, Summary of the

CAN Standard, for an introduction. If you are new to the FlexRay protocol,

refer to Appendix B, Summary of the FlexRay Standard, for an

introduction. If you are new to the LIN protocol, refer to Appendix C,

Summary of the LIN Standard, for an introduction.

Chapter 3, NI-XNET Hardware Overview, summarizes the features of

National Instruments hardware for CAN, FlexRay, and LIN.

If you use LabVIEW for programming, refer to Getting Started in

Chapter 4, NI-XNET API for LabVIEW, for a description of NI-XNET

software concepts and programming models.

If you use C, C++, or another language for programming, refer to Getting

Started in Chapter 5, NI-XNET API for C, for a description of NI-XNET

software concepts and programming models.

© National Instruments 2-1 NI-XNET Hardware and Software Manual

2
Installation and Configuration

This chapter explains how to install and configure NI-XNET hardware.

Safety Information

The following section contains important safety information that you must

follow when installing and using the module.

Do not operate the module in a manner not specified in this document.

Misuse of the module can result in a hazard. You can compromise the safety

protection built into the module if the module is damaged in any way. If the

module is damaged, return it to National Instruments (NI) for repair.

Do not substitute parts or modify the module except as described in this

document. Use the module only with the chassis, modules, accessories, and

cables specified in the installation instructions. You must have all covers

and filler panels installed during operation of the module.

Do not operate the module in an explosive atmosphere or where there may

be flammable gases or fumes. If you must operate the module in such an

environment, it must be in a suitably rated enclosure.

If you need to clean the module, use a soft, nonmetallic brush. Make sure

that the module is completely dry and free from contaminants before

returning it to service.

Operate the module only at or below Pollution Degree 2. Pollution is

foreign matter in a solid, liquid, or gaseous state that can reduce dielectric

strength or surface resistivity. The following is a description of pollution

degrees:

• Pollution Degree 1 means no pollution or only dry, nonconductive

pollution occurs. The pollution has no influence.

• Pollution Degree 2 means that only nonconductive pollution occurs in

most cases. Occasionally, however, a temporary conductivity caused

by condensation must be expected.

Chapter 2 Installation and Configuration

NI-XNET Hardware and Software Manual 2-2 ni.com

• Pollution Degree 3 means that conductive pollution occurs, or dry,

nonconductive pollution occurs that becomes conductive due to

condensation.

You must insulate signal connections for the maximum voltage for which

the module is rated. Do not exceed the maximum ratings for the module.

Do not install wiring while the module is live with electrical signals.

Do not remove or add connector blocks when power is connected to the

system. Avoid contact between your body and the connector block signal

when hot swapping modules. Remove power from signal lines before

connecting them to or disconnecting them from the module.

Operate the module at or below the installation category1 marked on the

hardware label. Measurement circuits are subjected to working voltages2

and transient stresses (overvoltage) from the circuit to which they are

connected during measurement or test. Installation categories establish

standard impulse withstand voltage levels that commonly occur in

electrical distribution systems. The following is a description of installation

categories:

• Installation Category I is for measurements performed on circuits not

directly connected to the electrical distribution system referred to as

MAINS3 voltage. This category is for measurements of voltages from

specially protected secondary circuits. Such voltage measurements

include signal levels, special equipment, limited-energy parts of

equipment, circuits powered by regulated low-voltage sources, and

electronics.

• Installation Category II is for measurements performed on circuits

directly connected to the electrical distribution system. This category

refers to local-level electrical distribution, such as that provided by a

standard wall outlet (for example, 115 AC voltage for U.S. or 230 AC

voltage for Europe). Examples of Installation Category II are

measurements performed on household appliances, portable tools, and

similar modules.

1 Installation categories, also referred to as measurement categories, are defined in electrical safety standard IEC 61010-1.

2 Working voltage is the highest rms value of an AC or DC voltage that can occur across any particular insulation.

3 MAINS is defined as a hazardous live electrical supply system that powers equipment. Suitably rated measuring circuits may
be connected to the MAINS for measuring purposes.

Chapter 2 Installation and Configuration

© National Instruments 2-3 NI-XNET Hardware and Software Manual

• Installation Category III is for measurements performed in the building

installation at the distribution level. This category refers to

measurements on hard-wired equipment such as equipment in fixed

installations, distribution boards, and circuit breakers. Other examples

are wiring, including cables, bus bars, junction boxes, switches, socket

outlets in the fixed installation, and stationary motors with permanent

connections to fixed installations.

• Installation Category IV is for measurements performed at the primary

electrical supply installation (<1,000 V). Examples include electricity

meters and measurements on primary overcurrent protection devices

and on ripple control units.

Measurement & Automation Explorer (MAX)

You can use Measurement & Automation Explorer (MAX) to access all

National Instruments products. Like other National Instruments hardware

products, NI-XNET uses MAX as the centralized location for XNET

device configuration.

To launch MAX, click the Measurement & Automation shortcut on the

desktop or select Start»Programs»National Instruments»Measurement

& Automation.

For information about the NI-XNET software in MAX, consult the online

help at Help»Help Topics»NI-XNET.

You can view help for MAX Configuration tree items using the built-in

MAX help pane. If this help pane does not appear on the right side of the

MAX window, click the Show Help button in the upper right corner.

Chapter 2 Installation and Configuration

NI-XNET Hardware and Software Manual 2-4 ni.com

Verifying NI-XNET Hardware Installation

The MAX Configuration tree Devices and Interfaces branch lists

NI-XNET hardware (along with other local computer system hardware),

as shown in Figure 2-1.

Figure 2-1. NI-XNET Hardware Listed in MAX

If the NI-XNET hardware is not listed here, MAX is not configured to

search for new devices on startup. To search for the new hardware,

press <F5>.

To verify installation of the NI-XNET hardware, right-click the NI-XNET

device and select Self-Test. If the self-test passes, the card icon shows a

checkmark. If the self-test fails, the card icon shows an X mark, and the

Test Status in the right pane describes the problem. Refer to Chapter 6,

Troubleshooting and Common Questions, for information about resolving

hardware installation problems.

Chapter 2 Installation and Configuration

© National Instruments 2-5 NI-XNET Hardware and Software Manual

XNET C Series Modules Firmware Update

For C Series modules, the module firmware is not updated automatically

when opening an XNET session. Therefore, the right pane in MAX has a

second tab that shows the module firmware status.

Figure 2-2. Module and XNET Firmware Match

If the module firmware matches the firmware that the current XNET

version requires, the right pane in MAX is marked with a check mark, and

the Update Firmware button is disabled, as shown in Figure 2-2. In case

of a version mismatch, the right pane in MAX and the module in the MAX

tree view are marked with an exclamation point (!), as shown in Figure 2-3.

In this case, the text in the right pane says the firmware must be updated,

and the Update Firmware button is enabled.

Chapter 2 Installation and Configuration

NI-XNET Hardware and Software Manual 2-6 ni.com

Figure 2-3. Firmware Update Needed

If MAX indicates a firmware version mismatch, you must update the

module firmware before using the module.

Chapter 2 Installation and Configuration

© National Instruments 2-7 NI-XNET Hardware and Software Manual

Configuring NI-XNET Interfaces

The NI-XNET hardware interfaces are listed under the device name. To

change the interface name, select a new one from the Interface Name box

in the middle pane, as shown in Figure 2-4.

Figure 2-4. Renaming an Interface

LabVIEW Real-Time (RT) Configuration

LabVIEW Real-Time (RT) combines easy-to-use LabVIEW programming

with the power of real-time systems. When you use a National Instruments

PXI controller, you can install a PXI-XNET card and use the NI-XNET

API to develop real-time applications. For example, you can simulate the

behavior of a control algorithm within a XNET device, using data from

received CAN or FlexRay messages to generate outgoing CAN or FlexRay

messages with deterministic response times.

Chapter 2 Installation and Configuration

NI-XNET Hardware and Software Manual 2-8 ni.com

When you install the NI-XNET software, the installer copies components

for LabVIEW RT to the Windows system. As with any other NI product for

LabVIEW RT, you then download the NI-XNET software to the LabVIEW

RT system using the Remote Systems branch in MAX. For more

information, refer to the LabVIEW RT documentation.

After you install the NI-XNET hardware and download the NI-XNET

software to the LabVIEW RT system, you can verify the installation. Find

your RT target under Remote Systems and open the Devices and

Interfaces item. Perform a self test for all installed NI-XNET devices.

Getting Started with CompactRIO

When you use a C Series NI-XNET module in a CompactRIO chassis, the

NI-XNET features on LabVIEW RT are the same as on other LabVIEW

RT targets, such as PXI. Nevertheless, the communication between the

NI-XNET RT driver and module does not exist in the default FPGA VI that

ships with CompactRIO. Prior to using NI-XNET features, you must use

LabVIEW FPGA to compile and run an FPGA VI that contains the required

communication logic.

The following steps describe how to use a C Series NI-XNET module in a

CompactRIO chassis from its out-of-box configuration.

1. Install the required software to the host computer.

a. LabVIEW (Including RT and FPGA)

Install LabVIEW, LabVIEW Real-Time, LabVIEW FPGA, and

NI-RIO.

For supported versions of the software mentioned above, refer to

the Supported Platforms section in the NI-XNET readme file.

b. NI-XNET

Install NI-XNET after the required LabVIEW components.

2. Install NI-XNET to the CompactRIO RT controller.

Use MAX to find your CompactRIO controller under Remote

Systems, then right-click Software and select Change/Remove

Software. There are two ways to install the required components:

• NI-RIO with NI Scan Engine Support

If this selection is dimmed, refer to the explanation on the right to

resolve the problem, or use custom installation. After selecting

this item, the next page displays a list of add-ons. Scroll down to

the bottom of the add-on list to check NI-XNET.

Chapter 2 Installation and Configuration

© National Instruments 2-9 NI-XNET Hardware and Software Manual

• Custom Software Installation

Custom installation can be useful on controllers with small

amounts of memory because you can use it to avoid installing

unused components. Select the NI-XNET item, which in turn

selects the required dependencies (for example, NI-RIO IO Scan).

3. Add modules to the LabVIEW project.

To compile an FPGA VI with the required communication logic, you

must add NI-XNET modules in a LabVIEW project.

a. Add the controller.

Assuming your controller is online, you can right-click the project

item and select New»Targets and Devices»Existing target or

device, then select your controller under Real-Time

CompactRIO. If your controller is offline, you can add it by

selecting New target or device.

b. Select the chassis programming mode.

When you add the controller, a dialog asks you to select the

programming mode for the chassis. Although NI-XNET uses scan

engine components, you must select LabVIEW FPGA Interface

as the chassis mode. This configures the chassis to support

compiling an FPGA VI.

If a Discover C Series Modules? dialog appears, click the Do Not

Discover button and proceed to step d.

c. Ignore errors for discovered NI-XNET modules.

LabVIEW 2010 may report an error for NI-XNET modules,

stating that LabVIEW FPGA is not supported. LabVIEW 2011 or

later does not report this error. Do not change the chassis to Scan

Interface mode. Ignore this error message and click Continue.

d. Add NI-XNET modules.

Right-click the chassis item under the controller (not FPGA) and

select New»C Series Modules»Existing target or device. Select

the plus sign to discover and then hold <Shift> to select all

NI-XNET modules in the list. Click OK to add the modules to the

project.

You also can add NI-XNET modules offline by selecting New

target or device, then C Series Module, and in the next dialog

select the appropriate Module Type (for example, NI 9862).

When you use an NI-XNET module in a project, you do not

necessarily need to have that module installed physically. For

NI-XNET, the module in the project is simply a signal to the

FPGA VI that NI-XNET communication is required for that slot.

Chapter 2 Installation and Configuration

NI-XNET Hardware and Software Manual 2-10 ni.com

4. Compile and run the FPGA VI.

If you are new to CompactRIO, you can use an empty FPGA VI to get

started quickly with NI-XNET tools and examples. Select the FPGA

target in the LabVIEW project, and then select New»VI. When the

front panel opens, click the LabVIEW run button (the arrow) to

compile and run the VI. Although the VI is empty, it loads the required

NI-XNET support. When compilation completes, and the VI runs the

first time, you can close the front panel and proceed to the next step.

If you have an existing FPGA VI in your project, you must recompile

the FPGA VI to incorporate NI-XNET support for the configured slots.

When the FPGA VI is recompiled, you run it using the same methods

you used previously. This typically is done using Open FPGA VI

Reference from a host VI.

The following tables provide a detailed list of actions that cause

NI-XNET to load and unload. NI-XNET must be loaded for its

hardware to be detected. Within the tables, the term XNET-enabled

FPGA VI refers to an FPGA VI compiled with a project that contains

at least one NI-XNET module. The term XNET-disabled FPGA VI

refers to an FPGA VI compiled with no NI-XNET modules.

Note NI-XNET does not load when the CompactRIO system powers up. Even if you

configure an XNET-enabled FPGA VI to load automatically on power on, you must

perform an action from Table 2-1 prior to using NI-XNET.

Table 2-1. Actions That Cause NI-XNET to Load

Action Comment

Invoke Open FPGA VI

Reference with an XNET-enabled

FPGA VI.

NI-XNET loads regardless of

whether Run the FPGA VI is

checked in the configuration

dialog.

Run the XNET-enabled FPGA VI

using Interactive Front Panel

Communication.

—

Chapter 2 Installation and Configuration

© National Instruments 2-11 NI-XNET Hardware and Software Manual

Note When using FPGA Interactive Front Panel Communication, stopping the FPGA VI

does not unload NI-XNET. This applies to stopping the VI normally (for example, from the

front panel button), or using the LabVIEW abort button (the stop sign).

5. Wait for interfaces to be detected.

After the FPGA runs with NI-XNET support, it may take a few

seconds for the new FPGA features to be detected, appropriate RT

drivers to load, and NI-XNET modules to be detected. This delay

occurs only after you perform the action from Table 2-1.

Table 2-2. Actions That Cause NI-XNET to Unload

Action Comment

Invoke Close FPGA VI

Reference with the shortcut

option Close and Reset if Last

Reference (default).

If the reference is not the last to

close, NI-XNET remains loaded.

The shortcut options Close and

Close and Abort without

Reference Counting do not

unload NI-XNET.

Power down CompactRIO. —

Run XNET-disabled FPGA VI. This applies to Open FPGA VI

Reference or Interactive Front

Panel Communication.

Invoke Reset using the Invoke

Method node of the FPGA

interface.

Reset of an open FPGA reference

causes NI-XNET to unload, and

then immediately load again. If

you are using NI-XNET sessions

during the reset, the sessions are

invalidated. Other methods such

as Abort do not unload NI-XNET.

Run a different XNET-enabled

FPGA VI from the XNET-enabled

FPGA VI currently loaded.

When you change FPGA VIs, the

effect is the same as the reset

method. NI-XNET unloads and

then immediately loads again.

Chapter 2 Installation and Configuration

NI-XNET Hardware and Software Manual 2-12 ni.com

There are several options for detecting NI-XNET interface hardware:

• MAX Devices & Interfaces—You can detect the interfaces

visually by opening the Devices & Interfaces tree under the

RT controller in MAX. Once the hardware is detected, you can

perform a self test to confirm that all hardware and software is

ready to use.

• LabVIEW Interface I/O Name—When you drop an XNET

interface I/O name control on the front panel of an RT VI, the

control uses features similar to MAX to display available

interfaces. For interface detection to operate, you must right-click

the RT controller in the LabVIEW project and select Connect

(or Deploy). Once connected, you can use the interface I/O name

to select an interface prior to running the RT VI.

• System API—If you need to detect interfaces programmatically

within a running RT VI, National Instruments provides APIs for

this purpose. The NI System Configuration API can detect any

NI hardware product, including NI-XNET interfaces. NI-XNET

also provides a System API with properties specific to NI-XNET

hardware.

If you run your RT VI as a startup VI (for example, after power

on), you must perform an action from Table 2-1, then use a

System API to wait for the required interfaces prior to calling

XNET Create Session. If you create an I/O session prior to

detecting the specified interface, an interface-not-found error can

occur.

6. Use NI-XNET.

Once the interfaces are detected, you are ready to use them. Within

your RT VI, NI-XNET sessions are used to read and write I/O data. For

more information, refer to Sessions in Chapter 4, NI-XNET API for

LabVIEW.

Tools

NI-XNET includes two tools you can launch from MAX:

• Bus Monitor—Displays statistics for CAN, FlexRay, or LIN frames.

This is a basic tool for analyzing CAN, FlexRay, or LIN network

traffic. Launch this tool by right-clicking an NI-XNET interface and

selecting Bus Monitor from the context menu.

• NI I/O Trace—Monitors function calls to the NI-XNET APIs. This

tool helps in debugging application programming problems. To launch

Chapter 2 Installation and Configuration

© National Instruments 2-13 NI-XNET Hardware and Software Manual

this tool, open the Software branch of the MAX Configuration tree,

right-click NI I/O Trace, and select Launch NI I/O Trace.

System Configuration API

NI-XNET supports the National Instruments System Configuration API,

which provides programmatic access to many operations in MAX. This

enables you to perform these operations within your application.

The System Configuration API gathers information using various product

experts. You can create a filter to gather information for one type of

product, such as filtering for NI-XNET devices only. The NI-XNET expert

programmatic name is xnet.

© National Instruments 3-1 NI-XNET Hardware and Software Manual

3
NI-XNET Hardware Overview

Overview

NI-XNET is a suite of products that provide connectivity to CAN, FlexRay,

and LIN networks.

NI-XNET FlexRay Hardware

FlexRay Physical Layer
The FlexRay physical layer circuitry interfaces the FlexRay protocol

controller to the physical bus wires.

Transceiver
NI-XNET FlexRay hardware uses a pair of NXP TJA1080 FlexRay

transceivers per port. The TJA1080 is fully compatible with the FlexRay

standard and supports baud rates up to 10 Mbps. This device also supports

advanced power management through a low-power sleep mode. Refer to

the NI-XNET Session Interface:FlexRay:Sleep property for more

information. For detailed TJA1080 specifications, refer to the NXP

TJA1080 data sheet.

Bus Power Requirements
The FlexRay physical layer on PXI and PCI NI-XNET interfaces is

internally powered. As such, there is no need to supply bus power. The

COM pin serves as the reference ground for the bus signals. Refer to Pinout

for the PXI and PCI NI-XNET FlexRay interface pinout.

Cabling Requirements for FlexRay
Cables may be shielded or unshielded and should meet the physical

medium requirements described in Table 3-1.

Chapter 3 NI-XNET Hardware Overview

NI-XNET Hardware and Software Manual 3-2 ni.com

Cable Lengths and Number of Devices
The cabling characteristics, cabling topology, and desired bit transmission

rates affect the allowable cable length. Detailed recommendations for cable

length and number of devices are in the FlexRay Electrical Physical Layer

Specification available from the FlexRay Consortium. In general, the

maximum electrical length for a passive bus topology is 24 m, with the

number of devices limited to 22.

Termination
The simplest way to terminate FlexRay networks is with a single

termination resistor between the bus wires Bus Plus and Bus Minus. The

specific network topology determines the optimal termination values.

For all XNET devices, the termination is software selectable. XNET

provides the option of 80  between Bus Plus and Bus Minus or no

termination. You cannot set termination for channel A and channel B

independently. Refer to the Termination attribute in the XNET API for

more details. To determine the appropriate termination for your network,

refer to the FlexRay Electrical Physical Layer Specification for more

information.

Refer to the NI-XNET Session Interface:FlexRay:Termination property for

more information.

Pinout
Table 3-2 describes the FlexRay DB9 pinout.

Table 3-1. FlexRay Cable Characteristics

Characteristic Value

Differential mode impedance @ 10 MHz 80–110 

Specific line delay 10 ns/m

Cable attenuation @ 5 MHz (sine wave) 82 dB/km

Table 3-2. FlexRay DB9 Pinout

Pin Signal Signal

1 NC No connection

2 FlexRayA BM FlexRay channel A bus minus

Chapter 3 NI-XNET Hardware Overview

© National Instruments 3-3 NI-XNET Hardware and Software Manual

NI-XNET CAN Hardware

NI-XNET Transceiver Cables
Hardware supporting NI-XNET Transceiver Cables allows you to select

each port individually by plugging in the appropriate Transceiver Cable.

Each Transceiver Cable implements the interface physical layer of the

interface.

NI-XNET Transceiver Cables are designed to interface to NI-XNET host

ports.

XS Software Selectable Physical Layer
XNET CAN XS hardware allows you to select each port individually in the

physical layer for one of the following transceivers:

• High-Speed

• Low-Speed/Fault-Tolerant

• Single Wire

• External Transceiver

When an XS port is selected as High-Speed, it behaves exactly as a

dedicated High-Speed interface. When an XS port is selected as

Low-Speed/Fault-Tolerant, it behaves exactly as a dedicated

Low-Speed/Fault-Tolerant interface. When an XS port is selected as Single

Wire, it behaves exactly as a dedicated Single Wire interface. The bus

power requirements depend on the mode selected. Refer to the appropriate

High-Speed, Low-Speed/ Fault-Tolerant, or Single Wire physical layer

3 COM FlexRay reference ground

4 FlexRay B BM FlexRay channel B bus minus

5 SHLD FlexRay shield

6 (COM) Optional FlexRay reference ground

7 FlexRay A BP FlexRay channel A bus plus

8 FlexRay B BP FlexRay channel B bus plus

9 (Ext_VBat) Optional external bus voltage

Table 3-2. FlexRay DB9 Pinout (Continued)

Pin Signal Signal

Chapter 3 NI-XNET Hardware Overview

NI-XNET Hardware and Software Manual 3-4 ni.com

section to determine the behavior for the mode selected. For example, the

bus power requirements for an XS port configured for Single Wire mode

are identical to those of a dedicated Single Wire node. This feature is

provided as the Interface:CAN:Transceiver Type property.

When an XS port is selected as External, all onboard transceivers are

bypassed, and the CAN controller signals are routed directly to the 9-pin

D-SUB connector. External mode is intended for interfacing custom

physical layer circuits to NI XNET CAN hardware. Refer to External CAN

Transceiver for more details.

High-Speed Physical Layer
The High-Speed CAN physical layer circuitry interfaces the CAN protocol

controller to the physical bus wires.

Transceiver
NI-XNET CAN High-Speed hardware uses either the NXP TJA1041 or

NXP TJA 1043 High-Speed CAN transceiver.

The NI-XNET CAN HS/FD Transceiver Cable uses the TJA1043

transceiver. All other PXI and PCI NI-XNET High-Speed CAN interfaces

use the TJA1041.

Both the TJA1041 and TJA 1043 are fully compatible with the ISO 11898

standard and support baud rates of 40 kbps to 1 Mbps. These devices also

support advanced power management through a low-power sleep mode.

Refer to the NI-XNET Session Interface:CAN:Transceiver State property

for more information. For detailed transceiver specifications, refer to the

TJA1041 or TJA 1043 data sheet.

Bus Power Requirements
The High-Speed physical layer on PXI, PCI, and Transceiver Cable

NI-XNET interfaces is internally powered. As such, there is no need to

supply bus power. The COM pin serves as the reference ground for the bus

signals. Refer to Pinouts for the PXI and PCI NI-XNET CAN interface

pinout.

The High-Speed physical layer on C Series NI 9862 requires external

power supply of +9 to +30 V to operate. Connect the external power supply

to the Vsup pin on the module. The COM pins are for reference ground.

Refer to Pinouts for the C Series NI-XNET CAN module pinout.

Chapter 3 NI-XNET Hardware Overview

© National Instruments 3-5 NI-XNET Hardware and Software Manual

Cabling Requirements for High-Speed CAN
Cables should meet the physical medium requirements specified in

ISO 11898, shown in Table 3-3.

Belden cable (3084A) meets all these requirements and should be suitable

for most applications.

Cable Lengths
The cabling characteristics and desired bit transmission rate affect the

allowable cable length. Detailed cable length recommendations are in the

ISO 11898 and CiA DS 102 specifications. ISO 11898 specifies 40 m total

cable length with a maximum stub length of 0.3 m for a bit rate of 1 Mbps.

The ISO 11898 specification says that significantly longer cable lengths

may be allowed at lower bit rates, but each node should be analyzed for

signal integrity problems.

Number of Devices
The maximum number of devices depends on the electrical characteristics

of the devices on the network. If all devices meet the requirements of

ISO 11898, you can connect at least 30 devices to the bus. You can connect

higher numbers of devices if the device electrical characteristics do not

degrade signal quality below ISO 11898 signal level specifications. The

NI-XNET CAN hardware electrical characteristics allow at least 110 CAN

ports on the network.

Cable Termination
The pair of signal wires (CAN_H and CAN_L) constitutes a transmission

line. If the transmission line is not terminated, each signal change on the

line causes reflections that may cause communication failures.

Table 3-3. ISO 11898 Specifications for Characteristics of a CAN_H and
CAN_L Pair of Wires

Characteristic Value

Impedance 108  minimum, 120  nominal,

132  maximum

Length-related resistance 70 m /m nominal

Specific line delay 5 ns/m nominal

Chapter 3 NI-XNET Hardware Overview

NI-XNET Hardware and Software Manual 3-6 ni.com

Because communication flows both ways on the CAN bus, CAN requires

that both ends of the cable be terminated. However, this requirement does

not mean that every device should have a termination resistor. If multiple

devices are placed along the cable, only the devices on the ends of the cable

should have termination resistors. Refer to Figure 3-1 for an example of

where termination resistors should be placed in a system with more than

two devices.

Figure 3-1. Termination Resistor Placement

The termination resistors on a cable should match the nominal impedance

of the cable. ISO 11898 requires a cable with a nominal impedance of

120 , so you should use a 120 resistor at each end of the cable. Each

termination resistor should be capable of dissipating 0.25 W of power.

NI-XNET devices feature software selectable bus termination for

High-Speed CAN transceivers. On the PXI-8512, PCI-8512, PCI-8513

(in high-speed mode), or PXI-8513 (in high-speed mode), you can enable

120  termination resistors between CAN_H and CAN_L through an

API call.

Refer to the NI-XNET Session Interface:CAN:Termination property for

more information.

CAN

Device

CAN

Device

CAN

Device

CAN

Device

CAN_L

CAN_H

120 Ω 120 Ω

Chapter 3 NI-XNET Hardware Overview

© National Instruments 3-7 NI-XNET Hardware and Software Manual

Cabling Example
Figure 3-2 shows an example of a cable to connect two CAN devices. For

the internal power configuration, no V+ connection is required.

Figure 3-2. Cable Connecting Two CAN Devices

Low-Speed/Fault-Tolerant Physical Layer
The Low-Speed/Fault-Tolerant CAN physical layer circuitry interfaces the

CAN protocol controller to the physical bus wires.

Transceiver
NI-XNET CAN Low-Speed/Fault-Tolerant hardware uses either the

NXP TJA1054A or NXP TJA1055T Low-Speed/Fault-Tolerant

transceiver.

NI PXI and PCI XNET interfaces revision E and higher use the TJA1055T

transceiver, while revision D and lower use the TJA1054A transceiver.

To identify your PCI/PXI NI-XNET hardware revision, refer to the

19xxxx<rev>–4xL text on the green label in the top left corner on the

secondary side of the board; <rev> indicates the hardware revision.

9-Pin

D-Sub

9-Pin

D-Sub

CAN_H

CAN_L

V+

V+

V–

V–

Pin 7 Pin 7

Pin 2

Pin 5

Pin 9

Pin 3

Pin 2

Pin 5

Pin 9

Pin 3

Power

Connector

SHIELD

120 Ω 120 Ω

Chapter 3 NI-XNET Hardware Overview

NI-XNET Hardware and Software Manual 3-8 ni.com

Both the TJA1054A and TJA 1055T support baud rates up to 125 kbps. The

transceiver can detect and automatically recover from the following CAN

bus failures:

• CAN_H wire interrupted

• CAN_L wire interrupted

• CAN_H short-circuited to battery

• CAN_L short-circuited to battery

• CAN_H short-circuited to VCC

• CAN_L short-circuited to VCC

• CAN_H short-circuited to ground

• CAN_L short-circuited to ground

• CAN_H and CAN_L mutually short-circuited

The TJA1054A and TJA 1055T support advanced power management

through a low-power sleep mode. Refer to the NI-XNET Session

Interface:CAN:Transceiver State property for more information. For

detailed specifications for the transceivers, refer to the TJA1054 and

TJA 1055T data sheet.

Bus Power Requirements
The Low-Speed/Fault-Tolerant physical layer on PXI, PCI, and

Transceiver Cable NI-XNET interfaces is internally powered. As such,

there is no need to supply bus power. The COM pin serves as the reference

ground for the bus signals. Refer to Pinouts for the PXI and PCI NI-XNET

CAN interface pinout.

The Low-Speed/Fault-Tolerant physical layer on the C Series NI 9861

requires external power supply of +9 to +30 V to operate. Connect the

external power supply to the Vsup pin on the module. The COM pins are

for reference ground. Refer to Pinouts for the C Series NI-XNET CAN

module pinout.

Cabling Requirements for Low-Speed/
Fault-Tolerant CAN
Cables should meet the physical medium requirements shown in Table 3-4.

Belden cable (3084A) meets all of those requirements and should be

suitable for most applications.

Chapter 3 NI-XNET Hardware Overview

© National Instruments 3-9 NI-XNET Hardware and Software Manual

Number of Devices
The maximum number of devices depends on the electrical characteristics

of the devices on the network. If all devices meet the requirements of

typical Low-Speed/Fault-Tolerant CAN, you can connect up to 32 devices

to the bus. You can connect higher numbers of devices if the electrical

characteristics of the devices do not degrade signal quality below

Low-Speed/Fault-Tolerant signal level specifications.

Termination
Every device on the Low-Speed CAN network requires a termination

resistor for each CAN data line: RRTH for CAN_H and RRTL for CAN_L.

Figure 3-3 shows termination resistor placement in a Low-Speed CAN

network.

Figure 3-3. Termination Resistor Placement for Low-Speed CAN

The Determining the Necessary Termination Resistance for the Board

section explains how to determine the correct termination resistor values

for the Low-Speed CAN transceiver.

Refer to the NI-XNET Session Interface:CAN:Termination property for

more information.

Table 3-4. Specifications for Characteristics of a CAN_H and CAN_L Pair of Wires

Characteristic Value

Length-related resistance 90 m /m nominal

Length-related capacitance: CAN_L and

ground, CAN_H and ground, CAN_L and

CAN_H

30 pF/m nominal

Low-speed

CAN Device

RTL CAN_L RTH CAN_H

Low-speed

CAN Device

RTL CAN_L RTH CAN_H

Low-speed

CAN Device

RTL CAN_L RTH CAN_H

CAN_H

CAN_L

Chapter 3 NI-XNET Hardware Overview

NI-XNET Hardware and Software Manual 3-10 ni.com

Determining the Necessary Termination Resistance
for the Board
Unlike High-Speed CAN, Low-Speed CAN requires termination at the

Low-Speed CAN transceiver instead of on the cable. The termination

requires two resistors: RTH for CAN_H and RTL for CAN_L. This

configuration allows the NXP fault-tolerant CAN transceiver to detect and

recover from bus faults. You can use NI-XNET Low-Speed/Fault-Tolerant

CAN hardware to connect to a Low-Speed CAN network having from two

to 32 nodes as specified by NXP (including the port on the CAN

Low-Speed/ Fault-Tolerant interface). You also can use the

Low-Speed/Fault-Tolerant interface to communicate with individual

Low-Speed CAN devices. It is important to determine the overall

termination of the existing network, or the individual device termination,

before connecting it to a Low-Speed/ Fault-Tolerant port.

NXP recommends an overall RTH and RTL termination of 100–500 

(each) for a properly terminated low-speed network. You can determine the

overall network termination as follows:

NXP also recommends an individual device RTH and RTL termination

of 500 –16 K. After determining the existing network or device

termination, you can use the following formula to indicate which nearest

value the termination property needs to be set to produce the proper overall

RTH and RTL termination of 100–500  upon connection of the card:

where RRTH overall should be 100–500 .

1

R
RTHoverall

1

R
RTHnode1

1

R
RTHnode2

1

R
RTHnode3

1

R
RTHnoden

------------------------+ + +=

Low-speed

CAN Device

RTL CAN_L RTH CAN_H

Low-speed

CAN Device

RTL CAN_L RTH CAN_H

Low-speed

CAN Device

RTL CAN_L RTH CAN_H

CAN_H

CAN_L

Chapter 3 NI-XNET Hardware Overview

© National Instruments 3-11 NI-XNET Hardware and Software Manual

NI-XNET Low-Speed/Fault-Tolerant CAN hardware features software

selectable bus termination resistors, allowing you to adjust the overall

network termination through an API call. In general, if the existing network

has an overall network termination of 125  or less, you should select the

5 K option for your NI-XNET device. For existing overall network

termination above 125  , you should select the 1 K termination option

for your NI-XNET device.

Single Wire CAN Physical Layer
The Single Wire CAN physical layer circuitry interfaces the CAN protocol

controller to the physical bus wires.

Transceiver
NI-XNET Single Wire hardware uses either the NXP AU5790 or

ON Semiconductor NCV7356 Single Wire CAN transceiver.

NI PCI-8513 and NI PCI-8513/2 software-selectable NI-XNET PCI CAN

interfaces (revision D and higher) use the ON Semiconductor NCV7356

Single Wire transceiver, while revision C (and lower) uses the

NXP AU5790 Single Wire transceiver.

NI PXI-8513 and NI PXI-8513/2 software-selectable NI-XNET PXI CAN

interfaces (revision E and higher) use the ON Semiconductor NCV7356

Single Wire transceiver, while revision D (and lower) uses the

NXP AU5790 Single Wire transceiver.

To identify the your PCI/PXI NI-XNET hardware revision, refer to the

19xxxx<rev>–4xL text on the green label in the top left corner on the

secondary side of the board; <rev> indicates the hardware revision.

The NI-XNET Single Wire hardware supports baud rates up to 33.3 kbps

in normal transmission mode and 83.3 kbps in High-Speed transmission

mode. The achievable baud rate is primarily a function of the network

characteristics (termination and number of nodes on the bus), and assumes

bus loading as per SAE J2411. Each Single Wire CAN port has a local bus

load resistance of 9.09 k between the CAN_H and RTH pins of the

transceiver to provide protection against the loss of ground. NI-XNET

Single Wire hardware also supports advanced power management through

low-power sleep and wake up modes. Refer to the NI-XNET Session

Interface:CAN:Transceiver State property for more information.

For detailed transceiver specifications, refer to their respective data sheets.

Chapter 3 NI-XNET Hardware Overview

NI-XNET Hardware and Software Manual 3-12 ni.com

Bus Power Requirements
The Single Wire physical layer on PXI and PCI NI-XNET interfaces

requires external power supply of +8 to +18 V (+12 V recommended) to

operate. Connect the external power supply to the Ext_Vbat pin on the

module. The COM pins are used for reference ground. Refer to Pinouts

for the PXI and PCI NI-XNET CAN module pinout.

Cabling Requirements for Single Wire CAN
The number of nodes on the network, total system cable length, bus loading

of each node, and clock tolerance are all interrelated. It is therefore the

system designer’s responsibility to factor in all the above parameters when

designing a Single Wire CAN network. The SAE J2411 standard includes

some recommended specifications that can help in making these decisions.

Cable Length
There can be no more than 60 m between any two ECU nodes.

Number of Devices
As stated previously, the maximum number of Single Wire CAN nodes

allowed on the network depends on the device and cable electrical

characteristics. If all devices and cables meet the requirements of J2411,

between 2 and 32 devices may be networked together.

Termination (Bus Loading)
All NI Single Wire CAN hardware includes a built-in 9.09 k load resistor,

as specified by J2411.

External CAN Transceiver
The external CAN transceiver mode on the PXI-8513 and PCI-8513 XS

software selectable interfaces allows you to connect custom CAN

transceivers to the NI-XNET CAN hardware. The DB-9 connector on the

PXI-8513 and PCI-8513 interfaces includes five different pins to connect

with the custom transceiver. Refer to Pinouts for the DB-9 pinout for

external CAN transceiver. Refer to Interface:CAN:External Transceiver

Config for more information about configuring the NI-XNET hardware to

communicate with the custom transceiver.

Chapter 3 NI-XNET Hardware Overview

© National Instruments 3-13 NI-XNET Hardware and Software Manual

Pinouts

PXI-8511/8512/8513 and PCI-8511/8512/8513
Table 3-5 describes the CAN DB-9 pinout on PXI and PCI NI-XNET CAN

interfaces.

Table 3-6 describes the CAN DB-9 pinout on PXI and PCI NI-XNET

External CAN transceivers.

Table 3-5. PXI and PCI NI-XNET CAN DB-9 Pinout

D-SUB Pin Signal Description

1 NC No connection

2 CAN_L CAN_L bus line

3 COM CAN reference ground

4 NC No connection

5 (SHLD) Optional CAN shield

6 (COM) Optional CAN reference ground

7 CAN_H CAN_H bus line

8 NC No connection

9 (Ext_Vbat) Optional CAN power supply if bus

power/external VBAT is required

(single wire CAN on XS hardware

only)

Table 3-6. PXI and PCI NI-XNET External CAN Transceiver DB-9 Pinout

D-SUB Pin Signal Description

1 Output1 Generic output used to configure the

transceiver mode

2 Ext_RX Data received from the CAN Bus

3 COM CAN reference ground

4 Output0 Generic output used to configure the

transceiver mode

5 (SHLD) Optional CAN shield

Chapter 3 NI-XNET Hardware Overview

NI-XNET Hardware and Software Manual 3-14 ni.com

C Series NI 9861/9862
Table 3-7 describes the CAN DB-9 pinout on C Series NI-XNET CAN

interfaces.

NI-XNET LIN Hardware

LIN Physical Layer
The NI-XNET LIN physical layer circuitry interfaces the LIN protocol

controller to the physical bus wires. NI-XNET LIN interfaces are fully

compliant with the LIN 1.3/2.0/2.1/2.2 specification.

6 COM CAN reference ground

7 Ext_TX Data to transmit on the CAN Bus

8 NERR Input to connect to the NERR pin of

your transceiver to route status back

from the transceiver to the hardware

9 NC No connection

Table 3-7. C Series NI-XNET CAN DB-9 Pinout

D-SUB Pin Signal Description

1 NC No connection

2 CAN_L CAN_L bus line

3 COM CAN reference ground

4 NC No connection

5 (SHLD) Optional CAN shield

6 (COM) Optional CAN reference ground

7 CAN_H CAN_H bus line

8 NC No connection

9 VSUP External power supply (+9 V to

+30 V) required

Table 3-6. PXI and PCI NI-XNET External CAN Transceiver DB-9 Pinout

D-SUB Pin Signal Description

Chapter 3 NI-XNET Hardware Overview

© National Instruments 3-15 NI-XNET Hardware and Software Manual

Transceiver
NI-XNET LIN hardware uses the Atmel ATA6620 or ATA6625 LIN

transceiver for PCI-XNET and PXI-XNET LIN Interfaces, and the NXP

TJA1028 transceiver for C Series and Transceiver Cable XNET LIN

interfaces.

NI PXI-8516 and PCI-8516 XNET interfaces revision F and higher use the

ATA6625 LIN transceiver, while revision E and lower use the ATA6620

LIN transceiver.

To identify your PCI/PXI NI-XNET hardware revision, refer to the

19xxxx<rev>–4xL text on the green label in the top left corner on the

secondary side of the board; <rev> indicates the hardware revision.

These transceivers are fully compatible with the ISO-9141 standard and

support baud rates up to 20 kbps. For detailed specifications, refer to their

respective data sheets.

Bus Power Requirements
The LIN physical layer on NI-XNET interfaces requires an external power

supply of +8 to +18 V, as the following table specifies. Connect the

external power supply to the VBat/Vsup pin on the interface. The COM

pins are for reference ground. Refer to Pinout for the PXI and PCI

NI-XNET LIN interface pinout.

Cabling Requirements for LIN
LIN cables should meet the physical medium requirement of a bus RC time

constant of 5 µs. For detailed formulas for calculating this value, refer to

the Line Characteristics section of the LIN specification. Belden cable

(3084A) and other unterminated CAN/Serial quality cables meet these

requirements and should be suitable for most applications.

Cable Lengths
The maximum allowable cable length is 40 m, per the LIN specification.

Table 3-8. NI-XNET LIN Hardware Bus Power Requirements

Characteristic Specification

Voltage +8 to +18 VDC on VBat connector pin

(referenced to COM)

Current 55 mA maximum

Chapter 3 NI-XNET Hardware Overview

NI-XNET Hardware and Software Manual 3-16 ni.com

Number of Devices
The maximum number of devices on a LIN bus is 16, per the LIN

specification.

Termination
LIN cables require no termination, as nodes are terminated at the

transceiver. Slave nodes typically are pulled up from the LIN bus to VBat

with a 30 k resistance and a serial diode. This termination usually is

integrated into the transceiver package. The master node requires a 1 k

resistor and serial diode between the LIN bus and VBat. On NI-XNET LIN

products, master termination is software selectable; you can enable it in the

API with the NI-XNET Session Interface:LIN:Termination property.

Pinout

PXI-8516 and PCI-8516
Table 3-9 describes the LIN DB-9 pinout on PXI and PCI NI-XNET LIN

interfaces.

Table 3-9. PXI and PCI NI-XNET LIN DB-9 Pinout

Pin Signal Signal

1 NC No connection

2 NC No connection

3 COM LIN reference ground

4 NC No connection

5 SHLD Optional LIN shield. Connecting the

optional LIN shield may improve signal

integrity in a noisy environment.

6 (COM) Optional LIN reference ground

7 LIN LIN data line

8 NC No connection

9 VBat Supplies bus power to the LIN physical

layer, as the LIN specification requires. All

NI-XNET LIN interfaces require bus power

of +8 to +18 VDC.

Chapter 3 NI-XNET Hardware Overview

© National Instruments 3-17 NI-XNET Hardware and Software Manual

C Series NI 9866 and NI-XNET LIN Transceiver Cable
Table 3-10 describes the LIN DB-9 pinout on C Series and NI-XNET

Transceiver Cable NI-XNET LIN interfaces.

Isolation

All NI-XNET products protect your equipment from being damaged by

high-voltage spikes on the target bus. Bus ports on PXI and PCI NI-XNET

products support channel-to-channel and channel-to-bus isolation, and are

galvanically isolated up to 60 VDC. This isolation on PXI and PCI

NI-XNET products is intended to prevent ground loops.

Bus ports on C Series NI-XNET products support channel-to-bus isolation,

and are galvanically isolated up to 500 Vrms (5 s max withstand). Bus ports

on NI-XNET Transceiver Cable products support channel-to-bus isolation,

and are galvanically isolated up to 1000 Vrms (5 s max withstand).

Table 3-10. C Series NI-XNET LIN DB-9 Pinout

D-SUB Pin Signal Signal

1 NC No connection

2 NC No connection

3 COM LIN reference ground

4 NC No connection

5 (SHLD) Optional LIN shield

6 (COM) Optional LIN reference ground

7 LIN LIN data line

8 NC No connection

9 VSUP External power supply (+8 to +18 V)

required

Chapter 3 NI-XNET Hardware Overview

NI-XNET Hardware and Software Manual 3-18 ni.com

LEDs

NI-XNET one and two-port boards include two LEDs per port to help you

monitor hardware and bus status. LED 1 primarily indicates whether the

hardware is currently in use. LED 2 primarily indicates the activity

information of the connected bus. Each LED can display two colors (red or

green), which display in the following four patterns:

The following LED indications are protocol independent:

Pattern Meaning

Off No LED illumination

Solid LED fully illuminated

Blink Blinks at a constant rate of several times per second

Activity Blinks in a pseudo-random pattern

Condition/State LED 1 LED 2

Port identification Blinks green Blinks green

NI-XNET catastrophic error Blinks red Blinks red

No open session on hardware Off Off

Open session on hardware, port is

properly powered, and hardware is

not communicating

Solid green Off

Open session on hardware, port is

missing power

Solid red Off

Chapter 3 NI-XNET Hardware Overview

© National Instruments 3-19 NI-XNET Hardware and Software Manual

The following LED conditions are specific to CAN:

The following LED conditions are specific to FlexRay:

The following LED conditions are specific to LIN:

Condition/State LED 1 LED 2

Hardware is

communicating, and

controller is in Error

Active state

Solid green Activity green (returns to

idle/off one second after

last TX or RX)

Hardware is

communicating, and

controller is in Error

Passive state

Solid green Activity red (returns to

idle/off one second after

last TX or RX)

Hardware is running, and

controller transitioned to

bus off

Solid green Solid red

Condition/State LED 1 LED 2

Hardware is integrated

with a FlexRay cluster,

and controller is in

Normal Active state

Solid green Activity green (continues

while integrated)

Hardware is integrated

with a FlexRay cluster,

and controller is in

Normal Passive state

Solid green Activity red (continues

while integrated)

Hardware was integrated

with a FlexRay cluster

and transitioned to Halt

state

Solid green Solid red

Condition/State LED 1 LED 2

Hardware is

communicating

Solid green Activity green (returns to

idle/off one second after

last TX or RX)

Chapter 3 NI-XNET Hardware Overview

NI-XNET Hardware and Software Manual 3-20 ni.com

Synchronization

PXI NI-XNET and PCI NI-XNET
The PXI chassis features a dedicated synchronization bus integrated into

the backplane. NI-XNET products support use of this bus to synchronize

with other National Instruments hardware products such as DAQ, IMAQ,

and motion. The PXI synchronization bus consists of a flexible

interconnect scheme for sharing timing and triggering signals in a system.

For PCI hardware, the RTSI bus interface is a connector at the top of the

card. You can synchronize multiple National Instruments PCI cards by

connecting a RTSI ribbon cable between the cards that need to share timing

and triggering signals.

CAN/XS and FlexRay XNET products also feature two configurable

timing and triggering ports on the device front panel. These ports are

TTL-tolerant user-configurable for inputting and outputting timebases and

triggers. These signals are not electrically isolated from the backplane.

Refer to the XNET Connect Terminals function documentation for more

details.

C Series and NI-XNET Transceiver Cables
All NI-XNET ports on a particular C Series chassis share a common

timebase, allowing a better correlation of data on the ports. NI-XNET

products support use of this timebase to synchronize with other National

Instruments hardware products such as DAQ modules.

Moreover, on a CompactRIO system, the module’s timebase is corrected

for drift with respect to the RT controller’s timebase, allowing the

capability to correlate data with other modules in the chassis.

On a CompactDAQ system, you can route the Start Trigger between

multiple DAQmx and XNET modules. For information about performing

this routing in LabVIEW, refer to the Interface:Source Terminal:Start

Trigger property in Chapter 4, NI-XNET API for LabVIEW. For

information about performing this routing in C/C++, refer to the

Interface:Source Terminal:Start Trigger property in Chapter 5, NI-XNET

API for C.

© National Instruments 4-1 NI-XNET Hardware and Software Manual

4
NI-XNET API for LabVIEW

This chapter explains how to use the NI-XNET API for LabVIEW and describes the

NI-XNET LabVIEW VIs and properties.

Getting Started

This section helps you get started using NI-XNET for LabVIEW. It includes information

about using NI-XNET within a LabVIEW project, NI-XNET examples, and using the

NI-XNET palettes to create your own VI.

LabVIEW Project
Within a LabVIEW project, you can create NI-XNET sessions used within a VI to read or

write network data.

Using LabVIEW project sessions is best suited for static applications, in that the network data

does not change from one execution to the next. Even if your application is more dynamic,

a LabVIEW project is an excellent introduction to NI-XNET concepts.

To get started, open a new LabVIEW project, right-click My Computer, and select

New»NI-XNET Session. In the resulting dialog, the window on the left provides an

introduction to the NI-XNET session in the LabVIEW project. The introduction links to help

topics that describe how to create a session in the project, including a description of the

session modes.

Examples
NI-XNET includes LabVIEW examples that demonstrate a wide variety of use cases. The

examples build on the basic concepts to demonstrate more in-depth use cases. Most of the

examples create a session at run time rather than a LabVIEW project.

To view the NI-XNET examples, select Find Examples... from the LabVIEW Help menu.

When you browse examples by task, NI-XNET examples are under Hardware Input and

Output. The examples are grouped by protocol in CAN, FlexRay, and LIN folders. Although

you can write NI-XNET applications for either protocol, and each folder contains shared

examples, this organization helps you to find examples for your specific hardware product.

Chapter 4 NI-XNET API for LabVIEW—Getting Started

NI-XNET Hardware and Software Manual 4-2 ni.com

A few examples are suggested to get started with NI-XNET.

For CAN (at Hardware Input and Output»CAN»NI-XNET»Intro to Sessions»Signal

Sessions):

• CAN Signal Input Single Point.vi with CAN Signal Output Single Point.vi.

• CAN Signal Input Waveform.vi with CAN Signal Output Waveform.vi.

• CAN Frame Input Stream.vi (at Hardware Input and

Output»CAN»NI-XNET»Intro to Sessions»Frame Sessions) with any output

example.

For FlexRay (at Hardware Input and Output»FlexRay»Intro to Sessions»Signal

Sessions):

• FlexRay Signal Input Single Point.vi with FlexRay Signal Output Single Point.vi.

• FlexRay Signal Input Waveform.vi with FlexRay Signal Output Waveform.vi.

• FlexRay Frame Input Stream.vi (at Hardware Input and Output»FlexRay»Intro to

Sessions»Frame Sessions)with any output example.

For LIN (at Hardware Input and Output»LIN»NI-XNET»Intro to Sessions»Signal

Sessions):

• LIN Signal Input Single Point.vi with LIN Signal Output Single Point.vi.

• LIN Signal Input Waveform.vi with LIN Signal Output Waveform.vi.

• LIN Frame Input Stream.vi (at Hardware Input and Output»LIN»NI-XNET»Intro

to Sessions»Frame Sessions) with any output example.

Open an example VI by double-clicking its name.

To run the example, select values using the front panel controls, then read the instructions on

the front panel to run the examples.

Palettes
After learning the fundamentals of NI-XNET with a LabVIEW project and the examples, you

can begin to write your own application.

The NI-XNET functions palette includes nodes that you drag to your VI block diagram. When

your VI block diagram is open, this palette is in the Measurement I/O»XNET functions

palette.

To view help for each node in the NI-XNET functions palette, open the context help window

by selecting Show Context Help from the LabVIEW Help menu (or pressing <Ctrl-H>). As

you hover over each node or subpalette, a brief summary appears. To open the complete help,

click the Detailed help link in the summary.

Chapter 4 NI-XNET API for LabVIEW—Basic Programming Model

© National Instruments 4-3 NI-XNET Hardware and Software Manual

The NI-XNET controls palette includes I/O name controls that you drag to the your VI front

panel. These controls enable the VI end user to select NI-XNET objects from the front panel.

You view help for these controls in the same manner as on the functions palette.

Basic Programming Model

The LabVIEW block diagram in the following figure shows the basic NI-XNET

programming model.

Figure 4-1. Basic Programming Model for NI-XNET for LabVIEW

Complete the following steps to create this block diagram:

1. Create an NI-XNET session in a LabVIEW project. The session name is

MyInputSession, and the mode is Signal Input Single-Point.

2. Create a new VI in the project and open the block diagram.

Chapter 4 NI-XNET API for LabVIEW—Interfaces

NI-XNET Hardware and Software Manual 4-4 ni.com

3. Drag a while loop to the block diagram. Right-click the loop condition (the stop sign) and

create a control (stop button).

4. Drag the NI-XNET session from a LabVIEW project to the while loop. This creates the

XNET session wired to the corresponding XNET Read.vi.

5. Right-click the data output from XNET Read.vi and create an indicator.

6. Run the VI. View the received signal values. Stop the VI when you are done.

When you complete the preceding steps, you have created a fully functional NI-XNET

application.

You can create sessions for other input or output modes using the same technique. When you

drag an output session to the diagram, NI-XNET creates a constant for data and wires that

constant to XNET Write.vi. You can enter constant values to write, or to change the data at

run time, right-click the constant and select Change to Control.

NI-XNET enables you to create sessions for multiple hardware interfaces. For each interface,

you can use multiple input sessions and multiple output sessions simultaneously. The sessions

can use different modes. For example, you can use a Signal Input Single-Point Mode session

at the same time you use a Frame Input Stream Mode session.

The NI-XNET functions palette includes nodes that extend this programming model to

perform tasks such as:

• Creating a session at run time (instead of a LabVIEW project).

• Controlling the configuration and state of a session.

• Browsing and selecting a hardware interface.

• Managing and browsing database files.

• Creating frames or signals at run time (instead of using a database file).

The following sections describe the fundamental concepts used within NI-XNET. Each

section explains how to perform extended programming tasks.

Interfaces

What Is an Interface?
The interface represents a single CAN, FlexRay, or LIN connector on an NI hardware device.

Within NI-XNET, the interface is the object used to communicate with external hardware

described in the database.

Each interface name uses the following syntax:

<protocol><n>

Chapter 4 NI-XNET API for LabVIEW—Interfaces

© National Instruments 4-5 NI-XNET Hardware and Software Manual

The <protocol> is either CAN for a CAN interface, FlexRay for a FlexRay interface, or LIN

for a LIN interface.

The number <n> identifies the specific interface within the <protocol> scope. The

numbering starts at 1. For example, if you have a two-port CAN device, a two-port FlexRay

device, and a two-port LIN device in your system, the interface names are CAN1, CAN2,

FlexRay1, FlexRay2, LIN1, and LIN2, respectively. Devices that use a transceiver cable get

only an interface name when the cable is connected and identified.

Although you can change the interface number <n> within Measurement & Automation

Explorer (MAX), the typical practice is to allow NI-XNET to select the number

automatically. NI-XNET always starts at 1 and increments for each new interface found. If

you do not change the number in MAX, and your system always uses a single two-port CAN

device, you can write all your applications to assume CAN1 and CAN2. For as long as that

CAN card exists in your system, NI-XNET uses the same interface numbers for that device,

even if you add new CAN cards.

NI-XNET also uses the term port to refer to the connector on an NI hardware device. This

physical connector includes the transceiver cable if applicable. The difference between the

terms is that port refers to the hardware object (physical), and interface refers to the software

object (logical). The benefit of this separation is that you can use the interface name as an alias

to any port, so that your application does not need to change when your hardware

configuration changes. For example, if you have a PXI chassis with a single CAN PXI device

in slot 3, the CAN port labeled Port 1 is assigned as interface CAN1. Later on, if you remove

the CAN PXI card and connect a USB device for CAN, the CAN port on the USB device is

assigned as interface CAN1. Although the physical port is in a different place, VIs written to

use CAN1 work with either hardware configuration without change.

How Do I View Available Interfaces?

Measurement and Automation Explorer (MAX)
Use MAX to view your available NI-XNET hardware, including all devices and interfaces.

To view hardware in your local Windows system, select Devices and Interfaces under

My System. Each NI-XNET device is listed with the hardware product name, such as

NI PCI-8517 “FlexRay1, FlexRay2”.

Select each NI-XNET device to view its physical ports. Each port is listed with the current

interface name assignment, such as FlexRay1.

In the selected port’s window on the right, you can change one property: the interface name.

Therefore, you can assign a different interface name than the default. For example, you can

change the interface for physical port 2 of a PCI-8517 to FlexRay1 instead of FlexRay2. The

blinking LED test panel assists in identifying a specific port when your system contains

Chapter 4 NI-XNET API for LabVIEW—Interfaces

NI-XNET Hardware and Software Manual 4-6 ni.com

multiple instances of the same hardware product (for example, a chassis with five CAN

devices).

To view hardware in a remote LabVIEW Real-Time system, find the desired system under

Remote Systems and select Devices and Interfaces under that system. The features of

NI-XNET devices and interfaces are the same as the local system.

I/O Name
When you create a session at run time, you pass the desired interface to XNET Create

Session.vi. The interface uses the XNET Interface I/O Name type.

The XNET Interface I/O name has a drop-down list of all available NI-XNET interfaces. This

list matches the list of interfaces shown in MAX. You select a specific interface from the list

for use with XNET Create Session.vi.

By right-clicking the XNET Create Session.vi interface input, you can create a constant or

control for the XNET Interface I/O name. The constant is placed on your block diagram. You

typically use a constant when you have only a single NI-XNET device, to use fixed names

such as CAN1 and CAN2. The control is placed on your front panel. You typically use a

control when you have a large number of NI-XNET devices and want the VI end user to select

from available interfaces.

LabVIEW Project
When you create a session in a LabVIEW project, you enter the interface in the session dialog.

This dialog has a list of available interfaces, in a manner similar to the XNET Interface

I/O name.

If you are creating a session in a LabVIEW project and do not yet have NI-XNET hardware

in your system, you can type an interface name such as CAN1 in the dialog. This enables you

to create sessions and program VIs prior to installing the hardware.

System Node
In some cases, you may need to provide features similar to MAX within your own application.

For example, if you distribute your LabVIEW application to end users who are not familiar

with MAX, you may need to display a similar view within the application itself.

Within the NI-XNET functions palette Advanced subpalette, NI-XNET provides property

nodes to query for available hardware.

Chapter 4 NI-XNET API for LabVIEW—Databases

© National Instruments 4-7 NI-XNET Hardware and Software Manual

Figure 4-2. Advanced System Example Using Property Nodes

The block diagram in the figure above shows how to populate a LabVIEW tree control with

NI-XNET devices and interfaces, in a manner similar to MAX. First, you get the list of

devices from the XNET System node. For each XNET Device, you get its name and add

that name to the tree. For each XNET interface (port) in the device, you get its name and

add that name to the tree (with the device as the parent).

If you use this tree control to select an interface for session creation, you can pass the interface

name from the tree directly to XNET Create Session.vi. Although XNET Create Session.vi

uses the XNET Interface I/O name as an input, LabVIEW can cast a string to that I/O name

automatically.

Databases

What Is a Database?
For the NI-XNET interface to communicate with hardware products on the external network,

NI-XNET must understand the communication in the actual embedded system, such as the

vehicle. This embedded communication is described within a standardized file, such as

CANdb (.dbc) for CAN, FIBEX (.xml) for FlexRay, or LIN Description File (.ldf) for

LIN. Within NI-XNET, this file is referred to as a database. The database contains many

object classes, each of which describes a distinct entity in the embedded system.

• Database: Each database is represented as a distinct instance in NI-XNET. Although the

database typically is a file, you also can create the database at run time (in memory).

• Cluster: Each database contains one or more clusters, where the cluster represents a

collection of hardware products connected over a shared cabling harness. In other words,

each cluster represents a single CAN, FlexRay, or LIN network. For example, the

database may describe a single vehicle, where the vehicle contains one CAN cluster

Body, another CAN cluster Powertrain, one FlexRay cluster Chassis, and a LIN cluster

PowerSeat.

Chapter 4 NI-XNET API for LabVIEW—Databases

NI-XNET Hardware and Software Manual 4-8 ni.com

• ECU: Each Electronic Control Unit (ECU) represents a single hardware product in the

embedded system. The cluster contains one or more ECUs connected over a CAN,

FlexRay, or LIN cable. It is possible for a single ECU to be contained in multiple clusters,

in which case it behaves as a gateway between the clusters.

• Frame: Each frame represents a unique unit of data transfer over the cluster cable. The

frame bits contain payload data and an identifier that specifies the data (signal) content.

Only one ECU in the cluster transmits (sends) each frame, and one or more ECUs receive

each frame.

• Signal: Each frame contains zero or more values, each of which is called a signal. Within

the database, each signal specifies its name, position, length of the raw bits in the frame,

and a scaling formula to convert raw bits to/from a physical unit. The physical unit uses

a LabVIEW double-precision floating-point numeric type.

Other object classes include the PDU, Subframe, LIN Schedule, and LIN Schedule Entry.

What Is an Alias?
When using a database file with NI-XNET, you can specify the file path or an alias to the file.

The alias provides a shorter, easier-to-read name for use within your application.

For example, for the file path

C:\Documents and Settings\All Users\Documents\Vehicle5\

MyDatabase.DBC

you can add an alias named MyDatabase.

In addition to improving readability, the alias concept isolates your LabVIEW application

from the specific file path. For example, if your application uses the alias MyDatabase and

you change its file path to

C:\Embedded\Vehicle5\MyDatabase.DBC

your LabVIEW application continues to run without change.

The alias concept is used in most NI-XNET features for the database classes. The XNET I/O

Names for database classes include features for adding a new alias, viewing existing aliases,

deleting an alias, and so on. You also can perform these tasks at run time, using the VIs

available in the NI-XNET functions palette Database»File Mgt subpalette.

After you create an alias, it exists until you explicitly delete it. If you exit and relaunch

LabVIEW, the aliases from the previous use remain. If you uninstall NI-XNET, the aliases are

deleted; however, if you reinstall (upgrade) NI-XNET, the aliases from the previous

installation remain. Deleting an alias does not delete the database file itself, but merely the

association within NI-XNET.

Chapter 4 NI-XNET API for LabVIEW—Databases

© National Instruments 4-9 NI-XNET Hardware and Software Manual

An alias is required for deploying databases to LabVIEW Real-Time (RT) targets. When you

deploy to a LabVIEW RT target, the large text file is compressed to an optimized binary

format, and that binary file is transferred to the target. For more information about databases

with LabVIEW RT, refer to Using LabVIEW Real-Time.

Database Programming
The NI-XNET software provides various methods for creating your application database

configuration. The following figure shows a process for deciding the database source.

A description of each step in the process follows the flowchart.

Figure 4-3. Decision Process for Choosing Database Source

Already Have File?
If you are testing an ECU used within a vehicle, the vehicle maker (or the maker’s supplier)

already may have provided a database file. This file likely would be in CANdb, FIBEX, or

LDF format. When you have this file, using NI-XNET is relatively straightforward.

Can Use File As Is?
Is the file up to date with respect to your ECU(s)?

Can I use

file as is?

Want to

Use a File?

Yes No Yes No

Select From

File

Edit and

Select

Create New

File Using

Editor

Create in

Memory

Already

Have File?

Yes No

Chapter 4 NI-XNET API for LabVIEW—Databases

NI-XNET Hardware and Software Manual 4-10 ni.com

If you do not know the answer to this question, the best choice is to assume Yes and begin

using NI-XNET with the file. If you encounter problems, you can use the techniques

discussed in Edit and Select to update your application without significant redesign.

Select From File
There are three options for selecting the database objects to use for NI-XNET sessions: a

LabVIEW project, I/O names, and property nodes.

LabVIEW Project

The NI-XNET session in a LabVIEW project assumes that you have a database file. The

configuration dialog includes controls to browse to your database file, select a cluster to use,

and select a list of frames or signals. For example, if you create a Signal Input Single-Point

session, you enter the database and cluster to use, then select one or more signals to read.

I/O Names

If you create sessions at run time, you need to wire objects from the database file to XNET

Create Session.vi. The easiest way to do this is to use I/O names for the objects that you need.

For example, assume that you want to create a Signal Input Single-Point session and want the

VI end user to select signals from the front panel. First, drag XNET Create Session.vi from

the NI-XNET functions palette. Change the VI selector to Signal Input Single-Point.

Right-click the signal list input and select Create»Control. This creates an array of XNET

Signal I/O names on your front panel.

Right-click the signal list control and select Browse for Database File to find the database

file. For a CANdb file, you can click the drop-down list for each array element to select from

available signals in the file. For a FIBEX or LDF file, right-click signal list and Select

Database to select a specific cluster within the file, then click the drop-down list to select

signals. After you browse to the file and select a cluster, that information is saved with the VI,

so you need to select only signal names from that point onward.

Most NI-XNET examples use I/O names to select objects (frames or signals). As a default,

the NI-XNET example VIs use an example database file installed with NI-XNET. You can

change this file to a different file using the previous steps.

Property Nodes

If you create a session at run time, you may want to implement your own front panel controls

to select objects from the database, rather than use I/O names. Although the programming is

more advanced than I/O names, you can do this using property nodes for the database classes.

These property nodes are found in the NI-XNET functions palette Database subpalette.

Chapter 4 NI-XNET API for LabVIEW—Databases

© National Instruments 4-11 NI-XNET Hardware and Software Manual

For example, assume you want a tree control on the VI front panel. The tree shows the frames

and signals within a selected cluster. The VI user selects signals from this tree control. The

tree control block diagram uses a programming model similar to the Advanced System

Example Using Property Nodes.

Figure 4-4. Advanced Database Example Using Property Nodes

The block diagram in the figure above shows how to populate a LabVIEW tree control with

the frames and signals for a specific cluster. Because a cluster represents a single network

connected to your NI-XNET interface, you do not need to show multiple clusters. First, you

get the list of frames from the XNET Cluster node. For each XNET Frame, you get its name

and add that name to the tree. For each XNET Signal in the frame, you get its name and add

that name to the tree (with the frame as the parent).

If you use this tree control to select signals for session creation, you can use names from the

tree to form the signal names that you wire to XNET Create Session.vi. For information

about signal name syntax, refer to XNET Signal I/O Name.

Edit and Select
There are two options for editing the database objects for the NI-XNET session: edit in

memory and edit the file.

Edit in Memory

First, you select the frames or signals for the NI-XNET session using one of the options

described in Select From File.

Next, you wire the selected objects to the corresponding property node and set properties

to change the value. When you edit the object using its property node, this changes the

representation in memory, but does not save the change to the file. When you pass the object

into XNET Create Session.vi, the changes in memory (not the original file) are used.

Chapter 4 NI-XNET API for LabVIEW—Databases

NI-XNET Hardware and Software Manual 4-12 ni.com

Edit the File

The NI-XNET Database Editor is a tool for editing database files for use with NI-XNET.

Using this tool, you open an existing file, edit the objects, and save those changes. You can

save the changes to the existing file or a new file.

When you have a file with the changes you need, you select objects in your application as

described in Select From File.

Want to Use a File?
If you do not have a usable database file, you can choose to create a file or avoid files

altogether for a self-contained application.

Create New File Using the Database Editor
You can use the NI-XNET Database Editor to create a new database file. Once you have a file,

you select objects in your application as described in Select From File.

As a general rule, for FlexRay applications, using a FIBEX file is recommended. FlexRay

communication configuration requires a large number of complex properties, and storage in

a file makes this easier to manage. The NI-XNET Database Editor has features that facilitate

this configuration.

Create in Memory
You can use XNET Database Create Object.vi to create new database objects in memory.

Using this technique, you can avoid files entirely and make your application self contained.

You configure each object you create using the property node. Each class of database object

contains required properties that you must set (refer to Required Properties).

Because CAN is a more straightforward protocol, it is easier to create a self-contained

application. For example, you can create a session to transmit a CAN frame with only

two objects.

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-13 NI-XNET Hardware and Software Manual

Figure 4-5. Create Cluster and Frame for CAN

Figure 4-5 shows a sample diagram that creates a cluster and frame in memory. The database

name is :memory:. This special database name specifies a database that does not originate

from a file. The cluster name is myCluster. For CAN, the only property required for the cluster

is Baud Rate. The cluster is wired to create a frame object named myFrame. The frame has

several required properties. The XNET Frame CAN:Timing Type property specifies how to

transmit the frame, with Cyclic Data meaning to transmit every CAN:Transmit Time

seconds (0.01, or 10 ms). The remaining properties configure the frame to use 8 bytes of

payload data and CAN standard ID 5. If the subsequent diagram passed the frame to XNET

Create Session (Frame Output Queued).vi, this would create a session you can use to write

data for transmit.

For additional information on in-memory configurations for CAN, refer to Using CAN.

After you create and configure objects in memory, you can use XNET Database Save.vi to

save the objects to a file. This enables you to implement a database editor within your

application.

Multiple Databases Simultaneously
NI-XNET allows opening up to seven distinct databases at the same time. You can open any

database from a database file or in memory. To open multiple in-memory databases, use the

name :memory[<digit>]:; for example, :memory:, :memory1:, :memory2:.

Sessions

What Is a Session?
The NI-XNET session represents a connection between your National Instruments

CAN/FlexRay/LIN hardware and hardware products on the external network. As discussed in

Basic Programming Model, your application uses sessions to read and write I/O data.

Each session configuration includes:

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-14 ni.com

• Interface: This specifies the National Instruments hardware to use.

• Database objects: These describe how external hardware communicates.

• Mode: This specifies the direction and representation of I/O data.

In addition to read/write of I/O data, you can use the session to interact with the network

in other ways. For example, XNET Read.vi includes selections to read the state of

communication, such as whether communication has stopped due to error detection defined

by the protocol standard.

You can use sessions for multiple hardware interfaces. For each interface, you can use

multiple input sessions and multiple output sessions simultaneously. The sessions can use

different modes. For example, you can use a Signal Input Single-Point session at the same

time you use a Frame Input Stream session.

The limitations on sessions relate primarily to a specific frame or its signals. For example,

if you create a Frame Output Queued session for frameA, then create a Signal Output

Single-Point session for frameA.signalB (a signal in frameA), NI-XNET returns an error. This

combination of sessions is not allowed, because writing data for the same frame with

two sessions would result in inconsistent sequences of data on the network.

Session Modes
The session mode specifies the data type (signals or frames), direction (input or output), and

how data is transferred between your application and the network.

The mode is an enumeration of the following:

• Signal Input Single-Point Mode: Reads the most recent value received for each signal.

This mode typically is used for control or simulation applications, such as Hardware In

the Loop (HIL).

• Signal Input Waveform Mode: Using the time when the signal frame is received,

resamples the signal data to a waveform with a fixed sample rate. This mode typically is

used for synchronizing XNET data with DAQmx analog/digital input channels.

• Signal Input XY Mode: For each frame received, provides its signals as a value/

timestamp pair. This is the recommended mode for reading a sequence of all signal

values.

• Signal Output Single-Point Mode: Writes signal values for the next frame transmit.

This mode typically is used for control or simulation applications, such as Hardware In

the Loop (HIL).

• Signal Output Waveform Mode: Using the time when the signal frame is transmitted

according to the database, resamples the signal data from a waveform with a fixed sample

rate. This mode typically is used for synchronizing XNET data with DAQmx

analog/digital output channels.

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-15 NI-XNET Hardware and Software Manual

• Signal Output XY Mode: Provides a sequence of signal values for transmit using each

frame’s timing as the database specifies. This is the recommended mode for writing a

sequence of all signal values.

• Frame Input Stream Mode: Reads all frames received from the network using a single

stream. This mode typically is used for analyzing and/or logging all frame traffic in the

network.

• Frame Input Queued Mode: Reads data from a dedicated queue per frame. This mode

enables your application to read a sequence of data specific to a frame (for example, CAN

identifier).

• Frame Input Single-Point Mode: Reads the most recent value received for each frame.

This mode typically is used for control or simulation applications that require lower level

access to frames (not signals).

• Frame Output Stream Mode: Transmits an arbitrary sequence of frame values using a

single stream. The values are not limited to a single frame in the database, but can

transmit any frame.

• Frame Output Queued Mode: Provides a sequence of values for a single frame, for

transmit using that frame’s timing as the database specifies.

• Frame Output Single-Point Mode: Writes frame values for the next transmit. This

mode typically is used for control or simulation applications that require lower level

access to frames (not signals).

• Conversion Mode: This mode does not use any hardware. It is used to convert data

between the signal representation and frame representation.

Frame Input Queued Mode
This mode reads data from a dedicated queue per frame. It enables your application to read a

sequence of data specific to a frame (for example, a CAN identifier).

You specify only one frame for the session, and XNET Read.vi returns values for that frame

only. If you need sequential data for multiple frames, create multiple sessions, one per frame.

The input data is returned as an array of frame values. These values represent all values

received for the frame since the previous call to XNET Read.vi.

If the session uses a CAN interface, XNET Read (Frame CAN).vi is the recommended way

to read data for this mode. This VI returns an array of frames, where each frame is a LabVIEW

cluster specific to the CAN protocol. If the session uses a FlexRay or LIN interface, the read

selection for that protocol is recommended. For more advanced applications, use XNET

Read (Frame Raw).vi, which returns frames in an optimized, protocol-independent format.

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-16 ni.com

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven

frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

This example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network, followed by two calls to XNET Read (Frame CAN).vi (one for C and

one for E).

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C3,4 C5,6

E5,6 E1,2E7,8

Read

C

Read

E

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-17 NI-XNET Hardware and Software Manual

The following figure shows the data returned from the two calls to XNET Read (Frame

CAN).vi (two different sessions).

The first call to XNET Read (Frame CAN).vi returned an array of values for frame C, and

the second call to XNET Read (Frame CAN).vi returns an array for frame E. Each frame is

a LabVIEW cluster with CAN-specific elements. The example uses hexadecimal C and E

as the identifier of each frame. The first two payload bytes contain the signal data. The

timestamp represents the absolute time when the XNET interface received the frame (end of

frame), accurate to microseconds.

Compared to the example for the Frame Input Stream Mode, this mode effectively sorts

received frames so you can process them on an individual basis.

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-18 ni.com

Frame Input Single-Point Mode
This mode reads the most recent value received for each frame. It typically is used for control

or simulation applications that require lower level access to frames (not signals).

This mode does not use queues to store each received frame. If the interface receives

two frames prior to calling XNET Read.vi, that read returns signals for the second frame.

The input data is returned as an array of frames, one for each frame specified for the session.

If the session uses a CAN interface, XNET Read (Frame CAN).vi is the recommended way

to read data for this mode. This instance returns an array of frames, where each frame is a

LabVIEW cluster specific to the CAN protocol. If the session uses a FlexRay or LIN

interface, the read selection for that protocol is recommended. For more advanced

applications, you can use XNET Read (Frame Raw).vi, which returns frames in an

optimized, protocol-independent format.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven

frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network, followed by a single call to XNET Read (Frame CAN).vi. Each frame

contains its name (C or E), followed by the value of its two signals.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C5,6

E5,6 E1,2E7,8

2nd

Read

1st

Read

3rd

Read

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-19 NI-XNET Hardware and Software Manual

The following figure shows the data returned from each of the three calls to XNET Read

(Frame CAN).vi. The session contains frame data for two frames: C and E.

In the data returned from the first call to XNET Read (Frame CAN).vi, frame C contains

values 3 and 4 in its payload. The first reception of frame C values (1 and 2) were lost, because

this mode returns the most recent values.

In the frame timeline, Time of 0 ms indicates the time at which the session started to receive

frames. For frame E, no frame is received prior to the first call to XNET Read (Frame

CAN).vi, so the timestamp is invalid, and the payload is the Default Payload. For this example

we assume that the Default Payload is all 0.

In the data returned from the second call to XNET Read (Frame CAN).vi, payload values

3 and 4 are returned again for frame C, because no new frame has been received since the

previous call to XNET Read (Frame CAN).vi. The timestamp for frame C is the same as the

first call to XNET Read (Frame CAN).vi

In the data returned from the third call to XNET Read (Frame CAN).vi, both frame C and

frame E are received, so both elements return new values.

Frame Input Stream Mode
This mode reads all frames received from the network using a single stream. It typically is

used for analyzing and/or logging all frame traffic in the network.

The input data is returned as an array of frames. Because all frames are returned, your

application must evaluate identification in each frame (such as a CAN identifier or FlexRay

slot/cycle/channel) to interpret the frame payload data.

If the session uses a CAN interface, XNET Read (Frame CAN).vi is the recommended way

to read data for this mode. This instance returns an array of frames, where each frame is a

LabVIEW cluster specific to the CAN protocol. If the session uses a FlexRay or LIN

interface, the read selection for that protocol is recommended. For more advanced

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-20 ni.com

applications, you can use XNET Read (Frame Raw).vi, which returns frames in an

optimized, protocol-independent format.

Previously, you could use only one Frame Input Stream session for a given interface. Now,

multiple Frame Input Stream sessions can be open at the same time on CAN and LIN

interfaces.

While using one or more Frame Input Stream sessions, you can use other sessions with

different input modes. Received frames are copied to Frame Input Stream sessions in addition

to any other applicable input session. For example, if you create a Frame Input Single-Point

session for FrameA, then create a Frame Input Stream session, when FrameA is received, its

data is returned from the call to XNET Read.vi of both sessions. This duplication of

incoming frames enables you to analyze overall traffic while running a higher level

application that uses specific frame or signal data.

When used with a FlexRay interface, frames from both channels are returned. For example,

if a frame is received in a static slot on both channel A and channel B, two frames are returned

from XNET Read.vi.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven

frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network, followed by a single call to XNET Read (Frame CAN).vi. Each frame

contains its name (C or E), followed by the value of its two signals.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C3,4 C5,6

E5,6 E1,2E7,8

Read

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-21 NI-XNET Hardware and Software Manual

The following figure shows the data returned from XNET Read (Frame CAN).vi.

Frame C and frame E are returned in a single array of frames. Each frame is a LabVIEW

cluster with CAN-specific elements. This example uses hexadecimal C and E as the identifier

of each frame. The signal data is contained in the first two payload bytes. The timestamp

represents the absolute time when the XNET interface received the frame (end of frame),

accurate to microseconds.

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-22 ni.com

Frame Output Queued Mode
This mode provides a sequence of values for a single frame, for transmit using that frame’s

timing as specified in the database.

The output data is provided as an array of frame values, to be transmitted sequentially for the

frame specified in the session.

This mode allows you to specify only one frame for the session. To transmit sequential values

for multiple frames, use a different Frame Output Queued session for each frame or use the

Frame Output Stream Mode.

If the session uses a CAN interface, XNET Write (Frame CAN).vi is the recommended

way to write data for this mode. This instance provides an array of frame values, where each

value is a LabVIEW cluster specific to the CAN protocol. If the session uses a FlexRay or

LIN interface, the write selection for that protocol is recommended. For more advanced

applications, you can use XNET Write (Frame Raw).vi, which provides frame values

in an optimized, protocol-independent format.

The frame values for this mode are stored in a queue, such that every value provided is

transmitted.

For this mode, NI-XNET transmits each frame according to its properties in the database.

Therefore, when you call XNET Write.vi, the number of payload bytes in each frame value

must match that frame’s Payload Length property. The other frame value elements are

ignored, so you can leave them uninitialized. For CAN interfaces, if the number of payload

bytes you write is smaller than the Payload Length configured in the database, the requested

number of bytes transmits. If the number of payload bytes is larger than the Payload Length

configured in the database, the queue is flushed and no frames transmit. For other interfaces,

transmitting a number of payload bytes different than the frame’s payload may cause

unexpected results on the bus.

Examples

In this example network, frame C is a cyclic frame that transmits on the network once every

2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval) of

2.5 ms. For information about cyclic and event-driven frames, refer to Cyclic and Event

Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network. Each frame contains its name (C or E), followed by the value of its two signals.

The timeline begins with two calls to XNET Write (Frame CAN).vi, one for frame C,

followed immediately by another call for frame E.

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-23 NI-XNET Hardware and Software Manual

The following figure shows the data provided to each call to XNET Write (Frame CAN).vi.

The first array shows data for the session with frame C. The second array shows data for the

session with frame E.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C5,6 C5,6

E5,8E7,8

Write

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-24 ni.com

Assuming the Auto Start? property uses the default of true, each session starts within the call

to XNET Write (Frame CAN).vi. Frame C transmits followed by frame E, both using the

frame values from the first element (index 0 of each array).

According to the database, frame C transmits once every 2.0 ms, and frame E is limited to an

event-driven transmit once every 2.5 ms.

At 2.0 ms in the timeline, the frame value with bytes 3, 4 is taken from index 1 of the frame C

array and used for transmit of frame C.

When 2.5 ms have elapsed after acknowledgment of the previous transmit of frame E, the

frame value with bytes 5, 8, 0, 0 is taken from index 1 of frame E array and used for transmit

of frame E.

At 4.0 ms in the timeline, the frame value with bytes 5, 6 is taken from index 2 of the frame C

array and used for transmit of frame C.

Because there are no more frame values for frame E, this frame no longer transmits. Frame E

is event-driven, so new frame values are required for each transmit.

Because frame C is a cyclic frame, it transmits repeatedly. Although there are no more frame

values for frame C, the previous frame value is used again at 6.0 ms in the timeline, and every

2.0 ms thereafter. If XNET Write (Frame CAN).vi is called again, the new frame value is

used.

Frame Output Single-Point Mode
This mode writes frame values for the next transmit. It typically is used for control or

simulation applications that require lower level access to frames (not signals).

This mode does not use queues to store frame values. If XNET Write.vi is called twice before

the next transmit, the transmitted frame uses the value from the second call to XNET

Write.vi.

The output data is provided as an array of frames, one for each frame specified for the session.

If the session uses a CAN interface, XNET Write (Frame CAN).vi is the recommended way

to write data for this mode. This instance provides an array of frame values, where each value

is a LabVIEW cluster specific to the CAN protocol. If the session uses a FlexRay or LIN

interface, the write selection for that protocol is recommended. For more advanced

applications, you can use XNET Write (Frame Raw).vi, which provides frame values in an

optimized, protocol-independent format.

For this mode, NI-XNET transmits each frame according to its properties in the database.

Therefore, when you call XNET Write.vi, the number of payload bytes in each frame value

must match that frame’s Payload Length property. The other frame value elements are

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-25 NI-XNET Hardware and Software Manual

ignored, so you can leave them uninitialized. For CAN interfaces, if the number of payload

bytes you write is smaller than the Payload Length configured in the database, the requested

number of bytes transmits. If the number of payload bytes is larger than the Payload Length

configured in the database, the queue is flushed and no frames transmit. For other interfaces,

transmitting a number of payload bytes different than the frame’s payload may cause

unexpected results on the bus.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval) of

2.5 ms. For information about cyclic and event-driven frames, refer to Cyclic and Event

Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network. Each frame contains its name (C or E), followed by the value of its two signals.

The timeline shows three calls to XNET Write (Frame CAN).vi.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C5,6 C5,6

E3,4E7,8

1st

Write

2nd

Write

3rd

Write

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-26 ni.com

The following figure shows the data provided to each of the three calls to XNET Write

(Frame CAN).vi. The session contains frame values for two frames: C and E.

Assuming the Auto Start? property uses the default of true, the session starts within the first

call to XNET Write (Frame CAN).vi. Frame C transmits followed by frame E, both using

frame values from the first call to XNET Write (Frame CAN).vi.

After the second call to XNET Write (Frame CAN).vi, frame C transmits using its value

(bytes 3, 4), but frame E does not transmit, because its minimal interval of 2.5 ms has not

elapsed since acknowledgment of the previous transmit.

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-27 NI-XNET Hardware and Software Manual

Because the third call to XNET Write (Frame CAN).vi occurs before the minimum interval

elapses for frame E, its next transmit uses its value (bytes 3, 4, 0, 0). The value for frame E in

the second call to XNET Write (Frame CAN).vi is not used.

Frame C transmits the third time using the value from the third call to XNET Write (Frame

CAN).vi (bytes 5, 6). Because frame C is cyclic, it transmits again using the same value

(bytes 5, 6).

Frame Output Stream Mode
This mode transmits an arbitrary sequence of frame values using a single stream. The values

are not limited to a single frame in the database, but can transmit any frame.

The data wired to XNET Write.vi is an array of frame values, each of which transmits as soon

as possible. Frames transmit sequentially (one after another).

This mode is not supported for FlexRay.

Like Frame Input Stream sessions, you can create more than one Frame Output Stream

session for a given interface.

For CAN, frame values transmit on the network based entirely on the time when you call

XNET Write.vi. The timing of each frame as specified in the database is ignored. For

example, if you provide four frame values to XNET Write.vi, the first frame value transmits

immediately, followed by the next three values transmitted back to back. For this mode, the

CAN frame payload length in the database is ignored, and the payload provided to XNET

Write.vi is always used.

XNET Write (Frame CAN).vi is the recommended way to write data for this mode for CAN.

This instance provides an array of frame values, where each value is a LabVIEW cluster

specific to the CAN protocol. XNET Write (Frame LIN).vi is the recommended way to

write data for this mode for LIN. This instance provides an array of frame values, where each

value is a LabVIEW cluster specific to the LIN protocol. For more advanced applications, you

can use XNET Write (Frame Raw).vi, which provides frame values in an optimized format.

Similar to CAN, LIN frame values transmit on the network based entirely on the time when

you call XNET Write.vi. The timing of each frame as specified in the database is ignored.

The LIN frame payload length in the database is ignored. For LIN, this mode is allowed only

on the interface as master. If the payload for a frame is empty, only the header part of the

frame is transmitted. For a nonempty payload, the header + response for the frame is

transmitted. If a frame for transmit is defined in the database (in-memory or otherwise), it is

transmitted using its database checksum type. If the frame for transmit is not defined in the

database, it is transmitted using enhanced checksum.

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-28 ni.com

XNET Write (Frame LIN).vi is the recommended way to write data for this mode for LIN.

This instance provides an array of frame values, where each value is a LabVIEW cluster

specific to the LIN protocol. For more advanced applications, you can use XNET Write

(Frame Raw).vi, which provides frame values in an optimized format.

The frame values for this mode are stored in a queue, such that every value provided is

transmitted.

Example

In this example CAN database, frame C is a cyclic frame that transmits on the network once

every 2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval)

of 2.5 ms. For information about cyclic and event-driven CAN frames, refer to Cyclic and

Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The following figure shows a timeline of a frame transfer on the CAN network. Each frame

contains its name (C or E), followed by the value of its two signals. The timeline begins with

a single call to XNET Write (Frame CAN).vi.

The following figure shows the data provided to the single call to XNET Write (Frame

CAN).vi. The array provides values for frames C and E.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4

E7,8 E5,6 E3,4

Write

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-29 NI-XNET Hardware and Software Manual

Assuming the Auto Start? property uses the default of true, each session starts within the call

to XNET Write (Frame CAN).vi. All frame values transmit immediately, using the same

sequence as the array.

Although frame C and E specify a slower timing in the database, the Frame Output Stream

mode disregards this timing and transmits the frame values in quick succession.

Within each frame values, this example uses an invalid timestamp value (0). This is

acceptable, because each frame value timestamp is ignored for this mode.

Although frame C is specified in the database as a cyclic frame, this mode does not repeat its

transmit. Unlike the Frame Output Queued Mode, the Frame Output Stream mode does not

use CAN frame properties from the database.

Signal Input Single-Point Mode
This mode reads the most recent value received for each signal. It typically is used for control

or simulation applications, such as Hardware In the Loop (HIL).

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-30 ni.com

This mode does not use queues to store each received frame. If the interface receives

two frames prior to calling XNET Read.vi, that call to XNET Read.vi returns signals for the

second frame.

Use XNET Read (Signal Single-Point).vi for this mode. For more advanced applications,

you can use XNET Read (Signal XY).vi, which returns a timestamp for each signal value.

You can use the additional timestamps to determine whether each value is new since the

last read.

You also can specify a trigger signal for a frame. This signal name is :trigger:.<frame name>,

and once it is specified in the XNET Create Session.vi signal list, it returns a value of 0.0 if

the frame did not arrive since the last Read (or Start), and 1.0 if at least one frame of this ID

arrived. You can specify multiple trigger signals for different frames in the same session. For

multiplexed signals, a signal may or may not be contained in a received frame. To define a

trigger signal for a multiplexed signal, use the signal name :trigger:.<frame name>.<signal

name>. This signal returns 1.0 only if a frame with appropriate set multiplexer bit has been

received since the last Read or Start.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven

frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network. Each frame contains its name (C or E), followed by the value of its two signals.

The timelines shows three calls to XNET Read (Signal Single-Point).vi.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C5,6

E5,6 E1,2E7,8

1st

Read

2nd

Read

3rd

Read

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-31 NI-XNET Hardware and Software Manual

The following figure shows the data returned from each of the three calls to XNET Read

(Signal Single-Point).vi. The session contains all four signals.

In the data returned from the first call to XNET Read (Signal Single-Point).vi, values 3 and 4

are returned for the signals of frame C. The values of the first reception of frame C (1 and 2)

were lost, because this mode returns the most recent values.

In the frame timeline, Time of 0 ms indicates the time at which the session started to receive

frames. For frame E, no frame is received prior to the first call to XNET Read (Signal

Single-Point).vi, so the last two values return the signal Default Values. For this example,

assume that the Default Value is 0.0.

In the data returned from the second call to XNET Read (Signal Single-Point).vi, values 3

and 4 are returned again for the signals of frame C, because no new frame has been received

since the previous call to XNET Read (Signal Single-Point).vi. New values are returned for

frame E (5 and 6).

In the data returned from the third call to XNET Read (Signal Single-Point).vi, both frame

C and frame E are received, so all signals return new values.

The following figure shows the data for the same frame timing, but using XNET Read

(Signal XY).vi. The signal values are the same, but an additional timestamp is provided for

each signal.

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-32 ni.com

For the first call to XNET Read (Signal XY).vi, notice that the timestamps for frame E (last

two signals) are invalid (all zero). This indicates that frame E has not been received since the

session started, and therefore the signal values are the default.

For the second call to XNET Read (Signal XY).vi, notice that the timestamps for frame C

(first two signals) are the same as the first call to XNET Read (Signal XY).vi. This indicates

that frame C has not been received since the previous read, and therefore the signal values are

repeated.

Signal Input Waveform Mode
Using the time when the signal frame is received, this mode resamples the signal data to a

waveform with a fixed sample rate. This mode typically is used for synchronizing XNET data

with DAQmx analog/digital input channels.

Use XNET Read (Signal Waveform).vi for this mode. You can wire the data XNET Read

(Signal Waveform).vi returns directly to a LabVIEW Waveform Graph or Waveform Chart.

The data consists of an array of waveforms, one for each signal specified for the session. Each

waveform contains t0 (timestamp of first sample), dt (time between samples in seconds), and

an array of resampled values for the signal.

You specify the resample rate using the XNET Session Resample Rate property.

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-33 NI-XNET Hardware and Software Manual

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven

frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network, followed by a single call to XNET Read (Signal Waveform).vi. Each frame

contains its name (C or E), followed by the value of its two signals.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C3,4 C5,6

E5,6 E1,2E7,8

Read

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-34 ni.com

The following figure shows the data returned from XNET Read (Signal Waveform).vi. The

session contains all four signals and uses the default resample rate of 1000.0.

In the data returned from XNET Read (Signal Waveform).vi, t0 provides an absolute

timestamp for the first sample. Assuming this is the first call to XNET Read (Signal

Waveform).vi after starting the session, this t0 reflects that start of the session, which

corresponds to Time 0 ms in the frame timeline. At time 0 ms, no frame has been received.

Therefore, the first sample of each waveform uses the signal default value. For this example,

assume the default value is 0.0.

In the frame timeline, frame C is received twice with signal values 3 and 4. In the waveform

diagram, you cannot distinguish this from receiving the frame only once, because the time of

each frame reception is resampled into the waveform timing.

In the frame timeline, frame E is received twice in fast succession, once with signal values 7

and 8, then again with signals 5 and 6. These two frames are received within one sample of

the waveform (within 1 ms). The effect on the data from XNET Read (Signal Waveform).vi

is that values for the first frame (7 and 8) are lost.

You can avoid the loss of signal data by setting the session resample rate to a high rate.

NI-XNET timestamps receive frames to an accuracy of 100 ns. Therefore, if you use a

resample rate of 1000000 (1 MHz), each frame’s signal values are represented in the

waveforms without loss of data. Nevertheless, using a high resample rate can result in a large

amount of duplicated (redundant) values. For example, if the resample rate is 1000000,

a frame that occurs once per second results in one million duplicated signal values.

This tradeoff between accuracy and efficiency is a disadvantage of the Signal Input

Waveform mode.

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-35 NI-XNET Hardware and Software Manual

The Signal Input XY Mode does not have the disadvantages mentioned previously. The signal

value timing is a direct reflection of received frames, and no resampling occurs. Signal Input

XY Mode provides the most efficient and accurate representation of a sequence of received

signal values.

One of the disadvantages of Signal Input XY Mode is that the corresponding LabVIEW

indicator (XY Graph) does not provide the same features as the indicator for Signal Input

Waveform (Waveform Graph). For example, the Waveform Graph can plot consecutive calls

to XNET Read.vi in a history, whereas XY Graph can plot only values from a single call to

XNET Read.vi.

In summary, when reading a sequence of received signal values, use Signal Input Waveform

mode when you need to synchronize CAN/FlexRay/LIN data with DAQmx analog/digital

input waveforms or display CAN/FlexRay/LIN data on the front panel (without significant

validation). Use Signal Input XY Mode when you need to analyze CAN/FlexRay/LIN data

on the diagram, for validation purposes.

Signal Input XY Mode
For each frame received, this mode provides the frame signals as a timestamp/value pair. This

is the recommended mode for reading a sequence of all signal values.

The timestamp represents the absolute time when the XNET interface received the frame (end

of frame), accurate to microseconds.

Use XNET Read (Signal XY).vi for this mode. You can wire the data XNET Read (Signal

XY).vi returns directly to a LabVIEW XY Graph.

The data consists of an array of LabVIEW clusters, one for each signal specified for the

session. Each cluster contains two arrays, one for timestamp and one for value. For each

signal, the timestamp and value array size is always the same, such that it represents a single

array of timestamp/value pairs.

Each timestamp/value pair represents a value from a received frame. When signals exist in

different frames, the array size may be different from one cluster (signal) to another.

The received frames for this mode are stored in queues to avoid signal data loss.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven

frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-36 ni.com

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network, followed by a single call to XNET Read (Signal XY).vi. Each frame contains

its name (C or E), followed by the value of its two signals.

The following figure shows the data returned from XNET Read (Signal XY).vi. The session

contains all four signals.

Frame C was received four times, resulting in arrays of size 4 in the first two clusters. Frame E

was received 3 times, resulting in arrays of size 3 in the first two clusters. The timestamp and

value arrays are the same size for each signal. The timestamp represents the end of frame, to

microsecond accuracy.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C3,4 C5,6

E5,6 E1,2E7,8

Read

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-37 NI-XNET Hardware and Software Manual

The XY Graph displays the data from XNET Read (Signal XY).vi. This display is an

accurate representation of signal changes on the network.

Signal Output Single-Point Mode
This mode writes signal values for the next frame transmit. It typically is used for control or

simulation applications, such as Hardware In the Loop (HIL).

This mode does not use queues to store signal values. If XNET Write.vi is called twice before

the next transmit, the transmitted frame uses signal values from the second call to XNET

Write.vi.

Use XNET Write (Signal Single-Point).vi for this mode.

You also can specify a trigger signal for a frame. This signal name is :trigger:.<frame name>,

and once it is specified in the XNET Create Session.vi signal list, you can write a value of

0.0 to suppress writing of that frame, or any value not equal to 0.0 to write the frame. You can

specify multiple trigger signals for different frames in the same session.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval) of

2.5 ms. For information about cyclic and event-driven frames, refer to Cyclic and Event

Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network. Each frame contains its name (C or E), followed by the value of its two signals.

The timeline shows three calls to XNET Write (Signal Single-Point).vi.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C5,6 C5,6

E3,4E7,8

1st

Write

2nd

Write

3rd

Write

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-38 ni.com

The following figure shows the data provided to each of the three calls to XNET Write

(Signal Single-Point).vi. The session contains all four signals.

Assuming the Auto Start? property uses the default of true, the session starts within the first

call to XNET Write (Signal Single-Point).vi. Frame C transmits followed by frame E, both

using signal values from the first call to XNET Write (Signal Single-Point).vi.

If a transmitted frame contains a signal not included in the output session, that signal transmits

its Default Value. If a transmitted frame contains bits no signal uses, those bits transmit the

Default Payload.

After the second call to XNET Write (Signal Single-Point).vi, frame C transmits using its

values (3 and 4), but frame E does not transmit, because its minimal interval of 2.5 ms has not

elapsed since acknowledgment of the previous transmit.

Because the third call to XNET Write (Signal Single-Point).vi occurs before the minimum

interval elapses for frame E, its next transmit uses its values (3 and 4). The values for frame E

in the second call to XNET Write (Signal Single-Point).vi are not used.

Frame C transmits the third time using values from the third call to XNET Write (Signal

Single-Point).vi (5 and 6). Because frame C is cyclic, it transmits again using the same

values (5 and 6).

Signal Output Waveform Mode
Using the time when the signal frame is transmitted according to the database, this mode

resamples the signal data from a waveform with a fixed sample rate. This mode typically is

used for synchronizing XNET data with DAQmx analog/digital output channels.

The resampling translates from the waveform timing to each frame’s transmit timing. When

the time for the frame to transmit occurs, it uses the most recent signal values in the waveform

that correspond to that time.

Use XNET Write (Signal Waveform).vi for this mode. You can wire the data provided to

XNET Write (Signal Waveform).vi directly from a LabVIEW Waveform Graph or

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-39 NI-XNET Hardware and Software Manual

Waveform Chart. The data consists of an array of waveforms, one for each signal specified

for the session. Each waveform contains an array of resampled values for the signal.

You specify the resample rate using the XNET Session Resample Rate property.

The frames for this mode are stored in queues.

This mode is not supported for a LIN interface operating as slave. For more information, refer

to LIN Frame Timing and Session Mode.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval) of

2.5 ms. For information about cyclic and event-driven frames, refer to Cyclic and Event

Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network. Each frame contains its name (C or E), followed by the value of its two signals.

The timeline begins with a single call to XNET Write (Signal Waveform).vi.

The following figure shows the data provided to the call to XNET Write (Signal

Waveform).vi. The session contains all four signals and uses the default resample rate of

1000.0 samples per second.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C5,6 C7,8 C5,6

E5,6 E5,6E5,6

Write

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-40 ni.com

Assuming the Auto Start? property uses the default of true, the session starts within the call

to XNET Write (Signal Waveform).vi. Frame C transmits followed by frame E, both using

signal values from the first sample (index 0 of all four Y arrays).

The waveform elements t0 (timestamp of first sample) and dt (time between samples in

seconds) are ignored for the call to XNET Write (Signal Waveform).vi. Transmit of frames

starts as soon as the XNET session starts. The frame properties in the database determine each

frame’s transmit time. The session resample rate property determines the time between

waveform samples.

In the waveforms, the sample at index 1 occurs at 1.0 ms in the frame timeline. According to

the database, frame C transmits once every 2.0 ms, and frame E is limited to an event-driven

transmit with interval 2.5 ms. Therefore, the sample at index 1 cannot be resampled to a

transmitted frame and is discarded.

Index 2 in the waveforms occurs at 2.0 ms in the frame timeline. Frame C is ready for its next

transmit at that time, so signal values 5 and 6 are taken from the first two Y arrays and used

for transmit of frame C. Frame E still has not reached its transmit time of 2.5 ms from the

previous acknowledgment, so signal values 1 and 2 are discarded.

At index 3, frame E is allowed to transmit again, so signal values 5 and 6 are taken from the

last two Y arrays and used for transmit of frame E. Frame C is not ready for its next transmit,

so signal values 7 and 8 are discarded.

This behavior continues for Y array indices 4 through 7. For the cyclic frame C, every second

sample is used to transmit. For the event-driven frame E, every sample is interpreted as an

event, such that every third sample is used to transmit.

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-41 NI-XNET Hardware and Software Manual

Although not shown in the frame timeline, frame C transmits again at 8.0 ms and every 2.0 ms

thereafter. Frame C repeats signal values 5 and 6 until the next call to XNET Write (Signal

Waveform).vi. Because frame E is event driven, it does not transmit after the timeline shown,

because no new event has occurred.

Because the waveform timing is fixed, you cannot use it to represent events in the data.

When used for event driven frames, the frame transmits as if each sample was an event. This

mismatch between frame timing and waveform timing is a disadvantage of the Signal Output

Waveform mode.

When you use the Signal Output XY Mode, the signal values provided to XNET Write

(Signal XY).vi are mapped directly to transmitted frames, and no resampling occurs. Unless

your application requires correlation of output data with DAQmx waveforms, Signal Output

XY Mode is the recommended mode for writing a sequence of signal values.

Signal Output XY Mode
This mode provides a sequence of signal values for transmit using each frame’s timing as

specified in the database. This is the recommended mode for writing a sequence of all signal

values.

Use XNET Write (Signal XY).vi for this mode. The data consists of an array of LabVIEW

clusters, one for each signal specified for the session. Each cluster contains two arrays, one for

timestamp and one for value. The timestamp array is unused (reserved).

Each signal value is mapped to a frame for transmit. Therefore, the array of signal values is

mapped to an array of frames to transmit. When signals exist in the same frame, signals at the

same index in the arrays are mapped to the same frame. When signals exist in different

frames, the array size may be different from one cluster (signal) to another.

The frames for this mode are stored in queues, such that every signal provided is transmitted

in a frame.

Examples

In this example network, frame C is a cyclic frame that transmits on the network once every

2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval) of

2.5 ms. For information about cyclic and event-driven frames, refer to Cyclic and Event

Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network. Each frame contains its name (C or E), followed by the value of its two signals.

The timeline begins with a single call to XNET Write (Signal XY).vi.

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-42 ni.com

The following figure shows the data provided to XNET Write (Signal XY).vi. The session

contains all four signals.

Assuming the Auto Start? property uses the default of true, the session starts within a call to

XNET Write (Signal XY).vi. This occurs at 0 ms in the timeline. Frame C transmits followed

by frame E, both using signal values from the first sample (index 0 of all four Y arrays).

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C5,6 C5,6

E5,8E7,8

Write

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-43 NI-XNET Hardware and Software Manual

According to the database, frame C transmits once every 2.0 ms, and frame E is limited to an

event-driven interval of 2.5 ms.

At 2.0 ms in the timeline, signal values 3 and 4 are taken from index 1 of the first two Y arrays

and used for transmit of frame C.

At 3.5 ms in the timeline, signal value 5 is taken from index 1 of the third Y array. Because

this is a new value for frame E, it represents a new event, so the frame transmits again.

Because no new signal value was provided at index 1 in the fourth array, the second signal

of frame E uses the value 8 from the previous transmit.

At 4.0 ms in the timeline, signal values 5 and 6 are taken from index 2 of the first two Y arrays

and used for transmit of frame C.

Because there are no more signal values for frame E, this frame no longer transmits. Frame E

is event driven, so new signal values are required for each transmit.

Because frame C is a cyclic frame, it transmits repeatedly. Although there are no more signal

values for frame C, the values of the previous frame are used again at 6.0 ms in the timeline

and every 2.0 ms thereafter. If XNET Write (Signal XY).vi is called again, the new signal

values are used.

The next example network demonstrates a potential problem that can occur with Signal

Output XY Mode.

In this example network, frame C is a cyclic frame that transmits on the network once every

2.0 ms. Frame X is a cyclic frame that transmits on the network once every 1.0 ms. Each frame

contains two signals, one in the first byte and another in the second byte. The timeline begins

with a single call to XNET Write (Signal XY).vi.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C5,6 C7,8

X1,2X3,4X5,6X7,8 X1,2 X1,2 X1,2 X1,2

Write

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-44 ni.com

The following figure shows the data provided to XNET Write (Signal XY).vi. The session

contains all four signals.

The number of signal values in all four Y arrays is the same. The four elements of the arrays

are mapped to four frames. The problem is that because frame X transmits twice as fast as

frame C, the frames for the last two arrays transmit twice as fast as the frames for the first

two arrays.

The result is that the last pair of signals for frame X (1 and 2) transmit over and over, until the

timeline has completed for frame C. This sort of behavior usually is unintended. The Signal

Output XY Mode goal is to provide a complete sequence of signal values for each frame.

The best way to resolve this issue is to provide a different number of values for each signal,

such that the number of elements corresponds to the timeline for the corresponding frame. If

the previous call to XNET Write (Signal XY).vi provided eight elements for frame X (last

two Y arrays) instead of just four elements, this would have created a complete 8.0 ms

timeline for both frames.

Although you need to resolve this sort of timeline for cyclic frames, this is not necessarily true

for event-driven frames. For an event-driven frame, you may decide simply to pass either zero

or one set of signal values to XNET Write (Signal XY).vi. When you do this, each call to

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-45 NI-XNET Hardware and Software Manual

XNET Write (Signal XY).vi can generate a single event, and the overall timeline is not a

major consideration.

Conversion Mode
This mode is intended to convert NI-XNET signal data to frame data or vice versa. It does not

use any NI-XNET hardware, and you do not specify an interface when creating this mode.

Conversion occurs with XNET Convert.vi. Neither XNET Read.vi nor XNET Write.vi

work with this mode; they return an error because hardware I/O is not permitted.

Conversion works similar to Single-Point mode. You specify a set of signals that can span

multiple frames. Signal to frame conversion reads a set of values for the signals specified and

writes them to the respective frame(s). Frame to signal conversion parses a set of frames and

returns the latest signal value read from a corresponding frame.

Frames can be in any NI-XNET frame representations (CAN, FlexRay, LIN, or Raw). You

select the conversion direction and the frame type by choosing the appropriate instance of

XNET Convert.vi.

Example 1: Conversion of CAN Frames to Signals

Suppose you have a database with a CAN frame with ID 0x123 and two unsigned byte signals

assigned to it (byte 1 and byte 2).

Creating an appropriate conversion session and calling XNET Convert (Frame CAN to

Signal).vi with the following input:

Chapter 4 NI-XNET API for LabVIEW—Sessions

NI-XNET Hardware and Software Manual 4-46 ni.com

results in the following signal values being returned:

Explanation: The data are taken from frame 4. Frames 1 and 3 are ignored because they have

a wrong (unmatched) ID. Frame 2 is ignored because its data are overwritten later with the

values from frame 4, because frames are processed in the order of input.

Example 2: Conversion of Signals to FlexRay Frames

Suppose you have two FlexRay frames with slot ID 3 and 6, and each one has assigned a

two-byte, Big Endian signal at byte 2 and 3 (zero based). Suppose also that all relevant default

values of other signals in the frame are 0.

Chapter 4 NI-XNET API for LabVIEW—Sessions

© National Instruments 4-47 NI-XNET Hardware and Software Manual

Creating an appropriate conversion session and calling XNET Convert (Signal to Frame

FlexRay).vi with the following input:

causes the following frames to be generated:

Explanation: The first signal is converted to the byte sequence 0x01, 0x02 (1  256 + 2), and

the byte sequence is placed at byte 2 of the frame with slot ID 3. The second signal is

converted to byte sequence 0x03, 0x04 (3  256 + 4) and placed at byte 2 of the frame with

slot ID 6. All other data are filled with the default values (0).

How Do I Create a Session?
There are two methods for creating a session: a LabVIEW project and XNET Create

Session.vi. You typically use only one method to create all sessions for your application.

Chapter 4 NI-XNET API for LabVIEW—Using CAN

NI-XNET Hardware and Software Manual 4-48 ni.com

LabVIEW Project
Using LabVIEW project sessions is best suited for applications that are static, in that the

network data does not change from one execution to the next. Refer to Getting Started for a

description of creating a session in a LabVIEW project.

When you configure the session in a LabVIEW project, you select the interface, mode, and

database objects with the NI-XNET user interface. The database objects (cluster, frames, and

signals) must exist in a file. If you do not already have a database file, you can create one using

the NI-XNET Database Editor, which you can launch from NI-XNET user interface.

XNET Create Session.vi
You can use XNET Create Session.vi to create NI-XNET sessions at run time. This run-time

creation has advantages over a LabVIEW project, because the end user of your application

can configure sessions from the front panel. The disadvantage is that the VI diagram is more

complex.

If your application is used for a specific product (for example, an instrument panel for a

specific make/model/year car), and the front panel must be simple (for example, a test button

with a pass/fail LED), a LabVIEW project is the best method to use for NI-XNET sessions.

Because the configuration does not change, a LabVIEW project provides the easiest

programming model.

If your application is used for many different products (for example, a test system for an

engine in any make/model/year car), XNET Create Session.vi is the best method to use for

NI-XNET sessions. On the front panel, the application end user can provide a database file

and select the specific frames or signals to read and/or write.

XNET Create Session.vi takes inputs for the interface, mode, and database objects. You

select the interface using techniques described in How Do I View Available Interfaces?. The

database objects depend on the mode (for example, Signal Input Waveform requires an array

of signals). You select the database objects using techniques described in Database

Programming.

Using CAN

This section summarizes some useful NI-XNET features specific to the CAN protocol.

Understanding CAN Frame Timing
When you use an NI-XNET database for CAN, the properties of each CAN frame specify the

CAN data transfer timing. To understand how the CAN frame timing properties apply to

NI-XNET sessions, refer to CAN Timing Type and Session Mode.

Chapter 4 NI-XNET API for LabVIEW—Using CAN

© National Instruments 4-49 NI-XNET Hardware and Software Manual

Configuring Frame I/O Stream Sessions
As described in Database Programming, you typically need to specify database objects when

creating an NI-XNET session.

The CAN protocol supports an exception that makes some applications easier to program. In

sessions with Frame Input Stream or Frame Output Stream mode, you can read or write

arbitrary frames. Because these modes do not use specific frames, only the database cluster

properties apply. For CAN, the only required cluster property is the baud rate. If the I/O mode

of your cluster is CAN FD or CAN FD+BRS, the FD baud rate also is required.

Although the CAN baud rate applies to all hardware on the bus (cluster), NI-XNET also

provides the baud rate properties as interface properties. You can set these interface properties

using the session property node.

If your application uses only Frame I/O Stream sessions, no database object is required (no

cluster). You simply can call XNET Create Session.vi and then set the baud rate using the

session property node. The following figure shows an example diagram that creates a Frame

Input Stream session and sets the baud rate to 500 kbps. The resulting session operates in the

standard CAN I/O mode.

Figure 4-6. Configure CAN Frame Input Stream

If your application uses only Frame I/O Stream sessions, but you want to connect to a CAN

FD bus, use the in-memory database :can_fd: or :can_fd_brs: as shown in Figure 4-7. These

databases are configured as a CAN cluster with the CAN:I/O Mode set to CAN FD or CAN

FD+BRS, as appropriate. If you use either database, you must set the Interface:CAN:FD Baud

Rate property.

Figure 4-7. Configure CAN Frame Input Stream for a CAN FD Session

Chapter 4 NI-XNET API for LabVIEW—Using FlexRay

NI-XNET Hardware and Software Manual 4-50 ni.com

Using FlexRay

This section summarizes some useful NI-XNET features specific to the FlexRay protocol.

Starting Communication
FlexRay is a Time Division Multiple Access (TDMA) protocol, which means that all

hardware products on the network share a synchronized clock. Slots of time for that clock

determine when each frame transmits.

To start communication on FlexRay, the first step is to start the synchronized network clock.

In the FlexRay database, two or more hardware products are designated to transmit a special

startup frame. These products (nodes) are called coldstart nodes. Each coldstart node uses the

startup frame to contribute its local clock as part of the shared network clock.

Because at least two coldstart nodes are required to start FlexRay communication, your

NI-XNET FlexRay interface may need to act as a coldstart node, and therefore transmit a

special startup frame. The properties of each startup frame (including the time slot used) are

specified in the FlexRay database.

The following scenarios apply to FlexRay startup frames:

• Port to port: When you get started with your NI-XNET FlexRay hardware, you can

connect two FlexRay interfaces (ports) to run simple programs, such as the NI-XNET

examples. Because this is a cluster with two nodes, each NI-XNET interface must

transmit a different startup frame.

• Connect to existing cluster: If you connect your NI-XNET FlexRay interface to an

existing cluster (for example, a FlexRay network within a vehicle), that cluster already

must contain coldstart nodes. In this scenario, the NI-XNET interface should not transmit

a startup frame.

• Test single ECU that is coldstart: If you connect to a single ECU (and nothing else),

and that ECU is a coldstart node, the NI-XNET interface must transmit a startup frame.

The NI-XNET interface must transmit a startup frame that is different than the startup

frame the ECU transmits.

• Test single ECU that is not coldstart: If you connect to a single ECU (and nothing else),

and that ECU is not a coldstart node, you must connect two NI-XNET interfaces. The

ECU cannot communicate without two coldstart nodes (two clocks). According to the

FlexRay specification, a single FlexRay interface can transmit only one startup frame.

Therefore, you need to connect two NI-XNET FlexRay interfaces to the ECU, and each

NI-XNET interface must transmit a different startup frame.

Chapter 4 NI-XNET API for LabVIEW—Using LIN

© National Instruments 4-51 NI-XNET Hardware and Software Manual

NI-XNET has two options to transmit a startup frame:

• Key Slot Identifier: The NI-XNET session property node includes a property called

Interface:FlexRay:Key Slot Identifier. This property specifies the static slot that the

session interface uses to transmit a startup frame. The property is zero by default,

meaning that no startup frame transmits. If you set this property, the value specifies the

static slot (identifier) to transmit as a coldstart node. The startup frame transmits

automatically when the interface starts, and its payload is null (no data). The session can

be input or output, and the startup frame is not required in the session’s list of

frames/signals.

• Output Startup Frame: If you create an NI-XNET output session, and the session’s list

of frames/signals uses a startup frame, the NI-XNET interface acts as a coldstart node.

To find startup frames in the database, look for a frame with the FlexRay:Startup? property

true. You can use that frame name for an output session or use its identifier as the key slot.

When selecting a startup frame, avoid selecting one that the ECUs you connect to already

transmit.

Understanding FlexRay Frame Timing
When you use an NI-XNET database for FlexRay, the properties of each FlexRay frame

specify the FlexRay data transfer timing. To understand how the FlexRay frame timing

properties apply to NI-XNET sessions, refer to FlexRay Timing Type and Session Mode.

In LabVIEW Real-Time, NI-XNET provides a timing source you can use to synchronize your

LabVIEW VI with the timing of frames. For more information, refer to Using LabVIEW

Real-Time.

Protocol Data Unit (PDU)
Many FlexRay networks use a Protocol Data Unit (PDU) to implement configurations similar

to CAN. The PDU is a signal container. You can use a single PDU within multiple frames for

faster timing. A single frame can contain multiple PDUs, each updated independently. For

more information, refer to Protocol Data Units (PDUs) in NI-XNET.

Using LIN

This section summarizes some useful NI-XNET features specific to the LIN protocol.

Changing the LIN Schedule
LIN networks (clusters) always include a single ECU in the system called the master. The

master transmits a schedule of frame headers. Each frame header is a remote request for a

specific frame ID. For each header, a single ECU in the network (slave) responds by

Chapter 4 NI-XNET API for LabVIEW—Using LIN

NI-XNET Hardware and Software Manual 4-52 ni.com

transmitting the payload for the requested ID. The master ECU also can respond to a specific

header, and thus the master can transmit payload data for the slave ECUs to receive.

Unlike some other scheduled protocols such as FlexRay, LIN allows the master ECU to

change the schedule of frame headers. For example, the master can initially use a “normal”

schedule that requests IDs 1, 2, 3, 4, and then the master can change to a “diagnostic” schedule

that requests IDs 60 and 61.

With NI-XNET, you change the LIN schedule using XNET Write (State LIN Schedule

Change).vi. When you want the NI-XNET interface to act as a master on the network, you

must call this XNET Write VI at least once, to specify the schedule to run. When you write

a schedule change, this automatically configures NI-XNET as master (the XNET Session

Interface:LIN:Master? property is set to true). As a LIN master, NI-XNET handles all

real-time scheduling of frame headers for you, using the LIN interface hardware onboard

processor.

If you do not write a schedule change, NI-XNET leaves the interface at its default

configuration of slave. As a LIN slave, you still can write signal or frame values to an output

session, but NI-XNET waits for each frame’s header to arrive before transmitting payload data.

Understanding LIN Frame Timing
Because LIN is a scheduled network, the headers that the master transmits determine the

timing of all frames. To understand how and when each frame transmits, you must examine

the entries in each schedule. Each entry transfers one frame (or possibly multiple frames). For

more information, refer to the XNET LIN Schedule Entry Type property.

Because it is possible to use a single frame in multiple schedules and schedule entries, the

overall timing for an individual frame can be complex. Nevertheless, each LIN schedule entry

generally fits the concepts of cyclic and event timing that are common for other protocols such

as CAN and FlexRay. For more information about how these concepts apply to LIN, refer to

Cyclic and Event Timing.

LIN Diagnostics
Refer to XNET Write (State LIN Diagnostic Schedule Change).vi for details.

Special Considerations for Using Stream Output Mode with LIN
Refer to the Interface:Output Stream Timing property for details.

Chapter 4 NI-XNET API for LabVIEW—Using LabVIEW Real-Time

© National Instruments 4-53 NI-XNET Hardware and Software Manual

Using LabVIEW Real-Time

The LabVIEW Real-Time (RT) module combines LabVIEW graphical programming with

the power of a real-time operating system, enabling you to build real-time applications.

NI-XNET provides features and performance specifically designed for LabVIEW RT.

High Priority Loops
Many real-time applications contain at least one loop that must execute at the highest priority.

This high-priority loop typically contains code to read inputs, execute a control algorithm, and

then write outputs. The high-priority loop executes at a fast period, such as 500 µs (2 kHz).

To ensure that the loop diagram executes within the period, the average execution time (cost)

of read and write VIs must be low. The execution time also must be consistent from one loop

iteration to another (low jitter).

Within NI-XNET, the session modes for single-point I/O are designed for use within

high-priority loops. This applies to all four single-point modes: input, output, signal, or frame.

XNET Read.vi and XNET Write.vi provide fast and consistent execution time, and they

avoid access to shared resources such as the memory manager.

The session modes other than single-point all use queues to store data. Although you can use

the queued session modes within a high priority loop, those modes use a variable amount of

data for each read/write. This requires a variable amount of time to process the data, which

can introduce jitter to the loop. When using the queued modes, measure the performance of

your code within the loop to ensure that it meets your requirements even when bus traffic is

variable.

When XNET Read.vi and XNET Write.vi execute for the very first loop iteration, they often

perform tasks such as auto-start of the session, allocation of internal memory, and so on.

These tasks result in high cost for the first iteration compared to any subsequent iteration.

When you measure performance of XNET Read.vi and XNET Write.vi, discard the first

iteration from the measurement.

For another VI or property node (not XNET Read.vi or XNET Write.vi), you must assume

it is not designed for use within high priority loops. The property nodes are designed for

configuration purposes. VIs that change state (for example, XNET Start.vi) require time for

hardware/software configuration. Nevertheless, there are exceptions for which certain

properties and VIs support high-priority use. Refer to the help for the specific features you

want to use within a high priority loop. This help may specify an exception.

Chapter 4 NI-XNET API for LabVIEW—Using LabVIEW Real-Time

NI-XNET Hardware and Software Manual 4-54 ni.com

XNET I/O Names
You can use a LabVIEW project to program RT targets. When you open a VI front panel on

an RT target, that front panel accesses the target remotely (over TCP/IP).

When you use an XNET I/O name on a VI front panel on LabVIEW RT, the remote access

provides the user interface features of that I/O name. For example, the drop-down list of an

XNET Interface provides all CAN, FlexRay, and LIN interfaces on the RT target (for

example, a PXI chassis).

For the remote access to operate properly, you must connect the LabVIEW RT target using a

LabVIEW project. To connect the target, right-click the target in a LabVIEW project and

select Connect. The target shows a green LED in project, and the user interface of I/O names

is operational.

If the RT target is disconnected in a LabVIEW project, each I/O name displays the text (target

disconnected) in its drop-down list.

Deploying Databases
When you create an NI-XNET application for LabVIEW RT, you must assign an alias to your

database file. When you deploy to the RT target, the text database file is compressed to an

optimized binary format, and that binary file is transferred to the target.

When you create NI-XNET sessions using a LabVIEW project, you assign the alias within

the session dialog (for example, Browse for Database File). When you drag the session to a

VI under the RT target, then run that VI, NI-XNET automatically deploys the database file to

the target.

When you create NI-XNET sessions at run time, you must explicitly deploy the database to

the RT target. There are two options for this deployment:

• XNET I/O Names: If you are using I/O names for database objects, you can click on an

I/O name and select Manage Database Deployment. This opens a dialog you can use to

assign new aliases and deploy them to the RT target.

• File Management Subpalette VIs: To manage database deployment from a VI running

on the host (Windows computer), use VIs in the NI-XNET File Management palette.

This palette includes VIs to add an alias and deploy the database to the RT target.

To delete the database file from the RT target after execution of a test, you perform this

undeploy using either option described above.

Memory Use for Databases
When you access properties of a database object (for example, cluster, frame, signal) on the

diagram of your VI, NI-XNET opens the database on disk and maintains a binary image in

Chapter 4 NI-XNET API for LabVIEW—J1939 Sessions

© National Instruments 4-55 NI-XNET Hardware and Software Manual

memory. Use XNET Database Close.vi to close the database prior to performing

memory-sensitive tasks, such as a control loop on LabVIEW Real-Time.

When you pass database objects as input to XNET Create Session.vi, NI-XNET internally

opens the database, reads the information required to create the session, then closes the

database. Therefore, there is no need to explicitly close the database after creating sessions.

FlexRay Timing Source
FlexRay is a deterministic protocol, which means it enables ECUs to synchronize code

execution and data exchange. When you use LabVIEW to test an ECU that uses these

deterministic features, you typically need to synchronize the LabVIEW VI to the FlexRay

communication cycle. For example, to validate that the ECU transmits a different value each

FlexRay cycle, you must read that frame every FlexRay cycle.

NI-XNET provides XNET Create Timing Source (FlexRay Cycle).vi to create a LabVIEW

timing source. You wire this timing source to a LabVIEW timed loop to execute LabVIEW

code synchronized to the FlexRay cycle. Because the length of time for each FlexRay cycle

is a few milliseconds, LabVIEW RT provides the required real-time execution.

Creating a Built Real-Time Application
NI-XNET supports creation of a real-time application, which you can set to run automatically

when you power on the RT target. Create the real-time application by right-clicking Build

Specifications under the RT target, then selecting New»Real-Time Application.

If you created NI-XNET sessions in a LabVIEW project, those sessions are deployed to the

RT target in the same manner as running a VI.

Deployment of databases for a real-time application is the same as running a VI.

J1939 Sessions

If you use a DBC file defining a J1939 database or create a stream session with the cluster

name :can_j1939:, you will create a J1939 XNET session. If the session is running in J1939

mode, the session property application protocol returns J1939 instead of None. This property

is read only, as you cannot change the application protocol while the session is running.

FIBEX databases do not define support for J1939 in the standard. If you save a J1939 database

to FIBEX in the NI-XNET Database Editor or with XNET Database Save.vi, the J1939

properties are saved in a FIBEX extension defined by National Instruments in the FIBEX

XML file.

Chapter 4 NI-XNET API for LabVIEW—J1939 Sessions

NI-XNET Hardware and Software Manual 4-56 ni.com

Compatibility Issue
If you have used a J1939 database with a version of NI-XNET that does not support J1939,

the session now opens in J1939 mode, which defines a different behavior than a non-J1939

session. This may break the compatibility of your application. To avoid issues, you can ignore

the application protocol for the database alias in question.

Complete the following steps to set whether the database application protocol is used or

ignored when the alias is added:

1. Launch the NI-XNET Database Editor.

2. From the main menu, select File»Manage Aliases, which opens the Manage NI-XNET

Databases dialog.

3. In the Manage NI-XNET Databases dialog, click the Add Alias button, which opens

the Add Alias to NI-XNET Database… dialog.

4. Browse to the database file to add. If the protocol for the selected database is CAN and

the application protocol is J1939, an Ignore Application Protocol checkbox is

displayed, as shown in the following figure.

5. To have NI-XNET interpret the alias as an alias for a J1939 database, leave Ignore

Application Protocol unchecked. To have NI-XNET interpret the alias as an alias for a

plain CAN database, check Ignore Application Protocol.

6. Click OK to complete the alias addition.

Chapter 4 NI-XNET API for LabVIEW—J1939 Sessions

© National Instruments 4-57 NI-XNET Hardware and Software Manual

J1939 Basics
A J1939 network consists of ECUs connected by a CAN bus running at 250 k baud rate. Some

newer networks might use a 500 k baud rate. A physical ECU can contain one or more logical

ECUs called nodes or Controller Applications. This description refers to it as a node or ECU.

J1939 application protocol uses a 29-bit extended frame identifier. The ID is divided into

several parts:

• Source Address (8 bits): Determines the address of the node transmitting the frame. By

examining the Source Address part of the ID, the receiving session can recognize which

node has sent the frame.

• PGN (18 bits): Identifies the frame and defines which signals it contains.

• Priority (3 bits): Priority is used when multiple CAN frames are sent on the bus at

exactly the same time. In this case, the CAN frame with the higher priority (lower

number) is transmitted before the lower priority frame. The CAN standard defines the

CAN frames priority (lower IDs have higher priority). Therefore, the J1939 priority bits

are the most significant bits in the ID. This ensures that the ID value with a higher priority

is always lower, independent of the PGN and Source Address, as shown in the following

figure.

You can send a frame to a global address (all nodes) or a specific address (node with this

address). This information is coded inside the PGN, as shown in the following figure.

The PF value in the identifier defines whether the message has a global or specific destination:

• 0–239 (0x00–0xEF): specific destination

• 240–255 (0xF0–0xFF): global destination

In the CAN identifier, this looks like the following (X = don’t care):

• 0xXXF0XXXX to 0xXXFFXXXX are messages with global destination (broadcast)

• 0xXX00XXXX to 0xXXEFXXXX are messages with specific destination

28 26 25 8 7 0

Prio PGN Source Addr

28 26 25 8 7 0

Prio Source Addr

24 23 16 15
E
D
P

D
P PF PS

Chapter 4 NI-XNET API for LabVIEW—J1939 Sessions

NI-XNET Hardware and Software Manual 4-58 ni.com

For global messages, the PS byte of the ID defines group extension. This extends the number

of possible global PGNs to 4096 (0xF000 to 0xFFFF).

For destination-specific messages, PS defines the destination address, so PF defines only

240 destination-specific PGNs (0–239).

DP and EDP bits increase the number of possible PGNs by defining data pages. EDP,

however, always is set to 0 in J1939, so only DP can be set to 0 or 1, which doubles the number

of PGNs described above. The maximum number of possible PGNs (and so, different

messages) in J1939 is 2*(4096 + 240) = 8672.

For node addresses (source address and destination address), the ID reserves 8 bit, which

allows values from 0 to 255. Two values have a special meaning:

• 254 is the null address. This means there is no valid address assigned to a node yet.

• 255 is the global address. This allows sending even PGNs with PF 0 to 239 to a global

destination.

Node Addresses in NI-XNET
A newly created XNET session has no node address. If you read the J1939 Node Address

property after creating a session, it returns the value 254 (null address).

A receiving XNET session without address can read all frames from the bus. A receiving

XNET session with an assigned address can read only frames with a global destination

address (255) and frames sent to this address, but not frames sent to other nodes.

A transmitting XNET session requires a node address. All nodes in the network must have

different node addresses; otherwise, two nodes could send a frame with the same CAN

identifier, which is not allowed by the CAN standard. To ensure that each node has a different

address, J1939 defines a procedure called address claiming to obtain an address on the

network. There are two properties required for address claiming:

• Node name (64 bit value)

• Node address

The node name identifies a node (ECU) and usually is saved in the database. Each ECU in the

network has a unique node name. For the address claiming procedure, there are two important

features of the node name value:

• Priority: The lower name value has the higher priority.

• Arbitrary address capability (bit 63 = 1): This node can use a different address than

specified in case of conflict.

The arbitrary address capability is defined in the highest significant bit of the value (bit 63).

All arbitrary-capable names have a lower priority than nonarbitrary-capable names.

Chapter 4 NI-XNET API for LabVIEW—J1939 Sessions

© National Instruments 4-59 NI-XNET Hardware and Software Manual

Address Claiming Procedure
To obtain an address on the network, set the J1939/Node Name and J1939/Node Address

properties or set the J1939/ECU property (which is equivalent to setting the other properties

using the values in the ECU object in the database). After setting the Node Address (to a value

less than 254), XNET sends an address claimed message and waits 300 ms for the response

from the network. If no other node is using this address, there is no response to the message;

after the timeout, the address is granted to the session and the session can transmit frames on

the network.

During the claiming procedure, the node address property returns the null address (254), so

you can poll this address until it gets a valid value.

If the address cannot be granted to the session (for example, when the name is not arbitrary

and another node with higher priority uses the node address), the address is not granted. After

timeout, the J1939 CommState indicates the reason for failed address claiming. If the node

name is arbitrary address capable, NI-XNET tries to find another address and claim it. This

procedure can take some time depending on how fast the other nodes respond to the address

claimed message.

NI-XNET examples contain the address claiming procedure, which you can use in your

applications.

The frames transmitted during address claiming are not passed to the J1939 input session. To

see those frames, open a non-J1939 CAN session, which can be running parallel with a J1939

session on the same interface.

Transmitting Frames
When transmitting frames, the granted address of the node automatically replaces the source

address part of the identifier.

Transmitting Frames without Granted Node Address
In your application, you may want a session to transmit frames using the source address

provided in the identifier in the database or the frame data. If you do not assign a valid address

to a session (or set the address to 254 explicitly), NI-XNET does not change the address in

your frame identifier before transmitting. If a transmitting session without an address tries to

send a frame without a valid address in the identifier, this returns an error.

Mixing J1939 and CAN Messages
J1939 frames in the database and CAN frames data in XNET include the Application Protocol

property. This means you can mix J1939 and standard CAN messages in one session.

Standard CAN messages cannot exceed 8 bytes and do not use the node address.

Chapter 4 NI-XNET API for LabVIEW—J1939 Sessions

NI-XNET Hardware and Software Manual 4-60 ni.com

In standard CAN frames, the complete identifier is considered as the CAN message identifier;

in J1939, only the PGN determines the message. Frames with the same PGN but different

priority or source address are considered the same message.

Received frames with extended identifier always are considered J1939 frames. If you use

extended CAN frames as non-J1939 frames, you must process the received data to update the

Application Protocol property.

Transport Protocol (TP)
When you use frames with more than 8 bytes, NI-XNET automatically uses the J1939

transport protocol to transmit and receive the frames. You do not receive any transport

protocol management messages in the sessions. When this is required, you must open a

non-J1939 CAN session, which can be running parallel to a J1939 session on the same

interface.

Transport protocol defines many properties used to change the behavior (for example,

timing).

If errors occur in the transport protocol, they are not reported directly from the read function.

You can monitor errors in the TP by reading the J1939 CommState function.

Note that the transport protocol is not using the priority in the identifier, and the priority value

is not transmitted with the TP. Received TP messages have the priority always set to 0.

NI-XNET Sessions
You can use all NI-XNET session modes with J1939 protocol, whether or not the frames use

transport protocol. This includes frame and signal sessions in queued, single point, or stream

mode.

Not Supported in the Current NI-XNET Version

Signal Ranges
For coded signal values in frames, J1939 reserves special values to transmit specific indicators

(for example, the error indicator). The current NI-XNET version does not support this; those

values are converted to signal values. This behavior may change in a future NI-XNET version.

Chapter 4 NI-XNET API for LabVIEW—NI-XNET API for LabVIEW Reference

© National Instruments 4-61 NI-XNET Hardware and Software Manual

NI-XNET API for LabVIEW Reference

This section describes the NI-XNET LabVIEW APIs and properties.

XNET Session Constant

This constant provides the constant form of the XNET Session I/O name. You drag a constant

to the block diagram of your VI, then select a session. You can change constants only during

configuration, prior to running the VI. For a complete description, refer to XNET Session I/O

Name.

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session.vi

NI-XNET Hardware and Software Manual 4-62 ni.com

XNET Create Session.vi

Purpose

Creates an XNET session to read/write data on the network.

Description

The XNET session specifies a relationship between National Instruments interface hardware

and frames or signals to access on the external network (cluster). The XNET session also

specifies the input/output direction and how data is transferred between your application and

the network. For more information about NI-XNET concepts and object classes, refer to

Interfaces, Databases, and Sessions.

Use this VI to create a session at run time. Run-time creation is useful when the session

configuration must be selected using the front panel. If you prefer to create a session at edit

time (static configuration), refer to Appendix E, LabVIEW Project Provider.

The instances of this polymorphic VI specify the session mode to create:

• XNET Create Session (Signal Input Single-Point).vi

• XNET Create Session (Signal Input Waveform).vi

• XNET Create Session (Signal Input XY).vi

• XNET Create Session (Signal Output Single-Point).vi

• XNET Create Session (Signal Output Waveform).vi

• XNET Create Session (Signal Output XY).vi

• XNET Create Session (Frame Input Stream).vi

• XNET Create Session (Frame Input Queued).vi

• XNET Create Session (Frame Input Single-Point).vi

• XNET Create Session (PDU Input Queued).vi

• XNET Create Session (PDU Input Single Point).vi

• XNET Create Session (Frame Output Stream).vi

• XNET Create Session (Frame Output Queued).vi

• XNET Create Session (Frame Output Single-Point).vi

• XNET Create Session (PDU Output Queued).vi

• XNET Create Session (PDU Output Single-Point).vi

• XNET Create Session (Generic).vi: (This instance is used for advanced applications,

when you need to specify the configuration as strings.)

• XNET Create Session (Conversion).vi

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Conversion).vi

© National Instruments 4-63 NI-XNET Hardware and Software Manual

XNET Create Session (Conversion).vi

Purpose

Creates an XNET session at run time for the Conversion Mode.

Format

Inputs

signal list is the array of XNET signals to convert to or from frames. These

signals are specified in your database and describe the values encoded in

one or more frames.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Frame Input Queued).vi

NI-XNET Hardware and Software Manual 4-64 ni.com

XNET Create Session (Frame Input Queued).vi

Purpose

Creates an XNET session at run time for the Frame Input Queued Mode.

Format

Inputs

frame is the XNET Frame to read. This mode supports only one frame per

session. Your database specifies this frame.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Frame Input Single-Point).vi

© National Instruments 4-65 NI-XNET Hardware and Software Manual

XNET Create Session (Frame Input Single-Point).vi

Purpose

Creates an XNET session at run time for the Frame Input Single-Point Mode.

Format

Inputs

frame list is the array of XNET Frames to read. Your database specifies

these frames.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Frame Input Stream).vi

NI-XNET Hardware and Software Manual 4-66 ni.com

XNET Create Session (Frame Input Stream).vi

Purpose

Creates an XNET session at run time for the Frame Input Stream Mode.

Format

Inputs

cluster is the XNET Cluster to use for interface configuration. The default

value is :memory:, the in-memory database.

There are five options:

• Empty in-memory database: cluster is unwired, and the in-memory

database is empty (XNET Database Create Object.vi is not used).

This option is supported for CAN only (not FlexRay or LIN). After

you create the session, you must set the XNET Session Interface:Baud

Rate property using a Session node. You must set the baud rate prior to

starting the session.

• Pre-defined CAN FD in-memory database: Pass in special

in-memory databases :can_fd: and :can_fd_brs:, as the cluster (XNET

Database Create Object.vi is not used). These databases are similar

to the empty in-memory database (:memory:), but configure the cluster

in either CAN FD or CAN FD+BRS mode, respectively. After you

create the session, you must set the XNET Session Interface:Baud Rate

and Interface:CAN:FD Baud Rate properties using a Session node.

You must set these baud rates prior to starting the session.

• Pre-defined SAE J1939 Database: Pass in the special in-memory

database :can_j1939:. This database is similar to the empty in-memory

database (:memory:), but configures the cluster in CAN SAE J1939

application protocol mode. After you create the session, you must set

the XNET Session Interface:Baud Rate property using a Session node.

You must set this baud rate prior to starting the session.

• Cluster within database file: cluster specifies a cluster within a

database file. This is the most common option used with FlexRay. The

cluster within the FIBEX database file contains all required properties

to configure the interface. For CANdb files, although the file itself

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Frame Input Stream).vi

© National Instruments 4-67 NI-XNET Hardware and Software Manual

does not specify a CAN baud rate, you provide this when you add an

alias to the file within NI-XNET. For LIN, the LDF file format already

specifies the baud rate.

• Nonempty in-memory database: Call XNET Database Create

Object.vi to create a cluster within the in-memory database, use the

XNET Cluster property node to set properties (such as baud rate), then

wire from the Cluster node to this cluster.

• Subordinate: Wire in cluster of :subordinate:. A subordinate session

uses the cluster and interface configuration from other sessions. For

example, you may have a test application with which the end user

specifies the database file, cluster, and signals to read/write. You also

have a second application with which you want to log all received

frames (input stream), but that application does not specify a database.

You run this second application using a subordinate session, meaning

it does not configure or start the interface, but depends on the primary

test application. For a subordinate session, start and stop of the

interface (using XNET Start.vi) is ignored. The subordinate session

reads frames only when another nonsubordinate session starts the

interface.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (PDU Input Queued).vi

NI-XNET Hardware and Software Manual 4-68 ni.com

XNET Create Session (PDU Input Queued).vi

Purpose

Creates an XNET session at run time for the Frame Input Queued Mode.

This selection uses a PDU instead of a frame, but otherwise it is the same as XNET Create

Session (Frame Input Queued).vi. You read PDU data using the XNET Read.vi frame

selections. The payload in each frame value contains the PDU’s data, not the entire frame.

XNET Create Session (PDU Input Single Point).vi

Purpose

Creates an XNET session at run time for the Frame Input Single-Point Mode.

This selection uses one or more PDUs instead of frames, but otherwise it is the same as XNET

Create Session (Frame Input Single-Point).vi. You read PDU data using the XNET

Read.vi frame selections. The payload in each frame value contains the PDU’s data, not the

entire frame.

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Frame Output Queued).vi

© National Instruments 4-69 NI-XNET Hardware and Software Manual

XNET Create Session (Frame Output Queued).vi

Purpose

Creates an XNET session at run time for the Frame Output Queued Mode.

Format

Inputs

frame is the XNET Frame to write. This mode supports only one frame per

session. Your database specifies this frame.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Frame Output Single-Point).vi

NI-XNET Hardware and Software Manual 4-70 ni.com

XNET Create Session (Frame Output Single-Point).vi

Purpose

Creates an XNET session at run time for the Frame Output Single-Point Mode.

Format

Inputs

frame list is the array of XNET Frames to write. Your database specifies

these frames.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Frame Output Stream).vi

© National Instruments 4-71 NI-XNET Hardware and Software Manual

XNET Create Session (Frame Output Stream).vi

Purpose

Creates an XNET session at run time for the Frame Output Stream Mode.

Note This instance is supported for CAN and LIN only (not FlexRay).

Format

Inputs

cluster is the XNET Cluster I/O Name to use for interface configuration.

The default value is :memory:, the in-memory database.

There are four options:

• Empty in-memory database: cluster is unwired, and the in-memory

database is empty (XNET Database Create Object.vi is not used).

After you create the session, you must set the XNET Session

Interface:Baud Rate property using a Session node. You must set the

CAN or LIN baud rate prior to starting the session.

• Pre-defined CAN FD in-memory database: Pass in special

in-memory databases :can_fd: and :can_fd_brs:, as the cluster (XNET

Database Create Object.vi is not used). These databases are similar

to the empty in-memory database (:memory:), but configure the cluster

in either CAN FD or CAN FD+BRS mode, respectively. After you

create the session, you must set the XNET Session Interface:Baud Rate

and Interface:CAN:FD Baud Rate properties using a Session node.

You must set these baud rates prior to starting the session.

• Pre-defined SAE J1939 Database: Pass in the special in-memory

database :can_j1939:. This database is similar to the empty in-memory

database (:memory:), but configures the cluster in CAN SAE J1939

application protocol mode. After you create the session, you must set

the XNET Session Interface:Baud Rate property using a Session node.

You must set this baud rate prior to starting the session.

• Cluster within database file: cluster specifies a cluster within a

database file. For CANdb files, although the file itself does not specify

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Frame Output Stream).vi

NI-XNET Hardware and Software Manual 4-72 ni.com

a CAN baud rate, you provide this when you add an alias to the file

within NI-XNET.

• Nonempty in-memory database: Call XNET Database Create

Object.vi to create a cluster within the in-memory database, use the

Cluster node to set properties (such as baud rate), then wire from the

Cluster node to this cluster.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (PDU Output Queued).vi

© National Instruments 4-73 NI-XNET Hardware and Software Manual

XNET Create Session (PDU Output Queued).vi

Purpose

Creates an XNET session at run time for the Frame Output Queued Mode.

This selection uses a PDU instead of a frame, but otherwise it is the same as XNET Create

Session (Frame Output Queued).vi. You write PDU data using the XNET Write.vi frame

selections. The payload in each frame value contains the PDU’s data, not the entire frame.

XNET Create Session (PDU Output Single-Point).vi

Purpose

Creates an XNET session at run time for the Frame Output Single-Point Mode.

This selection uses a PDU instead of a frame, but otherwise it is the same as XNET Create

Session (Frame Output Single-Point).vi. You write PDU data using the XNET Write.vi

frame selections. The payload in each frame value contains the PDU’s data, not the entire

frame.

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Generic).vi

NI-XNET Hardware and Software Manual 4-74 ni.com

XNET Create Session (Generic).vi

Purpose

Creates an XNET session at run time using strings instead of XNET I/O Names. This VI is

for advanced applications, when you need to store the configuration as strings (such as within

a text file).

Format

Inputs

list provides the list of signals or frames for the session.

The list syntax depends on the mode:

Mode list Syntax

Signal Input

Single-Point,

Signal Output

Single-Point

list contains one or more XNET Signal names.

If more than one name is provided, a comma must

separate each name. Each name must use the

<signal> or <frame.signal> syntax as specified for

the I/O name (new line and <dbSelection> not

included).

Signal Input

Waveform,

Signal Output

Waveform

list contains one or more XNET Signal names.

If more than one name is provided, a comma must

separate each name. Each name must use the

<signal> or <frame.signal> syntax as specified for

the I/O name (new line and <dbSelection> not

included).

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Generic).vi

© National Instruments 4-75 NI-XNET Hardware and Software Manual

mode is the session mode.

interface is the XNET Interface to use for this session.

database is the XNET Database to use for interface configuration. The

database name must use the <alias> or <filepath> syntax specified for the

I/O name. The default value is :memory:, the in-memory database.

cluster is the XNET Cluster to use for interface configuration. The cluster

name must use the <cluster> syntax specified for the I/O name (<alias>.

prefix not included).

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

Signal Input

XY, Signal

Output XY

list contains one or more XNET Signal names.

If more than one name is provided, a comma must

separate each name. Each name must use the

<signal> or <frame.signal> syntax as specified for

the I/O name (new line and <dbSelection> not

included).

Frame Input

Stream, Frame

Output Stream

list is empty (unwired).

Frame Input

Queued,

Frame Output

Queued

list contains only one XNET Frame name. Only

one name is supported. The frame name must use

the <frame> syntax as specified for the I/O name

(new line and <dbSelection> not included).

Frame Input

Single-Point,

Frame Output

Single-Point

list contains one or more XNET Frame names.

If more than one name is provided, a comma must

separate each name. The frame name must use the

<frame> syntax as specified for the I/O name

(new line and <dbSelection> not included).

Mode list Syntax

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Signal Input Single-Point).vi

NI-XNET Hardware and Software Manual 4-76 ni.com

XNET Create Session (Signal Input Single-Point).vi

Purpose

Creates an XNET session at run time for the Signal Input Single-Point Mode.

Format

Inputs

signal list is the array of XNET Signals to read. These signals are specified

in your database and describe the values encoded in one or more frames, or

they are trigger signals for frames. For more information about trigger

signals, refer to Signal Input Single-Point Mode.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Signal Input Waveform).vi

© National Instruments 4-77 NI-XNET Hardware and Software Manual

XNET Create Session (Signal Input Waveform).vi

Purpose

Creates an XNET session at run time for the Signal Input Waveform Mode.

Format

Inputs

signal list is the array of XNET Signals to read. These signals are specified

in your database and describe the values encoded in one or more frames.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Signal Input XY).vi

NI-XNET Hardware and Software Manual 4-78 ni.com

XNET Create Session (Signal Input XY).vi

Purpose

Creates an XNET session at run time for the Signal Input XY Mode.

Format

Inputs

signal list is the array of XNET Signals to read. These signals are specified

in your database and describe the values encoded in one or more frames.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Signal Output Single-Point).vi

© National Instruments 4-79 NI-XNET Hardware and Software Manual

XNET Create Session (Signal Output Single-Point).vi

Purpose

Creates an XNET session at run time for the Signal Output Single-Point Mode.

Format

Inputs

signal list is the array of XNET Signals to write. These signals are specified

in your database and describe the values encoded in one or more frames, or

they are trigger signals for frames. For information about trigger signals,

refer to Signal Output Single-Point Mode.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Signal Output Waveform).vi

NI-XNET Hardware and Software Manual 4-80 ni.com

XNET Create Session (Signal Output Waveform).vi

Purpose

Creates an XNET session at run time for the Signal Output Waveform Mode.

Format

Inputs

signal list is the array of XNET Signals to write. These signals are specified

in your database and describe the values encoded in one or more frames.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Signal Output XY).vi

© National Instruments 4-81 NI-XNET Hardware and Software Manual

XNET Create Session (Signal Output XY).vi

Purpose

Creates an XNET session at run time for the Signal Output XY Mode.

Format

Inputs

signal list is the array of XNET Signals to write. These signals are specified

in your database and describe the values encoded in one or more frames.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the created session.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Session Property Node

NI-XNET Hardware and Software Manual 4-82 ni.com

XNET Session Property Node

Format

Description

Property node used to read/write properties for an XNET Session I/O Name.

Pull down this node to add properties. Right-click to change direction between read and write.

Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>) and

move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help (select

Search the LabVIEW Help from the Help menu) and look for the Property Nodes topic in

the index.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-83 NI-XNET Hardware and Software Manual

Interface Properties

Properties in the Interface category apply to the interface and not the session. If more than one

session exists for the interface, changing an interface property affects all the sessions.

CAN Interface Properties

This category includes CAN-specific interface properties.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-84 ni.com

Interface:CAN:External Transceiver Config

Data Type Direction Required? Default

Write Only No 0x00000007

Property Class

XNET Session

Short Name

Intf.CAN.ExtTcvrCfg

Description

This property allows you to configure XS series CAN hardware to communicate properly

with your external transceiver. The connector on your XS series CAN hardware has five lines

for communicating with your transceiver.

The Ext_RX and Ext_TX lines are self explanatory and provide for the transfer of CAN data

to and from the transceiver. The remaining three lines are for configuring the transceiver and

retrieving status from the transceivers. Not all transceivers use all pins. Typically, a

transceiver has one or two lines that can configure the transceiver mode. The NI-XNET driver

natively supports five transceiver modes: Normal, Sleep, Single Wire Wakeup, Single Wire

High Speed, and Power-On. This property configures how the NI-XNET driver sets the

outputs of your external transceiver for each mode.

Line Direction Purpose

Ext_RX In Data received from the CAN bus.

Ext_TX Out Data to transmit on the CAN bus.

Output0 Out Generic output used to configure the transceiver

mode.

Output1 Out Generic output used to configure the transceiver

mode.

NERR In Input to connect to the nERR pin of your transceiver

to route status back from the transceiver to the

hardware.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-85 NI-XNET Hardware and Software Manual

The configuration is in the form of a u32 written as a bitmask. The u32 bitmask is defined as:

Where each configuration is a 3-bit value defined as:

The Interface:CAN:Transceiver State property changes the transceiver state. Based on the

transceiver configuration, if the state is supported, the configuration determines how the two

pins are set. If the state is not supported, an error is returned, because you tried to set an invalid

configuration. Note that all transceivers must support a Normal state, so the State Supported

bit for that configuration is ignored.

Other internal state changes may occur. For example, if you put the transceiver to sleep and a

remote wakeup occurs, the transceiver automatically is changed to the normal state. For

information about the state machine for the transceiver state, refer to CAN Transceiver State

Machine in Additional Topics.

If nERR Connected is set, the nERR pin into the connector determines a transceiver error. It

is active low, meaning a value of 0 on this pin indicates an error. A value of 1 indicates no

error. If this line is connected, the NI-XNET driver monitors this line and reports its status via

the Transceiver Error field of XNET Read (State CAN Comm).vi.

Examples

TJA1041 (HS): To connect to the TJA1041 transceiver, connect Output0 to the nSTB pin and

Output1 to the EN pin. The TJA1041 does have an nERR pin, so that should be connected to

the nERR input. The TJA1041 supports a power-on state, a sleep state, and a normal state. As

this is not a single wire transceiver, it does not support any single wire state. For normal

operation, the TJA1041 uses a 1 for both nSTB and EN. For sleep, the TJA1041 uses the

standby mode, which uses a 0 for both nSTB and EN. For power-on, the TJA1041 uses a 1 for

nSTB and a 0 for EN. The final configuration is 0x80005027.

TJA1054 (LS): You can connect and configure the TJA1054 identically to the TJA1041.

AU5790 (SW): To connect to the AU5790 transceiver, connect Output0 to the nSTB pin and

Output1 to the EN pin. The AU5790 does not support any transceiver status, so you do not

need to connect the nERR pin. The AU5790 supports all states. For normal operation, the

AU5790 uses a 1 for both nSTB and EN. For sleep, the AU5790 uses a 0 for both nSTB and

EN. For Single Wire Wakeup, the AU5790 requires nSTB to be a 0 and EN to be a 1. For

Single Wire High-Speed, the AU5790 requires nSTB to be a 1, and EN to be a 0. For

31 30..15 14..12 11..9 8..6 5..3 2..0

nERR

Connected

Reserved PowerOn

Configuration

SWHighSpeed

Configuration

SWWakeup

Configuration

Sleep

Configuration

Normal

Configuration

2 1 0

State Supported Output1 Value Output0 Value

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-86 ni.com

power-on, the sleep state is used so there is less interference on the bus. The final

configuration is 0x00004DA7.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-87 NI-XNET Hardware and Software Manual

Interface:CAN:FD Baud Rate

Data Type Direction Required? Default

Read/Write No 0

Property Class

XNET Session

Short Name

Intf.CAN.FdBaudRate

Description

Note You can modify this property only when the interface is stopped.

The Interface:CAN:FD Baud Rate property sets the fast data baud rate for CAN FD + BRS

CAN:I/O Mode. The default value for this interface property is the same as the cluster’s FD

baud rate in the database. Your application can set this interface FD baud rate to override the

value in the database.

When the upper nibble (0xF0000000) is clear, this is a numeric baud rate (for example,

500000).

NI-XNET CAN hardware currently accepts the following numeric baud rates: 200000,

250000, 400000, 500000, 800000, 1000000, 1250000, 1600000, 2000000, 2500000,

4000000, 5000000, and 8000000.

Note Not all CAN transceivers are rated to transmit at the requested rate. If you attempt

to use a rate that exceeds the transceiver’s qualified rate, XNET Start returns a warning.

Chapter 3, NI-XNET Hardware Overview, describes the CAN transceivers’ limitations.

When the upper nibble is set to 0x8 (that is, 0x80000000), the remaining bits provide fields

for more custom CAN communication baud rate programming. The fields are shown in the

following table:

31..28 27..26 25..24 23..20 19..16 15...10 9..8 7..0

Normal b0000 Baud Rate (200 k–8 M)

Custom b1000 Res SJW

(0–3)

TSEG2

(0–7)

TSEG1

(1–15)

Res Tq (25–800)

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-88 ni.com

• (Re-)Synchronization Jump Width (SJW)

– Valid programmed values are 0–3.

– The actual hardware interpretation of this value is one more than the programmed

value.

• Time Segment 2 (TSEG2) is the time segment after the sample point.

– Valid programmed values are 0–7.

– This is the Phase_Seg2(D) from Bosch’s CAN with Flexible Data-Rate specification,

version 1.0.

– The actual hardware interpretation of this value is one more than the programmed

value.

• Time Segment 1 (TSEG1) is the time segment before the sample point.

– Valid programmed values are 1–15.

– This is the combination of Prop_Seg(D) and Phase_Seg1(D) from Bosch’s CAN with

Flexible Data-Rate specification, version 1.0.

– The actual hardware interpretation of this value is one more than the programmed

value.

• Time quantum (Tq) is used to program the baud rate prescaler.

– Valid programmed values are 25–800, in increments of 25 ns.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-89 NI-XNET Hardware and Software Manual

Interface:CAN:I/O Mode

Data Type Direction Required? Default

Read Only — Same as XNET Cluster CAN:I/O Mode

Property Class

XNET Session

Short Name

Intf.CAN.IoMode

Description

This property indicates the I/O Mode the interface is using. It is a ring of three values, as

described in the following table:

The value is initialized from the database cluster when the session is created and cannot be

changed later. However, you can transmit standard CAN frames on a CAN FD network. Refer

to the Interface:CAN:Transmit I/O Mode property.

Enumeration Value Meaning

CAN 0 This is the default CAN 2.0 A/B standard I/O mode

as defined in ISO 11898-1:2003. A fixed baud rate

is used for transfer, and the payload length is limited

to 8 bytes.

CAN FD 1 This is the CAN FD mode as specified in the CAN

with Flexible Data-Rate specification, version 1.0.

Payload lengths are allowed up to 64 bytes, but they

are transmitted at a single fixed baud rate (defined

by XNET Cluster Baud Rate or Interface:Baud

Rate.)

CAN FD + BRS 2 This is the CAN FD mode as specified in the CAN

with Flexible Data-Rate specification, version 1.0,

with the optional Baud Rate Switching enabled. The

same payload lengths as CAN FD mode are

allowed; additionally, the data portion of the CAN

frame is transferred at a different (higher) baud rate

(defined by XNET Cluster CAN:FD Baud Rate or

Interface:CAN:FD Baud Rate).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-90 ni.com

Interface:CAN:Listen Only?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.CAN.LstnOnly?

Description

Note You can modify this property only when the interface is stopped.

The Listen Only? property configures whether the CAN interface transmits any information

to the CAN bus.

When this property is false, the interface can transmit CAN frames and acknowledge received

CAN frames.

When this property is true, the interface can neither transmit CAN frames nor acknowledge a

received CAN frame. The true value enables passive monitoring of network traffic, which can

be useful for debugging scenarios when you do not want to interfere with a communicating

network cluster.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-91 NI-XNET Hardware and Software Manual

Interface:CAN:Pending Transmit Order

Data Type Direction Required? Default

Read/Write No As Submitted

Property Class

XNET Session

Short Name

Intf.CAN.PendTxOrder

Description

Note You can modify this property only when the interface is stopped.

Note Setting this property causes the internal queue to be flushed. If you start a session,

queue frames, and then stop the session and change this mode, some frames may be lost.

Set this property to the desired value once; do not constantly change modes.

The Pending Transmit Order property configures how the CAN interface manages the internal

queue of frames. More than one frame may desire to transmit at the same time. NI-XNET

stores the frames in an internal queue and transmits them onto the CAN bus when the bus is

idle.

This property modifies how NI-XNET handles this queue of frames. The following table lists

the accepted values:

When you configure this property to be As Submitted, frames are transmitted in the order that

they were submitted into the queue. There is no reordering of any frames, and a higher priority

frame may be delayed due to the transmission or retransmission of a previously submitted

frame. However, this mode has the highest performance.

When you configure this property to be By Identifier, frames with the highest priority

identifier (lower CAN ID value) transmit first. The frames are stored in a priority queue sorted

by ID. If a frame currently being transmitted requires retransmission (for example, it lost

arbitration or failed with a bus error), and a higher priority frame is queued in the meantime,

Enumeration Value

As Submitted 0

By Identifier 1

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-92 ni.com

the lower priority frame is not immediately retried, but the higher priority frame is transmitted

instead. In this mode, you can emulate multiple ECUs and still see a behavior similar to a real

bus in that the highest priority message is transmitted on the bus. This mode may be slower

in performance (possible delays between transmissions as the queue is re-evaluated), and

lower priority messages may be delayed indefinitely due to frequent high-priority messages.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-93 NI-XNET Hardware and Software Manual

Interface:CAN:Single Shot Transmit?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.CAN.SingShot?

Description

Note You can modify this property only when the interface is stopped.

Note Setting this property causes the internal queue to be flushed. If you start a session,

queue frames, and then stop the session and change this mode, some frames may be lost.

Set this property to the desired value once; do not constantly change modes.

The Single Shot Transmit? property configures whether the CAN interface retries failed

transmissions.

When this property is false, failed transmissions retry as specified by the CAN protocol

(ISO 11898–1, 6.11 Automatic Retransmission). If a CAN frame is not transmitted

successfully, the interface attempts to retransmit the frame as soon as the bus is idle again.

This retransmit process continues until the frame is successfully transmitted.

When this property is true, failed transmissions do not retry. If a CAN frame is not transmitted

successfully, no further transmissions are attempted.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-94 ni.com

Interface:CAN:Termination

Data Type Direction Required? Default

Read/Write No Off (0)

Property Class

XNET Session

Short Name

Intf.CAN.Term

Description

Note You can modify this property only when the interface is stopped.

This property does not take effect until the interface is started.

The Termination property configures the onboard termination of the NI-XNET interface CAN

connector (port). The enumeration is generic and supports two values: Off and On. However,

different CAN hardware has different termination requirements, and the Off and On values

have different meanings, as described below.

High-Speed CAN

High-Speed CAN networks are typically terminated on the bus itself instead of within a node.

However, NI-XNET allows you to configure termination within the node to simplify testing.

If your bus already has the correct amount of termination, leave this property in the default

state of Off. However, if you require termination, set this property to On.

Low-Speed/Fault-Tolerant CAN

Every node on a Low-Speed CAN network requires termination for each CAN data line

(CAN_H and CAN_L). This configuration allows the Low-Speed/Fault-Tolerant CAN port to

provide fault detection and recovery. Refer to Termination for more information about

low-speed termination. In general, if the existing network has an overall network termination

of 125  or less, turn on termination to enable the 4.99 k option. Otherwise, you should

select the default 1.11 k option.

Value Meaning Description

Off Disabled Termination is disabled.

On Enabled Termination (120 ) is enabled.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-95 NI-XNET Hardware and Software Manual

Single Wire CAN

The ISO standard requires single wire transceivers to have a 9.09 k resistor, and no

additional configuration is supported.

Value Meaning Description

Off 1.11 k Termination is set to 1.11 k.

On 4.99 k Termination is set to 4.99 k.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-96 ni.com

Interface:CAN:Transceiver State

Data Type Direction Required? Default

Read/Write No Normal (0)

Property Class

XNET Session

Short Name

Intf.CAN.TcvrState

Description

The Transceiver State property configures the CAN transceiver and CAN controller modes.

The transceiver state controls whether the transceiver is asleep or communicating, as well as

configuring other special modes. The following table lists the accepted values.

Normal

This state sets the transceiver to normal communication mode. If the transceiver is in the

Sleep mode, this performs a local wakeup of the transceiver and CAN controller chip.

Sleep

This state sets the transceiver and CAN controller chip to Sleep (or standby) mode. You can

set the interface to Sleep mode only while the interface is communicating. If the interface has

not been started, setting the transceiver to Sleep mode returns an error.

Before going to sleep, all pending transmissions are transmitted onto the CAN bus. Once all

pending frames have been transmitted, the interface and transceiver go into Sleep (or standby)

mode. Once the interface enters Sleep mode, further communication is not possible until a

wakeup occurs. The transceiver and CAN controller wake from Sleep mode when either a

local wakeup or remote wakeup occurs.

Enumeration Value

Normal 0

Sleep 1

Single Wire Wakeup 2

Single Wire High-Speed 3

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-97 NI-XNET Hardware and Software Manual

A local wakeup occurs when the application sets the transceiver state to either Normal or

Single Wire Wakeup.

A remote wakeup occurs when a remote node transmits a CAN frame (referred to as the

wakeup frame). The wakeup frame wakes up the NI-XNET interface transceiver and CAN

controller chip. The CAN controller chip does not receive or acknowledge the wakeup frame.

After detecting the wakeup frame and idle bus, the CAN interface enters Normal mode.

When the local or remote wakeup occurs, frame transmissions resume from the point at which

the original Sleep mode was set.

You can use XNET Read (State CAN Comm).vi to detect when a wakeup occurs. To

suspend the application while waiting for the remote wakeup, use XNET Wait (CAN

Remote Wakeup).vi.

Single Wire Wakeup

For a remote wakeup to occur for Single Wire transceivers, the node that transmits the wakeup

frame first must place the network into the Single Wire Wakeup Transmission mode by

asserting a higher voltage.

This state sets a Single Wire transceiver into the Single Wire Wakeup Transmission mode,

which forces the Single Wire transceiver to drive a higher voltage level on the network to

wake up all sleeping nodes. Other than this higher voltage, this mode is similar to Normal

mode. CAN frames can be received and transmitted normally.

If you are not using a Single Wire transceiver, setting this state returns an error. If your current

mode is Single Wire High-Speed, setting this mode returns an error because you are not

allowed to wake up the bus in high-speed mode.

The application controls the timing of how long the wakeup voltage is driven. The application

typically changes to Single Wire Wakeup mode, transmits a single wakeup frame, and then

returns to Normal mode.

Single Wire High-Speed

This state sets a Single Wire transceiver into Single Wire High-Speed Communication mode.

If you are not using a Single Wire transceiver, setting this state returns an error.

Single Wire High-Speed Communication mode disables the transceiver’s internal

waveshaping function, allowing the SAE J2411 High Speed baud rate of 83.333 kbytes/s to

be used. The disadvantage versus Single Wire Normal Communication mode, which only

allows the SAE J2411 baud rate of 33.333 kbytes/s, is degraded EMC performance. Other

than the disabled waveshaping, this mode is similar to Normal mode. CAN frames can be

received and transmitted normally.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-98 ni.com

This mode has no relationship to High-Speed transceivers. It is merely a higher speed mode

of the Single Wire transceiver, typically used to download data when the onboard network is

attached to an offboard tester ECU.

The Single Wire transceiver does not support use of this mode in conjunction with Sleep

mode. For example, a remote wakeup cannot transition from sleep to this Single Wire

High-Speed mode. Therefore, setting the mode to Sleep from Single Wire High-Speed mode

returns an error.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-99 NI-XNET Hardware and Software Manual

Interface:CAN:Transceiver Type

Data Type Direction Required? Default

Read/Write No High-Speed (0) for High-Speed and XS Hardware;

Low-Speed (1) for Low-Speed Hardware

Property Class

XNET Session

Short Name

Intf.CAN.TcvrType

Description

Notes You can modify this property only when the interface is stopped.

For XNET hardware that provides a software-selectable transceiver, the Transceiver Type

property allows you to set the transceiver type. Use the XNET Interface CAN.Transceiver

Capability property to determine whether your hardware supports a software-selectable

transceiver.

You also can use this property to determine the currently configured transceiver type.

The following table lists the accepted values:

The default value for this property depends on your type of hardware. If you have

fixed-personality hardware, the default value is the hardware value. If you have hardware that

supports software-selectable transceivers, the default is High-Speed.

Enumeration Value

High-Speed (HS) 0

Low-Speed (LS) 1

Single Wire (SW) 2

External (Ext) 3

Disconnect (Disc) 4

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-100 ni.com

This attribute uses the following values:

High-Speed

This configuration enables the High-Speed transceiver. This transceiver supports baud rates

of 40 kbaud to 1 Mbaud. When using a High-Speed transceiver, you also can communicate

with a CAN FD bus. Refer to Chapter 3, NI-XNET Hardware Overview, to determine which

CAN FD baud rates are supported.

Low-Speed/Fault-Tolerant

This configuration enables the Low-Speed/Fault-Tolerant transceiver. This transceiver

supports baud rates of 40–125 kbaud.

Single Wire

This configuration enables the Single Wire transceiver. This transceiver supports baud rates

of 33.333 kbaud and 83.333 kbaud.

External

This configuration allows you to use an external transceiver to connect to your CAN bus.

Refer to Interface:CAN:External Transceiver Config for more information.

Disconnect

This configuration allows you to disconnect the CAN controller chip from the connector. You

can use this value when you physically change the external transceiver.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-101 NI-XNET Hardware and Software Manual

Interface:CAN:Transmit I/O Mode

Data Type Direction Required? Default

Read/Write No Same as Interface:CAN:I/O Mode

Property Class

XNET Session

Short Name

Intf.CAN.TxIoMode

Description

This property specifies the I/O Mode the interface uses when transmitting a CAN frame. By

default, it is the same as the XNET Cluster CAN:I/O Mode property. However, even if the

interface is in CAN FD (+ BRS) mode, you can force it to transmit frames in the standard

CAN format. For this purpose, set this property to CAN.

Note This property affects only the transmission of frames. Even if you set the transmit

I/O mode to CAN, the interface still can receive frames in FD modes (if the XNET Cluster

CAN:I/O Mode property is configured in an FD mode).

The Transmit I/O mode may not exceed the mode set by the XNET Cluster CAN:I/O Mode

property.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-102 ni.com

FlexRay Interface Properties

These properties are calculated based on constraints in the FlexRay Protocol Specification.

To calculate these properties, the constraints use cluster settings and knowledge of the

oscillator that the FlexRay interface uses.

At Create Session time, the XNET driver automatically calculates these properties, and they

are passed down to the hardware. However, you can use the XNET property node to change

these settings.

Note Changing the interface properties can affect the integration and communication of

the XNET FlexRay interface with the cluster.

Interface:FlexRay:Accepted Startup Range

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.AccStartRng

Description

Range of measure clock deviation allowed for startup frames during node integration. This

property corresponds to the pdAcceptedStartupRange node parameter in the FlexRay

Protocol Specification.

The range for this property is 0–1875 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-103 NI-XNET Hardware and Software Manual

Interface:FlexRay:Allow Halt Due To Clock?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.FlexRay.AlwHltClk?

Description

Controls the FlexRay interface transition to the POC: halt state due to clock synchronization

errors. If set to true, the node can transition to the POC: halt state. If set to false, the node does

not transition to the POC: halt state and remains in the POC: normal passive state, allowing

for self recovery.

This property corresponds to the pAllowHaltDueToClock node parameter in the FlexRay

Protocol Specification.

The property is a Boolean flag.

The default value of this property is false.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Refer to XNET Read (State FlexRay Comm).vi for more information about the POC: halt

and POC: normal passive states.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-104 ni.com

Interface:FlexRay:Allow Passive to Active

Data Type Direction Required? Default

Read/Write No 0

Property Class

XNET Session

Short Name

Intf.FlexRay.AlwPassAct

Description

Number of consecutive even/odd cycle pairs that must have valid clock correction terms

before the FlexRay node can transition from the POC: normal-passive to the POC:

normal-active state. If set to zero, the node cannot transition from POC: normal-passive to

POC: normal-active.

This property corresponds to the pAllowPassiveToActive node parameter in the FlexRay

Protocol Specification.

The property is expressed as the number of even/odd cycle pairs, with values of 0–31.

The default value of this property is zero.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Refer to XNET Read (State FlexRay Comm).vi for more information about the POC:

normal-active and POC: normal-passive states.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-105 NI-XNET Hardware and Software Manual

Interface:FlexRay:Auto Asleep When Stopped

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.AutoAslpStp

Description

This property indicates whether the FlexRay interface (node) automatically places the

FlexRay transceiver and controller into sleep when the interface is stopped. The default value

of this property is False, and you must handle the wakeup/sleep processing manually using

the XNET Session Interface:FlexRay:Sleep property.

When this property is called with the value True while the interface is asleep, the interface is

put to sleep immediately. When this property is called with the value False, the interface is set

to a local awake state immediately.

If the interface is asleep when XNET Start.vi is called, the FlexRay interface waits for a

wakeup pattern on the bus before transitioning out of the POC:READY state. To initiate a bus

wakeup, you can set the XNET Session Interface:FlexRay:Sleep property with a value of

Remote Wake.

After XNET Stop.vi is called, if this property is True, the FlexRay interface automatically

goes back to sleep to be ready to handle the wakeup on subsequent XNET Start.vi calls.

When this property is False when XNET Stop.vi is called, the FlexRay interface remains in

the sleep state it was in prior to the XNET Stop.vi call.

You can overwrite the default value by writing this property prior to starting the FlexRay

interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-106 ni.com

Interface:FlexRay:Cluster Drift Damping

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.ClstDriftDmp

Description

Local cluster drift damping factor used for rate correction.

This property corresponds to the pAllowPassiveToActive node parameter in the FlexRay

Protocol Specification.

The range for the property is 0–20 MT.

The cluster drift damping property should be configured in such a way that the damping

values in all nodes within the same cluster have approximately the same duration.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-107 NI-XNET Hardware and Software Manual

Interface:FlexRay:Coldstart?

Data Type Direction Required? Default

Read No False

Property Class

XNET Session

Short Name

Intf.FlexRay.Coldstart?

Description

This property specifies whether the FlexRay interface operates as a coldstart node

on the cluster. This property is read only and calculated from the XNET Session

Interface:FlexRay:Key Slot Identifier property. If the KeySlot Identifier is 0 (invalid slot

identifier), the XNET FlexRay interface does not act as a coldstart node, and this property is

false. If the KeySlot Identifier is 1 or more, the XNET FlexRay interface transmits a startup

frame from that slot, and the Coldstart? property is true.

This property returns a Boolean flag (true/false).

The default value of this property is false.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-108 ni.com

Interface:FlexRay:Connected Channels

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.ConnectedChs

Description

This property specifies the channel(s) that the FlexRay interface (node) is physically

connected to. The default value of this property is connected to all channels available on the

cluster. However, if you are using a node connected to only one channel of a multichannel

cluster that uses wakeup, you must set the value properly. If you do not, your node may not

wake up, as the wakeup pattern cannot be received on a channel not physically connected.

This property corresponds to the pChannels node parameter in the FlexRay Protocol

Specification.

The values supported for this property (enumeration) are A = 1, B = 2, and A and B = 3.

You can overwrite the default value by writing this property prior to starting the FlexRay

interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-109 NI-XNET Hardware and Software Manual

Interface:FlexRay:Decoding Correction

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.DecCorr

Description

This property specifies the value that the receiving FlexRay node uses to calculate the

difference between the primary time reference point and secondary reference point. The clock

synchronization algorithm uses the primary time reference and the sync frame’s expected

arrival time to calculate and compensate for the node’s local clock deviation.

This property corresponds to the pDecodingCorrection node parameter in the FlexRay

Protocol Specification.

The range for the property is 14–143 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-110 ni.com

Interface:FlexRay:Delay Compensation Ch A

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.DelayCompA

Description

This property specifies the value that the XNET FlexRay interface (node) uses to compensate

for reception delays on channel A. This takes into account the assumed propagation delay up

to the maximum allowed propagation delay (cPropagationDelayMax) for microticks in the

0.0125–0.05 range. In practice, you should apply the minimum of the propagation delays of

all sync nodes.

This property corresponds to the pDelayCompensation[A] node parameter in the FlexRay

Protocol Specification.

The property range is 0–200 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-111 NI-XNET Hardware and Software Manual

Interface:FlexRay:Delay Compensation Ch B

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.DelayCompB

Description

This property specifies the value that the XNET FlexRay interface (node) uses to compensate

for reception delays on channel B. This takes into account the assumed propagation delay up

to the maximum allowed propagation delay (Propagation Delay Max) for microticks in the

0.0125–0.05 range. In practice, you should apply the minimum of the propagation delays of

all sync nodes.

This property corresponds to the pDelayCompensation[B] node parameter in the FlexRay

Protocol Specification.

The property range is 0–200 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-112 ni.com

Interface:FlexRay:Key Slot Identifier

Data Type Direction Required? Default

Read/Write No 0

Property Class

XNET Session

Short Name

Intf.FlexRay.KeySlotID

Description

This property specifies the FlexRay slot number from which the XNET FlexRay interface

transmits a startup frame, during the process of integration with other cluster nodes.

For a network (cluster) of FlexRay nodes to start up for communication, at least two nodes

must transmit startup frames. If your application is designed to test only one external ECU,

you must configure the XNET FlexRay interface to transmit a startup frame. If the one

external ECU does not transmit a startup frame itself, you must use two XNET FlexRay

interfaces for the test, each of which must transmit a startup frame.

There are two methods for configuring the XNET FlexRay interface as a coldstart node

(transmit startup frame).

Output Session with Startup Frame

Create an output session that contains a startup frame (or one of its signals). The XNET Frame

FlexRay:Startup? property is true for a startup frame. If you use this method, this Key Slot

Identifier property contains the identifier property of that startup frame. You do not write this

property.

Write this Key Slot Identifier Property

This interface uses the identifier (slot) you write to transmit a startup frame using that slot.

Note If you create an output session that contains the startup frame, with the same

identifier as that specified in the Key Slot Identifier property, the data you write to the

session transmits in the frame. If you do not create an output session that contains the

startup frame, the interface transmits a null frame for startup purposes.

If you create an output session that contains a startup frame with an identifier that does not

match the Key Slot Identifier property, an error is returned.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-113 NI-XNET Hardware and Software Manual

The default value of this property is 0 (no startup frame).

You can overwrite the default value by writing an identifier that corresponds to the identifier

of a startup frame prior to starting the FlexRay interface (refer to Session States for more

information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-114 ni.com

Interface:FlexRay:Latest Tx

Data Type Direction Required? Default

Read No 0

Property Class

XNET Session

Short Name

Intf.FlexRay.LatestTx

Description

This property specifies the number of the last minislot in which a frame transmission can start

in the dynamic segment. This is a read-only property, as the FlexRay controller evaluates it

based on the configuration of the frames in the dynamic segment.

This property corresponds to the pLatestTx node parameter in the FlexRay Protocol

Specification.

The range of values for this property is 0–7981 minislots.

This property can be read any time prior to closing the FlexRay interface.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-115 NI-XNET Hardware and Software Manual

Interface:FlexRay:Listen Timeout

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.ListTimo

Description

This property specifies the upper limit for the startup listen timeout and wakeup listen

timeout.

Refer to Summary of the FlexRay Standard for more information about startup and wakeup

procedures within the FlexRay protocol.

This property corresponds to the pdListenTimeout node parameter in the FlexRay Protocol

Specification.

The range of values for this property is 1284–1283846 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-116 ni.com

Interface:FlexRay:Macro Initial Offset Ch A

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.MacInitOffA

Description

This property specifies the integer number of macroticks between the static slot boundary and

the following macrotick boundary of the secondary time reference point based on the nominal

macrotick duration. This property applies only to Channel A.

This property corresponds to the pMacroInitialOffset[A] node parameter in the FlexRay

Protocol Specification.

The range of values for this property is 2–72 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-117 NI-XNET Hardware and Software Manual

Interface:FlexRay:Macro Initial Offset Ch B

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.MacInitOffB

Description

This property specifies the integer number of macroticks between the static slot boundary and

the following macrotick boundary of the secondary time reference point based on the nominal

macrotick duration. This property applies only to Channel B.

This property corresponds to the pMacroInitialOffset[B] node parameter in the FlexRay

Protocol Specification.

The range of values for this property is 2–72 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-118 ni.com

Interface:FlexRay:Max Drift

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.MaxDrift

Description

This property specifies the maximum drift offset between two nodes that operate with

unsynchronized clocks over one communication cycle.

This property corresponds to the pdMaxDrift node parameter in the FlexRay Protocol

Specification.

The range of values for this property is 2–1923 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-119 NI-XNET Hardware and Software Manual

Interface:FlexRay:Micro Initial Offset Ch A

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.MicInitOffA

Description

This property specifies the number of microticks between the closest macrotick boundary

described by the Macro Initial Offset Ch A property and the secondary time reference point.

This parameter depends on the Delay Compensation property for Channel A, and therefore

you must set it independently for each channel.

This property corresponds to the pMicroInitialOffset[A] node parameter in the FlexRay

Protocol Specification.

The range of values for this property is 0–240 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-120 ni.com

Interface:FlexRay:Micro Initial Offset Ch B

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.MicInitOffB

Description

This property specifies the number of microticks between the closest macrotick boundary

described by the Macro Initial Offset Ch B property and the secondary time reference point.

This parameter depends on the Delay Compensation property for Channel B, and therefore

you must set it independently for each channel.

This property corresponds to the pMicroInitialOffset[B] node parameter in the FlexRay

Protocol Specification.

The range of values for this property is 0–240 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-121 NI-XNET Hardware and Software Manual

Interface:FlexRay:Microtick

Data Type Direction Required? Default

Read No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.Microtick

Description

This property specifies the duration of a microtick. This property is calculated based on the

product of the Samples per Microtick interface property and the BaudRate cluster. This is a

read-only property.

This property corresponds to the pdMicrotick node parameter in the FlexRay Protocol

Specification.

This property can be read any time prior to closing the FlexRay interface.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-122 ni.com

Interface:FlexRay:Null Frames To Input Stream?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.FlexRay.NullToInStrm?

Description

This property indicates whether the Frame Input Stream Mode session should return FlexRay

null frames from XNET Read.vi.

When this property uses the default value of false, FlexRay null frames are not returned for a

Frame Input Stream Mode session. This behavior is consistent with the other two frame input

modes (Frame Input Single-Point Mode and Frame Input Queued Mode), which never return

FlexRay null frames from XNET Read.vi.

When you set this property to true for a Frame Input Stream Mode session, XNET Read.vi

returns all FlexRay null frames that are received by the interface. This feature is used to

monitor all frames that occur on the network, regardless of whether new payload is available

or not. When you use XNET Read (Frame FlexRay).vi instance of XNET Read.vi, each

frame’s type field indicates a null frame.

You can overwrite the default value prior to starting the FlexRay interface (refer to Session

States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-123 NI-XNET Hardware and Software Manual

Interface:FlexRay:Offset Correction

Data Type Direction Required? Default

Read No N/A

Property Class

XNET Session

Short Name

Intf.FlexRay.OffCorr

Description

This property provides the maximum permissible offset correction value, expressed in

microticks. The offset correction synchronizes the cycle start time. The value indicates the

number of microticks added or subtracted to the offset correction portion of the network idle

time, to synchronize the interface to the FlexRay network. The value is returned as a signed

32-bit integer (I32). The offset correction value calculation takes place every cycle, but the

correction is applied only at the end of odd cycles. This is a read-only property.

This property can be read anytime prior to closing the FlexRay interface.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-124 ni.com

Interface:FlexRay:Offset Correction Out

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.OffCorrOut

Description

This property specifies the magnitude of the maximum permissible offset correction value.

This node parameter is based on the value of the maximum offset correction for the specific

cluster.

This property corresponds to the pOffsetCorrectionOut node parameter in the FlexRay

Protocol Specification.

The value range for this property is 5–15266 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-125 NI-XNET Hardware and Software Manual

Interface:FlexRay:Rate Correction

Data Type Direction Required? Default

Read No N/A

Property Class

XNET Session

Short Name

Intf.FlexRay.RateCorr

Description

Read-only property that provides the rate correction value, expressed in microticks. The rate

correction synchronizes frequency. The value indicates the number of microticks added to or

subtracted from the configured number of microticks in a cycle, to synchronize the interface

to the FlexRay network.

The value is returned as a signed 32-bit integer (I32). The rate correction value calculation

takes place in the static segment of an odd cycle, based on values measured in an even-odd

double cycle.

This property can be read prior to closing the FlexRay interface.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-126 ni.com

Interface:FlexRay:Rate Correction Out

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.RateCorrOut

Description

This property specifies the magnitude of the maximum permissible rate correction value. This

node parameter is based on the value of the maximum rate correction for the specific cluster.

This property corresponds to the pRateCorrectionOut node parameter in the FlexRay

Protocol Specification.

The range of values for this property is 2–1923 MT.

This property is calculated from the microticks per cycle and clock accuracy.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-127 NI-XNET Hardware and Software Manual

Interface:FlexRay:Samples Per Microtick

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Short Name

Intf.FlexRay.SampPerMicro

Description

This property specifies the number of samples per microtick.

There is a defined relationship between the “ticks” of the microtick timebase and the sample

ticks of bit sampling. Specifically, a microtick consists of an integral number of samples.

As a result, there is a fixed phase relationship between the microtick timebase and the sample

clock ticks.

This property corresponds to the pSamplesPerMicrotick node parameter in the FlexRay

Protocol Specification.

The supported values for this property are 1, 2, and 4 samples.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-128 ni.com

Interface:FlexRay:Single Slot Enabled?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.FlexRay.SingSlotEn

Description

This property serves as a flag to indicate whether the FlexRay interface (node) should enter

single slot mode following startup.

This Boolean property supports a strategy to limit frame transmissions following startup

to a single frame (designated by the XNET Session Interface:FlexRay:Key Slot Identifier

property). If you leave this property false prior to start (default), all configured output frames

transmit. If you set this property to true prior to start, only the key slot transmits. After the

interface is communicating (integrated), you can set this property to false at runtime to enable

the remaining transmissions (the protocol’s ALL_SLOTS command). After the interface is

communicating, you cannot set this property from false to true.

This property corresponds to the pSingleSlotEnabled node parameter in the FlexRay

Protocol Specification.

You can overwrite the default value prior to starting the FlexRay interface (refer to Session

States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-129 NI-XNET Hardware and Software Manual

Interface:FlexRay:Sleep

Data Type Direction Required? Default

Write Only No N/A

Property Class

XNET Session

Short Name

Intf.FlexRay.Sleep

Description

Use the Sleep property to change the NI-XNET FlexRay interface sleep/awake state and

optionally to initiate a wakeup on the FlexRay cluster.

The property is a ring (enumerated list) with the following values:

This property is write only. Setting a new value is effectively a request, and the property node

returns before the request is complete. To detect the current interface sleep/wake state, use

XNET Read (State FlexRay Comm).vi.

The FlexRay interface maintains a state machine to determine the action to perform when this

property is set (request). The following table specifies the sleep/wake action on the FlexRay

interface.

String Value Description

Local Sleep 0 Set interface and transceiver(s) to sleep

Local Wake 1 Set interface and transceiver(s) to awake

Remote Wake 2 Set interface and transceivers to awake and attempt to

wake up the FlexRay bus by sending the wakeup

pattern on the configured wakeup channel

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-130 ni.com

Request

Current Local State

Sleep Awake

Local Sleep No action Change local state

Local Wake Attempt to integrate with the bus (move from

POC:READY to POC:NORMAL)

No action

Remote Wake Attempt to wake up the bus followed by an attempt

to integrate with the bus (move from POC:READY

to POC:NORMAL ACTIVE). If the interface is not

yet started, setting Remote Wake schedules a

remote wake to be generated once the interface has

started.

No action

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-131 NI-XNET Hardware and Software Manual

Interface:FlexRay:Statistics Enabled?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.FlexRay.StatisticsEn?

Description

This XNET Boolean property enables reporting FlexRay error statistics. When this property

is false (default), calls to XNET Read (State FlexRay Statistics).vi always return zero for

each statistic. To enable FlexRay statistics, set this property to true in your application.

You can overwrite the default value prior to starting the FlexRay interface (refer to Session

States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-132 ni.com

Interface:FlexRay:Symbol Frames To Input Stream?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.FlexRay.SymToInStrm?

Description

This property indicates whether the Frame Input Stream Mode session should return FlexRay

symbols from XNET Read.vi.

When this property uses the default value of False, FlexRay symbols are not returned for a

Frame Input Stream Mode session. This behavior is consistent with the other two frame input

modes (Frame Input Single-Point Mode and Frame Input Queued Mode), which never return

FlexRay symbols from XNET Read.vi.

When you set this property to true for a Frame Input Stream Mode session, XNET Read.vi

returns all FlexRay symbols the interface receives. This feature detects wakeup symbols and

Media Access Test Symbols (MTS). When you use the XNET Read (Frame FlexRay).vi

instance of XNET Read.vi, each frame type field indicates a symbol.

When the frame type is FlexRay Symbol, the first payload byte (offset 0) specifies the type of

symbol: 0 for MTS or 1 for wakeup. The frame payload length is 1 or higher, with bytes

beyond the first reserved for future use. The frame timestamp specifies when the symbol

window occurred. The cycle count, channel A indicator, and channel B indicator are encoded

the same as FlexRay data frames. All other fields in the frame are unused (0).

You can overwrite the default value prior to starting the FlexRay interface (refer to Session

States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-133 NI-XNET Hardware and Software Manual

Interface:FlexRay:Sync Frames Channel A Even

Data Type Direction Required? Default

Read No N/A

Property Class

XNET Session

Short Name

Intf.FlexRay.SyncChAEven

Description

This property returns an array of sync frames (slot IDs) transmitted or received on channel A

during the last even cycle. This read-only property returns an array in which each element

holds the slot ID of a sync frame. If the interface is not started, this returns an empty array. If

you start the interface, but it fails to communicate (integrate), this property may be helpful in

diagnosing the problem.

Refer to Appendix B, Summary of the FlexRay Standard, for more information about the

FlexRay protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-134 ni.com

Interface:FlexRay:Sync Frames Channel A Odd

Data Type Direction Required? Default

Read No N/A

Property Class

XNET Session

Short Name

Intf.FlexRay.SyncChAOdd

Description

This property returns an array of sync frames (slot IDs) transmitted or received on channel A

during the last odd cycle. This read-only property returns an array in which each element

holds the slot ID of a sync frame. If the interface is not started, this returns an empty array. If

you start the interface, but it fails to communicate (integrate), this property may be helpful in

diagnosing the problem.

Refer to Appendix B, Summary of the FlexRay Standard, for more information about the

FlexRay protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-135 NI-XNET Hardware and Software Manual

Interface:FlexRay:Sync Frames Channel B Even

Data Type Direction Required? Default

Read No N/A

Property Class

XNET Session

Short Name

Intf.FlexRay.SyncChBEven

Description

This property returns an array of sync frames (slot IDs) transmitted or received on channel B

during the last even cycle. This read-only property returns an array in which each element

holds the slot ID of a sync frame. If the interface is not started, this returns an empty array. If

you start the interface, but it fails to communicate (integrate), this property may be helpful in

diagnosing the problem.

Refer to Appendix B, Summary of the FlexRay Standard, for more information about the

FlexRay protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-136 ni.com

Interface:FlexRay:Sync Frames Channel B Odd

Data Type Direction Required? Default

Read No N/A

Property Class

XNET Session

Short Name

Intf.FlexRay.SyncChBOdd

Description

This property returns an array of sync frames (slot IDs) transmitted or received on channel B

during the last odd cycle. This read-only property returns an array in which each element

holds the slot ID of a sync frame. If the interface is not started, this returns an empty array. If

you start the interface, but it fails to communicate (integrate), this property may be helpful in

diagnosing the problem.

Refer toAppendix B, Summary of the FlexRay Standard, for more information about the

FlexRay protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-137 NI-XNET Hardware and Software Manual

Interface:FlexRay:Sync Frame Status

Data Type Direction Required? Default

Read No N/A

Property Class

XNET Session

Short Name

Intf.FlexRay.SyncStatus

Description

This property returns the status of sync frames since the interface (enumeration) start. Within

Limits means the number of sync frames is within the protocol’s limits since the interface

start. Below Minimum means that in at least one cycle, the number of sync frames was below

the limit the protocol requires (2 or 3, depending on number of nodes). Overflow means that

in at least one cycle, the number of sync frames was above the limit set by the XNET Cluster

FlexRay:Sync Node Max property. Both Min and Max means that both minimum and

overflow errors have occurred (this is unlikely).

If the interface is not started, this property returns Within Limits. If you start the interface, but

it fails to communicate (integrate), this property may be helpful in diagnosing the problem.

Refer to Appendix B, Summary of the FlexRay Standard, for more information about the

FlexRay protocol startup and cluster integration procedure.

This property can be read any time prior to closing the FlexRay interface.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-138 ni.com

Interface:FlexRay:Termination

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.FlexRay.Term

Description

This property controls termination at the NI-XNET interface (enumeration) connector (port).

This applies to both channels (A and B) on each FlexRay interface. False means the interface

is not terminated (default). True means the interface is terminated.

You can overwrite the default value by writing this property prior to starting the FlexRay

interface (refer to Session States for more information). You can start the FlexRay interface

by calling XNET Start.vi with scope set to either Normal or Interface Only on the session.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-139 NI-XNET Hardware and Software Manual

Interface:FlexRay:Wakeup Channel

Data Type Direction Required? Default

Read/Write No A

Property Class

XNET Session

Short Name

Intf.FlexRay.WakeupCh

Description

This property specifies the channel the FlexRay interface (node) uses to send a wakeup

pattern. This property is used only when the XNET Session Interface:FlexRay:Sleep property

is set to Remote Wake.

This property corresponds to the pWakeupChannel node parameter in the FlexRay Protocol

Specification.

The values supported for this property (enumeration) are A = 0 and B = 1.

You can overwrite the default value by writing this property prior to starting the FlexRay

interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-140 ni.com

Interface:FlexRay:Wakeup Pattern

Data Type Direction Required? Default

Read/Write No 2

Property Class

XNET Session

Short Name

Intf.FlexRay.WakeupPtrn

Description

This property specifies the number of repetitions of the wakeup symbol that are combined to

form a wakeup pattern when the FlexRay interface (node) enters the POC:wakeup-send state.

The POC:wakeup send state is one of the FlexRay controller state transitions during the

wakeup process. In this state, the controller sends the wakeup pattern on the specified Wakeup

Channel and checks for collisions on the bus.

This property corresponds to the pWakeupPattern node parameter in the FlexRay Protocol

Specification.

The supported values for this property are 2–63.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-141 NI-XNET Hardware and Software Manual

LIN Interface Properties

This category includes LIN-specific interface properties.

Properties in the Interface category apply to the interface and not the session. If more than

one session exists for the interface, changing an interface property affects all the sessions.

Interface:LIN:Break Length

Data Type Direction Required? Default

Read/Write No 13

Property Class

XNET Session

Short Name

Intf.LIN.BreakLen

Description

This property determines the length of the serial break used at the start of a frame header

(schedule entry). The value is specified in bit-times.

The valid range is 10–36 (inclusive). The default value is 13, which is the value the LIN

standard specifies.

At baud rates below 9600, the upper limit may be lower than 36 to avoid violating hold times

for the bus. For example, at 2400 baud, the valid range is 10–14.

This property is applicable only when the interface is the master.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-142 ni.com

Interface:LIN:DiagP2min

Data Type Direction Required? Default

Read/Write No 0.05

Property Class

XNET Session

Short Name

Intf.LIN.DiagP2min

Description

When the interface is the slave, this is the minimum time in seconds between reception of the

last frame of the diagnostic request message and transmission of the response for the first

frame in the diagnostic response message by the slave.

This property applies only to the interface as slave. An attempt to write the property for

interface as master results in error nxErrInvalidPropertyValue being reported.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-143 NI-XNET Hardware and Software Manual

Interface:LIN:DiagSTmin

Data Type Direction Required? Default

Read/Write No 0

Property Class

XNET Session

Short Name

Intf.LIN.DiagSTmin

Description

When the interface is the slave, this property sets the minimum time in seconds it places

between the end of transmission of a frame in a diagnostic response message and the start of

transmission of the response for the next frame in the diagnostic response message.

When the interface is the master, this property sets the minimum time in seconds it places

between the end of transmission of a frame in a diagnostic request message and the start of

transmission of the next frame in the diagnostic request message.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-144 ni.com

Interface:LIN:Master?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.LIN.Master?

Description

Note You can set this property only when the interface is stopped.

This Boolean property specifies the NI-XNET LIN interface role on the network: master

(true) or slave (false).

In a LIN network (cluster), there always is a single ECU in the system called the master. The

master transmits a schedule of frame headers. Each frame header is a remote request for a

specific frame ID. For each header, typically a single ECU in the network (slave) responds by

transmitting the requested ID payload. The master ECU can respond to a specific header as

well, and thus the master can transmit payload data for the slave ECUs to receive. For more

information, refer to Appendix C, Summary of the LIN Standard.

The default value for this property is false (slave). This means that by default, the interface

does not transmit frame headers onto the network. When you use input sessions, you read

frames that other ECUs transmit. When you use output sessions, the NI-XNET interface waits

for the remote master to send a header for a frame in the output sessions, then the interface

responds with data for the requested frame.

If you call XNET Write (State LIN Schedule Change).vi to request execution of a schedule,

that implicitly sets this property to true (master). You also can set this property to true using

a property node, but no schedule is active by default, so you still must call XNET Write

(State LIN Schedule Change).vi at some point to request a specific schedule.

Regardless of this property’s value, you use can input and output sessions. This property

specifies which hardware transmits the scheduled frame headers: NI-XNET (true) or a remote

master ECU (false).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-145 NI-XNET Hardware and Software Manual

Interface:LIN:Output Stream Slave Response List By NAD

Data Type Direction Required? Default

Read/Write No Empty Array

Property Class

XNET Session

Short Name

Intf.LIN.OutStrmSlvRspListByNAD

Description

The Output Stream Slave Response List by NAD property provides a list of NADs for use

with the replay feature (Interface:Output Stream Timing property set to Replay Exclusive or

Replay Inclusive).

For LIN, the array of frames to replay might contain multiple slave response frames, each

with the same slave response identifier, but each having been transmitted by a different slave

(per the NAD value in the data payload). This means that processing slave response frames

for replay requires two levels of filtering. First, you can include or exclude the slave response

frame or ID for replay using Interface:Output Stream List or Interface:Output Stream List By

ID. If you do not include the slave response frame or ID for replay, no slave responses are

transmitted. If you do include the slave response frame or ID for replay, you can use the

Output Stream Slave Response List by NAD property to filter which slave responses (per the

NAD values in the array) are transmitted. This property is always inclusive, regardless of the

replay mode (inclusive or exclusive). If the NAD is in the list and the response frame or ID

has been enabled for replay, any slave response for that NAD is transmitted. If the NAD is not

in the list, no slave response for that NAD is transmitted. The property’s data type is an array

of unsigned 32-bit integer (u32). Currently, only byte 0 is required to hold the NAD value.

The remaining bits are reserved for future use.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-146 ni.com

Interface:LIN:Schedules

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Session

Short Name

Intf.LIN.Schedules

Description

This property provides the list of schedules for use when the NI-XNET LIN interface acts as

a master (Interface:LIN:Master? is true). When the interface is master, you can wire one of

these schedules to XNET Write (State LIN Schedule Change).vi to request a schedule

change.

When the interface is slave, you cannot control the schedule, and XNET Write (State LIN

Schedule Change).vi returns an error if it cannot set the interface into master mode (for

example, if the interface already is started).

This array of XNET LIN Schedule I/O names is the same list as the XNET Cluster

LIN:Schedules property used to configure the session.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-147 NI-XNET Hardware and Software Manual

Interface:LIN:Sleep

Data Type Direction Required? Default

Write Only No N/A

Property Class

XNET Session

Short Name

Intf.LIN.Sleep

Description

Use the Sleep property to change the NI-XNET LIN interface sleep/awake state and

optionally to change remote node (ECU) sleep/awake states.

The property is a ring (enumerated list) with the following values:

The property is write only. Setting a new value is effectively a request, and the property node

returns before the request is complete. To detect the current interface sleep/wake state, use

XNET Read (State LIN Comm).vi.

The LIN interface maintains a state machine to determine the action to perform when this

property is set (request). The following sections specify the action when the interface is

master and slave.

String Value Description

Remote Sleep 0 Set interface to sleep locally and transmit sleep requests

to remote nodes

Remote Wake 1 Set interface to awake locally and transmit wakeup

requests to remote nodes

Local Sleep 2 Set interface to sleep locally and not to interact with the

network

Local Wake 3 Set interface to awake locally and not to interact with

the network

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-148 ni.com

When the master’s scheduler pauses, it finishes the pending entry (slot) and saves its current

position. When the master’s scheduler resumes, it continues with the schedule where it left

off (entry after the pause).

The go-to-sleep request is frame ID 63, payload length 8, payload byte 0 has the value 0, and

the remaining bytes have the value 0xFF.

If the master is in the Sleep state, and a remote slave (ECU) transmits the slave wakeup

pattern, this is equivalent to setting this property to Local Wake. In addition, a pending XNET

Wait (LIN Remote Wakeup).vi returns. This XNET Wait VI does not apply to setting this

property, because you know when you set it.

Table 4-1. Sleep/Wake Action for Master

Request

Current Local State

Sleep Awake

Remote Sleep No action Change local state; pause

scheduler; transmit go-to-sleep

request frame

Remote Wake Change local state; transmit

master wakeup pattern (serial

break); resume scheduler

No action

Local Sleep No action Change local state

Local Wake Change local state; resume

scheduler

No action

Table 4-2. Sleep/Wake Action for Slave

Request

Current Local State

Sleep Awake

Remote Sleep Error Error

Remote Wake Change local state; transmit

slave wakeup pattern

No action

Local Sleep No action Change local state

Local Wake Change local state No action

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-149 NI-XNET Hardware and Software Manual

According to the LIN protocol standard, Remote Sleep is not supported for slave mode, so

that request returns an error.

If the slave is in Sleep state, and a remote master (ECU) transmits the master wakeup pattern,

this is equivalent to setting this property to Local Wake. In addition, a pending XNET Wait

(LIN Remote Wakeup).vi returns. This XNET Wait VI does not apply to setting this

property, because you know when you set it.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-150 ni.com

Interface:LIN:Start Allowed without Bus Power?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.LIN.StrtWoPwr?

Description

Note You can modify this property only when the interface is stopped.

The Start Allowed Without Bus Power? property configures whether the LIN interface does

not check for bus power present at interface start, or checks and reports an error if bus power

is missing.

When this property is true, the LIN interface does not check for bus power present at start, so

no error is reported if the interface is started without bus power.

When this property is false, the LIN interface checks for bus power present at start, and

nxErrMissingBusPower is reported if the interface is started without bus power.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-151 NI-XNET Hardware and Software Manual

Interface:LIN:Termination

Data Type Direction Required? Default

Read/Write No Off (0)

Property Class

XNET Session

Short Name

Intf.LIN.Term

Description

Notes You can modify this property only when the interface is stopped.

This property does not take effect until the interface is started.

The Termination property configures the NI-XNET interface LIN connector (port) onboard

termination. The enumeration is generic and supports two values: Off (disabled) and On

(enabled).

The property is a ring (enumerated list) with the following values:

Per the LIN 2.1 standard, the Master ECU has a ~1 k termination resistor between Vbat and

Vbus. Therefore, use this property only if you are using your interface as the master and do

not already have external termination.

For more information about LIN cabling and termination, refer to NI-XNET LIN Hardware.

String Value

Off 0

On 1

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-152 ni.com

Source Terminal Interface Properties

This category includes properties to route trigger signals between multiple DAQmx and

XNET devices.

Interface:Source Terminal:Start Trigger

Data Type Direction Required? Default

Read/Write No (Disconnected)

Property Class

XNET Session

Short Name

Intf.SrcTerm.StartTrigger

Description

This property specifies the name of the internal terminal to use as the interface Start Trigger.

The data type is NI Terminal (DAQmx terminal).

This property is supported for C Series modules in a CompactDAQ chassis. It is not supported

for CompactRIO, PXI, or PCI (refer to XNET Connect Terminals.vi for those platforms).

The digital trigger signal at this terminal is for the Start Interface transition, to begin

communication for all sessions that use the interface. This property routes the start trigger, but

not the timebase (used for timestamp of received frames and cyclic transmit of frames).

Timebase routing is not required for CompactDAQ, because all modules in the chassis

automatically use a shared timebase.

Use this property to connect the interface Start Trigger to triggers in other modules and/or

interfaces. When you read this property, you specify the interface Start Trigger as the source

of a connection. When you write this property, you specify the interface Start Trigger as the

destination of a connection, and the value you write represents the source. For examples that

demonstrate use of this property to synchronize NI-XNET and NI-DAQmx hardware, refer to

the Synchronization category within the NI-XNET examples.

The connection this property creates is disconnected when you clear (close) all sessions that

use the interface.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-153 NI-XNET Hardware and Software Manual

Interface:Baud Rate

Data Type Direction Required? Default

Read/Write Yes (If Not in Database) 0 (If Not in Database)

Property Class

XNET Session

Short Name

Intf.BaudRate

Description

Note You can modify this property only when the interface is stopped.

The Interface:Baud Rate property sets the CAN, FlexRay, or LIN interface baud rate. The

default value for this interface property is the same as the cluster’s baud rate in the database.

Your application can set this interface baud rate to override the value in the database, or when

no database is used.

CAN

When the upper nibble (0xF0000000) is clear, this is a numeric baud rate (for example,

500000).

NI-XNET CAN hardware currently accepts the following numeric baud rates: 33333, 40000,

50000, 62500, 80000, 83333, 100000, 125000, 160000, 200000, 250000, 400000, 500000,

800000, and 1000000.

Note The 33333 baud rate is supported with single-wire transceivers only.

Note Baud rates greater than 125000 are supported with high-speed transceivers only.

When the upper nibble is set to 0x8 (that is, 0x80000000), the remaining bits provide fields

for more custom CAN communication baud rate programming. Additionally, if the

upper nibble is set to 0xC (that is, 0xC0000000), the remaining bits provide fields for

higher-precision custom CAN communication baud rate programming. The higher-precision

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-154 ni.com

bit timings facilitate connectivity to a CAN FD cluster. The baud rate models are shown in the

following table:

• (Re-)Synchronization Jump Width (SJW)

– Valid programmed values are 0–3 in normal custom mode and 0–15 in

high-precision custom mode.

– The actual hardware interpretation of this value is one more than the programmed

value.

• Time Segment 2 (TSEG2), which is the time segment after the sample point

– Valid programmed values are 0–7 in normal custom mode and 0–15 in

high-precision custom mode.

– This is the Phase_Seg2 time from ISO 11898–1, 12.4.1 Bit Encoding/Decoding.

– The actual hardware interpretation of this value is one more than the programmed

value.

• Time Segment 1 (TSEG1), which is the time segment before the sample point

– Valid programmed values are 1–0xF (1–15 decimal) in normal custom mode and

1–0x3F (1–63 decimal) in high-precision custom mode.

– This is the combination of the Prop_Seg and Phase_Seg1 time from ISO 11898–1,

12.4.1 Bit Encoding/Decoding.

– The actual hardware interpretation of this value is one more than the programmed

value.

• Time quantum (Tq), which is used to program the baud rate prescaler

– Valid programmed values are 125–12800, in increments of 0x7D (125 decimal) ns

for normal custom mode and 25–12800, in increments of 0x19 (25 decimal) ns for

high-precision custom mode.

– This is the time quantum from ISO 11898–1, 12.4.1 Bit Encoding/Decoding.

An advanced baud rate example is 0x8014007D. This example breaks down into the

following values:

• SJW = 0x0 (0x01 in hardware, due to the + 1)

• TSEG2 = 0x1 (0x02 in hardware, due to the + 1)

31..28 27..26 25..24 23 22..20 19..16 15..14 13..12 11..8 7..4 3..0

Normal b0000 Baud Rate (33.3 k–1 M)

Custom b1000 Res SJW

(0–3)

TSEG2 (0–7) TSEG1

(1–15)

Res Tq (125–0x3200)

High

Precision

b1100 SJW (0–15) TSEG2 (0–15) TSEG1 (1–63) Tq (25–0x3200)

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-155 NI-XNET Hardware and Software Manual

• TSEG 1 = 0x4 (0x05 in hardware, due to the + 1)

• Tq = 0x7D (125 ns in hardware)

Each time quanta is 125 ns. From IS0 11898–1, 12.4.1.2 Programming of Bit Time, the

nominal time segments length is Sync_Seg(Fixed at 1) + (Prop_Seg + Phase_Seg1)(B) +

Phase_Seg2(C) = 1 + 2 + 5 = 8. So, the total time for a bit in this example is 8 * 125 ns =

1000 ns = 1 s. A 1 s bit time is equivalent to a 1 MHz baud rate.

LIN

When the upper nibble (0xF0000000) is clear, you can set only baud rates within the

LIN-specified range (2400 to 20000) for the interface.

When the upper nibble is set to 0x8 (0x80000000), no check for baud rate within

LIN-specified range is performed, and the lowest 16 bits of the value may contain the custom

baud rate. Any custom value higher than 65535 is masked to a 16-bit value. As with the

noncustom values, the interface internally calculates the appropriate divisor values to

program into its UART. Because the interface uses the Atmel ATA6620 LIN transceiver,

which is guaranteed to operate within the LIN 2.0 specification limits, there are some special

considerations when programming custom baud rates for LIN:

• The ATA6620 transceiver incorporates a TX dominant timeout function to prevent a

faulty device that it is built into from holding the LIN dominant indefinitely. If the TX

line into the transceiver is held in the dominant state for too long, the transceiver switches

its driver to the recessive state. This places a limit on how long the LIN header break field

that the interface transmits may be, and thus limits the lowest baud rate you can set. At

the point the baud rate or break length is set for the interface, it uses the baud rate bit time

and break length settings internally to calculate the resulting break duration and returns

an error if that duration is long enough to trigger the TX dominant timeout.

• At the other end of the baud range, the ATA6620 is specified to work up to 20000 baud.

While you can use the custom bit to program rates higher than that, the transceiver

behavior when operating above that rate is not guaranteed.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-156 ni.com

Interface:Echo Transmit?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.EchoTx?

Description

The Interface:Echo Transmit? property determines whether Frame Input or Signal Input

sessions contain frames that the interface transmits.

When this property is true, and a frame transmit is complete for an Output session, the frame

is echoed to the Input session. Frame Input sessions can use the Flags field to differentiate

frames received from the bus and frames the interface transmits. When using XNET Read

(Frame CAN).vi, XNET Read (Frame FlexRay).vi, or XNET Read (Frame LIN).vi, the

Flags field is parsed into an echo? Boolean in the frame cluster. When using XNET Read

(Frame Raw).vi, you can parse the Flags manually by reviewing the Raw Frame Format

section. Signal Input sessions cannot differentiate the origin of the incoming data.

Note Echoed frames are placed into the input sessions only after the frame transmit is

complete. If there are bus problems (for example, no listener) such that the frame did not

transmit, the frame is not received.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-157 NI-XNET Hardware and Software Manual

Interface:I/O Name

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

Intf.IOName

Description

The I/O Name property returns a reference to the interface used to create the session.

You can pass this I/O name into an XNET Interface property node to retrieve hardware

information for the interface, such as the name and serial number. The I/O Name is the same

reference available from the XNET System property node, which is used to read information

for all XNET hardware in the system.

You can use this property on the diagram to:

• Display a string that contains the name of the interface as shown in Measurement and

Automation Explorer (MAX).

• Provide a refnum you can wire to a property node to read information for the interface.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-158 ni.com

Interface:Output Stream List

Data Type Direction Required? Default

Read/Write No Empty Array

Property Class

XNET Session

Short Name

Intf.OutStrmList

Description

Note Only CAN and LIN interfaces currently support this property.

The Output Stream List property provides a list of frames for use with the replay feature

(Interface:Output Stream Timing property set to Replay Exclusive or Replay Inclusive). In

Replay Exclusive mode, the hardware transmits only frames that do not appear in the list. In

Replay Inclusive mode, the hardware transmits only frames that appear in the list. For a LIN

interface, the header of each frame written to stream output is transmitted, and the Exclusive

or Inclusive mode controls the response transmission. Using these modes, you can either

emulate an ECU (Replay Inclusive, where the list contains the frames the ECU transmits) or

test an ECU (Replay Exclusive, where the list contains the frames the ECU transmits), or

some other combination.

This property’s data type is an array of XNET Frame from a database. When you are using a

database file such as CANdb or FIBEX, each XNET frame uses the string name. If you are

not using a database file or prefer to specify the frames using CAN arbitration IDs or LIN

unprotected IDs, you can use Interface:Output Stream List By ID instead of this property.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-159 NI-XNET Hardware and Software Manual

Interface:Output Stream List By ID

Data Type Direction Required? Default

Read/Write No Empty Array

Property Class

XNET Session

Short Name

Intf.OutStrmListById

Description

Note Only CAN and LIN interfaces currently support this property.

The Output Stream List By ID property provides a list of frames for use with the replay

feature (Interface:Output Stream Timing property set to Replay Exclusive or Replay

Inclusive).

This property serves the same purpose as Interface:Output Stream List, in that it provides a

list of frames for replay filtering. This property provides an alternate format for you to specify

the frames by their CAN arbitration ID or LIN unprotected ID. The property’s data type is an

array of unsigned 32-bit integer (u32). Each integer represents a CAN or LIN frame’s

identifier, using the same encoding as the Raw Frame Format.

Within each CAN frame ID value, bit 29 (hex 20000000) indicates the CAN identifier format

(set for extended, clear for standard). If bit 29 is clear, the lower 11 bits (0–10) contain the

CAN frame identifier. If bit 29 is set, the lower 29 bits (0–28) contain the CAN frame

identifier. LIN frame ID values may be within the range of possible LIN IDs (0–63).

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-160 ni.com

Interface:Output Stream Timing

Data Type Direction Required? Default

Read/Write No Immediate

Property Class

XNET Session

Short Name

Intf.OutStrmTimng

Description

Note Only CAN and LIN interfaces currently support this property.

The Output Stream Timing property configures how the hardware transmits frames queued

using a Frame Output Stream session. The following table lists the accepted values:

When you configure this property to be Immediate, frames are dequeued from the queue and

transmitted immediately to the bus. The hardware transmits all frames in the queue as fast as

possible.

When you configure this property as Replay Exclusive or Replay Inclusive, the hardware is

placed into a Replay mode. In this mode, the hardware evaluates the frame timestamps and

attempts to maintain the original transmission times as the timestamp stored in the frame

indicates. The actual transmission time is based on the relative time difference between the

first dequeued frame and the time contained in the dequeued frame.

When in one of the replay modes, you can use the Interface:Output Stream List property to

supply a list. In Replay Exclusive mode, the hardware transmits only frames that do not

appear in the list. In Replay Inclusive mode, the hardware transmits only frames that appear

in the list. Using these modes, you can either emulate an ECU (Replay Inclusive, where the

list contains the frames the ECU transmits) or test an ECU (Replay Exclusive, where the list

contains the frames the ECU transmits), or some other combination. You can replay all frames

by using Replay Exclusive mode without setting any list.

Enumeration Value

Immediate 0

Replay Exclusive 1

Replay Inclusive 2

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-161 NI-XNET Hardware and Software Manual

Runtime Behavior

When the hardware is in a replay mode, the first frame received from the application is

considered the start time, and all subsequent frames are transmitted at the appropriate delta

from the start time. For example, if the first frame has a timestamp of 12:01.123, and the

second frame has a timestamp of 12:01.456, the second frame is transmitted 333 ms after the

first frame.

If a frame’s time is identical or goes backwards relative to the first timestamp, this is treated

as a new start time, and the frame is transmitted immediately on the bus. Subsequent frames

are compared to this new start time to determine the transmission time. For example, assume

that the application sends the hardware four frames with the following timestamps:

12:01.123, 12:01.456, 12:01.100, and 12:02.100. In this scenario, the first frame transmits

immediately, the second frame transmits 333 ms after the first, the third transmits

immediately after the second, and the fourth transmits one second after the third. Using this

behavior, you can replay a logfile of frames repeatedly, and each new replay of the file begins

with new timing.

A frame whose timestamp goes backwards relative to the previous timestamp, but still is

forward relative to the start time, is transmitted immediately. For example, assume that the

application sends the hardware four frames with the following timestamps: 12:01.123,

12:01.456, 12:01.400, and 12:02.100. In this scenario, the first frame transmits immediately,

the second frame transmits 333 ms after the first, the third transmits immediately after the

second, and the fourth transmits 544 ms after the third.

When a frame with a Delay Frame frame type is received, the hardware delays for the

requested time. The next frame to be dequeued is treated as a new first frame and transmitted

immediately. You can use a Delay Frame with a time of 0 to restart time quickly. If you replay

a logfile of frames repeatedly, you can insert a Delay Frame at the start of each replay to insert

a delay between each iteration through the file.

When a frame with a Start Trigger frame type is received, the hardware treats this frame as a

new first frame and uses the absolute time associated with this frame as the new start time.

Subsequent frames are compared to this new start time to determine the transmission time.

Using a Start Trigger is especially useful when synchronizing with data acquisition products,

so that you can replay the first frame at the correct time relative to the start trigger for accurate

synchronized replay.

Special Considerations for LIN

Only LIN interface as Master supports stream output. You do not need to set the interface

explicitly to Master if you want to use stream output. Just create a stream output session, and

the driver automatically sets the interface to Master at interface start.

You can use immediate mode to transmit a header or full frame. You can transmit only the

header for a frame by writing the frame to stream output with the desired ID and an empty

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-162 ni.com

data payload. You can transmit a full frame by writing the frame to stream output with the

desired ID and data payload. If you write a full frame for ID n to stream output, and you have

created a frame output session for frame with ID n, the stream output data takes priority (the

stream output frame data is transmitted and not the frame output data). If you write a full

frame to stream output, but the frame has not been defined in the database, the frame transmits

with Enhanced checksum. To control the checksum type transmitted for a frame, you first

must create the frame in the database and assign it to an ECU using the LIN specification you

desire (the specification number determines the checksum type). You then must create a frame

output object to transmit the response for the frame, and use stream output to transmit the

header. Similarly, to transmit n corrupted checksums for a frame, you first must create a frame

object in the database, create a frame output session for it, set the transmit n corrupted

checksums property, and then use stream output to transmit the header.

Regarding event-triggered frame handling for immediate mode, if the hardware can determine

that an ID is for an event-triggered frame, which means an event-triggered frame has been

defined for the ID in the database, the frame is processed as if it were in an event-triggered

slot in a schedule. If you write a full frame with event-triggered ID, the full frame is

transmitted. If there is no collision, the next stream output frame is processed. If there is a

collision, the hardware executes the collision-resolving schedule. The hardware retransmits

the frame response at the corresponding slot time in the collision resolving schedule. If you

write a header frame with an event-triggered ID and there is no collision, the next stream

output frame is processed. If there is a collision, the hardware executes the collision-resolving

schedule.

You can mix use of the hardware scheduler and stream output immediate mode. Basically, the

hardware treats each stream output frame as a separate run-once schedule containing a single

slot for the frame. Transmission of a stream output frame may interrupt a run-continuous

schedule, but may not interrupt a run-once schedule. Transmission of stream output frames is

interleaved with run-continuous schedule slot executions, depending on the application

timing of writes to stream output. Stream output is prioritized to the equivalent of the lowest

priority level for a run-once schedule. If you write one or more run-once schedules with

higher-than-lowest priority and write frames to stream output, all the run-once schedules are

executed before stream output transmits anything. If you write one or more run-once

schedules with the lowest priority and write frames to stream output, the run-once schedules

execute in the order you wrote them, and are interleaved with stream output frames,

depending on the application timing of writes to stream output and writes of run-once

schedule changes.

In contrast to the immediate mode, neither replay mode allows for the concurrent use of the

hardware scheduler, and an error is reported if you attempt to do so. Event-triggered frame

handling is different for the replay modes. If the hardware can determine that an ID is for an

event-triggered frame, which means an event-triggered frame has been defined for the ID in

the database, the frame is transmitted as if it were being transmitted during the

collision-resolving schedule for the event triggered frame. The full frame is transmitted with

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-163 NI-XNET Hardware and Software Manual

the Data[0] value (the underlying unconditional frame ID), copied into the header ID. If a

frame cannot be found in the database, it is transmitted with Enhanced checksum. Otherwise,

it is transmitted with the checksum type defined in the database.

The reply modes provide an easy means to replay headers only, full frames only, or some mix

of the two. For either replay mode, the header for each frame is always transmitted and the

slot delay is preserved. For replay inclusive, if you want only to replay headers, leave the

Interface:Output Stream List property empty. To replay some of the responses, add their

frames to Interface:Output Stream List. For frames that are not in Interface:Output Stream

List, you are free to create frame output objects for them, for which you can change the

checksum type or transmit corrupted checksums.

There is another consideration for the replay of diagnostic slave response frames. Because the

master always transmits only the diagnostic slave response header, and a slave transmits the

response if its NAD matches the one transmitted in the preceding master request frame, an

array of frames for replay might include multiple slave response frames (each having the same

slave response header ID) transmitted by different slaves (each having a different NAD value

in the data payload). If you are using inclusive mode, you can choose not to replay any slave

response frames by not including the slave response frame in Interface:Output Stream List.

You can choose to replay some or all of the slave response frames by first including the slave

response frame in Interface:Output Stream List, then including the NAD values for the slave

responses you want to play back, in Interface:LIN:Output Stream Slave Response List By

NAD. In this way, you have complete control over which slave responses are replayed (which

diagnostic slaves you emulate). Replay of a diagnostic master request frame is handled like

replay of any other frame; the header is always transmitted. Using the inclusive mode as an

example, the response may or may not be transmitted depending on whether or not the master

request frame is in Interface:Output Stream List.

Restrictions on Other Sessions

When you use Immediate mode, there are no restrictions on frames that you use in other

sessions.

When you use Replay Inclusive mode, you can create output sessions that use frames that do

not appear in the Interface:Output Stream List property. Attempting to create an output

session that uses a frame from the Interface:Output Stream List property results in an error.

Input sessions have no restrictions.

When you use Replay Exclusive mode, you cannot create any other output sessions.

Attempting to create an output session returns an error. Input sessions have no restrictions.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-164 ni.com

Interface:Start Trigger Frames to Input Stream?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.StartTrigToInStrm?

Description

The Start Trigger Frames to Input Stream? property configures the hardware to place a start

trigger frame into the Stream Input queue after it is generated. A Start Trigger frame is

generated when the interface is started. The interface start process is described in Interface

Transitions. For more information about the start trigger frame, refer to Special Frames.

The start trigger frame is especially useful if you plan to log and replay CAN data.

Interface:Bus Error Frames to Input Stream?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

Intf.BusErrToInStrm?

Description

Note Only CAN and LIN interfaces currently support this property.

The Bus Error Frames to Input Stream? property configures the hardware to place a CAN or

LIN bus error frame into the Stream Input queue after it is generated. A bus error frame is

generated when the hardware detects a bus error. For more information about the bus error

frame, refer to Special Frames.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-165 NI-XNET Hardware and Software Manual

Session:Application Protocol

Data Type Direction Required? Default

Read Only N/A None

Property Class

XNET Session

Short Name

ApplProtocol

Description

This property returns the application protocol that the session uses.

The database used with XNET Create Session.vi determines the application protocol.

The values (enumeration) for this property are:

0 None

1 J1939

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-166 ni.com

SAE J1939:ECU

Data Type Direction Required? Default

Write Only No Unassigned

Property Class

XNET Session

Short Name

J1939.ECU

Description

Note This property applies to only the CAN J1939 application protocol.

This property assigns a database ECU to a J1939 session. Setting this property changes the

node address and J1939 64-bit ECU name of the session to the values stored in the database

ECU object. Changing the node address starts an address claiming procedure, as described in

the SAE J1939:Node Address property.

You can assign the same ECU to multiple sessions running on the same CAN interface (for

example, CAN1). All sessions with the same assigned ECU represent one J1939 node.

If multiple sessions have been assigned the same ECU, setting the SAE J1939:Node Address

property in one session changes the address in all sessions with the same assigned ECU

running on the same CAN interface.

For more information, refer to the SAE J1939:Node Address property.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-167 NI-XNET Hardware and Software Manual

SAE J1939:ECU Busy

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Session

Short Name

J1939.Busy

Description

Note This property applies to only the CAN J1939 application protocol.

Busy is a special ECU state defined in the SAE J1939 standard. A busy ECU receives

subsequent RTS messages while handling a previous RTS/CTS communication.

If the ECU cannot respond immediately to an RTS request, the ECU may send CTS Hold

messages. In this case, the originator receives information about the busy state and waits until

the ECU leaves the busy state. (That is, the ECU no longer sends CTS Hold messages and

sends the first CTS message with the requested data.)

Use the ECU Busy property to simulate this ECU behavior. If a busy XNET ECU receives a

CTS message, it sends CTS Hold messages instead of CTS data messages immediately.

Afterward, if clearing the busy property, the XNET ECU resumes handling the transport

protocol starting with CTS data messages, as the originator expects.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-168 ni.com

SAE J1939:Hold Time Th

Data Type Direction Required? Default

Read/Write No 0.5 s

Property Class

XNET Session

Short Name

J1939.HoldTimeTh

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the Hold Time Timeout value at the responder node. The value is the

maximum time between a TP.CM_CTS hold message and the next TP.CM_CTS message, in

seconds.

This property is related to handling the transport protocol.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-169 NI-XNET Hardware and Software Manual

SAE J1939:Maximum Repeat CTS

Data Type Direction Required? Default

Read/Write No 2

Property Class

XNET Session

Short Name

J1939.MAXReptCTS

Description

Note This property applies to only the CAN J1939 application protocol.

This property limits the number of requests for retransmission of data packet(s) using the

TP.CM_CTS message.

This property is related to handling the transport protocol.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-170 ni.com

SAE J1939:Node Address

Data Type Direction Required? Default

Read/Write No Null (254)

Property Class

XNET Session

Short Name

J1939.Address

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the node address of a J1939 session by starting an address claiming

procedure. After setting this property to a valid value (253), reading the property returns the

null address (254) until the address is granted. Poll the property and wait until the address gets

to a valid value again before starting to write. Refer to the NI-XNET examples that

demonstrate this procedure.

The node address value determines the source address in a transmitting session or a

destination address in a receiving session. The source address in the extended frame identifier

is overwritten with the node address of the session before transmitting.

A session with a null (254) or global address (255) receives all messages sent on the bus, but

cannot transmit messages. A session with an assigned address of less than 254 receives only

messages sent to this address or global messages, but not messages sent to other nodes. This

session also can transmit messages.

In NI-XNET, you can assign the same J1939 node address to multiple sessions running on the

same interface (for example, CAN1). Those sessions represent one J1939 node. By assigning

different J1939 node addresses to multiple sessions running on the same interface, you also

can create multiple nodes on the same interface.

If a J1939 ECU is assigned to multiple sessions, changing the address in one session also

changes the address in all other sessions with the same assigned ECU.

For more information, refer to the SAE J1939:ECU property.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-171 NI-XNET Hardware and Software Manual

SAE J1939:NodeName

Data Type Direction Required? Default

Read/Write Yes 0

Property Class

XNET Session

Short Name

J1939.NodeName

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the name value of a J1939 session. The name is an unsigned 64-bit

integer value. Beside the SAE J1939:Node Address property, the value is specific to the ECU

you want to emulate using the session. That means the session can act as if it were the

real-world ECU, using the identical address and name value.

The name value is used within the address claiming procedure. If the ECU (session) wants to

claim its address, it sends out an address claiming message. That message contains the ECU

address and the name value of the current session’s ECU. If there is another ECU within the

network with an identical address but lower name value, the current session loses its address.

In this case, the session cannot send out further messages, and all addressed messages using

the previous address of the current session are addressed to another ECU within the network.

The most significant bit (bit 63) in the Node Name defines the ECU’s arbitrary address

capability (bit 63 = 1 means it is arbitrary address capable). If the node cannot use the

assigned address, it automatically tries to claim another random value between 128 and 247

until it is successful.

If multiple sessions are assigned the same ECU, setting the SAE J1939.NodeName property

in one session changes the address in all sessions with the same assigned ECU running on the

same CAN interface.

The name value has multiple bit fields, as described in SAE J1939-81 (Network

Management). A single 64-bit value represents the name value within XNET.

For more information, refer to the SAE J1939:Node Address property.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-172 ni.com

SAE J1939:Number of Packets Received

Data Type Direction Required? Default

Read/Write No 255

Property Class

XNET Session

Short Name

J1939.NumPktsRecv

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the maximum number of data packet(s) that can be received in one

block at the responder node.

This property is related to handling the transport protocol.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-173 NI-XNET Hardware and Software Manual

SAE J1939:Number of Packets Response

Data Type Direction Required? Default

Read/Write No 255

Property Class

XNET Session

Short Name

J1939.NumPktsResp

Description

Note This property applies to only the CAN J1939 application protocol.

This property limits the maximum number of packets in a response. This allows the originator

node to limit the number of packets in the TP.CM_CTS message. When the responder

complies with this limit, it ensures the sender always can retransmit packets that the responder

may not have received.

This property is related to handling the transport protocol.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-174 ni.com

SAE J1939:Response Time Tr_GD

Data Type Direction Required? Default

Read/Write No 0.05 s

Property Class

XNET Session

Short Name

J1939.RespTimeTrGD

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the Device Response Time for global destination messages

(TP.CM_BAM messages). The value is the maximum delay between sending two

TP.CM_BAM messages, in seconds. The recommended range is 0.05–200 s.

This property is related to handling the transport protocol.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-175 NI-XNET Hardware and Software Manual

SAE J1939:Response Time Tr_SD

Data Type Direction Required? Default

Read/Write No 0.05 s

Property Class

XNET Session

Short Name

J1939.RespTimeTrSD

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the Device Response Time value for specific destination messages

(TP.CM_RTS/CTS messages). The value is the maximum time between receiving a message

and sending the response message, in seconds. The recommended range is 0.05–0.200 s.

This property is related to handling the transport protocol.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-176 ni.com

SAE J1939:Timeout T1

Data Type Direction Required? Default

Read/Write No 0.75 s

Property Class

XNET Session

Short Name

J1939.TimeoutT1

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T1 value for the responder node. The value is the maximum

gap between two received TP.DT messages in seconds.

This property is related to handling the transport protocol.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-177 NI-XNET Hardware and Software Manual

SAE J1939:Timeout T2

Data Type Direction Required? Default

Read/Write No 1.25 s

Property Class

XNET Session

Short Name

J1939.TimeoutT2

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T2 value at the responder node. This value is the maximum

gap between sending out the TP.CM_CTS message and receiving the next TP.DT message, in

seconds.

This property is related to handling the transport protocol.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

NI-XNET Hardware and Software Manual 4-178 ni.com

SAE J1939:Timeout T3

Data Type Direction Required? Default

Read/Write No 1.25 s

Property Class

XNET Session

Short Name

J1939.TimeoutT3

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T3 value at the originator node. This value is the maximum

gap between sending out a TP.CM_RTS message or the last TP.DT message and receiving the

TP.CM_CTS response, in seconds.

This property is related to handling the transport protocol.

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

© National Instruments 4-179 NI-XNET Hardware and Software Manual

SAE J1939:Timeout T4

Data Type Direction Required? Default

Read/Write No 1.05 s

Property Class

XNET Session

Short Name

J1939.TimeoutT4

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T4 value at the originator node. This value is the maximum

gap between the TP.CM_CTS hold message and the next TP.CM_CTS message, in seconds.

This property is related to handling the transport protocol.

Chapter 4 NI-XNET API for LabVIEW—Frame Properties

NI-XNET Hardware and Software Manual 4-180 ni.com

Frame Properties

This section includes the frame-specific properties in the session property node.

CAN Frame Properties

This category includes CAN-specific frame properties.

Frame:CAN:Start Time Offset

Data Type Direction Required? Default

Write Only No –1

Property Class

XNET Session

Short Name

Frm.CAN.StartTimeOff

Description

Use this property to configure the amount of time that must elapse between the session being

started and the time that the first frame is transmitted across the bus. This is different than the

cyclic rate, which determines the time between subsequent frame transmissions.

Use this property to have more control over the schedule of frames on the bus, to offer more

determinism by configuring cyclic frames to be spaced evenly.

If you do not set this property or you set it to a negative number, NI-XNET chooses this start

time offset based on the arbitration identifier and periodic transmit time.

This property takes effect whenever a session is started. If you stop a session and restart it, the

start time offset is re-evaluated.

Note This property affects the active frame object in the session. Review the

Frame:Active property to learn more about setting a property on an active frame.

Chapter 4 NI-XNET API for LabVIEW—Frame Properties

© National Instruments 4-181 NI-XNET Hardware and Software Manual

Frame:CAN:Transmit Time

Data Type Direction Required? Default

Write Only No From Database

Property Class

XNET Session

Short Name

Frm.CAN.TxTime

Description

Use this property to change the frame’s transmit time while the session is running. The

transmit time is the amount of time that must elapse between subsequent transmissions of a

cyclic frame. The default value of this property comes from the database (the XNET Frame

CAN:Transmit Time property).

If you set this property while a frame object is currently started, the frame object is stopped,

the cyclic rate updated, and then the frame object is restarted. Because of the stopping and

starting, the frame’s start time offset is re-evaluated.

Note This property affects the active frame object in the session. Review the

Frame:Active property to learn more about setting property on an active frame.

Note The first time a queued frame object is started, the XNET frame’s transmit time

determines the object’s default queue size. Changing this rate has no impact on the queue

size. Depending on how you change the rate, the queue may not be sufficient to store data

for an extended period of time. You can mitigate this by setting the session Queue Size

property to provide sufficient storage for all rates you use. If you are using a single-point

session, this is not relevant.

Chapter 4 NI-XNET API for LabVIEW—Frame Properties

NI-XNET Hardware and Software Manual 4-182 ni.com

Frame:Active

Data Type Direction Required? Default

Write Only No 0

Property Class

XNET Session

Short Name

Frm.Active

Description

This property provides access to properties for a specific frame running within the session.

Writing this property sets the active frame for subsequent properties in the Frame category.

The string syntax supports the following options:

• Decimal number: This is interpreted as the index of the signal or frame in the session’s

list. If the session is signal I/O, subsequent frame properties change the signal’s parent

frame.

• XNET Frame: If the session is frame I/O, you can wire a frame name from the session’s

List of Frames property.

• XNET Signal: If the session is signal I/O, you can wire a signal name from the session’s

List of Signals property. Subsequent frame properties change the signal’s parent frame.

If the session is Frame Stream Input or Frame Stream Output, this property has no effect,

because stream I/O sessions do not use specific frames.

The default value of this property is 0, the first frame or signal in the session’s list. If the empty

string is wired to this property, this is converted to 0 internally.

Chapter 4 NI-XNET API for LabVIEW—Frame Properties

© National Instruments 4-183 NI-XNET Hardware and Software Manual

Frame:LIN:Transmit N Corrupted Checksums

Data Type Direction Required? Default

Write Only No 0

Property Class

XNET Session

Short Name

Frm.LIN.TxNCrptChks

Description

When set to a nonzero value, this property causes the next N number of checksums to be

corrupted. The checksum is corrupted by negating the value calculated per the database;

(EnhancedValue * –1) or (ClassicValue * –1). This property is valid only for output

sessions. If the frame is transmitted in an unconditional or sporadic schedule slot, N is always

decremented for each frame transmission. If the frame is transmitted in an event-triggered slot

and a collision occurs, N is not decremented. In that case, N is decremented only when the

collision resolving schedule is executed and the frame is successfully transmitted. If the frame

is the only one to transmit in the event-triggered slot (no collision), N is decremented at

event-triggered slot time.

This property is useful for testing ECU behavior when a corrupted checksum is transmitted.

Note This property affects the active frame object in the session. Review the

Frame:Active property to learn more about setting a property on an active frame.

Chapter 4 NI-XNET API for LabVIEW—Frame Properties

NI-XNET Hardware and Software Manual 4-184 ni.com

Frame:Skip N Cyclic Frames

Data Type Direction Required? Default

Write Only No 0

Property Class

XNET Session

Short Name

Frm.SkipNCyclic

Description

Note This property is currently supported by CAN interfaces only.

When set to a nonzero value, this property causes the next N cyclic frames to be skipped.

When the frame’s transmission time arrives and the skip count is nonzero, a frame value is

dequeued (if this is not a single-point session), and the skip count is decremented, but the

frame actually is not transmitted across the bus. When the skip count decrements to zero,

subsequent cyclic transmissions resume. This property is valid only for output sessions and

frames with cyclic timing (that is, not event-based frames).

This property is useful for testing of ECU behavior when a cyclic frame is expected, but is

missing for N cycles.

Note This property affects the active frame object in the session. Review the

Frame:Active property to learn more about setting a property on an active frame.

Chapter 4 NI-XNET API for LabVIEW—Auto Start?

© National Instruments 4-185 NI-XNET Hardware and Software Manual

Auto Start?

Data Type Direction Required? Default

Read/Write No True

Property Class

XNET Session

Short Name

AutoStart?

Description

Automatically starts the output session on the first call to XNET Write.vi.

For input sessions, start always is performed within the first call to XNET Read.vi (if not

already started using XNET Start.vi). This is done because there is no known use case for

reading a stopped input session.

For output sessions, as long as the first call to XNET Write.vi contains valid data, you can

leave this property at its default value of true. If you need to call XNET Write.vi multiple

times prior to starting the session, or if you are starting multiple sessions simultaneously, you

can set this property to false. After calling XNET Write.vi as desired, you can call XNET

Start.vi to start the session(s).

When automatic start is performed, it is equivalent to XNET Start.vi with scope set to

Normal. This starts the session itself, and if the interface is not already started, it starts the

interface also.

Chapter 4 NI-XNET API for LabVIEW—Cluster

NI-XNET Hardware and Software Manual 4-186 ni.com

Cluster

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

Cluster

Description

This property returns the cluster (network) used with XNET Create Session.vi.

Use this property on the block diagram as follows:

• As a refnum wired to a property node to access information for the cluster and its objects

(frames, signals, etc.).

• As a string containing the cluster name. This name typically is the database alias

followed by the cluster name.

Chapter 4 NI-XNET API for LabVIEW—Database

© National Instruments 4-187 NI-XNET Hardware and Software Manual

Database

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

Database

Description

This property returns the database used with XNET Create Session.vi.

Use this property on the block diagram as follows:

• As a refnum wired to a property node to access information for the database and its

objects (frames, signals, etc.).

• As a string containing the database name. This name is typically a database alias, but it

also can be a complete file path.

Chapter 4 NI-XNET API for LabVIEW—List of Frames

NI-XNET Hardware and Software Manual 4-188 ni.com

List of Frames

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

ListFrms

Description

This property returns the list of frames in the session.

This property is valid only for sessions of Frame Input or Frame Output mode. For a Signal

Input/Output session, use the List of Signals property.

Use each array element on the block diagram as follows:

• As a refnum wired to a property node to access information for the frame.

• As a string containing the frame name. The name is the one used to create the session.

Chapter 4 NI-XNET API for LabVIEW—List of Signals

© National Instruments 4-189 NI-XNET Hardware and Software Manual

List of Signals

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

ListSigs

Description

This property returns the list of signals in the session.

This property is valid only for sessions of Signal Input or Signal Output mode. For a Frame

Input/Output session, use the List of Frames property.

Use each array element on the block diagram as follows:

• As a refnum wired to a property node to access information for the signal.

• As a string containing the signal name. The name is the one used to create the session.

Chapter 4 NI-XNET API for LabVIEW—Mode

NI-XNET Hardware and Software Manual 4-190 ni.com

Mode

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

Mode

Description

This property returns the session mode (ring). You provided this mode when you created the

session. For more information, refer to Session Modes.

Number in List

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

NumInList

Description

This property returns the number of frames or signals in the session’s list. This is a quick way

to get the size of the List of Frames or List of Signals property.

Chapter 4 NI-XNET API for LabVIEW—Number of Values Pending

© National Instruments 4-191 NI-XNET Hardware and Software Manual

Number of Values Pending

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

NumPend

Description

This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available to XNET Read.vi. If

you call XNET Read.vi with number to read of this number and timeout of 0.0, XNET

Read.vi should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided to XNET Write.vi

but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames.

In these cases, this property assumes the largest possible frame size. If you use smaller

frames, the real number of pending values might be higher.

The largest possible frames sizes are:

• CAN FD: 64 byte payload.

• FlexRay: The higher value of the frame size in the static segment and the maximum

frame size in the dynamic segment. The XNET Cluster FlexRay:Payload Length

Maximum property provides this value.

The execution time to read this property is sufficient for use in a high-priority loop on

LabVIEW Real-Time (RT) (refer to High Priority Loops for more information).

Chapter 4 NI-XNET API for LabVIEW—Number of Values Unused

NI-XNET Hardware and Software Manual 4-192 ni.com

Number of Values Unused

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

NumUnused

Description

This property returns the number of values (frames or signals) unused for the session. If you

get this property prior to starting the session, it provides the size of the underlying queue(s).

Contrary to the Queue Size property, this value is in number of frames for Frame I/O, not

number of bytes; for Signal I/O, it is the number of signal values in both cases. After start,

this property returns the queue size minus the Number of Values Pending property.

For input sessions, this is the number of frame/signal values unused in the underlying

queue(s).

For output sessions, this is the number of frame/signal values you can provide to a subsequent

call to XNET Write.vi. If you call XNET Write.vi with this number of values and timeout

of 0.0, XNET Write.vi should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames.

In these cases, this property assumes the largest possible frame size. If you use smaller

frames, the real number of pending values might be higher.

The largest possible frames sizes are:

• CAN FD: 64 byte payload.

• FlexRay: The higher value of the frame size in the static segment and the maximum

frame size in the dynamic segment. The XNET Cluster FlexRay:Payload Length

Maximum property provides this value.

The execution time to read this property is sufficient for use in a high-priority loop on

LabVIEW Real-Time (RT) (refer to High Priority Loops for more information).

Chapter 4 NI-XNET API for LabVIEW—Payload Length Maximum

© National Instruments 4-193 NI-XNET Hardware and Software Manual

Payload Length Maximum

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

PayldLenMax

Description

This property returns the maximum payload length of all frames in this session, expressed as

bytes (0–254).

This property does not apply to Signal sessions (only Frame sessions).

For CAN Stream (Input and Output), this property depends on the XNET Cluster CAN:I/O

Mode property. If the I/O mode is CAN, this property is 8 bytes. If the I/O mode is CAN FD

or CAN FD + BRS, this property is 64 bytes.

For LIN Stream (Input and Output), this property always is 8 bytes. For FlexRay Stream

(Input and Output), this property is the same as the XNET Cluster FlexRay:Payload Length

Maximum property value. For Queued and Single-Point (Input and Output), this is the

maximum payload of all frames specified in the List of Frames property.

Chapter 4 NI-XNET API for LabVIEW—Protocol

NI-XNET Hardware and Software Manual 4-194 ni.com

Protocol

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

Protocol

Description

This property returns the protocol that the interface in the session uses.

The values (enumeration) for this property are:

0 CAN

1 FlexRay

2 LIN

Chapter 4 NI-XNET API for LabVIEW—Queue Size

© National Instruments 4-195 NI-XNET Hardware and Software Manual

Queue Size

Data Type Direction Required? Default

Read/Write No Refer to Description

Property Class

XNET Session

Short Name

QueueSize

Description

For output sessions, queues store data passed to XNET Write.vi and not yet transmitted onto

the network. For input sessions, queues store data received from the network and not yet

obtained using XNET Read.vi.

For most applications, the default queue sizes are sufficient. You can write to this property to

override the default. When you write (set) this property, you must do so prior to the first

session start. You cannot set this property again after calling XNET Stop.vi.

For signal I/O sessions, this property is the number of signal values stored. This is analogous

to the number of values you use with XNET Read.vi or XNET Write.vi.

For frame I/O sessions, this property is the number of bytes of frame data stored.

For standard CAN and LIN frame I/O sessions, each frame uses exactly 24 bytes. You can use

this number to convert the Queue Size (in bytes) to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can vary depending on

the payload length. For more information, refer to Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame. Within the

implementation, each frame uses a dedicated queue. According to the formulas below, the

default queue sizes can be different for each frame. If you read the default Queue Size

property for a Signal Input XY session, the largest queue size is returned, so that a call to

XNET Read.vi of that size can empty all queues. If you read the default Queue Size property

for a Signal Output XY session, the smallest queue size is returned, so that a call to XNET

Write.vi of that size can succeed when all queues are empty. If you write the Queue Size

property for a Signal I/O XY session, that size is used for all frames, so you must ensure that

it is sufficient for the frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one frame. Within the

implementation, each frame uses a dedicated queue. The Queue Size property does not

Chapter 4 NI-XNET API for LabVIEW—Queue Size

NI-XNET Hardware and Software Manual 4-196 ni.com

represent the memory in these queues, but rather the amount of time stored. The default queue

allocations store Application Time worth of resampled signal values. If you read the default

Queue Size property for a Signal I/O Waveform session, it returns Application Time

multiplied by the time Resample Rate. If you write the Queue Size property for a Signal I/O

Waveform session, that value is translated from a number of samples to a time, and that time

is used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored. Single-Point sessions

always use a value of 1 as the effective queue size.

Default Value

You calculate the default queue size based on the following assumptions:

• Application Time: The time between calls to XNET Read.vi/XNET Write.vi in your

application.

• Frame Time: The time between frames on the network for this session.

The following pseudo code describes the default queue size formula:

if (session is Signal I/O Waveform)

Queue_Size = (Application_Time * Resample_Rate);

else

Queue_Size = (Application_Time / Frame_Time);

if (Queue_Size < 64)

Queue_Size = 64;

if (session mode is Frame I/O)

Queue_Size = Queue_Size * Frame_Size;

For Signal I/O Waveform sessions, the initial formula calculates the number of resampled

values that occur within the Application Time. This is done by multiplying Application Time

by the XNET Session Resample Rate property.

For all other session modes, the initial formula divides Application Time by Frame Time.

The minimum for this formula is 64. This minimum ensures that you can read or write at least

64 elements. If you need to read or write more elements for a slow frame, you can set the

Queue Size property to a larger number than the default. If you set a large Queue Size, this

may limit the maximum number of frames you can use in all sessions.

For Frame I/O sessions, this formula result is multiplied by each frame value size to obtain a

queue size in bytes.

For Signal I/O sessions, this formula result is used directly for the queue size property to

provide the number of signal values for XNET Read.vi or XNET Write.vi. Within the Signal

I/O session, the memory allocated for the queue incorporates frame sizes, because the signal

values are mapped to/from frame values internally.

Chapter 4 NI-XNET API for LabVIEW—Queue Size

© National Instruments 4-197 NI-XNET Hardware and Software Manual

Application Time

The LabVIEW target in which your application runs determines the Application Time:

• Windows: 400 ms (0.4 s)

• LabVIEW Real-Time (RT): 100 ms (0.1 s)

This works under the assumption that for Windows, more memory is available for input

queues, and you have limited control over the application timing. LabVIEW RT targets

typically have less available memory, but your application has better control over application

timing.

Frame Time

Frame Time is calculated differently for Frame I/O Stream sessions compared to other modes.

For Frame I/O Stream, you access all frames in the network (cluster), so the Frame Time is

related to the average bus load on your network. For other modes, you access specific frames

only, so the Frame Time is obtained from database properties for those frames.

The Frame Time used for the default varies by session mode and protocol, as described below.

CAN, Frame I/O Stream

Frame Time is 100 s (0.0001 s).

This time assumes a baud rate of 1 Mbps, with frames back to back (100 percent busload).

For CAN sessions created for a standard CAN bus, the Frame Size is 24 bytes. For CAN

sessions created for a CAN FD Bus (the cluster I/O mode is CAN FD or CAN FD+BRS), the

frame size can vary up to 64 bytes. However, the default queue size is based on the 24-byte

frame time. When connecting to a CAN FD bus, you may need to adjust this size as necessary.

When you create an application to stress test NI-XNET performance, it is possible to generate

CAN frames faster than 100 s. For this application, you must set the queue size to larger than

the default.

FlexRay, Frame I/O Stream

Frame Time is 20 s (0.00002 s).

This time assumes a baud rate of 10 Mbps, with a cycle containing static slots only

(no minislots or NIT), and frames on channel A only.

Small frames at a fast rate require a larger queue size than large frames at a slow rate.

Therefore, this default assumes static slots with 4 bytes, for a Frame Size of 24 bytes.

Chapter 4 NI-XNET API for LabVIEW—Queue Size

NI-XNET Hardware and Software Manual 4-198 ni.com

When you create an application to stress test NI-XNET performance, it is possible to generate

FlexRay frames faster than 20 s. For this application, you must set the queue size to larger

than the default.

LIN, Frame I/O Stream

Frame Time is 2 ms (0.002 s).

This time assumes a baud rate of 20 kbps, with 1 byte frames back to back (100 percent

busload).

For all LIN sessions, Frame Size is 24 bytes.

CAN, Other Modes

For Frame I/O Queued, Signal I/O XY, and Signal I/O Waveform, the Frame Time is different

for each frame in the session (or frame within which signals are contained).

For CAN frames, Frame Time is the frame property CAN:Transmit Time, which specifies the

time between successive frames (in floating-point seconds).

If the frame’s CAN Transmit Time is 0, this implies the possibility of back-to-back frames on

the network. Nevertheless, this back-to-back traffic typically occurs in bursts, and the average

rate over a long period of time is relatively slow. To keep the default queue size to a reasonable

value, when CAN Transmit Time is 0, the formula uses a Frame Time of 50 ms (0.05 s).

For CAN sessions using a standard CAN cluster, the frame size is 24 bytes. For CAN sessions

using a CAN FD cluster, the frame size may differ for each frame in the session. Each frame

size is obtained from its XNET Frame Payload Length property in the database.

FlexRay, Other Modes

For Frame I/O Queued, Signal I/O XY, and Signal I/O Waveform, the Frame Time is different

for each frame in the session (or frame within which signals are contained).

For FlexRay frames, Frame Time is the time between successive frames (in floating-point

seconds), calculated from cluster and frame properties. For example, if a cluster Cycle (cycle

duration) is 10000 s, and the frame Base Cycle is 0 and Cycle Repetition is 1, the frame’s

Transmit Time is 0.01 (10 ms).

For these session modes, the Frame Size is different for each frame in the session. Each Frame

Size is obtained from its XNET Frame Payload Length property in the database.

LIN, Other Modes

Chapter 4 NI-XNET API for LabVIEW—Queue Size

© National Instruments 4-199 NI-XNET Hardware and Software Manual

For LIN frames, Frame Time is a property of the schedule running in the LIN master node. It

is assumed that the Frame Time for a single frame always is larger than 8 ms, so that the

default queue size is set to 64 frames throughout.

For all LIN sessions, Frame Size is 24 bytes.

Examples

The following table lists example session configurations and the resulting default queue sizes.

Session Configuration Default Queue Size Formula

Frame Input Stream, CAN,

Windows

96000 (0.4 / 0.0001) = 4000; 4000  24 bytes

Frame Output Stream, CAN,

Windows

96000 (0.4 / 0.0001) = 4000; 4000  24 bytes;

output is always same as input

Frame Input Stream, FlexRay,

Windows

480000 (0.4 / 0.00002) = 20000;

20000  24 bytes

Frame Input Stream, CAN,

LabVIEW RT

24000 (0.1 / 0.0001) = 1000; 1000  24 bytes

Frame Input Stream, FlexRay,

LabVIEW RT

120000 (0.1 / 0.00002) = 5000; 5000  24 bytes

Frame Input Queued, CAN,

Transmit Time 0.0, Windows

1536* (0.4 / 0.05) = 8; Transmit Time 0 uses

Frame Time 50 ms; use minimum of

64 frames (64  24)

Frame Input Queued, CAN,

Transmit Time 0.0005,

Windows

19200* (0.4 / 0.0005) = 800; 800  24 bytes

Frame Input Queued, CAN,

Transmit Time 1.0 (1 s),

Windows

1536* (0.4 / 1.0) = 0.4; use minimum of

64 frames (64  24)

Frame Input Queued, FlexRay,

every 2 ms cycle, payload

length 4, Windows

4800 (0.4 / 0.002) = 200; 200  24 bytes

Frame Input Queued, FlexRay,

every 2 ms cycle, payload

length 16, LabVIEW RT

2048 (0.1 / 0.002) = 50, use minimum of 64;

payload length 16 requires 32 bytes;

64  32 bytes

Chapter 4 NI-XNET API for LabVIEW—Queue Size

NI-XNET Hardware and Software Manual 4-200 ni.com

Signal Input XY, two CAN

frames, Transmit Time 0.0 and

0.0005, Windows

64* and 800*

(read as 800)

 (0.4 / 0.05) = 8, use minimum of 64;

(0.4 / 0.0005) = 800; expressed as signal

values

Signal Output XY, two CAN

frames, Transmit Time 0.0 and

0.0005, Windows

64* and 800*

(read as 64)

(0.4 / 0.05) = 8, use minimum of 64;

(0.4 / 0.0005) = 800; expressed as signal

values

Signal Output Waveform,

two CAN frames, 1 ms and

400 ms, resample rate

1000 Hz, Windows

400* Memory allocation is 400 and 64 frames

to provide 0.4 sec of storage, queue size

represents number of samples, or

(0.4  1000.0)

Signal Output Waveform,

two CAN frames, 1 ms and

400 ms, resample rate

1000 Hz, Windows

400* Memory allocation is 400 and 64 frames

to provide 0.4 sec of storage, queue size

represents number of samples, or

(0.4  1000.0)

* For a CAN FD cluster, the default queue size is based on the frame’s database payload length, which may be larger than
24 bytes (up to 64 bytes).

Session Configuration Default Queue Size Formula

Chapter 4 NI-XNET API for LabVIEW—Resample Rate

© National Instruments 4-201 NI-XNET Hardware and Software Manual

Resample Rate

Data Type Direction Required? Default

Read/Write No 1000.0 (Sample Every Millisecond)

Property Class

XNET Session

Short Name

ResampRate

Description

Rate used to resample frame data to/from signal data in waveforms.

This property applies only when the session mode is Signal Input Waveform or Signal Output

Waveform. This property is ignored for all other modes.

The data type is 64-bit floating point (DBL). The units are in Hertz (samples per second).

Chapter 4 NI-XNET API for LabVIEW—XNET Read.vi

NI-XNET Hardware and Software Manual 4-202 ni.com

XNET Read.vi

Purpose

Reads data from the network using an XNET session.

Description

The instances of this polymorphic VI specify the type of data returned.

XNET Read.vi and XNET Write.vi are optimized for real-time performance. XNET

Read.vi executes quickly and avoids access to shared resources that can induce jitter on other

VI priorities.

There are three categories of XNET Read instance VIs:

• Signal: Use when the session mode is Signal Input. The XNET Read.vi instance must

match the mode exactly (for example, the Signal Waveform instance when mode is

Signal Input Waveform).

• Frame: Use when the session mode is Frame Input. The XNET Read.vi instance

specifies the desired data type for frames and is not related to the mode. For an

easy-to-use data type, use the CAN, FlexRay, or LIN instance.

• State: Use to read state, status, and time information for the session interface. You can

use these instances in addition to Signal or Frame instances, and they are not related to

the mode. The data these instances return is optimized for performance. Although

property nodes may return similar runtime data, those properties are not necessarily

optimized for real-time loops.

The XNET Read instance VIs are:

• XNET Read (Frame CAN).vi: The session uses a CAN interface, and the mode is

Frame Input Stream Mode, Frame Input Queued Mode, or Frame Input Single-Point

Mode.

• XNET Read (Frame FlexRay).vi: The session uses a FlexRay interface, and the mode

is Frame Input Stream Mode, Frame Input Queued Mode, Frame Input Single-Point

Mode, PDU Input Queued Mode (similar to Frame Input Queued Mode), and PDU Input

Single-Point Mode (similar to Frame Input Single-Point Mode).

• XNET Read (Frame LIN).vi: The session uses a LIN interface, and the mode is Frame

Input Stream Mode, Frame Input Queued Mode, or Frame Input Single-Point Mode

• XNET Read (Frame Raw).vi: A data type for frame input that is protocol independent

and more efficient than the protocol-specific instances.

• XNET Read (Signal Single-Point).vi: The session mode is Signal Input Single-Point.

• XNET Read (Signal Waveform).vi: The session mode is Signal Input Waveform.

• XNET Read (Signal XY).vi: The session mode is Signal Input XY.

Chapter 4 NI-XNET API for LabVIEW—XNET Read.vi

© National Instruments 4-203 NI-XNET Hardware and Software Manual

• XNET Read (State CAN Comm).vi: Returns the CAN interface’s communication state.

• XNET Read (State FlexRay Comm).vi: Returns the FlexRay interface’s

communication state.

• XNET Read (State LIN Comm).vi: Returns the LIN interface’s communication state.

• XNET Read (State FlexRay Cycle Macrotick).vi: Returns the current global time of

the session FlexRay interface, represented as cycle and macrotick.

• XNET Read (State FlexRay Statistics).vi: Returns the communication statistics for the

session FlexRay interface.

• XNET Read (State Time Comm).vi: Returns the LabVIEW timestamp at which

communication began for the session interface.

• XNET Read (State Time Current).vi: Returns the session interface current time as a

LabVIEW timestamp.

• XNET Read (State Time Start).vi: Returns the LabVIEW timestamp at which

communication started for the session interface. This time always precedes the

Communication time.

• XNET Read (State Session Info).vi: Returns the current state for the session provided.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame CAN).vi

NI-XNET Hardware and Software Manual 4-204 ni.com

XNET Read (Frame CAN).vi

Purpose

Reads data from a session as an array of CAN frames. The session must use a CAN interface

and Frame Input Stream Mode, Frame Input Queued Mode, or Frame Input Single-Point

Mode.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi. The session mode must

be Frame Input Stream, Frame Input Queued, or Frame Input Single-Point.

number to read is the number of frame values desired.

If number to read is positive (or 0), the data array size is no greater than

this number.

If number to read is negative (typically –1), all available frame values are

returned. If number to read is negative, you must use timeout of 0.

This input is optional. The default value is –1.

If the session mode is Frame Input Single-Point, set number to read to

either –1 or the number of frames in the sessions list. This ensures that the

XNET Read (Frame CAN).vi can return the current value of all session

frames.

timeout is the time to wait for number to read frame values to become

available.

The timeout is a LabVIEW relative time, represented as 64-bit

floating-point in units of seconds.

If timeout is positive, the XNET Read (Frame CAN).vi waits for number

to read frame values, then returns that number. If the values do not arrive

prior to the timeout, an error is returned.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame CAN).vi

© National Instruments 4-205 NI-XNET Hardware and Software Manual

If timeout is negative, the XNET Read (Frame CAN).vi waits indefinitely

for number to read frame values.

If timeout is zero, the XNET Read (Frame CAN).vi does not wait and

immediately returns all available frame values up to the limit number to

read specifies.

This input is optional. The default value is 0.0.

If the session mode is Frame Input Single-Point, you must leave timeout

unwired (0.0). Because this mode reads the most recent value of each

frame, timeout does not apply.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

data returns an array of LabVIEW clusters.

Each array element corresponds to a frame the session receives.

For a Frame Input Single-Point session mode, the order of frames in the

array corresponds to the order in the session list.

The elements of each cluster are specific to the CAN protocol. For more

information, refer to Appendix A, Summary of the CAN Standard, or the

CAN protocol specification.

The cluster elements are:

identifier is the CAN frame arbitration identifier.

If extended? Is false, the identifier uses standard format, so

11 bits of this identifier are valid. If extended? Is true, the

identifier uses extended format, so 29 bits of this identifier are

valid.

extended? is a Boolean value that determines whether the

identifier uses extended format (true) or standard format (false).

echo? is a Boolean value that determines whether the frame was

an echo of a successful transmit (true), or received from the

network (false).

This value is true only when you enable echo of transmitted

frames by setting the XNET Session Interface:Echo Transmit?

property to True.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame CAN).vi

NI-XNET Hardware and Software Manual 4-206 ni.com

type is the frame type (decimal value in parentheses):

CAN Data (0) The CAN data frame contains payload

data. This is the most commonly used

frame type for CAN.

CAN Remote (1) A CAN remote frame. An ECU

transmits a CAN remote frame to request

data for the corresponding identifier.

Your application can respond by writing

a CAN data frame for the identifier.

Log Trigger (225) A Log Trigger frame. This frame is

generated when a trigger occurs on an

external connection (for example,

PXI_Trig0). For information about this

frame, including the other frame fields,

refer to Special Frames.

Start Trigger (226) A Start Trigger frame is generated when

the interface is started (refer to Start

Interface for more information). For

information about this frame, including

the other frame fields, refer to Special

Frames.

CAN Bus Error (2) A CAN Bus Error frame is generated

when a bus error is detected on the CAN

bus. For information about this frame,

including the other frame fields, refer to

Special Frames.

timestamp represents the absolute time when the XNET interface

received the frame (end of frame), accurate to microseconds. The

timestamp uses the LabVIEW absolute timestamp type.

payload is the array of data bytes for the CAN data frame.

The array size indicates the received frame value payload length.

According to the CAN protocol, this payload length range is 0–8.

For CAN FD, the range can be 0–8, 12, 16, 20, 24, 32, 48, or 64.

For a received remote frame (type of CAN Remote), the payload

length in the frame value specifies the number of payload bytes

requested. This payload length is provided to your application

by filling payload with the requested number of bytes. Your

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame CAN).vi

© National Instruments 4-207 NI-XNET Hardware and Software Manual

application can use the payload array size, but you must ignore

the actual values in the payload bytes.

For an example of how this data applies to network traffic, refer to Frame

Input Stream Mode, Frame Input Queued Mode, or Frame Input

Single-Point Mode.

error out is the error cluster output (refer to Error Handling).

Description

The data represents an array of CAN frames. Each CAN frame uses a LabVIEW cluster with

CAN-specific elements.

The CAN frames are associated to the session’s list of frames as follows:

• Frame Input Stream Mode: Array of all frame values received (list ignored).

• Frame Input Queued Mode: Array of frame values received for the single frame specified

in the list.

• Frame Input Single-Point Mode: Array of single frame values, one for each frame

specified in the list.

Due to issues with LabVIEW memory allocation for clusters with an array, this XNET

Read.vi instance can introduce jitter to a high-priority loop on LabVIEW Real-Time (RT)

(refer to High Priority Loops for more information). The XNET Read (Frame Raw).vi

instance provides optimal performance for high-priority loops.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame FlexRay).vi

NI-XNET Hardware and Software Manual 4-208 ni.com

XNET Read (Frame FlexRay).vi

Purpose

Reads data from a session as an array of FlexRay frames. The session must use a FlexRay

interface and Frame Input Stream Mode, Frame Input Queued Mode, or Frame Input

Single-Point Mode.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi. The session mode must

be Frame Input Stream, Frame Input Queued, or Frame Input Single-Point.

number to read is the number of frame values desired.

If number to read is positive (or 0), the data array size is no greater than

this number.

If number to read is negative (typically –1), all available frame values are

returned. If number to read is negative, you must use a timeout of 0.

This input is optional. The default value is –1.

If the session mode is Frame Input Single-Point, set number to read to

either –1 or the number of frames in the session list. This ensures that

XNET Read (Frame FlexRay).vi can return the current value of all

session frames.

timeout is the time to wait for number to read frame values to become

available.

The timeout is a LabVIEW relative time, represented as 64-bit

floating-point in units of seconds.

If timeout is positive, XNET Read (Frame FlexRay).vi waits for number

to read frame values, then returns that number. If the values do not arrive

prior to the timeout, an error is returned.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame FlexRay).vi

© National Instruments 4-209 NI-XNET Hardware and Software Manual

If timeout is negative, XNET Read (Frame FlexRay).vi waits indefinitely

for number to read frame values.

If timeout is zero, XNET Read (Frame FlexRay).vi does not wait and

immediately returns all available frame values up to the limit number to

read specifies.

This input is optional. The default value is 0.0.

If the session mode is Frame Input Single-Point, you must leave timeout

unwired (0.0). Because this mode reads the most recent value of each

frame, timeout does not apply.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

data returns an array of LabVIEW clusters.

Each array element corresponds to a frame the session receives.

For the Frame Input Single-Point and PDU Input Single-Point session

modes, the order of frames/payload in the array corresponds to the order in

the session list.

The elements of each cluster are specific to the FlexRay protocol. For more

information, refer to Appendix B, Summary of the FlexRay Standard, or the

FlexRay Protocol Specification.

The cluster elements are:

slot specifies the slot number within the FlexRay cycle.

cycle count specifies the cycle number.

The FlexRay cycle count increments from 0 to 63, then rolls over

back to 0.

startup? is a Boolean value that specifies whether the frame is a

startup frame (true) or not (false).

 sync? is a Boolean value that specifies whether the frame is a sync

frame (true) or not (false).

preamble? is a Boolean value that specifies the value of the

payload preamble indicator in the frame header.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame FlexRay).vi

NI-XNET Hardware and Software Manual 4-210 ni.com

If the frame is in the static segment, preamble? being true

indicates the presence of a network management vector at the

beginning of the payload. The XNET Cluster FlexRay:Network

Management Vector Length property specifies the number of

bytes at the beginning.

If the frame is in the dynamic segment, preamble? being true

indicates the presence of a message ID at the beginning of the

payload. The message ID is always 2 bytes in length.

If preamble? is false, the payload does not contain a network

management vector or a message ID.

chA is a Boolean value that specifies whether the frame was

received on channel A (true) or not (false).

chB is a Boolean value that specifies whether the frame was

received on channel B (true) or not (false).

echo? Is a Boolean value that determines whether the frame was

an echo of a successful transmit (true) or received from the

network (false).

This value is true only when you enable echo of transmitted

frames by setting the XNET Session Interface:Echo Transmit?

property to true. Frames are echoed only to a session with the

Frame Input Stream Mode.

type is the frame type (decimal value in parentheses):

FlexRay Data (32) FlexRay data frame. The frame contains

payload data. This is the most commonly

used frame type for FlexRay. All

elements in the frame are applicable.

FlexRay Null (33) FlexRay null frame. When a FlexRay

null frame is received, it indicates that

the transmitting ECU did not have new

data for the current cycle.

Null frames occur in the static segment

only. This frame type does not apply to

frames in the dynamic segment.

This frame type occurs only when you

set the XNET Session

Interface:FlexRay:Null Frames To Input

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame FlexRay).vi

© National Instruments 4-211 NI-XNET Hardware and Software Manual

Stream? property to true. This property

enables logging of received null frames

to a session with the Frame Input Stream

Mode. Other sessions are not affected.

For this frame type, the payload array is

empty (size 0), and preamble? and

echo? are false. The remaining elements

in the frame reflect the data in the

received null frame and the timestamp

when it was received.

FlexRay Symbol (34) FlexRay symbol frame. The frame

contains a symbol received on the

FlexRay bus.

For this frame type, the first payload byte

(offset 0) specifies the type of symbol:

0 for MTS, 1 for wakeup. The frame

payload length is 1 or higher, with bytes

beyond the first byte reserved for future

use. The frame timestamp specifies when

the symbol window occurred. The cycle

count, channel A indicator, and

channel B indicator are encoded the

same as FlexRay data frames. All other

fields in the frame are unused (0).

Log Trigger (225) A Log Trigger frame. This frame is

generated when a trigger occurs on an

external connection (for example,

PXI_Trig0). For information about this

frame, including the other frame fields,

refer to Special Frames.

Start Trigger (226) A Start Trigger frame is generated when

the interface is started (refer to Start

Interface for more information). For

information about this frame, including

the other frame fields, refer to Special

Frames.

timestamp represents the absolute time when the XNET interface

received the frame (end of frame), accurate to microseconds. The

timestamp uses the LabVIEW absolute timestamp type.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame FlexRay).vi

NI-XNET Hardware and Software Manual 4-212 ni.com

While the NI-XNET FlexRay interface is communicating

(integrated), this timestamp is normally derived from FlexRay

global time, the FlexRay network timebase. Under this

configuration, the timestamp does not drift as compared to the

FlexRay global time (XNET Read (State FlexRay Cycle

Macrotick).vi), but it may drift relative to other NI hardware

products and the LabVIEW absolute timebase. If you prefer to

synchronize this timestamp to other sources, you can use XNET

Connect Terminals.vi to change the source of the Master

Timebase terminal.

payload is the array of data bytes for FlexRay frames of type

FlexRay Data or FlexRay Null.

The array size indicates the received frame value payload length.

According to the FlexRay protocol, this length range is 0–254.

For PDU session modes, only the payload for the particular PDU

is returned, not the entire frame.

For an example of how this data applies to network traffic, refer to Frame

Input Stream Mode, Frame Input Queued Mode, or Frame Input

Single-Point Mode.

error out is the error cluster output (refer to Error Handling).

Description

The data represents an array of FlexRay frames. Each FlexRay frame uses a LabVIEW cluster

with FlexRay-specific elements.

The FlexRay frames are associated to the session list of frames as follows:

• Frame Input Stream Mode: Array of all frame values received (list ignored).

• Frame Input Queued Mode: Array of frame values received for the single frame specified

in the list.

• Frame Input Single-Point Mode: Array of single frame values, one for each frame

specified in the list.

• PDU Input Queued Mode: Array of frame (PDU payload) values received for the single

PDU specified in the list. This mode is similar to Frame Input Queued Mode,

• PDU Input Single-Point Mode: Array of single frame (PDU payload) values, one for

each PDU specified in the list. This mode is similar to Frame Input Single-Point Mode.

Due to issues with LabVIEW memory allocation for clusters with an array, this XNET

Read.vi instance can introduce jitter to a high-priority loop on LabVIEW Real-Time (RT)

(refer to High Priority Loops for more information). The XNET Read (Frame Raw).vi

instance provides optimal performance for high-priority loops.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame LIN).vi

© National Instruments 4-213 NI-XNET Hardware and Software Manual

XNET Read (Frame LIN).vi

Purpose

Reads data from a session as an array of LIN frames. The session must use a LIN interface

and Frame Input Stream Mode, Frame Input Queued Mode, or Frame Input Single-Point

Mode.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi. The session mode must

be Frame Input Stream, Frame Input Queued, or Frame Input Single-Point.

number to read is the number of frame values desired.

If number to read is positive (or 0), the data array size is no greater than

this number.

If number to read is negative (typically –1), all available frame values are

returned. If number to read is negative, you must use a timeout of 0.

This input is optional. The default value is –1.

If the session mode is Frame Input Single-Point, set number to read to

either –1 or the number of frames in the session list. This ensures that

XNET Read (Frame LIN).vi can return the current value of all session

frames.

timeout is the time to wait for number to read frame values to become

available.

The timeout is a LabVIEW relative time, represented as 64-bit

floating-point in units of seconds.

If timeout is positive, XNET Read (Frame LIN).vi waits for number to

read frame values, then returns that number. If the values do not arrive prior

to the timeout, an error is returned.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame LIN).vi

NI-XNET Hardware and Software Manual 4-214 ni.com

If timeout is negative, XNET Read (Frame LIN).vi waits indefinitely for

number to read frame values.

If timeout is zero, XNET Read (Frame LIN).vi does not wait and

immediately returns all available frame values up to the limit number to

read specifies.

This input is optional. The default value is 0.0.

If the session mode is Frame Input Single-Point, you must leave timeout

unwired (0.0). Because this mode reads the most recent value of each

frame, timeout does not apply.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

data returns an array of LabVIEW clusters.

Each array element corresponds to a frame the session receives.

For a Frame Input Single-Point session mode, the order of frames in the

array corresponds to the order in the session list.

The elements of each cluster are specific to the LIN protocol. For more

information, refer to Appendix C, Summary of the LIN Standard, or the

LIN protocol specification.

For the Frame Input Stream session mode, LIN frames are read in their

raw form, without interpretation of their elements using the database. For

the Frame Input Single-point and Frame Input Queued session modes,

information from the database is used to interpret the LIN frames for ease

of use.

The following cluster description applies to session modes Frame Input

Single-point and Frame Input Queued. For these modes, the cluster

elements are:

identifier is the LIN frame identifier.

The identifier is a number from 0 to 63. This number identifies the

content of the data contained within payload.

The location of this ID within the frame depends on the value of

event slot?. If event slot? is false, this ID is taken from the

frame’s header. If event slot? is true, this ID is taken from the first

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame LIN).vi

© National Instruments 4-215 NI-XNET Hardware and Software Manual

payload byte. This ensures that the number identifies the payload,

regardless of how it was scheduled.

Regardless of its location, this is the unprotected ID, without

parity applied. For more information about LIN ID protection,

refer to Appendix C, Summary of the LIN Standard.

event slot? is a Boolean value that specifies whether the frame

was received within an event-triggered schedule entry (slot). If the

value is true, the frame was received within an event-triggered

slot. If the value is false, the frame was received within an

unconditional or sporadic slot.

When this value is true, event ID contains the ID from the frame’s

header.

event ID is the identifier for an event-triggered slot (event slot?

true).

When event slot? is true, event ID is the ID from the frame’s

header. The event ID is a number from 0 to 63. This is the

unprotected ID, without parity applied.

When event slot? is false, this value does not apply (it is 0).

echo? is a Boolean value that determines whether the frame was

an echo of a successful transmit (true), or received from the

network (false).

This value is true only when you enable echo of transmitted

frames by setting the XNET Session Interface:Echo Transmit?

property to True.

type is the frame type (decimal value in parentheses):

LIN Data (64) The LIN data frame contains payload

data.

Log Trigger (225) A Log Trigger frame. This frame is

generated when a trigger occurs on an

external connection (for example,

PXI_Trig0). For information about this

frame, including the other frame fields,

refer to Special Frames.

Start Trigger (226) A Start Trigger frame is generated when

the interface is started (refer to Start

Interface for more information). For

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame LIN).vi

NI-XNET Hardware and Software Manual 4-216 ni.com

information about this frame, including

the other frame fields, refer to Special

Frames.

LIN Bus Error (65) A LIN Bus Error frame is generated

when a bus error is detected on the LIN

bus. For information about this frame,

including the other frame fields, refer to

Special Frames.

timestamp represents the absolute time when the XNET interface

received the frame (end of frame), accurate to microseconds. The

timestamp uses the LabVIEW absolute timestamp type.

payload is the array of data bytes for the LIN data frame.

The array size indicates the received frame’s payload length.

According to the LIN protocol, this payload is 0–8 bytes in length.

If the frame payload is used within an event-triggered schedule

entry (slot), the first byte of payload is the identifier of the frame

in its protected form (checksum applied). This is required by the

LIN standard even if the frame transmits in an unconditional or

sporadic slot. For this type of LIN frame, the actual data (for

example, signal values) is limited to 7 bytes.

For example, assume that frame ID 5 is received in an

unconditional slot and an event-triggered slot of ID 9. When you

receive from the unconditional slot, identifier is 5, event slot? is

false, event ID is 0, and the first payload byte contains 5 with

checksum applied. When you receive from the event-triggered

slot, identifier is 5, event slot? is true, event ID is 9, and the first

payload byte contains 5 with checksum applied. Regardless of

how the frame is received, you can use the identifier to determine

the contents of the actual payload data contents in bytes 2–8.

The following cluster description applies to session mode Frame Input

Stream. For this mode, the cluster elements are:

identifier is the identifier received within the frame’s header.

The identifier is a number from 0 to 63.

If the schedule entry (slot) is unconditional or sporadic, this

identifies the payload data (LIN frame). If the schedule entry is

event triggered, this identifies the schedule entry itself, and the

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame LIN).vi

© National Instruments 4-217 NI-XNET Hardware and Software Manual

protected ID contained in the first payload byte identifies the

payload.

event slot? is not used. This element is false.

event ID is not used. This element is 0.

echo? uses the same semantics as the previous description for

Frame Input Queued.

type uses the same semantics as the previous description for

Frame Input Queued.

timestamp uses the same semantics as the previous description

for Frame Input Queued.

payload uses the same semantics as the previous description for

Frame Input Queued.

For an example of how this data applies to network traffic, refer to Frame

Input Stream Mode, Frame Input Queued Mode, or Frame Input

Single-Point Mode.

error out is the error cluster output (refer to Error Handling).

Description

The data represents an array of LIN frames. Each LIN frame uses a LabVIEW cluster with

LIN-specific elements.

The LIN frames are associated to the session’s list of frames as follows:

• Frame Input Stream Mode: Array of all frame values received (list ignored).

• Frame Input Queued Mode: Array of frame values received for the single frame specified

in the list.

• Frame Input Single-Point Mode: Array of single frame values, one for each frame

specified in the list.

Due to issues with LabVIEW memory allocation for clusters with an array, this XNET

Read.vi instance can introduce jitter to a high-priority loop on LabVIEW Real-Time (RT)

(refer to High Priority Loops for more information). The XNET Read (Frame Raw).vi

instance provides optimal performance for high-priority loops.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame Raw).vi

NI-XNET Hardware and Software Manual 4-218 ni.com

XNET Read (Frame Raw).vi

Purpose

Reads data from a session as an array of raw bytes.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi. The session mode must

be Frame Input Stream Mode, Frame Input Queued Mode, or Frame Input

Single-Point Mode.

number to read is the number of bytes (U8) desired.

This number does not represent the number of frames to read. As encoded

in raw data, each frame can vary in length. Therefore, the number

represents the maximum raw bytes to read, not the number of frames.

Standard CAN and LIN frames are always 24 bytes in length. If you want

to read a specific number of frames, multiply that number by 24.

CAN FD and FlexRay frames vary in length. For example, if you pass

number to read of 91, the data might return 80 bytes, within which the

first 24 bytes encode the first frame, and the next 56 bytes encode the

second frame.

If number to read is positive (or 0), the data array size is no greater than

this number. The minimum size for a single frame is 24 bytes.

If number to read is negative (typically –1), all available raw data is

returned. If number to read is negative, you must use a timeout of 0.

This input is optional. The default value is –1.

If the session mode is Frame Input Single-Point, set number to read to –1.

This ensures that XNET Read (Frame Raw).vi can return the current

value of all session frames.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame Raw).vi

© National Instruments 4-219 NI-XNET Hardware and Software Manual

timeout is the time to wait for number to read frame bytes to become

available.

To avoid returning a partial frame, even when number to read bytes are

available from the hardware, this read may return fewer bytes in data. For

example, assume you pass number to read of 70 bytes and timeout of

10 seconds. During the read, two frames are received, the first 24 bytes in

size, and the second 56 bytes in size, for a total of 80 bytes. The read returns

after the two frames are received, but only the first frame is copied to data.

If the read copied 46 bytes of the second frame (up to the limit of 70), that

frame would be incomplete and therefore difficult to interpret. To avoid this

problem, the read always returns complete frames in data.

The timeout is a LabVIEW relative time, represented as 64-bit

floating-point in units of seconds.

If timeout is positive, XNET Read (Frame Raw).vi waits for number to

read frame bytes to be received, then returns complete frames up to that

number. If the bytes do not arrive prior to the timeout, an error is returned.

If timeout is negative, XNET Read (Frame Raw).vi waits indefinitely for

number to read frame bytes.

If timeout is zero, XNET Read (Frame Raw).vi does not wait and

immediately returns all available frame bytes up to the limit number to

read specifies.

This input is optional. The default value is 0.0.

If the session mode is Frame Input Single-Point, you must leave timeout

unwired (0.0). Because this mode reads the most recent value of each

frame, timeout does not apply.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

data returns an array of bytes.

The raw bytes encode one or more frames using the Raw Frame Format.

This frame format is the same for read and write of raw data, and it is also

used for log file examples.

The data always returns complete frames.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame Raw).vi

NI-XNET Hardware and Software Manual 4-220 ni.com

For information about which elements of the raw frame are applicable,

refer to the frame read for the protocol in use (XNET Read (Frame

CAN).vi, XNET Read (Frame FlexRay).vi), or XNET Read (Frame

LIN).vi. For example, when you read FlexRay frames for a Frame Input

Queued session, the only frame type is FlexRay Data (other types apply to

Frame Input Stream only).

For an example of how this data applies to network traffic, refer to Frame

Input Stream Mode, Frame Input Queued Mode, or Frame Input

Single-Point Mode.

error out is the error cluster output (refer to Error Handling).

Description

The raw bytes encode one or more frames using the Raw Frame Format. The session must use

Frame Input Stream Mode, Frame Input Queued Mode, Frame Input Single-Point Mode,

PDU Input Queued Mode (similar to Frame Input Queued Mode), or PDU Input Single-Point

Mode (similar to Frame Input Single-Point Mode). The raw frame format is protocol

independent, so the session can use either a CAN, FlexRay, or LIN interface.

The raw frame format matches the format of data transferred to/from the XNET hardware.

Because it is not converted to/from LabVIEW clusters for ease of use, it is more efficient with

regard to performance. This XNET Read.vi instance typically is used to read raw frame data

from the interface and log the data to a file for later analysis. The NI-XNET examples provide

code to read the raw frame data from the log file and convert the raw data into

protocol-specific LabVIEW clusters.

The raw frames are associated to the session’s list of frames as follows:

• Frame Input Stream Mode: Array of all frame values received (list ignored).

• Frame Input Queued Mode: Array of frame values received for the single frame specified

in the list.

• Frame Input Single-Point Mode: Array of single frame values, one for each frame

specified in the list.

• PDU Input Queued Mode: Array of frame (PDU payload) values received for the single

PDU specified in the list. This mode is similar to Frame Input Queued Mode.

• PDU Input Single-Point Mode: Array of single frame (PDU payload) values, one for each

PDU specified in the list. This mode is similar to Frame Input Single-Point Mode.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Signal Single-Point).vi

© National Instruments 4-221 NI-XNET Hardware and Software Manual

XNET Read (Signal Single-Point).vi

Purpose

Reads data from a session of Signal Input Single-Point Mode.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi. The session mode must

be Signal Input Single-Point Mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

data returns a one-dimensional array of signal values. Each signal value is

scaled, 64-bit floating point.

Each array element corresponds to a signal configured for the session. The

order of signals in the array corresponds to the order in the session list.

The data returns the most recent value received for each signal. If multiple

frames for a signal are received since the previous call to XNET Read

(Signal Single-Point).vi (or session start), only signal data from the most

recent frame is returned.

If no frame is received for the corresponding signals since you started the

session, the XNET Signal Default Value is returned.

For an example of how this data applies to network traffic, refer to Signal

Input Single-Point Mode.

A trigger signal returns a value of 1.0 or 0.0, depending on whether its

frame arrived since the last Read (or Start) or not. For more information

about trigger signals, refer to Signal Input Single-Point Mode.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Signal Waveform).vi

NI-XNET Hardware and Software Manual 4-222 ni.com

XNET Read (Signal Waveform).vi

Purpose

Reads data from a session of Signal Input Waveform Mode.

The data represents a waveform of resampled values for each signal in the session. You can

wire the data directly to a LabVIEW Waveform Graph for display.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi. The session mode must

be Signal Input Waveform.

number to read is the number of samples desired.

If number to read is positive (or 0), the number of samples returned (size

of Y arrays) is no greater than this number. If timeout is nonzero, the

number returned is exactly this number on success.

If number to read is negative (typically –1), the maximum number of

samples is returned. If number to read is negative, you must use a timeout

of zero.

This input is optional. The default value is –1.

timeout is the time to wait for number to read samples to become

available.

The timeout is a LabVIEW relative time, represented as 64-bit

floating-point in units of seconds.

If timeout is positive, XNET Read (Signal Waveform).vi waits for

number to read samples, then returns that number. If the samples do not

arrive prior to the timeout, an error is returned.

If timeout is negative, XNET Read (Signal Waveform).vi waits

indefinitely for number to read samples.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Signal Waveform).vi

© National Instruments 4-223 NI-XNET Hardware and Software Manual

If timeout is zero, XNET Read (Signal Waveform).vi does not wait and

immediately returns all available samples up to the limit number to read

specifies.

Because time determines sample availability, typical values for this

timeout are 0 (return available) or a large positive value such as 100.0 (wait

for a specific number to read). This input is optional. The default value

is 0.0.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

data returns a one-dimensional array of LabVIEW waveforms.

Each array element corresponds to a signal configured for the session. The

order of signals in the array corresponds to the order in the session list.

The waveform elements are:

t0 is the waveform start time. This is a LabVIEW absolute

timestamp that specifies the time for the first sample in the

Y array.

dt is the waveform delta time. This is a LabVIEW relative time

that specifies the time between each sample in the Y array.

LabVIEW relative time is represented as 64-bit floating point in

units of seconds. The waveform dt always is the inverse of the

XNET Session Resample Rate property.

Y is the array of resampled signal values. Each signal value is

scaled, 64-bit floating point.

The Y array size is the same for all waveforms returned, because

it is determined based on time, and not the number of frames

received.

If no frame is received for the corresponding signals since you

started the session, the XNET Signal Default Value is returned.

For an example of how this data applies to network traffic, refer to Signal

Input Waveform Mode.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Signal XY).vi

NI-XNET Hardware and Software Manual 4-224 ni.com

XNET Read (Signal XY).vi

Purpose

Reads data from a session of Signal Input XY Mode.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi. The session mode must

be Signal Input XY.

number to read is the number of values desired.

If number to read is positive (or 0), the size of value arrays is no greater

than this number.

If number to read is negative (typically –1), the maximum number of

values is returned.

This input is optional. The default value is –1.

If number to read values are received for any signal, XNET Read (Signal

XY).vi returns those values, even if the time limit has not occurred.

Therefore, to read values up to the time limit, leave number to read

unwired (–1).

time limit is the timestamp to wait for before returning signal values.

If time limit is valid, XNET Read (Signal XY).vi waits for the timestamp

to occur, then returns available values (up to number to read). If you

increment time limit by a fixed number of seconds for each call to XNET

Read (Signal XY).vi, you effectively obtain a moving window of signal

values.

If time limit is unwired (invalid), XNET Read (Signal XY).vi returns

immediately all available values up to the current time (up to number to

read).

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Signal XY).vi

© National Instruments 4-225 NI-XNET Hardware and Software Manual

This input is optional. The default value is an invalid timestamp.

The timeout of other XNET Read.vi instances specifies the maximum

amount time to wait for a specific number to read values. The time limit

of XNET Read (Signal XY).vi does not specify a worst-case timeout

value, but rather a specific absolute timestamp to wait for.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

data returns an array of LabVIEW clusters.

Each array element corresponds to a signal configured for the session. The

order of signals in the array corresponds to the order in the session list.

Each cluster contains two arrays, one for timestamp and one for value. For

each signal, the size of the timestamp and value arrays always is the same,

such that it represents a single array of timestamp/value pairs.

Each timestamp/value pair represents a value from a received frame. When

signals exist in different frames, the array sizes may be different from one

cluster (signal) to another.

The cluster elements are:

timestamp is the array of LabVIEW timestamps, one for each

frame received that contains the signal.

Each timestamp represents the absolute time when the XNET

interface received the frame (end of frame), accurate to

microseconds.

value is the array of signal values, one for each frame received that

contains the signal.

Each signal value is scaled, 64-bit floating point.

The value array size is the same as the timestamp array size.

For an example of how this data applies to network traffic, refer to Signal

Input XY Mode.

When you use this instance with a session of Signal Input Single-Point

Mode, time limit and number to read are ignored, and the timestamp and

value arrays always contain only one element per signal. This effectively

returns a single pair of timestamp and value for every signal.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Signal XY).vi

NI-XNET Hardware and Software Manual 4-226 ni.com

error out is the error cluster output (refer to Error Handling).

Description

You also can use this instance to read data from a session of Signal Input Single-Point Mode,

although XNET Read (Signal Single-Point).vi is more common for that mode.

The data represents an XY plot of timestamp/value pairs for each signal in the session. You

can wire the data directly to a LabVIEW XY Graph for display.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State CAN Comm).vi

© National Instruments 4-227 NI-XNET Hardware and Software Manual

XNET Read (State CAN Comm).vi

Purpose

Reads the state of CAN communication using an XNET session.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

CAN comm returns a LabVIEW cluster containing the communication

elements. The elements are:

communication state specifies the CAN interface state with

respect to error confinement (decimal value in parentheses):

Error Active (0) This state reflects normal communication,

with few errors detected. The CAN interface

remains in this state as long as receive error

counter and transmit error counter are

both below 128.

Error Passive (1) If either the receive error counter or

transmit error counter increment above

127, the CAN interface transitions into this

state. Although communication proceeds, the

CAN device generally is assumed to have

problems with receiving frames.

When a CAN interface is in error passive

state, acknowledgement errors do not

increment the transmit error counter.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State CAN Comm).vi

NI-XNET Hardware and Software Manual 4-228 ni.com

Therefore, if the CAN interface transmits a

frame with no other device (ECU) connected,

it eventually enters error passive state due to

retransmissions, but does not enter bus off

state.

Bus Off (2) If the transmit error counter increments

above 255, the CAN interface transitions into

this state. Communication immediately stops

under the assumption that the CAN interface

must be isolated from other devices.

When a CAN interface transitions to the bus

off state, communication stops for the

interface. All NI-XNET sessions for the

interface no longer receive or transmit frame

values. To restart the CAN interface and all its

sessions, call XNET Start.vi.

Init (3) This is the CAN interface initial state on

power-up. The interface is essentially off, in

that it is not attempting to communicate with

other nodes (ECUs).

When the start trigger occurs for the CAN

interface, it transitions from the Init state to

the Error Active state. When the interface

stops due to a call to XNET Stop.vi, the CAN

interface transitions from either Error Active

or Error Passive to the Init state. When the

interface stops due to the Bus Off state, it

remains in that state until you restart.

transceiver error? indicates whether an error condition exists on

the physical transceiver. This is typically referred to as the

transceiver chip NERR pin. False indicates normal operation

(no error), and true indicates an error.

sleep? indicates whether the transceiver and communication

controller are in their sleep state. False indicates normal operation

(awake), and true indicates sleep.

last error specifies the status of the last attempt to receive or

transmit a frame (decimal value in parentheses):

None (0) The last receive or transmit was successful.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State CAN Comm).vi

© National Instruments 4-229 NI-XNET Hardware and Software Manual

Stuff (1) More than 5 equal bits have occurred in sequence,

which the CAN specification does not allow.

Form (2) A fixed format part of the received frame used the

wrong format.

Ack (3) Another node (ECU) did not acknowledge the frame

transmit.

If you call XNET Write.vi and do not have a cable

connected, or the cable is connected to a node that is

not communicating, you see this error repeatedly.

The CAN communication state eventually

transitions to Error Passive, and the frame transmit

retries indefinitely.

Bit 1 (4) During a frame transmit (with the exception of the

arbitration ID field), the interface wanted to send a

recessive bit (logical 1), but the monitored bus value

was dominant (logical 0).

Bit 0 (5) During a frame transmit (with the exception of the

arbitration ID field), the interface wanted to send a

dominant bit (logical 0), but the monitored bus value

was recessive (logical 1).

CRC (6) The CRC contained within a received frame does

not match the CRC calculated for the incoming bits.

The receive error counter begins at 0 when communication starts

on the CAN interface. The counter increments when an error is

detected for a received frame and decrements when a frame is

received successfully. The counter increases more for an error

than it is decreased for success. This ensures that the counter

generally increases when a certain ratio of frames (roughly 1/8)

encounter errors.

The transmit error counter begins at 0 when communication

starts on the CAN interface. The counter increments when an error

is detected for a transmitted frame and decrements when a frame

transmits successfully. The counter increases more for an error

than it is decreased for success. This ensures that the counter

generally increases when a certain ratio of frames (roughly 1/8)

encounter errors.

When communication state transitions to Bus Off, the transmit

error counter no longer is valid.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State CAN Comm).vi

NI-XNET Hardware and Software Manual 4-230 ni.com

fault? indicates that a fault occurred, and its code is available as

fault code.

fault code returns a numeric code you can use to obtain a

description of the fault. If fault? is false, the fault code is 0.

A fault is an error that occurs asynchronously to the NI-XNET VIs

your application calls. The fault cause may be related to CAN

communication, but it also can be related to XNET hardware, such

as a fault in the onboard processor. Although faults are extremely

rare, XNET Read (State CAN Comm).vi provides a detection

method distinct from the error out of NI-XNET VIs, yet easy

to use alongside the common practice of checking the

communication state.

To obtain a fault description, wire the fault code into the

LabVIEW Simple Error Handler.vi error code input and view

the resulting message. You also can bundle the fault code into a

LabVIEW error cluster as the code element and use front panel

features to view the error description.

error out is the error cluster output (refer to Error Handling).

Description

You can use XNET Read (State CAN Comm).vi with any XNET session mode, as long as

the session interface is CAN. Because the state reflects the CAN interface, it can apply to

multiple sessions.

Your application can use XNET Read (State CAN Comm).vi to check for problems on the

CAN network independently from other aspects of your application. For example, you

intentionally may introduce noise into the CAN cables to test how your ECU behaves under

these conditions. When you do this, you do not want the error out of NI-XNET VIs to return

errors, because this may cause your application to stop. Your application can use XNET Read

(State CAN Comm).vi to read the CAN network state quickly as data, so that it does not

introduce errors into the flow of your LabVIEW VIs.

Alternately, to log bus errors, you can set the Interface:Bus Error Frames to Input Stream?

property to cause CAN bus errors to be logged as a special frame (refer to Special Frames for

more information) into a Frame Stream Input queue.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State FlexRay Comm).vi

© National Instruments 4-231 NI-XNET Hardware and Software Manual

XNET Read (State FlexRay Comm).vi

Purpose

Reads the state of FlexRay communication using an XNET session.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

FlexRay comm returns a LabVIEW cluster containing the communication

elements. The elements are:

POC state specifies the FlexRay interface state (decimal value in

parentheses):

Default Config (0) This is the FlexRay interface initial state on

power-up. The interface is essentially off,

in that it is not configured and is not

attempting to communicate with other

nodes (ECUs).

Ready (1) When the interface starts, it first enters

Config state to validate the FlexRay cluster

and interface properties. Assuming the

properties are valid, the interface

transitions to this Ready state.

In the Ready state, the FlexRay interface

attempts to integrate (synchronize) with

other nodes in the network cluster. This

integration process can take several

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State FlexRay Comm).vi

NI-XNET Hardware and Software Manual 4-232 ni.com

FlexRay cycles, up to 200 ms. If the

integration succeeds, the interface

transitions to Normal Active.

You can use XNET Read (State Time

Start).vi to read the time when the FlexRay

interface entered Ready. If integration

succeeds, you can use XNET Read (State

Time Comm).vi to read the time when the

FlexRay entered Normal Active.

Normal Active (2) This is the normal operation state. The

NI-XNET interface is adequately

synchronized to the cluster to allow

continued frame transmission without

disrupting the transmissions of other nodes

(ECUs). If synchronization problems

occur, the interface can transition from this

state to Normal Passive.

Normal Passive (3) Frame reception is allowed, but frame

transmission is disabled due to degraded

synchronization with the cluster remainder.

If synchronization improves, the interface

can transition to Normal Active. If

synchronization continues to degrade, the

interface transitions to Halt.

Halt (4) Communication halted due to

synchronization problems.

When the FlexRay interface is in Halt state,

all NI-XNET sessions for the interface

stop, and no frame values are received or

transmitted. To restart the FlexRay

interface, you must restart the NI-XNET

sessions.

If you clear (close) all NI-XNET sessions

for the interface, it transitions from Halt to

Default Config state.

Config (15) This state is transitional when

configuration is valid. If you detect this

state after starting the interface, it typically

indicates a problem with the configuration.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State FlexRay Comm).vi

© National Instruments 4-233 NI-XNET Hardware and Software Manual

Check the fault? output for a fault. If no

fault is returned, check your FlexRay

cluster and interface properties. You can

check the validity of these properties using

the NI-XNET Database Editor, which

displays invalid configuration properties.

In the FlexRay specification, this value is

referred to as the Protocol Operation

Control (POC) state. For more information

about the FlexRay POC state, refer to

Appendix B, Summary of the FlexRay

Standard.

clock correction failed returns the number of consecutive

even/odd cycle pairs that have occurred without successful clock

synchronization.

If this count reaches the value in the XNET Cluster FlexRay:Max

Without Clock Correction Passive property, the FlexRay interface

POC state transitions from Normal Active to Normal Passive

state. If this count reaches the value in the XNET cluster

FlexRay:Max Without Clock Correction Fatal property, the

FlexRay interface POC state transitions from Normal Passive to

Halt state.

In the FlexRay specification, this value is referred to as

vClockCorrectionFailed.

passive to active count returns the number of consecutive

even/odd cycle pairs that have occurred with successful clock

synchronization.

This count increments while the FlexRay interface is in POC state

Error Passive. If the count reaches the value in the XNET Session

Interface:FlexRay:Allow Passive to Active property, the interface

POC state transitions to Normal Active.

In the FlexRay specification, this value is referred to as

vAllowPassiveToActive.

fault? indicates that a fault occurred, and its code is available is

fault code.

fault code returns a numeric code you can use to obtain a fault

description. If fault? is false, the fault code is 0.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State FlexRay Comm).vi

NI-XNET Hardware and Software Manual 4-234 ni.com

A fault is an error that occurs asynchronously to the NI-XNET VIs

your application calls. The fault cause may be related to FlexRay

communication, but it also can be related to XNET hardware, such

as a fault in the onboard processor. Although faults are extremely

rare, XNET Read (State FlexRay Comm).vi provides a

detection method distinct from the error out of NI-XNET VIs,

yet easy to use alongside the common practice of checking the

communication state.

To obtain a fault description fault, wire the fault code into the

LabVIEW Simple Error Handler.vi error code input and view

the resulting message. You also can bundle the fault code into a

LabVIEW error cluster as the code element and use front panel

features to view the error description.

channel A sleep? indicates whether channel A currently is asleep.

channel B sleep? indicates whether channel B currently is asleep.

error out is the error cluster output (refer to Error Handling).

Description

You can use XNET Read (State FlexRay Comm).vi with any XNET session mode, as long

as the session interface is FlexRay. Because the state reflects the FlexRay interface, it can

apply to multiple sessions.

Your application can use XNET Read (State FlexRay Comm).vi to check for problems on

the FlexRay network independently from the other aspects of your application. For example,

you intentionally may introduce noise into the FlexRay cables to test how your ECU behaves

under these conditions. When you do this, you do not want the error out of NI-XNET VIs to

return errors, because this may cause your application to stop. Your application can use

XNET Read (State FlexRay Comm).vi to read the FlexRay network state quickly as data,

so that it does not introduce errors into the flow of your LabVIEW VIs.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State LIN Comm).vi

© National Instruments 4-235 NI-XNET Hardware and Software Manual

XNET Read (State LIN Comm).vi

Purpose

Reads the state of LIN communication using an XNET session.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi. The session must use a

LIN interface.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

LIN comm returns a LabVIEW cluster containing the communication

elements. The elements are:

communication state specifies the LIN interface state (decimal

value in parentheses):

Idle (0): This is the LIN interface initial state on power-up.

The interface is essentially off, in that it is not

attempting to communicate with other nodes

(ECUs).

When the start trigger occurs for the LIN

interface, it transitions from the Idle state to the

Active state. When the interface stops due to a call

to XNET Stop, the LIN interface transitions from

either Active or Inactive to the Idle state.

Active (1): This state reflects normal communication. The

LIN interface remains in this state as long as bus

activity is detected (frame headers received or

transmitted).

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State LIN Comm).vi

NI-XNET Hardware and Software Manual 4-236 ni.com

Inactive (2): This state indicates that no bus activity has been

detected in the past four seconds.

Regardless of whether the interface acts as a

master or slave, it transitions to this state after four

seconds of bus inactivity. As soon as bus activity

is detected (break or frame header), the interface

transitions to the Active state.

The LIN interface does not go to sleep

automatically when it transitions to Inactive. To

place the interface into sleep mode, set the XNET

Session Interface:LIN:Sleep property when you

detect the Inactive state.

sleep? indicates whether the transceiver and communication

controller are in their sleep state. False indicates normal operation

(awake), and true indicates sleep.

This Boolean value changes from false to true only when you set

the XNET Session Interface:LIN:Sleep property to Remote Sleep

or Local Sleep.

This Boolean value changes from true to false when one of the

following occurs:

• You set the XNET Session Interface:LIN:Sleep property to

Remote Wake or Local Wake.

• The interface receives a remote wakeup pattern (break). In

addition to this XNET Read VI, you can wait for a remote

wakeup event using XNET Wait (LIN Remote Wakeup).vi.

transceiver ready? indicates whether the LIN transceiver is

powered from the bus.

True indicates the bus power exists, so it is safe to start

communication on the LIN interface.

If this value is false, you cannot start communication successfully.

Wire power to the LIN transceiver and run your application again.

last error specifies the status of the last attempt to receive or

transmit a frame. It is an enumeration (ring data type). For a table

of all values for last error, refer to the Description section.

last received returns the value received from the network when

last error occurred.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State LIN Comm).vi

© National Instruments 4-237 NI-XNET Hardware and Software Manual

last expected returns the value that the LIN interface expected to

see (instead of last received).

last identifier returns the frame identifier in which the last error

occurred.

fault? indicates that a fault occurred, and its code is available as

fault code.

fault code returns a numeric code you can use to obtain a

description of the fault. If fault? is false, the fault code is 0.

A fault is an error that occurs asynchronously to the NI-XNET VIs

your application calls. The fault cause may be related to LIN

communication, but it also can be related to XNET hardware, such

as a fault in the onboard processor. Although faults are extremely

rare, the XNET Read (State LIN Comm).vi provides a detection

method distinct from the error out of NI-XNET VIs, yet easy to

use alongside the common practice of checking the

communication state.

To obtain a fault description, wire the fault code into the

LabVIEW Simple Error Handler.vi error code input and view

the resulting message. You also can bundle the fault code into a

LabVIEW error cluster as the code element and use front panel

features to view the error description.

For more information, refer to Fault Handling.

schedule index indicates the LIN schedule that the interface is

currently running.

This index refers to a LIN schedule that you requested using

XNET Write (State LIN Schedule Change).vi. It indexes the

array of schedules that are represented in the XNET Session

Interface:LIN:Schedules property.

This index applies only when the LIN interface is running as a

master. If the LIN interface is running as a slave only, this element

should be ignored.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State LIN Comm).vi

NI-XNET Hardware and Software Manual 4-238 ni.com

Description

You can use XNET Read (State LIN Comm).vi with any XNET session mode, as long as

the session interface is LIN. Because the state reflects the LIN interface, it can apply to

multiple sessions.

Your application can use XNET Read (State LIN Comm).vi to check for problems on the

LIN network independently from other aspects of your application. For example, you

intentionally may introduce noise into the LIN cables to test how your ECU behaves under

these conditions. When you do this, you do not want the error out of NI-XNET VIs to return

errors, because this may cause your application to stop. Your application can use XNET Read

(State LIN Comm).vi to read the LIN network state quickly as data, so that it does not

introduce errors into the flow of your LabVIEW VIs.

The following table lists each value for last error, along with a description, and applicable

use of last received, last expected, and last identifier. In the last error column, the decimal

value is shown in parentheses after the string name.

Last Error Description

Last

Received

Last

Expected

Last

Identifier

None (0) No bus error has occurred since

the previous communication

state read.

0 (N/A) 0 (N/A) 0 (N/A)

Unknown ID (1) Received a frame identifier that

is not valid (0–63).

0 (N/A) 0 (N/A) 0 (N/A)

Form (2) The form of a received frame is

incorrect. For example, the

database specifies 8 bytes of

payload, but you receive only

4 bytes.

0 (N/A) 0 (N/A) Received

frame ID

Framing (3) The byte framing is incorrect

(for example, a missing stop

bit).

0 (N/A) 0 (N/A) Received

frame ID

Readback (4) The interface transmitted a

byte, but the value read back

from the transceiver was

different. This often is caused

by a cabling problem, such as

noise.

Value read

back

Value

transmitted

Received

frame ID

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State LIN Comm).vi

© National Instruments 4-239 NI-XNET Hardware and Software Manual

If the bus error is detected at time when no frame ID is received (such as wakeup), last

identifier uses the special value 64.

Alternately, to log bus errors, you can set the Interface:Bus Error Frames to Input Stream?

property to cause LIN bus errors to be logged as a special frame (refer to Special Frames for

more information) into a Frame Stream Input queue.

Timeout (5) Receiving the frame took

longer than the LIN-specified

timeout.

0 (N/A) 0 (N/A) Received

frame ID

Checksum (6) The received checksum was

different than the expected

checksum.

Received

checksum

Calculated

checksum

Received

frame ID

Last Error Description

Last

Received

Last

Expected

Last

Identifier

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State FlexRay Cycle Macrotick).vi

NI-XNET Hardware and Software Manual 4-240 ni.com

XNET Read (State FlexRay Cycle Macrotick).vi

Purpose

Reads the current FlexRay global time using an XNET session.

Format

Inputs

session in is the session to read. This session is selected from a LabVIEW

project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

cycle returns the current FlexRay cycle counter. The cycle counter range is

0–63. In the FlexRay specification, the current cycle counter is referred to

as vCycleCounter.

The XNET Cluster FlexRay:Cycle property returns the cycle length in

microseconds.

macrotick returns the current FlexRay macrotick. In the FlexRay

specification, the current macrotick is referred to as vMacrotick.

The XNET Cluster FlexRay:Macro Per Cycle property returns the number

of macroticks in the cycle. The current macrotick returned from this XNET

Read.vi instance ranges from 0 to (FlexRay:Macro Per Cycle – 1).

The XNET Cluster FlexRay:Macrotick property returns the macrotick

length in floating-point seconds.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State FlexRay Cycle Macrotick).vi

© National Instruments 4-241 NI-XNET Hardware and Software Manual

Description

Global time represents the timebase that all ECUs on the FlexRay network cluster share. You

use sync frames to synchronize the global time. The global time components are the current

cycle counter and macrotick within the cycle. For more information about global time, refer

to Appendix B, Summary of the FlexRay Standard.

You can use this XNET Read.vi instance with any XNET session mode, as long as the session

interface is FlexRay. Because the state reflects the FlexRay interface, it can apply to multiple

sessions.

For this VI to operate properly, you must connect FlexRay global time as the FlexRay

interface timebase source. To do this, you must call XNET Connect Terminals.vi with a

source of FlexRay Macrotick and destination of Master Timebase. If the terminals are not

connected in this manner, this XNET Read.vi instance returns an error.

When using LabVIEW Real-Time, this VI often is useful in conjunction with XNET Create

Timing Source (FlexRay Cycle).vi. The FlexRay Cycle timing source enables a LabVIEW

timed loop to execute at a specific macrotick within the cycle. Only one FlexRay Cycle timing

source is allowed within the cycle. Within the timed loop, you can read the current FlexRay

global time to measure performance or synchronize LabVIEW code to additional macroticks

in the cycle.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State FlexRay Statistics).vi

NI-XNET Hardware and Software Manual 4-242 ni.com

XNET Read (State FlexRay Statistics).vi

Purpose

Reads statistics for FlexRay communication using an XNET session.

Format

Inputs

session in is the session to read. This session is selected from a LabVIEW

project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

FlexRay statistics returns a LabVIEW cluster that contains the statistical

elements. The elements are:

num syntax error ch A is the number of syntax errors that have

occurred on channel A since communication started.

A syntax error occurs if:

• A node starts transmitting while the channel is not in the idle

state.

• There is a decoding error.

• A frame is decoded in the symbol window or in the network

idle time.

• A symbol is decoded in the static segment, dynamic segment,

or network idle time.

• A frame is received within the slot after reception of a

semantically correct frame (two frames in one slot).

• Two or more symbols are received within the symbol window.

num syntax error ch B is the number of syntax errors that have

occurred on channel B since communication started.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State FlexRay Statistics).vi

© National Instruments 4-243 NI-XNET Hardware and Software Manual

num content error ch A is the number of content errors that have

occurred on channel A since communication started.

A content error occurs if:

• In a static segment, the payload length of a frame does not

match the global cluster property.

• In a static segment, the Startup indicator (bit) is 1 while the

Sync indicator is 0.

• A frame ID encoded in the frame header does not match the

current slot.

• A cycle count encoded in the frame’s header does not match

the current cycle count.

• In a dynamic segment, the Sync indicator is 1.

• In a dynamic segment, the Startup indicator is 1.

• In a dynamic segment, the Null indicator is 0.

num content error ch B is the number of content errors that have

occurred on channel B since communication started.

num slot boundary violation ch A is the number of slot

boundary violations that have occurred on channel A since

communication started.

A slot boundary violation error occurs if the interface does not

consider the channel to be idle at the boundary of a slot (either

beginning or end).

num slot boundary violation ch B is the number of slot boundary

violations that have occurred on channel B since communication

started.

For more information about these statistics, refer to Appendix B,

Summary of the FlexRay Standard.

error out is the error cluster output (refer to Error Handling).

Description

You can use this XNET Read.vi instance with any XNET session mode, as long as the

session’s interface is FlexRay. Because the state reflects the FlexRay interface, it can apply to

multiple sessions.

Like other XNET Read.vi instances, this VI executes quickly, so it is appropriate for

real-time loops. The statistical information is updated during the Network Idle Time (NIT) of

each FlexRay cycle.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State Time Comm).vi

NI-XNET Hardware and Software Manual 4-244 ni.com

XNET Read (State Time Comm).vi

Purpose

Reads the time at which the session’s interface completed its integration with the network

cluster. This represents the time at which communication began.

Format

Inputs

session in is the session to read. This session is selected from a LabVIEW

project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

time communicating returns the communication time of the interface as a

LabVIEW absolute timestamp.

If the interface is not communicating when this read is called, time

communicating returns an invalid time (0).

error out is the error cluster output (refer to Error Handling).

Description

You can use this XNET Read.vi instance with any XNET session mode. Because the time is

associated with the interface, it can apply to multiple sessions.

This XNET Read.vi instance returns time as a LabVIEW absolute timestamp data type.

After your application starts the XNET interface hardware, the communication controller

begins to integrate with ECUs in the network. The timestamp at which this integration starts

is available using XNET Read (State Time Start).vi. Once the XNET interface is fully

integrated and communicating on the network (transmitting and receiving frames), this VI

captures and returns the time. For the CAN protocol, the time difference between Start and

Communicating is very small. For the FlexRay protocol, the time difference can be many

milliseconds due to factors such as clock synchronization and cycle length.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State Time Current).vi

© National Instruments 4-245 NI-XNET Hardware and Software Manual

XNET Read (State Time Current).vi

Purpose

Reads the current interface timestamp using an XNET session.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

time current returns the current interface timestamp as a LabVIEW

absolute time. If the interface is not started when XNET Read (State Time

Current).vi is called, time current returns an invalid time (0).

error out is the error cluster output (refer to Error Handling).

Description

You can use XNET Read (State Time Current).vi with any XNET session mode. Because

the time is associated with the interface, it can apply to multiple sessions.

XNET Read (State Time Current).vi returns time as a LabVIEW absolute timestamp data

type. The timestamp represents absolute time that the interface timebase source drives. You

use the timebase source to timestamp frames the interface receives. For a CAN interface, you

use the timebase source to schedule cyclic frame transmit.

The interface timebase source is not necessarily connected to the LabVIEW CPU clock, so

this timestamp can drift relative to the LabVIEW time used for internally sourced timed loops

and Get Date/Time in Seconds.vi.

For more information about the interface timebase source, refer to XNET Connect

Terminals.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State Time Start).vi

NI-XNET Hardware and Software Manual 4-246 ni.com

XNET Read (State Time Start).vi

Purpose

Reads the time when the session interface started its integration.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

time start returns the interface start time as a LabVIEW absolute

timestamp.

If the interface is not started when XNET Read (State Time Start).vi is

called, time start returns an invalid time (0).

error out is the error cluster output (refer to Error Handling).

Description

You can use XNET Read (State Time Start).vi with any XNET session mode. Because the

time is associated with the interface, it can apply to multiple sessions.

XNET Read (State Time Start).vi returns time as a LabVIEW absolute timestamp data type.

Your application typically starts the interface simply by calling XNET Read.vi or XNET

Write.vi, because the XNET Session Auto Start? property is true by default. If you set Auto

Start? to false, you start the interface using XNET Start.vi. If you use XNET Connect

Terminals.vi to import a start trigger for the interface, all sessions for that interface wait for

the trigger to occur before starting the interface.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State Time Start).vi

© National Instruments 4-247 NI-XNET Hardware and Software Manual

Once the interface starts, this VI captures and returns the time. Unless you connect a start

trigger, this time generally is known, so this VI may not be useful.

After the XNET interface starts, the communication controller begins to integrate with ECUs

in the network. After this integration is complete, the time is captured and available using

XNET Read (State Time Comm).vi. That time often is useful for FlexRay, because it

indicates the time when true communication began.

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State Session Info).vi

NI-XNET Hardware and Software Manual 4-248 ni.com

XNET Read (State Session Info).vi

Purpose

Returns the current state for the session provided.

Format

Inputs

session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

session info state returns the state of the provided session.

Stopped (0) All frames in the session are stopped.

Started (1) All frames in the session are started.

Mix (2) Some frames in the session are started while other frames are

stopped.

error out is the error cluster output (refer to Error Handling).

Description

You can use XNET Read (State Session Info).vi with any XNET session mode.

XNET Read (State Session Info).vi returns the state of the session’s objects. A mixed state

may occur when using XNET Start.vi or XNET Stop.vi with the Session Only option. By

reading this state, your application can ensure that all frames in the session have started or

stopped.

If the session is started with any option other than Session Only, the state is known, so this VI

may not be useful.

Chapter 4 NI-XNET API for LabVIEW—XNET Write.vi

© National Instruments 4-249 NI-XNET Hardware and Software Manual

XNET Write.vi

Purpose

Writes data to the network using an XNET session.

Description

The instances of this polymorphic VI specify the type of data provided.

XNET Read.vi and XNET Write.vi are optimized for real-time performance. XNET

Write.vi executes quickly and avoids access to shared resources that can induce jitter on other

VI priorities.

The XNET Write.vi instances are asynchronous, in that data is written to a hardware buffer,

but the XNET Write.vi returns before the corresponding frames are transmitted onto the

network. If you need to wait for the data provided to XNET Write.vi to transmit onto the

network, use XNET Wait (Transmit Complete).vi.

There are two categories of XNET Write instance VIs:

• Signal: Use when the session mode is Signal Output. The XNET Write.vi instance must

match the mode exactly (for example, the instance is Signal Waveform when the mode is

Signal Output Waveform).

• Frame: Use when the session mode is Frame Output. The XNET Write.vi instance

specifies the desired data type for frames and is not related to the mode. For an

easy-to-use data type, use the CAN, FlexRay, or LIN instance.

• State: Use to change the session’s interface state. You can use these instances in addition

to Signal or Frame instances, and they are not related to the mode. These instances are

optimized for performance. Although property nodes may provide write access to similar

runtime data, those properties are not necessarily optimized for real-time loops.

The XNET Write instance VIs are:

• XNET Write (Signal Single-Point).vi: The session mode is Signal Output Single-Point.

• XNET Write (Signal Waveform).vi: The session mode is Signal Output Waveform.

• XNET Write (Signal XY).vi: The session mode is Signal Output XY.

• XNET Write (Frame CAN).vi: The session uses a CAN interface, and the mode is

Frame Output Stream Mode, Frame Output Single-Point Mode, or Frame Output Queued

Mode. Additionally, XNET Write (Frame CAN).vi can be called on any signal or frame

input session if it contains one or more Event Remote frames (refer to CAN:Timing

Type). In this case, it signals an event to transmit those remote frames.

• XNET Write (Frame FlexRay).vi: The session uses a FlexRay interface, and the mode

is Frame Output Single-Point Mode, Frame Output Queued Mode, PDU Output

Chapter 4 NI-XNET API for LabVIEW—XNET Write.vi

NI-XNET Hardware and Software Manual 4-250 ni.com

Single-Point Mode (similar to Frame Output Single-Point Mode), or PDU Output

Queued Mode (similar to Frame Output Queued Mode).

• XNET Write (Frame LIN).vi: The session uses a LIN interface, and the mode is Frame

Output Stream Mode, Frame Output Single-Point Mode, or Frame Output Queued Mode.

• XNET Write (Frame Raw).vi: A data type for frame output that is protocol independent

and more efficient than the CAN, FlexRay, and LIN instances.

• XNET Write (State FlexRay Symbol).vi: Writes a request for the FlexRay interface to

transmit a symbol on the FlexRay bus.

• XNET Write (State LIN Schedule Change).vi: Submits a request for the LIN interface

to change the running schedule.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Signal Single-Point).vi

© National Instruments 4-251 NI-XNET Hardware and Software Manual

XNET Write (Signal Single-Point).vi

Purpose

Writes data to a session of Signal Output Single-Point Mode.

Format

Inputs

session in is the session to write. This session is selected from the

LabVIEW project or returned from XNET Create Session.vi. The session

mode must be Signal Output Single-Point.

data provides a one-dimensional array of signal values. Each signal value

is scaled, 64-bit floating point.

Each array element corresponds to a signal configured for the session. The

order of signals in the array corresponds to the order in the session list.

The data provides the value for the next transmit of each signal. If XNET

Write (Signal Single-Point).vi is called twice before the next transmit, the

transmitted frame uses signal values from the second call to XNET Write

(Signal Single-Point).vi.

For an example of how this data applies to network traffic, refer to Signal

Output Single-Point Mode.

A trigger signal written a value of 0.0 suppresses writing of its frame’s data;

writing a value not equal to 0.0 enables it. For more information about

trigger signals, refer to Signal Output Single-Point Mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Signal Waveform).vi

NI-XNET Hardware and Software Manual 4-252 ni.com

XNET Write (Signal Waveform).vi

Purpose

Writes data to a session of Signal Output Waveform Mode. The data represents a waveform

of resampled values for each signal in the session.

Format

Inputs

session in is the session to write. This session is selected from the

LabVIEW project or returned from XNET Create Session.vi. The session

mode must be Signal Output Waveform.

data provides a one-dimensional array of LabVIEW waveforms.

The data you write is queued up for transmit on the network. Using the

default queue configuration for this mode, and assuming a 1000 Hz

resample rate, you can safely write 64 frames if you have a sufficiently long

timeout. To write more data, refer to the XNET Session Number of Values

Unused property to determine the actual amount of queue space available

for writing.

For an example of how this data applies to network traffic, refer to Signal

Output Waveform Mode.

Each array element corresponds to a signal configured for the session. The

order of signals in the array corresponds to the order in the session list.

The waveform elements are:

t0 is the waveform start time. This is a LabVIEW absolute

timestamp.

This start time is unused (reserved) for Signal Output Waveform

mode. If you change it from its default value of 0 (invalid), XNET

Write (Signal Waveform).vi returns an error.

dt is the waveform delta time. This is a LabVIEW relative time

that specifies the time between each sample in the Y array.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Signal Waveform).vi

© National Instruments 4-253 NI-XNET Hardware and Software Manual

LabVIEW relative time is represented as 64-bit floating point in

units of seconds.

This delta time is unused (reserved) for Signal Output Waveform

mode. If you change it from its default value of 0, XNET Write

(Signal Waveform).vi returns an error.

Y is the array of resampled signal values. Each signal value is

scaled, 64-bit floating point.

The Y array size must be the same for all waveforms, because the

size determines the total timeline for XNET Write (Signal

Waveform).vi. If the Y array sizes are not the same, XNET

Write (Signal Waveform).vi returns an error.

timeout is the time to wait for the data to be queued for transmit. The

timeout does not wait for frames to be transmitted on the network (refer to

XNET Wait (Transmit Complete).vi).

The timeout is a LabVIEW relative time, represented as 64-bit

floating-point in units of seconds.

If timeout is positive, XNET Write (Signal Waveform).vi waits up to that

timeout for space to become available in queues. If the space is not

available prior to the timeout, a timeout error is returned.

If timeout is negative, XNET Write (Signal Waveform).vi waits

indefinitely for space to become available in queues.

If timeout is 0, XNET Write (Signal Waveform).vi does not wait and

immediately returns an error if all data cannot be queued. Regardless of the

timeout used, if a timeout error occurs, none of the data is queued, so you

can attempt to call XNET Write (Signal Waveform).vi again at a later

time with the same data.

This input is optional. The default value is 10.0 (10 seconds).

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Signal XY).vi

NI-XNET Hardware and Software Manual 4-254 ni.com

XNET Write (Signal XY).vi

Purpose

Writes data to a session of Signal Output XY Mode. The data represents a sequence of signal

values for transmit using each frame’s timing as the database specifies.

Format

Inputs

session in is the session to write. This session is selected from the

LabVIEW project or returned from XNET Create Session.vi. The session

mode must be Signal Output XY.

data provides an array of LabVIEW clusters.

Each array element corresponds to a signal configured for the session. The

order of signals in the array corresponds to the order in the session list.

The data you write is queued up for transmit on the network. Using the

default queue configuration for this mode, you can safely write 64 elements

if you have a sufficiently long timeout. To write more data, refer to the

XNET Session Number of Values Unused property to determine the actual

amount of queue space available for writing.

For an example of how this data applies to network traffic, refer to Signal

Output XY Mode.

Each cluster contains two arrays, one for value, and one for timestamp.

Each value is mapped to a frame for transmit. When signals exist in

different frames, the array sizes may be different from one cluster (signal)

to another.

The cluster elements are:

timestamp is the array of LabVIEW timestamps.

The timestamp array is unused (reserved) for Signal Output XY.

If you change it from its default value of empty, XNET Write

(Signal XY).vi returns an error.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Signal XY).vi

© National Instruments 4-255 NI-XNET Hardware and Software Manual

value is the array of signal values, one for each frame that contains

the signal. Frame transmission is timed according to the frame

properties in the database.

Each signal value is scaled, 64-bit floating point.

timeout is the time to wait for the data to be queued for transmit. The

timeout does not wait for frames to be transmitted on the network (refer to

XNET Wait (Transmit Complete).vi).

The timeout is a LabVIEW relative time, represented as 64-bit

floating-point in units of seconds.

If timeout is positive, XNET Write (Signal XY).vi waits up to that

timeout for space to become available in queues. If the space is not

available prior to the timeout, a timeout error is returned.

If timeout is negative, XNET Write (Signal XY).vi waits indefinitely for

space to become available in queues.

If timeout is 0, XNET Write (Signal XY).vi does not wait and

immediately returns with a timeout error if all data cannot be queued.

Regardless of the timeout used, if a timeout error occurs, none of the data

is queued, so you can attempt to call XNET Write (Signal XY).vi again at

a later time with the same data.

This input is optional. The default value is 10.0 (10 seconds).

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Frame CAN).vi

NI-XNET Hardware and Software Manual 4-256 ni.com

XNET Write (Frame CAN).vi

Purpose

Writes data to a session as an array of CAN frames. The session must use a CAN interface

and Frame Output Stream Mode, Frame Output Queued Mode, or Frame Output Single-Point

Mode.

Format

Inputs

session in is the session to write. This session is selected from the

LabVIEW project or returned from XNET Create Session.vi. The session

mode must be Frame Output Stream, Frame Output Queued, or Frame

Output Single-Point.

data provides the array of LabVIEW clusters.

Each array element corresponds to a frame value to transmit.

For a Frame Output Single-Point session mode, the order of frames in the

array corresponds to the order in the session list.

The data you write is queued up for transmit on the network. Using the

default queue configuration for this mode, you can safely write 64 frames

if you have a sufficiently long timeout. To write more data, refer to the

XNET Session Number of Values Unused property to determine the actual

amount of queue space available for write.

For an example of how this data applies to network traffic, refer to Frame

Output Stream Mode, Frame Output Queued Mode, or Frame Output

Single-Point Mode.

Additionally, XNET Write (Frame CAN).vi can be called on any signal

or frame input session if it contains one or more Event Remote frames

(refer to CAN:Timing Type). In this case, it signals an event to transmit

those remote frames. The data parameter is ignored in this case, and you

can set it to an empty array.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Frame CAN).vi

© National Instruments 4-257 NI-XNET Hardware and Software Manual

The elements of each cluster are specific to the CAN protocol. For more

information, refer to Appendix A, Summary of the CAN Standard, or the

CAN protocol specification.

The cluster elements are:

identifier is the CAN frame arbitration identifier.

If extended? is false, the identifier uses standard format, so 11 bits

of this identifier are valid.

If extended? is true, the identifier uses extended format, so 29 bits

of this identifier are valid.

extended? is a Boolean value that determines whether the

identifier uses extended format (true) or standard format (false).

echo? is not used for transmit. You must set this element to false.

type is the frame type (decimal value in parentheses):

CAN Data (0) The CAN data frame contains payload data.

This is the most commonly used frame type

for CAN.

CAN Remote (1) CAN remote frame. Your application

transmits a CAN remote frame to request data

for the corresponding identifier. A remote

ECU should respond with a CAN data frame

for the identifier, which you can obtain using

XNET Read.vi.

timestamp represents absolute time using the LabVIEW absolute

timestamp type. timestamp is not used for transmit. You must set

this element to the default value, invalid (0).

payload is the array of data bytes for a CAN data frame.

The array size indicates the payload length of the frame value to

transmit. According to the CAN protocol, the payload length

range is 0–8. For CAN FD, the range can be 0–8, 12, 16, 20, 24,

32, 48, or 64.

When the session mode is Frame Output Single-Point or Frame

Output Queued, the number of bytes in the payload array must be

less than or equal to the Payload Length property of the

corresponding frame. You can leave all other CAN frame cluster

elements uninitialized. For more information, refer to the section

for each mode.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Frame CAN).vi

NI-XNET Hardware and Software Manual 4-258 ni.com

For a transmitted remote frame (CAN Remote type), the payload

length in the frame value specifies the number of payload bytes

requested. Your application provides this payload length by filling

payload with the requested number of bytes. This enables your

application to specify the frame payload length, but the actual

values in the payload bytes are ignored (not contained in the

transmitted frame).

timeout is the time to wait for the CAN frame data to be queued up for

transmit.

The timeout is a LabVIEW relative time, represented as 64-bit

floating-point in units of seconds.

If timeout is positive, XNET Write (Frame CAN).vi waits up to that

timeout for space to become available in queues. If the space is not

available prior to the timeout, a timeout error is returned.

If timeout is negative, XNET Write (Frame CAN).vi waits indefinitely

for space to become available in queues.

If timeout is 0, XNET Write (Frame CAN).vi does not wait and

immediately returns with a timeout error if all data cannot be queued.

Regardless of the timeout used, if a timeout error occurs, none of the data

is queued, so you can attempt to call XNET Write (Frame CAN).vi again

at a later time with the same data.

This input is optional. The default value is 10.0 (10 seconds).

If the session mode is Frame Output Single-Point, you must set timeout to

0.0. Because this mode writes the most recent value of each frame, timeout

does not apply.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Frame CAN).vi

© National Instruments 4-259 NI-XNET Hardware and Software Manual

Description

The data represents an array of CAN frames. Each CAN frame uses a LabVIEW cluster with

CAN-specific elements.

The CAN frames are associated to the session’s list of frames as follows:

• Frame Output Stream Mode: Array of all frame values for transmit (list ignored).

• Frame Output Queued Mode: Array of frame values to transmit for the single frame

specified in the list.

• Frame Output Single-Point Mode: Array of single frame values, one for each frame

specified in the list.

• Any signal or frame input mode: The data parameter is ignored, and you can set it to an

empty array. The VI transmits an event remote frame.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Frame FlexRay).vi

NI-XNET Hardware and Software Manual 4-260 ni.com

XNET Write (Frame FlexRay).vi

Purpose

Writes data to a session as an array of FlexRay frames. The session must use a FlexRay

interface and Frame Output Queued Mode or Frame Output Single-Point Mode.

Format

Inputs

session in is the session to write. This session is selected from the

LabVIEW project or returned from XNET Create Session.vi. The session

mode must be Frame Output Queued or Frame Output Single-Point.

Frame Output Stream mode is not supported for FlexRay.

data provides the array of LabVIEW clusters.

Each array element corresponds to a frame value to transmit.

For a Frame Input Single-Point session mode, the order of frames in the

array corresponds to the order in the session list.

The data you write is queued up for transmit on the network. Using the

default queue configuration for this mode, and assuming frames with

8 bytes of payload, you can safely write 64 frames if you have a sufficiently

long timeout. To write more data, refer to the XNET Session Number of

Values Unused property to determine the actual amount of queue space

available for write.

For an example of how this data applies to network traffic, refer to Frame

Output Queued Mode or Frame Output Single-Point Mode.

The elements of each cluster are specific to the FlexRay protocol. For more

information, refer to Appendix B, Summary of the FlexRay Standard, or the

FlexRay Protocol Specification.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Frame FlexRay).vi

© National Instruments 4-261 NI-XNET Hardware and Software Manual

The cluster elements are:

slot specifies the slot number within the FlexRay cycle.

cycle count specifies the cycle number.

The FlexRay cycle count increments from 0 to 63, then rolls over

back to 0.

startup? is a Boolean value that specifies whether the frame is a

startup frame (true) or not (false).

sync? is a Boolean value that specifies whether the frame is a sync

frame (true) or not (false).

preamble? is a Boolean value that specifies the value of the

payload preamble indicator in the frame header.

If the frame is in the static segment, preamble? being true

indicates the presence of a network management vector at the

beginning of the payload. The XNET Cluster FlexRay:Network

Management Vector Length property specifies the number of

bytes at the beginning.

If the frame is in the dynamic segment, preamble? being true

indicates the presence of a message ID at the beginning of the

payload. The message ID is always 2 bytes in length.

If preamble? is false, the payload does not contain a network

management vector or a message ID.

chA is a Boolean value that specifies whether to transmit the

frame on channel A (true) or not (false).

chB is a Boolean value that specifies whether to transmit the

frame on channel B (true) or not (false).

echo? is not used for transmit. You must set this element to false.

type is the frame type. type is not used for transmit, so you must

leave this element uninitialized. All frame values are assumed to

be the FlexRay Data type. Frames of FlexRay Data type contain

payload data.

The FlexRay Null type is not transmitted based on this type. As

specified in the XNET Frame FlexRay:Timing Type property, the

FlexRay null frame is transmitted when a cyclically timed frame

does not have new data.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Frame FlexRay).vi

NI-XNET Hardware and Software Manual 4-262 ni.com

timestamp represents absolute time using the LabVIEW absolute

timestamp type. timestamp is not used for transmit. You must set

this element to the default value, invalid (0).

The slot and cycle count specify when the frame transmits in

FlexRay global time.

payload is the array of data bytes for FlexRay frames of type

FlexRay Data.

The array size indicates the payload length of the frame value to

transmit. According to the FlexRay protocol, the length range is

0–254.

For PDU output session mode, the payload is the array of data

bytes for the specific PDU, not the entire frame.

When the session mode is Frame Output Single-Point, Frame

Output Queued, PDU Output Single-Point, or PDU Output

Queued, the number of bytes in the payload array must match the

Payload Length property of the corresponding frame. You can

leave all other FlexRay frame cluster elements uninitialized. For

more information, refer to the section for each mode.

timeout is the time to wait for the FlexRay frame data to be queued up for

transmit.

The timeout is a LabVIEW relative time, represented as 64-bit

floating-point in units of seconds.

If timeout is positive, XNET Write (Frame FlexRay).vi waits up to that

timeout for space to become available in queues. If the space is not

available prior to the timeout, a timeout error is returned.

If timeout is negative, XNET Write (Frame FlexRay).vi waits

indefinitely for space to become available in queues.

If timeout is 0, XNET Write (Frame FlexRay).vi does not wait and

immediately returns with a timeout error if all data cannot be queued.

Regardless of the timeout used, if a timeout error occurs, none of the data

is queued, so you can attempt to call XNET Write (Frame FlexRay).vi

again at a later time with the same data.

This input is optional. The default value is 10.0 (10 seconds).

If the session mode is Frame Output Single-Point, you must set timeout to

0.0. Because this mode writes the most recent value of each frame, timeout

does not apply.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Frame FlexRay).vi

© National Instruments 4-263 NI-XNET Hardware and Software Manual

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

The data represents an array of FlexRay frames. Each FlexRay frame uses a LabVIEW cluster

with FlexRay-specific elements.

The FlexRay frames are associated to the session’s list of frames as follows:

• Frame Output Queued Mode: Array of frame values to transmit for the single frame

specified in the list.

• Frame Output Single-Point Mode: Array of single frame values, one for each frame

specified in the list.

• PDU Output Queued Mode: Array of frame (PDU payload) values to transmit for the

single PDU specified in the list. This mode is similar to Frame Output Queued Mode.

• PDU Output Single-Point Mode: Array of single frame (PDU payload) values, one for

each PDU specified in the list. This mode is similar to Frame Output Single-Point Mode.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Frame LIN).vi

NI-XNET Hardware and Software Manual 4-264 ni.com

XNET Write (Frame LIN).vi

Purpose

Writes data to a session as an array of LIN frames. The session must use a LIN interface and

Frame Output Stream Mode, Frame Output Queued Mode, or Frame Output Single-Point

Mode.

Format

Inputs

session in is the session to write. This session is selected from the

LabVIEW project or returned from XNET Create Session.vi. The session

mode must be Frame Output Stream, Frame Output Queued, or Frame

Output Single-Point.

data provides the array of LabVIEW clusters.

Each array element corresponds to a frame value to transmit.

For a Frame Input Single-Point session mode, the order of frames in the

array corresponds to the order in the session list.

For Frame Output Queued session mode, the data you write is queued up

for transmit on the network. Using the default queue configuration for this

mode, you can safely write 64 frames if you have a sufficiently long

timeout. To write more data, refer to the XNET Session Number of Values

Unused property to determine the actual amount of queue space available

for write.

For an example of how this data applies to network traffic, refer to Frame

Output Stream Mode, Frame Output Queued Mode, or Frame Output

Single-Point Mode.

The elements of each cluster are specific to the LIN protocol. For more

information, refer to Appendix C, Summary of the LIN Standard, or the

LIN protocol specification.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Frame LIN).vi

© National Instruments 4-265 NI-XNET Hardware and Software Manual

The cluster elements are:

identifier is not used for transmit. You must set this element to 0.

Each frame is identified based on the list of frames or signals

provided for the session. The actual identifier to transmit is taken

from the database (frame and schedule properties). Therefore, this

identifier in the frame value is ignored.

event slot? is not used for transmit. You must set this element to

false.

The currently running schedule is used to map the specific frame

to a corresponding schedule entry (slot). The schedule entry itself

determines whether the slot is unconditional, sporadic, or event

triggered.

event ID is not used for transmit. You must set this element to 0.

echo? is not used for transmit. You must set this element to false.

type is the frame type (decimal value in parentheses):

LIN Data (64) The LIN data frame contains payload data.

This is currently the only frame type for LIN.

timestamp represents absolute time using the LabVIEW absolute

timestamp type. timestamp is not used for transmit. You must set

this element to the default value, invalid (0).

payload is the array of data bytes for a LIN data frame.

The array size indicates the payload length of the frame value to

transmit. According to the LIN protocol, the payload length range

is 0–8.

The number of bytes in the payload array must match the Payload

Length property of the corresponding frame. You can leave all

other LIN frame cluster elements uninitialized. For more

information, refer to the topic for each mode.

If you use the frame payload within an event-triggered schedule

entry (slot), the first byte of data on the network is the frame’s

payload identifier. The LIN standard requires this even if the

frame transmits in an unconditional or sporadic slot. For this type

of LIN frame, the actual data (for example, signal values) is

limited to 7 bytes. For this type of frame, you must write the first

byte (payload of 8 bytes even if only the last 7 are used), but

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Frame LIN).vi

NI-XNET Hardware and Software Manual 4-266 ni.com

NI-XNET ignores the value and fills in the first byte for you, using

the known frame ID from the session’s configuration.

timeout is the time to wait for the LIN frame data to be queued up for

transmit.

The timeout is a LabVIEW relative time, represented as 64-bit

floating-point in units of seconds.

If timeout is positive, XNET Write (Frame LIN).vi waits up to that

timeout for space to become available in queues. If the space is not

available prior to the timeout, a timeout error is returned.

If timeout is negative, XNET Write (Frame LIN).vi waits indefinitely for

space to become available in queues.

If timeout is 0, XNET Write (Frame LIN).vi does not wait and

immediately returns with a timeout error if all data cannot be queued.

Regardless of the timeout used, if a timeout error occurs, none of the data

is queued, so you can attempt to call XNET Write (Frame LIN).vi again

at a later time with the same data.

This input is optional. The default value is 10.0 (10 seconds).

If the session mode is Frame Output Single-Point, you must set timeout to

0.0. Because this mode writes the most recent value of each frame, timeout

does not apply.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

The data represents an array of LIN frames. Each LIN frame uses a LabVIEW cluster with

LIN-specific elements.

The LIN frames are associated to the session’s list of frames as follows:

• Frame Output Stream Mode: Array of all frame values for transmit (list ignored). If the

payload is an empty array, only the header part of the LIN frame is transmitted. If the

payload is not an empty array, the header and response parts of the LIN frame are

transmitted.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Frame LIN).vi

© National Instruments 4-267 NI-XNET Hardware and Software Manual

• Frame Output Queued Mode: Array of frame values to transmit for the single frame

specified in the list.

• Frame Output Single-Point Mode: Array of single frame values, one for each frame

specified in the list.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Frame Raw).vi

NI-XNET Hardware and Software Manual 4-268 ni.com

XNET Write (Frame Raw).vi

Purpose

Writes data to a session as an array of raw bytes.

Format

Inputs

session in is the session to write. This session is selected from the

LabVIEW project or returned from XNET Create Session.vi. The session

mode must be Frame Output Stream Mode, Frame Output Queued Mode,

or Frame Output Single-Point Mode.

data provides the array of bytes, representing frames to transmit.

The raw bytes encode one or more frames using the Raw Frame Format.

This frame format is the same for read and write of raw data and also is used

for log file examples.

If needed, you can write data for a partial frame. For example, if a complete

raw frame is 24 bytes, you can write 12 bytes, then write the next 12 bytes.

You typically do this when you are reading raw frame data from a logfile

and want to avoid iterating through the data to detect the start and end of

each frame.

For information about which elements of the raw frame are applicable,

refer to the XNET Write.vi instance for the protocol in use (XNET Write

(Frame CAN).vi, XNET Write (Frame FlexRay).vi, or XNET Write

(Frame LIN).vi).

The data you write is queued up for transmit on the network. Using

the default queue configuration for this mode, you can safely write

1536 frames if you have a sufficiently long timeout. To write more data,

refer to the XNET Session Number of Values Unused property to

determine the actual amount of queue space available for writing.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Frame Raw).vi

© National Instruments 4-269 NI-XNET Hardware and Software Manual

For an example of how this data applies to network traffic, refer to Frame

Output Stream Mode, Frame Output Queued Mode, or Frame Output

Single-Point Mode.

timeout is the time to wait for the raw data to be queued up for transmit.

The timeout is a LabVIEW relative time, represented as 64-bit

floating-point in units of seconds.

If timeout is positive, XNET Write (Frame Raw).vi waits up to that

timeout for space to become available in queues. If the space is not

available prior to the timeout, a timeout error is returned.

If timeout is negative, XNET Write (Frame Raw).vi waits indefinitely for

space to become available in queues.

If timeout is 0, XNET Write (Frame Raw).vi does not wait and

immediately returns with a timeout error if all data cannot be queued.

Regardless of the timeout used, if a timeout error occurs, none of the data

is queued, so you can attempt to call XNET Write (Frame Raw).vi again

at a later time with the same data.

This input is optional. The default value is 10.0 (10 seconds).

If the session mode is Frame Output Single-Point, you must set timeout to

0.0. Because this mode writes the most recent value of each frame, timeout

does not apply.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

The raw bytes encode one or more frames using the Raw Frame Format. The session must use

a mode of Frame Output Stream, Frame Output Queued, or Frame Output Single-Point. The

raw frame format is protocol independent, so the session can use either a CAN, FlexRay, or

LIN interface.

The raw frame format matches the format of data transferred to/from the XNET hardware.

Because it is not converted to/from LabVIEW clusters for ease of use, it is more efficient with

regard to performance. This instance typically is used to read raw frame data from a log file

and write the data to the interface for transmit (replay).

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Frame Raw).vi

NI-XNET Hardware and Software Manual 4-270 ni.com

The raw frames are associated to the session’s list of frames as follows:

• Frame Output Stream Mode: Array of all frame values for transmit (list ignored). For

LIN, if the payload element is an empty array, only the header part of the LIN frame is

transmitted. If the payload element is not an empty array, the header and response parts

of the LIN frame are transmitted.

• Frame Output Queued Mode: Array of frame values to transmit for the single frame

specified in the list.

• Frame Output Single-Point Mode: Array of single frame values, one for each frame

specified in the list.

• PDU Output Queued Mode: Array of frame (PDU payload) values to transmit for the

single PDU specified in the list. This mode is similar to Frame Output Queued Mode.

• PDU Output Single-Point Mode: Array of single frame (PDU payload) values, one for

each PDU specified in the list. This mode is similar to Frame Output Single-Point Mode.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (State FlexRay Symbol).vi

© National Instruments 4-271 NI-XNET Hardware and Software Manual

XNET Write (State FlexRay Symbol).vi

Purpose

Writes a request for the FlexRay interface to transmit a symbol on the FlexRay bus. You can

use this XNET Write VI with any input or output session for FlexRay.

Format

Inputs

session in is the session to use for the symbol write. This session is selected

from the LabVIEW project or returned from XNET Create Session.vi. The

session must use a FlexRay interface.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

You can use XNET Write (State FlexRay Symbol).vi with any XNET session mode, as long

as the session interface is FlexRay. Because the symbol write applies to the FlexRay interface,

it can apply to multiple sessions.

After calling XNET Write (State FlexRay Symbol).vi, the XNET interface transmits the

symbol during the symbol window of the FlexRay cycle following the currently executing

cycle. If you call XNET Write (State FlexRay Symbol).vi multiple times, only the most

recent symbol is transmitted.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (State LIN Schedule Change).vi

NI-XNET Hardware and Software Manual 4-272 ni.com

XNET Write (State LIN Schedule Change).vi

Purpose

Write a request for the LIN interface to change the running schedule. You can use this XNET

Write VI with any input or output session for LIN.

Format

Inputs

session in is the session to use for the schedule change. This session is

selected from the LabVIEW project or returned from XNET Create

Session.vi. The session must use a LIN interface.

data is the XNET LIN schedule. Although the data type for this input is the

XNET LIN Schedule I/O Name, you also can wire a string.

The data input supports the following options:

• XNET LIN Schedule I/O Name: You can use the complete I/O name.

This provides features such as the ability to choose from LIN

schedules in a selected database.

• String with XNET LIN short name: If you prefer to use the XNET

LIN Schedule Name (Short) property, you can wire in the property as

a string.

• String with decimal number: This is interpreted as an index into the

XNET Cluster LIN:Schedules property used for this session. If you are

editing your database file to add/remove LIN schedules, this index may

change, in which case the name is the recommended option.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Write (State LIN Schedule Change).vi

© National Instruments 4-273 NI-XNET Hardware and Software Manual

Description

You can use XNET Write (State LIN Schedule Change).vi with any XNET session mode,

as long as the session interface is LIN. Because the schedule change applies to the LIN

interface, it can apply to multiple sessions.

According to the LIN protocol, only the master executes schedules, not slaves. If the XNET

Session Interface:LIN:Master? property is false (slave), this write function implicitly sets that

property to true (master). If the interface currently is running as a slave, this write returns an

error, because it cannot change to master while running.

The XNET Write (State LIN Schedule Change).vi behavior depends on the Run Mode

property of the XNET LIN schedule that you wire in as data:

• Continuous: This mode changes the single run-continuous schedule for the interface.

The single run-continuous schedule executes all its entries (slots) repetitively, starting

over with the first entry after running the last entry.

The run-continuous schedule is handled as if it is lowest priority. If you write a run-once

schedule in the middle of a run-continuous execution, the run-continuous schedule is

interrupted after the current slot finishes. The scheduler switches to the run-once

schedule, and when all run-once schedules are done, the scheduler returns to the slot in

the run-continuous schedule where it left off. For example, if run-continuous schedule A

has 4 slots, and it is executing slot 2 when a run-once schedule B is written, slot 2 of A

finishes, then all slots of schedule B run, then the scheduler returns to slot 3 of

schedule A.

Only one run-continuous schedule exists at a time. If you change from one

run-continuous schedule to another in the middle of a run, the current schedule completes

all of its slots, then the scheduler changes to the new run-continuous schedule.

• Once: This mode writes a request for a run-once schedule. Multiple run-once schedules

can be pending for execution. Each run-once schedule executes all its entries (slots), and

then it is considered done.

Each run-once schedule has a priority from 1 to 254. Lower values correspond to higher

priority (1 is highest). The LIN interface’s scheduler maintains a priority queue of

run-once schedule requests. This means the highest-priority run-once schedule executes

first, followed by the next run-once in priority, and when no run-once schedules are

pending, the interface returns to the run-continuous schedule.

A run-once schedule cannot interrupt another run-once schedule. For example, if

run-once schedule X has 3 slots and is executing slot 0 when a run-once schedule Y with

higher priority is written, slots 0, 1, and 2 of X finish, then all slots of schedule Y run.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (State LIN Schedule Change).vi

NI-XNET Hardware and Software Manual 4-274 ni.com

• Null: This mode stops scheduler execution after the current slot is finished. The queue of

run-once schedules is flushed (all elements discarded).

The null schedule is considered the highest priority schedule. It overrides the single

run-continuous schedule, thus acting as the default scheduling behavior. For example, if

you write a null schedule, then write a run-once schedule, the run-once schedule executes

all its slots, then communication stops (returns to null schedule).

XNET Write (State LIN Schedule Change).vi does not wait for the requested schedule

to finish execution prior to return. The VI does not wait for the schedule to begin

execution, because in the case of run-once schedules, that may take a long time

(depending on priority). Because this VI simply writes a schedule request and returns, it

is safe to use within a high-priority loop in LabVIEW Real-Time.

Node configuration is handled using XNET Write (State LIN Schedule Change).vi instead

of XNET Write (State LIN Diagnostic Schedule Change).vi. Wire the node configuration

schedule defined for the LIN cluster into XNET Write (State LIN Schedule Change).vi so

that it is the first schedule executed for the LIN, with a run mode of once. The data for each

node configuration service request entry in the node configuration schedule is automatically

transmitted by the master. After the node configuration schedule has completed, use XNET

Write (State LIN Diagnostic Schedule Change).vi to write master request messages and

query for slave response messages, or XNET Write (State LIN Schedule Change).vi to run

normal schedules.

Chapter 4 NI-XNET API for LabVIEW—XNET Write (State LIN Diagnostic Schedule Change).vi

© National Instruments 4-275 NI-XNET Hardware and Software Manual

XNET Write (State LIN Diagnostic Schedule Change).vi

Purpose

Write a request for the LIN interface to change the diagnostic schedule. You can use this

XNET Write VI with any input or output session for LIN.

Format

Inputs

session in is the session to use for the diagnostic schedule change. This

session is selected from the LabVIEW project or returned from XNET

Create Session.vi. The session must use a LIN interface.

diagnostic schedule is a ring (enumerated list) with the following values:

This specifies which diagnostic schedule the master executes:

• Null: The master does not execute any diagnostic schedule. No master

request or slave response headers are transmitted on the LIN.

• Master Request: The master executes a diagnostic master request

schedule (transmits a master request header onto the LIN) if it can.

First, a master request schedule must be defined for the LIN

cluster in the imported or in-memory database. Otherwise, error

nxErrDiagnosticScheduleNotDefined is returned when attempting to

set this value. Second, the master must have a frame output queued

session created for the master request frame, and there must be one or

more new master request frames pending in the queue. If no new

frames are pending in the output queue, no master request header is

transmitted. This allows the timing of master request header

String Value

Null 0

Master Request 1

Slave Response 2

Chapter 4 NI-XNET API for LabVIEW—XNET Write (State LIN Diagnostic Schedule Change).vi

NI-XNET Hardware and Software Manual 4-276 ni.com

transmission to be controlled by the timing of master request frame

writes to the output queue.

If there are no normal schedules pending, the master is effectively

in diagnostics-only mode, and master request headers are

transmitted at a rate determined by the slot delay defined for the

master request frame slot in the master request schedule or the

nxPropSession_IntfLINDiagSTmin time, whichever is greater, and the

state of the master request frame output queue as described above.

If there are normal schedules pending, the master is effectively in

diagnostics-interleaved mode, and a master request header

transmission is inserted between each complete execution of a

run-once or run-continuous schedule. This happens as long as the

nxPropSession_IntfLINDiagSTmin time has been met, and there are

one or more new master request frames pending in the master request

frame output queue.

• Slave Response: The master executes a diagnostic slave response

schedule (transmits a slave response header onto the LIN) if it

can. A slave response schedule must be defined for the LIN

cluster in the imported or in-memory database. Otherwise, error

nxErrDiagnosticScheduleNotDefined is returned when attempting to

set this value.

If there are no normal schedules pending, the master is effectively in

diagnostics-only mode, and slave response headers are transmitted at

the rate of the slot delay defined for the slave response frame slot in the

slave response schedule. The addressed slave may or may not respond

to each header, depending on its specified P2min and STmin timings.

If there are normal schedules pending, the master is effectively in

diagnostics-interleaved mode, and a slave response header

transmission is inserted between each complete execution of a

run-once or run-continuous schedule. Here again, the addressed slave

may or may not respond to each header, depending on its specified

P2min and STmin timings.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Write (State LIN Diagnostic Schedule Change).vi

© National Instruments 4-277 NI-XNET Hardware and Software Manual

Description

You can use XNET Write (State LIN Diagnostic Schedule Change).vi with any XNET

session mode, as long as the session interface is LIN. Because the schedule change applies to

the LIN interface, it can apply to multiple sessions.

According to the LIN protocol, only the master executes schedules, not slaves. If the XNET

Session Interface:LIN:Master? property is false (slave), this write function implicitly sets that

property to true (master). If the interface currently is running as a slave, this write returns an

error, because it cannot change to master while running.

Use XNET Write (State LIN Diagnostic Schedule Change).vi to transmit master request

messages and query for slave response messages after node configuration has been

performed. Node configuration should be handled using XNET Write (State LIN Schedule

Change).vi. Wire the node configuration schedule defined for the LIN cluster into that VI so

that it is the first schedule executed for the LIN. Refer to the description for XNET Write

(State LIN Schedule Change).vi for more information about using it to perform node

configuration.

Chapter 4 NI-XNET API for LabVIEW—Database Subpalette

NI-XNET Hardware and Software Manual 4-278 ni.com

Database Subpalette

This subpalette includes functions for accessing databases that specify the embedded network

configuration, including frame and signal data that is transferred. You can use these functions

to retrieve information from database files, create new database objects in LabVIEW, and edit

and save new database files.

XNET Database Property Node

Format

Description

Property node used to read/write properties for an XNET Database I/O Name.

Pull down this node to add properties. Right-click to change direction between read and write.

Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>) and

move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help (select

Search the LabVIEW Help from the Help menu) and look for the Property Nodes topic in

the index.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Property Node

© National Instruments 4-279 NI-XNET Hardware and Software Manual

Clusters

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Database

Short Name

Clsts

Description

Returns an array of I/O names of XNET Clusters in this database.

A cluster is assigned to a database when the cluster object is created. You cannot change this

assignment afterwards.

You can use an array element to read or write the cluster properties (for example, cluster

protocol or cluster frames). Refer to XNET Cluster I/O Name for information about using

XNET I/O names.

FIBEX files can contain any number of clusters, and each cluster uses a unique name.

For CANdb (.dbc), LDF (.ldf), or NI-CAN (.ncd) files, the file contains only one cluster,

and no cluster name is stored in the file. For these database formats, NI-XNET uses the name

Cluster for the single cluster.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Property Node

NI-XNET Hardware and Software Manual 4-280 ni.com

ShowInvalidFromOpen?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Database

Short Name

ShowInvalid?

Description

Shows frames and signals that are invalid at database open time.

After opening a database, this property always is set to false, meaning that invalid clusters,

frames, and signals are not returned in properties that return XNET I/O Names for the

database (for example, XNET Cluster Frames and XNET Frame Signals). Invalid clusters,

frames, and signals are incorrectly defined and therefore cannot be used in the bus

communication. The false setting is recommended when you use the database to create XNET

sessions.

In case the database was opened to correct invalid configuration (for example, in a database

editor), you must set the property to true prior to reading properties that return XNET I/O

Names for the database (for example, XNET Cluster Frames and XNET Frame Signals).

For invalid objects, the XNET Cluster Configuration Status, XNET Frame Configuration

Status, and XNET Signal Configuration Status properties return an error code that explains

the problem. For valid objects, Configuration Status returns success (no error).

Clusters, frames, and signals that became invalid after the database is opened are still returned

from the XNET Database Clusters, XNET Cluster Frames, and XNET Frame Signals

properties, even if ShowInvalidFromOpen? is false and Configuration Status returns an error

code. For example, if you open the frame with valid properties, then you set the Start Bit

beyond the payload length, the Configuration Status returns an error, but the frame is returned

from XNET Cluster Frames.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Constant

© National Instruments 4-281 NI-XNET Hardware and Software Manual

XNET Database Constant

This constant provides the constant form of the XNET Database I/O name. You drag a

constant to the block diagram of your VI, then select a database. You can change constants

only during configuration, prior to running the VI. For a complete description, refer to XNET

Database I/O Name.

XNET Cluster Property Node

Format

Description

Property node used to read/write properties for an XNET Cluster I/O Name.

Pull down this node to add properties. Right-click to change direction between read and write.

Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>) and

move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help (select

Search the LabVIEW Help from the Help menu) and look for the Property Nodes topic in

the index.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-282 ni.com

FlexRay Properties

This section includes the XNET Cluster FlexRay properties.

FlexRay:Action Point Offset

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.ActPtOff

Description

This property specifies the number of macroticks (MT) that the action point is offset from the

beginning of a static slot or symbol window.

This property corresponds to the global cluster parameter gdActionPointOffset in the

FlexRay Protocol Specification.

The action point is that point within a given slot where the actual transmission of a frame

starts. This is slightly later than the start of the slot, to allow for a clock drift between the

network nodes.

The range for this property is 1–63 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-283 NI-XNET Hardware and Software Manual

FlexRay:CAS Rx Low Max

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.CASRxLMax

Description

This property specifies the upper limit of the collision avoidance symbol (CAS) acceptance

window. The CAS symbol is transmitted by the FlexRay interface (node) during the symbol

window within the communication cycle. A receiving FlexRay interface considers the CAS

to be valid if the pattern’s low level is within 29 gdBit (cdCASRxLowMin) and CAS Rx

Low Max.

This property corresponds to the global cluster parameter gdCASRxLowMax in the FlexRay

Protocol Specification.

The values for this property are in the range 67–99 gdBit.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-284 ni.com

FlexRay:Channels

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.Channels

Description

This property specifies the FlexRay channels used in the cluster. Frames defined in this cluster

are expected to use the channels this property specifies. Refer to the XNET Frame

FlexRay:Channel Assignment property.

This property corresponds to the global cluster parameter gChannels in the FlexRay Protocol

Specification.

A FlexRay cluster supports two independent network wires (channels A and B). You can

choose to use both or only one in your cluster.

The values (enumeration) for this property are:

1 Channel A only

2 Channel B only

3 Channels A and B

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-285 NI-XNET Hardware and Software Manual

FlexRay:Cluster Drift Damping

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.ClstDriftDmp

Description

This property specifies the cluster drift damping factor, based on the longest microtick used

in the cluster. Use this global FlexRay parameter to compute the local cluster drift damping

factor for each cluster node. You can access the local cluster drift for the XNET FlexRay

interface from the XNET Session Interface:FlexRay:Cluster Drift Damping property.

This property corresponds to the global cluster parameter gdClusterDriftDamping in the

FlexRay Protocol Specification.

The values for this property are in the range 0–5 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-286 ni.com

FlexRay:Cold Start Attempts

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.ColdStAts

Description

This property specifies the maximum number of times a node in this cluster can start the

cluster by initiating schedule synchronization. This global cluster parameter is applicable to

all cluster notes that can perform a coldstart (send startup frames).

This property corresponds to the global cluster parameter gColdStartAttempts in the

FlexRay Protocol Specification.

The values for this property are in the range 2–31.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-287 NI-XNET Hardware and Software Manual

FlexRay:Cycle

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.Cycle

Description

This property specifies the duration of one FlexRay communication cycle, expressed in

microseconds.

This property corresponds to the global cluster parameter gdCycle in the FlexRay Protocol

Specification.

All frame transmissions complete within a cycle. After this time, the frame transmissions

restart with the first frame in the next cycle. The communication cycle counts increment from

0–63, after which the cycle count resets back to 0.

The range for this property is 10–16000 s.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-288 ni.com

FlexRay:Dynamic Segment Start

Data Type Direction Required? Default

Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Short Name

FlexRay.DynSegStart

Description

This property specifies the start of the dynamic segment, expressed as the number of

macroticks (MT) from the start of the cycle.

The range for this property is 8–15998 MT.

This property is calculated from other cluster properties. It is based on the total static segment

size. It is set to 0 if the FlexRay:Number of Minislots property is 0 (no dynamic segment

exists).

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-289 NI-XNET Hardware and Software Manual

FlexRay:Dynamic Slot Idle Phase

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.DynSlotIdlPh

Description

This property specifies the dynamic slot idle phase duration.

This property corresponds to the global cluster parameter gdDynamicSlotIdlePhase in the

FlexRay Protocol Specification.

The values for this property are in the range 0–2 minislots.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-290 ni.com

FlexRay:Latest Guaranteed Dynamic Slot

Data Type Direction Required? Default

Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Short Name

FlexRay.LatestGuarDyn

Description

This property specifies the highest slot ID in the dynamic segment that still can transmit a

full-length (for example, Payload Length Dynamic Maximum) frame, provided all previous

slots in the dynamic segment have transmitted full-length frames also.

A larger slot ID cannot be guaranteed to transmit a full-length frame in each cycle (although

a frame might go out depending on the dynamic segment load).

The range for this property is 2–2047 slots.

This read-only property is calculated from other cluster properties. If the Number of Minislots

is zero, no dynamic slots exist, and this property returns 0. Otherwise, the Number of

Minislots is used along with Payload Length Dynamic Maximum to determine the latest

dynamic slot guaranteed to transmit in the next cycle. In other words, when all preceding

dynamic slots transmit with Payload Length Dynamic Maximum, this dynamic slot also can

transmit with Payload Length Dynamic Maximum, and its frame ends prior to the end of the

dynamic segment.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-291 NI-XNET Hardware and Software Manual

FlexRay:Latest Usable Dynamic Slot

Data Type Direction Required? Default

Read N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Short Name

FlexRay.LatestUsableDyn

Description

This property specifies the highest slot ID in the dynamic segment that can still transmit a

full-length (that is, Payload Length Dynamic Maximum) frame, provided no other frames

have been sent in the dynamic segment.

A larger slot ID cannot transmit a full-length frame (but could probably still transmit a shorter

frame).

The range for this property is 2–2047.

This read-only property is calculated from other cluster properties. If the Number of Minislots

is zero, no dynamic slots exist, and this property returns 0. Otherwise, Number of Minislots

is used along with Payload Length Dynamic Maximum to determine the latest dynamic slot

that can be used when all preceding dynamic slots are empty (zero payload length). In other

words, this property is calculated under the assumption that all other dynamic slots use only

one minislot, and this dynamic slot uses the number of minislots required to deliver the

maximum payload. The frame for this dynamic slot must end prior to the end of the dynamic

segment. Any frame transmitted in a preceding dynamic slot is likely to preclude this slot’s

frame.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-292 ni.com

FlexRay:Listen Noise

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.LisNoise

Description

This property specifies the upper limit for the startup and wakeup listen timeout in the

presence of noise. It is used as a multiplier for the Interface:FlexRay:Listen Timeout property.

This property corresponds to the global cluster parameter gListenNoise in the FlexRay

Protocol Specification.

The values for this property are in the range 2–16.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-293 NI-XNET Hardware and Software Manual

FlexRay:Macro Per Cycle

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.MacroPerCycle

Description

This property specifies the number of macroticks in a communication cycle. For example, if

the FlexRay cycle has a duration of 5 ms (5000 s), and the duration of a macrotick is 1 s,

the XNET Cluster FlexRay:Macro Per Cycle property is 5000.

This property corresponds to the global cluster parameter gMacroPerCycle in the FlexRay

Protocol Specification.

The macrotick (MT) is the basic timing unit in the FlexRay cluster. Nearly all timing

dependent properties are expressed in terms of macroticks.

The range for this property is 10–16000 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-294 ni.com

FlexRay:Macrotick

Data Type Direction Required? Default

Read N/A Calculated from Other Cluster Parameters

Property Class

XNET Cluster

Short Name

FlexRay.Macrotick

Description

This property specifies the duration of the clusterwide nominal macrotick, expressed in

microseconds.

This property corresponds to the global cluster parameter gdMacrotick in the FlexRay

Protocol Specification.

The macrotick (MT) is the basic timing unit in the FlexRay cluster. Nearly all

timing-dependent properties are expressed in terms of macroticks.

The range for this property is 1–6 s.

This property is calculated from the FlexRay:Cycle and FlexRay:Macro Per Cycle properties

and rounded to the nearest permitted value.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-295 NI-XNET Hardware and Software Manual

FlexRay:Max Without Clock Correction Fatal

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.MaxWoClkCorFat

Description

This property defines the number of consecutive even/odd cycle pairs with missing clock

correction terms that cause the controller to transition from the Protocol Operation Control

status of Normal Active or Normal Passive to the Halt state. Use this global parameter as a

threshold for testing the clock correction failure counter.

This property corresponds to the global cluster parameter

gMaxWithoutClockCorrectionFatal in the FlexRay Protocol Specification.

The values for this property are in the range 1–15 even/odd cycle pairs.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-296 ni.com

FlexRay:Max Without Clock Correction Passive

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.MaxWoClkCorPas

Description

This property defines the number of consecutive even/odd cycle pairs with missing clock

correction terms that cause the controller to transition from the Protocol Operation Control

status of Normal Active to Normal Passive. Use this global parameter as a threshold for

testing the clock correction failure counter.

Note This property, Max Without Clock Correction Passive, <= Max Without Clock

Correction Fatal <= 15.

This property corresponds to the global cluster parameter

gMaxWithoutClockCorrectionPassive in the FlexRay Protocol Specification.

The values for this property are in the range 1–15 even/odd cycle pairs.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-297 NI-XNET Hardware and Software Manual

FlexRay:Minislot Action Point Offset

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

MinislotActPt

Description

This property specifies the number of macroticks (MT) the minislot action point is offset from

the beginning of a minislot.

This property corresponds to the global cluster parameter gdMinislotActionPointOffset in

the FlexRay Protocol Specification.

The action point is that point within a given slot where the actual transmission of a frame

starts. This is slightly later than the start of the slot to allow for a clock drift between the

network nodes.

The range for this property is 1–31 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-298 ni.com

FlexRay:Minislot

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.Minislot

Description

This property specifies the duration of a minislot, expressed in macroticks (MT).

This property corresponds to the global cluster parameter gdMinislot in the FlexRay Protocol

Specification.

In the dynamic segment of the FlexRay cycle, frames can have variable payload length.

Minislots are the dynamic segment time increments. In a minislot, a dynamic frame can start

transmission, but it usually spans several minislots. If no frame transmits, the slot counter

(slot ID) is incremented to allow for the next frame.

The total dynamic segment length is determined by multiplying this property by the Number

Of Minislots property. The total dynamic segment length must be shorter than the Macro Per

Cycle property minus the total static segment length.

The range for this property is 2–63 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-299 NI-XNET Hardware and Software Manual

FlexRay:Network Management Vector Length

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.NMVecLen

Description

This property specifies the length of the Network Management vector (NMVector) in a

cluster.

Only frames transmitted in the static segment of the communication cycle use the NMVector.

The NMVector length specifies the number of bytes in the payload segment of the FlexRay

frame transmitted in the status segment that can be used as the NMVector.

This property corresponds to the global cluster parameter

gNetworkManagementVectorLength in the FlexRay Protocol Specification.

The range for this property is 0–12 bytes.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-300 ni.com

FlexRay:NIT Start

Data Type Direction Required? Default

Read N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Short Name

FlexRay.NITStart

Description

This property specifies the start of the Network Idle Time (NIT), expressed as the number of

macroticks (MT) from the start of the cycle.

The NIT is a period at the end of a FlexRay communication cycle where no frames are

transmitted. The network nodes use it to re-sync their clocks to the common network time.

The range for this property is 8–15998 MT.

This property is calculated from other cluster properties. It is the total size of the static and

dynamic segments plus the symbol window length, which is optional in a FlexRay

communication cycle.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-301 NI-XNET Hardware and Software Manual

FlexRay:NIT

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.NIT

Description

This property is the Network Idle Time (NIT) duration, expressed in macroticks (MT).

This property corresponds to the global cluster parameter gdNIT in the FlexRay Protocol

Specification.

The NIT is a period at the end of a FlexRay communication cycle where no frames are

transmitted. The network nodes use it to re-sync their clocks to the common network time.

Configure the NIT to be the Macro Per Cycle property minus the total static and dynamic

segment lengths minus the optional symbol window duration.

The range for this property is 2–805 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-302 ni.com

FlexRay:Number of Minislots

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.NumMinislt

Description

This property specifies the number of minislots in the dynamic segment.

This property corresponds to the global cluster parameter gNumberOfMinislots in the

FlexRay Protocol Specification.

In the FlexRay cycle dynamic segment, frames can have variable payload lengths.

Minislots are the dynamic segment time increments. In a minislot, a dynamic frame can start

transmission, but it usually spans several minislots. If no frame transmits, the slot counter

(slot ID) is incremented to allow for the next frame.

The total dynamic segment length is determined by multiplying this property by the Minislot

property. The total dynamic segment length must be shorter than the Macro Per Cycle

property minus the total static segment length.

The range for this property is 0–7986.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-303 NI-XNET Hardware and Software Manual

FlexRay:Number of Static Slots

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.NumStatSlt

Description

This property specifies the number of static slots in the static segment.

This property corresponds to the global cluster parameter gNumberOfStaticSlots in the

FlexRay Protocol Specification.

Each static slot is used to transmit one (static) frame on the bus.

The total static segment length is determined by multiplying this property by the Static Slot

property. The total static segment length must be shorter than the Macro Per Cycle property.

The range for this property is 2–1023.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-304 ni.com

FlexRay:Offset Correction Start

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.OffCorSt

Description

This property specifies the start of the offset correction phase within the Network Idle Time

(NIT), expressed as the number of macroticks (MT) from the start of the cycle.

This property corresponds to the global cluster parameter gOffsetCorrectionStart in the

FlexRay Protocol Specification.

The NIT is a period at the end of a FlexRay communication cycle where no frames are

transmitted. The network nodes use it to re-sync their clocks to the common network time.

The Offset Correction Start is usually configured to be NITStart + 1, but can deviate from that

value.

The range for this property is 9–15999 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-305 NI-XNET Hardware and Software Manual

FlexRay:Payload Length Dynamic Maximum

Data Type Direction Required? Default

Read/Write N/A Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.PayldLenDynMax

Description

This property specifies the maximum of the payload lengths of all dynamic frames.

In the FlexRay cycle dynamic segment, frames can have variable payload length.

The range for this property is 0–254 bytes (even numbers only).

The value returned for this property is the maximum of the payload lengths of all frames

defined for the dynamic segment in the database.

Use this property to calculate the Latest Usable Dynamic Slot and Latest Guaranteed

Dynamic Slot properties.

You may temporarily set this to a larger value (if it is not yet the maximum), and then this

value is returned for this property. But this setting is lost once the database is closed, and after

a reopen, the maximum of the frames is returned again. The changed value is returned from

the FlexRay:Payload Length Dynamic Maximum property until the database is closed.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-306 ni.com

FlexRay:Payload Length Maximum

Data Type Direction Required? Default

Read N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Short Name

FlexRay.PayldLenMax

Description

This property returns the payload length of any frame (static or dynamic) in this cluster with

the longest payload. The payload specifies that the frame transfers the data.

The range for this property is 0–254 bytes (even numbers only).

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-307 NI-XNET Hardware and Software Manual

FlexRay:Payload Length Static

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.PayldLenSt

Description

This property specifies the payload length of a static frame. All static frames in a cluster have

the same payload length.

This property corresponds to the global cluster parameter gPayloadLengthStatic in the

FlexRay Protocol Specification.

The range for this property is 0–254 bytes (even numbers only).

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-308 ni.com

FlexRay:Static Slot

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.StatSlot

Description

This property specifies the duration of a slot in the static segment in macroticks (MT).

This property corresponds to the global cluster parameter gdStaticSlot in the FlexRay

Protocol Specification.

Each static slot is used to transmit one (static) frame on the bus.

The static slot duration takes into account the Payload Length Static and Action Point Offset

properties, as well as maximum propagation delay.

In the FlexRay cycle static segment, all frames must have the same payload length; therefore,

the duration of a static frame is the same.

The total static segment length is determined by multiplying this property by the Number Of

Static Slots property. The total static segment length must be shorter than the Macro Per Cycle

property.

The range for this property is 4–661 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-309 NI-XNET Hardware and Software Manual

FlexRay:Symbol Window Start

Data Type Direction Required? Default

Read N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Short Name

FlexRay.SymWinStart

Description

This property specifies the macrotick offset at which the symbol window begins from the start

of the cycle. During the symbol window, a channel sends a single Media Test Access Symbol

(MTS).

The range for this property is 8–15998 MT.

This property is calculated from other cluster properties. It is based on the total static and

dynamic segment size. It is set to zero if the Symbol Window property is 0 (no symbol

window exists).

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-310 ni.com

FlexRay:Symbol Window

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.SymWin

Description

This property specifies the symbol window duration, expressed in macroticks (MT).

This property corresponds to the global cluster parameter gdSymbolWindow in the FlexRay

Protocol Specification.

The symbol window is a slot after the static and dynamic segment, and is used to transmit

Collision Avoidance symbols (CAS) and/or Media Access Test symbol (MTS). The symbol

window is optional for a given cluster (the Symbol Window property can be zero). A symbol

transmission starts at the action point offset within the symbol window.

The range for this property is 0–142 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-311 NI-XNET Hardware and Software Manual

FlexRay:Sync Node Max

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.SyncNodeMax

Description

This property specifies the maximum number of nodes that may send frames with the sync

frame indicator bit set to one.

This property corresponds to the global cluster parameter gSyncNodeMax in the FlexRay

Protocol Specification.

Sync frames define the zero points for the clock drift measurement. Startup frames are special

sync frames transmitted first after a network startup. There must be at least two startup nodes

in a network.

The range for this property is 2–15.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-312 ni.com

FlexRay:TSS Transmitter

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.TSSTx

Description

This property specifies the number of bits in the Transmission Start Sequence (TSS). A frame

transmission may be truncated at the beginning. The amount of truncation depends on the

nodes involved and the channel topology layout. For example, the purpose of the TSS is to

“open the gates” of an active star (that is, to cause the star to properly set up input and output

connections). During this setup, an active star truncates a number of bits at the beginning of

a communication element. The TSS prevents the frame or symbol content from being

truncated.You must set this property to be greater than the expected worst case truncation of

a frame.

This property corresponds to the global cluster parameter gdTSSTransmitter in the FlexRay

Protocol Specification.

The range for this property is 3–15 bit.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-313 NI-XNET Hardware and Software Manual

FlexRay:Use Wakeup

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Cluster

Short Name

FlexRay.UseWakeup?

Description

This property indicates whether the FlexRay cluster supports wakeup. This value is set to True

if the WAKE-UP tree is present in the FIBEX file. This value is set to False if the WAKE-UP

tree is not present in the FIBEX file.

When this property is True, the FlexRay cluster uses wakeup functionality; otherwise, the

FlexRay cluster does not use wakeup functionality.

When creating a new database, the default value of this property is False. However, if you set

any wakeup parameter (for example, FlexRay:Wakeup Symbol Rx Low), this property is set

to True automatically, and the WAKE-UP tree is saved in the FIBEX file when saved.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-314 ni.com

FlexRay:Wakeup Symbol Rx Idle

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.WakeSymRxIdl

Description

This property specifies the number of bits the node uses to test the idle portion duration of a

received wakeup symbol. Collisions, clock differences, and other effects can deform the

transmitted wakeup pattern.

This property corresponds to the global cluster parameter gdWakeupSymbolRxIdle in the

FlexRay Protocol Specification.

The range for this property is 14–59 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-315 NI-XNET Hardware and Software Manual

FlexRay:Wakeup Symbol Rx Low

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.WakeSymRxLow

Description

This property specifies the number of bits the node uses to test the low portion duration of a

received wakeup symbol. This lower limit of zero bits must be received for the receiver to

detect the low portion. Active starts, clock differences, and other effects can deform the

transmitted wakeup pattern.

This property corresponds to the global cluster parameter gdWakeupSymbolRxLow in the

FlexRay Protocol Specification.

The range for this property is 10–55 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-316 ni.com

FlexRay:Wakeup Symbol Rx Window

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.WakeSymRxWin

Description

This property specifies the size of the window used to detect wakeups. Detection of a wakeup

requires a low and idle period from one WUS (wakeup symbol) and a low period from another

WUS, to be detected entirely within a window of this size. Clock differences and other effects

can deform the transmitted wakeup pattern.

This property corresponds to the global cluster parameter gdWakeupSymbolRxWindow in

the FlexRay Protocol Specification.

The range for this property is 76–301 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-317 NI-XNET Hardware and Software Manual

FlexRay:Wakeup Symbol Tx Idle

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.WakeSymTxIdl

Description

This property specifies the number of bits the node uses to transmit the wakeup symbol idle

portion.

This property corresponds to the global cluster parameter gdWakeupSymbolTxIdle in the

FlexRay Protocol Specification.

The range for this property is 45–180 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-318 ni.com

FlexRay:Wakeup Symbol Tx Low

Data Type Direction Required? Default

Read/Write Yes Read from Database

Property Class

XNET Cluster

Short Name

FlexRay.WakeSymTxLow

Description

This property specifies the number of bits the node uses to transmit the wakeup symbol low

phase.

This property corresponds to the global cluster parameter gdWakeupSymbolTxLow in the

FlexRay Protocol Specification.

The range for this property is 15–60 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-319 NI-XNET Hardware and Software Manual

Application Protocol

Data Type Direction Required? Default

Read/Write No Read from Database

Property Class

XNET Cluster

Short Name

ApplProtocol

Description

This property specifies the application protocol. It is a ring of two values:

Enumeration Value Meaning

None 0 The default application protocol.

J1939 1 Indicates J1939 clusters. The

value enables the following

features:

• Sending/receiving long frames

as the SAE J1939 specification

specifies, using the J1939

transport protocol.

• Using a special notation for

J1939 identifiers.

• Using J1939 address claiming.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-320 ni.com

Baud Rate

Data Type Direction Required? Default

Read/Write No 0

Property Class

XNET Cluster

Short Name

BaudRate

Description

The Baud Rate property sets the baud rate all cluster nodes use. This baud rate represents the

rate from the database, so it is read-only from the session. Use a session interface property

(for example, Interface:Baud Rate) to override the database baud rate with an

application-specific baud rate.

CAN

For CAN, this rate can be 33333, 40000, 50000, 62500, 80000, 83333, 100000, 125000,

160000, 200000, 250000, 400000, 500000, 800000, or 1000000. Some transceivers may only

support a subset of these values.

If you need values other than these, use the custom settings as described in the Interface:Baud

Rate property.

FlexRay

For FlexRay, this rate can be 2500000, 5000000, or 10000000.

LIN

For LIN, this rate can be 2400–20000 inclusive.

If you need values other than these, use the custom settings as described in the Interface:Baud

Rate property.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-321 NI-XNET Hardware and Software Manual

CAN:FD Baud Rate

Data Type Direction Required? Default

Read/Write No 0

Property Class

XNET Cluster

Short Name

CAN.FdBaudRate

Description

The FD Baud Rate property sets the fast data baud rate for the CAN FD + BRS CAN:I/O

Mode property. This property represents the database fast data baud rate for the CAN FD +

BRS I/O Mode. Refer to the CAN:I/O Mode property for a description of this mode. Use a

session interface property (for example, Interface:CAN:FD Baud Rate) to override the

database fast baud rate with an application-specific fast baud rate.

NI-XNET CAN hardware currently accepts the following numeric baud rates: 200000,

250000, 400000, 500000, 800000, 1000000, 1250000, 1600000, 2000000, 2500000,

4000000, 5000000, and 8000000. Some transceivers may support only a subset of these

values.

If you need values other than these, use the custom settings as described in the

Interface:CAN:FD Baud Rate property.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-322 ni.com

CAN:I/O Mode

Data Type Direction Required? Default

Read/Write No Read from Database

Property Class

XNET Cluster

Short Name

CAN.IoMode

Description

This property specifies the CAN I/O Mode of the cluster. It is a ring of three values:

Enumeration Value Meaning

CAN 0 This is the default CAN 2.0 A/B standard I/O

mode as defined in ISO 11898-1:2003. A fixed

baud rate is used for transfer, and the payload

length is limited to 8 bytes.

CAN FD 1 This is the CAN FD mode as specified in the

CAN with Flexible Data-Rate specification,

version 1.0. Payload lengths up to 64 are

allowed, but they are transmitted at a single

fixed baud rate (defined by the XNET Cluster

Baud Rate or XNET Session Interface:Baud

Rate properties).

CAN FD + BRS 2 This is the CAN FD as specified in the CAN

with Flexible Data-Rate specification, version

1.0, with the optional Baud Rate Switching

enabled. The same payload lengths as CAN

FD mode are allowed; additionally, the data

portion of the CAN frame is transferred at a

different (higher) baud rate (defined by the

CAN:FD Baud Rate or XNET Session

Interface:CAN:FD Baud Rate properties).

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-323 NI-XNET Hardware and Software Manual

Comment

Data Type Direction Required? Default

Read/Write No Empty String

Property Class

XNET Cluster

Short Name

Comment

Description

A comment describing the cluster object.

A comment is a string containing up to 65535 characters.

Configuration Status

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Cluster

Short Name

ConfigStatus

Description

The cluster object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to the error code

input of Simple Error Handler.vi to convert it to a text description (on message output) of

the configuration problem.

By default, incorrectly configured clusters in the database are not returned from the XNET

Database Clusters property because they cannot be used in the bus communication. You can

change this behavior by setting the XNET Database ShowInvalidFromOpen? property to true.

When the configuration status of a cluster becomes invalid after the database has been opened,

the cluster still is returned from the XNET Database Clusters property even if

ShowInvalidFromOpen? is false.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-324 ni.com

Database

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Cluster

Short Name

Database

Description

I/O name of the cluster parent database.

The parent database is defined when the cluster object is created. You cannot change it

afterwards.

ECUs

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Cluster

Short Name

ECUs

Description

ECUs in this cluster.

Returns an array of I/O names of all ECUs defined in this cluster. An ECU is assigned to a

cluster when the ECU object is created. You cannot change this assignment afterwards.

To add an ECU to a cluster, use XNET Database Create (ECU).vi. To remove an ECU from

the cluster, use XNET Database Delete (ECU).vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-325 NI-XNET Hardware and Software Manual

Frames

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Cluster

Short Name

Frms

Description

Frames in this cluster.

Returns an array of I/O names of all frames defined in this cluster. A frame is assigned to a

cluster when the frame object is created. You cannot change this assignment afterwards.

To add a frame to a cluster, use XNET Database Create (Frame).vi. To remove a frame from

a cluster, use XNET Database Delete (Frame).vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-326 ni.com

LIN:Schedules

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Cluster

Short Name

LIN.Schedules

Description

Array of LIN schedules defined in this cluster. A LIN schedule is assigned to a cluster when

the LIN schedule object is created. You cannot change this assignment afterwards. The

schedules in this array are sorted alphabetically by schedule name.

While the XNET interface is running, you can use XNET Write (State LIN Schedule

Change).vi to change the running schedule. No schedule runs by default, so you must write

a schedule request at least once in your application.

For XNET Write (State LIN Schedule Change).vi, if you use an index to specify the

schedule, that index is the position in this array (starting at 0).

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-327 NI-XNET Hardware and Software Manual

LIN:Tick

Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET Cluster

Short Name

LIN.Tick

Description

Relative time between LIN ticks (f64, relative time in seconds). The XNET LIN Schedule

Entry Delay property must be a multiple of this tick.

This tick is referred to as the “timebase” in the LIN specification.

The XNET ECU LIN:Master? property defines the LIN:Tick property in this cluster. You

cannot use the LIN:Tick property when there is no LIN:Master? property defined in this

cluster.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-328 ni.com

Name (Short)

Data Type Direction Required? Default

Read/Write Yes Defined in Create Object

Property Class

XNET Cluster

Short Name

NameShort

Description

String identifying the cluster object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the short name. The space (), period (.), and other special characters are not supported within

the name. The short name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The short name is limited to 128 characters.

If you use a FIBEX file, the short name comes from the file. If you use a CANdb (.dbc), LDF

(.ldf), or NI-CAN (.ncd) file, no cluster name is stored in the file, so NI-XNET uses the

name Cluster. If you create the cluster yourself, it comes from Name input of XNET

Database Create (Cluster).vi.

A cluster name must be unique for all clusters in a database.

This short name does not include qualifiers to ensure that it is unique, such as the

database name. It is for display purposes. The fully qualified name is available by using

the XNET Cluster I/O name as a string.

You can write this property to change the cluster’s short name. When you do this, then use the

original XNET Cluster that contains the old name, errors can result because the old name

cannot be found. Follow these steps to avoid this problem:

1. Get the old Name (Short) property using the property node.

2. Set the new Name (Short) property for the object.

3. Close the object using XNET Database Close.vi. Wire the close all? input as false to

close the renamed object only.

4. Wire the XNET Cluster as the input string to Search and Replace String Function.vi

with the old Name as the search string and the new Name as the replacement string. This

replaces the short name in the XNET Cluster, while retaining the other text that ensures

a unique name.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-329 NI-XNET Hardware and Software Manual

The following diagram demonstrates steps 1 through 4 for an XNET Frame I/O name:

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-330 ni.com

PDUs

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Cluster

Short Name

PDUs

Description

PDUs in this cluster.

Returns an array of I/O names of all PDUs defined in this cluster. A PDU is assigned to a

cluster when the PDU object is created. You cannot change this assignment afterwards.

To add a PDU to a cluster, use XNET Database Create (PDU).vi. To remove a PDU from a

cluster, use the XNET Database Delete (PDU).vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-331 NI-XNET Hardware and Software Manual

PDUs Required?

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Cluster

Short Name

PDUsReqd?

Description

Determines whether using PDUs in the database API is required for this cluster.

If this property returns false, it is safe to use signals as child objects of a frame without PDUs.

This behavior is compatible with NI-XNET 1.1 or earlier. Clusters from .dbc, .ncd, or

FIBEX 2 files always return false for this property, so using PDUs from those files is not

required.

If this property returns true, the cluster contains PDU configuration, which requires reading

the PDUs as frame child objects and then signals as PDU child objects, as shown in the

following figure.

Internally, the database always uses PDUs, but shows the same signal objects also as children

of a frame.

Frame1

PDU1 Signal1

Signal2

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

NI-XNET Hardware and Software Manual 4-332 ni.com

The following conditions must be fulfilled for all frames in the cluster to return false from the

PDUs Required? property:

• Only one PDU is mapped to the frame.

• This PDU is not mapped to other frames.

• The PDU Start Bit in the frame is 0.

• The PDU Update Bit is not used.

If the conditions are not fulfilled for a given frame, signals from the frame are still returned,

but reading the property returns a warning.

The NI-XNET session supports frames requiring PDUs only for FlexRay. For frames

requiring PDUs on a CAN or LIN cluster, the XNET Frame Configuration Status property

and XNET Create Session.vi return an error.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Property Node

© National Instruments 4-333 NI-XNET Hardware and Software Manual

Protocol

Data Type Direction Required? Default

Read/Write No CAN

Property Class

XNET Cluster

Short Name

Protocol

Description

Determines the cluster protocol.

The values (enumeration) for this property are:

0 CAN

1 FlexRay

2 LIN

Signals

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Cluster

Short Name

Sigs

Description

This property returns an array of I/O names of all XNET Signals defined in this cluster.

A signal is assigned to a cluster when the signal object is created. You cannot change this

assignment afterwards.

To add a signal to a cluster, use XNET Database Create (Signal).vi. To remove a signal from

a cluster use XNET Database Delete (Signal).vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Cluster Constant

NI-XNET Hardware and Software Manual 4-334 ni.com

XNET Cluster Constant

This constant provides the constant form of the XNET Cluster I/O name. You drag a constant

to the block diagram of your VI, then select a cluster. You can change constants only during

configuration, prior to running the VI. For a complete description, refer to XNET Cluster I/O

Name.

XNET ECU Property Node

Format

Description

Property node used to read/write properties for an XNET ECU I/O Name.

Pull down this node to add properties. Right-click to change direction between read and write.

Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>) and

move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help (select

Search the LabVIEW Help from the Help menu) and look for the Property Nodes topic in

the index.

Chapter 4 NI-XNET API for LabVIEW—XNET ECU Property Node

© National Instruments 4-335 NI-XNET Hardware and Software Manual

Cluster

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET ECU

Short Name

Cluster

Description

I/O name of the parent cluster to which the ECU is connected.

The parent cluster is determined when the ECU object is created. You cannot change it

afterwards.

FlexRay:Coldstart?

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET ECU

Short Name

FlexRay.Coldstart?

Description

Indicates that the ECU is sending a startup frame.

This property is valid only for ECUs connected to a FlexRay bus. It returns true when one of

the frames this ECU transmits (refer to the XNET ECU Frames Transmitted property) has

the XNET Frame FlexRay:Startup? property set to true. You can determine the frame

transmitting the startup using the XNET ECU FlexRay:Startup Frame property. An ECU can

send only one startup frame on the FlexRay bus.

Chapter 4 NI-XNET API for LabVIEW—XNET ECU Property Node

NI-XNET Hardware and Software Manual 4-336 ni.com

FlexRay:Connected Channels

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings

Property Class

XNET ECU

Short Name

FlexRay.ConnectedChs

Description

This property specifies the channel(s) that the FlexRay ECU (node) is physically connected

to. The default value of this property is connected to all channels available on the cluster.

This property corresponds to the pChannels node parameter in the FlexRay Protocol

Specification.

The values supported for this property (enumeration) are A = 1, B = 2, and A and B = 3.

FlexRay:Startup Frame

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET ECU

Short Name

FlexRay.StartupFrm

Description

Returns the I/O name of the startup frame the ECU sends.

This property is valid only for ECUs connected to a FlexRay bus. If the ECU transmits a

frame (refer to the XNET ECU Frames Transmitted property) with the XNET Frame

FlexRay:Startup? property set to true, this property returns this frame. Otherwise, it is empty.

Chapter 4 NI-XNET API for LabVIEW—XNET ECU Property Node

© National Instruments 4-337 NI-XNET Hardware and Software Manual

FlexRay:Wakeup Channels

Data Type Direction Required? Default

Read/Write No None

Property Class

XNET ECU

Short Name

FlexRay.WakeupChs

Description

This property specifies the channel(s) on which the FlexRay ECU (node) is allowed to

generate the wake-up pattern. The default value of this property is not to be a wakeup node.

When importing from a FIBEX file, this parameter corresponds to a WAKE-UP-CHANNEL

being set to True for each connected channel.

The values supported for this property (enumeration) are A = 1, B = 2, A and B = 3, and

None = 4.

FlexRay:Wakeup Pattern

Data Type Direction Required? Default

Read/Write No 2

Property Class

XNET ECU

Short Name

FlexRay.WakeupPtrn

Description

This property specifies the number of repetitions of the wakeup symbol that are combined to

form a wakeup pattern when the FlexRay ECU (node) enters the POC:WAKEUP_SEND

state. The POC:WAKEUP_SEND state is one of the FlexRay controller state transitions

during the wakeup process. In this state, the controller sends the wakeup pattern on the

specified Wakeup Channel and checks for collisions on the bus.

Chapter 4 NI-XNET API for LabVIEW—XNET ECU Property Node

NI-XNET Hardware and Software Manual 4-338 ni.com

This property is relevant only when FlexRay:Wakeup Channels is set to a value other than

None and FlexRay:Use Wakeup is True.

This property corresponds to the pWakeupPattern node parameter in the FlexRay Protocol

Specification.

The supported values for this property are 2–63.

Chapter 4 NI-XNET API for LabVIEW—XNET ECU Property Node

© National Instruments 4-339 NI-XNET Hardware and Software Manual

Comment

Data Type Direction Required? Default

Read/Write No Empty String

Property Class

XNET ECU

Short Name

Comment

Description

Comment describing the ECU object.

A comment is a string containing up to 65535 characters.

Configuration Status

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET ECU

Short Name

ConfigStatus

Description

The ECU object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to Simple Error

Handler.vi error code input to convert the value to a text description (on message output) of

the configuration problem.

By default, incorrectly configured ECUs in the database are not returned from the XNET

Cluster ECUs property because they cannot be used in the bus communication. You can

change this behavior by setting the XNET Database ShowInvalidFromOpen? property to true.

When the configuration status of an ECU became invalid after the database is opened, the

ECU still is returned from the XNET Cluster ECUs property even if ShowInvalidFromOpen?

is false.

Chapter 4 NI-XNET API for LabVIEW—XNET ECU Property Node

NI-XNET Hardware and Software Manual 4-340 ni.com

Frames Received

Data Type Direction Required? Default

Read/Write No Empty Array

Property Class

XNET ECU

Short Name

FrmsRx

Description

Returns an array of I/O names of frames the ECU receives.

This property defines all frames the ECU receives. All frames an ECU receives in a given

cluster must be defined in the same cluster.

Frames Transmitted

Data Type Direction Required? Default

Read/Write No Empty Array

Property Class

XNET ECU

Short Name

FrmsTx

Description

Returns an array of I/O names of frames the ECU transmits.

This property defines all frames the ECU transmits. All frames an ECU transmits in a given

cluster must be defined in the same cluster.

Chapter 4 NI-XNET API for LabVIEW—XNET ECU Property Node

© National Instruments 4-341 NI-XNET Hardware and Software Manual

LIN:Master?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET ECU

Short Name

LIN.Master?

Description

Determines whether the ECU is a LIN master (true) or slave (false).

LIN:Protocol Version

Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET ECU

Short Name

LIN.ProtclVer

Description

The LIN standard version this ECU uses.

This property is a ring (enumerated list) with the following values:

String Value

1.2 2

1.3 3

2.0 4

2.1 5

Chapter 4 NI-XNET API for LabVIEW—XNET ECU Property Node

NI-XNET Hardware and Software Manual 4-342 ni.com

LIN:Initial NAD

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET ECU

Short Name

InitialNAD

Description

Initial NAD of a LIN slave node. NAD is the address of a slave node and is used in diagnostic

services. Initial NAD is replaced by configured NAD with node configuration services.

Caution This property is not saved in the FIBEX database. You can import it only from an

LDF file.

LIN:Configured NAD

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET ECU

Short Name

ConfigNAD

Description

Configured NAD of a LIN slave node. NAD is the address of a slave node and is used in

diagnostic services. Initial NAD is replaced by configured NAD with node configuration

services.

Caution This property is not saved in the FIBEX database. You can import it only from an

LDF file.

Chapter 4 NI-XNET API for LabVIEW—XNET ECU Property Node

© National Instruments 4-343 NI-XNET Hardware and Software Manual

LIN:Supplier ID

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET ECU

Short Name

SupplierID

Description

Supplier ID is a 16-bit value identifying the supplier of the LIN node (ECU).

Caution This property is not saved in the FIBEX database. You can import it only from an

LDF file.

LIN:Function ID

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET ECU

Short Name

FunctionID

Description

Function ID is a 16-bit value identifying the function of the LIN node (ECU).

Caution This property is not saved in the FIBEX database. You can import it only from an

LDF file.

Chapter 4 NI-XNET API for LabVIEW—XNET ECU Property Node

NI-XNET Hardware and Software Manual 4-344 ni.com

LIN:P2min

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET ECU

Short Name

P2min

Description

The minimum time in seconds between reception of the last frame of the diagnostic request

and the response sent by the node.

Caution This property is not saved in the FIBEX database. You can import it only from an

LDF file.

LIN:STmin

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET ECU

Short Name

STmin

Description

The minimum time in seconds the node requires to prepare for the next frame of the

diagnostic service.

Caution This property is not saved in the FIBEX database. You can import it only from an

LDF file.

Chapter 4 NI-XNET API for LabVIEW—XNET ECU Property Node

© National Instruments 4-345 NI-XNET Hardware and Software Manual

Name (Short)

Data Type Direction Required? Default

Read/Write Yes Defined in Create Object

Property Class

XNET ECU

Short Name

NameShort

Description

String identifying the ECU object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the short name. The space (), period (.), and other special characters are not supported within

the name. The short name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The short name is limited to 128 characters.

An ECU name must be unique for all ECUs in a cluster.

This short name does not include qualifiers to ensure that it is unique, such as the database

and cluster name. It is for display purposes. The fully qualified name is available by using the

XNET ECU I/O name as a string.

You can write this property to change the ECU’s short name. When you do this and then use

the original XNET ECU that contains the old name, errors can result because the old name

cannot be found. Follow these steps to avoid this problem:

1. Get the old Name (Short) property using the property node.

2. Set the new Name (Short) property for the object.

3. Close the object using XNET Database Close.vi. Wire the close all? input as false to

close the renamed object only.

4. Wire the XNET ECU as the input string to Search and Replace String Function.vi with

the old Name as the search string and the new Name as the replacement string. This

replaces the short name in the XNET ECU, while retaining the other text that ensures a

unique name.

Chapter 4 NI-XNET API for LabVIEW—XNET ECU Property Node

NI-XNET Hardware and Software Manual 4-346 ni.com

The following diagram demonstrates steps 1 through 4 for an XNET Frame I/O name:

Chapter 4 NI-XNET API for LabVIEW—XNET ECU Constant

© National Instruments 4-347 NI-XNET Hardware and Software Manual

XNET ECU Constant

This constant provides the constant form of the XNET ECU I/O name. You drag a constant

to the block diagram of your VI, then select an ECU. You can change constants only during

configuration, prior to running the VI. For a complete description, refer to XNET ECU I/O

Name.

XNET Frame Property Node

Format

Description

Property node used to read/write properties for an XNET Frame I/O Name.

Pull down this node to add properties. Right-click to change direction between read and write.

Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>) and

move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help (select

Search the LabVIEW Help from the Help menu) and look for the Property Nodes topic in

the index.

CAN:Extended Identifier?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Frame

Short Name

CAN.ExtID?

Description

This property determines whether the XNET Frame Identifier property in a CAN cluster

represents a standard 11-bit (false) or extended 29-bit (true) arbitration ID.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

NI-XNET Hardware and Software Manual 4-348 ni.com

CAN:Timing Type

Data Type Direction Required? Default

Read/Write No Event Data (If Not in Database)

Property Class

XNET Frame

Short Name

CAN.TimingType

Description

Specifies the CAN frame timing.

Because this property specifies the behavior of the frame’s transfer within the embedded

system (for example, a vehicle), it describes the transfer between ECUs in the network. In the

following description, transmitting ECU refers to the ECU that transmits the CAN data frame

(and possibly receives the associated CAN remote frame). Receiving ECU refers to an ECU

that receives the CAN data frame (and possibly transmits the associated CAN remote frame).

When you use the frame within an NI-XNET session, an output session acts as the

transmitting ECU, and an input session acts as a receiving ECU. For a description of how

these CAN timing types apply to the NI-XNET session mode, refer to CAN Timing Type and

Session Mode.

The CAN timing types (decimal value in parentheses) are:

Cyclic Data (0) The transmitting ECU transmits the CAN data frame in a cyclic

(periodic) manner. The XNET Frame CAN:Transmit Time

property defines the time between cycles. The transmitting ECU

ignores CAN remote frames received for this frame.

Event Data (1) The transmitting ECU transmits the CAN data frame in an

event-driven manner. The XNET Frame CAN:Transmit Time

property defines the minimum interval. For NI-XNET, the event

occurs when you call XNET Write.vi. The transmitting ECU

ignores CAN remote frames received for this frame.

Cyclic Remote (2) The receiving ECU transmits the CAN remote frame in a cyclic

(periodic) manner. The XNET Frame CAN:Transmit Time

property defines the time between cycles. The transmitting ECU

responds to each CAN remote frame by transmitting the

associated CAN data frame.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

© National Instruments 4-349 NI-XNET Hardware and Software Manual

Event Remote (3) The receiving ECU transmits the CAN remote frame in an

event-driven manner. The XNET Frame CAN:Transmit Time

property defines the minimum interval. For NI-XNET, the event

occurs when you call XNET Write.vi. The transmitting ECU

responds to each CAN remote frame by transmitting the

associated CAN data frame.

Cyclic/Event (4) This timing type is a combination of the cyclic and event timing.

The frame is transmitted when you call XNET Write.vi, but also

periodically sending the last recent values written. The XNET

Frame CAN:Transmit Time property defines the cycle period.

There is no minimum interval time defined in this mode, so be

careful not to write too frequently to avoid creating a high busload.

If you are using a FIBEX database, this property is a required part of the XML schema for a

frame, so the default (initial) value is obtained from the file.

If you are using a CANdb (.dbc) database, this property is an optional attribute in the file. If

NI-XNET finds an attribute named GenMsgSendType, that attribute is the default value of

this property. If the GenMsgSendType attribute begins with cyclic, this property’s default

value is Cyclic Data; otherwise, it is Event Data. If the CANdb file does not use the

GenMsgSendType attribute, this property uses a default value of Event Data, which you can

change in your application.

If you are using an .ncd database or an in-memory database (XNET Create Frame), this

property uses a default value of Event Data. Within your application, change this property to

the desired timing type.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

NI-XNET Hardware and Software Manual 4-350 ni.com

CAN:Transmit Time

Data Type Direction Required? Default

Read/Write No 0.1 (If Not in Database)

Property Class

XNET Frame

Short Name

CAN.TxTime

Description

Specifies the time between consecutive frames from the transmitting ECU.

The data type is 64-bit floating point (DBL). The units are in seconds.

Although the fractional part of the DBL data type can provide resolution of picoseconds, the

NI-XNET CAN transmit supports an accuracy of 500 s. Therefore, when used within an

NI-XNET output session, this property is rounded to the nearest 500 s increment (0.0005).

For a CAN:Timing Type of Cyclic Data or Cyclic Remote, this property specifies the time

between consecutive data/remote frames. A time of 0.0 is invalid.

For a CAN:Timing Type of Event Data or Event Remote, this property specifies the minimum

time between consecutive data/remote frames when the event occurs quickly. This is also

known as the debounce time or minimum interval. The time is measured from the end of

previous frame (acknowledgment) to the start of the next frame. A time of 0.0 specifies no

minimum (back to back frames allowed).

If you are using a FIBEX database, this property is a required part of the XML schema for a

frame, so the default (initial) value is obtained from the file.

If you are using a CANdb (.dbc) database, this property is an optional attribute in the file. If

NI-XNET finds an attribute named GenMsgCycleTime, that attribute is interpreted as a

number of milliseconds and used as the default value of this property. If the CANdb file does

not use the GenMsgCycleTime attribute, this property uses a default value of 0.1 (100 ms),

which you can change in your application.

If you are using a .ncd database or an in-memory database (XNET Create Frame), this

property uses a default value of 0.1 (100 ms). Within your application, change this property

to the desired time.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

© National Instruments 4-351 NI-XNET Hardware and Software Manual

Application Protocol

Data Type Direction Required? Default

Read/Write No Read from Database

Property Class

XNET Frame

Short Name

ApplProtocol

Description

This property specifies the frame’s application protocol. It is a ring of two values:

Enumeration Value Meaning

None 0 The default application protocol.

J1939 1 Indicates J1939 frames. The

value enables the following

features:

• Sending/receiving long frames

as the SAE J1939 specification

specifies, using the J1939

transport protocol.

• Using a special notation for

J1939 identifiers.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

NI-XNET Hardware and Software Manual 4-352 ni.com

Cluster

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Frame

Short Name

Cluster

Description

This property returns the I/O name of the parent cluster in which the frame has been created.

You cannot change the parent cluster after the frame object has been created.

Comment

Data Type Direction Required? Default

Read/Write No Empty String

Property Class

XNET Frame

Short Name

Comment

Description

Comment describing the frame object.

A comment is a string containing up to 65535 characters.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

© National Instruments 4-353 NI-XNET Hardware and Software Manual

Configuration Status

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Frame

Short Name

ConfigStatus

Description

The frame object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to Simple Error

Handler.vi error code input to convert the value to a text description (on message output) of

the configuration problem.

By default, incorrectly configured frames in the database are not returned from the XNET

Cluster Frames property because they cannot be used in the bus communication. You can

change this behavior by setting the XNET Database ShowInvalidFromOpen? property to true.

When a frame configuration status became invalid after the database is opened, the frame still

is returned from the XNET Cluster Frames property even if ShowInvalidFromOpen? is false.

Examples of invalid frame configuration:

• A required property of the frame or an object contained in this frame has not been

defined. For example, Frame Payload Length.

• The number of bytes specified for this frame is incorrect. CAN frames must use 0 to

8 bytes. FlexRay frames must use 0 to 254 bytes (even numbers only).

• The CAN arbitration ID is invalid. The standard ID is greater than 0x7FF (11 bits) or the

extended ID is greater than 0x1FFFFFFF (29 bits).

• The FlexRay frame is specified to use channels not defined in the cluster. For example,

the XNET Cluster FlexRay:Channels property is set to Channel A only, but the XNET

Frame FlexRay:Channel Assignment property is set to Channel A and B.

• The XNET Frame FlexRay:Channel Assignment property in this dynamic FlexRay

frame is set to Channel A and B, but dynamic frames can be sent on only one channel

(A or B).

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

NI-XNET Hardware and Software Manual 4-354 ni.com

Default Payload

Data Type Direction Required? Default

Read/Write No Array of All 0

Property Class

XNET Frame

Short Name

DefaultPayload

Description

The frame default payload, specified as an array of bytes (U8).

The number of bytes in the array must match the XNET Frame Payload Length property.

This property’s initial value is an array of all 0. For the database formats NI-XNET supports,

this property is not provided in the database file.

When you use this frame within an NI-XNET session, this property’s use varies depending

on the session mode. The following sections describe this property’s behavior for each session

mode.

Frame Output Single-Point and Frame Output Queued Modes

Use this property when a frame transmits prior to a call to XNET Write.vi. This can occur

when you set the XNET Session Auto Start? property to false and call XNET Start.vi prior

to XNET Write.vi. When Auto Start? is true (default), the first call to XNET Write.vi also

starts frame transmit, so this property is not used.

The following frame configurations potentially can transmit prior to a call to XNET Write.vi:

• CAN:Timing Type of Cyclic Data

• CAN:Timing Type of Cyclic Remote (for example, a remote frame received prior to a

call to XNET Write.vi)

• CAN:Timing Type of Event Remote (for example, a remote frame received prior to a call

to XNET Write.vi)

• FlexRay:Timing Type of Cyclic

• LIN frame in a schedule entry of Type unconditional

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

© National Instruments 4-355 NI-XNET Hardware and Software Manual

The following frame configurations cannot transmit prior to a call to XNET Write.vi, so this

property is not used:

• CAN:Timing Type of Event Data

• FlexRay:Timing Type of Event

• LIN frame in a schedule entry of Type sporadic or event triggered

Frame Output Stream Mode

This property is not used. Transmit is limited to frames provided to XNET Write.vi.

Signal Output Single-Point, Signal Output Waveform, and Signal Output XY
Modes

Use this property when a frame transmits prior to a call to XNET Write.vi. Refer to Frame

Output Single-Point and Frame Output Queued Modes for a list of applicable frame

configurations.

This property is used as the initial payload, then each XNET Signal Default Value is mapped

into that payload, and the result is used for the frame transmit.

Frame Input Stream and Frame Input Queued Modes

This property is not used. These modes do not return data prior to receiving frames.

Frame Input Single-Point Mode

This property is used for frames XNET Read.vi returns prior to receiving the first frame.

Signal Input Single-Point, Signal Input Waveform, and Signal Input XY
Modes

This property is not used. Each XNET Signal Default Value is used when XNET Read.vi is

called prior to receiving the first frame.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

NI-XNET Hardware and Software Manual 4-356 ni.com

FlexRay:Base Cycle

Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET Frame

Short Name

FlexRay.BaseCycle

Description

The first communication cycle in which a frame is sent.

In FlexRay, a communication cycle contains a number of slots in which a frame can be sent.

Every node on the bus provides a 6-bit cycle counter that counts the cycles from 0 to 63 and

then restarts at 0. The cycle number is common for all nodes on the bus.

NI-XNET has two mechanisms for changing the frame sending frequency:

• If the frame should be sent faster than the cycle period, use In-Cycle Repetition (refer to

the XNET Frame FlexRay:In Cycle Repetitions:Identifiers property).

• If the frame should be sent slower than the cycle period, use this property and the XNET

Frame FlexRay:Cycle Repetition property.

The second method is called cycle multiplexing. It allows sending multiple frames in the same

slot, but on different cycle counters.

If a frame should be sent in every cycle, set this property to 0 and the XNET Frame

FlexRay:Cycle Repetition property to 1. For cycle multiplexing, set the XNET Frame

FlexRay:Cycle Repetition property to 2, 4, 8, 16, 32, or 64.

Example:

• FrameA and FrameB are both sent in slot 12.

• FrameA: The XNET Frame FlexRay:Base Cycle property is 0 and XNET Frame

FlexRay:Cycle Repetition property is 2. This frame is sent when the cycle counter has

the value 0, 2, 4, 6,

• FrameB: The XNET Frame FlexRay:Base Cycle property is 1 and XNET Frame

FlexRay:Cycle Repetition property is 2. This frame is sent when the cycle counter has

the value 1, 3, 5, 7,

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

© National Instruments 4-357 NI-XNET Hardware and Software Manual

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this frame, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

NI-XNET Hardware and Software Manual 4-358 ni.com

FlexRay:Channel Assignment

Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET Frame

Short Name

FlexRay.ChAssign

Description

This property determines on which FlexRay channels the frame must be transmitted. A frame

can be transmitted only on existing FlexRay channels, configured in the XNET Cluster

FlexRay:Channels property.

Frames in the dynamic FlexRay segment cannot be sent on both channels; they must use

either channel A or B. Frames in the dynamic segment use slot IDs greater than the number

of static slots cluster parameter.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this frame, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

© National Instruments 4-359 NI-XNET Hardware and Software Manual

FlexRay:Cycle Repetition

Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET Frame

Short Name

FlexRay.CycleRep

Description

The number of cycles after which a frame is sent again.

In FlexRay, a communication cycle contains a number of slots in which a frame can be sent.

Every node on the bus provides a 6-bit cycle counter that counts the cycles from 0 to 63 and

then restarts at 0. The cycle number is common for all nodes on the bus.

NI-XNET has two mechanisms for changing the frame sending frequency:

• If the frame should be sent faster than the cycle period, use In-Cycle Repetition (refer to

the XNET Frame FlexRay:In Cycle Repetitions:Identifiers property).

• If the frame should be sent slower than the cycle period, use the XNET Frame

FlexRay:Base Cycle property and this property.

The second method is called cycle multiplexing. It allows sending multiple frames in the same

slot, but on different cycle counters.

If a frame should be sent in every cycle, set the XNET Frame FlexRay:Base Cycle property

to 0 and this property to 1. For cycle multiplexing, set this property to 2, 4, 8, 16, 32, or 64.

Examples:

• FrameA and FrameB are both sent in slot 12.

• FrameA: The XNET Frame FlexRay:Base Cycle property is set to 0 and XNET Frame

FlexRay:Cycle Repetition property is set to 2. This frame is sent when the cycle counter

has the value 0, 2, 4, 6,

• FrameB: The XNET Frame FlexRay:Base Cycle property is set to 1 and XNET Frame

FlexRay:Cycle Repetition property is set to 2. This frame is sent when the cycle counter

has the value 1, 3, 5, 7,

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

NI-XNET Hardware and Software Manual 4-360 ni.com

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this frame, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

© National Instruments 4-361 NI-XNET Hardware and Software Manual

FlexRay:Payload Preamble?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Frame

Short Name

FlexRay.Preamble?

Description

This property determines whether payload preamble is used in a FlexRay frame:

• For frames in the static segment, it indicates that the network management vector is

transmitted at the beginning of the payload.

• For frames in the dynamic segment, it indicates that the message ID is transmitted at the

beginning of the payload.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

NI-XNET Hardware and Software Manual 4-362 ni.com

FlexRay:Startup?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Frame

Short Name

FlexRay.Startup?

Description

This property determines whether the frame is a FlexRay startup frame. FlexRay startup

frames always are FlexRay sync frames also.

• When this property is set to true, the XNET Frame FlexRay:Sync? property

automatically is set to true.

• When this property is set to false, the XNET Frame FlexRay:Sync? property is not

changed.

• When the XNET Frame FlexRay:Sync? property is set to false, this property

automatically is set to false.

• When the XNET Frame FlexRay:Sync? property is set to true, this property is not

changed.

An ECU can send only one startup frame. The startup frame, if an ECU transmits it, is

returned from the XNET ECU FlexRay:Startup Frame property.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

© National Instruments 4-363 NI-XNET Hardware and Software Manual

FlexRay:Sync?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Frame

Short Name

FlexRay.Sync?

Description

This property determines whether the frame is a FlexRay sync frame. FlexRay startup frames

always are FlexRay sync frames also:

• When this property is set to false, the XNET Frame FlexRay:Startup? property is

automatically set to false.

• When this property is set to true, the XNET Frame FlexRay:Startup? property is not

changed.

• When the XNET Frame FlexRay:Startup? property is set to true, this property is set

to true.

• When the XNET Frame FlexRay:Startup? property is set to false, this property is not

changed.

An ECU can send only one sync frame.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

NI-XNET Hardware and Software Manual 4-364 ni.com

FlexRay:Timing Type

Data Type Direction Required? Default

Read/Write No Cyclic in Static Segment,

Event in Dynamic Segment

Property Class

XNET Frame

Short Name

FlexRay.TimingType

Description

Specifies the FlexRay frame timing (decimal value in parentheses):

Cyclic (0) Payload data transmits on every occurrence of the frame’s slot.

Event (1) Payload data transmits in an event-driven manner. Within the ECU that

transmits the frame, the event typically is associated with the availability

of new data.

This property’s behavior depends on the FlexRay segment where the frame is located: static

or dynamic. If the frame’s Identifier (slot) is less than or equal to the cluster’s Number Of

Static Slots, the frame is static.

Static

Cyclic means no null frame is transmitted. If new data is not provided for the cycle, the

previous payload data transmits again.

Event means a null frame is transmitted when no event is pending for the cycle.

This property’s default value for the static segment is Cyclic.

Dynamic

Cyclic means the frame transmits in its minislot on every cycle.

Event means the frame transmits in the minislot when the event is pending for the cycle.

This property’s default value for the dynamic segment is Event.

For a description of how these FlexRay timing types apply to the NI-XNET session mode,

refer to FlexRay Timing Type and Session Mode.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

© National Instruments 4-365 NI-XNET Hardware and Software Manual

FlexRay:In Cycle Repetitions:Channel Assignments

Data Type Direction Required? Default

Read/Write No Empty Array

Property Class

XNET Frame

Short Name

FlexRay.InCycRep.ChAssigns

Description

FlexRay channels for in-cycle frame repetition.

A FlexRay frame can be sent multiple times per cycle. The XNET Frame FlexRay:Channel

Assignment property defines the first channel assignment in the cycle. This property defines

subsequent channel assignments. The XNET Frame FlexRay:In Cycle Repetitions:Identifiers

property defines the corresponding slot IDs. Both properties are arrays of maximum three

values, determining the slot ID and channel assignments for the frame. Values at the same

array position are corresponding; therefore, both arrays must have the same size.

You must set the FlexRay:Channel Assignment property before setting this property.

FlexRay:Channel Assignment is a required property that is undefined when a new frame is

created. When FlexRay:Channel Assignment is undefined, setting FlexRay:In Cycle

Repetitions:Channel Assignments returns an error. For convenience, you can set both

properties in one XNET Frame property node, setting the FlexRay:Channel Assignment first

(the properties in a property node are set starting from top position to bottom).

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

NI-XNET Hardware and Software Manual 4-366 ni.com

FlexRay:In Cycle Repetitions:Enabled?

Data Type Direction Required? Default

Read Only No False

Property Class

XNET Frame

Short Name

FlexRay.InCycRep.Enabled?

Description

FlexRay in-cycle frame repetition is enabled.

A FlexRay frame can be sent multiple times per cycle. The XNET Frame Identifier property

defines the first slot ID in the cycle. The XNET Frame FlexRay:In Cycle

Repetitions:Identifiers property can define the subsequent slot IDs, and the XNET Frame

FlexRay:In Cycle Repetitions:Channel Assignments property defines the corresponding

FlexRay channels. Both properties are arrays of maximum three values determining the slot

ID and FlexRay channels for the frame. Values at the same array position are corresponding;

therefore, both arrays must have the same size.

This property returns true when at least one in-cycle repetition has been defined, which means

that both the FlexRay:In Cycle Repetitions:Identifiers and FlexRay:In Cycle

Repetitions:Channel Assignments arrays are not empty.

This property returns false when at least one of the previously mentioned arrays is empty.

In this case, in-cycle-repetition is not used.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

© National Instruments 4-367 NI-XNET Hardware and Software Manual

FlexRay:In Cycle Repetitions:Identifiers

Data Type Direction Required? Default

Read/Write No Empty Array

Property Class

XNET Frame

Short Name

FlexRay.InCycRep.IDs

Description

FlexRay in-cycle repetition slot IDs.

A FlexRay frame can be sent multiple times per cycle. The XNET Frame Identifier property

defines the first slot ID in the cycle. The FlexRay:In Cycle Repetitions:Identifiers property

defines subsequent slot IDs. The XNET Frame FlexRay:In Cycle Repetitions:Channel

Assignments property defines the corresponding FlexRay channel assignments. Both

properties are arrays of maximum three values, determining the subsequent slot IDs and

channel assignments for the frame. Values at the same array position are corresponding;

therefore, both arrays must have the same size.

You must set the XNET Frame Identifier property before setting the FlexRay:In Cycle

Repetitions:Identifiers property. Identifier is a required property that is undefined when a new

frame is created. When Identifier is undefined, setting in-cycle repetition slot IDs returns an

error. For your convenience, you can set both properties in one XNET Frame property node,

setting the Identifier first (the properties in a property node are set starting from top position

to bottom).

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

NI-XNET Hardware and Software Manual 4-368 ni.com

Identifier

Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET Frame

Short Name

ID

Description

Determines the frame identifier.

This property is required. If the property does not contain a valid value, and you create an

XNET Session that uses this frame, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information on using database files and in-memory databases, refer to Databases.

CAN

For CAN frames, this is the Arbitration ID.

When the XNET Frame CAN:Extended Identifier? property is set to false, this is the standard

CAN identifier with a size of 11 bits, which results in allowed range of 0–2047. However, the

CAN standard disallows identifiers in which the first 7 bits are all recessive, so the working

range of identifiers is 0–2031.

When the XNET Frame CAN:Extended Identifier? property is set to true, this is the extended

CAN identifier with a size of 29 bits, which results in allowed range of 0–536870911.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

© National Instruments 4-369 NI-XNET Hardware and Software Manual

FlexRay

For FlexRay frames, this is the Slot ID in which the frame is sent. The valid value range for

a FlexRay Slot ID is 1–2047.

You also can send a FlexRay frame in multiple slots per cycle. You can define subsequent slot

IDs for the frame in the XNET Frame FlexRay:In Cycle Repetitions:Identifiers property. Use

this concept to increase a frame’s sending frequency. To decrease a frame’s sending frequency

and share the same slot for different frames depending on the cycle counter, refer to the XNET

Frame FlexRay:Base Cycle and FlexRay:Cycle Repetition properties.

The slot ID determines whether a FlexRay frame is sent in a static or dynamic segment. If the

slot ID is less than or equal to the XNET Cluster FlexRay:Number of Static Slots property,

the frame is sent in the communication cycle static segment; otherwise, it is sent in the

dynamic segment.

If the frame identifier is not in the allowed range, this is reported as an error in the XNET

Frame Configuration Status property.

LIN

For LIN frames, this is the frame’s ID (unprotected). The valid range for a LIN frame ID is

0–63 (inclusive).

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

NI-XNET Hardware and Software Manual 4-370 ni.com

LIN:Checksum

Data Type Direction Required? Default

Read Only N/A Enhanced

Property Class

XNET Frame

Short Name

LIN.Checksum

Description

Determines whether the LIN frame transmitted checksum is classic or enhanced. The

enhanced checksum considers the protected identifier when it is generated.

This property is a ring (enumerated list) with the following values:

The checksum is determined from the LIN version of ECUs transmitting and receiving the

frame. The lower version of both ECUs is significant. If the LIN version of both ECUs is

2.0 or higher, the checksum type is enhanced; otherwise, the checksum type is classic.

Diagnostic frames (with decimal identifier 60 or 61) always use classic checksum, even on

LIN 2.x.

String Value

Classic 0

Enhanced 1

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

© National Instruments 4-371 NI-XNET Hardware and Software Manual

Mux:Data Multiplexer Signal

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Frame

Short Name

DataMuxSig

Description

Data multiplexer signal in the frame.

This property returns an I/O name of the data multiplexer signal. If the data multiplexer is not

defined in the frame, the I/O control is empty. Use the XNET Frame Mux:Is Data

Multiplexed? property to determine whether the frame contains a multiplexer signal.

You can create a data multiplexer signal by creating a signal and then setting the XNET Signal

Mux:Data Multiplexer? property to true.

A frame can contain only one data multiplexer signal.

Mux:Is Data Multiplexed?

Data Type Direction Required? Default

Read Only No False

Property Class

XNET Frame

Short Name

Mux.IsMuxed?

Description

Frame is data multiplexed.

This property returns true if the frame contains a multiplexer signal. Frames containing a

multiplexer contain subframes that allow using bits of the frame payload for different

information (signals) depending on the multiplexer value.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

NI-XNET Hardware and Software Manual 4-372 ni.com

Mux:Static Signals

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Frame

Short Name

Mux.StatSigs

Description

Static signals in the frame.

Returns an array of I/O names of signals in the frame that do not depend on the multiplexer

value. Static signals are contained in every frame transmitted, as opposed to dynamic signals,

which are transmitted depending on the multiplexer value.

You can create static signals by specifying the frame as the parent object. You can create

dynamic signals by specifying a subframe as the parent.

If the frame is not multiplexed, this property returns the same array as the XNET Frame

Signals property.

Mux:Subframes

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Frame

Short Name

Mux.Subframes

Description

Returns an array of I/O names of subframes in the frame. A subframe defines a group of

signals transmitted using the same multiplexer value. Only one subframe at a time is

transmitted in the frame.

A subframe is defined by creating a subframe object as a child of a frame.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

© National Instruments 4-373 NI-XNET Hardware and Software Manual

Name (Short)

Data Type Direction Required? Default

Read/Write Yes Defined in Create Object

Property Class

XNET Frame

Short Name

NameShort

Description

String identifying a frame object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the short name. The space (), period (.), and other special characters are not supported within

the name. The short name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The short name is limited to 128 characters.

A frame name must be unique for all frames in a cluster.

This short name does not include qualifiers to ensure that it is unique, such as the database

and cluster name. It is for display purposes. The fully qualified name is available by using the

XNET Frame I/O name as a string.

You can write this property to change the frame’s short name. When you do this and then use

the original XNET Frame that contains the old name, errors can result because the old name

cannot be found. Follow these steps to avoid this problem:

1. Get the old Name (Short) property using the property node.

2. Set the new Name (Short) property for the object.

3. Close the object using XNET Database Close.vi. Wire the close all? input as false to

close the renamed object only.

4. Wire the XNET Frame as the input string to Search and Replace String Function.vi

with the old Name as the search string and the new Name as the replacement string. This

replaces the short name in the XNET Frame, while retaining the other text that ensures a

unique name.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

NI-XNET Hardware and Software Manual 4-374 ni.com

The following diagram demonstrates steps 1 through 4 for an XNET Frame I/O name:

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

© National Instruments 4-375 NI-XNET Hardware and Software Manual

Payload Length

Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET Frame

Short Name

PayldLen

Description

Number of bytes of data in the payload.

For CAN or LIN, this is 0–8.

For FlexRay, this is 0–254. As encoded on the FlexRay bus, all frames use an even payload

(16-bit words), and the payload of all static slots must be the same. Nevertheless, this property

specifies the number of payload bytes used within the frame, so its value can be odd. For

example, if a FlexRay cluster uses static slots of 18 bytes, it is valid for this property to be 15,

which specifies that the last 3 bytes are unused.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this frame, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

NI-XNET Hardware and Software Manual 4-376 ni.com

PDU_Mapping

Data Type Direction Required? Default

Read/Write No Empty Array

Property Class

XNET Frame

Short Name

PDU_Mapping

Description

This property maps existing PDUs to a frame. A mapped PDU is transmitted inside the frame

payload when the frame is transmitted. You can map one or more PDUs to a frame and one

PDU to multiple frames.

One PDU_Mapping cluster (a LabVIEW cluster, as opposed to a database cluster object) from

the array assigns one PDU to the frame. The cluster contains the following elements:

• PDU: A string using the PDU I/O name syntax. If you wire an I/O name input to a string

output, LabVIEW converts the I/O name to a string.

• Start Bit: Defines the start bit of the PDU inside the frame.

• Update Bit: Defines the update bit for the PDU inside the frame. If the update bit is not

used, set the value to –1. (Refer to Update Bit for more information.)

Databases imported from FIBEX prior to version 3.0 from DBC, NCD, or LDF files have a

strong one-to-one relationship between frames and PDUs. Every frame has exactly one PDU

mapped, and every PDU is mapped to exactly one frame.

To unmap PDUs from a frame, set this property to an empty array. A frame without mapped

PDUs contains no signals.

NI-XNET supports advanced PDU configuration (multiple PDUs in one frame or one PDU

used in multiple frames) only for FlexRay. Refer to the XNET Cluster PDUs Required?

property.

For CAN and LIN, NI-XNET supports only a one-to-one relationship between frames and

PDUs. For those interfaces, advanced PDU configuration returns an error from the XNET

Frame Configuration Status property and XNET Create Session.vi. If you do not use

advanced PDU configuration, you can avoid using PDUs in the database API and create

signals and subframes directly on a frame.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Property Node

© National Instruments 4-377 NI-XNET Hardware and Software Manual

Signals

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Frame

Short Name

Sigs

Description

I/O names of all signals in the frame.

This property returns an array referencing all signals in the frame, including static and

dynamic signals and the multiplexer signal.

This property is read only. You can add signals to a frame using XNET Database Create

Object.vi and remove them using XNET Database Delete Object.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Frame Constant

NI-XNET Hardware and Software Manual 4-378 ni.com

XNET Frame Constant

This constant provides the constant form of the XNET Frame I/O name. You drag a constant

to the block diagram of your VI, then select a frame. You can change constants only during

configuration, prior to running the VI. For a complete description, refer to XNET Frame I/O

Name.

XNET PDU Property Node

Format

Description

Property node used to read/write properties for an XNET PDU I/O Name.

Pull down this node to add properties. Right-click to change direction between read and write.

Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>) and

move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help (select

Search the LabVIEW Help from the Help menu) and look for the Property Nodes topic in

the index.

Chapter 4 NI-XNET API for LabVIEW—XNET PDU Property Node

© National Instruments 4-379 NI-XNET Hardware and Software Manual

Cluster

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET PDU

Short Name

Cluster

Description

This property returns the I/O name to the parent cluster in which the PDU has been created.

You cannot change the parent cluster after creating the PDU object.

Comment

Data Type Direction Required? Default

Read/Write No Empty String

Property Class

XNET PDU

Short Name

Comment

Description

Comment describing the PDU object.

A comment is a string containing up to 65535 characters.

Chapter 4 NI-XNET API for LabVIEW—XNET PDU Property Node

NI-XNET Hardware and Software Manual 4-380 ni.com

Configuration Status

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET PDU

Short Name

ConfigStatus

Description

The PDU object’s configuration status.

Configuration Status returns an NI-XNET error code. The value can be passed to the Simple

Error Handler.vi error code input to convert it to a text description (on message output) of

the configuration problem.

By default, incorrectly configured PDUs in the database are not returned from the XNET

Cluster PDUs property because they cannot be used in the bus communication. You can

change this behavior by setting the XNET Database ShowInvalidFromOpen? property to true.

When a PDU’s configuration status became invalid after the database has been opened, the

PDU still is returned from the Cluster PDUs property even if ShowInvalidFromOpen? is false.

Examples of invalid PDU configuration:

• You have not defined a required property of the PDU (for example, PDU Payload

Length).

• The number of bytes specified for this PDU is incorrect. CAN PDUs must use 0 to

8 bytes. FlexRay PDUs must use 0 to 254 bytes (PDUs payload must fit into a frame).

Chapter 4 NI-XNET API for LabVIEW—XNET PDU Property Node

© National Instruments 4-381 NI-XNET Hardware and Software Manual

Frames

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET PDU

Short Name

Frms

Description

I/O names of all frames to which the PDU is mapped. A PDU is transmitted within the frames

to which it is mapped.

To map a PDU to a frame, use the XNET Frame PDU_Mapping property. You can map one

PDU to multiple frames.

Mux:Data Multiplexer Signal

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET PDU

Short Name

DataMuxSig

Description

Data multiplexer signal in the PDU.

This property returns the data multiplexer signal I/O name. If the data multiplexer is not

defined in the PDU, the I/O control is empty. Use the XNET PDU Mux:Is Data Multiplexed?

property to determine whether the PDU contains a multiplexer signal.

You can create a data multiplexer signal by creating a signal and then setting the XNET Signal

Mux:Data Multiplexer? property to true.

A PDU can contain only one data multiplexer signal.

Chapter 4 NI-XNET API for LabVIEW—XNET PDU Property Node

NI-XNET Hardware and Software Manual 4-382 ni.com

Mux:Is Data Multiplexed?

Data Type Direction Required? Default

Read Only No False

Property Class

XNET PDU

Short Name

Mux.IsMuxed?

Description

PDU is data multiplexed.

This property returns true if the PDU contains a multiplexer signal. PDUs containing a

multiplexer contain subframes that allow using bits of the payload for different information

(signals), depending on the multiplexer value.

Mux:Static Signals

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET PDU

Short Name

Mux.StatSigs

Description

Static signals in the PDU.

Returns an array of I/O names of signals in the PDU that do not depend on the multiplexer

value. Static signals are contained in every PDU transmitted, as opposed to dynamic signals,

which are transmitted depending on the multiplexer value.

You can create static signals by specifying the PDU as the parent object. You can create

dynamic signals by specifying a subframe as the parent.

If the PDU is not multiplexed, this property returns the same array as the XNET PDU Signals

property.

Chapter 4 NI-XNET API for LabVIEW—XNET PDU Property Node

© National Instruments 4-383 NI-XNET Hardware and Software Manual

Mux:Subframes

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET PDU

Short Name

Mux.Subframes

Description

Returns an array of I/O names of subframes in the PDU. A subframe defines a group of signals

transmitted using the same multiplexer value. Only one subframe is transmitted in the PDU

at a time.

You can define a subframe by creating a subframe object as a child of a PDU.

Chapter 4 NI-XNET API for LabVIEW—XNET PDU Property Node

NI-XNET Hardware and Software Manual 4-384 ni.com

Name (Short)

Data Type Direction Required? Default

Read/Write Yes Defined in Create Object

Property Class

XNET PDU

Short Name

NameShort

Description

String identifying a PDU object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the short name. The space (), period (.), and other special characters are not supported within

the name. The short name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The short name is limited to 128 characters.

A PDU name must be unique for all PDUs in a cluster.

You can write this property to change the PDU’s short name. When you do this and then use

the original XNET PDU that contains the old name, errors can result because the old name

cannot be found. Follow these steps to avoid this problem:

1. Get the old Name (Short) property using the property node.

2. Set the new Name (Short) property for the object.

3. Wire the XNET PDU as the input string to Search and Replace String Function.vi with

the old Name as the search string and the new Name as the replace string. This replaces

the short name in the XNET PDU, while retaining the other text that ensures a unique

name.

4. Wire the result from Search and Replace String Function.vi to XNET String to IO

Name.vi. This casts the string back to a valid XNET PDU.

Chapter 4 NI-XNET API for LabVIEW—XNET PDU Property Node

© National Instruments 4-385 NI-XNET Hardware and Software Manual

Payload Length

Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET PDU

Short Name

PayldLen

Description

Determines the size of the PDU data in bytes.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this PDU, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET PDU Constant

NI-XNET Hardware and Software Manual 4-386 ni.com

Signals

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET PDU

Short Name

Sigs

Description

I/O names of all signals in the PDU.

This property returns an array referencing to all signals in the PDU, including static and

dynamic signals and the multiplexer signal.

This property is read only. You can add signals to a PDU using XNET Database Create

Object.vi and remove them using XNET Database Delete Object.vi.

XNET PDU Constant

This constant provides the constant form of the XNET PDU I/O name. You drag a constant

to the block diagram of your VI, then select a PDU. You can change constants only during

configuration, prior to running the VI. For a complete description, refer to XNET PDU I/O

Name.

Chapter 4 NI-XNET API for LabVIEW—XNET Subframe Property Node

© National Instruments 4-387 NI-XNET Hardware and Software Manual

XNET Subframe Property Node

Format

Description

Property node used to read/write properties for an XNET Subframe I/O Name.

Pull down this node to add properties. Right-click to change direction between read and write.

Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>) and

move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help (select

Search the LabVIEW Help from the Help menu) and look for the Property Nodes topic in

the index.

Chapter 4 NI-XNET API for LabVIEW—XNET Subframe Property Node

NI-XNET Hardware and Software Manual 4-388 ni.com

Dynamic Signals

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Subframe

Short Name

DynSig

Description

Dynamic signals in the subframe.

This property returns an array of I/O names of dynamic signals in the subframe. Those signals

are transmitted when the multiplexer signal in the frame has the multiplexer value defined in

the subframe.

Dynamic signals are created with XNET Database Create Object.vi by specifying a

subframe as the parent.

Frame

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Subframe

Short Name

Frame

Description

Returns the I/O name of the parent frame. The parent frame is defined when the subframe is

created, and you cannot change it afterwards.

Chapter 4 NI-XNET API for LabVIEW—XNET Subframe Property Node

© National Instruments 4-389 NI-XNET Hardware and Software Manual

Multiplexer Value

Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET Subframe

Short Name

MuxValue

Description

Multiplexer value for this subframe.

This property specifies the multiplexer signal value used when the dynamic signals in this

subframe are transmitted in the frame. Only one subframe is transmitted at a time in the frame.

There is also a multiplexer value for a signal object as a read-only property. It reflects the

value set on the parent subframe object.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this subframe, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Subframe Property Node

NI-XNET Hardware and Software Manual 4-390 ni.com

Name (Short)

Data Type Direction Required? Default

Read/Write Yes Defined in Create Object

Property Class

XNET Subframe

Short Name

NameShort

Description

String identifying a subframe object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the short name. The space (), period (.), and other special characters are not supported within

the name. The short name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The short name is limited to 128 characters.

A subframe name must be unique for all subframes in a frame.

This short name does not include qualifiers to ensure that it is unique, such as the database,

cluster, and frame name. It is for display purposes. The fully qualified name is available by

using the XNET Subframe I/O name as a string.

You can write this property to change the subframe’s short name. When you do this and then

use the original XNET Subframe that contains the old name, errors can result because the old

name cannot be found. Follow these steps to avoid this problem:

1. Get the old Name (Short) property using the property node.

2. Set the new Name (Short) property for the object.

3. Close the object using XNET Database Close.vi. Wire the close all? input as false to

close the renamed object only.

4. Wire the XNET Subframe as the input string to Search and Replace String Function.vi

with the old Name as the search string and the new Name as the replacement string. This

replaces the short name in the XNET Subframe, while retaining the other text that

ensures a unique name.

Chapter 4 NI-XNET API for LabVIEW—XNET Subframe Property Node

© National Instruments 4-391 NI-XNET Hardware and Software Manual

The following diagram demonstrates steps 1 through 4 for an XNET Frame I/O name:

Chapter 4 NI-XNET API for LabVIEW—XNET Subframe Property Node

NI-XNET Hardware and Software Manual 4-392 ni.com

PDU

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Subrame

Short Name

PDU

Description

I/O name of the subframe’s parent PDU.

This property returns the I/O name of the subframe’s parent PDU. The parent PDU is defined

when the subframe object is created. You cannot change it afterwards.

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

© National Instruments 4-393 NI-XNET Hardware and Software Manual

XNET Signal Property Node

Format

Description

Property node used to read/write properties for an XNET Signal I/O Name.

Pull down this node to add properties. Right-click to change direction between read and write.

Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>) and

move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help (select

Search the LabVIEW Help from the Help menu) and look for the Property Nodes topic in

the index.

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

NI-XNET Hardware and Software Manual 4-394 ni.com

Byte Order

Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET Signal

Short Name

ByteOrdr

Description

Signal byte order in the frame payload.

This property defines how signal bytes are ordered in the frame payload when the frame is

loaded in memory.

• Little Endian: Higher significant signal bits are placed on higher byte addresses.

In NI-CAN, this was called Intel Byte Order.

Figure 4-8. Little Endian Signal with Start Bit 12

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

© National Instruments 4-395 NI-XNET Hardware and Software Manual

• Big Endian: Higher significant signal bits are placed on lower byte addresses. In

NI-CAN, this was called Motorola Byte Order.

Figure 4-9. Big Endian Signal with Start Bit 12

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this signal, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

NI-XNET Hardware and Software Manual 4-396 ni.com

Comment

Data Type Direction Required? Default

Read/Write No Empty String

Property Class

XNET Signal

Short Name

Comment

Description

Comment describing the signal object.

A comment is a string containing up to 65535 characters.

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

© National Instruments 4-397 NI-XNET Hardware and Software Manual

Configuration Status

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Signal

Short Name

ConfigStatus

Description

The signal object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to Simple Error

Handler.vi error code input to convert the value to a text description (on message output) of

the configuration problem.

By default, incorrectly configured signals in the database are not returned from the XNET

Frame Signals property because they cannot be used in the bus communication. You can

change this behavior by setting the XNET Database ShowInvalidFromOpen? property to true.

When a signal configuration status becomes invalid after the database is opened, the signal

still is returned from the XNET Frame Signals property even if the XNET Database

ShowInvalidFromOpen? property is false.

Examples of invalid signal configuration:

• The signal is specified using bits outside the frame payload.

• The signal overlaps another signal in the frame. For example, two multiplexed signals

with the same multiplexer value are using the same bit in the frame payload.

• The signal with integer data type (signed or unsigned) is specified with more than 52 bits.

This is not allowed due to internal limitation of the double data type that NI-XNET uses

for signal values.

• The frame containing the signal is invalid (for example, a CAN frame is defined with

more than 8 payload bytes).

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

NI-XNET Hardware and Software Manual 4-398 ni.com

Data Type

Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET Signal

Short Name

DataType

Description

The signal data type.

This property determines how the bits of a signal in a frame must be interpreted to build a

value.

• Signed: Signed integer with positive and negative values.

• Unsigned: Unsigned integer with no negative values.

• IEEE Float: Float value with 7 or 15 significant decimal digits (32 bit or 64 bit).

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this signal, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

© National Instruments 4-399 NI-XNET Hardware and Software Manual

Default Value

Data Type Direction Required? Default

Read/Write No 0.0 (If Not in Database)

Property Class

XNET Signal

Short Name

Default

Description

The signal default value, specified as scaled floating-point units.

The data type is 64-bit floating point (DBL).

The initial value of this property comes from the database. If the database does not provide a

value, this property uses a default value of 0.0.

For all three signal output sessions, this property is used when a frame transmits prior to a call

to XNET Write.vi. The XNET Frame Default Payload property is used as the initial payload,

then the default value of each signal is mapped into that payload using this property, and the

result is used for the frame transmit.

For all three signal input sessions, this property is returned for each signal when XNET

Read.vi is called prior to receiving the first frame.

For more information about when this property is used, refer to the discussion of Read/Write

for each session mode.

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

NI-XNET Hardware and Software Manual 4-400 ni.com

Mux:Dynamic?

Data Type Direction Required? Default

Read Only No False

Property Class

XNET Signal

Short Name

Mux.Dynamic?

Description

Use this property to determine if a signal is static or dynamic. Dynamic signals are transmitted

in the frame when the multiplexer signal in the frame has a given value specified in the

subframe. Use the Multiplexer Value property to determine with which multiplexer value the

dynamic signal is transmitted.

This property is read only. To create a dynamic signal, create the signal object as a child of a

subframe instead of a frame. The dynamic signal cannot be changed to a static signal

afterwards.

In NI-CAN, dynamic signals were called mode-dependent signals.

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

© National Instruments 4-401 NI-XNET Hardware and Software Manual

Frame

Data Type Direction Required? Default

Read Only N/A Parent Frame

Property Class

XNET Signal

Short Name

Frame

Description

I/O name of the signal’s parent frame.

This property returns the I/O name of the signal’s parent frame. The parent frame is defined

when the signal object is created. You cannot change it afterwards.

Maximum Value

Data Type Direction Required? Default

Read/Write No 1000.0

Property Class

XNET Signal

Short Name

Max

Description

The scaled signal value maximum.

XNET Read.vi and XNET Write.vi do not limit the signal value to a maximum value. Use

this database property to set the maximum value.

In LabVIEW, you can use this property to set the limits of front panel controls and indicators.

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

NI-XNET Hardware and Software Manual 4-402 ni.com

Minimum Value

Data Type Direction Required? Default

Read/Write No 0.0

Property Class

XNET Signal

Short Name

Min

Description

The scaled signal value minimum.

XNET Read.vi and XNET Write.vi do not limit the signal value to a minimum value. Use

this database property to set the minimum value.

In LabVIEW, you can use this property to set the limits of front panel controls and indicators.

Mux:Multiplexer Value

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Signal

Short Name

Mux.MuxValue

Description

The multiplexer value applies to dynamic signals only (the XNET Signal Mux:Dynamic?

property returns true). This property defines which multiplexer value is transmitted in the

multiplexer signal when this dynamic signal is transmitted in the frame.

The multiplexer value is determined in the subframe. All dynamic signals that are children of

the same subframe object use the same multiplexer value.

Dynamic signals with the same multiplexer value may not overlap each other, the multiplexer

signal, or static signals.

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

© National Instruments 4-403 NI-XNET Hardware and Software Manual

Mux:Data Multiplexer?

Data Type Direction Required? Default

Read/Write No False

Property Class

XNET Signal

Short Name

Mux.Muxer?

Description

This property defines the signal that is a multiplexer signal. A frame containing a multiplexer

value is called a multiplexed frame.

A multiplexer defines an area within the frame to contain different information (dynamic

signals) depending on the multiplexer signal value. Dynamic signals with a different

multiplexer value (defined in a different subframe) can share bits in the frame payload. The

multiplexer signal value determines which dynamic signals are transmitted in the given frame.

To define dynamic signals in the frame transmitted with a given multiplexer value, you first

must create a subframe in this frame and set the multiplexer value in the subframe. Then you

must create dynamic signals using XNET Database Create (Dynamic Signal).vi to create

child signals of this subframe.

Multiplexer signals may not overlap other static or dynamic signals in the frame.

Dynamic signals may overlap other dynamic signals when they have a different multiplexer

value.

A frame may contain only one multiplexer signal.

The multiplexer signal is not scaled. Scaling factor and offset do not apply.

In NI-CAN, the multiplexer signal was called mode channel.

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

NI-XNET Hardware and Software Manual 4-404 ni.com

Name (Short)

Data Type Direction Required? Default

Read/Write Yes Defined in Create Object

Property Class

XNET Signal

Short Name

NameShort

Description

String identifying a signal object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the short name. The space (), period (.), and other special characters are not supported within

the name. The short name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The short name is limited to 128 characters.

A signal name must be unique for all signals in a frame.

This short name does not include qualifiers to ensure that it is unique, such as the database,

cluster, and frame name. It is for display purposes. The fully qualified name is available by

using the XNET Signal I/O name as a string.

You can write this property to change the signal’s short name. When you do this and then use

the original XNET Signal that contains the old name, errors can result because the old name

cannot be found. Follow these steps to avoid this problem:

1. Get the old Name (Short) property using the property node.

2. Set the new Name (Short) property for the object.

3. Close the object using XNET Database Close.vi. Wire the close all? input as false to

close the renamed object only.

4. Wire the XNET Signal as the input string to Search and Replace String Function.vi

with the old Name as the search string and the new Name as the replacement string. This

replaces the short name in the XNET Signal, while retaining the other text that ensures a

unique name.

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

© National Instruments 4-405 NI-XNET Hardware and Software Manual

The following diagram demonstrates steps 1 through 4 for an XNET Frame I/O name:

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

NI-XNET Hardware and Software Manual 4-406 ni.com

Number of Bits

Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET Signal

Short Name

NumBits

Description

The number of bits the signal uses in the frame payload.

IEEE Float numbers are limited to 32 bit or 64 bit.

Integer (signed and unsigned) numbers are limited to 1–52 bits. NI-XNET converts all

integers to doubles (64-bit IEEE Float). Integer numbers with more than 52 bits (the size of

the mantissa in a 64-bit IEEE Float) cannot be converted exactly to double, and vice versa;

therefore, NI-XNET does not support this.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this signal, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

© National Instruments 4-407 NI-XNET Hardware and Software Manual

PDU

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Signal

Short Name

PDU

Description

I/O name of the signal’s parent PDU.

This property returns the I/O name of the signal’s parent PDU. The parent PDU is defined

when the signal object is created. You cannot change it afterwards.

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

NI-XNET Hardware and Software Manual 4-408 ni.com

Scaling Factor

Data Type Direction Required? Default

Read/Write No 1.0

Property Class

XNET Signal

Short Name

ScaleFac

Description

Factor a for linear scaling ax+b.

Linear scaling is applied to all signals with the IEEE Float data type, unsigned and signed.

For identical scaling 1.0x+0.0, NI-XNET optimized scaling routines do not perform the

multiplication and addition.

Scaling Offset

Data Type Direction Required? Default

Read/Write No 0.0

Property Class

XNET Signal

Short Name

ScaleOff

Description

Offset b for linear scaling ax+b.

Linear scaling is applied to all signals with the IEEE Float data type, unsigned and signed.

For identical scaling 1.0x+0.0, NI-XNET optimized scaling routines do not perform the

multiplication and addition.

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

© National Instruments 4-409 NI-XNET Hardware and Software Manual

Start Bit

Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET Signal

Short Name

StartBit

Description

The least significant signal bit position in the frame payload.

This property determines the signal starting point in the frame. For the integer data type

(signed and unsigned), it means the binary signal representation least significant bit position.

For IEEE Float signals, it means the mantissa least significant bit.

The NI-XNET Database Editor shows a graphical overview of the frame. It enumerates

the frame bytes on the left and the byte bits on top. The bit number in the frame is calculated

as byte number  8 + bit number. The maximum bit number in a CAN or LIN frame is

63 (7 × 8 + 7); the maximum bit number in a FlexRay frame is 2031 (253 × 8 + 7).

Figure 4-10. Frame Overview in the NI-XNET Database Editor with a Signal Starting in Bit 12

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

NI-XNET Hardware and Software Manual 4-410 ni.com

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this signal, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Property Node

© National Instruments 4-411 NI-XNET Hardware and Software Manual

Mux:Subframe

Data Type Direction Required? Default

Read Only N/A Parent Subframe

Property Class

XNET Signal

Short Name

Mux.Subfrm

Description

I/O name of the subframe parent.

This property is valid only for dynamic signals that have a subframe parent. For static signals

or the multiplexer signal, this I/O name is empty.

Unit

Data Type Direction Required? Default

Read/Write No Empty String

Property Class

XNET Signal

Short Name

Unit

Description

This property describes the signal value unit. NI-XNET does not use the unit internally for

calculations. You can use the string to display the signal value along with the unit on the front

panel.

Chapter 4 NI-XNET API for LabVIEW—XNET Signal Constant

NI-XNET Hardware and Software Manual 4-412 ni.com

XNET Signal Constant

This constant provides the constant form of the XNET Signal I/O name. You drag a constant

to the block diagram of your VI, then select a signal. You can change constants only during

configuration, prior to running the VI. For a complete description, refer to XNET Signal I/O

Name.

XNET Database Open.vi

Purpose

Opens an object from a database file.

Description

This VI is not required for LabVIEW 2009 or newer. It is provided only for backward

compatibility of VIs written in LabVIEW versions prior to 2009. Newer versions of

LabVIEW can detect the I/O name’s first use as a refnum and open it automatically.

In addition to opening the refnum automatically, LabVIEW also closes it automatically.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Close.vi

© National Instruments 4-413 NI-XNET Hardware and Software Manual

XNET Database Close.vi

Purpose

Closes an object from a database, or all database objects.

Description

The instances of this polymorphic VI specify which objects to close:

• XNET Database Close (Cluster).vi

• XNET Database Close (Database).vi

• XNET Database Close (ECU).vi

• XNET Database Close (Frame).vi

• XNET Database Close (PDU).vi

• XNET Database Close (Signal).vi

• XNET Database Close (Subframe).vi

• XNET Database Close (LIN Schedule).vi

• XNET Database Close (LIN Schedule Entry).vi

Chapter 4 NI-XNET API for LabVIEW—XNET Database Close.vi

NI-XNET Hardware and Software Manual 4-414 ni.com

XNET Database Close (Cluster).vi

Purpose

Closes a cluster from a database, or all database objects.

Format

Inputs

cluster in is the cluster to close.

close all? indicates that all open database objects will be closed. This is the

default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes a cluster object from a database (or all database objects). It is an instance of

the XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, use the close all? parameter

set to true (default); otherwise, only the single database object wired in is closed.

Database objects are closed automatically when the top-level VI terminates, so using this VI

is optional. However, you may want to close database objects to free their memory prior to

starting a session. You can use this VI to do this.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Close.vi

© National Instruments 4-415 NI-XNET Hardware and Software Manual

XNET Database Close (Database).vi

Purpose

Closes an XNET database, or all database objects.

Format

Inputs

database in is the database to close.

close all? indicates that all open database objects will be closed. This is the

default.

error in is the error cluster input (refer to Error Handling).

Outputs
error out is the error cluster output (refer to Error Handling).

Description

This VI closes an XNET database (or all database objects). It is an instance of the XNET

Database Close poly VI.

To simplify the task of closing all database objects you opened, you can use the close all?

parameter set to true (default); otherwise, only the single database object wired in is closed.

Note Even if the database has been closed (using close all? set to false), all database

objects retrieved from this database must be closed separately.

Database objects are closed automatically when the top-level VI terminates, so using this VI

is optional. However, you may want to close database objects to free their memory prior to

starting a session. You can use this VI to do this.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Close.vi

NI-XNET Hardware and Software Manual 4-416 ni.com

XNET Database Close (ECU).vi

Purpose

Closes an ECU from a database, or all database objects.

Format

Inputs

ECU in is the ECU to close.

close all? indicates that all open database objects will be closed. This is the

default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes an ECU object from a database (or all database objects). It is an instance of the

XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, you can use the close all?

parameter set to true (default); otherwise, only the single database object wired in is closed.

Database objects are closed automatically when the top-level VI terminates, so using this VI

is optional. However, you may want to close database objects to free their memory prior to

starting a session. You can use this VI to do this.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Close.vi

© National Instruments 4-417 NI-XNET Hardware and Software Manual

XNET Database Close (Frame).vi

Purpose

Closes a frame from a database, or all database objects.

Format

Inputs

frame in is the frame to close.

close all? indicates that all open database objects will be closed. This is the

default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes a frame object from a database (or all database objects). It is an instance of the

XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, you can use the close all?

parameter set to true (default); otherwise, only the single database object wired in is closed.

Database objects are closed automatically when the top-level VI terminates, so using this VI

is optional. However, you may want to close database objects to free their memory prior to

starting a session. You can use this VI to do this.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Close.vi

NI-XNET Hardware and Software Manual 4-418 ni.com

XNET Database Close (PDU).vi

Purpose

Closes a PDU from a database, or all database objects.

Format

Inputs

PDU in is the PDU to close.

close all? indicates that all open database objects will be closed. This is the

default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes a PDU object from a database (or all database objects). It is an instance of the

XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, you can use the close all?

parameter set to true (default); otherwise, only the single database object wired in is closed.

Database objects are closed automatically when the top-level VI terminates, so using this VI

is optional. However, you may want to close database objects to free their memory prior to

starting a session. You can use this VI to do this.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Close.vi

© National Instruments 4-419 NI-XNET Hardware and Software Manual

XNET Database Close (Signal).vi

Purpose

Closes a signal from a database, or all database objects.

Format

Inputs

signal in is the signal to close.

close all? indicates that all open database objects will be closed. This is the

default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes a signal object from a database (or all database objects). It is an instance of the

XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, you can use the close all?

parameter set to true (default); otherwise, only the single database object wired in is closed.

Database objects are closed automatically when the top-level VI terminates, so using this VI

is optional. However, you may want to close database objects to free their memory prior to

starting a session. You can use this VI to do this.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Close.vi

NI-XNET Hardware and Software Manual 4-420 ni.com

XNET Database Close (Subframe).vi

Purpose

Closes a subframe from a database, or all database objects.

Format

Inputs

subframe in is the subframe to close.

close all? indicates that all open database objects will be closed. This is the

default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes a subframe object from a database (or all database objects). It is an instance of

the XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, you can use the close all?

parameter set to true (default); otherwise, only the single database object wired in is closed.

Database objects are closed automatically when the top-level VI terminates, so using this VI

is optional. However, you may want to close database objects to free their memory prior to

starting a session. You can use this VI to do this.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Close.vi

© National Instruments 4-421 NI-XNET Hardware and Software Manual

XNET Database Close (LIN Schedule).vi

Purpose

Closes a LIN schedule object from a database, or all database objects.

Format

Inputs

LIN schedule in is the schedule to close.

close all? indicates that all open database objects will be closed. This is the

default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes a LIN schedule object from a database (or all database objects). It is an instance

of the XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, you can use the close all?

parameter set to true (default); otherwise, only the single database object wired in is closed.

Database objects are closed automatically when the top-level VI terminates, so using this VI

is optional. However, you may want to close database objects to free their memory prior to

starting a session. You can use this VI to do this.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Close.vi

NI-XNET Hardware and Software Manual 4-422 ni.com

XNET Database Close (LIN Schedule Entry).vi

Purpose

Closes a LIN schedule entry from a database, or all database objects.

Format

Inputs

LIN schedule entry in is the schedule entry to close.

close all? indicates that all open database objects will be closed. This is the

default.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI closes a LIN schedule entry object from a database (or all database objects). It is an

instance of the XNET Database Close poly VI.

To simplify the task of closing all database objects you opened, you can use the close all?

parameter set to true (default); otherwise, only the single database object wired in is closed.

Database objects are closed automatically when the top-level VI terminates, so using this VI

is optional. However, you may want to close database objects to free their memory prior to

starting a session. You can use this VI to do this.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Create Object.vi

© National Instruments 4-423 NI-XNET Hardware and Software Manual

XNET Database Create Object.vi

Purpose

Creates a new database object.

Description

The instances of this polymorphic VI specify which database objects to create:

• XNET Database Create (Cluster).vi

• XNET Database Create (Dynamic Signal).vi

• XNET Database Create (ECU).vi

• XNET Database Create (Frame).vi

• XNET Database Create (PDU).vi

• XNET Database Create (Signal).vi

• XNET Database Create (Subframe).vi

• XNET Database Create (LIN Schedule).vi

• XNET Database Create (LIN Schedule Entry).vi

Chapter 4 NI-XNET API for LabVIEW—XNET Database Create Object.vi

NI-XNET Hardware and Software Manual 4-424 ni.com

XNET Database Create (Cluster).vi

Purpose

Creates a new XNET cluster.

Format

Inputs

database in is the parent database object. database in can be an existing

file. You can create a new database in memory by specifying :memory: for

database in and create an entire hierarchy of objects in memory, without

using a file on the disk.

cluster name is the name of the cluster to create. The name must be unique

for all clusters in a database. Lowercase letters, uppercase letters, numbers,

and the underscore (_) are valid characters for the name. The space (),

period (.), and other special characters are not supported within the name.

The name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The name is limited to 128 characters.

error in is the error cluster input (refer to Error Handling).

Outputs

database out is a copy of the database in parameter. You can use this

output to wire the VI to subsequent VIs.

cluster out is I/O name of the newly created cluster object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET cluster object. It is an instance of XNET Database Create

Object.vi.

The cluster name input becomes the Name (Short) property of the created object. This is

distinct from the string contained within cluster out, which uses the syntax described in

XNET Cluster I/O Name.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Create Object.vi

© National Instruments 4-425 NI-XNET Hardware and Software Manual

The cluster object is created and remains in memory until the database is closed. This VI does

not change the open database file on disk. To save the newly created object to the file, use

XNET Database Save.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Create Object.vi

NI-XNET Hardware and Software Manual 4-426 ni.com

XNET Database Create (Dynamic Signal).vi

Purpose

Creates a new XNET dynamic signal.

Format

Inputs

subframe in is the subframe parent object.

signal name is the name of the signal to create. The name must be unique

for all signals in a frame in which the subframe parent was defined,

including the static signals and the multiplexer signal. Lowercase letters,

uppercase letters, numbers, and the underscore (_) are valid characters for

the name. The space (), period (.), and other special characters are not

supported within the name. The name must begin with a letter (uppercase

or lowercase) or underscore, and not a number. The name is limited to

128 characters.

error in is the error cluster input (refer to Error Handling).

Outputs

subframe out is a copy of the subframe in parameter. You can use this

parameter to wire the VI to subsequent VIs.

signal out is the I/O name of the newly created signal object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET dynamic signal object. It is an instance of XNET Database Create

Object.vi.

The signal name input becomes the Name (Short) property of the created object. This is

distinct from the string contained within signal out, which uses the syntax described in XNET

Signal I/O Name.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Create Object.vi

© National Instruments 4-427 NI-XNET Hardware and Software Manual

The signal object is created and remains in memory until the database is closed. This VI does

not change the open database file on disk. To save the newly created object to the file, use

XNET Database Save.vi.

Dynamic Signal is transmitted in the frame when the multiplexer signal contains the

multiplexer value defined in the subframe.

In NI-CAN, dynamic signals were called mode-dependent channels.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Create Object.vi

NI-XNET Hardware and Software Manual 4-428 ni.com

XNET Database Create (ECU).vi

Purpose

Creates a new XNET ECU.

Format

Inputs

cluster in is the cluster parent object.

ECU name is the name of the ECU to create. The name must be unique for

all ECUs in a cluster. Lowercase letters, uppercase letters, numbers, and the

underscore (_) are valid characters for the name. The space (), period (.),

and other special characters are not supported within the name. The name

must begin with a letter (uppercase or lowercase) or underscore, and not a

number. The name is limited to 128 characters.

error in is the error cluster input (refer to Error Handling).

Outputs

cluster out is a copy of the cluster in parameter. You can use this output to

wire the VI to subsequent VIs.

ECU out is the I/O name of the newly created ECU object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET ECU object. It is an instance of XNET Database Create Object.vi.

The ECU name input becomes the Name (Short) property of the created object. This is

distinct from the string contained within ECU out, which uses the syntax described in XNET

ECU I/O Name.

The ECU object is created and remains in memory until the database is closed. This VI does

not change the open database file on disk. To save the newly created object to the file, use

XNET Database Save.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Create Object.vi

© National Instruments 4-429 NI-XNET Hardware and Software Manual

XNET Database Create (Frame).vi

Purpose

Creates a new XNET frame.

Format

Inputs

cluster in is the cluster parent object.

frame name is the name of the frame to create. The name must be unique

for all frames in a cluster. Lowercase letters, uppercase letters, numbers,

and the underscore (_) are valid characters for the name. The space (),

period (.), and other special characters are not supported within the name.

The name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The name is limited to 128 characters.

error in is the error cluster input (refer to Error Handling).

Outputs

cluster out is a copy of the cluster in parameter. You can use this output to

wire the VI to subsequent VIs.

frame out is the I/O name of the newly created frame object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET frame object. It is an instance of XNET Database Create

Object.vi.

The frame name input becomes the Name (Short) property of the created object. This is

distinct from the string contained within frame out, which uses the syntax described in XNET

Frame I/O Name.

The frame object is created and remains in memory until the database is closed. This VI does

not change the open database file on disk. To save the newly created object to the file, use

XNET Database Save.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Create Object.vi

NI-XNET Hardware and Software Manual 4-430 ni.com

XNET Database Create (PDU).vi

Purpose

Creates a new XNET PDU.

Format

Inputs

cluster in is the cluster parent object.

PDU name is the name of the PDU to create. The name must be unique for

all PDUs in a cluster. Lowercase letters, uppercase letters, numbers, and the

underscore (_) are valid characters for the name. The space (), period (.),

and other special characters are not supported within the name. The name

must begin with a letter (uppercase or lowercase) or underscore, and not a

number. The name is limited to 128 characters.

error in is the error cluster input (refer to Error Handling).

Outputs

cluster out is a copy of the cluster in parameter. You can use this output to

wire the VI to subsequent VIs.

PDU out is the reference to the newly created PDU object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET PDU object. It is an instance of XNET Database Create Object.vi.

The PDU name input becomes the Name (Short) property of the created object. This is

distinct from the string contained within PDU out, which uses the syntax described in XNET

PDU I/O Name.

The PDU object is created and remains in memory until the database is closed. This VI does

not change the open database file on disk. To save the new created object to the file, use

XNET Database Save.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Create Object.vi

© National Instruments 4-431 NI-XNET Hardware and Software Manual

XNET Database Create (Signal).vi

Purpose

Creates a new XNET signal.

Format

Inputs

frame in is the frame parent object.

signal name is the name of the signal to create. Lowercase letters,

uppercase letters, numbers, and the underscore (_) are valid characters for

the name. The space (), period (.), and other special characters are not

supported within the name. The name must begin with a letter (uppercase

or lowercase) or underscore, and not a number. The name is limited to

128 characters.

error in is the error cluster input (refer to Error Handling).

Outputs

frame out is a copy of the frame in parameter. You can use this parameter

to wire the VI to subsequent VIs.

signal out is the I/O name of the newly created signal object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET signal object. It is an instance ofXNET Database Create

Object.vi.

The signal name input becomes the Name (Short) property of the created object. This is

distinct from the string contained within signal out, which uses the syntax described in XNET

Session I/O Name.

The signal object is created and remains in memory until the database is closed. This VI does

not change the open database file on disk. To save the newly created object to the file, use

XNET Database Save.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Create Object.vi

NI-XNET Hardware and Software Manual 4-432 ni.com

XNET Database Create (Subframe).vi

Purpose

Creates a new XNET subframe.

Format

Inputs

frame in is the frame parent object.

subframe name is the name of the subframe to create. The name must be

unique for all subframes in a frame. Lowercase letters, uppercase letters,

numbers, and the underscore (_) are valid characters for the name. The

space (), period (.), and other special characters are not supported within

the name. The name must begin with a letter (uppercase or lowercase) or

underscore, and not a number. The name is limited to 128 characters.

error in is the error cluster input (refer to Error Handling).

Outputs

frame out is a copy of the frame in parameter. You can use this parameter

to wire the VI to subsequent VIs.

subframe out is the I/O name of the newly created subframe object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET subframe object. It is an instance of XNET Database Create

Object.vi.

The subframe name input becomes the Name (Short) property of the created object.

The subframe object is created and remains in memory until the database is closed. This VI

does not change the open database file on disk. To save the newly created object to the file,

use XNET Database Save.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Create Object.vi

© National Instruments 4-433 NI-XNET Hardware and Software Manual

A subframe defines the multiplexer value for all dynamic signals in this subframe. Dynamic

signals within a subframe inherit the multiplexer value from the subframe parent.

In NI-CAN, a subframe was called a mode.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Create Object.vi

NI-XNET Hardware and Software Manual 4-434 ni.com

XNET Database Create (LIN Schedule).vi

Purpose

Creates a new XNET LIN schedule.

Format

Inputs

cluster in is the cluster parent object.

LIN schedule name is the name of the schedule to create. The name must

be unique for all schedules in a cluster. Lowercase letters, uppercase letters,

numbers, and the underscore (_) are valid characters for the name. The

space (), period (.), and other special characters are not supported within

the name. The name must begin with a letter (uppercase or lowercase) or

underscore, and not a number. The name is limited to 128 characters.

error in is the error cluster input (refer to Error Handling).

Outputs

cluster out is a copy of the cluster in parameter. You can use this output to

wire the VI to subsequent VIs.

LIN schedule out is the I/O name of the newly created LIN schedule

object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET LIN schedule object. It is an instance of XNET Database Create

Object.vi.

The LIN schedule name input becomes the Name (Short) property of the created object. This

is distinct from the string contained within LIN schedule out, which uses the syntax

described in XNET LIN Schedule I/O Name.

The schedule object is created and remains in memory until the database is closed. This VI

does not change the open database file on disk. To save the newly created object to the file,

use XNET Database Save.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Create Object.vi

© National Instruments 4-435 NI-XNET Hardware and Software Manual

XNET Database Create (LIN Schedule Entry).vi

Purpose

Creates a new XNET LIN schedule entry object.

Format

Inputs

LIN schedule in is the schedule parent object.

LIN schedule entry name is the name of the schedule entry to create. The

name must be unique for all entries in a schedule. Lowercase letters,

uppercase letters, numbers, and the underscore (_) are valid characters for

the name. The space (), period (.), and other special characters are not

supported within the name. The name must begin with a letter (uppercase

or lowercase) or underscore, and not a number. The name is limited to

128 characters.

error in is the error cluster input (refer to Error Handling).

Outputs

LIN schedule out is a copy of the LIN schedule in parameter. You can use

this parameter to wire the VI to subsequent VIs.

LIN schedule entry out is the I/O name of the newly created LIN schedule

entry object.

error out is the error cluster output (refer to Error Handling).

Description

This VI creates an XNET schedule entry object. It is an instance of XNET Database Create

Object.vi.

Schedule entries is an ordered array in a schedule. The schedule is being processed in the

order of this array. A newly created entry always is added to the last position of the array.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Create Object.vi

NI-XNET Hardware and Software Manual 4-436 ni.com

The LIN schedule entry name input becomes the Name (Short) property of the created

object. This is distinct from the string contained in LIN schedule entry out, which uses the

syntax described in XNET LIN Schedule Entry I/O Name.

The schedule object is created and remains in memory until the database is closed. This VI

does not change the open database file on disk. To save the newly created object to the file,

use XNET Database Save.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Delete Object.vi

© National Instruments 4-437 NI-XNET Hardware and Software Manual

XNET Database Delete Object.vi

Purpose

Deletes a database object.

Description

The instances of this polymorphic VI specify which database objects to delete:

• XNET Database Delete (Cluster).vi

• XNET Database Delete (ECU).vi

• XNET Database Delete (Frame).vi

• XNET Database Delete (PDU).vi

• XNET Database Delete (Signal).vi

• XNET Database Delete (Subframe).vi

• XNET Database Delete (LIN Schedule).vi

• XNET Database Delete (LIN Schedule Entry).vi

Chapter 4 NI-XNET API for LabVIEW—XNET Database Delete Object.vi

NI-XNET Hardware and Software Manual 4-438 ni.com

XNET Database Delete (Cluster).vi

Purpose

Deletes an XNET cluster and all child objects in this cluster.

Format

Inputs

cluster in is the I/O name of the cluster to delete.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI deletes an XNET cluster object with all frames, PDUs, signals, subframes, and ECUs

in this cluster. It is an instance of XNET Database Delete Object.vi.

Upon deletion, the I/O names of all deleted objects are closed and no longer can be used.

The objects are deleted from a database in memory. The change is in force until the database

is closed. This VI does not change the open database file on disk. To save the changed

database to the file, use XNET Database Save.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Delete Object.vi

© National Instruments 4-439 NI-XNET Hardware and Software Manual

XNET Database Delete (ECU).vi

Purpose

Deletes an XNET ECU.

Format

Inputs

ECU in is the I/O name of the ECU to delete.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI deletes an XNET ECU object. It is an instance of XNET Database Delete Object.vi.

Upon deletion, the I/O name of the ECU is closed and no longer can be used.

The ECU object is deleted from a database in memory and is in force until the database is

closed. This VI does not change the open database file on disk. To save the changed database

to the file, use XNET Database Save.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Delete Object.vi

NI-XNET Hardware and Software Manual 4-440 ni.com

XNET Database Delete (Frame).vi

Purpose

Deletes an XNET frame and all child objects in the frame.

Format

Inputs

frame in is the I/O name of the frame to delete.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI deletes an XNET frame object with all mapped PDUs, including signals and

subframes in those PDUs. It is an instance of XNET Database Delete Object.vi. To avoid

deleting PDUs with the frame, unmap the PDUs from the frame before deleting the frame (set

the XNET Frame PDU_Mapping property to an empty array).

Upon deletion, the I/O names of all deleted objects are closed and no longer can be used.

The objects are deleted from a database in memory. The change is in force until the database

is closed. This VI does not change the open database file on disk. To save the changed

database to the file, use XNET Database Save.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Delete Object.vi

© National Instruments 4-441 NI-XNET Hardware and Software Manual

XNET Database Delete (PDU).vi

Purpose

Delete an XNET PDU and all child objects in this PDU.

Format

Inputs

PDU in references the PDU to delete.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI deletes an XNET PDU object with all signals and subframes in this PDU. It is an

instance of XNET Database Delete Object.vi.

Upon deletion, the I/O names to all deleted objects are closed and no longer can be used.

The objects are deleted from a database in memory. The change is in force until the database

is closed. This VI does not change the open database file on disk. To save the changed

database to the file, use XNET Database Save.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Delete Object.vi

NI-XNET Hardware and Software Manual 4-442 ni.com

XNET Database Delete (Signal).vi

Purpose

Deletes an XNET signal.

Format

Inputs

signal in is the I/O name of the signal to delete.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI deletes an XNET signal object. It is an instance of XNET Database Delete

Object.vi.

Upon deletion, the I/O name of the signal is closed and no longer can be used.

The signal object is deleted from a database in memory and is in force until the database is

closed. This VI does not change the open database file on disk. To save the changed database

to the file, use XNET Database Save.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Delete Object.vi

© National Instruments 4-443 NI-XNET Hardware and Software Manual

XNET Database Delete (Subframe).vi

Purpose

Deletes an XNET subframe and all dynamic signals in the subframe.

Format

Inputs

subframe in is the I/O name of the subframe to delete.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI deletes an XNET subframe object and all dynamic signals in this subframe. It is an

instance of XNET Database Delete Object.vi.

Upon deletion, the I/O names of the subframe and related dynamic signals are closed and no

longer can be used.

The objects are deleted from a database in memory. The change is in force until the database

is closed. This VI does not change the open database file on disk. To save the changed

database to the file, use XNET Database Save.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Delete Object.vi

NI-XNET Hardware and Software Manual 4-444 ni.com

XNET Database Delete (LIN Schedule).vi

Purpose

Deletes an XNET LIN schedule and all LIN schedule entry objects in this schedule.

Format

Inputs

LIN schedule in is the I/O name of the LIN schedule to delete.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI deletes an XNET LIN schedule object and the entries it contains. It is an instance of

XNET Database Delete Object.vi.

Upon deletion, the I/O names of all deleted objects are closed, and you no longer can use

them.

The LIN schedule object is deleted from a database in memory and is in force until the

database is closed. This VI does not change the open database file on disk. To save the

changed database to the file, use XNET Database Save.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Delete Object.vi

© National Instruments 4-445 NI-XNET Hardware and Software Manual

XNET Database Delete (LIN Schedule Entry).vi

Purpose

Deletes an XNET schedule entry object.

Format

Inputs

LIN schedule entry in is the I/O name of the LIN schedule entry to delete.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI deletes an XNET LIN schedule entry object. It is an instance of XNET Database

Delete Object.vi.

Upon deletion, the I/O name of the deleted object is closed, and you no longer can use it.

The objects are deleted from a database in memory. The change is in force until the database

is closed. This VI does not change the open database file on disk. To save the changed

database to the file, use XNET Database Save.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Merge.vi

NI-XNET Hardware and Software Manual 4-446 ni.com

XNET Database Merge.vi

Purpose

Merges database objects and related child objects from the source to the destination cluster.

Description

The instances of this polymorphic VI specify which database objects to merge:

• XNET Database Merge (Frame).vi

• XNET Database Merge (PDU).vi

• XNET Database Merge (ECU).vi

• XNET Database Merge (LIN Schedule).vi

• XNET Database Merge (Cluster).vi

Chapter 4 NI-XNET API for LabVIEW—XNET Database Merge.vi

© National Instruments 4-447 NI-XNET Hardware and Software Manual

XNET Database Merge (Frame).vi

Purpose

Merges a frame object with all child objects into the destination cluster.

Format

Inputs

wait for complete? Use this input only if the source object is a cluster

(refer to XNET Database Merge (Cluster).vi).

target cluster in is the I/O name of the cluster where the source frame is

merged.

source frame is the I/O name of the frame to be merged into the target

cluster.

copy mode defines the merging behavior if the target cluster already

contains a frame with the same name.

prefix is added to the source frame name if a frame with the same name

exists in the target cluster.

error in is the error cluster input (refer to Error Handling).

Outputs

percent complete is used when wait for complete? is false. (This output

does not apply to the frame instance.)

target cluster out is a copy of target cluster in. You can use this output to

wire the VI to subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Database Merge.vi

NI-XNET Hardware and Software Manual 4-448 ni.com

Description

This VI merges a frame with all dependent child objects (PDUs, subframes, and signals) to

the target cluster.

If the source frame name was not used in the target cluster, this VI copies the source frame

with the child objects to the target. If a frame with the same name exists in the target cluster,

you can avoid name collisions by specifying the prefix to be added to the name.

If a frame with the same name exists in the target cluster, the merge behavior depends on the

copy mode input:

• Copy using source: The target frame with all dependent child objects is removed from

the target cluster and replaced by the source objects.

• Copy using destination: The source frame is ignored (the target cluster frame with child

objects remains unchanged).

• Merge using source: This adds child objects from the source frame to child objects from

the destination frame. If the target frame contains a child object with the same name, it

is replaced by the child object from the source frame. The source frame properties (for

example, payload length) replace the target frame properties.

• Merge using destination: This adds child objects from the source frame to child objects

from the destination frame. If the target frame contains a child object with the same

name, it remains unchanged. The target frame properties remain unchanged (for

example, payload length).

Example

Target frame F1(v1) has signals S1 and S2(v1). Source frame F1(v2) has signals S2(v2)

and S3.

(v1) and (v2) are two versions of one object with same name, but with different properties.

• Result of Copy using source: F1(v2), S2(v2), S3.

• Result of Copy using destination: F1(v1), S1, S2(v1).

• Result of Merge using source: F1(v2), S1, S2(v2), S3.

• Result of Merge using destination: F1(v1), S1, S2(v1), S3.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Merge.vi

© National Instruments 4-449 NI-XNET Hardware and Software Manual

XNET Database Merge (PDU).vi

Purpose

Merges a PDU object with all child objects into the destination cluster.

Format

Inputs

wait for complete? Use this input only if the source object is a cluster

(refer to XNET Database Merge (Cluster).vi).

target cluster in is the I/O name of the cluster where the source PDU is

merged.

source PDU is the I/O name of the PDU to be merged into the target cluster.

copy mode defines the merging behavior if the target cluster already

contains a PDU with the same name.

prefix is added to the source PDU name if a PDU with the same name

exists in the target cluster.

error in is the error cluster input (refer to Error Handling).

Outputs

percent complete is used when wait for complete? is false. (This output

does not apply to the PDU instance.)

target cluster out is a copy of target cluster in. You can use this output to

wire the VI to subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Database Merge.vi

NI-XNET Hardware and Software Manual 4-450 ni.com

Description

This VI merges a PDU with all dependent child objects (subframes and signals) to the target

cluster.

If the source PDU name was not used in the target cluster, this VI copies the source PDU with

the child objects to the target. If a PDU with the same name exists in the target cluster, you

can avoid name collisions by specifying the prefix to be added to the name.

If a PDU with the same name exists in the target cluster, the merge behavior depends on the

copy mode input:

• Copy using source: The target PDU with all dependent child objects is removed from

the target cluster and replaced by the source objects.

• Copy using destination: The source PDU is ignored (the target cluster PDU with child

objects remains unchanged).

• Merge using source: This adds child objects from the source PDU to child objects from

the destination PDU. If the target PDU contains a child object with the same name, it is

replaced by the child object from the source PDU. The source PDU properties (for

example, payload length) replace the target PDU properties.

• Merge using destination: This adds child objects from the source PDU to child objects

from the destination PDU. If the target PDU contains a child object with the same name,

it remains unchanged. The target PDU properties remain unchanged (for example,

payload length).

Example

Target PDU Pdu1(v1) has signals S1 and S2(v1). Source PDU Pdu1(v2) has signals S2(v2)

and S3.

(v1) and (v2) are two versions of one object with same name but with different properties.

• Result of Copy using source: Pdu1(v2), S2(v2), S3.

• Result of Copy using destination: Pdu1(v1), S1, S2(v1).

• Result of Merge using source: Pdu1(v2), S1, S2(v2), S3.

• Result of Merge using destination: Pdu1(v1), S1, S2(v1), S3.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Merge.vi

© National Instruments 4-451 NI-XNET Hardware and Software Manual

XNET Database Merge (ECU).vi

Purpose

Merges an ECU object with Tx/Rx frames into the destination cluster.

Format

Inputs

wait for complete? Use this input only if the source object is a cluster

(refer to XNET Database Merge (Cluster).vi).

target cluster in is the I/O name of the cluster where the source ECU is

merged.

source ECU is the I/O name of the ECU to be merged into the target

cluster.

copy mode defines the merging behavior if the target cluster already

contains an ECU with the same name.

prefix is added to the source ECU name if an ECU with the same name

exists in the target cluster.

error in is the error cluster input (refer to Error Handling).

Outputs

percent complete is used when wait for complete? is false. (This output

does not apply to the ECU instance.)

target cluster out is a copy of target cluster in. You can use this output to

wire the VI to subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Database Merge.vi

NI-XNET Hardware and Software Manual 4-452 ni.com

Description

This VI merges an ECU with all Tx/Rx frames to the target cluster. It does not merge the

frames itself, but only the transmitting or receiving information. This happens based on frame

names. If the source cluster defines new frames not contained in the destination cluster, they

should be merged before merging the ECU; otherwise, the Tx/Rx information is removed.

If the source ECU name was not used in the target cluster, this VI copies the source ECU to

the target. If an ECU with the same name exists in the target cluster, you can avoid name

collisions by specifying the prefix to be added to the name.

If an ECU with the same name exists in the target cluster, the merge behavior depends on the

copy mode input:

• Copy using source: The target ECU with all Tx/Rx information is removed from the

target cluster and replaced by the source objects.

• Copy using destination: The source ECU is ignored (the target cluster ECU with child

objects remains unchanged).

• Merge using source: This adds Tx/Rx frames from the source ECU to Tx/Rx from the

destination ECU. The source ECU properties (for example, comment) replace the target

ECU properties.

• Merge using destination: This adds Tx/Rx frames from the source ECU to Tx/Rx from

the destination ECU. The target ECU properties remain unchanged (for example,

comment).

Example

Target ECU Ecu1(v1) has Tx frames F1 and F2. Source ECU Ecu1(v2) has Tx frames F2

and F3.

(v1) and (v2) are two versions of one object with same name but with different properties.

• Result of Copy using source: Ecu1(v2), F2, F3.

• Result of Copy using destination: Ecu1(v1), F1, F2.

• Result of Merge using source: Ecu1(v2), F1, F2, F3.

• Result of Merge using destination: Ecu1(v1), F1, F2, F3.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Merge.vi

© National Instruments 4-453 NI-XNET Hardware and Software Manual

XNET Database Merge (LIN Schedule).vi

Purpose

Merges a LIN schedule object with all child objects into the destination cluster.

Format

Inputs

wait for complete? Use this input only if the source object is a cluster

(refer to XNET Database Merge (Cluster).vi).

target cluster in is the I/O name of the cluster where the source LIN

schedule is merged.

source LIN schedule is the I/O name of the LIN schedule to be merged into

the target cluster.

copy mode defines the merging behavior if the target cluster already

contains a LIN schedule with the same name.

prefix is added to the source LIN schedule name if a LIN schedule with the

same name exists in the target cluster.

error in is the error cluster input (refer to Error Handling).

Outputs

percent complete is used when wait for complete? is false. (This output

does not apply to the LIN schedule instance.)

target cluster out is a copy of target cluster in. You can use this output to

wire the VI to subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Database Merge.vi

NI-XNET Hardware and Software Manual 4-454 ni.com

Description

This VI merges a LIN schedule with all schedule entries to the target cluster. Frames

referenced in the schedule entries should be merged before merging the LIN schedule;

otherwise, the reference get lost.

If the source LIN schedule name was not used in the target cluster, this VI copies the source

LIN schedule with the entries to the target. If a LIN schedule with the same name exists in the

target cluster, you can avoid name collisions by specifying the prefix to be added to the name.

If a LIN schedule with the same name exists in the target cluster, the merge behavior depends

on the copy mode input:

• Copy using source: The target LIN schedule with entries is removed from the target

cluster and replaced by the source objects.

• Copy using destination: The source LIN schedule is ignored (the target cluster schedule

with entries remains unchanged).

• Merge using source: This adds schedule entries from the source schedule at the end of

the destination schedule table. The copied entries become new names, so all entry names

in the schedule are unique. The source schedule properties replace the target schedule

properties (comment, priority, run mode).

• Merge using destination: This adds schedule entries from the source schedule at the end

of the destination schedule table. The copied entries become new names, so all entry

names in the schedule are unique. The target schedule properties (comment, priority, run

mode) remain unchanged.

Example

Target LIN schedule LS1(v1) has entries e1, e2. Source LIN schedule LS1(v2) has entries

e3, e4.

(v1) and (v2) are two versions of one object with same name but with different properties.

• Result of Copy using source: LS1(v1), e1, e2.

• Result of Copy using destination: LS1(v2), e3, e4.

• Result of Merge using source: LS1(v2),e1, e2, e3, e4.

• Result of Merge using destination: LS1(v1), e1, e2, e3, e4.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Merge.vi

© National Instruments 4-455 NI-XNET Hardware and Software Manual

XNET Database Merge (Cluster).vi

Purpose

Merges a source cluster with all child objects into the destination cluster.

Format

Inputs

wait for complete? Use this input to split the merging process into parts

(for example, to display a progress bar).

target cluster in is the I/O name of the cluster where the source cluster is

merged.

source cluster is the I/O name of the cluster to be merged into the target

cluster.

copy mode defines the merging behavior if the target cluster already

contains elements with the same name.

prefix is added to the source cluster name if an element with the same name

exists in the target cluster.

error in is the error cluster input (refer to Error Handling).

Outputs

percent complete is used when wait for complete? is false.

target cluster out is a copy of target cluster in. You can use this output to

wire the VI to subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Database Merge.vi

NI-XNET Hardware and Software Manual 4-456 ni.com

Description

This VI merges all objects contained in the source cluster into the target cluster.

The following VIs merge the objects with dependent-child objects:

• XNET Database Merge (Frame).vi

• XNET Database Merge (PDU).vi

• XNET Database Merge (ECU).vi

• XNET Database Merge (LIN Schedule).vi

Copy mode and prefix are passed to the appropriate VI for the merging process.

If the copy mode is set to Copy using source or Merge using source, all cluster properties

including the name are copied from the source to the target cluster.

Depending on the number of contained objects in the source and destination clusters, the

execution can take longer. If wait for complete? is true, this VI waits until the merging

process gets completed. If the execution completes without errors, percent complete returns

100. If wait for complete? is false, the function returns quickly and percent complete returns

values less than 100. You must call XNET Database Merge.vi repeatedly until percent

complete returns 100. You can use the time between calls to update a progress bar.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Save.vi

© National Instruments 4-457 NI-XNET Hardware and Software Manual

XNET Database Save.vi

Purpose

Saves the open database to a FIBEX 3.1.1 file.

Format

Inputs

database in is the I/O name of the database.

filepath contains the pathname to the FIBEX file or is empty (saves to the

original filepath).

error in is the error cluster input (refer to Error Handling).

Outputs

database out is a copy of the database in parameter. You can use this

parameter to wire the VI to subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

This VI saves the XNET database current state to a FIBEX 3.1.1 file. The file extension must

be .xml. If the target file exists, it is overwritten.

XNET saves to the FIBEX file only features that XNET sessions use to communicate on the

network. If the original file was created using non-XNET software, the target file may be

missing details from the original file. For example, NI-XNET supports only linear scaling. If

the original FIBEX file used a rational equation that cannot be expressed as a linear scaling,

XNET converts this to a linear scaling with factor 1.0 and offset 0.0.

If filepath is empty, the file is saved to the same FIBEX file specified when opened. If opened

as a file path, it uses that file path. If opened as an alias, it uses the file path registered for that

alias.

Saving a database is not supported in LabVIEW Real-Time, but you can deploy and use a

database saved on Windows in LabVIEW Real-Time (refer to XNET Database Deploy.vi).

Chapter 4 NI-XNET API for LabVIEW—XNET Database Export.vi

NI-XNET Hardware and Software Manual 4-458 ni.com

XNET Database Export.vi

Purpose

Exports a cluster from the open database to a file in a specific format.

Format

Inputs

cluster in is the I/O name of the cluster.

filepath contains the pathname to the file to be created.

error in is the error cluster input (refer to Error Handling).

Outputs

cluster out is a copy of the cluster in parameter. You can use this parameter

to wire the VI to subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

This VI exports a cluster from an XNET database to a specific file format. A CAN cluster is

exported as CANdb++ database (.dbc). A LIN cluster is exported as a LIN database file

(.ldf). A FlexRay cluster cannot be exported and returns an error. If the target file exists, it

is overwritten. The filepath parameter is required; you cannot accidentally overwrite the

original file by specifying an empty filepath.

XNET saves to the file only features that XNET sessions use to communicate on the network.

If the original file was created using non-XNET software, the target file may be missing

details from the original file. For example, NI-XNET supports only linear scaling. If the

original FIBEX file used a rational equation that cannot be expressed as a linear scaling,

XNET converts this to a linear scaling with factor 1.0 and offset 0.0.

Exporting a database is not supported in LabVIEW Real-Time, but you can deploy and use a

database saved on Windows in LabVIEW Real-Time (refer to XNET Database Deploy.vi for

more information).

Chapter 4 NI-XNET API for LabVIEW—File Management Subpalette

© National Instruments 4-459 NI-XNET Hardware and Software Manual

File Management Subpalette

This subpalette includes VIs to manage database aliases and deploy or undeploy a database

file to LabVIEW Real-Time (RT).

XNET Database Add Alias.vi

Purpose

Adds a new alias to a database file.

Format

Inputs

default baud rate provides the default baud rate, used when filepath refers

to a CANdb database (.dbc) or an NI-CAN database (.ncd). These

database formats are specific to CAN and do not specify a cluster baud rate.

Use this default baud rate to specify a default CAN baud rate to use with

this alias. If filepath refers to a FIBEX database (.xml) or LIN LDF file,

the default baud rate parameter is ignored. The FIBEX and LDF database

formats require a valid baud rate for every cluster, and NI-XNET uses that

baud rate as the default.

alias provides the desired alias name. Unlike the name of other XNET

database objects, the alias name can use special characters such as space

and dash. If the alias name already exists, this VI changes the previous

filepath to the specified filepath.

filepath provides the path to the CANdb, FIBEX, or LDF file.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—File Management Subpalette

NI-XNET Hardware and Software Manual 4-460 ni.com

Description

NI-XNET uses alias names for database files. The alias names provide a shorter name for

display, allow for changes to the file system without changing the application, and enable

efficient deployment to LabVIEW Real-Time (RT) targets.

This VI is supported on Windows only. For LabVIEW RT, you can pass the new alias to

XNET Database Deploy.vi to transfer an optimized binary image of the database to the

LabVIEW RT target. After deploying the database, you can use the alias name in any VI for

the Windows host and the LabVIEW RT target.

Chapter 4 NI-XNET API for LabVIEW—File Management Subpalette

© National Instruments 4-461 NI-XNET Hardware and Software Manual

XNET Database Remove Alias.vi

Purpose

Removes a database alias from the system.

Format

Inputs

alias is the name of the alias to delete.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI removes the alias from NI-XNET, but does not affect the database text file. It just

removes the alias association to the database filepath.

This VI is supported on Windows only, and the alias is removed from Windows only (not

LabVIEW RT targets). Use XNET Database Undeploy.vi to remove an alias from a

LabVIEW Real-Time (RT) target.

Chapter 4 NI-XNET API for LabVIEW—File Management Subpalette

NI-XNET Hardware and Software Manual 4-462 ni.com

XNET Database Get List.vi

Purpose

Gets the current list of databases on a system.

Format

Inputs

IP address is the target IP address.

If IP address is unwired (empty), this VI retrieves aliases and file paths for

the local Windows system.

If IP address is a valid IP address, this VI retrieves aliases and file paths

for the remote LabVIEW RT target. You can find this IP address using

MAX or VIs in the LabVIEW Real-Time palettes.

error in is the error cluster input (refer to Error Handling).

Outputs

array of alias returns an array of strings, one for every alias registered in

the system. If no aliases are registered, the array is empty.

array of filepath returns an array of strings that contain the file paths and

filenames of the databases assigned to the aliases, one for every alias

registered in the system.

If no aliases are registered, the array is empty. This parameter applies to

Windows targets only; on RT targets, this array always is empty.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—File Management Subpalette

© National Instruments 4-463 NI-XNET Hardware and Software Manual

Description

For a local Windows call (IP address empty), array of filepath returns an array of file paths.

The size of this array is the same as array of alias. It provides the Windows file path for each

corresponding alias.

For a remote call to LabVIEW RT, array of filepath is empty. NI-XNET handles the file

system on the LabVIEW RT target automatically, so that only the alias is needed.

This VI is supported on Windows only. LabVIEW RT database deployments are managed

remotely from Windows.

Chapter 4 NI-XNET API for LabVIEW—File Management Subpalette

NI-XNET Hardware and Software Manual 4-464 ni.com

XNET Database Deploy.vi

Purpose

Deploys a database to a remote LabVIEW Real-Time (RT) target.

Format

Inputs

IP address is the target IP address.

alias provides the database alias name. To deploy a database text file,

first add an alias using XNET Database Add Alias.vi.

wait for complete? determines whether the VI returns directly or waits

until the entire transmission is completed.

error in is the error cluster input (refer to Error Handling).

Outputs

percent complete indicates the deployment progress.

error out is the error cluster output (refer to Error Handling).

Description

This VI transfers an optimized binary image of the database to the LabVIEW RT target. After

deploying the database, you can use the alias name in any VI for the Windows host and the

LabVIEW RT target.

This VI is supported on Windows only. LabVIEW RT database deployments are managed

remotely from Windows.

This VI must access the remote LabVIEW RT target from Windows, so IP address must

specify a valid IP address for the LabVIEW RT target. You can find this IP address using

MAX or VIs in the LabVIEW Real-Time palettes.

If the LabVIEW RT target access is password protected, use the following syntax for the

IP address to deploy an alias: [user:password@]IPaddress.

Chapter 4 NI-XNET API for LabVIEW—File Management Subpalette

© National Instruments 4-465 NI-XNET Hardware and Software Manual

Remote file transfer can take a few seconds, especially when the RT target is far away.

If wait for complete? is true, this VI waits for the entire transfer to complete, then returns.

error out reflects the deployment status, and percent complete is 100.

If wait for complete? is false, this VI transfers a portion of the database and returns before it

is complete. For an incomplete transfer, error out returns success, and percent complete is

less than 100. You can use percent complete to display transfer progress on your front panel.

You must call XNET Database Deploy.vi in a loop until percent complete is returned as

100, at which time error out reflects the entire deployment status.

Chapter 4 NI-XNET API for LabVIEW—File Management Subpalette

NI-XNET Hardware and Software Manual 4-466 ni.com

XNET Database Undeploy.vi

Purpose

Undeploys a database from a remote LabVIEW Real-Time (RT) target.

Format

Inputs

IP address is the target IP address.

alias provides the database alias name.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI completely deletes the database file and its alias from the LabVIEW RT target.

This VI is supported on Windows only. LabVIEW RT database deployments are managed

remotely from Windows.

This VI must access the remote LabVIEW RT target from Windows, so IP address must

specify a valid IP address for the LabVIEW RT target. You can find this IP address using

MAX or VIs in the LabVIEW Real-Time palettes.

If the LabVIEW RT target access is password protected, you can use the following syntax for

the IP address to deploy an alias: [user:password@]IPaddress.

Chapter 4 NI-XNET API for LabVIEW—XNET LIN Schedule Property Node

© National Instruments 4-467 NI-XNET Hardware and Software Manual

XNET LIN Schedule Property Node

Format

Description

Property node used to read/write properties for an XNET LIN Schedule I/O Name.

Pull down this node to add properties. Right-click to change direction between read and write.

Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>) and

move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help (select

Search the LabVIEW Help from the Help menu) and look for the Property Nodes topic in

the index.

Cluster

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET LIN Schedule

Short Name

Cluster

Description

This property returns the I/O name to the parent cluster in which the schedule has been

created. You cannot change the parent cluster after creating the schedule object.

Chapter 4 NI-XNET API for LabVIEW—XNET LIN Schedule Property Node

NI-XNET Hardware and Software Manual 4-468 ni.com

Comment

Data Type Direction Required? Default

Read/Write No Empty String

Property Class

XNET LIN Schedule

Short Name

Comment

Description

Comment describing the schedule object.

A comment is a string containing up to 65535 characters.

Chapter 4 NI-XNET API for LabVIEW—XNET LIN Schedule Property Node

© National Instruments 4-469 NI-XNET Hardware and Software Manual

Configuration Status

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET LIN Schedule

Short Name

ConfigStatus

Description

The LIN schedule object configuration status.

Configuration Status returns an NI-XNET error code. The value can be passed to the error

code input of Simple Error Handler.vi to convert it to a text description (on message output)

of the configuration problem.

By default, the XNET Cluster LIN:Schedules property does not return incorrect configured

schedules in the database because you cannot use them in the bus communication. You can

change this behavior by setting the XNET Database ShowInvalidFromOpen? property to true.

When a schedule’s configuration status becomes invalid after the database is opened, the

XNET Cluster LIN:Schedules property still returns the schedule even if

ShowInvalidFromOpen? is false.

An example of an invalid schedule configuration is when a required schedule property is not

defined (for example, a schedule entry within this schedule has an undefined delay time).

Chapter 4 NI-XNET API for LabVIEW—XNET LIN Schedule Property Node

NI-XNET Hardware and Software Manual 4-470 ni.com

Entries

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET LIN Schedule

Short Name

Entries

Description

Array of entries for this LIN schedule.

Each entry’s position in this array specifies the position in the schedule. The database file

and/or the order that you create entries at runtime determine the position.

Chapter 4 NI-XNET API for LabVIEW—XNET LIN Schedule Property Node

© National Instruments 4-471 NI-XNET Hardware and Software Manual

Name (Short)

Data Type Direction Required? Default

Read/Write Yes Defined in Create Object

Property Class

XNET LIN Schedule

Short Name

NameShort

Description

String identifying the XNET LIN schedule object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the short name. The space (), period (.), and other special characters are not supported within

the name. The short name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The short name is limited to 128 characters.

A schedule name must be unique for all schedules in a cluster.

You can write this property to change the schedules’s short name. When you do this and then

use the original XNET LIN schedule that contains the old name, errors can result because the

old name cannot be found. Follow these steps to avoid this problem:

1. Get the old Name (Short) property using the property node.

2. Set the new Name (Short) property for the object.

3. Wire the XNET LIN schedule as the input string to Search and Replace String

Function.vi with the old Name as the search string and the new Name as the replace

string. This replaces the short name in the XNET LIN schedule, while retaining the other

text that ensures a unique name.

4. Wire the result from Search and Replace String Function.vi to the XNET String to IO

Name.vi. This casts the string back to a valid XNET LIN schedule.

Chapter 4 NI-XNET API for LabVIEW—XNET LIN Schedule Property Node

NI-XNET Hardware and Software Manual 4-472 ni.com

Priority

Data Type Direction Required? Default

Read/Write No 42

Property Class

XNET LIN Schedule

Short Name

Priority

Description

Priority of this run-once LIN schedule when multiple run-once schedules are pending for

execution.

The valid range for this property is 1–254. Lower values correspond to higher priority.

This property applies only when the Run Mode property is Once. Run-once schedule requests

are queued for execution based on this property. When all run-once schedules have

completed, the master returns to the previously running continuous schedule (or null).

Run-continuous schedule requests are not queued. Only the most recent run-continuous

schedule is used, and it executes only if no run-once schedule is pending. Therefore, a

run-continuous schedule has an effective priority of 255, but this property is not used.

Null schedule requests take effect immediately and supercede any running run-once or

run-continuous schedule. The queue of pending run-once schedule requests is flushed

(emptied without running them). Therefore, a null schedule has an effective priority of 0, but

this property is not used.

This property is not read from the database, but is handled like a database property. After

opening the database, the default value is returned, and you can change the property. But

similar to database properties, you cannot change it after a session is created.

Chapter 4 NI-XNET API for LabVIEW—XNET LIN Schedule Property Node

© National Instruments 4-473 NI-XNET Hardware and Software Manual

Run Mode

Data Type Direction Required? Default

Read/Write No See Description

Property Class

XNET LIN Schedule

Short Name

RunMode

Description

This property is a ring (enumerated list) with the following values:

This property specifies how the master runs this schedule:

• Continuous: The master runs the schedule continuously. When the last entry executes,

the schedule starts again with the first entry.

• Once: The master runs the schedule once (all entries), then returns to the previously

running continuous schedule (or null). If requests are submitted for multiple run-once

schedules, each run-once executes in succession based on its Priority, then the master

returns to the continuous schedule (or null).

• Null: All communication stops immediately. A schedule with this run mode is called a

null schedule.

This property is not read from the database, but is handled like a database property. After

opening the database, the default value is returned, and you can change the property. But

similar to database properties, you cannot change it after a session is created.

Usually, the default value for the run mode is Continuous. If the schedule is configured to be

a collision resolving table for an event-triggered entry, the default is Once.

String Value

Continuous 0

Once 1

Null 2

Chapter 4 NI-XNET API for LabVIEW—XNET LIN Schedule Entry Property Node

NI-XNET Hardware and Software Manual 4-474 ni.com

XNET LIN Schedule Entry Property Node

Format

Description

Property node used to read/write properties for an XNET LIN Schedule Entry I/O Name.

Pull down this node to add properties. Right-click to change direction between read and write.

Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>) and

move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help (select

Search the LabVIEW Help from the Help menu) and look for the Property Nodes topic in

the index.

Chapter 4 NI-XNET API for LabVIEW—XNET LIN Schedule Entry Property Node

© National Instruments 4-475 NI-XNET Hardware and Software Manual

Collision Resolving Schedule

Data Type Direction Required? Default

Read/Write No Empty I/O Name

Property Class

XNET LIN Schedule Entry

Short Name

CollResSched

Description

LIN schedule that resolves a collision for this event-triggered entry.

This property applies only when the entry Type is event triggered. When a collision occurs

for the event-triggered entry in this schedule, the master must switch to the collision resolving

schedule to transfer the unconditional frames successfully. If the XNET interface is acting as

the master on the LIN cluster, NI-XNET automatically writes a schedule request for this

collision resolving schedule.

The collision resolving schedule Run Mode must be Once.

When the entry type is any value other than event triggered, this property returns an empty

entry (invalid).

Chapter 4 NI-XNET API for LabVIEW—XNET LIN Schedule Entry Property Node

NI-XNET Hardware and Software Manual 4-476 ni.com

Delay

Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET LIN Schedule Entry

Short Name

Delay

Description

Time from the start of this entry (slot) to the start of the next entry.

The property uses a double value in seconds, with the fractional part used for milliseconds or

microseconds.

Event Identifier

Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET LIN Schedule Entry

Short Name

EventID

Description

The event-triggered entry identifier. This identifier is unprotected (NI-XNET handles the

protection).

This property applies only when the entry type is event triggered. This identifier is for the

event-triggered entry itself, and the first payload byte is for the protected identifier of the

contained unconditional frame.

Chapter 4 NI-XNET API for LabVIEW—XNET LIN Schedule Entry Property Node

© National Instruments 4-477 NI-XNET Hardware and Software Manual

Frames

Data Type Direction Required? Default

Read/Write No Empty Array

Property Class

XNET LIN Schedule Entry

Short Name

Frames

Description

Array of frames for this LIN schedule entry.

If the entry Type is unconditional, this array contains one element, which is the single

unconditional frame for this entry.

If the entry Type is sporadic, this array contains one or more frames for this entry. When

multiple frames are pending for this entry, the order in the array determines the priority to

transmit.

If the entry Type is event triggered, this array contains one or more frames for this entry.

When multiple frames are pending for this entry, a collision typically occurs on the bus. When

the XNET interface is acting as master, and a collision occurs, the master automatically writes

a schedule request for the Collision Resolving Schedule. This resolves the collision

automatically so that your application can proceed.

Chapter 4 NI-XNET API for LabVIEW—XNET LIN Schedule Entry Property Node

NI-XNET Hardware and Software Manual 4-478 ni.com

Name (Short)

Data Type Direction Required? Default

Read/Write Yes Defined in Create Object

Property Class

XNET LIN Schedule Entry

Short Name

NameShort

Description

String identifying the LIN schedule entry object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the short name. The space (), period (.), and other special characters are not supported within

the name. The short name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The short name is limited to 128 characters.

A schedule entry name must be unique for all entries in the same schedule.

You can write this property to change the schedule entry’s short name. When you do this and

then use the original XNET LIN schedule entry that contains the old name, errors can result

because the old name cannot be found. Follow these steps to avoid this problem:

1. Get the old Name (Short) property using the property node.

2. Set the new Name (Short) property for the object.

3. Wire the XNET LIN schedule entry as the input string to Search and Replace String

Function.vi with the old Name as the search string and the new Name as the replace

string. This replaces the short name in the XNET LIN schedule entry, while retaining the

other text that ensures a unique name.

4. Wire the result from Search and Replace String Function.vi to XNET String to IO

Name.vi. This casts the string back to a valid XNET LIN schedule entry.

Chapter 4 NI-XNET API for LabVIEW—XNET LIN Schedule Entry Property Node

© National Instruments 4-479 NI-XNET Hardware and Software Manual

Node Configuration:Free Format:Data Bytes

Data Type Direction Required? Default

Read/Write Yes N/A

Property Class

XNET LIN Schedule Entry

Short Name

NodeConfFFDataBytes

Description

An array of 8 bytes containing raw data for LIN node configuration.

Node configuration defines a set of services used to configure slave nodes in the cluster. Every

service has a specific set of parameters coded in this byte array. In the LDF file, those

parameters are stored, for example, in the node (ECU) or the frame object. NI-XNET LDF

reader composes those parameters to the byte values like they are sent on the bus. The LIN

specification document describes the node configuration services and the mapping of the

parameters to the raw format bytes.

The node configuration service is executed only if the Schedule Entry Type is set to Node

Configuration.

Caution This property is not saved to the FIBEX file. If you write this property, save the

database, and reopen it, the node configuration services are not contained in the database.

Writing this property is useful only in the NI-XNET session immediately following.

Chapter 4 NI-XNET API for LabVIEW—XNET LIN Schedule Entry Property Node

NI-XNET Hardware and Software Manual 4-480 ni.com

Schedule

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET LIN Schedule Entry

Short Name

Schedule

Description

LIN schedule that uses this entry.

This LIN schedule is considered this entry’s parent. You define the parent schedule when

creating the entry object. You cannot change it afterwards.

Chapter 4 NI-XNET API for LabVIEW—XNET LIN Schedule Entry Property Node

© National Instruments 4-481 NI-XNET Hardware and Software Manual

Type

Data Type Direction Required? Default

Read/Write No Unconditional

Property Class

XNET LIN Schedule Entry

Short Name

Type

Description

The LIN schedule entry type determines the mechanism used to transfer frames in this entry

(slot). The values (enumeration) for this property are:

0 Unconditional: A single frame transfers in this entry (slot).

1 Sporadic: The master transmits in this entry (slot). The master selects among multiple

frames to transmit. Only updated frames are transmitted. When more than one frame has

been updated, the master decides by priority which frame to transmit. The other updated

frames remain pending and can be sent when this schedule entry executes again. The

order of frames in the LIN Schedule Entry Frames property (the first frame has the

highest priority) determines the frame priority.

2 Event triggered: Multiple slaves can transmit a frame in this entry (slot). Each slave

transmits when the frame’s data has been updated. When a collision occurs (multiple

slaves try to transmit in the same slot), this is detected and resolved using a different

schedule specified in the LIN Schedule Entry Collision Resolving Schedule property.

The resolving schedule runs once, starting in the subsequent slot after the collision, and

automatically turns back to the previous schedule at the position where the collision

occurred.

3 Node configuration: The schedule entry contains a node configuration service. The

node configuration service is defined as raw data bytes in the XNET LIN Schedule Entry

Node Configuration:Free Format:Data Bytes property.

A LIN frame can exist in multiple schedules and multiple schedule entries. For example, if a

frame exists in an event-triggered entry in schedule A, it also exists in an unconditional entry

of a different schedule B, so that event-triggered collisions in schedule A can be resolved by

switching to schedule B.

For information about how LIN frame timing compares to the Timing Type property of CAN

and FlexRay frames, refer to Cyclic and Event Timing.

Chapter 4 NI-XNET API for LabVIEW—XNET Database Get DBC Attribute.vi

NI-XNET Hardware and Software Manual 4-482 ni.com

XNET Database Get DBC Attribute.vi

Purpose

Reads the attribute value, attribute enumeration, defined attributes, or signal value table from

a DBC file.

Format

Inputs

mode is the mode specification of this VI. Depending on this value, the VI

returns the following data:

• Mode 0: Get Attribute Value: For a given object (for example, a

signal), the VI returns the attribute value assigned to the object. The

attribute values always are returned as text in attribute text. The DBC

specification also allows defining other data types, such as integer or

float. If necessary, you can convert the data to a number by using, for

example, the Scan From String VI in the String palette. If the

attribute is defined as an enumeration of text strings, the attribute value

returned here is the index to the enumeration list, which you can

retrieve using Mode 1 of the VI.

• Mode 1: Get Enumeration: For a given attribute name, the VI returns

the enumeration text table as a comma-separated string in attribute

text. Because for a given attribute name, the enumeration is the same

for all objects of the same type, object in can point to any object with

the given class (object in specifies the class). If no enumeration is

defined for an attribute, the VI returns an empty string.

• Mode 2: Get Attribute Name List: Returns all attribute names

defined for the given object type as a comma-separated string.

object in can point to any object in the database of the given class

(object in specifies the object class). attribute name is ignored (it

should be set to empty string).

Chapter 4 NI-XNET API for LabVIEW—XNET Database Get DBC Attribute.vi

© National Instruments 4-483 NI-XNET Hardware and Software Manual

• Mode 3: Get Signal Value Table: This is valid only when object in

points to a signal. attribute name is ignored (it should be set to empty

string). If the given signal contains a value table, the function returns a

comma-separated list in the form [value,string]{,<value>,<string>}.

The list contains any number of corresponding value,string pairs. If no

value table is defined for the signal, the result is an empty string.

object in is the database object (cluster, frame, signal, or ECU).

attribute name is the attribute name.

error in is the error cluster input (refer to Error Handling).

Outputs

object out is a copy of the object in parameter. You can use this output to

wire the VI to subsequent VIs.

attribute text is the attribute value.

is default? indicates that a default value is used instead of a specific value

for this object. DBC files define a default value for an attribute with the

given name, and then specific values for particular objects. If the specific

value for an object is not defined, the default value is returned. is default?

has no meaning if the mode parameter is not 0 (refer to the mode

description above).

error out is the error cluster output (refer to Error Handling).

Description

Depending on the mode parameter, this VI reads an attribute value, attribute enumeration, list

of existing attributes, or value table of a signal from a DBC file. Refer to the mode input

description above for details.

Attributes are supported for the following object types:

• Cluster (DBC file: network attribute)

• Frame (DBC file: message attribute)

• Signal (DBC file: signal attribute)

• ECU (DBC file: node attribute)

Databases other than DBC do not support attributes. Attributes are not saved to a FIBEX file

when you open and save a DBC file.

Chapter 4 NI-XNET API for LabVIEW—Notify Subpalette

NI-XNET Hardware and Software Manual 4-484 ni.com

Notify Subpalette

This subpalette includes functions for waiting on events from XNET hardware, including

creation of a LabVIEW timing source.

XNET Wait.vi

Purpose

Waits for an event to occur.

Description

The instances of this polymorphic VI specify the event to wait for:

• XNET Wait (Transmit Complete).vi

• XNET Wait (Interface Communicating).vi

• XNET Wait (CAN Remote Wakeup).vi

• XNET Wait (LIN Remote Wakeup).vi

Chapter 4 NI-XNET API for LabVIEW—XNET Wait.vi

© National Instruments 4-485 NI-XNET Hardware and Software Manual

XNET Wait (Transmit Complete).vi

Purpose

Waits for previously written data to be transmitted on the cluster.

Format

Inputs

session in is the session to apply the wait.

timeout specifies the maximum amount of time in seconds to wait.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

Waits for all data provided to XNET Write.vi before this XNET Wait.vi call to be

transmitted on the CAN, FlexRay, or LIN network. Depending on the bus or configuration

properties such as Interface:CAN:Single Shot Transmit?, the data may or may not have been

successfully transmitted; however, if this wait returns successfully, it indicates that the session

is making no more attempts to transmit the data. This wait applies to only the current XNET

session, and not other sessions used for the same interface.

After using XNET Write.vi to provide data for this session, you can use this VI to wait for

that data to transmit to remote ECUs. You can use this VI to guarantee that all frames have

been transmitted before stopping this session.

The timeout parameter provides the maximum number of seconds to wait. The default value

is 10 (10 seconds).

Chapter 4 NI-XNET API for LabVIEW—XNET Wait.vi

NI-XNET Hardware and Software Manual 4-486 ni.com

XNET Wait (Interface Communicating).vi

Purpose

Waits for the interface to begin communication on the cluster.

Format

Inputs

session in is the session to apply the wait.

timeout specifies the maximum amount of time in seconds to wait.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

Waits for the interface to begin communication on the cluster. After the interface is started,

the controller connects to the cluster and starts communication. This wait returns after

communication with the cluster has been established.

Note For some buses (for example, CAN), the communication may occur within a few

microseconds of starting the interface. For other buses, this could be delayed. An example

of a bus where the communication time is delayed from the start time is FlexRay, where

the interface must perform a startup routine that may take several cycles to complete. A

FlexRay interface attempts integration with the remaining nodes in the cluster when it is

started. If the FlexRay interface can coldstart, it sends out startup frames when started and

synchronizes its clock with other startup nodes in the cluster. Once the FlexRay interface

has successfully integrated, the interface is ready to start transmitting and receiving frames.

Reading the XNET FlexRay interface Protocol Operation Control (POC) state (refer to the

XNET Read (State FlexRay Comm).vi description), once the interface has successfully

integrated, returns Normal-Active.

Chapter 4 NI-XNET API for LabVIEW—XNET Wait.vi

© National Instruments 4-487 NI-XNET Hardware and Software Manual

Note If a start trigger is configured for the interface, the interface start occurs after the start

trigger is received.

The timeout parameter provides the maximum number of seconds to wait. The default value

is 10 (10 seconds).

Chapter 4 NI-XNET API for LabVIEW—XNET Wait.vi

NI-XNET Hardware and Software Manual 4-488 ni.com

XNET Wait (CAN Remote Wakeup).vi

Purpose

Waits for the CAN interface to wake up due to activity by a remote ECU on the network.

Format

Inputs

session in is the session to apply the wait.

timeout specifies the maximum amount of time in seconds to wait.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

This wait is used when you set the XNET Session Interface:CAN:Transceiver State property

to Sleep. When asleep, the interface and transceiver go into a low-powered mode. If a remote

CAN ECU transmits a frame, the transceiver detects this transmission, and both the controller

and transceiver wake up. This wait detects that remote wakeup.

Note The interface neither receives nor acknowledges the transmission that caused the

wakeup. However, after the interface wakes up, the transceiver automatically is placed into

normal mode, and communication is restored.

The timeout parameter provides the maximum number of seconds to wait. This value must

be 1.0 (one second) or greater. The default value is 10 (10 seconds).

Chapter 4 NI-XNET API for LabVIEW—XNET Wait.vi

© National Instruments 4-489 NI-XNET Hardware and Software Manual

XNET Wait (LIN Remote Wakeup).vi

Purpose

Waits for the LIN interface to wake up due to activity by a remote ECU on the network.

Format

Inputs

session in is the session to apply the wait. The wait applies to the LIN

interface, so you can use any session.

timeout specifies the maximum amount of time in seconds to wait.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

This wait is used when you set the XNET Session Interface:LIN:Sleep property to Remote

Sleep or Local Sleep. When asleep, if a remote LIN ECU transmits the wakeup pattern

(break), the XNET LIN interface detects this transmission and wakes up. This wait detects

that remote wakeup.

The timeout parameter provides the maximum number of seconds to wait. This value must

be 1.0 (one second) or greater. The default value is 10 (10 seconds).

Chapter 4 NI-XNET API for LabVIEW—XNET Create Timing Source.vi

NI-XNET Hardware and Software Manual 4-490 ni.com

XNET Create Timing Source.vi

Purpose

Creates a timing source for a LabVIEW Timed Loop.

Description

The instances of this polymorphic VI specify the timing source to create:

• XNET Create Timing Source (FlexRay Cycle).vi

XNET Create Timing Source (FlexRay Cycle).vi

Purpose

Creates a timing source for a LabVIEW Timed Loop.

The timing source is based on the FlexRay communication cycle. The timing source sends a

tick to the Timed Loop at a specific offset in time within the FlexRay cycle. The offset within

the cycle is specified in FlexRay macroticks.

Format

Inputs

timing source name is the timing source name, returned as timing source

out if this VI succeeds.

This input is optional. If you leave timing source name unwired (empty),

timing source out uses the session name (session in).

session in is the session to use for creating the timing source.

You must configure the session to use a FlexRay interface, because the

timing source is based on that interface’s communication cycle. You can

create only one FlexRay cycle timing source for each interface.

This session is selected from the LabVIEW project or returned from XNET

Create Session.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Create Timing Source.vi

© National Instruments 4-491 NI-XNET Hardware and Software Manual

macrotick offset is the offset within each FlexRay cycle that you want the

timing source to tick.

The minimum value is zero (0), which specifies a tick at the start of every

FlexRay cycle. The value cannot be equal to or greater than the number of

macroticks in the cycle, which you can read from the XNET Cluster the

session uses, from the FlexRay:Macro Per Cycle property.

For further recommendations about selecting a value, refer to Macrotick

Offset.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

timing source out is the timing source name. You wire this name to the

Source Name of the input node outside the Timed Loop.

For more information about the Timed Loop nodes, refer to Using the

Timed Loop.

If this VI returns an error (status true in error out), timing source out is

empty, which indicates to the Timed Loop that no valid timing source

exists.

error out is the error cluster output (refer to Error Handling).

Description

Use this VI to synchronize your LabVIEW Real-Time application to the deterministic

FlexRay cycle. Because the FlexRay cycle repeats every few milliseconds, real-time

execution is required, and therefore this VI is not supported on Windows.

You can create only one FlexRay Cycle timing source for each FlexRay interface. You can

wire a single timing source to multiple Timed Loops.

The following sections include more detailed information about using this VI:

• Using the Timed Loop

• Session Start and Stop

• Macrotick Offset

Chapter 4 NI-XNET API for LabVIEW—XNET Create Timing Source.vi

NI-XNET Hardware and Software Manual 4-492 ni.com

Using the Timed Loop

This section includes guidelines for using the LabVIEW Timed Loop with the NI-XNET

FlexRay Cycle timing source. For complete information, refer to the LabVIEW help topics

for the Timed Loop.

The Timed Loop contains the nodes described below.

Figure 4-11. Timed Loop Nodes

Input Node

Source Name: Wire the timing source name output of this VI to this terminal on the Timed

Loop input node. This specifies the XNET timing source and overrides the default built-in

timing source (1 kHz).

Period: For most applications, you wire the constant 1 to this terminal, which overrides the

default of 1000. The Period specifies the number of timing source ticks that must occur for

the loop to iterate. A value of 1 iterates the Timed Loop on every FlexRay cycle. Higher values

skip FlexRay cycles (for example, 2 iterates the loop every other FlexRay cycle).

Timeout: For most applications, you wire the constant 300 to this terminal, which overrides

the default of –1. The Timeout specifies the maximum number of milliseconds to wait for a

tick. For this FlexRay cycle timing source, this timeout primarily applies to the first loop

iteration. According to the FlexRay specification, the process of fully synchronizing the

1 Input Node

2 Left Data Node

3 Right Data Node

4 Output Node

1 2 3 4

Chapter 4 NI-XNET API for LabVIEW—XNET Create Timing Source.vi

© National Instruments 4-493 NI-XNET Hardware and Software Manual

distributed network clocks can take as long as 200 ms. This network clock synchronization is

required for the NI-XNET interface to detect the first FlexRay cycle and send a tick to the

Timed Loop. If network communication problems occur (for example, noise on the cable), the

first tick does not occur. Using a value of 300 for this terminal ensures that if problems occur

on the FlexRay network, the Timed Loop can recover (refer to Wake-Up Reason in Left Data

Node).

Error: Use this terminal to propagate errors through the Timed Loop. The Timed Loop does

not execute if this terminal receives an error condition. You typically wire the error out from

this XNET Create Timing Source (FlexRay Cycle).vi to this terminal. This avoids the need

for alternate error propagation techniques, such as a shift register.

Left Data Node

Error: Propagates errors through the structure. Wire this terminal to error in of the first VI

within the subdiagram.

Wake-Up Reason: If the first Timed Loop iteration encounters a Timeout due to problems

on the FlexRay network, this terminal returns a value of 5 (Timeout). When the timeout

occurs, the Timed Loop does not return an error condition from Error. The timeout causes

the iteration to execute untimed, then try again on the next iteration. If the FlexRay tick occurs

as expected, Wake-Up Reason returns a value of 0 (Normal).

Right Data Node

Error: Propagates errors from the subdiagram out of the Timed Loop. If Error receives an

error condition, the Timed Loop finishes executing the current iteration untimed, exits the

loop, and returns the error condition on the Output Node. If you want the Timed Loop to exit

on error, wire error out from the last VI in the subdiagram to this terminal.

Output Node

Error: Propagates errors the Timed Loop receives and returns errors from the subdiagram.

Session Start and Stop

When the Timed Loop input node executes, the XNET session for the timing source is started

automatically. This auto-start is equivalent to calling XNET Start.vi (Normal). This

auto-start is performed even if the session’s Auto Start? property is false. Because the Timed

Loop uses an execution priority that typically is higher than the VIs that precede it, starting

FlexRay communication within the Timed Loop ensures that you do not miss the first

FlexRay cycle. Due to these factors, do not call XNET Start.vi prior to the Timed Loop (use

the Timed Loop auto-start instead).

After the initial session and interface auto-start, the Timed Loop Timeout is used to wait for

communication to begin.

Chapter 4 NI-XNET API for LabVIEW—XNET Create Timing Source.vi

NI-XNET Hardware and Software Manual 4-494 ni.com

When the Timed Loop exits to its output node, the XNET session remains in its current state.

The Timed Loop does not stop or clear the session, so you can continue to use the session in

VIs that follow.

Macrotick Offset

To set the macrotick offset, it helps to understand some NI-XNET implementation aspects.

When the FlexRay Communication Controller (CC) receives a frame, the NI-XNET hardware

immediately transfers that frame to LabVIEW Real-Time (RT). This transfer is performed

using DMA (Direct Memory Access) on the PXI backplane, so that it occurs quickly and with

negligible jitter to your LabVIEW RT execution.

Figure 4-12 shows the effects of this implementation. In this example, the macrotick offset

is set to occur at the end of slot 1. The subdiagram in the Timed Loop calls XNET Read.vi

to read the value received from slot 1.

For better visibility in Figures 4-12, 4-13, and 4-14, the NI-XNET blocks (Read/Write, DMA

I/O, an dCC I/O) are longer than actual performance. When using a PXI controller for

LabVIEW Real-Time, your results typically will be faster. This is especially true if your

application does not transfer data on the PXI backplane continuously (for example, streaming

analog, vision, or TCP/IP data), as this sort of transfer can adversely impact the NI-XNET

DMA latencies.

Figure 4-12. FlexRay Frame Timed Read

Slot 1(Cycle 2)

CC Input

and DMA Input

VIs in Timed Loop

(Your Application)

Time

Start of Cycle 3 Macrotick

Offset

Slot 2

R1

IN1

Chapter 4 NI-XNET API for LabVIEW—XNET Create Timing Source.vi

© National Instruments 4-495 NI-XNET Hardware and Software Manual

Figure 4-12 shows that the DMA input transfer for slot 1 (IN1) occurs at the same time as

XNET Read.vi for slot 1 (R1). Depending on which one completes first, XNET Read.vi may

return a value from the current cycle (3) or the previous cycle (2).

To prevent this uncertainty, macrotick offset must be large enough to ensure that the frame

DMA input is complete. Relative to Figure 4-12, setting macrotick offset to the end of slot 2

would suffice.

When your LabVIEW RT application calls XNET Write.vi, the frame values are transferred

immediately using DMA. The frame values are transferred to the NI-XNET hardware

onboard processor memory. For efficiency reasons, this onboard processor waits until the

FlexRay cycle Network Idle Time (NIT) to transfer the frame values from its memory to the

FlexRay Communication Controller (CC). The FlexRay Communication Controller transmits

each frame value according to its slot configuration in the cycle.

Figure 4-13 shows the effects of this implementation. This example expands on Figure 4-12

by calling XNET Write.vi with a value for slot 8. XNET Write.vi (W8) is called well in

advance of slot 8 in the cycle. The DMA output transfer for the value of slot 8 (D8) occurs

immediately after XNET Write.vi. Nevertheless, the value for slot 8 is not placed into the

FlexRay Communication Controller until the NIT time, shown as C8. This means that

although XNET Write.vi was called before slot 8’s occurrence in the current cycle 3, that

value does not transmit until the subsequent cycle 4.

This implementation for output means that it is not necessarily urgent to call XNET Write.vi

before the relevant slot. You merely need to provide time for XNET Write.vi and the related

DMA output to complete prior to the NIT.

Chapter 4 NI-XNET API for LabVIEW—XNET Create Timing Source.vi

NI-XNET Hardware and Software Manual 4-496 ni.com

Figure 4-13. FlexRay Frame Timed Write

Taking these implementation considerations into account, the typical macrotick offset goal

is a value that executes the Timed Loop after the last cycle input DMA and prior to the NIT.

Ideally, the macrotick offset provides sufficient time for input DMA, XNET Read.vi,

LabVIEW code within the Timed Loop (for example, a simulation model), XNET Write.vi,

and DMA output.

To find a value for macrotick offset, you can use the XNET Cluster property node. The

FlexRay:NIT Start property provides the macrotick offset for the start of NIT, which is your

upper limit. To determine the lower limit, the FlexRay:Static Slot property provides the

number of macroticks for each static slot. Static slot numbers begin at 1. Assuming

static slot X is the last slot that you read, the lower limit for macrotick offset is

(X  FlexRay:Static Slot).

The following example demonstrates a technique for calculating macrotick offset. The

example uses a simple FlexRay cluster configured as follows:

• Baud Rate—5000000 bps (5 Mbps)

• Macrotick—1 (1 µs duration)

• Macro Per Cycle—1000 (1 ms)

• Number of Static Slots—10

• Number of Minislots—80

• Static Slot—58 MT (16 byte payload)

1 2 3 4 5 6 7 8 9 10(Cycle 2)

DMA Output

CC Input

and DMA Input

CC Output

VIs in Timed Loop

(Your Application)

Time

Start of

Cycle 3

Macrotick

Offset

Dynamic (Cycle 4)NIT

R1 W8

D8

IN1

C8

Chapter 4 NI-XNET API for LabVIEW—XNET Create Timing Source.vi

© National Instruments 4-497 NI-XNET Hardware and Software Manual

• NIT Start—900 MT offset

• NIT—100 MT (duration)

Within the Timed Loop, the example does the following:

• Reads a Signal Input Single-Point session for frames in static slots 2, 3, and 4.

• Executes a simulation model (passes in inputs and obtains outputs).

• Writes a Signal Output Single-Point session for frames in static slots 8, 9, and 10.

Assume that you test the simulation model performance and determine that it takes 100 µs

(including jitter). Using the cluster configuration and the time required for the simulation

model, select a macrotick offset that locates the simulation model at the midpoint between the

end of slot 4 (the last input frame) and the start of NIT. This provides the maximum time

possible for XNET Read.vi/XNET Write.vi, DMA input/output, and CC input/output.

EndOfSlot4 = (4  Static_Slot)

= (4  58)

= 232

Midpoint = EndOfSlot4 + ((NIT_Start – EndOfSlot4) / 2)

= 232 + ((900 – 232) / 2)

= 232 + 334

= 566

macrotick offset = (Midpoint – (SimModelTime / 2))

= (566 – (100 / 2))

= 516

Chapter 4 NI-XNET API for LabVIEW—XNET Create Timing Source.vi

NI-XNET Hardware and Software Manual 4-498 ni.com

Figure 4-14 shows the Timed Loop timing diagram. Notice that the simulation model is

synchronized deterministically with the FlexRay cycle. The Timed Loop code reads inputs

from the current cycle, calculates outputs, and then writes the output for the next cycle.

Figure 4-14. Timing Source Example

Reading from the FlexRay Communication Controller (and performing the corresponding

DMA) for frames 2, 3, and 4 is shown as blocks IN2, IN3, and IN4. XNET Read.vi for

frames 2, 3, and 4 is shown as block R2,3,4. The simulation model execution is shown as

block SIM. The start of SIM is halfway between the end of slot 4 and the start of NIT. XNET

Write.vi for frames 8, 9, and 10 is shown as block W8,9,10. The corresponding DMA output

for these frames is shown as block D8,9,10. The FlexRay Communication Controller update

during the NIT is shown as block C8,9,10.

As with any performance-sensitive configuration, you should measure using your own

hardware and application to calculate the best macrotick offset value. To determine the

current cycle and macrotick within the Timed Loop for measurement purposes, use XNET

Read (State FlexRay Cycle Macrotick).vi.

1 2 3 4 5 6 7 8 9 10(Cycle 2)

DMA Output

CC Input

and DMA Input

CC Output

VIs in Timed Loop

(Your Application)

Time

Start of

Cycle 3

Macrotick

Offset (516)

Dynamic (Cycle 4)NIT

R2,3,4 W8,9,10

SIM

D8,9,10

IN2

IN3

IN4

C8,9,10

Chapter 4 NI-XNET API for LabVIEW—Advanced Subpalette

© National Instruments 4-499 NI-XNET Hardware and Software Manual

Advanced Subpalette

This subpalette includes advanced functions for controlling the state of NI-XNET sessions,

connecting hardware terminals, and retrieving information about the XNET hardware in your

system.

XNET Start.vi

Purpose

Starts communication for the specified XNET session.

Format

Inputs

session in is the session to start. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi.

scope describes the impact of this operation on the underlying state models

for the session and its interface.

Normal (0) The session is started followed by starting the

interface. This is equivalent to calling XNET Start.vi

with the Session Only scope followed by calling

XNET Start.vi with the Interface Only scope.

This is the default value for scope if it is unwired.

Session Only (1) The session is placed into the Started state (refer to

State Models). If the interface is in the Stopped state

before this VI runs, the interface remains in the

Stopped state, and no communication occurs with the

bus. To have multiple sessions start at exactly the same

time, start each session with the Session Only scope.

When you are ready for all sessions to start

communicating on the associated interface, call

XNET Start.vi with the Interface Only scope.

Starting a previously started session is considered

a no-op. This operation sends the command to start the

Chapter 4 NI-XNET API for LabVIEW—XNET Start.vi

NI-XNET Hardware and Software Manual 4-500 ni.com

session, but does not wait for the session to be started.

It is ideal for a real-time application where

performance is critical.

Interface Only (2) If the underlying interface is not previously started, the

interface is placed into the Started state (refer to State

Models). After the interface starts communicating, all

previously started sessions can transfer data to and

from the bus. Starting a previously started interface is

considered a no-op.

Session Only Blocking (3) The session is placed into the Started state

(refer to State Models). If the interface is in

the Stopped state before this VI runs, the

interface remains in the Stopped state, and no

communication occurs with the bus. To have

multiple sessions start at exactly the same

time, start each session with the Session Only

scope. When you are ready for all sessions to

start communicating on the associated

interface, call XNET Start.vi with the

Interface Only scope. Starting a previously

started session is considered a no-op. This

operation waits for the session to start before

completing.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

Because the session is started automatically by default, this VI is optional. This VI is for more

advanced applications to start multiple sessions in a specific order. For more information

about the automatic start feature, refer to the Auto Start? property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

• Sessions: You can create one or more sessions, each of which contains frames or signals

to be transmitted (or received) on the bus.

• Interface: The interface physically connects to the bus and transmits (or receives) data

for the sessions.

Chapter 4 NI-XNET API for LabVIEW—XNET Start.vi

© National Instruments 4-501 NI-XNET Hardware and Software Manual

You can start each logical unit separately. When a session is started, all contained frames or

signals are placed in a state where they are ready to communicate. When the interface is

started, it takes data from all started sessions to communicate with other nodes on the bus. For

a specification of the state models for the session and interface, refer to State Models.

If an output session starts before you write data, or you read an input session before it receives

a frame, default data is used. For more information, refer to the XNET Frame Default Payload

and XNET Signal Default Value properties.

Chapter 4 NI-XNET API for LabVIEW—XNET Stop.vi

NI-XNET Hardware and Software Manual 4-502 ni.com

XNET Stop.vi

Purpose

Stops communication for the specified XNET session.

Format

Inputs

session in is the session to stop. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi.

scope describes the impact of this operation on the underlying state models

for the session and its interface.

Normal (0) The session is stopped. If this is the last session

stopped on the interface, the interface is also stopped.

If any other sessions are running on the interface, this

call is treated just like the Session Only scope, to avoid

disruption of communication on the other sessions.

This is the default value for scope if it is unwired.

Session Only (1) The session is placed in the Stopped state (refer to

State Models). If the interface was in the Started or

Running state before this VI is called, the interface

remains in that state and communication continues,

but data from this session does not transfer. This scope

generally is not necessary, as the Normal scope only

stops the interface if there are no other running

sessions. This operation sends the command to stop

the session, but does not wait for the session to be

stopped. It is ideal for a real-time application where

performance is critical.

Interface Only (2) The underlying interface is placed in the Stopped state

(refer to State Models). This prevents all

communication on the bus, for all sessions. This

allows you to modify certain properties that require the

interface to be stopped (for example, CAN baud rate).

Chapter 4 NI-XNET API for LabVIEW—XNET Stop.vi

© National Instruments 4-503 NI-XNET Hardware and Software Manual

All sessions remain in the Started state. To have

multiple sessions stop at exactly the same time, first

stop the interface with the Interface Only scope and

then stop each session with either the Normal or

Session Only scope.

Session Only Blocking (3) The session is placed in the Stopped state

(refer to State Models). If the interface was in

the Started or Running state before this VI is

called, the interface remains in that state and

communication continues, but data from this

session does not transfer. This scope

generally is not necessary, as the Normal

scope stops the interface only if there are no

other running sessions. This operation waits

for the session to stop before completing.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

Because the session is stopped automatically when cleared (closed), this VI is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

• Sessions: You can create one or more sessions, each of which contains frames or signals

to be transmitted (or received) on the bus.

• Interface: The interface physically connects to the bus and transmits (or receives) data

for the sessions.

You can stop each logical unit separately. When a session is stopped, all contained frames or

signals are placed in a state where they are no longer ready to communicate. When the

interface is stopped, it no longer takes data from sessions to communicate with other nodes

on the bus. For a specification of the state models for the session and interface, refer to State

Models.

Chapter 4 NI-XNET API for LabVIEW—XNET Clear.vi

NI-XNET Hardware and Software Manual 4-504 ni.com

XNET Clear.vi

Purpose

Clears (closes) the XNET session.

Format

Inputs

session in is the session to clear. This session is selected from the

LabVIEW project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

This VI stops communication for the session and releases all resources the session uses.

XNET Clear.vi internally calls XNET Stop.vi with normal scope, so if this is the last session

using the interface, communication stops.

When your application is finished (the top-level VI is idle), LabVIEW automatically clears

all XNET sessions within that VI and its subVIs. Therefore, XNET Clear.vi is rarely needed

in your application.

You typically use XNET Clear.vi when you need to clear the existing session to create a new

session that uses the same objects. For example, if you create a session for a frame named

frameA using Frame Output Single-Point mode, then you create a second session for frameA

using Frame Output Queued mode, the second call to XNET Create Session.vi returns an

error, because frameA can be accessed using only one output mode. If you call the XNET

Clear.vi before the second XNET Create Session.vi call, you can close the previous use of

frameA to create the new session.

This VI disconnects terminals that you connected using XNET Connect Terminals.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Flush.vi

© National Instruments 4-505 NI-XNET Hardware and Software Manual

XNET Flush.vi

Purpose

Flushes (empties) all XNET session queues.

Format

Inputs

session in is the session to flush. This session is selected from the

LabVIEW project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Description

With the exception of single-point modes, all sessions use queues to store frames. For input

modes, the queues store frame values (or corresponding signal values) that have been

received, but not obtained by calling XNET Read.vi. For output sessions, the queues store

frame values provided to XNET Write.vi, but not transmitted successfully.

XNET Start.vi and XNET Stop.vi have no effect on these queues. Use XNET Flush.vi to

discard all values in the session’s queues.

For example, if you call XNET Write.vi to write three frames, then immediately call XNET

Stop.vi, then call XNET Start.vi a few seconds later, the three frames transmit. If you call

XNET Flush.vi between XNET Stop.vi and XNET Start.vi, no frames transmit.

As another example, if you receive three frames, then call XNET Stop.vi, the three frames

remains in the queue. If you call XNET Start.vi a few seconds later, then call XNET Read.vi,

you obtain the three frames received earlier, potentially followed by other frames received

after calling XNET Start.vi. If you call XNET Flush.vi between XNET Stop.vi and XNET

Start.vi, XNET Read.vi returns only frames received after the calling XNET Start.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Connect Terminals.vi

NI-XNET Hardware and Software Manual 4-506 ni.com

XNET Connect Terminals.vi

Purpose

Connects terminals on the XNET interface.

Format

Inputs

session in is the session to use for the connection. This session is selected

from the LabVIEW project or returned from XNET Create Session.vi.

source terminal is the connection source.

destination terminal is the connection destination.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is a duplicate of the session in, provided for simpler wiring.

error out is the error cluster output (refer to Error Handling).

Description

This VI connects a source terminal to a destination terminal on the interface hardware. The

XNET terminal represents an external or internal hardware connection point on a National

Instruments XNET hardware product. External terminals include PXI_Trigger lines for a PXI

card, RTSI terminals for a PCI card, or the single external terminal for a C Series module.

Internal terminals include timebases (clocks) and logical entities such as a start trigger.

The terminal inputs use the XNET Terminal I/O name, so you can select from possible values

using the drop-down list. Typically, one of the pair is an internal and the other an external.

Chapter 4 NI-XNET API for LabVIEW—XNET Connect Terminals.vi

© National Instruments 4-507 NI-XNET Hardware and Software Manual

Valid Combinations of Source/Destination

The following table lists all valid combinations of source terminal and destination

terminal.

Source Terminals

The following table describes the valid source terminals.

Source

Destination

PXI_Trigx

FrontPanel0

FrontPanel1

Start

Trigger

Master

Timebase

Log

Trigger

PXI_Trigx X X   

FrontPanel0

FrontPanel1

X X   

PXI_Star1 X X  X X

PXI_Clk101 X X X  X

StartTrigger   X X X

CommTrigger   X X X

FlexRayStartCycle2   X X X

FlexRayMacrotick2   X  X

1MHzTimebase   X X X

10MHzTimebase  X X X X

1 Valid only on PXI hardware.

2 Valid only on FlexRay hardware.

Chapter 4 NI-XNET API for LabVIEW—XNET Connect Terminals.vi

NI-XNET Hardware and Software Manual 4-508 ni.com

Source Terminal Description

PXI_Trigx Selects a general-purpose trigger line as the connection source (input), where

x is a number from 0 to 7. For PCI cards, these are the RTSI lines. For PXI

cards, these are the PXI Trigger lines. For C Series modules in a

CompactDAQ chassis, all modules in the chassis automatically share a

common timebase. For information about routing the StartTrigger for

CompactDAQ, refer to the XNET Session Interface:Source Terminal:Start

Trigger property.

FrontPanel0

FrontPanel1

Selects a general-purpose Front Panel Trigger line as the connection source

(input).

PXI_Star Selects the PXI star trigger signal.

Within a PXI chassis, some PXI products can source star trigger from Slot 2

to all higher-numbered slots. PXI_Star enables the PXI XNET hardware to

receive the star trigger when it is in Slot 3 or higher.

Note: You cannot use this terminal with a PCI device.

PXI_Clk10 Selects the PXI 10 MHz backplane clock. The only valid destination

terminal for this source is MasterTimebase. This routes the 10 MHz PXI

backplane clock for use as the XNET card timebase. When you use

PXI_Clk10 as the XNET card timebase, you also must use PXI_Clk10 as the

timebase for other PXI cards to perform synchronized input/output.

Note: You cannot use this terminal with a PCI device.

StartTrigger Selects the start trigger, which is the event set when the when the Start

Interface transition occurs. The start trigger is the same for all sessions using

a given interface.

You can route the start trigger of this XNET card to the start trigger of other

XNET or DAQ cards to ensure that sampling begins at the same time on both

cards. For example, you can synchronize two XNET cards by routing

StartTrigger as the source terminal on one XNET card and then routing

StartTrigger as the destination terminal on the other XNET card, with both

cards using the same RTSI line for the connections.

Chapter 4 NI-XNET API for LabVIEW—XNET Connect Terminals.vi

© National Instruments 4-509 NI-XNET Hardware and Software Manual

CommTrigger Selects the communicating trigger, which is the event set when the Comm

State Communicating transition occurs. The communicating trigger is the

same for all sessions using a given interface.

You can route the communicating trigger of this XNET card to the start

trigger of other XNET or DAQ cards to ensure that sampling begins at the

same time on both cards.

The communicating trigger is similar to a start trigger, but is used if your

clock source is the FlexRayMacrotick, which is not available until the

interface is properly integrated into the bus. Because you cannot generate a

start trigger to another interface until the synchronization clock is also

available, you can use this trigger to allow for the clock under this special

circumstance.

FlexRayStartCycle Selects the FlexRay Start of Cycles as an advanced trigger source.

This generates a repeating pulse that external hardware can use to

synchronize a measurement or other action with each FlexRay cycle.

Note: You can use this terminal only with a FlexRay device.

FlexRayMacrotick Selects the FlexRay Macrotick as a timing source. The FlexRay Macrotick is

the basic unit of time in a FlexRay network.

You can use this source terminal to synchronize other measurements to the

actual time on the FlexRay bus. In this scenario, you would configure the

FlexRayMacrotick as the source terminal and route it to a RTSI or front

panel terminal. After the interface is communicating to the FlexRay network,

the Macrotick signal becomes available.

You also can connect the FlexRayMacrotick to the MasterTimebase. This

configures the counter that timestamps received frames to run synchronized

to FlexRay time, and also allows you to read the FlexRay cycle macrotick to

do additional synchronization with the FlexRay bus in your application.

Note: You can use this terminal only with a FlexRay device.

Source Terminal Description

Chapter 4 NI-XNET API for LabVIEW—XNET Connect Terminals.vi

NI-XNET Hardware and Software Manual 4-510 ni.com

Destination Terminals

The following table describes the valid destination terminals.

1MHzTimebase Selects the XNET card’s local 1 MHz oscillator. The only valid destination

terminals for this source are PXI Trigger0–PXI Trigger7.

This source terminal routes the XNET card local 1 MHz clock so that other

NI cards can use it as a timebase. For example, you can synchronize two

XNET cards by connecting 1MHzTimebase to PXI_Trigx on one XNET card

and then connecting PXI_Trigx to MasterTimebase on the other XNET card.

10MHzTimebase Selects the XNET card’s local 10 MHz oscillator. This routes the XNET card

local 10 MHz clock for use as a timebase by other NI cards. For example, you

can synchronize two XNET cards by connecting 10MHzTimebase to

PXI_Trigx on one XNET card and then connecting PXI_Trigx to

MasterTimebase on the other XNET card.

Destination

Terminal Description

PXI_Trigx Selects a general-purpose trigger line as the connection destination (output),

where x is a number from 0 to 7. For PCI cards, these are the RTSI lines. For

PXI cards, these are the PXI Trigger lines. For C Series modules in a

CompactDAQ chassis, all modules in the chassis automatically share a

common timebase. For information about routing the StartTrigger for

CompactDAQ, refer to the XNET Session Interface:Source Terminal:Start

Trigger property.

FrontPanel0

FrontPanel1

Selects a general-purpose Front Panel Trigger line as the connection

destination (output).

Source Terminal Description

Chapter 4 NI-XNET API for LabVIEW—XNET Connect Terminals.vi

© National Instruments 4-511 NI-XNET Hardware and Software Manual

StartTrigger Selects the start trigger, which is the event that allows the interface to begin

communication. The start trigger occurs on the first source terminal

low-to-high transition. The start trigger is the same for all sessions using a

given interface. This causes the Start Interface transition to occur.

You can route the start trigger of another XNET or DAQ card to ensure that

sampling begins at the same time on both cards. For example, you can

synchronize with an M-Series DAQ MIO card by routing the AI start trigger

of the MIO card to a RTSI line and then routing the same RTSI line with

StartTrigger as the destination terminal on the XNET card.

The default (disconnected) state of this destination means the start trigger

occurs when XNET Start.vi is invoked with the scope set to either Normal or

Interface Only. Alternately, if Auto Start? is enabled, reading or writing to a

session may start the interface.

MasterTimebase MasterTimebase instructs the XNET card to use the connection source

terminal as the master timebase. The XNET card uses this master timebase

for input sampling (including timestamps of received messages) as well as

periodic output sampling.

Your XNET hardware supports incoming frequencies of 1 MHz, 10 MHz,

and 20 MHz, and automatically detects the frequency without any additional

configuration.

For example, you can synchronize a CAN and DAQ M Series MIO card by

connecting the 10 MHz oscillator (board clock) of the DAQ card to a

PXI_Trig line, and then connecting the same PXI_Trig line as the source

terminal.

For PXI form factor hardware, you also can use PXI_Clk10 as the source

terminal. This receives the PXI 10 MHz backplane clock for use as the

master timebase.

MasterTimebase applies separately to each port of a multiport XNET card,

meaning you could run each port off of a separate incoming (or onboard)

timebase signal.

If you are using a PCI board, the default connection to the Master Timebase

is the local oscillator. If you are using a PXI board, the default connection to

the MasterTimebase is the PXI_Clk10 signal, if it is available. Some chassis

allow PXI_Clk10 to be turned off. In this case, the hardware automatically

uses the local oscillator as the default MasterTimebase.

Destination

Terminal Description

Chapter 4 NI-XNET API for LabVIEW—XNET Connect Terminals.vi

NI-XNET Hardware and Software Manual 4-512 ni.com

Log Trigger The Log Trigger terminal generates a frame when it detects a rising edge.

When connected, this frame is transferred into the Frame Stream Input

session’s queue if the session is started. For information about this frame,

including the frame payload interpretation, refer to Special Frames.

Destination

Terminal Description

Chapter 4 NI-XNET API for LabVIEW—XNET Disconnect Terminals.vi

© National Instruments 4-513 NI-XNET Hardware and Software Manual

XNET Disconnect Terminals.vi

Purpose

Disconnects terminals on the XNET interface.

Format

Inputs

session in is the session to use for the connection. This session is selected

from the LabVIEW project or returned from XNET Create Session.vi.

source terminal is the connection source.

destination terminal is the connection destination.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is a duplicate of the session in, provided for simpler wiring.

error out is the error cluster output (refer to Error Handling).

Description

This VI disconnects a specific pair of source/destination terminals previously connected with

XNET Connect Terminals.vi.

When the final session for a given interface is cleared (either by the VI going idle or by

explicit calls to XNET Clear.vi), NI-XNET automatically disconnects all terminal

connections for that interface. Therefore, XNET Disconnect Terminals.vi is not required for

most applications.

This VI typically is used to change terminal connections dynamically while an application is

running. To disconnect a terminal, you first must stop the interface using XNET Stop.vi with

the Interface Only scope. Then you can call XNET Disconnect Terminals.vi and XNET

Connect Terminals.vi to adjust terminal connections. Finally, you can call XNET Start.vi

with the Interface Only scope to restart the interface.

You can disconnect only a terminal that has been previously connected. Attempting to

disconnect a nonconnected terminal results in an error.

Chapter 4 NI-XNET API for LabVIEW—XNET Terminal Constant

NI-XNET Hardware and Software Manual 4-514 ni.com

XNET Terminal Constant

This constant provides the constant form of the XNET Terminal I/O name. You drag a

constant to the block diagram of your VI, then select a terminal. You can change constants

only during configuration, prior to running the VI. For a complete description, refer to XNET

Terminal I/O Name.

XNET System Property Node

Format

Description

The XNET System property node provides information about all NI-XNET hardware in your

system, including all devices and interfaces.

Pull down this node to add properties. Right-click to change direction between read and write.

Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>) and

move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help (select

Search the LabVIEW Help from the Help menu) and look for the Property Nodes topic in

the index.

Chapter 4 NI-XNET API for LabVIEW—XNET System Property Node

© National Instruments 4-515 NI-XNET Hardware and Software Manual

Devices

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET System

Short Name

Devices

Description

Returns an array of physical XNET devices in the system. Each physical XNET board is a

hardware product such as a PCI/PXI board.

The system refers to the execution target of this property node. If this property is run on an

RT target, it reports the RT system hardware.

You can wire the XNET Device I/O name to the XNET Device property node to access

properties of the device.

Interfaces (FlexRay)

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET System

Short Name

IntfFlexRay

Description

Returns an array of all available interfaces on the system that support the FlexRay protocol.

The system refers to the execution target of this property node. If this property node executes

on an RT target, it reports interfaces physically on the RT target.

Chapter 4 NI-XNET API for LabVIEW—XNET System Property Node

NI-XNET Hardware and Software Manual 4-516 ni.com

Interfaces (All)

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET System

Short Name

IntfAll

Description

Returns an array of all available interfaces on the system.

The system refers to the execution target of this property node. If this property node executes

on an RT target, it reports interfaces physically on the RT target.

Interfaces (CAN)

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET System

Short Name

IntfCAN

Description

Returns an array of all available interfaces on the system that support the CAN Protocol.

The system refers to the execution target of this property node. If this property node executes

on an RT target, it reports interfaces physically on the RT target.

Chapter 4 NI-XNET API for LabVIEW—XNET System Property Node

© National Instruments 4-517 NI-XNET Hardware and Software Manual

Interfaces (LIN)

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET System

Short Name

IntfLIN

Description

Returns an array of all available interfaces on the system that support the LIN Protocol.

The system refers to the execution target of this property node. If this property node executes

on an RT target, it reports interfaces physically on the RT target.

Chapter 4 NI-XNET API for LabVIEW—XNET System Property Node

NI-XNET Hardware and Software Manual 4-518 ni.com

Version:Build

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET System

Short Name

Ver.Build

Description

Returns the driver version [Build] as a u32.

Remarks

The driver version is specified in the following format:

[Major].[Minor].[Update][Phase][Build].

For example, 1.2.3f4 returns:

• [Major] = 1

• [Minor] = 2

• [Update] = 3

• [Phase] = Final/Release

• [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

• Determining driver functionality or release date.

• Determining upgrade availability.

Chapter 4 NI-XNET API for LabVIEW—XNET System Property Node

© National Instruments 4-519 NI-XNET Hardware and Software Manual

Version:Major

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET System

Short Name

Ver.Major

Description

Returns the driver version [Major] as a u32.

Remarks

The driver version is specified in the following format:

[Major].[Minor].[Update][Phase][Build].

For example, 1.2.3f4 returns:

• [Major] = 1

• [Minor] = 2

• [Update] = 3

• [Phase] = Final/Release

• [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

• Determining driver functionality or release date.

• Determining upgrade availability.

Chapter 4 NI-XNET API for LabVIEW—XNET System Property Node

NI-XNET Hardware and Software Manual 4-520 ni.com

Version:Minor

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET System

Short Name

Ver.Minor

Description

Returns the driver version [Minor] as a u32.

Remarks

The driver version is specified in the following format:

[Major].[Minor].[Update][Phase][Build].

For example, 1.2.3f4 returns:

• [Major] = 1

• [Minor] = 2

• [Update] = 3

• [Phase] = Final/Release

• [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

• Determining driver functionality or release date.

• Determining upgrade availability.

Chapter 4 NI-XNET API for LabVIEW—XNET System Property Node

© National Instruments 4-521 NI-XNET Hardware and Software Manual

Version:Phase

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET System

Short Name

Ver.Phase

Description

Returns the driver version [Phase] as an enumeration.

Enumeration Value

Development 0

Alpha 1

Beta 2

Release 3

Note The driver’s official version always has a phase of Release.

Remarks

The driver version is specified in the following format:

[Major].[Minor].[Update][Phase][Build].

For example, 1.2.3f4 returns:

• [Major] = 1

• [Minor] = 2

• [Update] = 3

• [Phase] = Final/Release

• [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

• Determining driver functionality or release date.

• Determining upgrade availability.

Chapter 4 NI-XNET API for LabVIEW—XNET System Property Node

NI-XNET Hardware and Software Manual 4-522 ni.com

Version:Update

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET System

Short Name

Ver.Update

Description

Returns the driver version [Update] as a u32.

Remarks

The driver version is specified in the following format:

[Major].[Minor].[Update][Phase][Build].

For example, 1.2.3f4 returns:

• [Major] = 1

• [Minor] = 2

• [Update] = 3

• [Phase] = Final/Release

• [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

• Determining driver functionality or release date.

• Determining upgrade availability.

Chapter 4 NI-XNET API for LabVIEW—XNET Device Property Node

© National Instruments 4-523 NI-XNET Hardware and Software Manual

XNET Device Property Node

Format

Description

Property node used to read/write properties for an XNET Device I/O Name.

Pull down this node to add properties. Right-click to change direction between read and write.

Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>) and

move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help (select

Search the LabVIEW Help from the Help menu) and look for the Property Nodes topic in

the index.

Form Factor

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Device

Short Name

FormFac

Description

Returns the XNET board physical form factor.

Enumeration Value

PXI 0

PCI 1

C Series 2

Chapter 4 NI-XNET API for LabVIEW—XNET Device Property Node

NI-XNET Hardware and Software Manual 4-524 ni.com

Interfaces

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Device

Short Name

Intfs

Description

Returns an array of XNET Interface I/O names associated with this physical hardware device.

XNET Interface Details

The XNET Interface I/O Name represents a physical communication port on an XNET

device. An XNET device may have one or more XNET Interface I/O names, depending on

the number of physical connectors the board has.

You can pass the XNET Interface I/O name to the XNET Interface Property Node to retrieve

hardware information about the interface. This XNET interface is the same I/O name used to

create the session.

Displayed on the front panel, the XNET Interface I/O name displays the interface string name.

This string is used for:

• XNET String to IO Name.vi to retrieve the XNET Interface I/O name.

• Identification in Measurement & Automation Explorer (MAX).

Chapter 4 NI-XNET API for LabVIEW—XNET Device Property Node

© National Instruments 4-525 NI-XNET Hardware and Software Manual

Number of Ports

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Device

Short Name

NumPorts

Description

Returns the number of physical port connectors on the XNET board.

Remarks

For example, returns 2 for an NI PCI-8517 two-port FlexRay device.

Product Name

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Device

Short Name

ProductName

Description

Returns the XNET device product name.

Remarks

For example, returns NI PCI-8517 (2 ports) for an NI PCI-8517 device.

Chapter 4 NI-XNET API for LabVIEW—XNET Device Property Node

NI-XNET Hardware and Software Manual 4-526 ni.com

Product Number

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Device

Short Name

ProductNum

Description

Returns the numeric portion of the XNET device product name.

Remarks

For example, returns 8517 for an NI PCI-8517 two-port FlexRay device.

Serial Number

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Device

Short Name

SerNum

Description

Returns the serial number associated with the XNET device.

Remarks

The serial number is written in HEX on a label on the physical XNET board. Convert the

return value from this property to HEX to match the label.

Chapter 4 NI-XNET API for LabVIEW—XNET Interface Property Node

© National Instruments 4-527 NI-XNET Hardware and Software Manual

Slot Number

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Device

Short Name

SlotNum

Description

Physical slot where the device (module) is located.

For PXI and C Series, this is the slot number within the chassis.

XNET Interface Property Node

Format

Description

Property node used to read/write properties for an XNET Interface I/O Name.

Pull down this node to add properties. Right-click to change direction between read and write.

Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>) and

move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help (select

Search the LabVIEW Help from the Help menu) and look for the Property Nodes topic in

the index.

Chapter 4 NI-XNET API for LabVIEW—XNET Interface Property Node

NI-XNET Hardware and Software Manual 4-528 ni.com

CAN.Termination Capability

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Interface

Short Name

CAN.TermCap

Description

Returns an enumeration indicating whether the XNET interface can terminate the CAN bus.

Enumeration Value

No 0

Yes 1

Remarks

Signal reflections on the CAN bus can cause communication failure. To prevent reflections,

termination can be present as external resistance or resistance the XNET board applies

internally. This enumeration determines whether the XNET board can add termination to

the bus.

To select the CAN transceiver termination, refer to Interface:CAN:Termination.

Chapter 4 NI-XNET API for LabVIEW—XNET Interface Property Node

© National Instruments 4-529 NI-XNET Hardware and Software Manual

CAN.Transceiver Capability

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Interface

Short Name

CAN.TcvrCap

Description

Returns an enumeration indicating the CAN bus physical transceiver support.

Enumeration Value

High-Speed (HS) 0

Low-Speed (LS) 1

XS (HS, LS, SW, or External) 2

Remarks

The XS value in the enumeration indicates the board has the physical transceivers for

High-Speed (HS), Low-Speed (LS), and Single Wire (SW), and can connect to an external

transceiver. This value is switchable through the Interface:CAN:Transceiver Type property.

Chapter 4 NI-XNET API for LabVIEW—XNET Interface Property Node

NI-XNET Hardware and Software Manual 4-530 ni.com

Device

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Interface

Short Name

Device

Description

From the XNET Interface I/O Name, this property returns the XNET device I/O name.

Remarks

The XNET device I/O name returned is the physical XNET board that contains the XNET

interface. This property determines the physical XNET device through the XNET Device

Serial Number property for a given XNET Interface I/O name.

Name

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Interface

Short Name

Name

Description

Returns the string name assigned to the XNET Interface I/O name.

Remarks

This string is used for:

• XNET String to IO Name.vi, to retrieve the XNET Interface I/O name.

• Identification in MAX.

Chapter 4 NI-XNET API for LabVIEW—XNET Interface Property Node

© National Instruments 4-531 NI-XNET Hardware and Software Manual

Number

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Interface

Short Name

Number

Description

Returns unique number associated with the XNET interface.

Remarks

The XNET driver assigns each port connector in the system a unique number XNET driver.

This number, plus its protocol name, is the XNET Interface I/O Name string name. For

example:

XNET Interface String Name Number

CAN1 1

FlexRay3 3

Chapter 4 NI-XNET API for LabVIEW—XNET Interface Property Node

NI-XNET Hardware and Software Manual 4-532 ni.com

Port Number

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Interface

Short Name

PortNum

Description

Returns the physical port number printed near the connector on the XNET device.

Remarks

The port numbers on an XNET board are physically identified with numbering. Use this

property, along with the XNET Device Serial Number property, to associate an XNET

interface with a physical (XNET board and port) combination.

Note It is easier to find the physical location of an XNET Interface with XNET Blink.vi.

Chapter 4 NI-XNET API for LabVIEW—XNET Interface Property Node

© National Instruments 4-533 NI-XNET Hardware and Software Manual

Protocol

Data Type Direction Required? Default

Read Only No N/A

Property Class

XNET Interface

Short Name

Protocol

Description

Returns a protocol supported by the XNET Interface I/O Name as an enumeration.

Enumeration Value

CAN 0

FlexRay 1

LIN 2

Remarks

The protocol enumeration matches the protocol part of the XNET Interface string name.

String Name Protocol Enumeration

CAN1 0

FlexRay3 1

Chapter 4 NI-XNET API for LabVIEW—XNET Interface Constant

NI-XNET Hardware and Software Manual 4-534 ni.com

XNET Interface Constant

This constant provides the constant form of the XNET Interface I/O name. You drag a

constant to the block diagram of your VI, then select an interface. You can change constants

only during configuration, prior to running the VI. For a complete description, refer to XNET

Interface I/O Name.

XNET Blink.vi

Purpose

Blinks LEDs for the XNET interface to identify its physical port in the system.

Format

Inputs

interface in is the XNET Interface I/O name.

modifier controls LED blinking:

Disable (0) Disable blinking for identification. This option turns off

both LEDs for the port.

Enable (1) Enable blinking for identification. Both LEDs of the

interface’s physical port turn on and off. The hardware

blinks the LEDs automatically until you disable, so there is

no need to call the XNET Blink VI repetitively.

Both LEDs blink green (not red). The blinking rate is approximately three

times per second.

error in is the error cluster input (refer to Error Handling).

Outputs

interface out is the same as interface in, provided for use with

subsequent VIs.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Blink.vi

© National Instruments 4-535 NI-XNET Hardware and Software Manual

Description

Each XNET device contains one or two physical ports. Each port is labeled on the hardware

as Port 1 or Port 2. The XNET device also provides two LEDs per port. For a two-port board,

LEDs 1 and 2 are assigned to Port 1, and LEDs 3 and 4 are assigned to physical Port 2.

When your application uses multiple XNET devices, this VI helps to identify each interface

to associate its software behavior (LabVIEW code) to its hardware connection (port). Prior to

running your XNET sessions, you can call this VI to blink the interface LEDs.

For example, if you have a system with three PCI CAN cards, each with two ports, you can

use this VI to blink the LEDs for interface CAN4, to identify it among the six CAN ports.

The LEDs of each port support two states:

• Identification: Blink LEDs to identify the physical port assigned to the interface.

• In Use: LED behavior that XNET sessions control.

Identification LED State

You can use the XNET Blink VI only in the Identification state. If you call this VI while

one or more XNET sessions for the interface are open (created), it returns an error, because

the port’s LEDs are in the In Use state.

In Use LED State

When you create an XNET session for the interface, the LEDs for that physical port transition

to the In Use state. If you called the XNET Blink VI previously to enable blinking for

identification, that LED behavior no longer applies. The In Use LED state remains until all

XNET sessions are cleared. This typically occurs when all LabVIEW VIs are no longer

running. The patterns that appear on the LEDs while In Use are documented in the LEDs

section of Chapter 3, NI-XNET Hardware Overview.

Chapter 4 NI-XNET API for LabVIEW—XNET System Close.vi

NI-XNET Hardware and Software Manual 4-536 ni.com

XNET System Close.vi

Purpose

Closes the XNET system to refresh XNET hardware information.

Format

Inputs

error in is the error cluster input (refer to Error Handling).

Outputs

error out is the error cluster output (refer to Error Handling).

Description

When your VI first uses the XNET System Property Node, NI-XNET obtains information

about all available devices and interfaces in the system. While using property nodes for the

devices and interfaces, the hardware information maintains consistency. For example, if you

physically add a new device (for example, a plug-in a CompactDAQ chassis), the new device

does not appear in the system properties.

Use XNET System Close.vi to close the system and associated devices and interfaces. The

next time your VI uses the XNET System property node, the hardware information is

refreshed.

If you previously used XNET Blink.vi to blink a device’s LEDs for identification,

XNET System Close.vi disables blinking when it closes the associated device.

Chapter 4 NI-XNET API for LabVIEW—XNET String to IO Name.vi

© National Instruments 4-537 NI-XNET Hardware and Software Manual

XNET String to IO Name.vi

Purpose

Converts a LabVIEW string to an XNET I/O Name.

Description

This polymorphic VI converts a LabVIEW string to an XNET I/O name.

This VI is not required for LabVIEW 2009 or newer. It is provided only for backward

compatibility of VIs written in LabVIEW version prior to 2009. Currently supported versions

of LabVIEW can now cast LabVIEW strings to XNET I/O names automatically.

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

NI-XNET Hardware and Software Manual 4-538 ni.com

XNET Convert.vi

Purpose

Converts between NI-XNET signal data and frame data or vice versa.

Description

The instances of this polymorphic VI specify the conversion direction and type of frame data.

There are two categories of XNET Convert instance VIs:

• Frame to Signal: Converts frame data to signal data. A stream of frames is read, and the

signal values are filled with the values of the latest respective frames. Frames not

matching any signals are ignored. If two or more frames with the same ID are present,

the most recent (last) value is returned.

• Signal to Frame: Converts signal data to frame data. One frame for each ID involved in

the signal list is returned. Data not occupied by the signals from the list is filled with the

respective default values.

You can use both categories with the same conversion session mode.

The XNET Convert instance VIs are:

• XNET Convert (Frame CAN to Signal).vi: Reads a set of CAN frames and extracts the

most recent signal values from them.

• XNET Convert (Frame FlexRay to Signal).vi: Reads a set of FlexRay frames and

extracts the most recent signal values from them.

• XNET Convert (Frame LIN to Signal).vi: Reads a set of LIN frames and extracts the

most recent signal values from them.

• XNET Convert (Frame Raw to Signal).vi: Reads a set of raw frames and extracts the

most recent signal values from them.

• XNET Convert (Signal to Frame CAN).vi: Reads a set of signal values and creates

CAN frames with their representation.

• XNET Convert (Signal to Frame FlexRay).vi: Reads a set of signal values and creates

FlexRay frames with their representation.

• XNET Convert (Signal to Frame LIN).vi: Reads a set of signal values and creates LIN

frames with their representation.

• XNET Convert (Signal to Frame Raw).vi: Reads a set of signal values and creates raw

frames with their representation.

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

© National Instruments 4-539 NI-XNET Hardware and Software Manual

XNET Convert (Frame CAN to Signal).vi

Purpose

Converts between NI-XNET CAN frame data and signals.

Format

Inputs

session in is the session to read. This session is returned from XNET

Create Session.vi. The session mode must be Conversion.

frame data provides the array of LabVIEW clusters.

Each array element corresponds to a frame value to convert.

The data you write is converted to signal values in the order you provide

them. Only the latest signal value is returned.

For an example of how this data applies, refer to Conversion Mode.

The elements of each cluster are specific to the CAN protocol. For more

information, refer to Appendix A, Summary of the CAN Standard, or the

CAN protocol specification.

The cluster elements are:

identifier is the CAN frame arbitration identifier.

If extended? is false, the identifier uses standard format, so 11 bits

of this identifier are valid.

If extended? is true, the identifier uses extended format, so 29 bits

of this identifier are valid.

extended? is a Boolean value that determines whether the

identifier uses extended format (true) or standard format (false).

echo? is not used for conversion. You must set this element to

false.

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

NI-XNET Hardware and Software Manual 4-540 ni.com

type is the frame type (decimal value in parentheses):

• CAN Data (0): The CAN data frame contains payload data.

This is the most commonly used frame type for CAN.

• CAN Remote (1): CAN remote frame. Your application

transmits a CAN remote frame to request data for the

corresponding identifier. A remote ECU should respond with a

CAN data frame for the identifier, which you can obtain using

XNET Read.vi. This value is not meaningful, as a remote frame

does not contain any data to convert.

timestamp represents absolute time using the LabVIEW absolute

timestamp type. timestamp is not used for conversion. You must

set this element to the default value, invalid (0).

payload is the array of data bytes for a CAN data frame.

The array size indicates the payload length of the frame value to

transmit. According to the CAN protocol, the payload length

range is 0–8. For CAN FD, the range can be 0–8, 12, 16, 20, 24,

32, 48, or 64.

For more information, refer to the section for each mode.

For a transmitted remote frame (CAN Remote type), the payload

length in the frame value specifies the number of payload bytes

requested. Your application provides this payload length by filling

payload with the requested number of bytes. This enables your

application to specify the frame payload length, but the actual

values in the payload bytes are ignored (not contained in the

transmitted frame).

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

signal data returns a one-dimensional array of signal values. Each signal

value is scaled, 64-bit floating point.

Each array element corresponds to a signal configured for the session. The

order of signals in the array corresponds to the order in the session list.

The data returns the most recent converted value for each signal. If multiple

frames for a signal are input, only signal data from the most recent frame is

returned. Here, most recent is defined by the order of the frames in the

frame data array, not the timestamp.

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

© National Instruments 4-541 NI-XNET Hardware and Software Manual

If no frame is input for the corresponding signals, the XNET Signal Default

Value is returned.

For an example of how this data applies, refer to Conversion Mode.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

NI-XNET Hardware and Software Manual 4-542 ni.com

XNET Convert (Frame FlexRay to Signal).vi

Purpose

Converts between NI-XNET FlexRay frame data and signals.

Format

Inputs

session in is the session to read. This session is returned from XNET

Create Session.vi. The session mode must be Conversion.

frame data provides the array of LabVIEW clusters.

Each array element corresponds to a frame value to convert.

The data you write is converted to signal values in the order you provide

them. Only the latest signal value is returned.

For an example of how this data applies, refer to Conversion Mode.

The elements of each cluster are specific to the FlexRay protocol. For more

information, refer to Appendix B, Summary of the FlexRay Standard, or the

FlexRay Protocol Specification.

The cluster elements are:

slot specifies the slot number within the FlexRay cycle.

cycle count specifies the cycle number.

The FlexRay cycle count increments from 0 to 63, then rolls over

back to 0.

startup? is a Boolean value that specifies whether the frame is a

startup frame (true) or not (false). This field is ignored for

conversion.

sync? is a Boolean value that specifies whether the frame is a sync

frame (true) or not (false). This field is ignored for conversion.

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

© National Instruments 4-543 NI-XNET Hardware and Software Manual

preamble? is a Boolean value that specifies the value of the

payload preamble indicator in the frame header.

If the frame is in the static segment, preamble? being true

indicates the presence of a network management vector at the

beginning of the payload. The XNET Cluster FlexRay:Network

Management Vector Length property specifies the number of

bytes at the beginning.

If the frame is in the dynamic segment, preamble? being true

indicates the presence of a message ID at the beginning of the

payload. The message ID is always 2 bytes in length.

If preamble? is false, the payload does not contain a network

management vector or a message ID.

This field is ignored for conversion.

chA is a Boolean value that specifies whether to transmit the

frame on channel A (true) or not (false). This field is ignored for

conversion.

chB is a Boolean value that specifies whether to transmit the

frame on channel B (true) or not (false). This field is ignored for

conversion.

echo? is not used for conversion. You must set this element to

false.

type is the frame type. type is not used for transmit, so you must

leave this element uninitialized. All frame values are assumed to

be the FlexRay Data type. Frames of FlexRay Data type contain

payload data.

The FlexRay Null type is not transmitted based on this type. As

specified in the XNET Frame FlexRay:Timing Type property, the

FlexRay null frame is transmitted when a cyclically timed frame

does not have new data.

timestamp represents absolute time using the LabVIEW absolute

timestamp type. timestamp is not used for conversion. You must

set this element to the default value, invalid (0).

payload is the array of data bytes for FlexRay frames of type

FlexRay Data.

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

NI-XNET Hardware and Software Manual 4-544 ni.com

The array size indicates the payload length of the frame value to

transmit. According to the FlexRay protocol, the length range is

0–254.

You can leave all other FlexRay frame cluster elements

uninitialized. For more information, refer to the section for each

mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

signal data returns a one-dimensional array of signal values. Each signal

value is scaled, 64-bit floating point.

Each array element corresponds to a signal configured for the session. The

order of signals in the array corresponds to the order in the session list.

The data returns the most recent converted value for each signal. If multiple

frames for a signal are input, only signal data from the most recent frame is

returned. Here, most recent is defined by the order of the frames in the

frame data array, not the timestamp.

If no frame is input for the corresponding signals, the XNET Signal Default

Value is returned.

For an example of how this data applies, refer to Conversion Mode.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

© National Instruments 4-545 NI-XNET Hardware and Software Manual

XNET Convert (Frame LIN to Signal).vi

Purpose

Converts between NI-XNET LIN frame data and signals.

Format

Inputs

session in is the session to read. This session is returned from XNET

Create Session.vi. The session mode must be Conversion.

frame data provides the array of LabVIEW clusters.

Each array element corresponds to a frame value to convert.

The data you write is converted to signal values in the order you provide

them. Only the latest signal value is returned.

For an example of how this data applies, refer to Conversion Mode.

The elements of each cluster are specific to the LIN protocol. For more

information, refer to Appendix C, Summary of the LIN Standard, or the

LIN protocol specification.

The cluster elements are:

identifier is not used for transmit. You must set this element to 0.

Each frame is identified based on the list of frames or signals

provided for the session. The actual identifier to transmit is taken

from the database (frame and schedule properties). Therefore, this

identifier in the frame value is ignored.

event slot? is not used for transmit. You must set this element to

false.

The currently running schedule is used to map the specific frame

to a corresponding schedule entry (slot). The schedule entry itself

determines whether the slot is unconditional, sporadic, or event

triggered.

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

NI-XNET Hardware and Software Manual 4-546 ni.com

event ID is not used for transmit. You must set this element to 0.

echo? is not used for conversion. You must set this element to

false.

type is the frame type (decimal value in parentheses):

LIN Data (64) The LIN data frame contains payload data.

This is currently the only frame type for LIN.

This value is ignored for conversion.

timestamp represents absolute time using the LabVIEW absolute

timestamp type. timestamp is not used for conversion. You must

set this element to the default value, invalid (0).

payload is the array of data bytes for a LIN data frame.

The array size indicates the payload length of the frame value to

transmit. According to the LIN protocol, the payload length range

is 0–8.

For more information, refer to the section for each mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

signal data returns a one-dimensional array of signal values. Each signal

value is scaled, 64-bit floating point.

Each array element corresponds to a signal configured for the session. The

order of signals in the array corresponds to the order in the session list.

The data returns the most recent converted value for each signal. If multiple

frames for a signal are input, only signal data from the most recent frame is

returned. Here, most recent is defined by the order of the frames in the

frame data array, not the timestamp.

If no frame is input for the corresponding signals, the XNET Signal Default

Value is returned.

For an example of how this data applies, refer to Conversion Mode.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

© National Instruments 4-547 NI-XNET Hardware and Software Manual

XNET Convert (Frame Raw to Signal).vi

Purpose

Converts between NI-XNET raw frame data and signals.

Format

Inputs

session in is the session to read. This session is returned from XNET

Create Session.vi. The session mode must be Conversion.

frame data provides the array of bytes, representing frames to transmit.

The raw bytes encode one or more frames using the Raw Frame Format.

This frame format is the same for read and write of raw data and also is used

for log file examples.

For information about which elements of the raw frame are applicable,

refer to the XNET Convert.vi instance for the protocol in use (XNET

Convert (Frame CAN to Signal).vi, XNET Convert (Frame FlexRay to

Signal).vi, or XNET Convert (Frame LIN to Signal).vi).

For an example of how this data applies, refer to Conversion Mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

signal data returns a one-dimensional array of signal values. Each signal

value is scaled, 64-bit floating point.

Each array element corresponds to a signal configured for the session. The

order of signals in the array corresponds to the order in the session list.

The data returns the most recent converted value for each signal. If multiple

frames for a signal are input, only signal data from the most recent frame is

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

NI-XNET Hardware and Software Manual 4-548 ni.com

returned. Here, most recent is defined by the order of the frames in the

frame data array, not the timestamp.

If no frame is input for the corresponding signals, the XNET Signal Default

Value is returned.

For an example of how this data applies, refer to Conversion Mode.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

© National Instruments 4-549 NI-XNET Hardware and Software Manual

XNET Convert (Signal to Frame CAN).vi

Purpose

Converts between NI-XNET signals and CAN frame data.

Format

Inputs

session in is the session to read. This session is returned from XNET

Create Session.vi. The session mode must be Conversion.

signal data returns a one-dimensional array of signal values. Each signal

value is scaled, 64-bit floating point.

Each array element corresponds to a signal configured for the session. The

order of signals in the array corresponds to the order in the session list.

The data provides the value for the next conversion of each signal.

For an example of how this data applies, refer to Conversion Mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

frame data returns the array of LabVIEW clusters.

Each array element corresponds to a frame the session converted.

The elements of each cluster are specific to the CAN protocol. For more

information, refer to Appendix A, Summary of the CAN Standard, or the

CAN protocol specification.

The cluster elements are:

identifier is the CAN frame arbitration identifier.

If extended? is false, the identifier uses standard format, so 11 bits

of this identifier are valid.

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

NI-XNET Hardware and Software Manual 4-550 ni.com

If extended? is true, the identifier uses extended format, so 29 bits

of this identifier are valid.

extended? is a Boolean value that determines whether the

identifier uses extended format (true) or standard format (false).

echo? is a Boolean value that determines whether the frame was

an echo of a successful transmit (true), or received from the

network (false). For conversion, it is always set to false.

type is the frame type (decimal value in parentheses):

• CAN Data (0): The CAN data frame contains payload data.

This is the most commonly used frame type for CAN.

• CAN Remote (1): A CAN remote frame. An ECU transmits a

CAN remote frame to request data for the corresponding

identifier. Your application can respond by writing a CAN data

frame for the identifier. This value is not meaningful, as a

remote frame does not contain any data to convert.

timestamp represents the absolute time when the XNET interface

received the frame (end of frame), accurate to microseconds. The

timestamp returned by the conversion is always invalid (0).

payload is the array of data bytes for the CAN data frame.

The array size indicates the received frame value payload length.

According to the CAN protocol, this payload length range is 0–8.

For CAN FD, the range can be 0–8, 12, 16, 20, 24, 32, 48, or 64.

For a received remote frame (type of CAN Remote), the payload

length in the frame value specifies the number of payload bytes

requested. This payload length is provided to your application by

filling payload with the requested number of bytes. Your

application can use the payload array size, but you must ignore

the actual values in the payload bytes.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

© National Instruments 4-551 NI-XNET Hardware and Software Manual

XNET Convert (Signal to Frame FlexRay).vi

Purpose

Converts between NI-XNET signals and FlexRay frame data.

Format

Inputs

session in is the session to read. This session is returned from XNET

Create Session.vi. The session mode must be Conversion.

signal data returns a one-dimensional array of signal values. Each signal

value is scaled, 64-bit floating point.

Each array element corresponds to a signal configured for the session. The

order of signals in the array corresponds to the order in the session list.

The data provides the value for the next conversion of each signal.

For an example of how this data applies, refer to Conversion Mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

frame data returns the array of LabVIEW clusters.

Each array element corresponds to a frame the session converted.

The elements of each cluster are specific to the FlexRay protocol. For more

information, refer to Appendix B, Summary of the FlexRay Standard, or the

FlexRay Protocol Specification.

The cluster elements are:

slot specifies the slot number within the FlexRay cycle.

cycle count specifies the cycle number.

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

NI-XNET Hardware and Software Manual 4-552 ni.com

The FlexRay cycle count increments from 0 to 63, then rolls over

back to 0.

For conversion, this is always set to 0.

startup? is a Boolean value that specifies whether the frame is a

startup frame (true) or not (false).

This field is set to false by conversion.

sync? is a Boolean value that specifies whether the frame is a sync

frame (true) or not (false).

This field is set to false by conversion.

preamble? is a Boolean value that specifies the value of the

payload preamble indicator in the frame header.

If the frame is in the static segment, preamble? being true

indicates the presence of a network management vector at the

beginning of the payload. The XNET Cluster FlexRay:Network

Management Vector Length property specifies the number of

bytes at the beginning.

If the frame is in the dynamic segment, preamble? being true

indicates the presence of a message ID at the beginning of the

payload. The message ID is always 2 bytes in length.

If preamble? is false, the payload does not contain a network

management vector or a message ID.

This field is set to false by conversion.

chA is a Boolean value that specifies whether the frame was

received on channel A (true) or not (false). This field is set to false

by conversion.

chB is a Boolean value that specifies whether the frame was

received on channel B (true) or not (false). This field is set to false

by conversion.

echo? is a Boolean value that determines whether the frame was

an echo of a successful transmit (true), or received from the

network (false).

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

© National Instruments 4-553 NI-XNET Hardware and Software Manual

type is the frame type (decimal value in parentheses):

• FlexRay Data (32): FlexRay data frame. The frame contains

payload data. This is the most commonly used frame type for

FlexRay. All elements in the frame are applicable.

timestamp represents the absolute time when the XNET interface

received the frame (end of frame), accurate to microseconds. The

timestamp returned by the conversion is always invalid (0).

payload is the array of data bytes for FlexRay frames of type

FlexRay Data or FlexRay Null.

The array size indicates the received frame value payload length.

According to the FlexRay protocol, this length range is 0–254.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

NI-XNET Hardware and Software Manual 4-554 ni.com

XNET Convert (Signal to Frame LIN).vi

Purpose

Converts between NI-XNET signals and LIN frame data.

Format

Inputs

session in is the session to read. This session is returned from XNET

Create Session.vi. The session mode must be Conversion.

signal data returns a one-dimensional array of signal values. Each signal

value is scaled, 64-bit floating point.

Each array element corresponds to a signal configured for the session. The

order of signals in the array corresponds to the order in the session list.

The data provides the value for the next conversion of each signal.

For an example of how this data applies, refer to Conversion Mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

frame data returns the array of LabVIEW clusters.

Each array element corresponds to a frame the session converted.

The elements of each cluster are specific to the LIN protocol. For more

information, refer to Appendix C, Summary of the LIN Standard, or the

LIN protocol specification.

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

© National Instruments 4-555 NI-XNET Hardware and Software Manual

The cluster elements are:

identifier is the identifier received within the frame’s header.

The identifier is a number from 0 to 63.

If the schedule entry (slot) is unconditional or sporadic, this

identifies the payload data (LIN frame). If the schedule entry is

event triggered, this identifies the schedule entry itself, and the

protected ID contained in the first payload byte identifies the

payload.

event slot? is not used. This element is false.

event ID is not used. This element is 0.

echo? is a Boolean value that determines whether the frame was

an echo of a successful transmit (true), or received from the

network (false). For conversion, it is always set to false.

type is the frame type (decimal value in parentheses):

• LIN Data (64): The LIN data frame contains payload data.

This is currently the only frame type for LIN.

For conversion, this is always set to false.

timestamp represents the absolute time when the XNET interface

received the frame (end of frame), accurate to microseconds. The

timestamp returned by the conversion is always invalid (0).

payload is the array of data bytes for the LIN data frame.

The array size indicates the received frame’s payload length.

According to the LIN protocol, this payload is 0–8 bytes in length.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

NI-XNET Hardware and Software Manual 4-556 ni.com

XNET Convert (Signal to Frame Raw).vi

Purpose

Converts between NI-XNET signals and raw frame data.

Format

Inputs

session in is the session to read. This session is returned from XNET

Create Session.vi. The session mode must be Conversion.

signal data returns a one-dimensional array of signal values. Each signal

value is scaled, 64-bit floating point.

Each array element corresponds to a signal configured for the session. The

order of signals in the array corresponds to the order in the session list.

The data provides the value for the next conversion of each signal.

For an example of how this data applies, refer to Conversion Mode.

error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

frame data returns an array of bytes.

The raw bytes encode one or more frames using the Raw Frame Format.

This frame format is the same for read and write of raw data, and it is also

used for log file examples.

The data always returns complete frames.

Chapter 4 NI-XNET API for LabVIEW—XNET Convert.vi

© National Instruments 4-557 NI-XNET Hardware and Software Manual

For information about which elements of the raw frame are applicable,

refer to the frame read for the protocol in use (XNET Convert (Signal to

Frame CAN).vi, XNET Convert (Signal to Frame FlexRay).vi, or

XNET Convert (Signal to Frame LIN).vi).

For an example of how this data applies, refer to Conversion Mode.

error out is the error cluster output (refer to Error Handling).

Chapter 4 NI-XNET API for LabVIEW—Controls Palette

NI-XNET Hardware and Software Manual 4-558 ni.com

Controls Palette

This palette provides front panel controls for NI-XNET. You drag a control to the front panel

of your VI.

Typically, you use I/O name controls to select a name during configuration, and the name is

used at run time. For example, prior to running a VI, you can use XNET Signal I/O Name

controls to select signals to read. When the user runs the VI, the selected signals are passed

to XNET Create Session.vi, followed by calls to XNET Read.vi to read and display data for

the selected signals.

As an alternative, you also can use I/O name controls to select a name at run time. This applies

when the VI always is running for the end user, and the VI uses distinct stages for

configuration and I/O. Using the previous example, the user clicks XNET Signal I/O Name

controls to select signals during the configuration stage. Next, the user clicks a Go button to

proceed to the I/O stage, in which XNET Create Session.vi and XNET Read.vi are called.

XNET Session Control

This control provides the control form of the XNET Session I/O name. You drag a control to

the front panel of your VI, so that the user of the VI can select a name. For a complete

description, refer to XNET Session I/O Name.

Database Controls

XNET Database Control

This control provides the control form of the XNET Database I/O name. You drag a control

to the front panel of your VI, so that the user of the VI can select a name. For a complete

description, refer to XNET Database I/O Name.

XNET Cluster Control

This control provides the control form of the XNET Cluster I/O name. You drag a control to

the front panel of your VI, so that the user of the VI can select a name. For a complete

description, refer to XNET Cluster I/O Name.

XNET ECU Control

This control provides the control form of the XNET ECU I/O name. You drag a control to the

front panel of your VI, so that the user of the VI can select a name. For a complete description,

refer to XNET ECU I/O Name.

Chapter 4 NI-XNET API for LabVIEW—System Controls

© National Instruments 4-559 NI-XNET Hardware and Software Manual

XNET Frame Control

This control provides the control form of the XNET Frame I/O name. You drag a control to

the front panel of your VI, so that the user of the VI can select a name. For a complete

description, refer to XNET Frame I/O Name.

XNET Signal Control

This control provides the control form of the XNET Signal I/O name. You drag a control to

the front panel of your VI, so that the user of the VI can select a name. For a complete

description, refer to XNET Signal I/O Name.

XNET LIN Schedule Control

This control provides the control form of the XNET LIN Schedule I/O name. You drag a

control to the front panel of your VI, so that the user of the VI can select a name. For a

complete description, refer to XNET LIN Schedule I/O Name.

XNET LIN Schedule Entry Control

This control provides the control form of the XNET LIN Schedule Entry I/O name. You drag

a control to the front panel of your VI, so that the user of the VI can select a name. For a

complete description, refer to XNET LIN Schedule Entry I/O Name.

System Controls

XNET Interface Control

This control provides the control form of the XNET Interface I/O name. You drag a control

to the front panel of your VI, so that the user of the VI can select a name. For a complete

description, refer to XNET Interface I/O Name.

XNET Terminal Control

This control provides the control form of the XNET Terminal I/O name. You drag a control

to the front panel of your VI, so that the user of the VI can select a name. For a complete

description, refer to XNET Terminal I/O Name.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-560 ni.com

Additional Topics

This section includes additional CAN, FlexRay, and LIN-related information.

Overall

Creating a Built Application
NI-XNET supports creation of a built application using a LabVIEW project.

For a LabVIEW Real-Time (RT) target, the built application typically is used as a startup

application. For information about creating a built application for LabVIEW RT, refer to

Using LabVIEW Real-Time.

For a Windows target (My Computer), the built application is an executable (.exe). You

typically distribute the executable to multiple end users, which means you copy to multiple

computers (targets).

This section describes creating a built application for Windows that uses NI-XNET.

Create the executable by right-clicking Build Specifications under My Computer, then

select New»Application (EXE).

Sessions

If you created NI-XNET sessions under My Computer, the configuration for those sessions

is generated to the following text file:

nixnetSession.txt

This text file is in the same folder as the executable (.exe).

You must include this text file as part of your distribution. Copy this text file along with the

.exe, always to the same folder.

If you create sessions at run time using XNET Create Session.vi, those sessions are

standalone (no text file required).

Databases

If your application uses the in-memory database (:memory:), that database is standalone (no

file or alias required). For more information about the in-memory database, refer to the Create

in Memory section of Database Programming.

If your application accesses a database file using a filepath (not alias), you must ensure that

the file exists at the same filepath on every computer. Because LabVIEW uses absolute

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-561 NI-XNET Hardware and Software Manual

filepaths (for example, c:\MyDatabases\Database5.dbc), this implies that every

computer that runs the executable must use the same file system layout.

If your application accesses a database file using an alias, you must add the alias using XNET

Database Add Alias.vi. You can use this VI as part of an installation process or call it within

the executable itself. Using an alias provides more flexibility than a filepath. For example,

your application can check for the required file at a likely filepath and add the alias if found,

or otherwise pop up a dialog for the end user to browse to the correct filepath (then add an

alias).

Cyclic and Event Timing
For all embedded network protocols (for example, CAN, LIN, and FlexRay), the transmit of

a specific frame is classified as one of the following:

• Cyclic: The frame transmits at a cyclic (periodic) rate, regardless of whether the

application has updated its payload data. The advantage of cyclic behavior is that the

application does not need to worry about when to transmit, yet data changes arrive at

other ECUs within a well-defined deadline.

• Event: The frame transmits when a specific event occurs. This event often is simply that

the application updated the payload data, but other events are possible. The advantage is

that the frame transmits on the network only as needed.

The following sections describe how the cyclic and event concept apply to each protocol.

Within NI-XNET, a Cyclic frame begins transmit as soon as the session starts, regardless of

whether you called XNET Write.vi. The call to XNET Write.vi is the event that drives an

Event frame transmit.

CAN

For each frame, the XNET Frame CAN:Timing Type property determines whether the

network transfer is cyclic or event:

• Cyclic Data: This is typical Cyclic frame behavior.

• Event Data: This is typical Event frame behavior.

• Cyclic Remote: Because one ECU in the network transmits the CAN remote frame at a

cyclic (periodic) rate, the resulting CAN data frame also is cyclic.

• Event Remote: One ECU in the network transmits the CAN remote frame based on an

event. Another ECU responds with the corresponding CAN data frame. In NI-XNET,

XNET Write.vi generates the event to transmit the CAN remote frame.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-562 ni.com

FlexRay

For each frame, the XNET Frame FlexRay:Timing Type property determines whether the

network transfer is cyclic or event:

• Cyclic (in static segment): No null frame transmits, so this is typical Cyclic frame

behavior.

• Event (in static segment): The null frame indicates no event.

• Cyclic (in dynamic segment): The frame transmits each FlexRay cycle. This

configuration is not common for the dynamic segment, which typically is for Event

frames only.

• Event (in dynamic segment): This is typical Event frame behavior.

LIN

As described in the Using LIN section, the currently running schedule entries determine each

LIN frame’s timing. In each schedule entry, the master transmits a single frame header, and

the payload of one (or more) frames can follow.

For each schedule entry, the XNET LIN Schedule Entry Type property determines how the

associated Frames transmit. The schedule Run Mode also contributes to the cyclic or event

behavior. Similar to database properties, you cannot change Run Mode after a session is

created.

• Cyclic: Unconditional type, Continuous run mode: This is typical Cyclic frame

behavior.

• Event: Unconditional type, Once run mode: Although the frame transmits

unconditionally, the schedule runs once based on an event, so this is Event frame

behavior. In NI-XNET, XNET Write (State LIN Schedule Change).vi changes the

mode to the run-once schedule. This effectively generates the event to transmit the LIN

frame.

• Event: Sporadic type: In this schedule entry, the master can transmit one of multiple

Event-driven frames. In NI-XNET, XNET Write.vi writes signal or frame values to

generate the event to transmit. Because the entry itself is Event, this behavior applies

regardless of the schedule’s run mode.

• Event: Event-triggered type: In this schedule entry, multiple slave ECUs can transmit

in the entry, each using an Event-driven frame. In NI-XNET, XNET Write.vi writes

signal or frame values to generate the event to transmit. Because the entry itself is Event,

this behavior applies regardless of the schedule’s run mode.

Error Handling
In NI-XNET, the term error refers to a problem that occurs within the execution of a node in

the block diagram (VI or property node). The term fault refers to a problem that occurs

asynchronously to execution of an NI-XNET node. For example, an invalid parameter to

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-563 NI-XNET Hardware and Software Manual

XNET Read.vi is an error, but a communication problem on the network is a fault. For more

information about faults, refer to Fault Handling.

LabVIEW uses error clusters to pass error information through each VI.

NI-XNET uses the error in and error out clusters in each VI and property node. The

elements of these clusters are:

status is true if error occurred or false if success or warning occurred.

code is a number that identifies the error or warning. A value of 0 means

success. A negative value means error: The VI did not perform the intended

operation. A positive value means warning: The VI performed the intended

operation, but something occurred that may require your attention. For a

description of the code, right-click the error cluster and select Explain

Error or Explain Warning. You also can wire the error cluster to Simple

Error Handler.vi to obtain the description at runtime.

source Identifies the VI where the error or warning occurred.

For most NI-XNET VIs, if error in indicates an error, the VI passes the error information to

error out and does not perform the intended operation. In other words, NI-XNET VIs do not

execute under error conditions. The exceptions to this behavior are XNET Clear.vi and

XNET Database Close.vi. These VIs always perform the intended operation of closing or

otherwise cleaning up, even when error in indicates an error.

If error in indicates success or warning, the NI-XNET VI executes and returns the result of

its operation to error out.

The error in cluster is an optional input to a VI, with a default value of no error (status false

and code 0).

Fault Handling
In NI-XNET, the term error refers to a problem that occurs within the execution of a node in

the block diagram (VI or property node). The term fault refers to a problem that occurs

asynchronously to execution of an NI-XNET node. For example, passing an invalid session

to a VI is an error, but a communication problem on the network is a fault. For more

information about errors, refer to Error Handling.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-564 ni.com

Examples of faults include:

• The CAN, FlexRay, and LIN protocol standards each specify mechanisms to detect

communication problems on the network. These problems are reflected in the

communication state and other information.

• If you pass invalid data to XNET Write.vi, in some cases the problem cannot be detected

until the data is about to be transmitted. Because the transmission occurs after XNET

Write.vi returns, this is reported as a fault.

NI-XNET reports faults from a special XNET Read.vi instance for the communication state.

For CAN, this is XNET Read (State CAN Comm).vi, for FlexRay this is XNET Read

(State FlexRay Comm).vi, and for LIN this is XNET Read (State LIN Comm).vi.

The information returned from these VIs is not limited to faults. Each VI provides information

about the current state of communication on the network. Because XNET Read.vi executes

quickly, it often is useful within the primary loop of your application to ascertain the current

network state.

Each XNET Read.vi returns a cluster with various indicators. Most of the indicators provide

state information that the protocol specifies, including faults (communication stopped). Faults

specific to NI-XNET are reported in fault? and fault code. fault? is similar to the status of

a LabVIEW error cluster, and fault code is similar to the code of a LabVIEW error cluster.

To detect a fault without stopping the execution of your VIs, you read and interpret the

communication state separately from the LabVIEW error cluster flow. For example, you may

want to intentionally introduce noise into CAN cables to test how your ECU behaves when

the CAN bus off state occurs. The following figure shows an example block diagram for this

method.

Figure 4-15. Restart on CAN Bus Off State

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-565 NI-XNET Hardware and Software Manual

The block diagram detects the CAN bus off state, which means that communication stopped

due to numerous problems on the bus. When CAN bus off state is detected, the block diagram

increments a count and restarts the NI-XNET interface. It then waits for the interface to be

reintegrated with the bus before continuing. This process of reintegrating into a CAN bus after

going bus off is known as bus off recovery. Because the CAN bus off fault was not propagated

as an error, the test continues to execute.

To detect a fault and propagate it to an error to break the LabVIEW flow, use a diagram similar

to the following example.

Figure 4-16. Propagating CAN Faults to an Error

The block diagram in the figure above first checks for CAN bus off state, which indicates that

communication stopped due to a serious problem in the CAN protocol state machine (data

link layer). Next, the block diagram checks for a fault in the CAN transceiver (physical layer).

Finally, the block diagram checks for a fault in NI-XNET. If any of these three faults are

detected, it overwrites the previous error in the standard LabVIEW error cluster. If a fault or

error occurs, execution of subsequent VIs ceases, effectively stopping the LabVIEW

application execution.

Multiplexed Signals
Multiplexed signals do not appear in every instance of a frame; they appear only if the frame

indicates this.

For this reason, a frame can contain a multiplexer signal and several subframes. The

multiplexer signal is at most 16 bits long and contains an unsigned integer number that

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-566 ni.com

identifies the subframe instance in the instance of a frame. The subframes contain the

multiplexed signals.

This means the frame signal content is not fixed (static), but can change depending on the

multiplexer signal (dynamic) value.

A frame can contain both a static and a dynamic part.

Creating Multiplexed Signals

In the API

Creating multiplexed signals in the API is a two-step process:

1. Create the multiplexer signal and subframes as children of the frame object. The

subframes are assigned the mode value; that is, the value of the multiplexer signal for

which this subframe becomes active.

2. Create the multiplexed signals as children of their respective subframes. This

automatically assigns the signals as dynamic signals to the subframe’s parent frame.

In the NI-XNET Database Editor

You create multiplexed signals simply by changing their Signal Type to Multiplexed and

assigning them mode values. The Database Editor handles subframe manipulation completely

behind the scenes.

Reading Multiplexed Signals

You can read multiplexed signals like static signals without any additional effort. Because the

frame read also contains the multiplexer signal, the NI-XNET driver can decide which signals

are present in the frame and return new values for only those signals.

Writing Multiplexed Signals

Writing multiplexed signals needs additional consideration. As writing signals results in a

frame being created and sent over the network, writing multiplexed signals requires the

multiplexer signal be part of the writing session. This is needed for the NI-XNET driver to

decide which set of dynamic signals a certain frame contains. Only the subframe dynamic

signals selected with the multiplexer signal value are written to the frame; the values for the

other dynamic signals of that frame are ignored.

Support for Multiplexed Signals

Multiplexed signals are currently supported for CAN only. FlexRay does not support them.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-567 NI-XNET Hardware and Software Manual

Raw Frame Format
This section describes the raw data format for frames. The TDMS file format, XNET Read

(Frame Raw).vi, and XNET Write (Frame Raw).vi use this format.

The raw frame format is for examples that demonstrate access to log files. The raw frame

format is ideal for log files, because you can transfer the data between NI-XNET and the file

with very little conversion.

Refer to the NI-XNET logfile examples for VIs that convert raw frame data to/from

LabVIEW clusters for CAN, FlexRay, or LIN frames.

The raw frame format consists of one or more frames encoded in a sequence of bytes. Each

frame is encoded as one Base Unit, followed by zero or more Payload Units.

Base Unit

In the following table, Byte Offset refers to the offset from the frame start. For example, if the

first frame is in raw data bytes 0–23, and the second frame is in bytes 24–47, the second frame

Identifier starts at byte 32 (24 + Byte Offset 8).

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-568 ni.com

Table 4-3. Base Unit Elements

Element Byte Offset Description

Timestamp 0 to 7 64-bit timestamp in 100 ns increments.

The timestamp format is absolute. The 64-bit element

contains the number of 100 ns intervals that have elapsed since

12:00 a.m. January 1 1601 Coordinated Universal Time (UTC).

This element contains a 64-bit unsigned integer (U64) in native

byte order. For little-endian computing platforms (for example,

Windows), Byte Offset 0 is the least significant byte.

For big-endian computing platforms (for example,

CompactRIO with a PowerPC), Byte Offset 0 is the most

significant byte. The LabVIEW absolute timestamp data type

is different than this U64 timestamp. NI-XNET includes a pair

of VIs to convert between this U64 timestamp format and the

LabVIEW timestamp format. The NI-XNET VIs handle all

time format and byte order aspects. For more information, refer

to the NI-XNET examples for logfile access.

Identifier 8 to 11 The frame identifier.

This element contains a 32-bit unsigned integer (u32) in native

byte order.

When Type specifies a CAN frame, bit 29 (hex 20000000)

indicates the CAN identifier format: set for extended, clear for

standard. If bit 29 is clear, the lower 11 bits (0–10) contain the

CAN frame identifier. If bit 29 is set, the lower 29 bits (0–28)

contain the CAN frame identifier. When Type specifies a

FlexRay frame, the lower 16 bits contain the slot number.

When Type specifies a LIN frame, this element contains a

number in the range 0–63 (inclusive). This number is the LIN

frame’s ID (unprotected).

All unused bits are 0.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-569 NI-XNET Hardware and Software Manual

Type 12 The frame type.

This element specifies the fundamental frame type. The

Identifier, Flag, and Info element interpretation is different for

each type.

The upper 4 bits of this element specify the protocol. The valid

values in decimal are:

0 CAN

2 FlexRay

4 LIN

14 Special

The lower 4 bits of this element contain the specific type.

For information about the specific CAN Type values, refer to

XNET Read (Frame CAN).vi.

For information about the specific FlexRay Type values, refer

to XNET Read (Frame FlexRay).vi.

For information about the specific LIN Type values, refer to

XNET Read (Frame LIN).vi.

Special values specify features not related to the protocol or bus

traffic. For more information about special frames, refer to

Special Frames.

Table 4-3. Base Unit Elements (Continued)

Element Byte Offset Description

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-570 ni.com

Flags 13 Eight Boolean flags that qualify the frame type.

Bit 7 (hex 80) is protocol independent (supported in CAN,

FlexRay, and LIN frames). If set, the frame is echoed (returned

from XNET Read.vi after NI-XNET transmitted on the

network). If clear, the frame was received from the network

(from a remote ECU).

For FlexRay frames:

• Bit 0 is set if the frame is a Startup frame

• Bit 1 is set if the frame is a Sync frame

• Bit 2 specifies the frame Preamble bit

• Bit 4 specifies if the frame transfers on Channel A

• Bit 5 specifies if the frame transfers on Channel B

For LIN frames:

• Bit 0 is set if the frame occurred in an event-triggered entry

(slot). When bit 0 is set, the Info element contains the

event-triggered frame ID, and the Identifier element

contains the Unconditional ID from the first payload byte.

All unused bits are zero.

Info 14 Information that qualifies the frame type.

This element is not used for CAN.

For FlexRay frames, this element provides the frame cycle

count (0–63).

For LIN frames, if bit 0 of the Flags element is clear, the Info

element is unused (0). If bit 0 of the Flags element is set

(event-triggered entry), the Info element contains the

event-triggered frame ID, and the Identifier element contains

the Unconditional ID from the first payload byte.

Table 4-3. Base Unit Elements (Continued)

Element Byte Offset Description

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-571 NI-XNET Hardware and Software Manual

PayloadLength 15 The PayloadLength indicates the number of valid data bytes in

Payload.

For standard CAN and LIN frames, PayloadLength cannot

exceed 8. Because this base unit always contains 8 bytes of

payload data, the entire frame is contained in the base unit, and

no additional payload units exist.

For CAN FD frames, PayloadLength can be 0–8, 12, 16, 20, 24,

32, 48, or 64. For FlexRay frames, PayloadLength is 0–254

bytes. If PayloadLength is 0–8, only the base unit exists. If

PayloadLength is 9 or greater, one or more payload units follow

the base unit. Additional payload units are provided in

increments of 8 bytes, to optimize efficiency for DMA

transfers. For example, if PayloadLength is 12, bytes 0–7 are in

the base unit Payload, bytes 8–11 are in the first byte of the next

payload unit, and the last 4 bytes of the next payload unit are

ignored.

In other words, each raw data frame can vary in length. You can

calculate each frame size (in bytes) using the following

pseudocode:

U16 FrameSize // maximum 272 for largest

FlexRay frame

FrameSize = 24; // 24 byte base unit

if (PayloadLength > 8)

FrameSize = FrameSize +

(U16)(PayloadLength - 1) AND 0xFFF8;

The last pseudocode line subtracts 1 and truncates to the

nearest multiple of 8 (using bitwise AND). This adds bytes for

additional payload units. For example, PayloadLength of 9

through 16 requires one additional payload unit of 8 bytes.

The NI-XNET example code helps you handle the

variable-length frame encoding details.

Payload 16 to 23 This element always uses 8 bytes in the logfile, but

PayloadLength determines the number of valid bytes.

Table 4-3. Base Unit Elements (Continued)

Element Byte Offset Description

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-572 ni.com

Payload Unit

The base unit PayloadLength element determines the number of additional payload

units (0–31).

Special Frames
The NI-XNET driver offers a few special frames not directly used in bus communication.

Delay Frame

A Delay frame is used during replay. When a frame with a Delay frame type is in the stream

output queue while the Interface:Output Stream Timing property is set to a replay mode, the

hardware delays for the requested time. The Delay frame fields are as follows:

Log Trigger Frame

A Log Trigger frame is a special frame that a Frame Stream Input session can receive. This

frame is generated when a rising edge is detected on an external connection (PXI_Trig or

FrontPanel trigger). To enable the hardware to log this frame, you must use XNET Connect

Terminals.vi to connect the external connection to the internal LogTrigger terminal. A Log

Table 4-4. Payload Unit Elements

Element Byte Offset Description

Payload 0 to 7 This element always uses 8 bytes in the logfile, but

PayloadLength determines the number of valid bytes.

Element Description

Identifier 0 (Ignored)

Extended False (Ignored)

Echo False (Ignored)

Type Delay

Timestamp Amount of time to delay. Note that this is not an

absolute time and is not related to any other time

in the replay frames. A time of 0.25 (that is,

LabVIEW absolute time of 6:00:00.250PM

12/31/1903) will delay 250 ms.

Payload Length 0

Payload Ignored

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-573 NI-XNET Hardware and Software Manual

Trigger frame is applicable to CAN, LIN, and FlexRay. The Log Trigger Frame fields are as

follows:

CAN Frame

LIN Frame

FlexRay Frame

Element Description

identifier 0

extended? False

echo? False

type Log Trigger

timestamp Time when the trigger occurred

payload length 0 (may increase in the future)

payload N/A

Element Description

identifier 0

event slot? False

event ID 0

echo? False

type Log Trigger

timestamp Time when the trigger occurred

payload length 0 (may increase in the future)

payload N/A

Element Description

slot 0

cycle count 0

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-574 ni.com

Start Trigger Frame

A Start Trigger frame is a special frame that a Frame Stream Input session can receive. This

frame is generated when the interface is started. (Refer to Start Interface for more

information.) To enable the hardware to log this frame, you must enable the Interface:Start

Trigger Frames to Input Stream? property. A Start Trigger frame is applicable to CAN, LIN,

and FlexRay. The fields of the Start Trigger frame are as follows:

CAN Frame

startup? False

sync? False

preamble? False

ch A False

ch B False

echo? False

Type Log Trigger

Timestamp Time when the trigger occurred

Payload Length 0 (may increase in the future)

Payload N/A

Element Description

identifier 0

extended? False

echo? False

type Start Trigger

timestamp Time when the interface started

payload length 0 (may increase in the future)

payload N/A

Element Description

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-575 NI-XNET Hardware and Software Manual

LIN Frame

FlexRay Frame

Element Description

identifier 0

event slot? False

event ID 0

echo? False

type Start Trigger

timestamp Time when the interface started

payload length 0 (may increase in the future)

payload N/A

Element Description

slot 0

cycle count 0

startup? False

sync? False

preamble? False

ch A False

ch B False

echo? False

Type Start Trigger

Timestamp Time when the interface started

Payload Length 0 (may increase in the future)

Payload N/A

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-576 ni.com

Bus Error Frame

A Bus Error frame is a special frame that a Frame Stream Input session can receive. This

frame is generated when a bus error is detected on the hardware bus. To enable the hardware

to log this frame, you must enable the Interface:Bus Error Frames to Input Stream? property.

A Bus Error frame is applicable to CAN and LIN. The fields of the Bus Error frame are as

follows:

CAN Frame

Element Description

identifier 0

extended? False

echo? False

type CAN Bus Error

timestamp Time when the bus error was detected

payload length 5 (may increase in future)

payload Byte 0: CAN Comm State

0 = Error Active

1 = Error Passive

2 = Bus Off

Byte 1: TX Error Counter

Byte 2: RX Error Counter

Byte 3: Detected Bus Error

0 = None (never returned)

1 = Stuff

2 = Form

3 = Ack

4 = Bit 1

5 = Bit 0

6 = CRC

Byte 4: Transceiver Error?

0 = no error

1 = error

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-577 NI-XNET Hardware and Software Manual

LIN Frame

Required Properties
When you create a new object in a database, the object properties may be:

• Optional: The property has a default value after creation, and the application does not

need to set the property when the default value is desired for the session.

• Required: The property has no default value after creation. An undefined required

property returns an error from XNET Create Session.vi. A required property means you

must provide a value for the property after you create the object.

Element Description

identifier 0

event slot? False

event ID 0

echo? False

type LIN Bus Error

timestamp Time when the bus error was detected

payload length 5 (May increase in the future)

payload Byte 0: LIN Comm State

0 = Idle

1 = Active

2 = Inactive

Byte 1: Detected Bus Error

0 = None (never returned)

1 = UnknownId

2 = Form

3 = Framing

4 = Readback

5 = Timeout

6 = CRC

Byte 2: Identifier on bus

Byte 3: Received byte on bus

Byte 4: Expected byte on bus

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-578 ni.com

The following NI-XNET object classes have no required properties:

• Session

• System

• Device

• Interface

• Database

• ECU

• LIN Schedule

This section lists all required properties. Properties with a protocol prefix (for example,

FlexRay:) in the property name apply only a session that uses the specified protocol.

The Cluster object class requires the following properties:

• Baud Rate1

• FlexRay:Action Point Offset

• FlexRay:CAS Rx Low Max

• FlexRay:Channels

• FlexRay:Cluster Drift Damping

• FlexRay:Cold Start Attempts

• FlexRay:Cycle

• FlexRay:Dynamic Slot Idle Phase

• FlexRay:Listen Noise

• FlexRay:Macro Per Cycle

• FlexRay:Max Without Clock Correction Fatal

• FlexRay:Max Without Clock Correction Passive

• FlexRay:Minislot Action Point Offset

• FlexRay:Minislot

• FlexRay:Network Management Vector Length

• FlexRay:NIT

• FlexRay:Number of Minislots

• FlexRay:Number of Static Slots

• FlexRay:Offset Correction Start

1 For FlexRay, Baud Rate always is required. For CAN and LIN, when you use a Frame I/O Stream session, you can specify
Baud Rate using either the XNET Cluster Baud Rate property or XNET Session Interface:Baud Rate property. For CAN and
LIN with other session modes, the XNET Cluster Baud Rate property is required.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-579 NI-XNET Hardware and Software Manual

• FlexRay:Payload Length Static

• FlexRay:Static Slot

• FlexRay:Symbol Window

• FlexRay:Sync Node Max

• FlexRay:TSS Transmitter

• FlexRay:Wakeup Symbol Rx Idle

• FlexRay:Wakeup Symbol Rx Low

• FlexRay:Wakeup Symbol Rx Window

• FlexRay:Wakeup Symbol Tx Idle

• FlexRay:Wakeup Symbol Tx Low

• LIN:Tick

The Frame object class requires the following properties:

• FlexRay:Base Cycle

• FlexRay:Channel Assignment

• FlexRay:Cycle Repetition

• Identifier

• Payload Length

The Subframe object class requires the following property:

• Multiplexer Value

The Signal object class requires the following properties:

• Byte Order

• Data Type

• Number of Bits

• Start Bit

The LIN Schedule Entry object class requires the following properties:

• Delay

• Event Identifier

• Frames

State Models
The following figures show the state model for the NI-XNET session and the associated

NI-XNET interface.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-580 ni.com

The session controls the transfer of frame values between the interface (network) and the data

structures that can be accessed using the API. In other words, the session controls receive or

transmit of specific frames for the session.

The interface controls communication on the physical network cluster. Multiple sessions can

share the interface. For example, you can use one session for input on interface CAN1 and a

second session for output on interface CAN1.

Although most state transitions occur automatically when you call XNET Read.vi or XNET

Write.vi, you can perform a more specific transition using XNET Start.vi and XNET

Stop.vi. If you invoke a transition that has already occurred, the transition is not repeated, and

no error is returned.

Session State Model

For a description of each state, refer to Session States. For a description of each transition,

refer to Session Transitions.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-581 NI-XNET Hardware and Software Manual

Figure 4-17. Session State Model

Interface State Model

For a description of each state, refer to Interface States. For a description of each transition,

refer to Interface Transitions.

Figure 4-18. Interface State Model

Session States

Stopped

The session initially is created in the Stopped state. In the Stopped state, the session does not

transfer frame values to or from the interface.

While the session is Stopped, you can change properties specific to this session. You can set

any property in the Session Property Node except those in the Interface category (refer to

Stopped in Interface States).

While the session is Started, you cannot change properties of objects in the database, such as

frames or signals. The properties of these objects are committed when the session is created.

Create Start Session

Stopped Started Communicating

Clear

Set Session

Property

Stop Session

Interface

Communicating

Interface

Not Communicating

OR

Stop Session

Start Interface

Stopped Started Communicating

Set Interface

Property

Stop Interface

Comm State

Communicating

Comm State

Not communicating

OR

Stop Interface

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-582 ni.com

Started

In the Started state, the session is started, but is waiting for the associated interface to be

started also. The interface must be communicating for the session to exchange data on the

network.

For most applications, the Started state is transitory in nature. When you call XNET Read.vi,

XNET Write.vi, or XNET Start.vi using defaults, the interface is started along with the

session. Once the interface is Communicating, the session automatically transitions to

Communicating without interaction by your application.

If you call XNET Start.vi with the scope of Session Only, the interface is not started. You

can use this advanced feature to prepare multiple sessions for the interface, then start

communication for all sessions together by starting the interface (XNET Start.vi with scope

of Interface Only).

Communicating

In the Communicating state, the session is communicating on the network with remote ECUs.

Frame or signal values are received for an input session. Frame or signal values are

transmitted for an output session. Your application accesses these values using XNET

Read.vi or XNET Write.vi.

Session Transitions

Create

When the session is created, the database, cluster, and frame properties are committed to the

interface. For this configuration to succeed, the interface must be in the Stopped state. There

is one exception: You can create a Frame Stream Input session while the interface is

communicating.

There are two ways to create a session:

• XNET Create Session.vi method: When your application calls XNET Create

Session.vi, the session is created. To ensure that all sessions for the interface are created

prior to start, you typically wire all calls to XNET Create Session.vi in sequence prior

to the first use of XNET Read.vi or XNET Write.vi (for example, prior to the main

loop).

• LabVIEW project method: Although you specify the session properties in the

LabVIEW project user interface, the session is not created at that time. When you run a

VI that uses the session with an XNET node (property node or VI), the session is created.

In addition, all other sessions in the LabVIEW project that use the same interface and

cluster (database) are created at that time. This ensures that all project-based sessions

your application uses are created before the interface starts (for example, the first call to

XNET Read.vi or XNET Write.vi).

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-583 NI-XNET Hardware and Software Manual

Clear

When the session is cleared, it is stopped (no longer communicates), and then all its resources

are removed.

There are two ways to clear a session:

• Application stop method: The typical way to clear a session is to do nothing explicit in

your application. When the application stops execution, NI-XNET automatically clears

all sessions that application uses. When using the LabVIEW development environment,

the application stops when the top-level VI goes idle, including when you select the

LabVIEW abort button in that VI’s toolbar. When using an application built using a

LabVIEW project, the application stops when the executable exits.

• XNET Clear.vi method: This clears the session explicitly. To change the properties of

database objects that a session uses, you may need to call XNET Clear.vi to change

those properties, then recreate the session.

Set Session Property

While the session is Stopped, you can change properties specific to this session. You can set

any property in the XNET Session Property Node except those in the Interface category (refer

to Stopped in Interface States).

You cannot set properties of a session in the Started or Communicating state. If there is an

exception for a specific property, the property help states this.

Start Session

For an input session, you can start the session simply by calling XNET Read.vi. To read

received frames, XNET Read.vi performs an automatic Start of scope Normal, which starts

the session and interface.

For an output session, if you leave the Auto Start? property at its default value of true, you

can start the session simply by calling XNET Write.vi. The auto-start feature of XNET

Write.vi performs a Start of scope Normal, which starts the session and interface.

To start the session prior to calling XNET Read.vi or XNET Write.vi, you can call XNET

Start.vi. The XNET Start.vi default scope is Normal, which starts the session and interface.

You also can use XNET Start.vi with scope of Session Only (this Start Session transition) or

Interface Only (the interface Start Interface transition).

Stop Session

You can stop the session by calling XNET Clear.vi or XNET Stop.vi. XNET Stop.vi

provides the same scope as XNET Start.vi, allowing you to stop the session, interface, or

both (normal scope).

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-584 ni.com

When the session stops, the underlying queues are not flushed. For example, if an input

session receives frames, then you call XNET Stop.vi, you still can call XNET Read.vi to

read the frame values from the queues. To flush the queues of a session, call XNET Flush.vi

(or XNET Clear.vi).

Interface Communicating

This transition occurs when the session interface enters the Communicating state.

Interface Not Communicating

This transition occurs when the session interface exits the Communicating state.

The session also exits its Communicating state when the session stops due to XNET Clear.vi

or XNET Stop.vi.

Interface States

Stopped

The interface always exists, because it represents the communication controller of the

NI-XNET hardware product port. This physical port is wired to a cable that connects to

one or more remote ECUs.

The NI-XNET interface initially powers on in the Stopped state. In the Stopped state, the

interface does not communicate on its port.

While the interface is Stopped, you can change properties specific to the interface. These

properties are contained within the Session Property Node Interface category. When more

than one session exists for a given interface, the Interface category properties provide shared

access to the interface configuration. For example, if you set an interface property using

one session, then get that same property using a second session, the returned value reflects the

change.

Properties that you change in the interface are not saved from one execution of your

application to another. When the last session for an interface is cleared, the interface

properties are restored to defaults.

Started

In the Started state, the interface is started, but it is waiting for the associated communication

controller to complete its integration with the network.

This state is transitory in nature, in that your application does not control transition out of the

Started state. For CAN and LIN, integration with the network occurs in a few bit times, so the

transition is effectively from Stopped to Communicating. For FlexRay, integration with the

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-585 NI-XNET Hardware and Software Manual

network entails synchronization with global FlexRay time, which can take as long as

hundreds of milliseconds.

Communicating

In the Communicating state, the interface is communicating on the network. One or more

communicating sessions can use the interface to receive and/or transmit frame values.

The interface remains in the Communicating state as long as communication is feasible. For

information about how the interface transitions in and out of this state, refer to Comm State

Communicating and Comm State Not Communicating.

Interface Transitions

Set Interface Property

While the interface is Stopped, you can change interface-specific properties. These properties

are in the Session Property Node Interface category. When more than one session exists for a

given interface, the Interface category properties provide shared access to the interface

configuration. For example, if you set an interface property using one session, then get that

same property using a second session, the returned value reflects the change.

You cannot set properties of the interface while it is in the Started or Communicating state.

If there is an exception for a specific property, the property help states this.

Start Interface

You can request the interface start in two ways:

• XNET Read.vi or XNET Write.vi method: The automatic start described for the Start

Session transition uses a scope of Normal, which requests the interface and session start.

• XNET Start.vi method: If you call this VI with scope of Normal or Interface Only, you

request the interface start.

After you request the interface start, the actual transition depends on whether you have

connected the interface start trigger. You connect the start trigger by calling the XNET

Connect Terminals.vi with a destination of Interface Start Trigger or by writing the XNET

Session Interface:Source Terminal:Start Trigger property.

The Start Interface transition occurs as follows, based on the start trigger connection:

• Disconnected (default): Start Interface occurs as soon as it is requested (XNET

Read.vi, XNET Write.vi, or XNET Start.vi).

• Connected: Start Interface occurs when the connected source terminal transitions

low-to-high (for example, pulses). Every Start Interface transition requires a new

low-to-high transition, so if your application stops the interface (for example, XNET

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-586 ni.com

Stop.vi), then restarts the interface, the connected source terminal must transition

low-to-high again.

Stop Interface

Under normal conditions, the interface is stopped when the last session is stopped (or

cleared). In other words, the interface communicates as long as at least one session is in use.

If a significant number of errors occur on the network, the communication controller may stop

the interface on its own. For more information, refer to Comm State Not Communicating.

If your application calls XNET Stop.vi with scope of Interface Only, that immediately

transitions the interface to the Stopped state. Use this feature with care, because it affects all

sessions that use the interface and is not limited to the session passed to XNET Stop.vi. In

other words, using XNET Stop.vi with a scope of Interface Only stops communication by all

sessions simultaneously.

Comm State Communicating

This transition occurs when the interface is integrated with the network.

For CAN, this occurs when communication enters Error Active or Error Passive state. For

information about the specific CAN interface communication states, refer to XNET Read

(State CAN Comm).vi.

For FlexRay, this occurs when communication enters one Normal Active or Normal Passive

state. For information about the specific FlexRay interface communication states, refer to

XNET Read (State FlexRay Comm).vi.

For LIN, this occurs when communication enters the Active state. The interface remains

communicating while in the Active or Inactive state (not affected by bus activity). For more

information about the specific LIN interface communication states, refer to XNET Read

(State LIN Comm).vi.

Comm State Not Communicating

This transition occurs when the interface no longer is integrated with the network.

For CAN, this occurs when communication enters Bus Off or Idle state. For information about

the specific CAN interface communication states, refer to XNET Read (State CAN

Comm).vi.

For FlexRay, this occurs when communication enters the Halt, Config, Default Config, or

Ready state. For information about the specific FlexRay interface communication states, refer

to XNET Read (State FlexRay Comm).vi.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-587 NI-XNET Hardware and Software Manual

For LIN, this occurs when communication enters the Idle state. For more information about

the specific LIN interface communication states, refer to XNET Read (State LIN Comm).vi.

TDMS
This section describes how NI-XNET frame data is stored within National Instruments

Technical Data Management Streaming (.TDMS) files. The National Instruments TDMS file

format provides efficient and flexible storage on NI platforms. The TDMS file format enables

storage of a wide variety of measurement types in a single binary file, including CAN,

FlexRay, LIN, analog, digital, and so on.

This section specifies the method used to store NI-XNET raw frame data within TDMS.

Although you also can store NI-XNET signal waveforms within TDMS, raw frame data is the

most efficient and complete way to store NI-XNET data. Raw frame data can be easily

converted to/from protocol-specific frames or signal waveforms for display and analysis.

TDMS is recommended for new applications that access NI-XNET data within files. For

examples that demonstrate use of TDMS with NI-XNET, refer to the NI-XNET Logging and

Replay category in the NI Example Finder (for example, Hardware Input and Output :

CAN : NI-XNET : Logging and Replay).

Previous versions of NI-XNET and NI-CAN used a file format called NCL to store raw frame

data. If you have an existing application that uses NCL, you can continue to use that file

format. Examples for NCL continue to be installed with NI-XNET (examples\nixnet

folder in your LabVIEW directory), but they no longer appear in the NI Example Finder.

If you need to store multiple sources of data in a single file (for example, multiple CAN

interfaces, or CAN with analog input), you should consider transitioning your application

from NCL to TDMS. Because both file formats use the same raw frame data, the changes

required for this transition are relatively small.

Within the TDMS file, a sequence of raw frames is stored in a distinct TDMS channel for each

NI-XNET interface (for example, CAN port). From the TDMS perspective, the frame data is

an array of U8 values. The U8 array represents one or more raw frames.

The version of TDMS used with this specification must be 2.0 or higher.

Channel Name and Group Name

The name of the TDMS channel can use any conventions that you desire, but it should

be sufficient to identify the network that is stored. For example, if you log data from

two CAN interfaces, you might name the first TDMS channel Powertrain network and

the second TDMS channel Body network. If you have an NI-XNET database that contains

distinct clusters for each network, the Name (Short) property often provides a useful

description of the network, and can be used directly as the TDMS channel name.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-588 ni.com

The name of the TDMS group can use any conventions that you desire. The group name is

required for NI-XNET frame data, but if you do not use multiple groups in the TDMS file,

you can select a simple group name (for example, My Group).

Channel Data

The data you read and write to the TDMS channel must be an array of U8 values. No other

TDMS data types are supported.

The channel data contains one or more frames encoded using the Raw Frame Format. The raw

frame format encodes all information received on the network, along with precise timestamps.

The protocols supported include CAN, FlexRay, and LIN.

The TDMS Channel Properties specify additional requirements for encoding of the raw frame

data. The property NI_network_frame_byte_order is particularly important, as this

specifies the byte order used for the Timestamp and Identifier elements within each raw

frame.

Channel Properties

Special properties are used on each TDMS channel to distinguish the data from a plain array

of U8 samples. Properties are also provided to assist in interpreting the data, such as

conversion to signals (physical units).

All properties for NI-XNET frame data use the prefix NI_network_. This prefix ensures that

the properties do not conflict with names used by your application. Table 4-5 lists the channel

properties.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-589 NI-XNET Hardware and Software Manual

Table 4-5. Channel Properties

Name Data Type Permissions Description

NI_network_

protocol

Required Specifies the network protocol used for all frames

in this channel.

The property value is an enumeration:

0 CAN

1 FlexRay

2 LIN

If this property does not exist, the data shall not be

interpreted as raw frames, but as plain U8

samples.

NI_network_

frame_

version

Required Specifies the raw frame encoding version. The

encoding of this number is specific to each

protocol listed in NI_network_protocol.

For CAN, FlexRay, and LIN, the version encoding

is the Upgrade Version in lowest order byte, and

Major Version in next order byte. The two upper

order bytes are 0.

The Major Version indicates a change that breaks

compatibility with the previous version. The value

for this specification is 2.

The Upgrade Version indicates a change that

retains compatibility with Upgrade Version 0. The

value for this specification is 0.

If this property does not exist, the data is not

interpreted as raw frames, but as plain U8

samples.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-590 ni.com

NI_network_

frame_byte_

order

Required Specifies the byte order for multibyte elements

within each frame’s data. For example, the frame’s

Identifier is a 32-bit value, and Timestamp is a

64-bit value. Refer to Raw Frame Format for

details.

This property does not specify byte order for

TDMS properties or other TDMS channels. This

property does not specify byte order for signals

within the frame’s Payload (that is, covered by

specifications like CANdb, LDF, and FIBEX).

The property value is an enumeration:

0 Little-endian (that is, least significant byte in

lowest offset, Intel byte order)

1 Big-endian (that is, most significant byte in

lowest offset, Motorola byte order)

If this property does not exist, the data is not

interpreted as raw frames, but as plain U8

samples.

Table 4-5. Channel Properties (Continued)

Name Data Type Permissions Description

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-591 NI-XNET Hardware and Software Manual

NI_network_

content

Optional Provides information that describes the content of

the payload of frames on this network. This

typically is information to map and scale

physical-unit values from each frame’s payload.

The encoding of this string is specific to each

protocol listed in NI_network_protocol.

For CAN, FlexRay, and LIN, the string encoding

is:

<alias>.<cluster>

The <alias> specifies an alias to a network

database file (content specification). This alias

provides a short name, used to refer to a database

file across multiple systems. When you register an

alias with tools, you typically use the database

filename on the local system, without the

preceding path or file extension. For example,

the path c:\MyDatabases\CANdb\

Powertrain.dbc would use an alias of

Powertrain.

The <cluster> refers to a specific cluster

(network) within the database. A database file can

specify multiple networks within a vehicle. This

portion of the string is optional (you can use

<alias> without “.” or <cluster>). If the cluster

does not exist, it is assumed that only one network

is specified within the database.

When you use NI-XNET, this string uses the same

syntax as the XNET Cluster I/O Name. The

registered alias refers to a file on Windows (DBC,

LDF, or FIBEX text file), or on LabVIEW

Real-Time (compressed binary file).

When you use tools that do not explicitly contain

NI-XNET (for example, NI DIAdem), support for

this property may have limitations. For example,

DBC files may be supported, but not LDF or

FIBEX.

Table 4-5. Channel Properties (Continued)

Name Data Type Permissions Description

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-592 ni.com

CAN

NI-CAN
NI-CAN is the legacy application programming interface (API) for National Instruments

CAN hardware. Generally speaking, NI-CAN is associated with the legacy CAN hardware,

and NI-XNET is associated with the new NI-XNET hardware.

If you are starting a new application, you typically use NI-XNET (not NI-CAN).

Compatibility

If you have an existing application that uses NI-CAN, a compatibility library is provided so

that you can reuse that code with a new NI-XNET CAN product. Because the features of the

compatibility library apply to the NI-CAN API and not NI-XNET, it is described in the

NI-CAN documentation. For more information, refer to the NI-CAN Hardware and Software

Manual.

NI-XNET CAN Products in MAX

When the compatibility library is installed, NI-XNET CAN products also are visible in the

NI-CAN branch under Devices and Interfaces. Here you can configure the devices for use

with the NI-CAN API. This configuration is independent from the configuration of the same

device for NI-XNET under the root of Devices and Interfaces.

This property is optional. For applications that

read the logfile, if this property does not exist, the

effect will depend on the goal:

• Display of frame values: no effect—the

network content is not needed.

• Display of signal values: application opens a

dialog to ask the customer to browse to the file.

Table 4-5. Channel Properties (Continued)

Name Data Type Permissions Description

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-593 NI-XNET Hardware and Software Manual

Transition

If you have an existing application that uses NI-CAN and intend to use only new NI-XNET

hardware from now on, you may want to transition your code to NI-XNET.

NI-XNET unifies many concepts of the earlier NI-CAN API, but the key features are similar.

The following table lists NI-CAN terms and analogous NI-XNET terms.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-594 ni.com

CAN Timing Type and Session Mode
For each XNET Frame CAN:Timing Type property value, this section describes how the

frame behaves for each XNET session mode.

An input session receives the CAN data frame from the network, and an output session

transmits the CAN data frame. The CAN data frame data (payload) is mapped to/from signal

values.

Table 4-6. NI-CAN and NI-XNET Terms

NI-CAN Term NI-XNET Term Comment

CANdb file Database NI-XNET supports more database file formats than

the NI-CAN Channel API, including the FIBEX

format.

Message Frame The term Frame is the industry convention for the bits

that transfer on the bus. This term is used in standards

such as CAN.

Channel Signal The term Signal is the industry convention. This term

is used in standards such as FIBEX.

Channel API Task Session

(Signal I/O)

Unlike NI-CAN, NI-XNET supports simultaneous

use of channel (signal) I/O and frame I/O.

Frame API CAN

Object (Queue

Length Zero)

Session (Frame I/O

Single-Point)

The NI-CAN CAN Object provided both input (read)

and output (write) in one object. NI-XNET provides a

different object for each direction, for better control.

If the NI-CAN queue length for a direction is zero,

that is analogous to NI-XNET Frame I/O

Single-Point.

Frame API CAN

Object (Queue

Length Nonzero)

Session (Frame I/O

Queued)

If the NI-CAN queue length for a direction is nonzero,

that is analogous to NI-XNET Frame I/O Queued.

Frame API

Network Interface

Object

Session (Frame I/O

Stream)

The NI-CAN Network Interface Object provided both

input (read) and output (write) in one object.

NI-XNET provides a different object for each

direction, for better control.

Interface Interface NI-CAN started interface names at CAN0, but

NI-XNET starts at CAN1 (or FlexRay1).

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-595 NI-XNET Hardware and Software Manual

You use CAN remote frames to request the associated CAN data frame from a remote ECU.

When Timing Type is Cyclic Remote or Event Remote, an input session transmits the CAN

remote frame, and an output session receives the CAN remote frame.

Cyclic Data

The data frame transmits in a cyclic (periodic) manner. The XNET Frame CAN:Transmit

Time property defines the time between cycles.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY, Frame Input
Single-Point, and Frame Input Queued Modes

You specify the CAN frame (or its signals) when you create the session. When the CAN data

frame is received, a subsequent call to XNET Read.vi returns its data. For information about

how the data is represented for each mode, refer to Session Modes.

If the CAN remote frame is received, it is ignored (with no effect on XNET Read.vi).

Frame Input Stream Mode

You specify the CAN cluster when you create the session, but not the specific CAN frame.

When the CAN data frame is received, a subsequent call to XNET Read.vi returns its data.

If the CAN remote frame is received, a subsequent call to XNET Read.vi for the stream

returns it.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY, Frame Output
Single-Point, and Frame Output Queued Modes

You specify the CAN frame (or its signals) when you create the session. When you write data

using XNET Write.vi, the CAN data frame is transmitted onto the network. For information

about how the data is represented for each mode, refer to Session Modes.

When the session and its associated interface are started, the first cycle occurs, and the CAN

data frame transmits. After that first transmit, the CAN data frame transmits once every cycle,

regardless of whether XNET Write.vi is called. If no new data is available for transmit, the

next cycle transmits using the previous CAN data frame (repeats the payload).

If you pass the CAN remote frame to XNET Write.vi, it is ignored.

Frame Output Stream Mode

You specify the CAN cluster when you create the session, but not the specific CAN frame.

When you write the CAN data frame using XNET Write.vi, it is transmitted onto the

network.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-596 ni.com

The stream I/O modes do not use the database-specified timing for frames. Therefore, CAN

data and CAN remote frames transmit only when you pass them to XNET Write.vi, and do

not transmit cyclically afterward.

When using a stream output timing of immediate mode, data is transmitted onto the network

as soon as possible.

When using a stream output timing of either Replay Exclusive or Replay Inclusive, data is

transmitted onto the network based on the timestamps in the frame.

Event Data

The data frame transmits in an event-driven manner. For output sessions, the event is XNET

Write.vi. The XNET Frame CAN:Transmit Time property defines the minimum interval.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY, Frame Input
Single-Point, and Frame Input Queued Modes

The behavior is the same as Cyclic Data.

Frame Input Stream Mode

The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the

database-specified timing for all frames, you can read either CAN data or CAN remote

frames.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY, Frame Output
Single-Point, and Frame Output Queued Modes

The behavior is the same as Cyclic Data, except that the CAN data frame does not continue

to transmit cyclically after the data from XNET Write.vi has transmitted. Because the

database-specified timing for the frame is event based, after the CAN data frames for XNET

Write.vi have transmitted, the CAN data frame does not transmit again until a subsequent call

to XNET Write.vi.

Frame Output Stream Mode

The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the

database-specified timing for all frames, you can write either CAN data or CAN remote

frames.

Cyclic Remote

The CAN remote frame transmits in a cyclic (periodic) manner, followed by the associated

CAN data frame as a response.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-597 NI-XNET Hardware and Software Manual

Signal Input Single-Point, Signal Input Waveform, Signal Input XY, Frame Input
Single-Point, and Frame Input Queued Modes

You specify the CAN frame (or its signals) when you create the session. When the CAN data

frame is received, a subsequent call to XNET Read.vi returns its data. For information about

how the data is represented for each mode, refer to Session Modes.

When the session and its associated interface are started, the first cycle occurs, and the CAN

remote frame transmits. This CAN remote frame requests data from the remote ECU, which

soon responds with the associated CAN data frame (same identifier). After that first transmit,

the CAN remote frame transmits once every cycle. You do not call XNET Write.vi for the

session.

The CAN remote frame cyclic transmit is independent of the corresponding CAN data frame

reception. When NI-XNET transmits a CAN remote frame, it transmits a CAN remote frame

again CAN:Transmit Time later, even if no CAN data frame is received.

Frame Input Stream Mode

The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the

database-specified timing for all frames, you can read either CAN data or CAN remote

frames.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY, Frame Output
Single-Point, and Frame Output Queued Modes

You specify the CAN frame (or its signals) when you create the session. When you write data

using XNET Write.vi, the CAN data frame is transmitted onto the network when the

associated CAN remote frame is received (same identifier). For information about how the

data is represented for each mode, refer to Session Modes.

Although the session receives the CAN remote frame, you do not call XNET Read.vi to read

that frame. NI-XNET detects the received CAN remote frame, and immediately transmits the

next CAN data frame. Your application uses XNET Write.vi to provide the CAN data frames

used for transmit. When you call XNET Write.vi, the CAN data frame does not transmit

immediately, but instead waits for the associated CAN remote frame to be received.

Frame Output Stream Modes

The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the

database-specified timing for all frames, you can write either CAN data or CAN remote

frames.

Event Remote

The CAN remote frame transmits in an event-driven manner, followed by the associated CAN

data frame as a response. For input sessions, the event is XNET Write.vi.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-598 ni.com

Signal Input Single-Point, Signal Input Waveform, Signal Input XY, Frame Input
Single-Point, and Frame Input Queued Modes

You specify the CAN frame (or its signals) when you create the session. When the CAN data

frame is received, its data is returned from a subsequent call to XNET Read.vi. For

information about how the data is represented for each mode, refer to Session Modes.

This CAN Timing Type and mode combination is somewhat advanced, in that you must call

both XNET Read.vi and XNET Write.vi. You must call XNET Write.vi to provide the event

that triggers the CAN remote frame transmit. When you call XNET Write.vi, the data is

ignored, and one CAN remote frame transmits as soon as possible. Each call to XNET

Write.vi transmits only one CAN remote frame, even if you provide multiple signal or frame

values. When the remote ECU receives the CAN remote frame, it responds with a CAN data

frame, which is received and read using XNET Read.vi.

Frame Input Stream Modes

The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the

database-specified timing for all frames, you can read either CAN data or CAN remote

frames.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY, Frame Output
Single-Point, and Frame Output Queued Modes

The behavior is the same as Cyclic Remote. When you write data using XNET Write.vi, the

CAN data frame transmits onto the network when the associated CAN remote frame is

received (same identifier). Unlike Cyclic Data, the remote ECU sends the associated CAN

remote frame in an event-driven manner, but the behavior is the same regarding XNET

Write.vi and the CAN data frame transmit.

Frame Output Stream Mode

The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the

database-specified timing for all frames, you can write either CAN data or CAN remote

frames.

CAN Transceiver State Machine
The CAN hardware internally runs a state machine for controlling the transceiver state. The

transceiver can either be an internal transceiver or an external transceiver. On hardware that

contains software selectable transceivers, you can configure the selected transceriver by

setting the Interface:CAN:Transceiver Type property. If you choose an external transceiver,

you can configure its behaviors by setting the Interface:CAN:External Transceiver Config

property. Both bus conditions as well as the Interface:CAN:Transceiver State property can

affect the current transceiver state. The following state machine shows the different states of

the transceiver state machine and how the various states transition.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-599 NI-XNET Hardware and Software Manual

T# Condition From To

1 Power-on/close last session Any Power-on

2 Interface is started Power-on Normal

3 Interface:CAN:Transceiver State with value Normal Power-on Normal

4 Interface:CAN:Transceiver State with value Normal Sleep Normal

5 Interface:CAN:Transceiver State with value Normal SW Wakeup Normal

6 Interface:CAN:Transceiver State with value Normal SW High

Speed

Normal

7 Interface:CAN:Transceiver State with value Sleep Normal Sleep

8 Interface:CAN:Transceiver State with value Sleep SW Wakeup Sleep

9 Wakeup Pattern received on the bus Sleep Normal

Power-On

Normal

Single-Wire

Wakeup
Sleep

Single-Wire

High Speed

T1

T2/T3

T4/T9

T5
T6

T7

T8

T10

T11

T12

T13

T14

T15

T16

Transition Triggered by NI-XNET API Call

Transition Triggered by NI-XNET API Call or Bus Conditions

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-600 ni.com

FlexRay

FlexRay Timing Type and Session Mode
For each XNET frame FlexRay:Timing Type property value, this section describes how the

frame behaves for each XNET session mode.

An input session receives the FlexRay data frame from the network, and an output session

transmits the FlexRay data frame. The FlexRay data frame data (payload) is mapped to/from

signal values.

You use FlexRay null frames in the static segment to indicate that no new payload exists for

the frame. In the dynamic segment, if no new payload exists for the frame, it simply does not

transmit (no frame).

For NI-XNET input sessions, the Timing Type does not directly impact the representation of

data from XNET Read.vi.

For NI-XNET output sessions, the Timing Type determines whether to transmit a data frame

when no new payload data is available.

10 Interface:CAN:Transceiver State with value SW

Wakeup

Power-on SW Wakeup

11 Interface:CAN:Transceiver State with value SW

Wakeup

Normal SW Wakeup

12 Interface:CAN:Transceiver State with value SW

Wakeup

Sleep SW Wakeup

13 Interface:CAN:Transceiver State with value SW

HighSpeed

Power-on SW

High Speed

14 Interface:CAN:Transceiver State with value SW

HighSpeed

Normal SW

High Speed

15 Interface:CAN:Transceiver State with value SW

HighSpeed

Sleep SW

High Speed

16 Interface:CAN:Transceiver State with value SW

HighSpeed

SW Wakeup SW

High Speed

T# Condition From To

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-601 NI-XNET Hardware and Software Manual

Cyclic Data

The data frame transmits in a cyclic (periodic) manner.

If the frame is in the static segment, the rate can be once per cycle (FlexRay:Cycle

Repetition 1), once every N cycles (FlexRay:Cycle Repetition N), or multiple times per cycle

(FlexRay:In Cycle Repetitions:Enabled?).

If the frame is in the dynamic segment, the rate is once per cycle.

If no new payload data is available when it is time to transmit, the payload data from the

previous transmit is repeated.

Signal Input Single-Point, Signal Input Waveform, and Signal Input XY Modes

You specify the FlexRay signals when you create the session, and a specific FlexRay data

frame contains each signal. When the FlexRay data frame is received, a subsequent call to

XNET Read.vi returns its data. For information about how the data is represented for each

mode, refer to Session Modes.

If a FlexRay null frame is received, it is ignored (no effect on XNET Read.vi). FlexRay null

frames are not used to map signal values.

Frame Input Queued and Frame Input Single-Point Modes

You specify the FlexRay frame(s) when you create the session. When the FlexRay data frame

is received, a subsequent call to XNET Read.vi returns its data. For information about how

the data is represented for each mode, refer to Session Modes.

If a FlexRay null frame is received, it is ignored (not returned).

Frame Input Stream Mode

You specify the FlexRay cluster when you create the session, but not the specific FlexRay

frames. When any FlexRay data frame is received, a subsequent call to XNET Read.vi

returns it.

If the XNET Session Interface:FlexRay:Null Frames To Input Stream? property is true, and

FlexRay null frames are received, a subsequent call to XNET Read.vi for the stream returns

them. If Null Frames To Input Stream? is false (default), FlexRay null frames are ignored (not

returned). You can determine whether each frame value is data or null by evaluating the type

element (refer to XNET Read (Frame FlexRay).vi).

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-602 ni.com

Signal Output Single-Point, Signal Output Waveform, Signal Output XY, Frame Output
Single-Point, and Frame Output Queued Modes

You specify the FlexRay frame (or its signals) when you create the session. When you write

data using XNET Write.vi, the FlexRay data frame is transmitted onto the network. For

information about how the data is represented for each mode, refer to Session Modes.

When the session and its associated interface are started, the FlexRay data frame transmits

according to its rate. After that first transmit, the FlexRay data frame transmits according to

its rate, regardless of whether XNET Write.vi is called. If no new data is available for

transmit, the next cycle transmits using the previous FlexRay data frame (repeats the

payload).

If the frame is contained in the static segment, a FlexRay data frame transmits at all times.

The FlexRay null frame is not transmitted. If you pass the FlexRay null frame to XNET

Write.vi, it is ignored.

If the frame is contained in the dynamic segment, a FlexRay data frame transmits every cycle.

The dynamic frame minislot is always used.

Frame Output Stream Mode

This session mode is not supported for FlexRay.

Event Data

The data frame transmits in an event-driven manner. The event is XNET Write.vi.

Because FlexRay is a time-driven protocol, the minimum interval between events is specified

based on the FlexRay cycle. This minimum interval is configured in the same manner as a

Cyclic frame.

If the frame is in the static segment, the interval can be once per cycle (FlexRay:Cycle

Repetition 1), once every N cycles (FlexRay:Cycle Repetition N), or multiple times per cycle

(FlexRay:In Cycle Repetitions:Enabled?).

If the frame is in the dynamic segment, the interval is once per cycle.

If no new event (payload data) is available when it is time to transmit, no frame transmits. In

the static segment, this lack of new data is represented as a null frame.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY, Frame Input
Single-Point, Frame Input Queued, and Frame Input Stream Modes

The behavior is the same as Cyclic Data.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-603 NI-XNET Hardware and Software Manual

Signal Output Single-Point, Signal Output Waveform, Signal Output XY, Frame Output
Single-Point, and Frame Output Queued Modes

The behavior is similar to Cyclic Data, except that the FlexRay data frame does not continue

to transmit cyclically after the data from XNET Write.vi has transmitted. Because the

database-specified timing for the frame is event based, after the FlexRay data frames for

XNET Write.vi have transmitted, the FlexRay data frame does not transmit again until a

subsequent call to XNET Write.vi.

If the frame is contained in the static segment, a FlexRay null frame transmits when no new

data is available (no new call to XNET Write.vi). If you pass the FlexRay null frame to

XNET Write.vi, it is ignored.

If the frame is contained in the dynamic segment, the frame does not transmit when no new

data is available. The dynamic frame minislot is used only when new data is provided to

XNET Write.vi.

Frame Output Stream Mode

This session mode is not supported for FlexRay.

Protocol Data Units (PDUs) in NI-XNET

Introduction to Protocol Data Units

Protocol Data Units (PDUs) are encapsulated network data that are a way to communicate

information between independent protocols, such as in a CAN-FlexRay gateway. You can

think of them as containers of signals. The container (PDU) can be in multiple frames. A

single frame can contain multiple PDUs.

Relationship Between Frames, Signals, and PDUs

Frames and PDUs

The frame element contains an arbitrary number of nonoverlapping PDUs. A frame can have

multiple PDUs, and the same PDU can exist in different frames. Figure 4-19 shows the

one-to-n (one PDU in n number of frames) and n-to-one (n number of PDUs in one frame)

relationships.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-604 ni.com

Figure 4-19. Relationships Between PDUs and Frames

Signals and PDUs

A PDU acts like a container for a logical group of signals.

Figure 4-20 represents the relationship between frames, PDUs, and signals.

Figure 4-20. Relationships Between Frames, PDUs, and Signals

One PDU in n (Three) Frames

n (Three) PDUs in One Frame

PDU

Frame 1 Frame 2 Frame 3

Frame

PDU 1 PDU 2 PDU 3

Signals

PDUs

Frames

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-605 NI-XNET Hardware and Software Manual

Protocol Data Unit Properties

Start Bit

The start bit of the PDU within the frame indicates where in the frame the particular PDU data

starts.

Length

The PDU length defines the PDU size in bytes.

Update Bit

The receiver uses the update bit to determine whether the frame sender has updated data in a

particular PDU. Update bits allow for the decoupling of a signal update from a frame

occurrence. Update bits is an optional PDU property.

PDU Timing and Frame Timing

Because the same PDU can exist in multiple Frames, PDUs can have flexible transmission

schedules. For example, if PDU A is present in Frame 1 (Timing 1) as well as in Frame 2

(Timing 2), the receiving node receives it as per the different timings of the containing frames.

(Refer to Figure 4-21.)

Figure 4-21. PDU Timing and Frame Timing

Programming PDUs with NI-XNET

You can use PDUs in two ways to create a session for read/write:

• Create a signal I/O session using signals within the PDU. To do this, use the signal name

as you would with signals contained within a frame.

• Create an I/O session to read/write the raw PDU data. To do this, wire the PDU(s) to the

special Create Session modes for PDU. (Refer to XNET Create Session (PDU Input

Queued).vi for more information.) These modes operate like the equivalent frame

modes.

Important points to consider while programming with PDUs:

• PDUs currently are supported only on FlexRay interfaces.

PDUs

Frames

Frame 1, Timing 1 Frame 2, Timing 2 Frame 3, Timing 3

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-606 ni.com

• On the receive side, if the PDU has an update bit associated with it, the NI-XNET driver

sets the update bit when new data is received for the particular PDU from the bus.

Otherwise, if no new data is received for this PDU, the PDU is discarded. On the transmit

side, the NI-XNET driver sets the update bit when it detects that new data is available for

the particular PDU in the PDUs queue or table. The NI-XNET driver clears the bit if no

new data is detected in the PDU queue or table. If the frame containing the PDUs has

cyclic timing, even if no new data is available for any of the PDUs in the frame, the frame

is transmitted across the bus with the update bits all cleared. However, if the PDU

containing the frame has event timing, it is transmitted across the bus only if at least one

PDU that it contains has new data (with update bit set).

• The read-only XNET Cluster PDUs Required? property is useful when programming

traversal through the database, as it indicates whether to consider PDUs in the traversal.

FlexRay Startup/Wakeup
Use the FlexRay Startup mechanism to take an idle interface and properly integrate into a

FlexRay cluster.

If your cluster does not support the wakeup mechanism, this process is straightforward. After

creating your FlexRay session, call XNET Start.vi, which causes the interface to transition

from Default Config to Ready, where it attempts to integrate with the FlexRay cluster. If your

node is a coldstart node, it initiates integration; otherwise, it attempts to integrate with a

running FlexRay cluster. Once integration has occurred, the interface transitions to Normal

Active, where it typically remains while it is communicating with other FlexRay nodes. When

you call XNET Stop.vi, the interface transitions back to Default Config (via Halt) to be

ready to start the process again.

If your cluster supports the wakeup mechanism, the process becomes a bit more complex. The

route the XNET hardware takes depends on whether the interface is currently awake or asleep.

By default, XNET hardware starts in the awake state, and the startup process is exactly the

same as if your cluster does not support wakeup. However, to use the wakeup mechanism your

cluster is configured for, before calling XNET Start.vi, you need to put the interface to sleep.

You can do this in one of two ways. First, you can set the Interface:FlexRay:Sleep property

to Local Sleep. This performs the one-time action of putting the interface to sleep. Alternately,

you can set the Interface:FlexRay:Auto Asleep When Stopped property to true. This puts the

interface to sleep immediately. It also puts the interface to sleep automatically every time the

interface is stopped, so the startup process is the same between your first start and subsequent

starts.

If your interface is asleep when the XNET Start.vi API call is invoked, the interface

progresses to Ready, where it waits for all connected channels to be awake before attempting

to integrate with the cluster. After all connected channels are awake, the integration process

occurs exactly like a cluster that does not support wakeup.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-607 NI-XNET Hardware and Software Manual

If you want your interface to wake up a sleeping network, you must configure your FlexRay

interface to wake up the bus. You can do this in two ways. The first way is to set the

Interface:FlexRay:Sleep property to Remote Wake after you put your FlexRay interface to

sleep. When you invoke the XNET Start.vi API call, the interface progresses though the

Ready state and into the Wakeup state. In Wakeup, the interface generates the wakeup

pattern on the FlexRay channel configured by the Interface:FlexRay:Wakeup Channel

property and transitions back to Ready. If you have a multichannel bus, a separate node on

the bus wakes up the other channel.

After all connected channels are awake, the integration process occurs exactly like a cluster

that does not support wakeup. The second way is to invoke the XNET Start.vi API call to

start the interface. The interface progresses to Ready, where it waits for all connected

channels to be awake before attempting to integrate with the cluster. During this time, if you

set the Interface:FlexRay:Sleep property to Remote Wake, the interface transitions into

Wakeup, where it generates the wakeup pattern on the FlexRay channel configured by the

Interface:FlexRay:Wakeup Channel property and transitions back to Ready. If you have a

multichannel bus, a separate node on the bus wakes up the other channel. After all connected

channels are awake, the integration process occurs exactly like a cluster that does not support

wakeup.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-608 ni.com

T# Condition From To

1 Start trigger received1 Default Config Config2

2 Startup process initiated Config Ready

3 Remote Wakeup initiated (Interface:FlexRay:Sleep

property set to Remote Wake)

Ready Wakeup

4 Wakeup channel awake Wakeup Ready

Power On Reset

Default Config

Config

Wakeup Ready Halt

Normal Active Normal Passive

Transition Triggered by NI-XNET API Call

Transition Triggered by NI-XNET API Call or Internal Conditions
Transition Triggered by NI-XNET API Call or Bus Conditions

T2

T3

T4

T5
T8

T7

T6

T1

T9

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-609 NI-XNET Hardware and Software Manual

LIN

LIN Frame Timing and Session Mode
This section describes the LIN behavior for each XNET session mode. As context for

describing LIN frame transfer on the network, this section uses the timing concepts described

in the LIN section of Cyclic and Event Timing.

An input session receives the LIN data frame (payload) from the network, and an output

session transmits the LIN data frame. The LIN data frame payload is mapped to/from signal

values.

For NI-XNET input sessions, the timing of each LIN schedule entry does not directly impact

the representation of data from XNET Read.vi.

For NI-XNET output sessions, the timing of each LIN schedule entry determines whether to

transmit a data frame when no new payload data is available.

You can configure the NI-XNET LIN interface to run as the LIN master by requesting a

schedule (XNET Write (State LIN Schedule Change).vi). If the NI-XNET LIN interface

runs as a LIN slave (default), a remote ECU on the network must execute schedules as LIN

master for these modes to operate.

5 All connected channels are awake and integration is

successful3

Ready Normal Active

6 Clock Correction Failed counter reached Maximum

Without Clock Correction Passive Value

Normal Active Normal

Passive

7 Number of valid correction terms reached the passive

to active limit

Normal

Passive

Normal Active

8 1. Clock Correction Failed counter reached

Maximum Without Clock Correction Fatal Value

2. Interface stopped (XNET Stop.vi)

9 Interface stopped (XNET Stop.vi) Halt Default Config

1If you are not using synchronization, the XNET Start.vi API call internally generates the Start Trigger.

2In NI-XNET, this is a transitory state under normal situations. The Config state is nontransitory only if the startup procedure
fails to continue.

3Any of the following conditions can satisfy all channels awake: the wakeup pattern was transmitted or received on all
connected channels, a local wakeup is requested, or the interface is not asleep.

T# Condition From To

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-610 ni.com

Cyclic

The LIN data frame transmits in a cyclic (periodic) manner.

This implies that the LIN master is running a continuous schedule, and the LIN data frame is

contained within an unconditional schedule entry.

If no new payload data is available when it is time to transmit, the payload data from the

previous transmit is repeated.

Signal Input Single-Point, Signal Input Waveform, and Signal Input XY Modes

You specify the signals when you create the session, and a specific LIN data frame contains

each signal. When the LIN data frame is received, a subsequent call to XNET Read.vi returns

its signal data. For information about how the data is represented for each mode, refer to

Session Modes.

Frame Input Queued and Frame Input Single-Point Modes

You specify the LIN frame(s) when you create the session. When the LIN data frame is

received, a subsequent call to XNET Read.vi returns its data. For information about how the

data is represented for each mode, refer to Session Modes.

Frame Input Stream Mode

You specify the LIN cluster when you create the session, but not the specific LIN frames.

When any LIN data frame is received, a subsequent call to XNET Read.vi returns it.

Signal Output Single-Point, Signal Output XY, Frame Output Single-Point, and Frame Output
Queued Modes

You specify the LIN frame (or its signals) when you create the session. When you write data

using XNET Write.vi, the LIN data frame is transmitted onto the network. For information

about how the data is represented for each mode, refer to Session Modes.

When the session and its associated interface are started, the LIN data frame transmits

according to its schedule entry. Assuming that the LIN frame is contained in only one entry

of the continuous schedule, the time between frame transmissions is the same as the time to

execute the entire schedule (all entries). After that first transmit, the LIN data frame transmits

according to its schedule entry, regardless of whether XNET Write.vi is called. If no new data

is available for transmit, the next cycle transmits using the previous LIN data frame (repeats

the payload).

Signal Output Waveform Mode

If the NI-XNET interface runs as a LIN master, NI-XNET executes schedules, and therefore

controls the timing of LIN frames. When running as a LIN master, this session mode is

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-611 NI-XNET Hardware and Software Manual

supported, and NI-XNET resamples the waveform data such that it transmits at the scheduled

frame rates.

If the NI-XNET interface runs as a LIN slave (default), this session mode is not supported.

When running as a LIN slave, NI-XNET does not know which schedule the LIN master is

executing. Because the LIN schedule is not known, the frame transfer rates also are not

known, which makes it impossible to resample the waveform data.

Frame Output Stream Mode

This mode is available only when the LIN interface is master. You specify the LIN cluster

when you create the session, but not the specific LIN frame.

The stream I/O modes do not use the database-specified timing for frames. Therefore, LIN

data frames transmit only when you pass them to XNET Write.vi and do not transmit

cyclically afterward.

When using a stream output timing of immediate mode, data is transmitted onto the network

as soon as possible. Specifically, if the data array is empty, only the header part of the frame

is transmitted (with the expectation that a slave transmits the response). If the data array is not

empty, the header + response parts of the frame (the full frame) is transmitted. You can use

this mode in conjunction with the scheduler, in which case each frame written to stream

output is handled as a run-once schedule with lowest priority and having a single one-frame

entry. A run-continuous schedule is interrupted to transmit the frame. A run-once schedule is

not interrupted, and the frame is transmitted only when there are no pending run-once

schedules with higher-than-lowest priority.

When using a stream output timing of either Replay Exclusive or Replay Inclusive, data is

transmitted onto the network based on the timestamps in the frame.

Refer to the Interface:Output Stream Timing property for more details about using this mode

with LIN.

Event

The LIN data frame transmits in an event-driven manner. The event is XNET Write.vi.

If no new event (payload data) is available when it is time to transmit, no frame transmits. This

means that the LIN master transmits the frame header, but no payload data follows this header.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY, Frame Input
Single-Point, Frame Input Queued, and Frame Input Stream Modes

The behavior is the same as Cyclic.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-612 ni.com

Signal Output Single-Point, Signal Output XY, Frame Output Single-Point, and Frame Output
Queued Modes

The behavior is similar to Cyclic, except that the LIN data frame does not continue to transmit

after the data from XNET Write.vi has transmitted.

If the frame is contained in a sporadic schedule entry, and there are values for multiple frames

pending for that entry, NI-XNET selects a single frame to transmit in each entry. NI-XNET

selects the frame using the order in the XNET LIN Schedule Entry Frames property. For

example, if the Frames property contains three frames, and you write data for the first and

third, NI-XNET transmits the first frame (index 0) in the next occurrence of the sporadic

entry, and then transmits the third frame (index 2) when that sporadic entry executes again.

If the frame is contained in an event-triggered schedule entry, a collision may occur if another

ECU transmits in the same schedule entry. If the NI-XNET LIN interface runs as a LIN

master, it automatically uses the XNET LIN Schedule Entry Collision Resolving Schedule

property to resolve this collision.

Signal Output Waveform Mode

The behavior is the same as Cyclic.

If the NI-XNET interface runs as a LIN master, NI-XNET executes schedules, and therefore

controls the timing of LIN frames. An event-driven LIN frame can transmit at most once per

execution of its schedule entry.

If the NI-XNET interface runs as a LIN slave (default), this session mode is not supported.

Frame Output Stream Mode

When using a stream output timing of immediate mode, if the frame for transmit is defined as

an event-triggered frame in the database, and a collision occurs during transmit, the interface

automatically executes the collision resolving schedule defined for the frame, exactly as if the

frame were transmitted in a scheduled event-triggered slot.

When using a stream output timing of either Replay Exclusive or Replay Inclusive, if the

frame for transmit is determined to be defined as an event-triggered frame in the database, the

frame is transmitted with a header ID equal to the unconditional frame ID contained in data

byte 0. The data is transmitted without modification. In other words, the frame is transmitted

as an unconditional frame associated with the event-triggered frame.

Refer to the Interface:Output Stream Timing property for more details about using this mode

with LIN.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-613 NI-XNET Hardware and Software Manual

XNET I/O Names
LabVIEW I/O names (also known as refnum tags) are provided for various object classes

within NI-XNET.

I/O names provide user interface features for easy configuration. You can use an I/O name

as a:

• Control (or indicator): Use an I/O name control to select a specific instance on the front

panel. NI-XNET I/O name controls are in the front panel Modern»I/O»XNET controls

palette.

Typically, you use I/O name controls to select an instance during configuration, and the

instance is used at run time. For example, prior to running a VI, you can use XNET Signal

I/O Name controls to select signals to read. When the user runs the VI, the selected

signals are passed to XNET Create Session.vi, followed by calls to XNET Read.vi to

read and display data for the selected signals.

As an alternative, you also can use I/O name controls to select an instance at run time.

This applies when the VI always is running for the end user, and the VI uses distinct

stages for configuration and I/O. Using the previous example, the user clicks XNET

Signal I/O Name controls to select signals during the configuration stage. Next, the user

clicks a Go button to proceed to the I/O stage, in which XNET Create Session.vi and

XNET Read.vi are called.

You can build a standalone application (executable) that contains NI-XNET I/O name

controls on its front panel. While running in an executable, the I/O name drop-down

menu is supported, but the right-click menu is not operational.

• Constant: Use an I/O name constant to select a specific instance on the block diagram.

NI-XNET I/O name constants are in the block diagram Measurement I/O»XNET

functions palette. You can access I/O name constants only during configuration, prior to

running the VI.

If you are using LabVIEW Real-Time (RT), you can right-click the RT target within a

LabVIEW Project and select the Connect menu item. This connects to the RT target over

TCP/IP, which in turn enables the user interface of NI-XNET I/O names to operate remotely.

You can select names from the databases on the RT target and menu items to manage database

deployments.

At run time, the VIs use I/O names to access features for the selected instance. The I/O name

has two simultaneous LabVIEW types:

• String: When you wire the I/O name to a LabVIEW string, the string contains the

selected instance name. Use this string to store the I/O name is a portable form, such as

a text file.

You can wire a LabVIEW string directly to an I/O name.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-614 ni.com

• Refnum: At run time, the I/O name contains a numeric reference to the instance for use

with NI-XNET property nodes and VIs. The property node for the I/O name provides

access to its configuration. The VIs provide methods for the instance, such as to change

state (start/stop), or access data (read/write).

I/O Name Classes
NI-XNET includes the following I/O name classes:

Session

Each session represents a connection between your National Instruments hardware and

hardware products on the external network. Your application uses XNET sessions to read and

write I/O data.

The session I/O name is primarily for sessions created during configuration using a LabVIEW

project. When you create a session at run time with XNET Create Session.vi, the I/O name

serves only as a refnum (its string is irrelevant).

Database Classes

To communicate with hardware products on the external network, NI-XNET applications

must understand how that hardware communicates in the actual embedded system, such as

the vehicle. This embedded communication is described within a standardized file, such as

CANdb (.dbc) for CAN, FIBEX (.xml) for FlexRay, or LDF (.ldf) for LIN. Within

NI-XNET, this file is referred to as a database. The database contains many object classes,

each of which describes a distinct entity in the embedded system:

• Database: Each database is represented as a distinct instance in NI-XNET. Although the

I/O name string can be the complete file path, it typically uses a shortened alias.

• Cluster: Each database contains one or more clusters, where the cluster represents a

collection of hardware products all connected over a shared cabling harness. In other

words, each cluster represents a single network. For example, the database may describe

a single vehicle, where the vehicle contains one Body CAN cluster, another Powertrain

CAN cluster, and one Chassis FlexRay cluster.

• ECU: Each Electronic Control Unit (ECU) represents a single hardware product in the

embedded system. The cluster contains one or more ECUs, all connected over a network

cable. Multiple clusters can contain a single ECU, in which case it behaves as a gateway

between the clusters.

• Frame: Each frame represents a unique unit of data transfer over the cluster cable. The

frame bits contain payload data and an identifier that specifies the data (signal) content.

Only one ECU in the cluster transmits each frame, and one or more ECUs receive each

frame.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-615 NI-XNET Hardware and Software Manual

• Signal: Each frame contains zero or more values, each of which is called a signal. For

example, the first two bytes of a frame payload may represent a temperature, and the third

payload byte may represent a pressure. Within the database, each signal specifies its

name, position, and length of the raw bits in the frame, and a scaling formula to convert

raw bits to/from a physical unit. The physical unit uses a LabVIEW double-precision

floating-point numeric type. The signal is the highest level of abstraction for embedded

networks. When you use an XNET Session to read/write signal values as physical units,

your application does not need to be concerned with protocol (CAN/FlexRay/LIN) and

frame encoding details.

• LIN Schedule: The LIN protocol is different than CAN or FlexRay, in that it supports

multiple schedules that determine when frames transmit. You can change the current

schedule at runtime.

• LIN Schedule Entry: Each LIN Schedule contains one or more entries, or slots. Each

entry in turn contains one or more frames that can transmit during the entry’s time slot.

A single frame can be located in multiple LIN schedules and within multiple LIN

schedule entries.

Additional database classes include PDU and Subframe.

System Classes

These classes describe hardware in your National Instruments system, such as PXI or a

desktop PC containing PCI cards.

• Device: This represents the National Instruments device for CAN/FlexRay/LIN, such as

a PXI or PCI card. Each NI-XNET device contains one or more interfaces.

• Interface: This represents a single CAN, FlexRay, or LIN connector (port) on the device.

Within NI-XNET, the interface is the object used to communicate with external hardware

described in the database. When you create an NI-XNET session, you specify a physical

and logical connection between the NI interface and a cluster. Because the cluster

represents a single physical cable harness, it does not make sense to connect the NI

interface to multiple clusters simultaneously.

• Terminal: Each interface contains various terminals. The terminals are for NI-XNET

synchronization features, to connect triggers and timebases (clocks) to/from the interface

hardware. The terminal I/O name is for selecting a string input to the XNET Connect

Terminals.vi or XNET Disconnect Terminals.vi, both of which operate on the session.

Unlike the other I/O name classes, the terminal does not provide refnum features such as

property nodes.

XNET Cluster I/O Name
Each database contains one or more clusters, where the cluster represents a collection of

hardware products all connected over a shared cabling harness. In other words, each cluster

represents a single CAN network or FlexRay network. For example, the database may

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-616 ni.com

describe a single vehicle, where the vehicle contains a Body CAN cluster, a Powertrain CAN

cluster, and a Chassis FlexRay cluster.

Use the XNET Cluster I/O name to select a cluster, access properties, and invoke methods.

For general information about I/O names, such as when to use them, refer to XNET I/O

Names.

User Interface

When you select the drop-down arrow on the right side of the I/O name, you see a list of all

clusters known to NI-XNET, followed by a separator (line), then a list of menu items.

Each cluster in the drop-down list uses the syntax specified in String Use. The list of clusters

spans all database aliases known to NI-XNET. If you have not added an alias, the list of

clusters is empty.

You can select a cluster from the drop-down list or by typing the name. As you type a name,

LabVIEW selects the closest match from the list.

Right-clicking the I/O name displays a menu of LabVIEW items and items specific to

NI-XNET.

The XNET Cluster I/O name includes the following menu items (in right-click or drop-down

menus):

• Browse For Database File: If you have an existing CANdb (.dbc), FIBEX (.xml),

LDF (.ldf), or NI-CAN (.ncd) database file, select this item to add an alias to

NI-XNET. Use the file dialog to browse to the database file on your system. When you

select OK, NI-XNET adds an alias to the file. The alias uses the filename, such as

MyDatabase for a file path of C:\Embedded\Vehicle5\MyDatabase.dbc. If the

alias is not unique, NI-XNET appends a number per LabVIEW conventions (for

example, MyDatabase 2). After adding the alias, you can select the objects in that

database from any NI-XNET I/O name.

• New XNET Database: If you do not have an existing database file, select this item to

launch the NI-XNET Database Editor. You can use the NI-XNET Database Editor to

create objects for the database and then save to a file. When you save the file, the

NI-XNET Database Editor also adds an alias. Therefore, after you save from the editor,

the clusters in the database become available in the XNET Cluster I/O name drop-down

list.

• Edit XNET Database: If you selected a cluster using the I/O name, select this item to

launch the NI-XNET Database Editor with that cluster’s database file. You can use the

editor to make changes to the database file, including the cluster.

• Manage Database Aliases: Select this menu item to open a dialog for managing aliases.

You can review your list of aliases and associated file paths, remove an alias (without

deleting the file), and add new aliases.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-617 NI-XNET Hardware and Software Manual

If you are using LabVIEW Real-Time (RT), you can right-click the RT target within

LabVIEW Project and select the Connect menu item. This connects to the RT target over

TCP/IP, which in turn enables the user interface of NI-XNET I/O names to operate remotely.

If you open the Manage dialog while connected to an RT target, the dialog provides features

for reviewing the list of databases on the RT target, deploying a new database from Windows

to the RT target, and undeploying a database (removing an alias and file from RT target).

String Use

Use one of two syntax conventions for the string in the XNET Cluster I/O name:

• <alias>.<cluster>

• <alias>

The first syntax convention is the most complete, in that it contains the name of a database

alias, followed by a dot separator, followed by the name of the cluster within that database.

Use this syntax with FIBEX files, which contain multiple named clusters.

The second syntax convention uses the database alias only. This is supported for CANdb

(.dbc), LDF (.ldf), and NI-CAN (.ncd) files, which always contain a single unnamed

cluster.

Lowercase letters, uppercase letters, numbers, underscore (_), and space () are valid

characters for <alias>. Period (.) and other special characters are not supported within the

<alias> name. Because the <alias> is used as the filename portion of an internal filepath

(that is, absolute path and file extension removed), it must use the minimum file conventions

for all operating systems. The alias name is not case sensitive.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

<cluster>. The space (), period (.), and other special characters are not supported within the

cluster name. The cluster name must begin with a letter (uppercase or lowercase) or

underscore, and not a number. The cluster name is limited to 128 characters. The cluster name

is case sensitive.

For FIBEX (.xml) files, the <cluster> name is stored in the database file. For CANdb

(.dbc), LDF (.ldf), or NI-CAN (.ncd) files, no <cluster> name is stored in the file, so

NI-XNET uses the name Cluster when a name is required.

You can use the XNET Cluster I/O name string as follows:

• XNET Create Session (Frame In Stream, Frame Out Stream, Generic).vi: The

stream I/O sessions transfer an arbitrary sequence of frames on the cluster, so only the

XNET Cluster is required for configuration (not specific frames). The Generic instance

provides advanced features to pass in database object names as strings, including the

cluster. Within Create Session, NI-XNET opens the database file, reads information for

the cluster, and then closes the database.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-618 ni.com

• Open Refnum: LabVIEW can open the XNET Cluster I/O name automatically. Wire the

I/O name to a property node or VI, and the refnum is opened prior to the first use.

Refnum Use

You can use the XNET Cluster I/O name refnum as follows:

• XNET Cluster Property Node: The cluster property node provides information about

its contents, such as the list of all XNET Frames. This property node is the most common

use case for the XNET Cluster I/O name, because it provides the features needed to query

and/or edit the cluster contents in the database file.

• Create (ECU, Frame): If you are creating a new database, call this VI to create a new

XNET ECU or Frame within the cluster.

XNET Database I/O Name
To communicate with hardware products on the external CAN/FlexRay/LIN network,

NI-XNET applications must understand how that hardware communicates in the actual

embedded system, such as the vehicle. This embedded communication is described within a

standardized file, such as CANdb (.dbc) or NI-CAN (.ncd) for CAN, or FIBEX (.xml) for

FlexRay. Within NI-XNET, this file is referred to as a database. The database contains many

object classes, each of which describes a distinct entity in the embedded system.

Use the XNET Database I/O name to select a database, access properties, and invoke methods

(for example, save). For general information about I/O names, such as when to use them, refer

to XNET I/O Names.

When using a database file with NI-XNET, you can specify the file path or specify an alias to

the file. The alias provides a shorter, easier-to-read name for use within your application. For

example, for the file path C:\Documents and Settings\All Users\Documents\

Vehicle5\MyDatabase.dbc, you can add an alias named MyDatabase. In addition to

improving readability, the alias concept isolates your LabVIEW application from the specific

filepath. For example, if your application uses the alias MyDatabase, and you change its file

path to C:\Embedded\Vehicle5\MyDatabase.dbc, your LabVIEW application

continues to run without change. The alias concept is used in most NI-XNET features,

including deployment of database files to LabVIEW Real-Time targets. For more information

about aliases, refer to What Is an Alias?.

User Interface

When you select the drop-down arrow on the right side of the I/O name, you see a list of all

database aliases known to NI-XNET, followed by a separator (line), then a list of menu items.

If you have not added an alias, the first list is empty.

You can select an alias from the drop-down list or by typing the name. As you type a name,

LabVIEW selects the closest match from the list.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-619 NI-XNET Hardware and Software Manual

Right-clicking the I/O name displays a menu of LabVIEW items and items specific to

NI-XNET.

The XNET Database I/O name provides the following menu items in right-click and

drop-down menus:

• Browse For Database File: If you have an existing CANdb (.dbc), FIBEX (.xml),

LDF (.ldf), or NI-CAN (.ncd) database file, select this item to add an alias to

NI-XNET. Use the file dialog to browse to the database file on your system. When you

select OK, NI-XNET adds an alias to the file. The alias uses the filename, such as

MyDatabase for a file path of C:\Embedded\Vehicle5\MyDatabase.dbc. If the

alias is not unique, NI-XNET appends a number per LabVIEW conventions (for

example, MyDatabase 2). After adding the alias, you can select the objects in that

database from any NI-XNET I/O name.

• New XNET Database: If you do not have an existing database file, select this item to

launch the NI-XNET Database Editor. You can use the NI-XNET Database Editor to

create objects for the database and then save to a file. When you save the file, the

NI-XNET Database Editor also adds an alias. Therefore, after you save from the editor,

the database becomes available in the XNET Database I/O name drop-down list.

• Edit XNET Database: If you have selected a database using the I/O name, select this

item to launch the NI-XNET Database Editor with that database file. You can use the

editor to make changes to the database file.

• Manage Database Aliases: Select this menu item to open a dialog to manage aliases.

You can review your list of aliases and associated file paths, remove an alias (without

deleting the file), and add new aliases.

If you are using LabVIEW Real-Time (RT), you can right-click the RT target within a

LabVIEW Project and select the Connect menu item. This connects to the RT target over

TCP/IP, which in turn enables the user interface of NI-XNET I/O names to operate remotely.

If you open the Manage dialog while connected to an RT target, the dialog provides features

to review the list of databases on the RT target, deploy a new database from Windows to the

RT target, and undeploy a database (remove the alias and file from the RT target).

String Use

Use one of two syntax conventions for the XNET Database I/O name string:

• <alias>

• <filepath>

The <alias> is the database file short name, used as an alias to the complete filepath. This

syntax is the only option available when you select a database from the drop-down list or use

the menu items.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-620 ni.com

Lowercase letters, uppercase letters, numbers, underscore (_), and space () are valid

characters for <alias>. Period (.) and other special characters are not supported within the

<alias> name. Because the <alias> is used as the filename portion of an internal filepath

(that is, absolute path and file extension removed), it must use the minimum file conventions

for all operating systems. The alias name is not case sensitive.

The <filepath> is the absolute path to the text database file, using the operating system file

conventions (such as C:\Embedded\Vehicle5\MyDatabase.dbc). You can use the

<filepath> syntax to open the database directly, without adding an alias to NI-XNET.

Valid characters for <filepath> include any characters your operating system supports for an

absolute file path. Relative file paths are not supported. Because special characters typically

are required in an absolute filepath (such as \ or :), NI-XNET uses these characters to

distinguish the alias syntax from <filepath> syntax.

You can use the XNET Database I/O name string as follows:

• XNET Create Session (Generic).vi: The commonly used XNET Create Session.vi

instances use signal or frame I/O names and not the database directly. The Generic

instance provides advanced features to pass in database object names as strings,

including the database itself. Within Create Session, NI-XNET opens the database file,

reads information, and closes the database.

• Open Refnum: LabVIEW can open the XNET Database I/O name automatically. Wire

the I/O name to a property node or VI, and the refnum is opened prior to the first use.

• Remove Alias, Deploy, Undeploy: These VIs enable you to manage an existing alias at

run time, much like the Manage Database Aliases dialog. The XNET Database is passed

in as a string, and is not opened as a refnum. These VIs require the alias syntax for the

XNET Database (not filepath).

Refnum Use

You can use the XNET Database I/O name refnum as follows:

• XNET Database Property Node: The database property node provides information on

its contents, such as the list of all XNET Clusters. This property node is the most common

use case for the XNET Database I/O name, because it provides the features needed to

query and/or edit all database contents from the top-level down to all other objects.

• XNET Database Create (Cluster).vi: If you are creating a new database, call this VI to

create a new XNET Cluster within the database.

• XNET Database Delete (LIN Schedule).vi: After you set properties for the database or

any of its objects, call this VI to save those changes to the file. The file is saved in the

FIBEX format.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-621 NI-XNET Hardware and Software Manual

XNET Device I/O Name
Within NI-XNET, the term device refers to your National Instruments CAN/FlexRay/LIN

hardware product, such as a PXI or PCI card.

Each device contains one or more interfaces to communicate on a CAN/FlexRay/LIN

network.

User Interface

The XNET Device I/O name is not intended for use on VI front panels or as a diagram

constant. This I/O name class is returned as the value of the following properties:

• XNET System Devices

• XNET Interface Device

The value these properties return is used as a refnum only.

String Use

NI-XNET determines the XNET Device I/O name string syntax internally. This syntax may

change in future versions, so string display or formation is not recommended.

Refnum Use

You can use the XNET Device I/O name refnum as a device node. The XNET Device

Property Node provides information such as the serial number and list of interfaces contained

within the device.

LabVIEW closes the XNET device automatically. This occurs when the last top-level VI

using the device goes idle (aborted or stops executing).

XNET ECU I/O Name
Each Electronic Control Unit (ECU) represents a single hardware product in the embedded

system. The cluster contains one or more ECUs, all connected by a CAN, FlexRay, or LIN

cable.

Use the XNET ECU I/O name to select an ECU, access properties, and invoke methods. For

general information about I/O names, such as when to use them, refer to XNET I/O Names.

User Interface

Before using the ECU I/O name, you must use Select Database to select a cluster within a

known database. Because the NI-XNET hardware interface physically connects to a single

cluster in your embedded system, it makes sense to limit the list to ECUs contained in a single

cluster.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-622 ni.com

When you select the drop-down arrow on the right side of the I/O name, you see a list of all

ECUs within the selected cluster, followed by a separator (line), then a list of menu items.

Each ECU in the drop-down list uses the syntax specified in String Use.

You can select an ECU from the drop-down list or by typing the name. As you type a name,

LabVIEW selects the closest match from the list.

Right-clicking the I/O name displays a menu of LabVIEW items and items specific to

NI-XNET.

The XNET ECU I/O name provides the following menu items in right-click and drop-down

menus:

• Select Database: In the drop-down list, this menu item opens a dialog to select a cluster.

In the right-click menu, this item provides a pull-right menu to select the cluster.

You must select a cluster to specify the frame selection scope. The list of clusters uses

the same list as the XNET Cluster I/O Name. Each cluster name typically is just the

database <alias> only, but when a FIBEX file is used, each <alias>.<cluster> name is

listed.

• Browse For Database File: If you have an existing CANdb (.dbc), FIBEX (.xml),

LDF (.ldf), or NI-CAN (.ncd) database file, select this item to add an alias to

NI-XNET. Use the file dialog to browse to the database file on your system. When you

select OK, NI-XNET adds an alias to the file. The alias uses the filename, such as

MyDatabase for a file path of C:\Embedded\Vehicle5\MyDatabase.dbc. If the

alias is not unique, NI-XNET appends a number per LabVIEW conventions (for

example, MyDatabase 2). After adding the alias, you can select the objects in that

database from any NI-XNET I/O name.

After adding the alias, it appears in the Select Database list, and the first cluster in the

database is selected automatically.

• New XNET Database: If you do not have an existing database file, select this item to

launch the NI-XNET Database Editor. You can use the NI-XNET Database Editor to

create objects for the database and then save to a file. When you save the file, the

NI-XNET Database Editor also adds an alias. Therefore, after you save from the editor,

the clusters in the database become available in the Select Database list. You must select

the desired cluster when you finish using the NI-XNET Database Editor.

• Edit XNET Database: If you have selected a cluster using Select Database, select this

item to launch the NI-XNET Database Editor with that cluster’s database file. You can

use the editor to make changes to the database file, including the ECUs.

• Manage Database Aliases: Select this menu item to open a dialog to manage aliases.

You can review your list of aliases and associated file paths, remove an alias (without

deleting the file), and add new aliases.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-623 NI-XNET Hardware and Software Manual

If you are using LabVIEW Real-Time (RT), you can right-click the RT target within a

LabVIEW Project and select the Connect menu item. This connects to the RT target over

TCP/IP, which in turn enables the user interface of NI-XNET I/O names to operate

remotely. If you open the Manage dialog while connected to an RT target, the dialog

provides features to review the list of databases on the RT target, deploy a new database

from Windows to the RT target, and undeploy a database (remove the alias and file from

an RT target).

String Use

Use the following syntax convention for the XNET ECU I/O name string:

<ecu>\n<dbSelection>

The string contains the ECU name, followed by a new line (\n) as a separator, followed by the

selected cluster name.

When you drop the I/O name onto your front panel, the control displays only one line by

default. This enables the VI end user to focus on selecting the <ecu>, rather than the more

complex syntax that includes <dbSelection>.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

<ecu>. The space (), period (.), and other special characters are not supported within the

ECU name. The <ecu> name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The <ecu> name is limited to 128 characters. The ECU name is case

sensitive.

For FIBEX (.xml) and CANdb (.dbc) files, the database file stores the <ecu> name. ECU

specifications are not provided within NI-CAN (.ncd) files.

The <dbSelection> is appended to the ECU name to ensure that the XNET ECU I/O name is

unique. LabVIEW requires each I/O name to use a unique name, because each instance is

located using its name. By appending the cluster name, NI-XNET ensures that the entire name

is unique in large applications that use multiple NI-XNET interfaces (multiple clusters). The

characters for <dbSelection> are the same as the name you selected using Select Database,

which uses the same syntax convention as the XNET Cluster I/O Name. To view the

<dbSelection> when the I/O name is displayed, resize its constant/control to show multiple

lines.

You can use the XNET ECU I/O name string as follows:

• Open Refnum: LabVIEW can open the XNET ECU I/O name automatically. Wire the

I/O name to a property node or VI, and the refnum is opened prior to the first use.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-624 ni.com

Refnum Use

You can use the XNET ECU I/O name refnum as follows:

• XNET ECU Property Node: The ECU property node provides the list of all frames the

ECU transmits and receives. When you are creating an application to test a single ECU

product, these frame lists help you create sessions for input/output of all frames (or

signals) to fully test the ECU behavior.

XNET Frame I/O Name
Each frame represents a unique unit of data transfer over the cluster cable. The frame bits

contain payload data and an identifier that specifies the data (signal) content. Only one ECU

in the cluster transmits each frame, and one or more ECUs receive each frame.

For CAN, each frame is identified by its arbitration ID. The XNET Frame Identifier and

CAN:Extended Identifier? properties specify this arbitration ID.

For FlexRay, each frame is identified by its location within the FlexRay cycle and channels.

The XNET Frame Identifier, FlexRay:Base Cycle, FlexRay:Cycle Repetition,

FlexRay:Channel Assignment, and FlexRay:In Cycle Repetitions:Enabled? properties

specify this location.

Use the XNET Frame I/O name to select a frame, access properties, and invoke methods. For

general information about I/O names, such as when to use them, refer to XNET I/O Names.

User Interface

Before using the frame I/O name, you must use Select Database to select a cluster within a

known database. Because the NI-XNET hardware interface physically connects to a single

cluster in your embedded system, it makes sense to limit the list to frames contained in a

single cluster.

When you select the drop-down arrow on the right side of the I/O name, you see a list of all

frames within the selected cluster, followed by a separator (line), then a list of menu items.

Each frame in the drop-down list uses the syntax specified in String Use.

You can select a frame from the drop-down list or by typing the name. As you type a name,

LabVIEW selects the closest match from the list.

Right-clicking the I/O name displays a menu of LabVIEW items and items specific to

NI-XNET.

The XNET Frame I/O name includes the following menu items in right-click and drop-down

menus:

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-625 NI-XNET Hardware and Software Manual

• Select Database: In the drop-down list, this menu item opens a dialog to select a cluster.

In the right-click menu, this item includes a pull-right menu to select the cluster.

You must select a cluster to specify the frame selection scope. The list of clusters uses

the same list as the XNET Cluster I/O Name. Each cluster name typically is just the

database <alias> only, but when a FIBEX file is used, each <alias>.<cluster> name is

listed.

• Browse For Database File: If you have an existing CANdb (.dbc), FIBEX (.xml),

LDF (.ldf), or NI-CAN (.ncd) database file, select this item to add an alias to

NI-XNET. Use the file dialog to browse to the database file on your system. When you

select OK, NI-XNET adds an alias to the file. The alias uses the filename, such as

MyDatabase for a file path of C:\Embedded\Vehicle5\MyDatabase.dbc. If the

alias is not unique, NI-XNET appends a number per LabVIEW conventions (for

example, MyDatabase 2). After adding the alias, you can select the objects in that

database from any NI-XNET I/O name.

After adding the alias, it appears in the Select Database list, and the first cluster in the

database is selected automatically.

• New XNET Database: If you do not have an existing database file, select this item to

launch the NI-XNET Database Editor. You can use the NI-XNET Database Editor to

create objects for the database and then save to a file. When you save the file, the

NI-XNET Database Editor also adds an alias. Therefore, after you save from the editor,

the clusters in the database become available in the Select Database list. You must select

the desired cluster when you finish using the NI-XNET Database Editor.

• Edit XNET Database: If you have selected a cluster using Select Database, select this

item to launch the NI-XNET Database Editor with that cluster’s database file. You can

use the editor to make changes to the database file, including the frames.

• Manage Database Aliases: Select this menu item to open a dialog to manage aliases.

You can review your list of aliases and associated file paths, remove an alias (without

deleting the file), and add new aliases.

If you are using LabVIEW Real-Time (RT), you can right-click the RT target within a

LabVIEW Project and select the Connect menu item. This connects to the RT target over

TCP/IP, which in turn enables the user interface of NI-XNET I/O names to operate

remotely. If you open the Manage dialog while connected to an RT target, the dialog

provides features to review the list of databases on the RT target, deploy a new database

from Windows to the RT target, and undeploy a database (remove the alias and file from

the RT target).

String Use

Use the following syntax convention for the XNET Frame I/O name string:

<frame>\n<dbSelection>

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-626 ni.com

The string contains the frame name, followed by a new line (\n) as a separator, followed by

the selected cluster name.

When you drop the I/O name onto your front panel, the control displays only one line by

default. This enables the VI end user to focus on selecting the <frame>, rather than the more

complex syntax that includes <dbSelection>.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

<frame>. The space (), period (.), and other special characters are not supported within the

<frame> name. The <frame> name must begin with a letter (uppercase or lowercase) or

underscore, and not a number. The <frame> name is limited to 128 characters. The frame

name is case sensitive.

For all supported database formats, the database file stores the <frame> name.

The <dbSelection> is appended to the frame name to ensure that the XNET Frame I/O name

is unique. LabVIEW requires each I/O name to use a unique name, because each instance is

located using its name. By appending the cluster name, NI-XNET ensures that the entire name

is unique in large applications that use multiple NI-XNET interfaces (multiple clusters). The

characters for <dbSelection> are the same as the name you selected using Select Database,

which uses the same syntax convention as the XNET Cluster I/O Name. To view the

<dbSelection> when the I/O name is displayed, resize its constant/control to show multiple

lines.

You can use the XNET Frame I/O name string as follows:

• XNET Create Session (Frame In Queued, Frame In Single-Point, Frame Out

Queued, Frame Out Single-Point, Generic).vi: The queued I/O sessions transfer a

sequence of values for a single frame in the cluster. The single-point I/O sessions transfer

the recent value for a list of frames. The Generic instance provides advanced features to

pass in database object names as strings, including one or more frames. For all of these

instances, the XNET Frame I/O name is passed in as input, but is used as a string. Within

Create Session, NI-XNET opens the database file, reads information for the frames, and

closes the database.

• Open Refnum: LabVIEW can open the XNET Frame I/O name automatically. Wire the

I/O name to a property node or VI, and the refnum is opened prior to the first use.

Refnum Use

You can use the XNET Frame I/O name refnum as follows:

• XNET Frame Property Node: The frame property node provides the information such

as the network identification, number of payload bytes, and the list of signals within the

frame.

• XNET Database Create (Signal, Subframe).vi: If you are creating a new database, call

this VI to create a new XNET Signal or Subframe within the frame.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-627 NI-XNET Hardware and Software Manual

XNET Interface I/O Name
The XNET interface represents a single CAN, FlexRay, or LIN connector (port) on the device.

Within NI-XNET, the interface is the object used to communicate with external hardware

described in the database. When you create an NI-XNET session, you specify a physical and

logical connection between the NI interface and a cluster. Because the cluster represents a

single physical cable harness, it does not make sense to have the NI interface connected to

multiple clusters simultaneously.

The XNET interface I/O name is used to select an interface to pass to XNET Create

Session.vi, and to read hardware information properties. For general information about I/O

names, such as when you can use them, refer to XNET I/O Names.

User Interface

When you select the drop-down arrow on the right side of the I/O name, you see a list of all

interfaces available in your system.

You can select an interface from the drop-down list or by typing the name. As you type a

name, LabVIEW selects the closest match from the list.

You can type the name of an interface that does not exist in your system. For example, you

can type CAN4 even if only CAN1 and CAN2 exist in your system. The check for an actual

CAN4 interface does not occur until it is used at runtime (for example, within a session).

If you are using LabVIEW Real-Time (RT), you can right-click the RT target within

LabVIEW project and select Connect. This connects to the RT target over TCP/IP, which in

turn enables the user interface of NI-XNET I/O names to operate remotely. The XNET

interface drop-down list shows (target disconnected) until you connect the RT target. When

the RT target is connected, the drop-down list shows all interfaces on that RT target (for

example, a PXI chassis).

When you right-click the I/O name, the menu contains LabVIEW items including I/O Name

Filtering. Use this menu item to filter the interface names shown in the I/O name. You can

show all interfaces, CAN only, FlexRay only, or LIN only. The selected filtering is saved

along with the VI that uses the I/O name.

I/O Name Filtering is available at edit-time only, before you run your VI. This is done under

the assumption that if you filter for a specific protocol, the code in the VI block diagram works

with that protocol only. Therefore, you do not want to allow the VI end users to select a

different protocol at runtime.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-628 ni.com

String Use

Use one of two syntax conventions for the string in the XNET Interface I/O name:

<protocol><n>

The protocol is either CAN for a CAN interface or FlexRay for a FlexRay interface. The

protocol name is not case sensitive.

The number <n> identifies the specific interface within the scope of the protocol. The

numbering starts at 1. For example, if you have a two-port CAN device and a two-port

FlexRay device in your system, the interface names will be CAN1, CAN2, FlexRay1, and

FlexRay2.

Although you can change the interface number <n> within MAX, the typical practice is to

allow NI-XNET to select the number automatically. NI-XNET always starts at 1 and

increments for each new interface found. If you do not change the number in MAX, and your

system always uses a single two-port CAN device, you can write all of your applications to

assume CAN1 and CAN2. For as long as that CAN card exists in your system, NI-XNET uses

the same interface numbers for that device, even if new CAN cards are added.

You can use the XNET Interface I/O name string as follows:

• XNET Create Session.vi: All XNET Create Session.vi instances use the interface I/O

name to specify the interface for the session’s I/O. Within XNET Create Session.vi,

NI-XNET opens the interface and configures the hardware for the session’s I/O

communication.

Refnum Use

The XNET interface refnum always is opened and closed automatically. When you wire the

I/O name to one of the following nodes, LabVIEW opens a refnum for the interface. The

refnum is closed automatically when it is no longer used. The XNET interface refnum

features are for hardware information and identification, prior to using the interface within a

session. You can use the XNET Frame I/O Name refnum as follows:

• XNET Interface Property Node: The interface property node provides information for

the hardware, such as the port number next to the connector.

• Blink: If no session is in use for the interface, you can use this VI to identify a specific

interface within a large system (for example, chassis with multiple CAN devices).

XNET Session I/O Name
The XNET Session represents a connection between your National Instruments

CAN/FlexRay/LIN hardware and hardware products on the external CAN/FlexRay/LIN

network. Your application uses sessions to read and write I/O data.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-629 NI-XNET Hardware and Software Manual

Use the session class I/O name primarily for sessions created at edit time using a LabVIEW

project. When you create a session at run time with XNET Create Session.vi, the I/O name

serves only as a refnum (its string is irrelevant).

Use the XNET Session I/O name to select a session defined in a LabVIEW project, for use

with methods such as XNET Read.vi or XNET Write.vi. For general information about I/O

names, such as when to use them, refer to XNET I/O Names

User Interface

When you select the drop-down arrow on the right side of the I/O name, you see a list of all

available sessions.

If you are using a VI within a LabVIEW project, the available sessions are listed under the VI

target (RT or My Computer). If you are using a VI within a built application (.exe), the

available sessions are in the NI-XNET configuration file (nixnetSession.txt) the

LabVIEW build generates.

You can select a session from the drop-down list or by typing the name. As you type a name,

LabVIEW selects the closest match from the list.

If you are using LabVIEW Real-Time (RT), you can right-click the RT target within a

LabVIEW project and select the Connect menu item. This connects to the RT target over

TCP/IP, which in turn enables the user interface of NI-XNET I/O names to operate remotely.

The XNET session drop-down list shows (target disconnected) until you connect the RT

target. When the RT target is connected, the drop-down list shows all sessions on that RT

target (for example, PXI chassis).

When you right-click the I/O name, the menu contains LabVIEW items and the following

items:

• Edit XNET Session: This item opens the Properties dialog for the selected session. You

can change the session properties and select OK to save those changes in the project. This

menu item is available at edit time only, before you run your VI.

• New XNET Session: This launches the wizard to create a new XNET Session. The new

session is created under the same target as the current VI. This menu item is available at

edit time only, before you run your VI.

String Use

Use a session name from the drop-down list.

LabVIEW conventions for names in a project allow any character, including special

characters such as space () and slash (/).

The session name is case sensitive.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-630 ni.com

The XNET Session I/O name string is not used directly, in that it always is opened

automatically for use as a refnum.

Refnum Use

The XNET Session refnum always is opened and closed automatically. When you wire the

I/O name to a node, LabVIEW opens a refnum for the session. The refnum is closed

automatically when your top-level VIs are no longer executing (idle). You also can close the

refnum by calling XNET Clear.vi.

The XNET Session refnum features represent the core NI-XNET functionality, in that you use

the session to read and write data on the embedded network using the following property node

and VIs:

• XNET Session Property Node: Use the session property node to change the session

configuration.

• XNET Read.vi: Read data for an input session and read state information for the session

interface.

• XNET Write.vi: Write data for an output session.

• XNET Start.vi, XNET Stop.vi, and XNET Flush.vi: Control the session and buffer

states.

• XNET Wait.vi and XNET Create Timing Source.vi: Handle notification of events that

occur in the session.

• XNET Connect Terminals.vi and XNET Disconnect Terminals.vi:

Connect/disconnect synchronization terminals.

• XNET Clear.vi: Close the session refnum, including stopping all I/O. If this VI is not

called, LabVIEW closes the refnum automatically when your top-level VIs are no longer

executing (idle).

XNET Signal I/O Name
Each frame contains zero or more values, each of which is called a signal. For example, the

first two bytes of a frame payload may represent a temperature, and the third payload byte

may represent a pressure. Within the database, each signal specifies its name, position, and

length of the raw bits in the frame, and a scaling formula to convert raw bits to/from a physical

unit. The physical unit uses a LabVIEW double-precision floating-point numeric type. The

signal is the highest level of abstraction for embedded networks. When you use an XNET

Session to read/write signal values as physical units, your application does not need to be

concerned with protocol (CAN/FlexRay/LIN) details and frame encoding.

Use the XNET Signal I/O name to select a signal, access properties, and invoke methods. For

general information about I/O names, such as when to use them, refer to XNET I/O Names.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-631 NI-XNET Hardware and Software Manual

User Interface

Before using the signal I/O name, you must use Select Database to select a cluster within a

known database. Because the NI-XNET hardware interface physically connects to a single

cluster in your embedded system, it makes sense to limit the list to signals contained in a

single cluster.

When you select the drop-down arrow on the right side of the I/O name, you see a list of all

signals within the selected cluster, followed by a separator (line), then a list of menu items.

Each signal in the drop-down list uses the syntax specified in String Use.

You can select a signal from the drop-down list or by typing the name. As you type a name,

LabVIEW selects the closest match from the list.

Right-clicking the I/O name displays a menu of LabVIEW items and items specific to

NI-XNET.

The XNET Signal I/O name provides the following menu items in right-click and drop-down

menus:

• Select Database: In the drop-down list, this menu item opens a dialog to select a cluster.

In the right-click menu, this item provides a pull-right menu to select the cluster.

You must select a cluster to specify the signal selection scope. The list of clusters uses

the same list as the XNET Cluster I/O Name. Each cluster name typically is just the

database <alias> only, but when a FIBEX file is used, each <alias>.<cluster> name is

listed.

• Browse For Database File: If you have an existing CANdb (.dbc), FIBEX (.xml),

LDF (.ldf), or NI-CAN (.ncd) database file, select this item to add an alias to

NI-XNET. Use the file dialog to browse to the database file on your system. When you

select OK, NI-XNET adds an alias to the file. The alias uses the filename, such as

MyDatabase for a file path of C:\Embedded\Vehicle5\MyDatabase.dbc. If the

alias is not unique, NI-XNET appends a number per LabVIEW conventions (for

example, MyDatabase 2). After adding the alias, you can select the objects in that

database from any NI-XNET I/O name.

After adding the alias, it appears in the Select Database list, and the first cluster in the

database is selected automatically.

• New XNET Database: If you do not have an existing database file, select this item to

launch the NI-XNET Database Editor. You can use the NI-XNET Database Editor to

create objects for the database and then save to a file. When you save the file, the

NI-XNET Database Editor also adds an alias. Therefore, after you save from the editor,

the clusters in the database become available in the Select Database list. You must select

the desired cluster when you finish using the NI-XNET Database Editor.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-632 ni.com

• Edit XNET Database: If you have selected a cluster using Select Database, select this

item to launch the NI-XNET Database Editor with that cluster’s database file. You can

use the editor to make changes to the database file, including the signals.

• Manage Database Aliases: Select this menu item to open a dialog to manage aliases.

You can review your list of aliases and associated file paths, remove an alias (without

deleting the file), and add new aliases.

If you are using LabVIEW Real-Time (RT), you can right-click the RT target within a

LabVIEW Project and select the Connect menu item. This connects to the RT target over

TCP/IP, which in turn enables the user interface of NI-XNET I/O names to operate

remotely. If you open the Manage dialog while connected to an RT target, the dialog

provides features to review the list of databases on the RT target, deploy a new database

from Windows to the RT target, and undeploy a database (remove the alias and file from

the RT target).

String Use

Use one of two syntax conventions for the XNET Signal I/O name string:

• <signal>\n<dbSelection>

• <frame>.<signal>\n<dbSelection>

Use the first syntax convention when the signal name is unique within the cluster (not used in

multiple frames). This is the recommended design for signal names, because it provides a

clear and simple syntax. The string contains the name of the signal, followed by a new line

(\n) as a separator, followed by the selected cluster name.

Use the second syntax convention when the signal name is used in multiple frames. The string

contains the name of frame, followed by a dot separator, followed by the text of the first

syntax convention (signal name and selected cluster).

When you drop the I/O name onto your front panel, the control displays only one line by

default. This enables the VI end user to focus on selecting the <signal>, rather than the more

complex syntax that includes <dbSelection>.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

<signal>. The space (), period (.), and other special characters are not supported within the

signal name. The <signal> name must begin with a letter (uppercase or lowercase) or

underscore, and not a number. The <signal> name is limited to 128 characters. The signal

name is case sensitive.

For all supported database formats, the <signal> name is stored in the database file.

The <dbSelection> is appended to the signal name to ensure that the XNET Signal I/O name

is unique. LabVIEW requires each I/O name to use a unique name, because each instance is

located using its name. By appending the cluster name, NI-XNET ensures that the entire name

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-633 NI-XNET Hardware and Software Manual

is unique in large applications that use multiple NI-XNET interfaces (multiple clusters). The

characters for <dbSelection> are the same as the name you selected using Select Database,

which uses the same syntax convention as the XNET Cluster I/O Name. To view the

<dbSelection> when the I/O name is displayed, resize its constant/control to show multiple

lines.

You can use the XNET Signal I/O name string as follows:

• XNET Create Session (Signal In Single-Point, Signal In Waveform, Signal In XY,

Signal Out Single-Point, Signal Out Waveform, Signal Out XY, Generic).vi: The

single-point I/O sessions transfer the recent value for a list of signals. The waveform I/O

sessions transfer signal data as LabVIEW waveforms. The XY I/O sessions transfer a

sequence of values for each signal in a list. The Generic instance provides advanced

features to pass in database object names as strings, including one or more signals. For

all these instances, the XNET Signal I/O name is passed in as an input, but is used as a

string. Within XNET Create Session.vi, NI-XNET opens the database file, reads

information for the signals, and closes the database.

• Open Refnum: LabVIEW can open the XNET Signal I/O name automatically. Wire the

I/O name to a property node or VI, and the refnum is opened prior to the first use.

Refnum Use

You can use the XNET Signal I/O name refnum as follows:

• XNET Signal Property Node: The signal property node provides information such as

the signal position and size in the payload, scaling formula to physical units, and so on.

XNET Subframe I/O Name
Within your embedded network, some frames may use a feature called data multiplexing (also

known as mode-dependent messages). The frame specifies a single signal called the data

multiplexer. A specific range of bits within the multiplexed frame is designated to contain

subframes. Each subframe contains a distinct set of signals, referred to as dynamic signals.

When a frame is transmitted on the network, the data multiplexer signal value selects the

subframe. For example, if the data multiplexer is 0, a subframe with dynamic signals A and

B may exist in the last bytes; if the data multiplexer is 1, a subframe with dynamic signals C

and D may exist in the same last bytes.

Use the XNET Subframe I/O name to access properties for a specific subframe.

User Interface

The XNET Subframe I/O name is not intended for use on VI front panels or as a diagram

constant. This I/O name class is returned as the value of the following properties:

• XNET Frame Mux:Subframes

• XNET Signal Mux:Subframe

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-634 ni.com

String Use

NI-XNET determines the XNET Subframe I/O name string syntax internally. This syntax

may change in future versions, so string display or formation is not recommended.

You can use the XNET Frame I/O name string as follows:

• Open Refnum: LabVIEW can open the XNET Subframe I/O name automatically. Wire

the I/O name to a property node or VI, and the refnum is opened prior to the first use.

Refnum Use

You can use the XNET Frame I/O name refnum as follows:

• XNET Subframe Property Node: The XNET Subframe property node provides the

information such as the data multiplexer value for the subframe and the list of dynamic

signals within the subframe.

• XNET Database Create (Dynamic Signal).vi: If you are creating a new database, call

this VI to create a new XNET Signal within the frame. This instance creates a dynamic

signal contained within the subframe. To create a static signal that exists in all frame

values, call XNET Database Create (Signal).vi using the parent XNET Frame (not the

subframe).

XNET Terminal I/O Name
Each interface contains various terminals. The terminals are for NI-XNET synchronization

features, to connect triggers and timebases (clocks) to/from the interface hardware.

Use the XNET Terminal I/O name to select a string input to the XNET Connect

Terminals.vi or XNET Disconnect Terminals.vi, both of which operate on the session. For

general information about I/O names, such as when to use them, refer to XNET I/O Names.

User Interface

When you select the drop-down arrow on the right side of the I/O name, you see a list of all

terminals any NI-XNET interface uses.

You can select a terminal from the drop-down list or by typing the name. As you type a name,

LabVIEW selects the closest match from the list.

The list of terminals is not specific to a particular interface. For example, if you have only a

CAN device in your system, the drop-down list still contains terminals for FlexRay interfaces.

String Use

Use a terminal name from the drop-down list.

For a description of each name, refer to XNET Connect Terminals.vi.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-635 NI-XNET Hardware and Software Manual

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the name. The space (), period (.), and other special characters are not supported within the

name. The terminal name is not case sensitive.

The terminal name scope always is local to the XNET interface used within the session that

you pass to XNET Connect Terminals.vi. One of the terminals (source or destination) is on

the trigger bus (PXI backplane or PCI RTSI cable), and the other is within the XNET

interface.

You can use the XNET Interface I/O name term as follows:

• XNET Connect Terminals.vi: Connect a source terminal to a destination terminal on

the interface.

• XNET Disconnect Terminals.vi: Disconnect a pair of terminals on the interface.

Refnum Use

The XNET Terminal does not provide refnum features such as property nodes.

XNET LIN Schedule I/O Name
The LIN protocol is different than CAN or FlexRay, in that it supports multiple schedules that

determine when frames transmit. You can change the current schedule at runtime. Within a

database file, a cluster for LIN contains one or more LIN schedules. Each LIN schedule

contains one or more LIN schedule entries.

Use the XNET LIN Schedule I/O name to select a schedule, access properties, and invoke

methods. For general information about I/O names, such as when to use them, refer to XNET

I/O Names.

User Interface

Before using the LIN Schedule I/O name, you must use Select Database to select a cluster

within a known database. Because the NI-XNET hardware interface physically connects to a

single cluster in your embedded system, it makes sense to limit the list to schedules contained

in a single cluster.

When you select the drop-down arrow on the right side of the I/O name, you see a list of all

LIN schedules within the selected cluster, followed by a separator (line), then a list of menu

items.

Each schedule in the drop-down list uses the syntax specified in String Use.

You can select a schedule from the drop-down list or by typing the name. As you type a name,

LabVIEW selects the closest match from the list.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-636 ni.com

Right-clicking the I/O name displays a menu of LabVIEW items and items specific to

NI-XNET.

The XNET LIN Schedule I/O name provides the following menu items in right-click and

drop-down menus:

• Select Database: In the drop-down list, this menu item opens a dialog to select a cluster.

In the right-click menu, this item provides a pull-right menu to select the cluster.

You must select a cluster to specify the LIN schedule selection scope. The list of clusters

uses the same list as the XNET Cluster I/O Name. Each cluster name typically is just the

database <alias> only, but when a FIBEX file is used, each <alias>.<cluster> name is

listed.

• Browse For Database File: If you have an existing CANdb (.dbc), FIBEX (.xml),

LDF (.ldf), or NI-CAN (.ncd) database file, select this item to add an alias to

NI-XNET. Use the file dialog to browse to the database file on your system. When you

select OK, NI-XNET adds an alias to the file. The alias uses the filename, such as

MyDatabase for a file path of C:\Embedded\Vehicle5\MyDatabase.dbc. If the

alias is not unique, NI-XNET appends a number per LabVIEW conventions (for

example, MyDatabase 2). After adding the alias, you can select the objects in that

database from any NI-XNET I/O name.

After adding the alias, it appears in the Select Database list, and the first cluster in the

database is selected automatically.

• Manage Database Aliases: Select this menu item to open a dialog to manage aliases.

You can review your list of aliases and associated file paths, remove an alias (without

deleting the file), and add new aliases.

If you are using LabVIEW Real-Time (RT), you can right-click the RT target within a

LabVIEW Project and select the Connect menu item. This connects to the RT target over

TCP/IP, which in turn enables the user interface of NI-XNET I/O names to operate

remotely. If you open the Manage dialog while connected to an RT target, the dialog

provides features to review the list of databases on the RT target, deploy a new database

from Windows to the RT target, and undeploy a database (remove the alias and file from

the RT target).

String Use

Use the following syntax convention for the XNET LIN Schedule I/O name string:

<schedule>\n<dbSelection>

The string contains the LIN schedule name, followed by a new line (\n) as a separator,

followed by the selected cluster name.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-637 NI-XNET Hardware and Software Manual

When you drop the I/O name onto your front panel, the control displays only one line by

default. This enables the VI end user to focus on selecting the <schedule>, rather than the

more complex syntax that includes <dbSelection>.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

<schedule>. The space (), period (.), and other special characters are not supported within

the schedule name. The <schedule> name must begin with a letter (uppercase or lowercase)

or underscore, and not a number. The <schedule> name is limited to 128 characters. The

schedule name is case sensitive.

For LDF (.ldf), the database file stores the <schedule> name. The NI-CAN (.ncd) and

CANdb (.dbc) file formats do not support LIN. The current version of NI-XNET does not

support LIN with FIBEX (.xml).

The <dbSelection> is appended to the schedule name to ensure that the XNET LIN Schedule

I/O name is unique. LabVIEW requires each I/O name to use a unique name, because each

instance is located using its name. By appending the cluster name, NI-XNET ensures that the

entire name is unique in large applications that use multiple NI-XNET interfaces (multiple

clusters). The characters for <dbSelection> are the same as the name you selected using

Select Database, which uses the same syntax convention as the XNET Cluster I/O Name. To

view the <dbSelection> when the I/O name is displayed, resize its constant/control to show

multiple lines.

You can use the XNET LIN Schedule I/O name string as follows:

• Open Refnum: LabVIEW can open the XNET LIN Schedule I/O name automatically.

Wire the I/O name to a property node or VI, and the refnum is opened prior to the first

use.

• Write (LIN Schedule Change): While running your session, you can change the

currently running LIN schedule. You wire the XNET LIN Schedule I/O name to XNET

Write (State LIN Schedule Change).vi as a string to specify the schedule to execute.

Refnum Use

You can use the XNET LIN Schedule I/O name refnum as follows:

• XNET LIN Schedule Property Node: The LIN schedule property node provides the list

of all schedule entries, plus other aspects of the schedule such as run mode.

XNET LIN Schedule Entry I/O Name
Each LIN Schedule contains one or more entries, or slots. Each entry in turn contains one or

more frames that can transmit during the entry’s time slot. A single frame can be located in

multiple LIN schedules and within multiple LIN schedule entries.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-638 ni.com

Use the XNET LIN Schedule Entry I/O name to access properties for a specific schedule

entry.

User Interface

The XNET LIN Schedule Entry I/O name is not intended for use on VI front panels or as a

diagram constant. This I/O name class is returned as the value of the XNET LIN Schedule

Entries property.

String Use

NI-XNET determines the XNET LIN Schedule Entry I/O name string syntax internally. This

syntax may change in future versions, so string display or formation is not recommended.

You can use the XNET LIN Schedule Entry I/O name string as follows:

• Open Refnum: LabVIEW can open the XNET LIN Schedule Entry I/O name

automatically. Wire the I/O name to a property node or VI, and the refnum is opened prior

to the first use.

Refnum Use

You can use the XNET LIN Schedule Entry I/O name refnum as follows:

• XNET LIN Schedule Entry Property Node: The XNET LIN Schedule Entry property

node provides the information such as the entry type, list of frames transmitted, and so

on.

• XNET Database Create (LIN Schedule Entry).vi: If you are creating a new database,

call this VI to create a new XNET LIN Schedule Entry within the LIN schedule.

XNET PDU I/O Name
Many FlexRay networks use the concept of a Protocol Data Unit (PDU) to implement

configurations similar to CAN. The PDU is a container of signals. You can use a single PDU

within multiple frames for faster timing. A single frame can contain multiple PDUs, each

updated independently. For more information, refer to Protocol Data Units (PDUs) in

NI-XNET.

Use the XNET PDU I/O name to select a PDU, access properties, and invoke methods. For

general information about I/O names, such as when to use them, refer to XNET I/O Names.

User Interface

Before using the PDU I/O name, you must use Select Database to select a cluster within a

known database. Because the NI-XNET hardware interface physically connects to a single

cluster in your embedded system, it makes sense to limit the list to PDUs contained in a single

cluster.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-639 NI-XNET Hardware and Software Manual

When you select the drop-down arrow on the right side of the I/O name, you see a list of all

PDUs within the selected cluster, followed by a separator (line), then a list of menu items.

Each PDU in the drop-down list uses the syntax specified in String Use.

You can select a PDU from the drop-down list or by typing the name. As you type a name,

LabVIEW selects the closest match from the list.

Right-clicking the I/O name displays a menu of LabVIEW items and items specific to

NI-XNET.

The XNET PDU I/O name includes the following menu items in right-click and drop-down

menus:

• Select Database: In the drop-down list, this menu item opens a dialog to select a cluster.

In the right-click menu, this item provides a pull-right menu to select the cluster.

You must select a cluster to specify the PDU selection scope. The list of clusters uses the

same list as the XNET Cluster I/O Name. Each cluster name typically is just the database

<alias> only, but when a FIBEX file is used, each <alias>.<cluster> name is listed.

• Browse For Database File: If you have an existing CANdb (.dbc), FIBEX (.xml),

LDF (.ldf), or NI-CAN (.ncd) database file, select this item to add an alias to

NI-XNET. Use the file dialog to browse to the database file on your system. When you

select OK, NI-XNET adds an alias to the file. The alias uses the filename, such as

MyDatabase for a file path of C:\Embedded\Vehicle5\MyDatabase.dbc. If the

alias is not unique, NI-XNET appends a number per LabVIEW conventions (for

example, MyDatabase 2). After adding the alias, you can select the objects in that

database from any NI-XNET I/O name.

After adding the alias, it appears in the Select Database list, and the first cluster in the

database is selected automatically.

• New XNET Database: If you do not have an existing database file, select this item to

launch the NI-XNET Database Editor. You can use the NI-XNET Database Editor to

create objects for the database and then save to a file. When you save the file, the

NI-XNET Database Editor also adds an alias. Therefore, after you save from the editor,

the clusters in the database become available in the Select Database list. You must select

the desired cluster when you finish using the NI-XNET Database Editor.

• Edit XNET Database: If you have selected a cluster using Select Database, select this

item to launch the NI-XNET Database Editor with that cluster's database file. You can

use the editor to make changes to the database file, including the signals.

• Manage Database Aliases: Select this menu item to open a dialog to manage aliases.

You can review your list of aliases and associated file paths, remove an alias (without

deleting the file), and add new aliases.

If you are using LabVIEW Real-Time (RT), you can right-click the RT target within a

LabVIEW Project and select the Connect menu item. This connects to the RT target over

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

NI-XNET Hardware and Software Manual 4-640 ni.com

TCP/IP, which in turn enables the user interface of NI-XNET I/O names to operate

remotely. If you open the Manage dialog while connected to an RT target, the dialog

provides features to review the list of databases on the RT target, deploy a new database

from Windows to the RT target, and undeploy a database (remove the alias and file from

the RT target).

String Use

Use the following syntax convention for the XNET PDU I/O name string:

<pdu>\n<dbSelection>

The string contains the PDU name, followed by a new line (\n) as a separator, followed by the

selected cluster name.

When you drop the I/O name onto your front panel, the control displays only one line by

default. This enables the VI end user to focus on selecting the <pdu>, rather than the more

complex syntax that includes <dbSelection>.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

<pdu>. The space (), period (.), and other special characters are not supported within the

<pdu> name. The <pdu> name must begin with a letter (uppercase or lowercase) or

underscore, and not a number. The <pdu> name is limited to 128 characters. The PDU name

is case sensitive.

For all supported database formats, the database file stores the <pdu> name.

The <dbSelection> is appended to the PDU name to ensure that the XNET PDU I/O name is

unique. LabVIEW requires each I/O name to use a unique name, because each instance is

located using its name. By appending the cluster name, NI-XNET ensures that the entire name

is unique in large applications that use multiple NI-XNET interfaces (multiple clusters). The

characters for <dbSelection> are the same as the name you selected using Select Database,

which uses the same syntax convention as the XNET Cluster I/O Name. To view the

<dbSelection> when the I/O name is displayed, resize its constant/control to show multiple

lines.

You can use the XNET PDU I/O name string as follows:

• XNET Create Session (Frame In PDU Queued, Frame In PDU Single-Point, Frame

Out PDU Queued, Frame Out PDU Single-Point, Generic).vi: These modes operate

on PDUs in a manner equivalent to frames. The queued I/O sessions transfer a sequence

of values for a single PDU in the cluster. The single-point I/O sessions transfer the recent

value for a list of PDUs. The Generic instance provides advanced features to pass in

database object names as strings, including one or more PDUs. For all instances, the

XNET PDU I/O name is passed in as input, but is used as a string. Within Create Session,

NI-XNET opens the database file, reads information for the PDUs, and closes the

database.

Chapter 4 NI-XNET API for LabVIEW—Additional Topics

© National Instruments 4-641 NI-XNET Hardware and Software Manual

• Open Refnum: LabVIEW can open the XNET PDU I/O name automatically. Wire the

I/O name to a property node or VI, and the refnum is opened prior to the first use.

Refnum Use

You can use the XNET PDU I/O name refnum as follows:

• XNET PDU Property Node: The PDU property node provides information such as the

PDU position and size in the frame, contained signals, and so on.

© National Instruments 5-1 NI-XNET Hardware and Software Manual

5
NI-XNET API for C

This chapter explains how to use the NI-XNET API for C and describes the NI-XNET C

functions and properties.

Getting Started

This section helps you get started using NI-XNET for C. It includes information about using

NI-XNET within LabWindows/CVI and Microsoft Visual C, and C examples.

LabWindows/CVI
To view the NI-XNET function panels, select Library»NI-XNET. This opens a dialog

containing the NI-XNET classes. You also can use the Library Tree to access all the function

panels quickly. To use the NI-XNET Library Tree, go to View and make sure that Library

Tree is selected. In the Library Tree, expand Libraries and scroll down to NI-XNET.

You can access the help for each class or function panel by right-clicking the function panel

and selecting Class Help... or Function Help....

Examples
NI-XNET includes LabWindows/CVI examples that demonstrate a wide variety of use cases.

The examples build on the basic concepts to demonstrate more in-depth use cases.

To view the NI-XNET examples, select Find Examples... from the LabWindows/CVI Help

menu. When you browse examples by task, NI-XNET examples are under Hardware Input

and Output. The examples are grouped by protocol in CAN, FlexRay, and LIN folders.

Although you can write NI-XNET applications for either protocol, and each folder contains

shared examples, this organization helps you find examples for your specific hardware

product.

A few examples are suggested to get started with NI-XNET.

For CAN (at Hardware Input and Output»CAN»NI-XNET»Basic):

• CAN Signal Input Single Point with CAN Signal Output Single Point.

• CAN Signal Input Waveform with CAN Signal Output Waveform.

• CAN Frame Input Stream with any output example.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-2 ni.com

For FlexRay (at Hardware Input and Output»FlexRay»Basic):

• FlexRay Signal Input Single Point with FlexRay Signal Output Single Point.

• FlexRay Signal Input Waveform with FlexRay Signal Output Waveform.

• FlexRay Frame Input Stream with any output example.

For LIN (at Hardware Input and Output»LIN»NI-XNET»Basic):

• LIN Signal Input Single Point with LIN Signal Output Single Point.

• LIN Signal Input Waveform with LIN Signal Output Waveform.

• LIN Frame Input Stream with any output example.

Open an example project by double-clicking its name.

To run the example, select values using the front panel controls, then read the instructions on

the front panel to run the examples.

Visual C++
The NI-XNET software supports Microsoft Visual C/C++ version 6 or later.

The NIEXTCCOMPILERSUPP environment variable is provided as an alias to the C language

header file and library location. You can use this variable when compiling and linking an

application.

For compiling applications that use the NI-XNET API, you must include the nixnet.h

header file in the code.

For C applications (files with a .c extension), include the header file by adding a #include

to the beginning of the code, such as:

#include "nixnet.h"

In your project options for compiling, you must include this statement to add a search

directory to find the header file:

/I "$(NIEXTCCOMPILERSUPP)include"

For linking applications, you must add the nixnet.lib file and the following statement to

your linker project options to search for the library:

/libpath:"$(NIEXTCCOMPILERSUPP)\lib32\msvc"

The reference for each NI-XNET API function is in NI-XNET API for C Reference.

Chapter 5 NI-XNET API for C

© National Instruments 5-3 NI-XNET Hardware and Software Manual

Examples
NI-XNET includes C examples that demonstrate a wide variety of use cases.

You can find examples for the C language in the MS Visual C subfolder of the \Users\

Public\Public Documents\National Instruments\NI-XNET\Examples directory

on Windows 7 or Windows Vista and the \Documents and Settings\All

Users\Shared Documents\National Instruments\NI-XNET\Examples directory

on Windows XP. Each example is in a separate folder. A description of each example is in

comments at the top of the .c file.

Interfaces

What Is an Interface?
The interface represents a single CAN, FlexRay, or LIN connector on an NI hardware device.

Within NI-XNET, the interface is the object used to communicate with external hardware

described in the database.

Each interface name uses the following syntax:

<protocol><n>

The <protocol> is either CAN for a CAN interface, FlexRay for a FlexRay interface, or LIN

for a LIN interface.

The number <n> identifies the specific interface within the <protocol> scope. The

numbering starts at 1. For example, if you have a two-port CAN device, a two-port FlexRay

device, and a two-port LIN device in your system, the interface names are CAN1, CAN2,

FlexRay1, FlexRay2, LIN1, and LIN2, respectively.

Although you can change the interface number <n> within Measurement & Automation

Explorer (MAX), the typical practice is to allow NI-XNET to select the number

automatically. NI-XNET always starts at 1 and increments for each new interface found. If

you do not change the number in MAX, and your system always uses a single two-port CAN

device, you can write all your applications to assume CAN1 and CAN2. For as long as that

CAN card exists in your system, NI-XNET uses the same interface numbers for that device,

even if you add new CAN cards.

NI-XNET also uses the term port to refer to the connector on an NI hardware device. The

difference between the terms is that port refers to the hardware object (physical), and

interface refers to the software object (logical). The benefit of this separation is that you can

use the interface name as an alias to any port, so that your application does not need to change

when your hardware configuration changes. For example, if you have a PXI chassis with a

single CAN PXI device in slot 3, the CAN port labeled Port 1 is assigned as interface CAN1.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-4 ni.com

Later on, if you remove the CAN PXI card and connect a USB device for CAN, the CAN port

on the USB device is assigned as interface CAN1. Although the physical port is in a different

place, programs written to use CAN1 work with either hardware configuration without

change.

How Do I View Available Interfaces?

Measurement and Automation Explorer (MAX)
Use MAX to view your available NI-XNET hardware, including all devices and interfaces.

To view hardware in your local Windows system, select Devices and Interfaces under

My System. Each NI-XNET device is listed with the hardware product name, such as

NI PCI-8517 “FlexRay1, FlexRay2”.

Select each NI-XNET device to view its physical ports. Each port is listed with the current

interface name assignment, such as FlexRay1. When you select a port, the right window

shows a picture of the device with the port circled and the port LED blinking. The blinking

LED assists in identifying a specific port when your system contains multiple instances of the

same hardware product (for example, a chassis with five CAN devices).

In the selected port’s window on the right, you can change one property: the interface name.

Therefore, you can assign a different interface name than the default. For example, you can

change the interface for physical port 2 of a PCI-8517 to FlexRay1 instead of FlexRay2.

To view hardware in a remote LabVIEW Real-Time system, find the desired system under

Remote Systems and select Devices and Interfaces under that system. The features of

NI-XNET devices and interfaces are the same as the local system.

Databases

What Is a Database?
For the NI-XNET interface to communicate with hardware products on the external network,

NI-XNET must understand the communication in the actual embedded system, such as the

vehicle. This embedded communication is described within a standardized file, such as

CANdb (.dbc) for CAN, FIBEX (.xml) for FlexRay, or LIN Description File (.ldf) for

LIN. Within NI-XNET, this file is referred to as a database. The database contains many

object classes, each of which describes a distinct entity in the embedded system.

• Database: Each database is represented as a distinct instance in NI-XNET. Although the

database typically is a file, you also can create the database at run time (in memory).

• Cluster: Each database contains one or more clusters, where the cluster represents a

collection of hardware products connected over a shared cabling harness. In other words,

each cluster represents a single CAN, FlexRay, or LIN network. For example, the

Chapter 5 NI-XNET API for C

© National Instruments 5-5 NI-XNET Hardware and Software Manual

database may describe a single vehicle, where the vehicle contains one CAN cluster

Body, another CAN cluster Powertrain, one FlexRay cluster Chassis, and a LIN cluster

PowerSeat.

• ECU: Each Electronic Control Unit (ECU) represents a single hardware product in the

embedded system. The cluster contains one or more ECUs connected over a CAN,

FlexRay, or LIN cable. It is possible for a single ECU to be contained in multiple clusters,

in which case it behaves as a gateway between the clusters.

• Frame: Each frame represents a unique unit of data transfer over the cluster cable. The

frame bits contain payload data and an identifier that specifies the data (signal) content.

Only one ECU in the cluster transmits (sends) each frame, and one or more ECUs receive

each frame.

• Signal: Each frame contains zero or more values, each of which is called a signal. Within

the database, each signal specifies its name, position, length of the raw bits in the frame,

and a scaling formula to convert raw bits to/from a physical unit. The physical unit uses

a double-precision floating-point numeric type.

Other object classes include the Subframe, LIN Schedule, and LIN Schedule Entry.

What Is an Alias?
When using a database file with NI-XNET, you can specify the file path or an alias to the file.

The alias provides a shorter, easier-to-read name for use within your application.

For example, for the file path

C:\Documents and Settings\All Users\Documents\Vehicle5\

MyDatabase.dbc

you can add an alias named MyDatabase. In addition to improving readability, the alias

concept isolates your application from the specific file path. For example, if your application

uses the alias MyDatabase and you change its file path to

C:\Embedded\Vehicle5\MyDatabase.dbc

your application continues to run without change.

After you create an alias, it exists until you explicitly delete it. If you uninstall NI-XNET, the

aliases are deleted; however, if you reinstall (upgrade) NI-XNET, the aliases from the

previous installation remain. Deleting an alias does not delete the database file itself, but

merely the association within NI-XNET.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-6 ni.com

Database Programming
The NI-XNET software provides various methods for creating your application database

configuration. Figure 5-1 shows a process for deciding the database source. A description of

each step in the process follows the flowchart.

Figure 5-1. Decision Process for Choosing Database Source

Already Have File?
If you are testing an ECU used within a vehicle, the vehicle maker (or the maker’s supplier)

already may have provided a database file. This file likely would be in CANdb, FIBEX, or

LDF format. When you have this file, using NI-XNET is relatively straightforward.

Can I Use File as Is?
Is the file up to date with respect to your ECU(s)?

If you do not know the answer to this question, the best choice is to assume Yes and begin

using NI-XNET with the file. If you encounter problems, you can use the techniques

discussed in Edit and Select to update your application without significant redesign.

Can I use

file as is?

Want to

Use a File?

Yes No Yes No

Select From

File

Edit and

Select

Create New

File Using

Editor

Create in

Memory

Already

Have File?

Yes No

Chapter 5 NI-XNET API for C

© National Instruments 5-7 NI-XNET Hardware and Software Manual

Select From File
You can simply pass the names of objects from the database to the List parameter

and the database name (alias or filepath) itself to the DatabaseName parameter of

nxCreateSession. This uses the selected objects from the database in the session created.

Edit and Select
There are two options for editing the database objects for the NI-XNET session: edit in

memory and edit the file.

Edit in Memory

Use nxdbFindObject and nxdbSetProperty to change properties of selected objects.

This changes the representation in memory, but does not save the change to the file. When

you pass the object into nxCreateSession, the changes in memory (not the original file)

are used.

Edit the File

The NI-XNET Database Editor is a tool for editing database files for use with NI-XNET.

Using this tool, you open an existing file, edit the objects, and save those changes. You can

save the changes to the existing file or a new file.

When you have a file with the changes you need, you select objects in your application as

described in Select From File.

Want to Use a File?
If you do not have a usable database file, you can choose to create a file or avoid files

altogether for a self-contained application.

Create New File Using the Database Editor
You can use the NI-XNET Database Editor to create a new database file. Once you have a file,

you select objects in your application as described in Select From File.

As a general rule, for FlexRay applications, using a FIBEX file is recommended. FlexRay

communication configuration requires a large number of complex properties, and storage in

a file makes this easier to manage. The NI-XNET Database Editor has features that facilitate

this configuration.

Create in Memory
You can use nxdbCreateObject to create new database objects in memory. Using this

technique, you can avoid files entirely and make your application self contained.

You configure each object you create using the property node. Each class of database object

contains required properties that you must set (refer to Required Properties).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-8 ni.com

The database name is :memory:. This special database name specifies a database that does not

originate from a file.

After you create and configure objects in memory, you can use nxdbSaveDatabase to save

the objects to a file. This enables you to implement a database editor within your application.

Sessions

What Is a Session?
The NI-XNET session represents a connection between your National Instruments

CAN/FlexRay/LIN hardware and hardware products on the external network.

Each session configuration includes:

• Interface: This specifies the National Instruments hardware to use. (Refer to What Is an

Interface?)

• Database objects: These describe how external hardware communicates. (Refer to What

Is a Database?)

• Mode: This specifies the direction and representation of I/O data. (Refer to Session

Modes.)

The links above link to detailed information about configuration. The Session Modes section

has additional links to sections that explain how to read or write I/O data for each mode. The

I/O data consists of values for frames or signals.

In addition to read/write of I/O data, you can use the session to interact with the network

in other ways. For example, nxReadState includes selections to read the state of

communication, such as whether communication has stopped due to error detection

defined by the protocol standard.

You can use sessions for multiple hardware interfaces. For each interface, you can use

multiple input sessions and multiple output sessions simultaneously. The sessions can use

different modes. For example, you can use a Signal Input Single-Point session at the same

time you use a Frame Input Stream session.

The limitations on sessions relate primarily to a specific frame or its signals. For example,

if you create a Frame Output Queued session for frameA, then create a Signal Output

Single-Point session for frameA.signalB (a signal in frameA), NI-XNET returns an error. This

combination of sessions is not allowed, because writing data for the same frame with two

sessions would result in inconsistent sequences of data on the network.

Chapter 5 NI-XNET API for C

© National Instruments 5-9 NI-XNET Hardware and Software Manual

Session Modes
The session mode specifies the data type (signals or frames), direction (input or output), and

how data is transferred between your application and the network.

The mode is an enumeration of the following:

• Signal Input Single-Point Mode: Reads the most recent value received for each signal.

This mode typically is used for control or simulation applications, such as Hardware In

the Loop (HIL).

• Signal Input Waveform Mode: Using the time when the signal frame is received,

resamples the signal data to a waveform with a fixed sample rate. This mode typically is

used for synchronizing XNET data with DAQmx analog/digital input channels.

• Signal Input XY Mode: For each frame received, provides its signals as a

value/timestamp pair. This is the recommended mode for reading a sequence of all signal

values.

• Signal Output Single-Point Mode: Writes signal values for the next frame transmit. This

mode typically is used for control or simulation applications, such as Hardware In the

Loop (HIL).

• Signal Output Waveform Mode: Using the time when the signal frame is transmitted

according to the database, resamples the signal data from a waveform with a fixed sample

rate. This mode typically is used for synchronizing XNET data with DAQmx

analog/digital output channels.

• Signal Output XY Mode: Provides a sequence of signal values for transmit using each

frame’s timing as the database specifies. This is the recommended mode for writing a

sequence of all signal values.

• Frame Input Stream Mode: Reads all frames received from the network using a single

stream. This mode typically is used for analyzing and/or logging all frame traffic in the

network.

• Frame Input Queued Mode: Reads data from a dedicated queue per frame. This mode

enables your application to read a sequence of data specific to a frame (for example, CAN

identifier).

• Frame Input Single-Point Mode: Reads the most recent value received for each frame.

This mode typically is used for control or simulation applications that require lower level

access to frames (not signals).

• Frame Output Stream Mode: Transmits an arbitrary sequence of frame values using a

single stream. The values are not limited to a single frame in the database, but can

transmit any frame.

• Frame Output Queued Mode: Provides a sequence of values for a single frame, for

transmit using that frame’s timing as the database specifies.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-10 ni.com

• Frame Output Single-Point Mode: Writes frame values for the next transmit. This mode

typically is used for control or simulation applications that require lower level access to

frames (not signals).

• Conversion Mode: This mode does not use any hardware. It is used to convert data

between the signal representation and frame representation.

Frame Input Queued Mode
This mode reads data from a dedicated queue per frame. It enables your application to read a

sequence of data specific to a frame (for example, a CAN identifier).

You specify only one frame for the session, and nxReadFrame returns values for that frame

only. If you need sequential data for multiple frames, create multiple sessions, one per frame.

The input data is returned as an array of frame values. These values represent all values

received for the frame since the previous call to nxReadFrame.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven

frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

This example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network, followed by two calls to nxReadFrame (one for C and one for E).

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C3,4 C5,6

E5,6 E1,2E7,8

Read

C

Read

E

Chapter 5 NI-XNET API for C

© National Instruments 5-11 NI-XNET Hardware and Software Manual

The following figure shows the data returned from the two calls to nxReadFrame

(two different sessions).

The first call to nxReadFrame returned an array of values for frame C, and the second call to

nxReadFrame returns an array for frame E. Each frame is displayed with CAN-specific

elements. For information about the data returned from the read function, refer to Raw Frame

Format. The example uses hexadecimal C and E as the identifier of each frame. The first

two payload bytes contain the signal data. The timestamp represents the absolute time when

the XNET interface received the frame (end of frame), accurate to microseconds.

Compared to the example for the Frame Input Stream Mode, this mode effectively sorts

received frames so you can process them on an individual basis.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-12 ni.com

Frame Input Single-Point Mode
This mode reads the most recent value received for each frame. It typically is used for control

or simulation applications that require lower level access to frames (not signals).

This mode does not use queues to store each received frame. If the interface receives

two frames prior to calling nxReadFrame, that read returns signals for the second frame.

The input data is returned as an array of frames, one for each frame specified for the session.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven

frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network, followed by a single call to nxReadFrame. Each frame contains its name

(C or E), followed by the value of its two signals.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C5,6

E5,6 E1,2E7,8

2nd

Read

1st

Read

3rd

Read

Chapter 5 NI-XNET API for C

© National Instruments 5-13 NI-XNET Hardware and Software Manual

The following figure shows the data returned from each of the three calls to nxReadFrame.

Each frame is displayed with CAN-specific elements. For information about the data returned

from the read function, refer to Raw Frame Format. The session contains frame data for

two frames: C and E.

In the data returned from the first call to nxReadFrame, frame C contains values 3 and 4 in

its payload. The first reception of frame C values (1 and 2) were lost, because this mode

returns the most recent values.

In the frame timeline, Time of 0 ms indicates the time at which the session started to receive

frames. For frame E, no frame is received prior to the first call to nxReadFrame, so the

timestamp is invalid, and the payload is the Default Payload. For this example we assume that

the Default Payload is all 0.

In the data returned from the second call to nxReadFrame, payload values 3 and 4 are

returned again for frame C, because no new frame has been received since the previous call

to nxReadFrame. The timestamp for frame C is the same as the first call to nxReadFrame.

In the data returned from the third call to nxReadFrame, both frame C and frame E are

received, so both elements return new values.

Frame Input Stream Mode
This mode reads all frames received from the network using a single stream. It typically is

used for analyzing and/or logging all frame traffic in the network.

The input data is returned as an array of frames. Because all frames are returned, your

application must evaluate identification in each frame (such as a CAN identifier or FlexRay

slot/cycle/channel) to interpret the frame payload data.

Previously, you could use only one Frame Input Stream session for a given interface. Now,

multiple Frame Input Stream sessions can be open at the same time on CAN and LIN

interfaces.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-14 ni.com

While using one or more Frame Input Stream sessions, you can use other sessions with

different input modes. Received frames are copied to Frame Input Stream sessions in addition

to any other applicable input session. For example, if you create a Frame Input Single-Point

session for FrameA, then create a Frame Input Stream session, when FrameA is received, its

data is returned from the call to nxReadFrame of both sessions. This duplication of incoming

frames enables you to analyze overall traffic while running a higher level application that uses

specific frame or signal data.

When used with a FlexRay interface, frames from both channels are returned. For example,

if a frame is received in a static slot on both channel A and channel B, two frames are returned

from nxReadFrame.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven

frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network, followed by a single call to nxReadFrame. Each frame contains its name

(C or E), followed by the value of its two signals.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C3,4 C5,6

E5,6 E1,2E7,8

Read

Chapter 5 NI-XNET API for C

© National Instruments 5-15 NI-XNET Hardware and Software Manual

The following figure shows the data returned from nxReadFrame.

Frame C and frame E are returned in a single array of frames. Each frame is displayed with

CAN-specific elements. For information about the data returned from the read function, refer

to Raw Frame Format. This example uses hexadecimal C and E as the identifier of each

frame. The signal data is contained in the first two payload bytes. The timestamp represents

the absolute time when the XNET interface received the frame (end of frame), accurate to

microseconds.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-16 ni.com

Frame Output Queued Mode
This mode provides a sequence of values for a single frame, for transmit using that frame’s

timing as specified in the database.

The output data is provided as an array of frame values, to be transmitted sequentially for the

frame specified in the session.

This mode allows you to specify only one frame for the session. To transmit sequential values

for multiple frames, use a different Frame Output Queued session for each frame or use the

Frame Output Stream Mode.

The frame values for this mode are stored in a queue, such that every value provided is

transmitted.

For this mode, NI-XNET transmits each frame according to its properties in the database.

Therefore, when you call nxWriteFrame, the number of payload bytes in each frame value

must match that frame’s Payload Length property. The other frame value elements are

ignored, so you can leave them uninitialized. For CAN interfaces, if the number of payload

bytes you write is smaller than the Payload Length configured in the database, the requested

number of bytes transmits. If the number of payload bytes is larger than the Payload Length

configured in the database, the queue is flushed and no frames transmit. For other interfaces,

transmitting a number of payload bytes different than the frame’s payload may cause

unexpected results on the bus.

Examples

In this example network, frame C is a cyclic frame that transmits on the network once every

2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval) of

2.5 ms. For information about cyclic and event-driven frames, refer to Cyclic and Event

Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network. Each frame contains its name (C or E), followed by the value of its two signals.

The timeline begins with two calls to nxWriteFrame, one for frame C, followed immediately

by another call for frame E.

Chapter 5 NI-XNET API for C

© National Instruments 5-17 NI-XNET Hardware and Software Manual

The following figure shows the data provided to each call to nxWriteFrame. Each frame is

displayed with CAN-specific elements. For information about the data returned from the

write function, refer to Raw Frame Format. The first array shows data for the session with

frame C. The second array shows data for the session with frame E.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C5,6 C5,6

E5,8E7,8

Write

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-18 ni.com

Assuming the Auto Start? property uses the default of true, each session starts within the call

to nxWriteFrame. Frame C transmits followed by frame E, both using the frame values from

the first element (index 0 of each array).

According to the database, frame C transmits once every 2.0 ms, and frame E is limited to an

event-driven transmit once every 2.5 ms.

At 2.0 ms in the timeline, the frame value with bytes 3, 4 is taken from index 1 of the frame C

array and used for transmit of frame C.

When 2.5 ms have elapsed after acknowledgment of the previous transmit of frame E, the

frame value with bytes 5, 8, 0, 0 is taken from index 1 of frame E array and used for transmit

of frame E.

At 4.0 ms in the timeline, the frame value with bytes 5, 6 is taken from index 2 of the frame C

array and used for transmit of frame C.

Because there are no more frame values for frame E, this frame no longer transmits. Frame E

is event-driven, so new frame values are required for each transmit.

Because frame C is a cyclic frame, it transmits repeatedly. Although there are no more frame

values for frame C, the previous frame value is used again at 6.0 ms in the timeline, and every

2.0 ms thereafter. If nxWriteFrame is called again, the new frame value is used.

Frame Output Single-Point Mode
This mode writes frame values for the next transmit. It typically is used for control or

simulation applications that require lower level access to frames (not signals).

This mode does not use queues to store frame values. If nxWriteFrame is called twice before

the next transmit, the transmitted frame uses the value from the second call to

nxWriteFrame.

The output data is provided as an array of frames, one for each frame specified for the session.

For this mode, NI-XNET transmits each frame according to its properties in the database.

Therefore, when you call nxWriteFrame, the number of payload bytes in each frame value

must match that frame’s Payload Length property. The other frame value elements are

ignored, so you can leave them uninitialized. For CAN interfaces, if the number of payload

bytes you write is smaller than the Payload Length configured in the database, the requested

number of bytes transmit. If the number of payload bytes is larger than the Payload Length

configured in the database, the queue is flushed and no frames transmit. For other interfaces,

transmitting a number of payload bytes different than the frame payload may cause

unexpected results on the bus.

Chapter 5 NI-XNET API for C

© National Instruments 5-19 NI-XNET Hardware and Software Manual

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval) of

2.5 ms. For information about cyclic and event-driven frames, refer to Cyclic and Event

Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network. Each frame contains its name (C or E), followed by the value of its two signals.

The timeline shows three calls to nxWriteFrame.

The following figure shows the data provided to each of the three calls to nxWriteFrame.

Each frame is displayed with CAN-specific elements. For information about the data returned

from the write function, refer to Raw Frame Format. The session contains frame values for

two frames: C and E.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C5,6 C5,6

E3,4E7,8

1st

Write

2nd

Write

3rd

Write

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-20 ni.com

Assuming the Auto Start? property uses the default of true, the session starts within the

first call to nxWriteFrame. Frame C transmits followed by frame E, both using frame values

from nxWriteFrame.

After the second call to nxWriteFrame, frame C transmits using its value (bytes 3, 4), but

frame E does not transmit, because its minimal interval of 2.5 ms has not elapsed since

acknowledgment of the previous transmit.

Because the third call to nxWriteFrame occurs before the minimum interval elapses for

frame E, its next transmit uses its value (bytes 3, 4, 0, 0). The value for frame E in the

second call to nxWriteFrame is not used.

Chapter 5 NI-XNET API for C

© National Instruments 5-21 NI-XNET Hardware and Software Manual

Frame C transmits the third time using the value from the third call to nxWriteFrame

(bytes 5, 6). Because frame C is cyclic, it transmits again using the same value (bytes 5, 6).

Frame Output Stream Mode
This mode transmits an arbitrary sequence of frame values using a single stream. The values

are not limited to a single frame in the database, but can transmit any frame.

The data passed to nxWriteFrame is an array of frame values, each of which transmits as

soon as possible. Frames transmit sequentially (one after another).

This mode is not supported for FlexRay.

Like Frame Input Stream sessions, you can create more than one Frame Output Stream

session for a given interface.

For CAN, frame values transmit on the network based entirely on the time when you call

nxWriteFrame. The timing of each frame as specified in the database is ignored. For

example, if you provide four frame values to the nxWriteFrame, the first frame value

transmits immediately, followed by the next three values transmitted back to back. For this

mode, the CAN frame payload length in the database is ignored, and nxWriteFrame is

always used.

Similarly for LIN, frame values transmit on the network based entirely on the time when you

call nxWriteFrame. The timing of each frame as specified in the database is ignored. The

LIN frame payload length in the database is ignored, and nxWriteFrame is always used. For

LIN, this mode is allowed only on the interface as master. If the payload for a frame is empty,

only the header part of the frame is transmitted. For a nonempty payload, the header +

response for the frame is transmitted. If a frame for transmit is defined in the database

(in-memory or otherwise), it is transmitted using its database checksum type. If the frame for

transmit is not defined in the database, it is transmitted using enhanced checksum.

The frame values for this mode are stored in a queue, such that every value provided is

transmitted.

Example

In this example CAN database, frame C is a cyclic frame that transmits on the network once

every 2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval)

of 2.5 ms. For information about cyclic and event-driven CAN frames, refer to Cyclic and

Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-22 ni.com

The following figure shows a timeline of a frame transfer on the CAN network. Each frame

contains its name (C or E), followed by the value of its two signals. The timeline begins with

a single call to nxWriteFrame.

Chapter 5 NI-XNET API for C

© National Instruments 5-23 NI-XNET Hardware and Software Manual

The following figure shows the data provided to the single call to nxWriteFrame. Each

frame is displayed with CAN-specific elements. For information about the data returned from

the write function, refer to Raw Frame Format. The array provides values for frames C and E.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4

E7,8 E5,6 E3,4

Write

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-24 ni.com

Assuming the Auto Start? property uses the default of true, each session starts within the call

to nxWriteFrame. All frame values transmit immediately, using the same sequence as the

array.

Although frame C and E specify a slower timing in the database, the Frame Output Stream

mode disregards this timing and transmits the frame values in quick succession.

Within each frame values, this example uses an invalid timestamp value (0). This is

acceptable, because each frame value timestamp is ignored for this mode.

Although frame C is specified in the database as a cyclic frame, this mode does not repeat its

transmit. Unlike the Frame Output Queued Mode, the Frame Output Stream mode does not

use CAN frame properties from the database.

Signal Input Single-Point Mode
This mode reads the most recent value received for each signal. It typically is used for control

or simulation applications, such as Hardware In the Loop (HIL).

This mode does not use queues to store each received frame. If the interface receives

two frames prior to calling nxReadSignalSinglePoint, that call to

nxReadSignalSinglePoint returns signals for the second frame.

Use nxReadSignalSinglePoint for this mode.

You also can specify a trigger signal for a frame. This signal name is :trigger:.<frame name>,

and once it is specified in the nxCreateSession signal list, it returns a value of 0.0 if the

frame did not arrive since the last Read (or Start), and 1.0 if at least one frame of this ID

arrived. You can specify multiple trigger signals for different frames in the same session. For

multiplexed signals, a signal may or may not be contained in a received frame. To define a

trigger signal for a multiplexed signal, use the signal name :trigger:.<frame name>.<signal

name>. This signal returns 1.0 only if a frame with appropriate set multiplexer bit has been

received since the last Read or Start.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven

frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network. Each frame contains its name (C or E), followed by the value of its two signals.

The timelines shows three calls to nxReadSignalSinglePoint.

Chapter 5 NI-XNET API for C

© National Instruments 5-25 NI-XNET Hardware and Software Manual

The following figure shows the data returned from each of the three calls to

nxReadSignalSinglePoint. The session contains all four signals.

In the data returned from the first call to nxReadSignalSinglePoint, values 3 and 4 are

returned for the signals of frame C. The values of the first reception of frame C (1 and 2) were

lost, because this mode returns the most recent values.

In the frame timeline, Time of 0 ms indicates the time at which the session started

to receive frames. For frame E, no frame is received prior to the first call to

nxReadSignalSinglePoint, so the last two values return the signal Default Values.

For this example, assume that the Default Value is 0.0.

In the data returned from the second call to nxReadSignalSinglePoint, values 3 and 4 are

returned again for the signals of frame C, because no new frame has been received since the

previous call to nxReadSignalSinglePoint. New values are returned for frame E

(5 and 6).

In the data returned from the third call to nxReadSignalSinglePoint, both frame C and

frame E are received, so all signals return new values.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C5,6

E5,6 E1,2E7,8

1st

Read

2nd

Read

3rd

Read

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-26 ni.com

Signal Input Waveform Mode
Using the time when the signal frame is received, this mode resamples the signal data to a

waveform with a fixed sample rate. This mode typically is used for synchronizing XNET data

with DAQmx analog/digital input channels.

Use nxReadSignalWaveform for this mode.

You specify the resample rate using the XNET Session Resample Rate property.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven

frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network, followed by a single call to nxReadSignalWaveform. Each frame contains

its name (C or E), followed by the value of its two signals.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C3,4 C5,6

E5,6 E1,2E7,8

Read

Chapter 5 NI-XNET API for C

© National Instruments 5-27 NI-XNET Hardware and Software Manual

The following figure shows the data returned from nxReadSignalWaveform. The session

contains all four signals and uses the default resample rate of 1000.0.

In the data returned from nxReadSignalWaveform, t0 provides an absolute timestamp for

the first sample. Assuming this is the first call to nxReadSignalWaveform after starting the

session, this t0 reflects that start of the session, which corresponds to Time 0 ms in the frame

timeline. At time 0 ms, no frame has been received. Therefore, the first sample of each

waveform uses the signal Default Value. For this example, assume the default value is 0.0.

In the frame timeline, frame C is received twice with signal values 3 and 4. In the waveform

diagram, you cannot distinguish this from receiving the frame only once, because the time of

each frame reception is resampled into the waveform timing.

In the frame timeline, frame E is received twice in fast succession, once with signal values 7

and 8, then again with signals 5 and 6. These two frames are received within one sample of

the waveform (within 1 ms). The effect on the data from nxReadSignalWaveform is that

values for the first frame (7 and 8) are lost.

You can avoid the loss of signal data by setting the session resample rate to a high rate.

NI-XNET timestamps receive frames to an accuracy of 100 ns. Therefore, if you use a

resample rate of 1000000 (1 MHz), each frame’s signal values are represented in the

waveforms without loss of data. Nevertheless, using a high resample rate can result in a large

amount of duplicated (redundant) values. For example, if the resample rate is 1000000,

a frame that occurs once per second results in one million duplicated signal values.

This tradeoff between accuracy and efficiency is a disadvantage of the Signal Input

Waveform Mode.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-28 ni.com

The Signal Input XY Mode does not have the disadvantages mentioned previously. The signal

value timing is a direct reflection of received frames, and no resampling occurs. Signal Input

XY Mode provides the most efficient and accurate representation of a sequence of received

signal values.

One of the disadvantages of Signal Input XY Mode is that the samples are not equidistant

in time.

In summary, when reading a sequence of received signal values, use Signal Input Waveform

Mode when you need to synchronize CAN/FlexRay/LIN data with DAQmx analog/digital

input waveforms or display CAN/FlexRay/LIN data. Use Signal Input XY Mode when you

need to analyze CAN/FlexRay/LIN data, for validation purposes.

Signal Input XY Mode
For each frame received, this mode provides the frame signals as a timestamp/value pair. This

is the recommended mode for reading a sequence of all signal values.

The timestamp represents the absolute time when the XNET interface received the frame (end

of frame), accurate to microseconds.

Use nxReadSignalXY for this mode.

The data consists of two two-dimensional arrays, one for timestamp and one for value.

Each timestamp/value pair represents a value from a received frame. When signals exist in

different frames, the array size may be different from one signal to another.

The received frames for this mode are stored in queues to avoid signal data loss.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven

frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network, followed by a single call to nxReadSignalXY. Each frame contains its name

(C or E), followed by the value of its two signals.

Chapter 5 NI-XNET API for C

© National Instruments 5-29 NI-XNET Hardware and Software Manual

The following figure shows the data returned from nxReadSignalXY. The session contains

all four signals.

Frame C was received four times, resulting in four valid values for the first two signals.

Frame E was received three times, resulting in three valid values for the second two signals.

The timestamp and value arrays are the same size for each signal. The timestamp represents

the end of frame, to microsecond accuracy.

The XY Graph displays the data from nxReadSignalXY. This display is an accurate

representation of signal changes on the network.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C3,4 C5,6

E5,6 E1,2E7,8

Read

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-30 ni.com

Signal Output Single-Point Mode
This mode writes signal values for the next frame transmit. It typically is used for control or

simulation applications, such as Hardware In the Loop (HIL).

This mode does not use queues to store signal values. If nxWriteSignalSinglePoint

is called twice before the next transmit, the transmitted frame uses signal values from the

second call to nxWriteSignalSinglePoint.

Use nxWriteSignalSinglePoint for this mode.

You also can specify a trigger signal for a frame. This signal name is :trigger:.<frame name>,

and once it is specified in the nxCreateSession signal list, you can write a value of 0.0 to

suppress writing of that frame, or any value not equal to 0.0 to write the frame. You can

specify multiple trigger signals for different frames in the same session.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval) of

2.5 ms. For information about cyclic and event-driven frames, refer to Cyclic and Event

Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network. Each frame contains its name (C or E), followed by the value of its two signals.

The timeline shows three calls to nxWriteSignalSinglePoint.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C5,6 C5,6

E3,4E7,8

1st

Write

2nd

Write

3rd

Write

Chapter 5 NI-XNET API for C

© National Instruments 5-31 NI-XNET Hardware and Software Manual

The following figure shows the data provided to each of the three calls to

nxWriteSignalSinglePoint. The session contains all four signals.

Assuming the Auto Start? property uses the default of true, the session starts within the first

call to nxWriteSignalSinglePoint. Frame C transmits followed by frame E, both using

signal values from the first call to nxWriteSignalSinglePoint.

If a transmitted frame contains a signal not included in the output session, that signal transmits

its Default Value. If a transmitted frame contains bits no signal uses, those bits transmit the

Default Payload.

After the second call to nxWriteSignalSinglePoint, frame C transmits using its values

(3 and 4), but frame E does not transmit, because its minimal interval of 2.5 ms has not elapsed

since acknowledgment of the previous transmit.

Because the third call to nxWriteSignalSinglePoint occurs before the minimum interval

elapses for frame E, its next transmit uses its values (3 and 4). The values for frame E in the

second call to nxWriteSignalSinglePoint are not used.

Frame C transmits the third time using values from the third call to the

nxWriteSignalSinglePoint (5 and 6). Because frame C is cyclic, it transmits again using

the same values (5 and 6).

Signal Output Waveform Mode
Using the time when the signal frame is transmitted according to the database, this mode

resamples the signal data from a waveform with a fixed sample rate. This mode typically is

used for synchronizing XNET data with DAQmx analog/digital output channels.

The resampling translates from the waveform timing to each frame’s transmit timing. When

the time for the frame to transmit occurs, it uses the most recent signal values in the waveform

that correspond to that time.

Use nxWriteSignalWaveform for this mode.

You specify the resample rate using the Resample Rate property.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-32 ni.com

The frames for this mode are stored in queues.

This mode is not supported for a LIN interface operating as slave. For more information, refer

to LIN Frame Timing and Session Mode.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every

2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval) of

2.5 ms. For information about cyclic and event-driven frames, refer to Cyclic and Event

Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network. Each frame contains its name (C or E), followed by the value of its two signals.

The timeline begins with a single call to nxWriteSignalWaveform.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C5,6 C7,8 C5,6

E5,6 E5,6E5,6

Write

Chapter 5 NI-XNET API for C

© National Instruments 5-33 NI-XNET Hardware and Software Manual

The following figure shows the data provided to the call to nxWriteSignalWaveform. The

session contains all four signals and uses the default resample rate of 1000.0 samples per

second.

Assuming the Auto Start? property uses the default of true, the session starts within the call

to nxWriteSignalWaveform. Frame C transmits followed by frame E, both using signal

values from the first sample (index 0 of all four Y arrays).

The waveform elements t0 (timestamp of first sample) and dt (time between samples in

seconds) are ignored for the call to nxWriteSignalWaveform. Transmit of frames starts as

soon as the XNET session starts. The frame properties in the database determine each frame’s

transmit time. The session resample rate property determines the time between waveform

samples.

In the waveforms, the sample at index 1 occurs at 1.0 ms in the frame timeline. According to

the database, frame C transmits once every 2.0 ms, and frame E is limited to an event-driven

transmit with interval 2.5 ms. Therefore, the sample at index 1 cannot be resampled to a

transmitted frame and is discarded.

Index 2 in the waveforms occurs at 2.0 ms in the frame timeline. Frame C is ready for its next

transmit at that time, so signal values 5 and 6 are taken from the first two Y arrays and used

for transmit of frame C. Frame E still has not reached its transmit time of 2.5 ms from the

previous acknowledgment, so signal values 1 and 2 are discarded.

At index 3, frame E is allowed to transmit again, so signal values 5 and 6 are taken from the

last two Y arrays and used for transmit of frame E. Frame C is not ready for its next transmit,

so signal values 7 and 8 are discarded.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-34 ni.com

This behavior continues for Y array indices 4 through 7. For the cyclic frame C, every

second sample is used to transmit. For the event-driven frame E, every sample is interpreted

as an event, such that every third sample is used to transmit.

Although not shown in the frame timeline, frame C transmits again at 8.0 ms and

every 2.0 ms thereafter. Frame C repeats signal values 5 and 6 until the next call to

nxWriteSignalWaveform. Because frame E is event driven, it does not transmit after

the timeline shown, because no new event has occurred.

Because the waveform timing is fixed, you cannot use it to represent events in the data. When

used for event driven frames, the frame transmits as if each sample was an event. This

mismatch between frame timing and waveform timing is a disadvantage of the Signal Output

Waveform mode.

When you use the Signal Output XY Mode, the signal values provided to nxWriteSignalXY

are mapped directly to transmitted frames, and no resampling occurs. Unless your application

requires correlation of output data with DAQmx waveforms, Signal Output XY Mode is the

recommended mode for writing a sequence of signal values.

Signal Output XY Mode
This mode provides a sequence of signal values for transmit using each frame’s timing as

specified in the database. This is the recommended mode for writing a sequence of all signal

values.

Use nxWriteSignalXY for this mode. The timestamp array is unused (reserved).

Each signal value is mapped to a frame for transmit. Therefore, the array of signal values is

mapped to an array of frames to transmit. When signals exist in the same frame, signals at the

same index in the arrays are mapped to the same frame. When signals exist in different

frames, the array size may be different from one cluster (signal) to another.

The frames for this mode are stored in queues, such that every signal provided is transmitted

in a frame.

Examples

In this example network, frame C is a cyclic frame that transmits on the network once every

2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval) of

2.5 ms. For information about cyclic and event-driven frames, refer to Cyclic and Event

Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

Chapter 5 NI-XNET API for C

© National Instruments 5-35 NI-XNET Hardware and Software Manual

The example uses CAN. The following figure shows a timeline of a frame transfer on the

CAN network. Each frame contains its name (C or E), followed by the value of its two signals.

The timeline begins with a single call to nxWriteSignalXY.

The following figure shows the data provided to nxWriteSignalXY. The session contains

all four signals.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C5,6 C5,6

E5,8E7,8

Write

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-36 ni.com

Assuming the Auto Start? property uses the default of true, the session starts within a call to

nxWriteSignalXY. This occurs at 0 ms in the timeline. Frame C transmits followed by

frame E, both using signal values from the first sample (index 0 of all four Y arrays).

According to the database, frame C transmits once every 2.0 ms, and frame E is limited to an

event-driven interval of 2.5 ms.

At 2.0 ms in the timeline, signal values 3 and 4 are taken from index 1 of the first two Y arrays

and used for transmit of frame C.

At 3.5 ms in the timeline, signal value 5 is taken from index 1 of the third Y array. Because

this is a new value for frame E, it represents a new event, so the frame transmits again.

Because no new signal value was provided at index 1 in the fourth array, the second signal of

frame E uses the value 8 from the previous transmit.

At 4.0 ms in the timeline, signal values 5 and 6 are taken from index 2 of the first two Y arrays

and used for transmit of frame C.

Because there are no more signal values for frame E, this frame no longer transmits. Frame E

is event driven, so new signal values are required for each transmit.

Because frame C is a cyclic frame, it transmits repeatedly. Although there are no more signal

values for frame C, the values of the previous frame are used again at 6.0 ms in the timeline

and every 2.0 ms thereafter. If nxWriteSignalXY is called again, the new signal values are

used.

The next example network demonstrates a potential problem that can occur with Signal

Output XY mode.

In this example network, frame C is a cyclic frame that transmits on the network once every

2.0 ms. Frame X is a cyclic frame that transmits on the network once every 1.0 ms. Each frame

contains two signals, one in the first byte and another in the second byte. The timeline begins

with a single call to nxWriteSignalXY.

Chapter 5 NI-XNET API for C

© National Instruments 5-37 NI-XNET Hardware and Software Manual

The following figure shows the data provided to nxWriteSignalXY. The session contains

all four signals.

The number of signal values in all four Y arrays is the same. The four elements of the arrays

are mapped to four frames. The problem is that because frame X transmits twice as fast as

frame C, the frames for the last two arrays transmit twice as fast as the frames for the first

two arrays.

4 ms 5 ms 6 ms 7 ms 8 ms3 ms2 ms1 ms0 ms

Time

C1,2 C3,4 C5,6 C7,8

X1,2X3,4X5,6X7,8 X1,2 X1,2 X1,2 X1,2

Write

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-38 ni.com

The result is that the last pair of signals for frame X (1 and 2) transmit over and over, until the

timeline has completed for frame C. This sort of behavior usually is unintended. The Signal

Output XY mode goal is to provide a complete sequence of signal values for each frame.

The best way to resolve this issue is to provide a different number of values for each signal,

such that the number of elements corresponds to the timeline for the corresponding frame. If

the previous call to nxWriteSignalXY provided eight elements for frame X (last two Y

arrays) instead of just four elements, this would have created a complete 8.0 ms timeline for

both frames.

Although you need to resolve this sort of timeline for cyclic frames, this is not necessarily true

for event-driven frames. For an event-driven frame, you may decide simply to pass either

zero or one set of signal values to nxWriteSignalXY. When you do this, each call to

nxWriteSignalXY can generate a single event, and the overall timeline is not a major

consideration.

Conversion Mode
This mode is intended to convert NI-XNET signal data to frame data or vice versa. It does not

use any NI-XNET hardware, and you do not specify an interface when creating this mode.

Conversion occurs with the nxConvertFramesToSignalsSinglePoint or

nxConvertSignalsToFramesSinglePoint functions. None of the Read or Write

functions work with this mode; they return an error because hardware I/O is not permitted.

Conversion works similar to Single-Point mode. You specify a set of signals that can span

multiple frames. Signal to frame conversion reads a set of values for the signals specified and

writes them to the respective frame(s). Frame to signal conversion parses a set of frames and

returns the latest signal value read from a corresponding frame.

Example 1: Conversion of CAN Frames to Signals

Suppose you have a database with a CAN frame with ID 0x123 and two unsigned byte signals

assigned to it (byte 1 and byte 2).

Chapter 5 NI-XNET API for C

© National Instruments 5-39 NI-XNET Hardware and Software Manual

Creating an appropriate conversion session and calling

nxConvertFramesToSignalsSinglePoint with the following input:

results in the following signal values being returned:

Explanation: The data are taken from frame 4. Frames 1 and 3 are ignored because they have

a wrong (unmatched) ID. Frame 2 is ignored because its data are overwritten later with the

values from frame 4, because frames are processed in the order of input.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-40 ni.com

Example 2: Conversion of Signals to FlexRay Frames

Suppose you have two FlexRay frames with slot ID 3 and 6, and each one has assigned a

two-byte, Big Endian signal at byte 2 and 3 (zero based). Suppose also that all relevant default

values of other signals in the frame are 0.

Creating an appropriate conversion session and calling

nxConvertSignalsToFramesSinglePoint with the following input:

causes the following frames to be generated:

Explanation: The first signal is converted to the byte sequence 0x01, 0x02 (1  256 + 2), and

the byte sequence is placed at byte 2 of the frame with slot ID 3. The second signal is

converted to byte sequence 0x03, 0x04 (3  256 + 4) and placed at byte 2 of the frame with

slot ID 6. All other data are filled with the default values (0).

Chapter 5 NI-XNET API for C

© National Instruments 5-41 NI-XNET Hardware and Software Manual

J1939 Sessions

If you use a DBC file defining a J1939 database or create a stream session with the cluster

name :can_j1939:, you will create a J1939 XNET session. If the session is running in J1939

mode, the session property application protocol returns nxAppProtocol_J1939 instead of

nxAppProtocol_None. This property is read only, as you cannot change the application

protocol while the session is running.

FIBEX databases do not define support for J1939 in the standard. If you save a J1939 database

to FIBEX in the NI-XNET Database Editor or with the nxdbSaveDatabase API function,

the J1939 properties are saved in a FIBEX extension defined by National Instruments in the

FIBEX XML file.

Compatibility Issue
If you have used a J1939 database with a version of NI-XNET that does not support J1939,

the session now opens in J1939 mode, which defines a different behavior than a non-J1939

session. This may break the compatibility of your application. To avoid issues, you can ignore

the application protocol for the database alias in question.

Complete the following steps to set whether the database application protocol is used or

ignored when the alias is added:

1. Launch the NI-XNET Database Editor.

2. From the main menu, select File»Manage Aliases, which opens the Manage NI-XNET

Databases dialog.

3. In the Manage NI-XNET Databases dialog, click the Add Alias button, which opens

the Add Alias to NI-XNET Database… dialog.

4. Browse to the database file to add. If the protocol for the selected database is CAN and

the application protocol is J1939, an Ignore Application Protocol checkbox is

displayed, as shown in the following figure.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-42 ni.com

5. To have NI-XNET interpret the alias as an alias for a J1939 database, leave Ignore

Application Protocol unchecked. To have NI-XNET interpret the alias as an alias for a

plain CAN database, check Ignore Application Protocol.

6. Click OK to complete the alias addition.

J1939 Basics
A J1939 network consists of ECUs connected by a CAN bus running at 250 k baud rate. Some

newer networks might use a 500 k baud rate. A physical ECU can contain one or more logical

ECUs called nodes or Controller Applications. This description refers to it as a node or ECU.

J1939 application protocol uses a 29-bit extended frame identifier. The ID is divided into

several parts:

• Source Address (8 bits): Determines the address of the node transmitting the frame. By

examining the Source Address part of the ID, the receiving session can recognize which

node has sent the frame.

• PGN (18 bits): Identifies the frame and defines which signals it contains.

• Priority (3 bits): Priority is used when multiple CAN frames are sent on the bus at

exactly the same time. In this case, the CAN frame with the higher priority (lower

number) is transmitted before the lower priority frame. The CAN standard defines the

CAN frames priority (lower IDs have higher priority). Therefore, the J1939 priority bits

are the most significant bits in the ID. This ensures that the ID value with a higher priority

is always lower, independent of the PGN and Source Address, as shown in the following

figure.

Chapter 5 NI-XNET API for C

© National Instruments 5-43 NI-XNET Hardware and Software Manual

You can send a frame to a global address (all nodes) or a specific address (node with this

address). This information is coded inside the PGN as shown in the following figure.

The PF value in the identifier defines whether the message has a global or specific destination:

• 0–239 (0x00–0xEF): specific destination

• 240–255 (0xF0–0xFF): global destination

In the CAN identifier, this looks like the following (X = don’t care):

• 0xXXF0XXXX to 0xXXFFXXXX are messages with global destination (broadcast)

• 0xXX00XXXX to 0xXXEFXXXX are messages with specific destination

For global messages, the PS byte of the ID defines group extension. This extends the number

of possible global PGNs to 4096 (0xF000 to 0xFFFF).

For destination-specific messages, PS defines the destination address, so PF defines only 240

destination-specific PGNs (0–239).

DP and EDP bits increase the number of possible PGNs by defining data pages. EDP,

however, always is set to 0 in J1939, so only DP can be set to 0 or 1, which doubles the number

of PGNs described above. The maximum number of possible PGNs (and so, different

messages) in J1939 is 2*(4096 + 240) = 8672.

For node addresses (source address and destination address), the ID reserves 8 bit, which

allows values from 0 to 255. Two values have a special meaning:

• 254 is the null address. This means there is no valid address assigned to a node yet.

• 255 is the global address. This allows sending even PGNs with PF 0 to 239 to a global

destination.

Node Addresses in NI-XNET
A newly created XNET session has no node address. If you read the J1939 Node Address

property after creating a session, it returns the value 254 (null address).

28 26 25 8 7 0

Prio PGN Source Addr

28 26 25 8 7 0

Prio Source Addr

24 23 16 15
E
D
P

D
P PF PS

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-44 ni.com

A receiving XNET session without address can read all frames from the bus. A receiving

XNET session with an assigned address can read only frames with a global destination

address (255) and frames sent to this address, but not frames sent to other nodes.

A transmitting XNET session requires a node address. All nodes in the network must have

different node addresses; otherwise, two nodes could send a frame with the same CAN

identifier, which is not allowed by the CAN standard. To ensure that each node has a different

address, J1939 defines a procedure called address claiming to obtain an address on the

network. There are two properties required for address claiming:

• Node name (64 bit value)

• Node address

The node name identifies a node (ECU) and usually is saved in the database. Each ECU in the

network has a unique node name. For the address claiming procedure, there are two important

features of the node name value:

• Priority: The lower name value has the higher priority.

• Arbitrary address capability (bit 63 = 1): This node can use a different address than

specified in case of conflict.

The arbitrary address capability is defined in the highest significant bit of the value (bit 63).

All arbitrary-capable names have a lower priority than nonarbitrary-capable names.

Address Claiming Procedure
To obtain an address on the network, set the J1939/Node Name and J1939/Node Address

properties or set the J1939/ECU property (which is equivalent to setting the other properties

using the values in the ECU object in the database). After setting the Node Address (to a value

less than 254), XNET sends an address claimed message and waits 300 ms for the response

from the network. If no other node is using this address, there is no response to the message;

after the timeout, the address is granted to the session and the session can transmit frames on

the network.

During the claiming procedure, the node address property returns the null address (254), so

you can poll this address until it gets a valid value.

If the address cannot be granted to the session (for example, when the name is not arbitrary

and another node with higher priority uses the node address), the address is not granted. After

timeout, the J1939 CommState indicates the reason for failed address claiming. If the node

name is arbitrary address capable, NI-XNET tries to find another address and claim it. This

procedure can take some time depending on how fast the other nodes respond to the address

claimed message.

NI-XNET examples contain the address claiming procedure, which you can use in your

applications.

Chapter 5 NI-XNET API for C

© National Instruments 5-45 NI-XNET Hardware and Software Manual

The frames transmitted during address claiming are not passed to the J1939 input session. To

see those frames, open a non-J1939 CAN session, which can be running parallel with a J1939

session on the same interface.

Transmitting Frames
When transmitting frames, the granted address of the node automatically replaces the source

address part of the identifier.

Transmitting Frames without Granted Node Address
In your application, you may want a session to transmit frames using the source address

provided in the identifier in the database or the frame data. If you do not assign a valid address

to a session (or set the address to 254 explicitly), NI-XNET does not change the address in

your frame identifier before transmitting. If a transmitting session without an address tries to

send a frame without a valid address in the identifier, this returns an error.

Mixing J1939 and CAN Messages
J1939 frames in the database and CAN frames data in XNET include the Application Protocol

property. This means you can mix J1939 and standard CAN messages in one session.

Standard CAN messages cannot exceed 8 bytes and do not use the node address.

In standard CAN frames, the complete identifier is considered as the CAN message identifier;

in J1939, only the PGN determines the message. Frames with the same PGN but different

priority or source address are considered the same message.

Received frames with extended identifier always are considered J1939 frames. If you use

extended CAN frames as non-J1939 frames, you must process the received data to update the

Application Protocol property.

Transport Protocol (TP)
When you use frames with more than 8 bytes, NI-XNET automatically uses the J1939

transport protocol to transmit and receive the frames. You do not receive any transport

protocol management messages in the sessions. When this is required, you must open a

non-J1939 CAN session, which can be running parallel to a J1939 session on the same

interface.

Transport protocol defines many properties used to change the behavior (for example,

timing).

If errors occur in the transport protocol, they are not reported directly from the read function.

You can monitor errors in the TP by reading the J1939 CommState with the nxReadState

function.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-46 ni.com

Note that the transport protocol is not using the priority in the identifier, and the priority value

is not transmitted with the TP. Received TP messages have the priority always set to 0.

NI-XNET Sessions
You can use all NI-XNET session modes with J1939 protocol, whether or not the frames use

transport protocol. This includes frame and signal sessions in queued, single point, or stream

mode.

Not Supported in the Current NI-XNET Version

Signal Ranges
For coded signal values in frames, J1939 reserves special values to transmit specific indicators

(for example, the error indicator). The current NI-XNET version does not support this; those

values are converted to signal values. This behavior may change in a future NI-XNET version.

Chapter 5 NI-XNET API for C

© National Instruments 5-47 NI-XNET Hardware and Software Manual

NI-XNET API for C Reference

This section describes the NI-XNET C functions and properties.

Functions

This section includes the NI-XNET functions.

nxBlink

Purpose

Blinks LEDs for the XNET interface to identify its physical port in the system.

Format

nxStatus_t _NXFUNC nxBlink (

nxSessionRef_t InterfaceRef,

u32 Modifier);

Inputs

nxSessionRef_t InterfaceRef

The XNET Interface I/O name.

u32 Modifier

Controls LED blinking:

Disable (0)

Disable blinking for identification. This option turns off both LEDs for the port.

Enable (1)

Enable blinking for identification. Both LEDs of the interface’s physical port turn on

and off. The hardware blinks the LEDs automatically until you disable, so there is

no need to call the nxBlink function repetitively.

Both LEDs blink green (not red). The blinking rate is approximately three times per

second.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-48 ni.com

Outputs

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

Each XNET device contains one or two physical ports. Each port is labeled on the hardware

as Port 1 or Port 2. The XNET device also provides two LEDs per port. For a two-port board,

LEDs 1 and 2 are assigned to Port 1, and LEDs 3 and 4 are assigned to physical Port 2.

When your application uses multiple XNET devices, this function helps to identify each

interface to associate its software behavior to its hardware connection (port). Prior to running

your XNET sessions, you can call this function to blink the interface LEDs.

For example, if you have a system with three PCI CAN cards, each with two ports, you can

use this function to blink the LEDs for interface CAN4, to identify it among the six CAN

ports.

The LEDs of each port support two states:

• Identification: Blink LEDs to identify the physical port assigned to the interface.

• In Use: LED behavior that XNET sessions control.

Identification LED State

You can use the nxBlink function only in the Identification state. If you call this function

while one or more XNET sessions for the interface are open (created), it returns an error,

because the port’s LEDs are in the In Use state.

In Use LED State

When you create an XNET session for the interface, the LEDs for that physical port transition

to the In Use state. If you called the nxBlink function previously to enable blinking for

identification, that LED behavior no longer applies. The In Use LED state remains until all

XNET sessions are cleared. This typically occurs when the application terminates. The

patterns that appear on the LEDs while In Use are documented in the LEDs section of

Chapter 3, NI-XNET Hardware Overview.

Chapter 5 NI-XNET API for C

© National Instruments 5-49 NI-XNET Hardware and Software Manual

nxClear

Purpose

Clears (closes) the XNET session.

Format

nxStatus_t nxClear (

nxSessionRef_t SessionRef);

Inputs

nxSessionRef_t SessionRef

The reference to the session to clear. This session reference is returned from

nxCreateSession.

Outputs

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function stops communication for the session and releases all resources the session uses.

nxClear internally calls nxStop with normal scope, so if this is the last session using the

interface, communication stops.

You typically use nxClear when you need to clear the existing session to create a new session

that uses the same objects. For example, if you create a session for a frame named frameA

using Frame Output Single-Point mode, then you create a second session for frameA using

Frame Output Queued mode, the second call to nxCreateSession returns an error, because

frameA can be accessed using only one output mode. If you call nxClear before the

second nxCreateSession call, you can close the previous use of frameA to create the new

session.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-50 ni.com

nxConnectTerminals

Purpose

Connects terminals on the XNET interface.

Format

nxStatus_t _NXFUNC nxConnectTerminals (

nxSessionRef_t SessionRef,

const char * source,

const char * destination);

Inputs

nxSessionRef_t SessionRef

The reference to the session to use for the connection.

const char * source terminal

The connection source name.

const char * destination terminal

The connection destination name.

Outputs

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function connects a source terminal to a destination terminal on the interface hardware.

The XNET terminal represents an external or internal hardware connection point on a

National Instruments XNET hardware product. External terminals include PXI Trigger lines

for a PXI card or RTSI terminals for a PCI card. Internal terminals include timebases (clocks)

and logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the pair is an internal and

the other an external.

Chapter 5 NI-XNET API for C

© National Instruments 5-51 NI-XNET Hardware and Software Manual

Valid Combinations of Source/Destination

The following table lists all valid combinations of source terminal and destination

terminal.

Source

Destination

PXI_Trigx

FrontPanel0

FrontPanel1

Start

Trigger

Master

Timebase

Log

Trigger

PXI_Trigx X X   

FrontPanel0

FrontPanel1

X X   

PXI_Star1 X X  X X

PXI_Clk101 X X X  X

StartTrigger   X X X

CommTrigger   X X X

FlexRayStartCycle2   X X X

FlexRayMacrotick2   X  X

1MHzTimebase   X X X

10MHzTimebase  X X X X

1 Valid only on PXI hardware.

2 Valid only on FlexRay hardware.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-52 ni.com

Source Terminals

The following table describes the valid source terminals.

Source Terminal Description

PXI_Trigx Selects a general-purpose trigger line as the connection source (input), where

x is a number from 0 to 7. For PCI cards, these are the RTSI lines. For PXI

cards, these are the PXI Trigger lines. For C Series modules in a

CompactDAQ chassis, all modules in the chassis automatically share a

common timebase. For information about routing the StartTrigger for

CompactDAQ, refer to the XNET Session Interface:Source Terminal:Start

Trigger property.

FrontPanel0

FrontPanel1

Selects a general-purpose Front Panel Trigger line as the connection source

(input).

PXI_Star Selects the PXI star trigger signal.

Within a PXI chassis, some PXI products can source star trigger from Slot 2

to all higher-numbered slots. PXI_Star enables the PXI XNET hardware to

receive the star trigger when it is in Slot 3 or higher.

Note: You cannot use this terminal with a PCI device.

PXI_Clk10 Selects the PXI 10 MHz backplane clock. The only valid destination

terminal for this source is MasterTimebase. This routes the 10 MHz PXI

backplane clock for use as the XNET card timebase. When you use

PXI_Clk10 as the XNET card timebase, you also must use PXI_Clk10 as the

timebase for other PXI cards to perform synchronized input/output.

Note: You cannot use this terminal with a PCI device.

StartTrigger Selects the start trigger, which is the event set when the Start Interface

transition occurs. The start trigger is the same for all sessions using a given

interface.

You can route the start trigger of this XNET card to the start trigger of other

XNET or DAQ cards to ensure that sampling begins at the same time on

both cards. For example, you can synchronize two XNET cards by routing

StartTrigger as the source terminal on one XNET card and then routing

StartTrigger as the destination terminal on the other XNET card, with

both cards using the same PXI Trigger line for the connections.

Chapter 5 NI-XNET API for C

© National Instruments 5-53 NI-XNET Hardware and Software Manual

CommTrigger Selects the communicating trigger, which is the event set when the Comm

State Running transition occurs. The communicating trigger is the same for

all sessions using a given interface.

You can route the communicating trigger of this XNET card to the start

trigger of other XNET or DAQ cards to ensure that sampling begins at the

same time on both cards.

The communicating trigger is similar to a start trigger, but is used if your

clock source is the FlexRayMacrotick, which is not available until the

interface is properly integrated into the bus. Because you cannot generate a

start trigger to another interface until the synchronization clock is also

available, you can use this trigger to allow for the clock under this special

circumstance.

FlexRayStartCycle Selects the FlexRay Start of Cycles as an advanced trigger source.

This generates a repeating pulse that external hardware can use to

synchronize a measurement or other action with each FlexRay cycle.

Note: You can use this terminal only with a FlexRay device.

FlexRayMacrotick Selects the FlexRay Macrotick as a timing source. The FlexRay Macrotick is

the basic unit of time in a FlexRay network.

You can use this source terminal to synchronize other measurements to

the actual time on the FlexRay bus. In this scenario, you would configure the

FlexRayMacrotick as the source terminal and route it to a PXI Trigger

or front panel terminal. After the interface is communicating to the FlexRay

network, the Macrotick signal becomes available.

You also can connect the FlexRayMacrotick to the MasterTimebase. This

configures the counter that timestamps received frames to run synchronized

to FlexRay time, and also allows you to read the FlexRay cycle macrotick to

do additional synchronization with the FlexRay bus in your application.

Note: You can use this terminal only with a FlexRay device.

Source Terminal Description

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-54 ni.com

Destination Terminals

The following table describes the valid destination terminals.

1MHzTimebase Selects the XNET card’s local 1 MHz oscillator. The only valid

destination terminals for this source are PXITrigger0–PXITrigger7.

This source terminal routes the XNET card local 1 MHz clock so that other

NI cards can use it as a timebase. For example, you can synchronize two

XNET cards by connecting 1MHzTimebase to PXI_Trigx on one XNET card

and then connecting PXI_Trigx to MasterTimebase on the other XNET card.

10MHzTimebase Selects the XNET card’s local 10 MHz oscillator. This routes the XNET card

local 10 MHz clock for use as a timebase by other NI cards. For example, you

can synchronize two XNET cards by connecting 10MHzTimebase to

PXI_Trigx on one XNET card and then connecting PXI_Trigx to

MasterTimebase on the other XNET card.

Destination

Terminal Description

PXI_Trigx Selects a general-purpose trigger line as the connection destination (output),

where x is a number from 0 to 7. For PCI cards, these are the RTSI lines. For

PXI cards, these are the PXI Trigger lines. For C Series modules in a

CompactDAQ chassis, all modules in the chassis automatically share a

common timebase. For information about routing the StartTrigger for

CompactDAQ, refer to the XNET Session Interface:Source Terminal:Start

Trigger property.

FrontPanel0

FrontPanel1

Selects a general-purpose Front Panel Trigger line as the connection

destination (output).

Source Terminal Description

Chapter 5 NI-XNET API for C

© National Instruments 5-55 NI-XNET Hardware and Software Manual

StartTrigger Selects the start trigger, which is the event that allows the interface to begin

communication. The start trigger occurs on the first source terminal

low-to-high transition. The start trigger is the same for all sessions using a

given interface. This causes the Start Interface transition to occur.

You can route the start trigger of another XNET or DAQ card to ensure that

sampling begins at the same time on both cards. For example, you can

synchronize with an M-Series DAQ MIO card by routing the AI start trigger

of the MIO card to a RTSI line and then routing the same PXI Trigger line

with StartTrigger as the destination terminal on the XNET card.

The default (disconnected) state of this destination means the start trigger

occurs when nxStart is invoked with the scope set to either Normal or

Interface Only. Alternately, if Auto Start? is enabled, reading or writing to a

session may start the interface.

MasterTimebase MasterTimebase instructs the XNET card to use the connection source

terminal as the master timebase. The XNET card uses this master timebase

for input sampling (including timestamps of received messages) as well as

periodic output sampling.

Your XNET hardware supports incoming frequencies of 1 MHz, 10 MHz,

and 20 MHz, and automatically detects the frequency without any additional

configuration.

For example, you can synchronize a CAN and DAQ M Series MIO card by

connecting the 10 MHz oscillator (board clock) of the DAQ card to a

PXI_Trig line, and then connecting the same PXI_Trig line as the source

terminal.

For PXI form factor hardware, you also can use PXI_Clk10 as the source

terminal. This receives the PXI 10 MHz backplane clock for use as the

master timebase.

MasterTimebase applies separately to each port of a multiport XNET card,

meaning you could run each port off of a separate incoming (or onboard)

timebase signal.

Destination

Terminal Description

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-56 ni.com

If you are using a PCI board, the default connection to the Master Timebase

is the local oscillator. If you are using a PXI board, the default connection to

the MasterTimebase is the PXI_Clk10 signal, if it is available. Some chassis

allow PXI_Clk10 to be turned off. In this case, the hardware automatically

uses the local oscillator as the default MasterTimebase.

Log Trigger The Log Trigger terminal generates a frame when it detects a rising edge.

When connected, this frame is transferred into the queue of the Frame Stream

Input session if the session is started. For information about this frame,

including the interpretation of the frame payload, refer to Special Frames.

Destination

Terminal Description

Chapter 5 NI-XNET API for C

© National Instruments 5-57 NI-XNET Hardware and Software Manual

nxConvertFramesToSignalsSinglePoint

Purpose

Converts between NI-XNET frames and signals using a session of Conversion Mode.

Format

nxStatus_t nxConvertFramesToSignalsSinglePoint (

nxSessionRef_t SessionRef,

void * FrameBuffer,

u32 NumberOfBytesForFrames,

f64 * ValueBuffer,

u32 SizeOfValueBuffer,

nxTimestamp_t * TimestampBuffer,

u32 SizeOfTimestampBuffer);

Inputs

nxSessionRef_t SessionRef

The session to convert. This session is returned from nxCreateSession. The session

mode must be Conversion.

void * FrameBuffer

Provides the array of bytes, representing frames to convert.

The raw bytes encode one or more frames using the Raw Frame Format. This frame

format is the same for read and write of raw data and also is used for log file examples.

For information about which elements of the raw frame are applicable, refer to Raw

Frame Format.

The data you write is queued for transmit on the network. Using the default queue

configuration for this mode, you can safely write 1536 frames if you have a sufficiently

long timeout. To write more data, refer to the XNET Session Number of Values Unused

property to determine the actual amount of queue space available for writing.

u32 NumberOfBytesForFrames

The size (in bytes) of the buffer passed to FrameBuffer. This is used to calculate the

number of frames to convert.

u32 SizeOfValueBuffer

You should set this to the size (in bytes) of the array passed to ValueBuffer. If this is

too small to fit one element for each signal in the session, an error is returned.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-58 ni.com

u32 SizeOfTimestampBuffer

You should set this to the size (in bytes) of the array passed to TimestampBuffer. If

TimestampBuffer is not NULL, and this is too small to fit one element for each signal

in the session, an error is returned.

Outputs

f64* ValueBuffer

Returns a one-dimensional array of signal values. Each signal value is scaled, 64-bit

floating point.

Each array element corresponds to a signal configured for the session. The order of

signals in the array corresponds to the order in the session list.

The data returns the most recent value received for each signal. If multiple frames for a

signal are received since the previous call to nxReadSignalSinglePoint (or session

start), only signal data from the most recent frame is returned.

If no frame is received for the corresponding signals since you started the session, the

XNET Signal Default Value is returned.

nxTimestamp_t* TimestampBuffer

Optionally returns a one-dimensional array of timestamp values of the times when the

corresponding signal values arrived. Each timestamp value is the number of 100 ns

increments since Jan 1, 1601 12:00 AM UTC.

You can pass TimestampBuffer as NULL; in this case, no timestamps are returned.

You also should pass 0 to SizeOfTimeStampBuffer in this case.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

The frames passed into the FrameBuffer array are read one by one, and the signal values

found are written to internal buffers for each signal. Frames are identified by their identifier

(FlexRay: slot) field. Frames unknown to the session are silently ignored. After all frames in

the FrameBuffer array are processed, the internal signal buffers’ status is returned in the

ValueBuffer array, and optionally, the corresponding timestamps from the frames where a

signal value was found are returned in the TimestampBuffer array. The signal internal

buffers’ status is being preserved over multiple calls to this function.

This way, for example, data returned from multiple calls of nxFrameRead for a Frame Input

Stream Mode session (or any other Frame Input session) can be passed to this function

directly.

Chapter 5 NI-XNET API for C

© National Instruments 5-59 NI-XNET Hardware and Software Manual

nxConvertSignalsToFramesSinglePoint

Purpose

Converts between NI-XNET signals and frames using a session of Conversion Mode.

Format

nxStatus_t nxConvertSignalsToFramesSinglePoint (

nxSessionRef_t SessionRef,

f64 * ValueBuffer,

u32 SizeOfValueBuffer

void * Buffer,

u32 SizeOfBuffer,

u32 * NumberOfBytesReturned);

Inputs

nxSessionRef_t SessionRef

The session to convert. This session is returned from nxCreateSession. The session

mode must be Conversion.

f64 * ValueBuffer

Provides a one-dimensional array of signal values. Each signal value is scaled, 64-bit

floating point.

Each array element corresponds to a signal configured for the session. The order of

signals in the array corresponds to the order in the session list.

The data provides the value for the conversion of each signal.

u32 SizeOfValueBuffer

You should set this to the size (in bytes) of the array passed to ValueBuffer. If this is

too small to fit one element for each signal in the session, an error is returned.

u32 SizeOfBuffer

You should set this to the size (in bytes) of the array passed to Buffer.

This number does not represent the number of frames to convert. As encoded in raw data,

each frame can vary in length. Therefore, the number represents the maximum raw bytes

to be converted, not the number of frames.

For each frame used in the session, you must provide buffer space in the array passed to

Buffer.

CAN and LIN frames are always 24 bytes in length. To convert a specific number of

frames, multiply that number by 24.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-60 ni.com

FlexRay frames vary in length. For example, if you pass SizeOfBuffer of 91, the buffer

may return 80 bytes, within which the first 24 bytes encode the first frame, and the next

56 bytes encode the second frame.

If SizeOfBuffer is positive, the data array size is no greater than this number. The

minimum size for a single frame is 24 bytes, so you must use at least that number.

Outputs

void * Buffer

Returns an array of bytes.

The raw bytes encode one or more frames using the Raw Frame Format. This frame

format is the same for read and write of raw data, and it is also used for log file examples.

The data always returns complete frames.

For each frame that appears in the session, exactly one frame is returned. If the buffer is

not large enough to hold all the data, an error is returned.

u32 * NumberOfBytesReturned

Returns the number of valid bytes in the Buffer array.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

The signal values written to the ValueBuffer array are written to a raw frame buffer array.

For each frame included in the session, one frame is generated in the array that contains the

signal values. Signals not present in the session are written as their respective default values;

empty space in the frames that signals do not occupy is written with the frame’s default

payload.

The frame header values are filled with appropriate values so that this function’s output can

be directly written to a Frame Output session.

Chapter 5 NI-XNET API for C

© National Instruments 5-61 NI-XNET Hardware and Software Manual

nxCreateSession

Purpose

Creates an XNET session at run time using strings.

Format

nxStatus_t nxCreateSession (

const char * DatabaseName,

const char * ClusterName,

const char * List,

const char * Interface,

u32 Mode,

nxSessionRef_t * SessionRef);

Inputs

const char * DatabaseName

The XNET database to use for interface configuration. The database name must use the

<alias> or <filepath> syntax (refer to Databases).

Three special values for this parameter exist:

• :memory:—This is the default in-memory database. You can create and manipulate

it using the nxdb... functions. As long as you do not save its content to a real

database file using nxdbSaveDatabase, its content is available to

nxCreateSession with this special parameter. After you create the session, you

must set the XNET Session Interface:Baud Rate property prior to starting the

session.

• :can_fd: or :can_fd_brs:—These databases are similar to the default in-memory

database, but configure the cluster in either CAN FD or CAN FD+BRS mode,

respectively. After you create the session, you must set the XNET Session

Interface:Baud Rate and Interface:CAN:FD Baud Rate properties prior to starting

the session.

• :can_j1939:—This database is similar to the empty in-memory database

(:memory:), but configures the cluster in CAN SAE J1939 application protocol

mode. After you create the session, you must set the XNET Session Interface:Baud

Rate property using a Session node. You must set this baud rate prior to starting the

session.

• :subordinate:—This “database” is available only for a mode of

nxMode_FrameInStream. A subordinate session uses the cluster and interface

configuration from other sessions. For example, you may have a test application with

which the end user specifies the database file, cluster, and signals to read/write. You

also have a second application with which you want to log all received frames (input

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-62 ni.com

stream), but that application does not specify a database. You run this second

application using a subordinate session, meaning it does not configure or start the

interface, but depends on the primary test application. For a subordinate session,

start and stop of the interface (using the nxStart/nxStop functions) is ignored. The

subordinate session reads frames only when another nonsubordinate session starts

the interface.

const char * ClusterName

The XNET cluster to use for interface configuration. The name must specify a cluster

from the database given in the DatabaseName parameter. If it is left blank, the cluster is

extracted from the List parameter; this is not allowed for modes of

nxMode_FrameInStream or nxMode_FrameOutStream.

const char * List

Provides the list of signals or frames for the session.

The List syntax depends on the mode:

Mode List Syntax

nxMode_SignalInSinglePoint,

nxMode_SignalOutSinglePoint

List contains one or more XNET Signal

names. If more than one name is provided, a

comma must separate each name. Each name

must be one of the following options, whichever

uniquely identifies a signal within the database

given in the DatabaseName parameter:

• <Signal>

• <Frame>.<Signal>

• <Cluster>.<Frame>.<Signal>

• <PDU>.<Signal>

• <Cluster>.<PDU>.<Signal>

List may also contain one or more trigger

signals. For information about trigger signals,

refer to Signal Output Single-Point Mode or

Signal Input Single-Point Mode.

Chapter 5 NI-XNET API for C

© National Instruments 5-63 NI-XNET Hardware and Software Manual

Mode List Syntax

nxMode_SignalInWaveform,
nxMode_SignalOutWaveform

List contains one or more XNET Signal names.

If more than one name is provided, a comma must

separate each name. Each name must be one of

the following options, whichever uniquely

identifies a signal within the database given in the

DatabaseName parameter:

• <Signal>

• <Frame>.<Signal>

• <Cluster>.<Frame>.<Signal>

• <PDU>.<Signal>

• <Cluster>.<PDU>.<Signal>

nxMode_SignalInXY,
nxMode_SignalOutXY

List contains one or more XNET Signal names.

If more than one name is provided, a comma must

separate each name. Each name must be one of

the following uptions, whichever uniquely

identifies a signal within the database given in the

DatabaseName parameter:

• <Signal>

• <Frame>.<Signal>

• <Cluster>.<Frame>.<Signal>

• <PDU>.<Signal>

• <Cluster>.<PDU>.<Signal>

nxMode_FrameInStream,
nxMode_FrameOutStream

List is empty (“ ”).

nxMode_FrameInQueued,
nxMode_FrameOutQueued

List contains only one XNET Frame or PDU

name. Only one name is supported. Each name

must be one of the following options, whichever

uniquely identifies a frame within the database

given in the DatabaseName parameter:

• <Frame>

• <Cluster>.<Frame>

• <PDU>

• <Cluster>.<PDU>

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-64 ni.com

const char * Interface

The XNET Interface to use for this session. If Mode is

nxMode_SignalConversionSinglePoint, this input is ignored. You can set it to an

empty string.

u32 Mode

The session mode. It can be one of the following constants defined in nixnet.h:

nxMode_SignalInSinglePoint 0

nxMode_SignalInWaveform 1

nxMode_SignalInXY 2

nxMode_SignalOutSinglePoint 3

nxMode_SignalOutWaveform 4

nxMode_SignalOutXY 5

nxMode_FrameInStream 6

nxMode_FrameInSinglePoint,
nxMode_FrameOutSinglePoint

List contains one or more XNET Frame or PDU

names. If more than one name is provided, a

comma must separate each name. Each name

must be one of the following options, whichever

uniquely identifies a frame within the database

given in the DatabaseName parameter:

• <Frame>

• <Cluster>.<Frame>

• <PDU>

• <Cluster>.<PDU>

nxMode_SignalConversionSinglePoint List contains one or more XNET Signal names.

If more than one name is provided, a comma must

separate each name. Each name must be one of

the following options, whichever uniquely

identifies a signal within the database given in the

DatabaseName parameter:

• <Signal>

• <Frame>.<Signal>

• <Cluster>.<Frame>.<Signal>

• <PDU>.<Signal>

• <Cluster>.<PDU>.<Signal>

Mode List Syntax

Chapter 5 NI-XNET API for C

© National Instruments 5-65 NI-XNET Hardware and Software Manual

nxMode_FrameInQueued 7

nxMode_FrameInSinglePoint 8

nxMode_FrameOutStream 9

nxMode_FrameOutQueued 10

nxMode_FrameOutSinglePoint 11

nxMode_SignalConversionSinglePoint 12

Outputs

nxSessionRef_t* SessionRef

Returns the handle to the session created. Pass this value to any other NI-XNET API

functions.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function creates a session using the named database objects specified in List from the

database named in DatabaseName.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-66 ni.com

nxCreateSessionByRef

Purpose

Creates an XNET session at run time using database references.

Format

nxStatus_t nxCreateSessionByRef (

u32 NumberOfDatabaseRef,

nxDatabaseRef_t * ArrayOfDatabaseRef,

const char * Interface,

u32 Mode,

nxSessionRef_t * SessionRef);

Inputs

u32 NumberOfDatabaseRef

The number of references passed in ArrayOfDatabaseRef.

nxDatabaseRef_t *ArrayOfDatabaseRef

The array of database objects to be used in the session. This can be an array of signal

references, an array of frame references, or a single cluster reference, depending on

the mode:

Mode ArrayOfDatabaseRef Syntax

nxMode_SignalInSinglePoint,

nxMode_SignalOutSinglePoint

ArrayOfDatabaseRef contains one or more XNET

Signal refs.

nxMode_SignalInWaveform,

nxMode_SignalOutWaveform

ArrayOfDatabaseRef contains one or more XNET

Signal refs.

nxMode_SignalInXY,

nxMode_SignalOutXY

ArrayOfDatabaseRef contains one or more XNET

Signal refs.

nxMode_FrameInStream,

nxMode_FrameOutStream

ArrayOfDatabaseRef contains only one XNET

Cluster ref.

nxMode_FrameInQueued,

nxMode_FrameOutQueued

ArrayOfDatabaseRef contains only one XNET Frame

or PDU ref.

nxMode_FrameInSinglePoint,

nxMode_FrameOutSinglePoint

ArrayOfDatabaseRef contains one or more XNET

Frame or PDU refs.

Chapter 5 NI-XNET API for C

© National Instruments 5-67 NI-XNET Hardware and Software Manual

const char * Interface

The XNET Interface to use for this session.

u32 Mode

The session mode. It can be one of the following constants defined in nixnet.h:

nxMode_SignalInSinglePoint 0

nxMode_SignalInWaveform 1

nxMode_SignalInXY 2

nxMode_SignalOutSinglePoint 3

nxMode_SignalOutWaveform 4

nxMode_SignalOutXY 5

nxMode_FrameInStream 6

nxMode_FrameInQueued 7

nxMode_FrameInSinglePoint 8

nxMode_FrameOutStream 9

nxMode_FrameOutQueued 10

nxMode_FrameOutSinglePoint 11

Note You can use the nxMode_FrameInQueued, nxMode_FrameInSinglePoint,

nxMode_FrameOutQueued, and nxMode_FrameOutSinglePoint modes for PDUs

also.

Outputs

nxSessionRef_t* SessionRef

Returns the handle to the session created. Pass this value to any other NI-XNET API

functions.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function creates a session using the referenced database objects from an open database

specified in ArrayOfDatabaseRef.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-68 ni.com

nxdbAddAlias

Purpose

Adds a new alias to a database file.

Format

nxStatus_t _NXFUNC nxdbAddAlias (

const char * DatabaseAlias,

const char * DatabaseFilepath,

u32 DefaultBaudRate);

Inputs

const char * DatabaseAlias

Provides the desired alias name. Unlike the names of other XNET database objects, the

alias name can use special characters such as space and dash. If the alias name already

exists, this function changes the previous filepath to the specified filepath.

const char * DatabaseFilepath

Provides the path to the CANdb, FIBEX, or LDF file.

u32 DefaultBaudRate

Provides the default baud rate, used when filepath refers to a CANdb database (.dbc) or

an NI-CAN database (.ncd). These database formats are specific to CAN and do not

specify a cluster baud rate. Use this default baud rate to specify a default CAN baud rate

to use with this alias. If Filepath refers to a FIBEX database (.xml) or LIN LDF file,

the DefaultBaudRate parameter is ignored. The FIBEX and LDF database formats

require a valid baud rate for every cluster, and NI-XNET uses that baud rate as the

default.

Outputs

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Chapter 5 NI-XNET API for C

© National Instruments 5-69 NI-XNET Hardware and Software Manual

Description

NI-XNET uses alias names for database files. The alias names provide a shorter name for

display, allow for changes to the file system without changing the application, and enable

efficient deployment to LabVIEW Real-Time (RT) targets.

This function is supported on Windows only. For RT targets, you can pass the new alias to

nxdbDeploy to transfer an optimized binary image of the database to the RT target. After

deploying the database, you can use the alias name in any application for the Windows host

and RT target.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-70 ni.com

nxdbCloseDatabase

Purpose

Closes the database.

Format

nxStatus_t _NXFUNC nxdbCloseDatabase (

nxDatabaseRef_t DatabaseRef,

u32 CloseAllRefs);

Inputs

nxDatabaseRef_t DatabaseRef

The reference to the database to close.

u32 CloseAllRefs

Indicates that a database open multiple times (refer to nxdbOpenDatabase) should be

closed completely (CloseAllRefs = 1), or just the reference counter should be

decremented (CloseAllRefs = 0), and the database remains open. When the database

is closed completely, all references to objects in this database become invalid.

Outputs

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function closes a database. For the case that different threads of an application are using

the same database, nxdbOpenDatabase and nxdbCloseDatabase maintain a reference

counter indicating how many times the database is open. Every thread can open the database,

work with it, and close the database independently using CloseAllRefs = 0. Only the last

call to nxdbCloseDatabase actually closes access to the database.

Another option is that only one thread executes nxdbCloseDatabase once, using

CloseAllRefs = 1, which closes access for all other threads. This may be convenient when,

for example, the main program needs to stop all running threads and be sure the database is

closed properly, even if some threads could not execute nxdbCloseDatabase.

Chapter 5 NI-XNET API for C

© National Instruments 5-71 NI-XNET Hardware and Software Manual

nxdbCreateObject

Purpose

Creates a new XNET cluster.

Format

nxStatus_t _NXFUNC nxdbCreateObject (

nxDatabaseRef_t ParentObjectRef,

u32 ObjectClass,

const char * ObjectName,

nxDatabaseRef_t * DbObjectRef);

Inputs

nxDatabaseRef_t ParentObjectRef

The reference to the parent database object. You first must open a database file using

nxdbOpenDatabase.

u32 ObjectClass

The class of object to be created.

const char * ObjectName

The name of the database object to create. The name must be unique for all database

objects of the same class in a database. Lowercase letters, uppercase letters, numbers, and

the underscore (_) are valid characters for the name. The space (), period (.), and other

special characters are not supported within the name. The name must begin with a letter

(uppercase or lowercase) or underscore, and not a number. The name is limited to

128 characters.

Outputs

nxDatabaseRef_t * DbObjectRef

The reference to the newly created database object.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-72 ni.com

Description

This function creates an XNET database object. You can create the following objects using

this function:

• nxClass_Cluster; parent is nxClass_Database object

• nxClass_Frame; parent is nxClass_Cluster object

• nxClass_PDU; parent is nxClass_Cluster

• nxClass_Subframe; parent is nxClass_PDU or nxClass_Frame1

• nxClass_Signal; parent is nxClass_PDU or nxClass_Frame1

• nxClass_ECU; parent is nxClass_Cluster

• nxClass_LINSched; parent is nxClass_Cluster

• nxClass_LINSchedEntry; parent is nxClass_LINSched

The ObjectName input becomes the nxProp..._Name property of the created object

The database object is created and remains in memory until the database is closed. This

function does not change the open database file on disk. To save the newly created object to

the file, use nxdbSaveDatabase.

1 You can create a subframe or signal on a frame object only if there is a one-to-one relationship between frames and PDUs, or
PDUs are not used (for example, in DBC files).

Chapter 5 NI-XNET API for C

© National Instruments 5-73 NI-XNET Hardware and Software Manual

nxdbDeleteObject

Purpose

Deletes an XNET database object and all its child objects.

Format

nxStatus_t _NXFUNC nxdbDeleteObject (

nxDatabaseRef_t DbObjectRef);

Inputs

nxDatabaseRef_t DbObjectRef

References the database object to delete.

Outputs

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function deletes an XNET database object with all its child objects. When deleting a

frame, it also deletes PDUs mapped to the frame and all signals and subframes defined in

those PDUs. To delete a frame without PDUs, unmap the PDUs by setting the XNET Frame

PDU References property to an empty array before deleting the frame object.

Upon deletion, the references to all deleted objects are closed and no longer can be used.

The objects are deleted from a database in memory. The change is in force until the database

is closed. This function does not change the open database file on disk. To save the changed

database to the file, use nxdbSaveDatabase.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-74 ni.com

nxdbDeploy

Purpose

Deploys a database to a remote Real-Time (RT) target.

Format

nxStatus_t _NXFUNC nxdbDeploy (

const char * IPAddress,

const char * DatabaseAlias,

u32 WaitForComplete,

u32 * PercentComplete);

Inputs

const char * IPAddress

The target IP address.

const char * DatabaseAlias

Provides the database alias name. To deploy a database text file, first add an alias using

nxdbAddAlias.

u32 WaitForComplete

Determines whether the function returns directly or waits until the entire transmission is

completed.

Outputs

u32 * PercentComplete

Indicates the deployment progress.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function transfers an optimized binary image of the database to the RT target. After

deploying the database, you can use the alias name in any application for the Windows host

and the LabVIEW RT target.

Chapter 5 NI-XNET API for C

© National Instruments 5-75 NI-XNET Hardware and Software Manual

This function is supported on Windows only. RT database deployments are managed remotely

from Windows.

This function must access the remote RT target from Windows, so IPAddress must specify

a valid IP address for the RT target. You can find this IP address using MAX.

If the RT target access is password protected, use the following syntax for the IP address to

deploy an alias: [user:password@]IPaddress.

Remote file transfer can take a few seconds, especially when the RT target is far away.

If WaitForComplete is true, this function waits for the entire transfer to complete, then

returns. The return value reflects the deployment status, and PercentComplete is 100.

If WaitForComplete is false, this function transfers a portion of the database and returns

before it is complete. For an incomplete transfer, the return value returns success, and

PercentComplete is less than 100. You can use PercentComplete to display transfer

progress on your front panel. You must call nxdbDeploy in a loop until PercentComplete

is returned as 100, at which time the return value reflects the entire deployment status.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-76 ni.com

nxdbFindObject

Purpose

Finds an object in the database.

Format

nxStatus_t _NXFUNC nxdbFindObject (

nxDatabaseRef_t ParentObjectRef,

u32 ObjectClass,

const char * ObjectName,

nxDatabaseRef_t * DbObjectRef);

Inputs

nxDatabaseRef_t ParentObjectRef

The reference to the parent object.

u32 ObjectClass

The class of the object to find.

const char * ObjectName

The name of the object to find.

Outputs

nxDatabaseRef_t * DbObjectRef

A reference to the found object that you can use in subsequent function calls to reference

the object.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function finds an object relative to a parent object.

Unlike nxdbCreateObject, this function allows ParentObjectRef to be a grandparent or

great-grandparent.

Chapter 5 NI-XNET API for C

© National Instruments 5-77 NI-XNET Hardware and Software Manual

If ParentObjectRef is a direct parent (for example, frame for signal), the ObjectName to

search for can be short, and the search proceeds quickly.

If ParentObjectRef is not a direct parent (for example, database for signal), the

ObjectName to search for must be qualified such that it is unique within the scope of

ParentObjectRef.

For example, if the class of ParentObjectRef is nxClass_Cluster, and ObjectClass is

nxClass_Signal, you can specify ObjectName of mySignal, assuming that signal name is

unique to the cluster. If not, you must include the frame name as a prefix, such as

myFrameA.mySignal.

You must call this function to get a reference to a database object before you can access it.

NI-XNET supports the following database classes:

• nxClass_Cluster

• nxClass_Frame

• nxClass_PDU

• nxClass_Signal

• nxClass_Subframe

• nxClass_ECU

• nxClass_LINSched

• nxClass_LINSchedEntry

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-78 ni.com

nxdbGetDatabaseList

Purpose

Gets the current list of databases on a system.

Format

nxStatus_t _NXFUNC nxdbGetDatabaseList (

const char * IPAddress,

u32 SizeofAliasBuffer,

char * AliasBuffer,

u32 SizeofFilepathBuffer,

char * FilepathBuffer,

u32 * NumberOfDatabases);

Inputs

const char * IPAddress

The target IP address.

If IPAddress is an empty string, this function retrieves aliases and file paths for the local

Windows system.

If IPAddress is a valid IP address, this function retrieves aliases and file paths for the

remote RT target. You can find this IP address using MAX.

u32 SizeofAliasBuffer

The size of the buffer provided to take the list of alias names.

u32 SizeofFilepathBuffer

The size of the buffer provided to take the list of filepaths of the database files.

Outputs

char * AliasBuffer

Returns a comma-separated list of strings, one for every alias registered in the system.

If no aliases are registered, the list is empty.

char * FilepathBuffer

Returns a comma-separated list of strings that contain the file paths and filenames of the

databases assigned to the aliases, one for every alias registered in the system.

If no aliases are registered, the list is empty. This parameter applies to Windows targets

only; on RT targets, this list always is empty.

u32 * NumberOfDatabases

Returns the number of databases registered on the system.

Chapter 5 NI-XNET API for C

© National Instruments 5-79 NI-XNET Hardware and Software Manual

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

For a local Windows call (IP address empty), FilepathBuffer returns a comma-separated

list of file paths. The number of elements in this list is the same as in AliasBuffer. It

provides the Windows file path for each corresponding alias.

For a remote call to RT, FilepathBuffer is empty. NI-XNET handles the file system on the

RT target automatically, so that only the alias is needed.

This function is supported on Windows only. RT database deployments are managed remotely

from Windows.

This call checks for the existence of the database file and removes any aliases that are no

longer valid.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-80 ni.com

nxdbGetDatabaseListSizes

Purpose

Gets the buffer sizes required to read the current list of databases on a system.

Format

nxStatus_t _NXFUNC nxdbGetDatabaseListSizes (

const char * IPAddress,

u32 * SizeofAliasBuffer,

u32 * SizeofFilepathBuffer);

Inputs

const char * IPAddress

The target IP address.

If IPAddress is an empty string, this function retrieves aliases and file paths for the local

Windows system.

If IPAddress is a valid IP address, this function retrieves aliases and file paths for the

remote RT target. You can find this IP address using MAX.

u32 SizeofAliasBuffer

Size of the buffer provided to take the list of alias names.

u32 SizeofFilepathBuffer

Size of the buffer provided to take the list of file paths of the database files.

Outputs

u32 SizeofAliasBuffer

Size of the buffer needed to take the list of alias names.

u32 SizeofFilepathBuffer

Size of the buffer needed to take the list of file paths of the database files.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Chapter 5 NI-XNET API for C

© National Instruments 5-81 NI-XNET Hardware and Software Manual

Description

For a local Windows call (IP address empty), SizeofFilepathBuffer returns the size of a

buffer needed to query the list of file paths.

For a remote call to RT, SizeofFilepathBuffer is empty. NI-XNET handles the file

system on the RT target automatically, so that only the alias is needed.

This function is supported on Windows only. RT database deployments are managed remotely

from Windows.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-82 ni.com

nxdbGetDBCAttribute

Purpose

Reads an attribute value, attribute enumeration, defined attributes, or signal value table from

a DBC file.

Format

nxStatus_t nxdbGetDBCAttribute (

nxDatabaseRef_t DbObjectRef,

const u32 Mode,

const char* AttributeName,

const u32 AttributeTextSize,

char* AttributeText,

u32* IsDefault);

Inputs

nxDatabaseRef_t DbObjectRef

The reference to the database object for which to get the attribute.

const u32 Mode

The mode specification of this function. Depending on this value, the function returns the

following data:

• Mode 0: Get Attribute Value: For a given object (for example, a signal), the

function returns the attribute value assigned to the object. The attribute values

always are returned as text in AttributeText. The DBC specification also allows

defining other data types, such as integer or float. If necessary, you can convert the

value to a number by using, for example, the atoi() function. If the attribute is

defined as an enumeration of text strings, the attribute value returned here is the

index to the enumeration list, which you can retrieve using Mode 1 of this function.

• Mode 1: Get Enumeration: For a given attribute name, the function returns the

enumeration text table as a comma-separated string in AttributeText. Because

the enumeration for a given attribute name is the same for all objects of the same

type, ObjectRef can point to any object with the given class (ObjectRef specifies

the class). If no enumeration is defined for an attribute, the function returns an empty

string.

• Mode 2: Get Attribute Name List: Returns all attribute names defined for the given

object type as a comma-separated string. ObjectRef can point to any object in the

database of the given class (ObjectRef specifies the object class).

AttributeName is ignored (it should be set to empty string or NULL).

• Mode 3: Get Signal Value Table: This is valid only when ObjectRef points to a

signal. AttributeName is ignored (it should be set to empty string or NULL). If the

Chapter 5 NI-XNET API for C

© National Instruments 5-83 NI-XNET Hardware and Software Manual

given signal contains a value table, the function returns a comma-separated list in the

form {[value,string],<value>,<string>}. The list contains any number of

corresponding value,string pairs. If no value table is defined for the signal, the result

is an empty string.

const char* AttributeName

The attribute name as defined in the DBC file.

u32 AttributeTextSize

The size in bytes for the AttributeText buffer passed to this function, including \0 for

the end of string mark.

char* AttributeText

The buffer in which the attribute value is returned. You can use the

nxdbGetDBCAttributeSize function to determine the minimum buffer size for the

given attribute.

u32* IsDefault

Indicates that a default value is used instead of specific value for this object. DBC files

define a default value for an attribute with the given name, and then specific values for

particular objects. If the specific value for an object is not defined, the default value is

returned. If the value returned in IsDefault is 0 (false), the attribute value is specific

for this object; otherwise, it is a default. IsDefault has no meaning if the Mode

parameter is not 0 (refer to the Mode description above).

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

Depending on the Mode parameter, this function reads an attribute value, attribute

enumeration, list of existing attributes, or value table of a signal from a DBC file. Refer to the

Mode parameter description above for details.

Attributes are supported for the following object types:

• Cluster (DBC file: Network attribute)

• Frame (DBC file: Message attribute)

• Signal (DBC file: Signal attribute)

• ECU (DBC file: Node attribute)

Databases other than DBC do not support attributes. Attributes are not saved to a FIBEX file

when you open and save a DBC file.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-84 ni.com

nxdbGetDBCAttributeSize

Purpose

Retrieves the minimum size of the buffer required by the nxdbGetDBCAttribute function.

Format

nxStatus_t nxdbGetDBCAttributeSize (

nxDatabaseRef_t DbObjectRef,

const int Mode,

const char* AttributeName,

u32* AttributeTextSize);

Inputs

nxDatabaseRef_t DbObjectRef

The reference to the database object for which to get the attribute size.

const u32 Mode

The mode specification of this function. Refer to nxdbGetDBCAttribute for details.

const char* AttributeName

The attribute name as defined in the DBC file.

u32* AttributeTextSize

Returns the required buffer size in bytes for the attribute value, including \0 for the end

of string mark.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

You can use nxdbGetDBCAttributeSize prior to calling the nxdbGetDBCAttribute

function to retrieve the required buffer size. Using this size, you can allocate memory for a

buffer large enough to hold the attribute value.

Chapter 5 NI-XNET API for C

© National Instruments 5-85 NI-XNET Hardware and Software Manual

nxdbGetProperty

Purpose

Reads properties for an XNET Database object.

Format

nxStatus_t _NXFUNC nxdbGetProperty (

nxDatabaseRef_t DbObjectRef,

u32 PropertyID,

u32 PropertySize,

void * PropertyValue);

Inputs

nxDatabaseRef_t DbObjectRef

The reference to the database object for which to get the property value.

u32 PropertyID

Specifies the ID of the property to get.

u32 PropertySize

The size of the property to get.

Outputs

void * PropertyValue

A void pointer to a buffer that receives the property value.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of

0 indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function is used to read properties for an XNET Database object. Refer to the following

sections for information about properties you can use with this function:

• XNET Cluster Properties

• XNET Database Properties

• XNET ECU Properties

• XNET Frame Properties

• XNET Signal Properties

• XNET Subframe Properties

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-86 ni.com

nxdbGetPropertySize

Purpose

Gets a property value size in bytes.

Format

nxStatus_t _NXFUNC nxdbGetPropertySize (

nxDatabaseRef_t DbObjectRef,

u32 PropertyID,

u32 * PropertySize);

Inputs

nxDatabaseRef_t DbObjectRef

The reference to the database object for which to get the property value size.

u32 PropertyID

Specifies the ID of the property for which to get the size.

u32 PropertySize

The size of the property to get.

Outputs

u32 PropertySize

The size of the property value in bytes.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

Use this function to get a property value size in bytes. Refer to the following sections for

information about properties you can use with this function:

• XNET Cluster Properties

• XNET Database Properties

• XNET ECU Properties

• XNET Frame Properties

• XNET Signal Properties

• XNET Subframe Properties

Chapter 5 NI-XNET API for C

© National Instruments 5-87 NI-XNET Hardware and Software Manual

nxdbMerge

Purpose

Merges database objects and related subobjects from the source to the destination cluster.

Format

nxStatus_t _NXFUNC nxdbMerge (

nxDatabaseRef_t TargetClusterRef,

nxDatabaseRef_t SourceObjRef,

u32 CopyMode,

const char * Prefix,

u32 WaitForComplete,

u32 *PercentComplete);

Inputs

nxDatabaseRef_t TargetClusterRef

References the cluster object where the source object is merged.

nxDatabaseRef_t SourceObjRef

References the object to be merged into the target cluster.

u32 CopyMode

Defines the merging behavior if the target cluster already contains an object with the

same name.

Ccnst char * Prefix

The prefix to be added to the source object name if an abject with the same name and type

exists in the target cluster.

U32 WaitForComplete

Determines whether the function returns directly or waits until the entire transmission is

completed.

Outputs

u32 * PercentComplete

Indicates the merging progress.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-88 ni.com

Description

This function merges a database object with all dependent child objects into the target cluster.

This function works with the following objects: Frame, PDU, ECU, LIN Schedule, or a

cluster. All listed objects must have unique names in the cluster. They are referenced here as

objects, as opposed to child objects (for example, a signal is a child of a frame).

If the source object name is not used in the target cluster, this function copies the source

objects with the child objects to the target. If an object with the same name exists in the target

cluster, you can avoid name collisions by specifying the prefix to be added to the name.

If an object with the same name exists in the target cluster, the merge behavior depends on the

CopyMode input:

• nxdbMerge_CopyUseSource: The target object with all dependent child objects is

removed from the target cluster and replaced by the source objects.

• nxdbMerge_CopyUseTarget: The source object is ignored (the target cluster object

with child objects remains unchanged).

• nxdbMerge_MergeUseSource: This adds child objects from the source object to child

objects from the destination object. If target object contains a child object with the same

name, the child object from the source frame replaces it. The source object properties (for

example, payload length of the frame) replace the target properties.

• nxdbMerge_MergeUseTarget: This adds child objects from the source object to child

objects from the destination object. If the target object contains a child object with the

same name, it remains unchanged. The target object properties remain unchanged (for

example, payload length).

Example

Target frame F1(v1) has signals S1 and S2(v1). Source frame F1(v2) has signals S2(v2)

and S3.

(v1) and (v2) are two versions of one object with same name, but with different properties.

• Result of nxdbMerge_CopyUseSource: F1(v2), S2(v2), S3.

• Result of nxdbMerge_CopyUseTarget: F1(v1), S1, S2(v1).

• Result of nxdbMerge_MergeUseSource: F1(v2), S1, S2(v2), S3.

• Result of nxdbMerge_MergeUseTarget: F1(v1), S1, S2(v1), S3.

If the source object is a cluster, this function copies all contained PDUs, ECUs, and LIN

schedules with their child objects to the destination cluster.

Depending on the number of contained objects in the source and destination clusters, the

execution can take a longer time. If WaitForComplete is true, this function waits until the

Chapter 5 NI-XNET API for C

© National Instruments 5-89 NI-XNET Hardware and Software Manual

merging process gets completed. If the execution completes without errors,

PercentComplete returns 100. If WaitForComplete is false, the function returns quickly,

and PercentComplete returns values less than 100. You must call nxdbMerge repeatedly

until PercentComplete returns 100. You can use the time between calls to update a progress

bar.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-90 ni.com

nxdbOpenDatabase

Purpose

Opens a database file.

Format

nxStatus_t _NXFUNC nxdbOpenDatabase (

const char * DatabaseName,

nxDatabaseRef_t * DatabaseRef);

Inputs

const char * DatabaseName

The cluster to open.

Outputs

nxDatabaseRef_t * DatabaseRef

A reference to the database that you can use in subsequent function calls to reference the

database.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function opens a database. When an already open database is opened, this function grants

access to the same database and increases an internal reference counter. A multiple referenced

(open) database must be closed as many times as it has been opened. Until it is completely

closed, the access to this database remains granted, and the database uses computer resources

(memory and handles). For more information, refer to nxdbCloseDatabase.

Chapter 5 NI-XNET API for C

© National Instruments 5-91 NI-XNET Hardware and Software Manual

nxdbRemoveAlias

Purpose

Removes a database alias from the system.

Format

nxStatus_t _NXFUNC nxdbRemoveAlias (

const char * DatabaseAlias);

Inputs

const char * DatabaseAlias

The name of the alias to delete.

Outputs

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function removes the alias from NI-XNET, but does not affect the database text file.

It just removes the alias association to the database file path.

This function is supported on Windows only, and the alias is removed from Windows only

(not RT targets). Use nxdbUndeploy to remove an alias from a Real-Time (RT) target.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-92 ni.com

nxdbSaveDatabase

Purpose

Saves the open database to a FIBEX 3.1.0 file file or exports a cluster from a database to a

specific file format.

Format

nxStatus_t _NXFUNC nxdbSaveDatabase (

nxDatabaseRef_t DatabaseRef,

const char * DbFilepath);

Inputs

nxDatabaseRef_t DatabaseRef

References the database to be saved or the database cluster to be exported.

const char * DbFilepath

Contains the pathname to the database file or is empty (saves to the original file path).

Outputs

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

If the DatabaseRef parameter is a database reference, this function saves the XNET

database current state to a FIBEX 3.1.0 file. The file extension must be .xml. If the target file

exists, it is overwritten.

If the DatabaseRef parameter is a cluster reference, this function exports the cluster in a

specific file format. A CAN cluster is exported as a CANdb++ database file (.dbc). A LIN

cluster is exported as a LIN database file (.ldf). A FlexRay cluster cannot be exported, and

the function returns an appropriate error. If the target file exists, it is overwritten.

XNET saves to the FIBEX file only features that XNET sessions use to communicate on the

network. If the original file was created using non-XNET software, the target file may be

missing details from the original file. For example, NI-XNET supports only linear scaling. If

the original FIBEX file used a rational equation that cannot be expressed as a linear scaling,

XNET converts this to a linear scaling with factor 1.0 and offset 0.0.

Chapter 5 NI-XNET API for C

© National Instruments 5-93 NI-XNET Hardware and Software Manual

If DbFilepath is empty, the file is saved to the same FIBEX file specified when opened. If

opened as a file path, it uses that file path. If opened as an alias, it uses the file path registered

for that alias. In the case of a cluster export, the filepath must not be empty.

Saving a database is not supported under Real-Time (RT), but you can deploy and use a

database saved on Windows on a Real-Time (RT) target (refer to nxdbDeploy).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-94 ni.com

nxdbSetProperty

Purpose

Writes properties for an XNET Database object.

Format

nxStatus_t _NXFUNC nxdbSetProperty (

nxDatabaseRef_t DbObjectRef,

u32 PropertyID,

u32 PropertySize,

void * PropertyValue);

Inputs

nxDatabaseRef_t DbObjectRef

The reference to the database object for which to get the property value.

u32 PropertyID

Specifies the ID of the property to set.

u32 PropertySize

The size of the property to set.

Outputs

void * PropertyValue

A void pointer to a buffer that contains the property value to set.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

Use this function to write properties for an XNET Database object. Refer to the following

sections for information about properties you can use with this function:

• XNET Cluster Properties

• XNET Database Properties

• XNET ECU Properties

• XNET Frame Properties

• XNET Signal Properties

• XNET Subframe Properties

Chapter 5 NI-XNET API for C

© National Instruments 5-95 NI-XNET Hardware and Software Manual

nxdbUndeploy

Purpose

Undeploys a database from a remote LabVIEW Real-Time (RT) target.

Format

nxStatus_t _NXFUNC nxdbUndeploy (

const char * IPAddress,

const char * DatabaseAlias);

Inputs

const char * IPAddress

The target IP address.

const char * DatabaseAlias

Provides the database alias name.

Outputs

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function completely deletes the database file and its alias from the RT target.

This function is supported on Windows only. RT database deployments are managed remotely

from Windows.

This function must access the remote RT target from Windows, so IPAddress must specify

a valid IP address for the RT target. You can find this IP address using MAX.

If the RT target access is password protected, you can use the following syntax for the

IP address to undeploy an alias: [user:password@]IPaddress.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-96 ni.com

nxDisconnectTerminals

Purpose

Disconnects terminals on the XNET interface.

Format

nxStatus_t _NXFUNC nxDisconnectTerminals (

nxSessionRef_t SessionRef,

const char * source,

const char * destination);

Inputs

nxSessionRef_t SessionRef

The reference to the session to use for the connection.

const char * source terminal

The connection source name.

const char * destination terminal

The connection destination name.

Outputs

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function disconnects a specific pair of source/destination terminals previously connected

with nxConnectTerminals.

When the final session for a given interface is cleared, NI-XNET automatically disconnects

all terminal connections for that interface. Therefore, nxDisconnectTerminals is not

required for most applications.

This function typically is used to change terminal connections dynamically while an

application is running. To disconnect a terminal, you first must stop the interface using

nxStop with the Interface Only scope. Then you can call nxDisconnectTerminals and

Chapter 5 NI-XNET API for C

© National Instruments 5-97 NI-XNET Hardware and Software Manual

nxConnectTerminals to adjust terminal connections. Finally, you can call nxStart with

the Interface Only scope to restart the interface.

You can disconnect only a terminal that has been previously connected. Attempting to

disconnect a nonconnected terminal results in an error.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-98 ni.com

nxFlush

Purpose

Flushes (empties) all XNET session queues.

Format

nxStatus_t _NXFUNC nxFlush (

nxSessionRef_t SessionRef);

Inputs

nxSessionRef_t SessionRef

The reference to the session to flush. This session is from nxCreateSession.

Outputs

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

With the exception of single-point modes, all sessions use queues to store frames. For input

modes, the queues store frame values (or corresponding signal values) that have been

received, but not obtained by calling nxRead. For output sessions, the queues store frame

values provided to nxWrite, but not transmitted successfully.

nxStart and nxStop have no effect on these queues. Use nxFlush to discard all values in

the session’s queues.

For example, if you call nxWrite to write three frames, then immediately call nxStop, then

call nxStart a few seconds later, the three frames transmit. If you call nxFlush between

nxStop and nxStart, no frames transmit.

As another example, if you receive three frames, then call nxStop, the three frames remains

in the queue. If you call nxStart a few seconds later, then call nxRead, you obtain the three

frames received earlier, potentially followed by other frames received after calling nxStart.

If you call nxFlush between nxStop and nxStart, nxRead returns only frames received

after the calling nxStart.

Chapter 5 NI-XNET API for C

© National Instruments 5-99 NI-XNET Hardware and Software Manual

nxGetProperty

Purpose

Retrieves an XNET session property.

Format

nxStatus_t nxGetProperty (

nxSessionRef_t SessionRef,

u32 PropertyID,

u32 PropertySize,

void * PropertyValue);

Inputs

nxSessionRef_t SessionRef

The session to get the property from. This session is returned from nxCreateSession.

u32 PropertyID

The ID of the property desired. The appropriate constants are listed in the Properties

section and defined in nixnet.h.

u32 PropertySize

The number of bytes provided for the buffer passed to PropertyValue. This can be a

fixed-size (for example, 4 bytes for a u32 property) or variable-sized buffer. If the

property has variable size (for example, a string property whose size is determined at

runtime), call nxGetPropertySize to retrieve the necessary size of the buffer

beforehand.

Outputs

void * PropertyValue

Returns the value of the desired property.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-100 ni.com

Description

Refer to the following sections for information about properties you can use with this

function:

• XNET Device Properties

• XNET Interface Properties

• XNET Session Properties

• XNET System Properties

Chapter 5 NI-XNET API for C

© National Instruments 5-101 NI-XNET Hardware and Software Manual

nxGetPropertySize

Purpose

Retrieves the data size of an XNET session property.

Format

nxStatus_t nxGetPropertySize (

nxSessionRef_t SessionRef,

u32 PropertyID,

u32 * PropertySize);

Inputs

nxSessionRef_t SessionRef

The session to get the property from. This session is returned from nxCreateSession.

u32 PropertyID

The ID of the property desired. The appropriate constants are listed in the Properties

section and defined in nixnet.h.

Outputs

u32 * PropertySize

Returns the number of bytes to be provided for the buffer to retrieve the property. Pass a

buffer of that size to nxGetProperty.

Note For string properties, the property size returned includes the space for the

terminating NULL byte.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

Refer to the following sections for information about properties you can use with this

function:

• XNET Device Properties

• XNET Interface Properties

• XNET Session Properties

• XNET System Properties

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-102 ni.com

nxGetSubProperty

Purpose

Retrieves a property of a frame or signal within an XNET session.

Format

nxStatus_t nxGetSubProperty (

nxSessionRef_t SessionRef,

u32 ActiveIndex,

u32 PropertyID,

u32 PropertySize,

void * PropertyValue);

Inputs

nxSessionRef_t SessionRef

The session to get the property from. This session is returned from nxCreateSession.

u32 ActiveIndex

Identifies the frame or signal within the session. It is the index to the list given in

nxCreateSession.

u32 PropertyID

The ID of the property desired. The properties to use with this function are listed in the

Frame Properties section for the session. Within your code, applicable PropertyID

values begin with the prefix nxProp_SessionSub.

u32 PropertySize

The number of bytes provided for the buffer passed to PropertyValue. This can be a

fixed-size (for example, 4 bytes for a u32 property) or variable-sized buffer. If the

property has variable size (for example, a string property whose size is determined at

runtime), call nxGetSubPropertySize to retrieve the necessary size of the buffer

beforehand.

Outputs

void * PropertyValue

Returns the value of the desired property.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Chapter 5 NI-XNET API for C

© National Instruments 5-103 NI-XNET Hardware and Software Manual

nxGetSubPropertySize

Purpose

Retrieves the data size of a property of a frame or signal within an XNET session.

Format

nxStatus_t nxGetSubPropertySize (

nxSessionRef_t SessionRef,

u32 ActiveIndex,

u32 PropertyID,

u32 * PropertySize);

Inputs

nxSessionRef_t SessionRef

The session to get the property from. This session is returned from nxCreateSession.

u32 ActiveIndex

Identifies the frame or signal within the session. It is the index to the list given in

nxCreateSession.

u32 PropertyID

The ID of the property desired. The properties to use with this function are listed in the

Frame Properties section for the session. Within your code, applicable PropertyID

values begin with the prefix nxProp_SessionSub.

Outputs

u32 * PropertySize

Returns the number of bytes to be provided for the buffer to retrieve the property. Pass a

buffer of that size to nxGetSubProperty.

Note For string properties, the property size returned includes the space for the

terminating NULL byte.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-104 ni.com

nxReadFrame

Purpose

Reads data from a session as an array of raw bytes.

Format

nxStatus_t nxReadFrame (

nxSessionRef_t SessionRef,

void * Buffer,

u32 SizeOfBuffer,

f64 Timeout,

u32 * NumberOfBytesReturned);

Inputs

nxSessionRef_t SessionRef

The session to read. This session is returned from nxCreateSession. The session mode

must be Frame Input Stream Mode, Frame Input Queued Mode, or Frame Input

Single-Point Mode.

u32 SizeOfBuffer

The number of bytes desired.

This number does not represent the number of frames to read. As encoded in raw data,

each frame can vary in length. Therefore, the number represents the maximum raw bytes

to read, not the number of frames.

Standard CAN and LIN frames are always 24 bytes in length. If you want to read a

specific number of frames, multiply that number by 24.

CAN FD and FlexRay frames vary in length. For example, if you pass SizeOfBuffer

of 91, the buffer might return 80 bytes, within which the first 24 bytes encode the first

frame, and the next 56 bytes encode the second frame.

If SizeOfBuffer is positive, the data array size is no greater than this number. The

minimum size for a single frame is 24 bytes, so you must use at least that number.

f64 Timeout

The time to wait for number to read frame bytes to become available; the timeout is

represented as 64-bit floating-point in units of seconds.

To avoid returning a partial frame, even when SizeOfBuffer bytes are available from

the hardware, this read may return fewer bytes in Buffer. For example, assume you pass

SizeOfBuffer of 70 bytes and Timeout of 10 seconds. During the read, two frames are

received, the first 24 bytes in size, and the second 56 bytes in size, for a total of 80 bytes.

The read returns after the two frames are received, but only the first frame is copied to

data. If the read copied 46 bytes of the second frame (up to the limit of 70), that frame

Chapter 5 NI-XNET API for C

© National Instruments 5-105 NI-XNET Hardware and Software Manual

would be incomplete and therefore difficult to interpret. To avoid this problem, the read

always returns complete frames in Buffer.

If Timeout is positive, nxReadFrame waits for SizeOfBuffer frame bytes to be

received, then returns complete frames up to that number. If the bytes do not arrive prior

to the timeout, an error is returned.

If Timeout is negative, nxReadFrame waits indefinitely for SizeOfBuffer frame

bytes.

If Timeout is zero, nxReadFrame does not wait and immediately returns all available

frame bytes up to the limit SizeOfBuffer specifies.

This input is optional. The default value is 0.0.

If the session mode is Frame Input Single-Point, you must set Timeout to 0.0. Because

this mode reads the most recent value of each frame, Timeout does not apply.

Outputs

void * Buffer

Returns an array of bytes.

The raw bytes encode one or more frames using the Raw Frame Format. This frame

format is the same for read and write of raw data, and it is also used for log file examples.

The data always returns complete frames.

Note For PDU sessions, only the payload for the specified PDU is returned in the array of

bytes.

For an example of how this data applies to network traffic, refer to Frame Input Stream

Mode, Frame Input Queued Mode, or Frame Input Single-Point Mode.

u32 * NumberOfBytesReturned

Returns the number of valid bytes in the Buffer array.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

The raw bytes encode one or more frames using the Raw Frame Format. The session must use

Frame Input Stream Mode, Frame Input Queued Mode, or Frame Input Single-Point Mode.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-106 ni.com

The raw frame format is protocol independent, so the session can use either a CAN, FlexRay,

or LIN interface.

The raw frames are associated to the session’s list of frames as follows:

Frame Input Stream Mode: Array of all frame values received (list ignored).

Frame Input Queued Mode: Array of frame values received for the single frame specified

in the list.

Frame Input Single-Point Mode: Array of single frame values, one for each frame specified

in the list.

Chapter 5 NI-XNET API for C

© National Instruments 5-107 NI-XNET Hardware and Software Manual

nxReadSignalSinglePoint

Purpose

Reads data from a session of Signal Input Single-Point Mode.

Format

nxStatus_t nxReadSignalSinglePoint (

nxSessionRef_t SessionRef,

f64 * ValueBuffer,

u32 SizeOfValueBuffer,

nxTimestamp_t * TimestampBuffer,

u32 SizeOfTimestampBuffer);

Inputs

nxSessionRef_t SessionRef

The session to read. This session is returned from nxCreateSession. The session mode

must be a Signal Input Single-Point Mode.

u32 SizeOfValueBuffer

Should be set to the size (in bytes) of the array passed to ValueBuffer. If this is too

small to fit one element for each signal in the session, an error is returned.

u32 SizeOfTimestampBuffer

Should be set to the size (in bytes) of the array passed to TimestampBuffer. If

TimestampBuffer is not NULL, and this is too small to fit one element for each signal

in the session, an error is returned.

Outputs

f64* ValueBuffer

Returns a one-dimensional array of signal values. Each signal value is scaled, 64-bit

floating point.

Each array element corresponds to a signal configured for the session. The order of

signals in the array corresponds to the order in the session list.

The data returns the most recent value received for each signal. If multiple frames for a

signal are received since the previous call to nxReadSignalSinglePoint (or session

start), only signal data from the most recent frame is returned.

If no frame is received for the corresponding signals since you started the session, the

XNET Signal Default Value is returned.

For an example of how this data applies to network traffic, refer to Signal Input

Single-Point Mode.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-108 ni.com

A trigger signal returns a value of 1.0 or 0.0, depending on whether its frame arrived since

the last Read (or Start) or not. For more information about trigger signals, refer to Signal

Input Single-Point Mode.

nxTimestamp_t* TimestampBuffer

Optionally returns a one-dimensional array of timestamp values of the times when the

corresponding signal values arrived. Each timestamp value is the number of 100 ns

increments since Jan 1, 1601 12:00 AM UTC.

TimestampBuffer

Can be passed as NULL; then no timestamps are returned. SizeOfTimeStampBuffer

also should be passed 0 in this case.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Chapter 5 NI-XNET API for C

© National Instruments 5-109 NI-XNET Hardware and Software Manual

nxReadSignalWaveform

Purpose

Reads data from a session of Signal Input Waveform Mode.

The data represents a waveform of resampled values for each signal in the session.

Format

nxStatus_t nxReadSignalWaveform (

cnxSessionRef_t SessionRef,

f64 Timeout,

nxTimestamp_t * StartTime,

f64 * DeltaTime,

f64 * ValueBuffer,

u32 SizeOfValueBuffer,

u32 * NumberOfValuesReturned);

Inputs

Note In the following, N means the maximum number of samples to read. It is calculated

from SizeOfValueBuffer.

nxSessionRef_t SessionRef

The session to read. This session is returned from nxCreateSession. The session mode

must be Signal Input Waveform.

f64 Timeout

The time to wait for N samples to become available.

The timeout is represented as 64-bit floating-point in units of seconds.

If Timeout is positive, nxReadSignalWaveform waits for N samples, then returns that

number. If the samples do not arrive prior to the timeout, an error is returned.

If Timeout is negative, nxReadSignalWaveform waits indefinitely for N samples.

If Timeout is zero, nxReadSignalWaveform does not wait and immediately returns all

available samples up to the limit N specifies.

Because time determines sample availability, typical values for this timeout are 0 (return

available) or a large positive value such as 100.0 (wait for a specific N).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-110 ni.com

u32 SizeOfValueBuffer

The size (in bytes) of the array passed to ValueBuffer. It is used to calculate

N = trunc (SizeOfValueBuffer / (sizeof (f64) * (number of signals in the session))).

There always is a maximum of N samples per waveform returned, even if

SizeOfValueBuffer is not a multiple of (sizeof (f64) * (number of signals in the

session)).

Outputs

nxTimestamp_t* StartTime

Optionally returns the start time of the waveform returned in ValueBuffer. It is the

absolute time of the first sample, given in 100 ns increments since Jan 1, 1601,

12:00 AM UTC.

StartTime can be passed as NULL; in this case, no value is returned.

f64* DeltaTime

Optionally returns the time increment between successive values of the waveform

returned in ValueBuffer. The value returned is 1.0/Resample Rate.

DeltaTime can be passed as NULL; in this case, no value is returned.

f64* ValueBuffer

Returns a two-dimensional array of f64 samples. First, N samples are reserved for the

first signal in the session, then N samples for the second, and so on. N * (number of

signals in the session) * sizeof (f64) should be passed in SizeOfValueBuffer to

recalculate N.

For an example of how this data applies to network traffic, refer to Signal Input Waveform

Mode.

u32* NumberOfValuesReturned

The number of waveform samples per signal that have been returned in ValueBuffer.

This is always less than or equal to N.

NumberOfValuesReturned can be passed as NULL; in this case, no value is returned.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

The data represents a waveform for each signal in the session.

Chapter 5 NI-XNET API for C

© National Instruments 5-111 NI-XNET Hardware and Software Manual

nxReadSignalXY

Purpose

Reads data from a session of Signal Input XY Mode.

Format

nxStatus_t nxReadSignalXY (

nxSessionRef_t SessionRef,

nxTimestamp_t * TimeLimit,

f64 * ValueBuffer,

u32 SizeOfValueBuffer,

nxTimestamp_t * TimestampBuffer,

u32 SizeOfTimestampBuffer,

u32 * NumPairsBuffer,

u32 SizeOfNumPairsBuffer);

Inputs

Note In the following, N means the maximum number of samples to read per signal. It is

calculated from SizeOfValueBuffer and SizeOfTimestampBuffer.

nxSessionRef_t SessionRef

The session to read. This session is returned from nxCreateSession. The session mode

must be Signal Input XY.

nxTimestamp_t* TimeLimit

The timestamp to wait for before returning signal values. It is the absolute time, given in

100 ns increments since Jan 1, 1601, 12:00 AM UTC.

If TimeLimit is valid, nxReadSignalXY waits for the timestamp to occur, then returns

available values (up to number to read). If you increment TimeLimit by a fixed number

of seconds for each call to nxReadSignalXY, you effectively obtain a moving window

of signal values.

The Timeout of other nxRead functions specifies the maximum amount time to wait for

a specific (number to read) values. The TimeLimit of nxReadSignalXY does not

specify a worst-case timeout value, but rather a specific absolute timestamp to wait for.

u32 SizeOfValueBuffer

The size (in bytes) of the array passed to ValueBuffer. N is calculated from this as:

N = trunc (SizeOfValueBuffer / (sizeof (f64) * (number of signals in the session))).

If both SizeOfValueBuffer and SizeOfTimestampBuffer deliver a valid N value

(N > 0), the smaller of the two values is used to avoid buffer overflows.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-112 ni.com

u32 SizeOfTimestampBuffer

The size (in bytes) of the array passed to TimestampBuffer. N is calculated from this

as: N = trunc (SizeOfTimestampBuffer / (sizeof (f64) * (number of signals in the

session))). If both SizeOfValueBuffer and SizeOfTimestampBuffer deliver a

valid N value (N > 0), the smaller of the two values is used to avoid buffer overflows.

u32 SizeOfNumPairsBuffer

The size (in bytes) of the array passed to NumPairsBuffer. For each signal in the

session, an array element should be provided. If the buffer is too small, an error is

returned.

Outputs

f64* ValueBuffer

Returns a two-dimensional array of f64 samples. First, N samples are reserved for the

first signal in the session, then N samples for the second, and so on. N * (number of

signals in the session) * sizeof (f64) should be passed in SizeOfValueBuffer to

recalculate N.

For an example of how this data applies to network traffic, refer to Signal Input XY Mode.

nxTimestamp_t* TimestampBuffer

Returns a two-dimensional array of timestamps. First, N timestamps are reserved for the

first signal in the session, then N timestamps for the second, and so on. N * (number of

signals in the session) * sizeof (f64) should be passed in SizeOfTimestampBuffer to

recalculate N.

The timestamps are given in 100 ns increments since Jan 1, 1601, 12:00 AM UTC.

u32* NumPairsBuffer

Returns a one-dimensional array of signal/timestamp pair counts, one for each signal in

the session. Upon output, the samples and timestamps for signal #(i) in the preceding

arrays are valid up to, but not including, index NumPairsBuffer[i] (zero based).

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

The data represents an XY plot of timestamp/value pairs for each signal in the session.

Chapter 5 NI-XNET API for C

© National Instruments 5-113 NI-XNET Hardware and Software Manual

nxReadState

Purpose

Reads communication states of an XNET session.

Format

nxStatus_t nxReadState (

nxSessionRef_t SessionRef,

u32 StateID,

u32 StateSize,

void * StateValue,

nxStatus_t * Fault);

Inputs

nxSessionRef_t SessionRef

The session to read. This session is returned from nxCreateSession.

u32 StateID

Indicates the state to be read. Possible values are:

nxState_TimeCurrent Current interface time

nxState_TimeCommunicating Time interface started communicating

nxState_TimeStart Time interface was started

nxState_CANComm CAN communication state

nxState_FlexRayComm FlexRay communication state

nxState_FlexRayStats FlexRay statistics

nxState_LINComm LIN communication state

nxState_SessionInfo Session running state

The value determines the format output as StateValue.

u32 StateSize

Indicates the size of the buffer provided for StateValue.

Outputs

void* StateValue

Returns the desired state. Formats and values are:

StateID = nxState_TimeCurrent:

StateValue must point to an nxTimestamp_t buffer. It is filled with the

current interface time in 100 ns increments since Jan 1, 1601 12:00 AM UTC.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-114 ni.com

StateID = nxState_TimeCommunicating:

StateValue must point to an nxTimestamp_t buffer. It is filled with the time

the interface started communicating in 100 ns increments since Jan 1, 1601

12:00 AM UTC. This time is usually later than the interface start time

(StateID = nxState_TimeStart), because the interface must undergo a

communication startup procedure.

If the interface is not communicating when this read is called, an invalid time is

returned (0).

StateID = nxState_TimeStart:

StateValue must point to an nxTimestamp_t buffer. It is filled with the time

the interface was started in 100 ns increments since Jan 1, 1601 12:00 AM UTC.

If the interface is not started when this read is called, an invalid time is

returned (0).

StateID = nxState_CANComm:

StateValue must point to a u32 buffer. It is filled with a communication state

DWORD, which is comprised of several bitfields. You can use macros in

nixnet.h to access these bitfields.

Bit Meaning

0–3 Communication State

Error Active (0) This state reflects normal communication, with few errors detected.

The CAN interface remains in this state as long as receive error

counter and transmit error counter are both below 128.

Error Passive (1) If either the receive error counter or transmit error counter increment

above 127, the CAN interface transitions into this state. Although

communication proceeds, the CAN device generally is assumed to

have problems with receiving frames.

When a CAN interface is in error passive state, acknowledgement

errors do not increment the transmit error counter. Therefore, if the

CAN interface transmits a frame with no other device (ECU)

connected, it eventually enters error passive state due to

retransmissions, but does not enter bus off state.

Chapter 5 NI-XNET API for C

© National Instruments 5-115 NI-XNET Hardware and Software Manual

Bus Off (2) If the transmit error counter increments above 255, the CAN interface

transitions into this state. Communication immediately stops under

the assumption that the CAN interface must be isolated from other

devices.

When a CAN interface transitions to the bus off state, communication

stops for the interface. All NI-XNET sessions for the interface no

longer receive or transmit frame values. To restart the CAN interface

and all its sessions, call nxStart.

Init (3) This is the CAN interface initial state on power-up. The interface is

essentially off, in that it is not attempting to communicate with other

nodes (ECUs).

When the start trigger occurs for the CAN interface, it transitions

from the Init state to the Error Active state. When the interface stops

due to a call to nxStop, the CAN interface transitions from either

Error Active or Error Passive to the Init state. When the interface

stops due to the Bus Off state, it remains in that state until you restart.

4 Transceiver Error

Transceiver error indicates whether an error condition exists on the physical transceiver.

This is typically referred to as the transceiver chip NERR pin. False indicates normal

operation (no error), and true indicates an error.

5 Sleep

Sleep indicates whether the transceiver and communication controller are in their sleep

state. False indicates normal operation (awake), and true indicates sleep.

8–11 Last Error

Last error specifies the status of the last attempt to receive or transmit a frame (decimal

value in parentheses):

None (0) The last receive or transmit was successful.

Stuff (1) More than 5 equal bits have occurred in sequence, which the CAN

specification does not allow.

Form (2) A fixed format part of the received frame used the wrong format.

Bit Meaning

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-116 ni.com

StateID = nxState_FlexRayComm:

StateValue must point to a u32 buffer. It is filled with a communication state

DWORD, which is comprised of several bitfields. You can use macros in

nixnet.h to access these bitfields.

Ack (3) Another node (ECU) did not acknowledge the frame transmit.

If you call the appropriate nxWrite function and do not have a cable

connected, or the cable is connected to a node that is not communicating, you

see this error repeatedly. The CAN communication state eventually transitions

to Error Passive, and the frame transmit retries indefinitely.

Bit 1 (4) During a frame transmit (with the exception of the arbitration ID field), the

interface wanted to send a recessive bit (logical 1), but the monitored bus value

was dominant (logical 0).

Bit 0 (5) During a frame transmit (with the exception of the arbitration ID field), the

interface wanted to send a dominant bit (logical 0), but the monitored bus

value was recessive (logical 1).

CRC (6) The CRC contained within a received frame does not match the CRC

calculated for the incoming bits.

16–23 Transmit Error Counter

The transmit error counter begins at 0 when communication starts on the CAN interface.

The counter increments when an error is detected for a transmitted frame and decrements

when a frame transmits successfully. The counter increases more for an error than it is

decreased for success. This ensures that the counter generally increases when a certain

ratio of frames (roughly 1/8) encounter errors.

When communication state transitions to Bus Off, the transmit error counter no longer is

valid.

24–31 Receive Error Counter

The receive error counter begins at 0 when communication starts on the CAN interface.

The counter increments when an error is detected for a received frame and decrements

when a frame is received successfully. The counter increases more for an error than it is

decreased for success. This ensures that the counter generally increases when a certain

ratio of frames (roughly 1/8) encounter errors.

Bit Meaning

Chapter 5 NI-XNET API for C

© National Instruments 5-117 NI-XNET Hardware and Software Manual

Bit Meaning

0–3 POC State

POC state specifies the FlexRay interface state (decimal value in parentheses):

Default Config (0) This is the FlexRay interface initial state on power-up. The interface

is essentially off, in that it is not configured and is not attempting to

communicate with other nodes (ECUs).

Ready (1) When the interface starts, it first enters Config state to validate the

FlexRay cluster and interface properties. Assuming the properties

are valid, the interface transitions to this Ready state.

In the Ready state, the FlexRay interface attempts to integrate

(synchronize) with other nodes in the network cluster. This

integration process can take several FlexRay cycles, up to 200 ms. If

the integration succeeds, the interface transitions to Normal Active.

You can use nxReadState to read the time when the FlexRay

interface entered Ready. If integration succeeds, you can use

nxReadState to read the time when the FlexRay entered Normal

Active.

Normal Active (2) This is the normal operation state. The NI-XNET interface is

adequately synchronized to the cluster to allow continued frame

transmission without disrupting the transmissions of other nodes

(ECUs). If synchronization problems occur, the interface can

transition from this state to Normal Passive.

Normal Passive (3) Frame reception is allowed, but frame transmission is disabled

due to degraded synchronization with the cluster remainder. If

synchronization improves, the interface can transition to Normal

Active. If synchronization continues to degrade, the interface

transitions to Halt.

Halt (4) Communication halted due to synchronization problems.

When the FlexRay interface is in Halt state, all NI-XNET sessions

for the interface stop, and no frame values are received or

transmitted. To restart the FlexRay interface, you must restart the

NI-XNET sessions.

If you clear (close) all NI-XNET sessions for the interface,

it transitions from Halt to Default Config state.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-118 ni.com

StateID = nxState_FlexRayStats:

Config (15) This state is transitional when configuration is valid. If you detect

this state after starting the interface, it typically indicates a problem

with the configuration. Check the fault? output for a fault. If

no fault is returned, check your FlexRay cluster and interface

properties. You can check the validity of these properties using the

NI-XNET Database Editor, which displays invalid configuration

properties.

In the FlexRay specification, this value is referred to as the Protocol

Operation Control (POC) state. For more information about the

FlexRay POC state, refer to Appendix B, Summary of the FlexRay

Standard.

4–7 Clock Correction Failed

Clock correction failed returns the number of consecutive even/odd cycle pairs that have

occurred without successful clock synchronization.

If this count reaches the value in the XNET Cluster FlexRay:Max Without Clock

Correction Passive property, the FlexRay interface POC state transitions from Normal

Active to Normal Passive state. If this count reaches the value in the XNET Cluster

FlexRay:Max Without Clock Correction Fatal property, the FlexRay interface POC state

transitions from Normal Passive to Halt state.

In the FlexRay specification, this value is referred to as vClockCorrectionFailed.

8-12 Passive to Active Count

Passive to active count returns the number of consecutive even/odd cycle pairs that have

occurred with successful clock synchronization.

This count increments while the FlexRay interface is in POC state Error Passive. If the

count reaches the value in the XNET Session Interface:FlexRay:Allow Passive to Active

property, the interface POC state transitions to Normal Active.

In the FlexRay specification, this value is referred to as vAllowPassiveToActive.

13 Channel A Sleep?

Indicates whether channel A currently is asleep.

14 Channel B Sleep?

Indicates whether channel B currently is asleep.

Bit Meaning

Chapter 5 NI-XNET API for C

© National Instruments 5-119 NI-XNET Hardware and Software Manual

StateValue must point to an nxFlexRayStats_t buffer (defined in

nixnet.h). It is filled with communication statistics values. The values are:

u32 NumSyntaxErrorChA

The number of syntax errors that have occurred on channel A since

communication started.

A syntax error occurs if:

• A node starts transmitting while the channel is not in the idle state.

• There is a decoding error.

• A frame is decoded in the symbol window or in the network

idle time.

• A symbol is decoded in the static segment, dynamic segment, or

network idle time.

• A frame is received within the slot after reception of a

semantically correct frame (two frames in one slot).

• Two or more symbols are received within the symbol window.

u32 NumSyntaxErrorChB

The number of syntax errors that have occurred on channel B since

communication started.

u32 NumContentErrorChA

The number of content errors that have occurred on channel A since

communication started.

A content error occurs if:

• In a static segment, a frame payload length does not match the

global cluster property.

• In a static segment, the Startup indicator (bit) is 1 while the Sync

indicator is 0.

• The frame ID encoded in the frame header does not match the

current slot.

• The cycle count encoded in the frame header does not match the

current cycle count.

• In a dynamic segment, the Sync indicator is 1.

• In a dynamic segment, the Startup indicator is 1.

• In a dynamic segment, the Null indicator is 0.

u32 NumContentErrorChB

The number of content errors that have occurred on channel B since

communication started.

u32 NumSlotBoundaryViolationChA

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-120 ni.com

The number of slot boundary violations that have occurred on channel

A since communication started.

A slot boundary violation error occurs if the interface does not

consider the channel to be idle at the boundary of a slot (either

beginning or end).

u32 NumSlotBoundaryViolationChB

The number of slot boundary violations that have occurred on

channel B since communication started.

For more information about these statistics, refer to Appendix B, Summary

of the FlexRay Standard.

StateID = nxState_LINComm:

StateValue must point to a u32 array buffer. It is filled with a communication

state DWORD, which is comprised of several bitfields, and a schedule

DWORD, which is comprised of a single bitfield. You can use macros in

nixnet.h to access these bitfields.

Communication State DWORD

Bit Meaning

0 Reserved

1 Sleep

Indicates whether the transceiver and communication controller are in their sleep state.

False (0) indicates normal operation (awake), and true (1) indicates sleep.

This value changes from 0 to 1 only when you set the XNET Session Interface:LIN:Sleep

property to nxLINSleep_RemoteSleep or nxLINSleep_LocalSleep.

This value changes from 1 to 0 when one of the following occurs:

• You set the XNET Session Interface:LIN:Sleep property to

nxLINSleep_RemoteWake or nxLINSleep_LocalWake.

• The interface receives a remote wakeup pattern (break). In addition to this

nxReadState function, you can wait for a remote wakeup event using the nxWait

function with the nxCondition_IntfCommunicating condition.

Chapter 5 NI-XNET API for C

© National Instruments 5-121 NI-XNET Hardware and Software Manual

2–3 Communication State

Idle (0) This is the LIN interface initial state on power-up. The interface is

essentially off, in that it is not attempting to communicate with other

nodes (ECUs). When the start trigger occurs for the LIN interface,

it transitions from the Idle state to the Active state. When the

interface stops due to a call to XNET Stop, the LIN interface

transitions from either Active or Inactive to the Idle state.

Active (1) This state reflects normal communication. The LIN interface

remains in this state as long as bus activity is detected (frame

headers received or transmitted).

Inactive (2) This state indicates that no bus activity has been detected in the past

four seconds.

Regardless of whether the interface acts as a master or slave, it

transitions to this state after four seconds of bus inactivity. As soon

as bus activity is detected (break or frame header), the interface

transitions to the Active state.

The LIN interface does not go to sleep automatically when it

transitions to Inactive. To place the interface into sleep mode, set the

XNET Session Interface:LIN:Sleep property when you detect the

Inactive state.

4–7 Last Error

Specifies the status of the last attempt to receive or transmit a frame. It is an enumeration

(ring data type). For a table of all values for last error, refer to Last Error Table.

8–15 Last Error Received

Returns the value received from the network when last error occurred. For a table that

describes how this field is populated based on the last error, refer to Last Error Table.

16–23 Last Error Expected

Returns the value that the LIN interface expected to see (instead of last received). For a

table that describes how this field is populated based on the last error, refer to Last Error

Table.

24–29 Last Error ID

Returns the frame identifier in which the last error occurred. For a table that describes

how this field is populated based on the last error, refer to Last Error Table.

Bit Meaning

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-122 ni.com

Schedule DWORD

Last Error Table

The following table lists each value for last error, along with a description, and

applicable use of last received, last expected, and last identifier. In the last

error column, the decimal value is shown in parentheses after the string name.

30 Reserved

31 Transceiver Ready

Indicates whether the LIN transceiver is powered from the bus.

True (1) indicates the bus power exists, so it is safe to start communication on the LIN

interface.

If this value is false (0), you cannot start communication successfully. Wire power to the

LIN transceiver and run your application again.

Bit Meaning

0–7 Schedule Index

Indicates the LIN schedule that the interface currently is running.

This index refers to a LIN schedule that you requested using the nxWriteState function.

It indexes the array of schedules represented in the XNET Session Interface:LIN:Schedule

Names property.

This index applies only when the LIN interface is running as a master. If the LIN interface

is running as a slave only, this element should be ignored.

8–31 Reserved

Bit Meaning

Chapter 5 NI-XNET API for C

© National Instruments 5-123 NI-XNET Hardware and Software Manual

StateID = nxState_SessionInfo:

StateValue must point to a u32. It contains the current session running state. The

running states are:

nxSessionInfoState_Stopped (0)

All frames in the session are stopped.

nxSessionInfoState_Started (1)

All frames in the session are started.

nxSessionInfoState_Mix (2)

Some frames in the session are started while other frames are stopped. This state may

occur when using nxStart or nxStop with the Session Only option.

Last Error Description

Last

Received

Last

Expected

Last

Identifier

None (0) No bus error has occurred

since the previous

communication state read.

0 (N/A) 0 (N/A) 0 (N/A)

Unknown ID (1) Received a frame identifier

that is not valid (0–63).

0 (N/A) 0 (N/A) 0 (N/A)

Form (2) The form of a received frame

is incorrect. For example, the

database specifies 8 bytes of

payload, but you receive only

4 bytes.

0 (N/A) 0 (N/A) Received

frame ID

Framing (3) The byte framing is incorrect

(for example, a missing stop

bit).

0 (N/A) 0 (N/A) Received

frame ID

Readback (4) The interface transmitted a

byte, but the value read back

from the transceiver was

different. This often is

caused by a cabling problem,

such as noise.

Value read

back

Value

transmitted

Received

frame ID

Timeout (5) Receiving the frame took

longer than the

LIN-specified timeout.

0 (N/A) 0 (N/A) Received

frame ID

Checksum (6) The received checksum was

different than the expected

checksum.

Received

checksum

Calculated

checksum

Received

frame ID

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-124 ni.com

nxStatus_t* Fault

Returns a numeric code you can use to obtain a description of the fault. If no fault

occurred, the fault code is 0.

A fault is an error that occurs asynchronously to the NI-XNET application calls. The fault

cause may be related to network communication, but it also can be related to XNET

hardware, such as a fault in the onboard processor. Although faults are extremely rare,

nxReadState provides a detection method distinct from the status of NI-XNET

function calls, yet easy to use alongside the common practice of checking the

communication state.

To obtain a fault description, pass the fault code to nxStatusToString.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

You can use nxReadState with any XNET session mode.

Your application can use nxReadState to check for problems on the network independently

from other aspects of your application. For example, you intentionally may introduce noise

into the CAN cables to test how your ECU behaves under these conditions. When you do this,

you do not want the status of NI-XNET functions to return errors, because this may cause

your application to stop. Your application can use nxReadState to read the network state

quickly as data, so that it does not introduce errors into the flow of your code.

Alternately, to log bus errors, you can set the Interface:Bus Error Frames to Input Stream?

property to cause CAN and LIN bus errors to be logged as a special frame (refer to Special

Frames for more information) into a Frame Stream Input queue.

Chapter 5 NI-XNET API for C

© National Instruments 5-125 NI-XNET Hardware and Software Manual

nxSetProperty

Purpose

Sets an XNET session property.

Format

nxStatus_t nxSetProperty (

nxSessionRef_t SessionRef,

u32 PropertyID,

u32 PropertySize,

void * PropertyValue);

Inputs

nxSessionRef_t SessionRef

The session to set the property for. This session is returned from nxCreateSession.

u32 PropertyID

The ID of the property to set. The appropriate constants are listed in the Properties section

and defined in nixnet.h.

u32 PropertySize

The number of bytes provided for the buffer passed to PropertyValue. This can be a

fixed-size (for example, 4 bytes for a u32 property) or variable-sized buffer (for example,

for a string property).

void * PropertyValue

Contains the value to set for the desired property.

Outputs

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

Refer to the following sections for information about properties you can use with this

function:

• XNET Device Properties

• XNET Interface Properties

• XNET Session Properties

• XNET System Properties

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-126 ni.com

nxSetSubProperty

Purpose

Sets a property of a frame or signal within an XNET session.

Format

nxStatus_t nxSetSubProperty (

nxSessionRef_t SessionRef,

u32 ActiveIndex,

u32 PropertyID,

u32 PropertySize,

void * PropertyValue);

Inputs

nxSessionRef_t SessionRef

The session to set the property for. This session is returned from nxCreateSession.

u32 ActiveIndex

Identifies the frame or signal within the session. It is the index to the list given in

nxCreateSession.

u32 PropertyID

The ID of the property to set. The properties to use with this function are listed in the

Frame Properties section for the session. Within your code, applicable PropertyID

values begin with the prefix nxProp_SessionSub.

u32 PropertySize

The number of bytes provided for the buffer passed to PropertyValue. This can be a

fixed-size (for example, 4 bytes for a u32 property) or variable-sized buffer (for example,

for a string property).

void * PropertyValue

Contains the value to set for the desired property.

Outputs

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Chapter 5 NI-XNET API for C

© National Instruments 5-127 NI-XNET Hardware and Software Manual

nxStart

Purpose

Starts communication for the specified XNET session.

Format

nxStatus_t nxStart (

nxSessionRef_t SessionRef,

u32 Scope);

Inputs

nxSessionRef_t SessionRef

The session to start. This session is returned from nxCreateSession.

u32 Scope

Describes the impact of this operation on the underlying state models for the session and

its interface.

Normal (0) The session is started followed by starting the interface. This is

equivalent to calling nxStart with the Session Only Scope

followed by calling nxStart with the Interface Only Scope.

Session Only (1) The session is placed into the Started state (refer to State Models).

If the interface is in the Stopped state before this function runs, the

interface remains in the Stopped state, and no communication

occurs with the bus. To have multiple sessions start at exactly the

same time, start each session with the Session Only Scope. When

you are ready for all sessions to start communicating on the

associated interface, call nxStart with the Interface Only Scope.

Starting a previously started session is considered a no-op. This

operation sends the command to start the session, but does not

wait for the session to be started. It is ideal for a real-time

application where performance is critical.

Interface Only (2) If the underlying interface is not previously started, the interface

is placed into the Started state (refer to State Models). After the

interface starts communicating, all previously started sessions can

transfer data to and from the bus. Starting a previously started

interface is considered a no-op.

Session Only Blocking (3) The session is placed in the Started state (refer to State

Models). If the interface is in the Stopped state before this

function runs, the interface remains in the Stopped state,

and no communication occurs with the bus. To have

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-128 ni.com

multiple sessions start at exactly the same time, start each

session with the Session Only Scope. When you are ready

for all sessions to start communicating on the associated

interface, call nxStart with the Interface Only Scope.

Starting a previously started session is considered a no-op.

This operation waits for the session to start before

completing.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

Because the session is started automatically by default, this function is optional. This function

is for more advanced applications to start multiple sessions in a specific order. For more

information about the automatic start feature, refer to the Auto Start? property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

• Sessions: You can create one or more sessions, each of which contains frames or signals

to be transmitted (or received) on the bus.

• Interface: The interface physically connects to the bus and transmits (or receives) data

for the sessions.

You can start each logical unit separately. When a session is started, all contained frames or

signals are placed in a state where they are ready to communicate. When the interface is

started, it takes data from all started sessions to communicate with other nodes on the bus. For

a specification of the state models for the session and interface, refer to State Models.

If an output session starts before you write data, or you read an input session before it receives

a frame, default data is used. For more information, refer to the XNET Frame Default Payload

and XNET Signal Default Value properties.

Chapter 5 NI-XNET API for C

© National Instruments 5-129 NI-XNET Hardware and Software Manual

nxStatusToString

Purpose

Converts a status code returned from a function into a descriptive string.

Format

void _NXFUNC nxStatusToString (

nxStatus_t Status,

u32 SizeofString,

char * StatusDescription);

Inputs

nxStatus_t Status

The status code to be explained.

u32 SizeofString

The size of the string provided to store the explanation of the status code.

Outputs

char * StatusDescription

The string in which the explanation of the status code will be stored.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function converts a status code returned from a function into a descriptive string.

SizeofString is the size allocated for the string. The description is truncated to size

SizeofString if needed, but a size of 2048 characters is large enough to hold any

description. The text returned in StatusDescription is null-terminated, so it can be used

with ANSI C functions such as printf.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-130 ni.com

nxStop

Purpose

Stops communication for the specified XNET session.

Format

nxStatus_t nxStop (

nxSessionRef_t SessionRef,

u32 Scope);

Inputs

nxSessionRef_t SessionRef

The session to stop. This session is returned from nxCreateSession.

u32 Scope

Describes the impact of this operation on the underlying state models for the session and

its interface.

Normal (0) The session is stopped. If this is the last session stopped on the

interface, the interface is also stopped. If any other sessions are

running on the interface, this call is treated just like the Session

Only Scope, to avoid disruption of communication on the other

sessions.

Session Only (1) The session is placed in the Stopped state (refer to State Models).

If the interface was in the Started or Running state before this

function is called, the interface remains in that state and

communication continues, but data from this session does not

transfer. This Scope generally is not necessary, as the Normal

Scope only stops the interface if there are no other running

sessions. This operation sends the command to stop the session,

but does not wait for the session to be stopped. It is ideal for a

real-time application where performance is critical.

Interface Only (2) The underlying interface is placed in the Stopped state (refer to

State Models). This prevents all communication on the bus, for all

sessions. This allows you modify certain properties that require

the interface to be stopped (for example, CAN baud rate). All

sessions remain in the Started state. To have multiple sessions stop

at exactly the same time, first stop the interface with the Interface

Only Scope and then stop each session with either the Normal or

Session Only Scope.

Chapter 5 NI-XNET API for C

© National Instruments 5-131 NI-XNET Hardware and Software Manual

Session Only Blocking (3) The session is placed in the Stopped state (refer to State

Models). If the interface was in the Started or Running state

before this function is called, the interface remains in that

state and communication continues, but data from this

session does not transfer. This Scope generally is not

necessary, as the Normal Scope stops the interface only if

there are no other running sessions. This operation waits for

the session to stop before completing.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

Because the session is stopped automatically when cleared (closed), this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

• Sessions: You can create one or more sessions, each of which contains frames or signals

to be transmitted (or received) on the bus.

• Interface: The interface physically connects to the bus and transmits (or receives) data

for the sessions.

You can stop each logical unit separately. When a session is stopped, all contained frames or

signals are placed in a state where they are no longer ready to communicate. When the

interface is stopped, it no longer takes data from sessions to communicate with other nodes

on the bus. For a specification of the state models for the session and interface, refer to State

Models.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-132 ni.com

nxSystemClose

Purpose

Closes a system session.

Format

nxStatus_t _NXFUNC nxSystemClose (

nxSessionRef_t SystemRef);

Inputs

nxSessionRef_t SystemRef

The reference to the system session to close.

Outputs

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function is used to close a system session.

Chapter 5 NI-XNET API for C

© National Instruments 5-133 NI-XNET Hardware and Software Manual

nxSystemOpen

Purpose

Opens a special system session.

Format

nxStatus_t _NXFUNC nxSystemOpen (

nxSessionRef_t * SystemRef);

Outputs

nxSessionRef_t * SystemRef

The reference to the opened system session.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function opens a special system session.

The system session is not used to read/write on the network (as with sessions created using

nxCreateSession). Use the system session to interact with the NI driver and interface

hardware.

For example, you can traverse through properties to find all NI-XNET interfaces in your

system.

The following functions are supported for the system session:

• nxGetProperty: Get a property with prefix nxPropSys_, nxPropDev_, or

nxPropIntf_.

• nxGetPropertySize: Get a string property size.

• nxBlink: Blink LED(s) on the interface.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-134 ni.com

nxWait

Purpose

Waits for a certain condition to occur.

Format

nxStatus_t _NXFUNC nxWait (

nxSessionRef_t SessionRef,

u32 Condition,

u32 ParamIn,

f64 Timeout,

u32 * ParamOut);

Inputs

nxSessionRef_t SessionRef

The session to which the wait is applied.

u32 Condition

Specifies the condition to wait for.

u32 ParamIn

An optional parameter that provides simple data to qualify the condition.

f64 Timeout

Specifies the maximum amount of time in seconds to wait.

Outputs

u32 * ParamOut

An optional parameter that provides simple data to qualify the condition that occurred.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of

0 indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

This function waits for a condition to occur for the session.

The Condition parameter specifies to wait for one of the following conditions.

Chapter 5 NI-XNET API for C

© National Instruments 5-135 NI-XNET Hardware and Software Manual

nxCondition_TransmitComplete

All frames written for the session have been transmitted on the bus. This condition applies to

CAN, LIN, and FlexRay. This condition is state based, and the state is Boolean (true/false).

The ParamIn and ParamOut parameters are ignored for this condition because nxWait

simply waits for the state to become true.

nxCondition_IntfCommunicating

Wait for the interface to begin communication on the network. If a start trigger is configured

for the interface, this first waits for the trigger. Once the interface is started, this waits for the

protocol’s communication state to transition to a value that indicates communication with

remote nodes.

After this wait succeeds, calls to nxReadState will return:

• nxState_CANComm: nxCANCommState_ErrorActive

• nxState_CANComm: nxCANCommState_ErrorPassive

• nxState_TimeCommunicating: Valid time for communication (invalid time of

0 prior)

This condition is state based. The ParamIn and ParamOut parameters are ignored for this

condition because nxWait simply waits for a communicating state.

nxCondition_IntfRemoteWakeup

Wait for the interface to wakeup due to activity by a remote node on the network. This wait is

used for CAN, when you set the nxPropSession_IntfCANTrState property to

nxCANTrState_Sleep. Although the interface itself is ready to communicate, this places

the transceiver into a sleep state. When a remote CAN node transmits a frame, the transceiver

wakes up, and communication is restored. This wait detects that remote wakeup.

This wait is used for LIN when you set the XNET Session Interface:LIN:Sleep property to

nxLINSleep_RemoteSleep or nxLINSleep_LocalSleep. When asleep, if a remote LIN

ECU transmits the wakeup pattern (break), the XNET LIN interface detects this transmission

and wakes up. This wait detects that remote wakeup.

This condition is state based. The ParamIn and ParamOut parameters are ignored for this

condition, because nxWait simply waits for the remote wakeup to occur.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-136 ni.com

nxWriteFrame

Purpose

Writes data to a session as an array of raw bytes.

Format

nxStatus_t nxWriteFrame (

nxSessionRef_t SessionRef,

void * Buffer,

u32 NumberOfBytesForFrames,

f64 Timeout);

Inputs

nxSessionRef_t SessionRef

The session to write. This session is returned from nxCreateSession. The session

mode must be Frame Output Stream Mode, Frame Output Queued Mode, or Frame

Output Single-Point Mode.

void * Buffer

Provides the array of bytes, representing frames to transmit.

The raw bytes encode one or more frames using the Raw Frame Format. This frame

format is the same for read and write of raw data and also is used for log file examples.

If needed, you can write data for a partial frame. For example, if a complete raw frame is

24 bytes, you can write 12 bytes, then write the next 12 bytes. You typically do this when

you are reading raw frame data from a logfile and want to avoid iterating through the data

to detect the start and end of each frame.

Note For PDU sessions, the array of bytes represents the payload of the specified PDU

only, not that of the entire frame.

For information about which elements of the raw frame are applicable, refer to Raw

Frame Format.

The data you write is queued up for transmit on the network. Using the default queue

configuration for this mode, you can safely write 1536 frames if you have a sufficiently

long timeout. To write more data, refer to the XNET Session Number of Values Unused

property to determine the actual amount of queue space available for writing.

For an example of how this data applies to network traffic, refer to Frame Output Stream

Mode, Frame Output Queued Mode, or Frame Output Single-Point Mode.

Additionally, you can use nxWriteFrame on any signal or frame input session if it

contains CAN Event Remote frames (refer to CAN:Timing Type). In this case, it signals

Chapter 5 NI-XNET API for C

© National Instruments 5-137 NI-XNET Hardware and Software Manual

an event to transmit those remote frames. The Buffer parameter is ignored, and you can

set it to NULL in that case.

u32 NumberOfBytesForFrames

The size (in bytes) of the buffer passed to Buffer. This is used to calculate the number

of frames to transmit.

f64 Timeout

The time to wait for the raw data to be queued up for transmit.

The timeout is represented as 64-bit floating-point in units of seconds.

If Timeout is positive, nxWriteFrame waits up to that timeout for space to become

available in queues. If the space is not available prior to the timeout, a timeout error is

returned.

If Timeout is negative, nxWriteFrame waits indefinitely for space to become available

in queues.

If Timeout is 0, nxWriteFrame does not wait and immediately returns with a timeout

error if all data cannot be queued. Regardless of the timeout used, if a timeout error

occurs, none of the data is queued, so you can attempt to call nxWriteFrame again at a

later time with the same data.

If the session mode is Frame Output Single-Point, you must set Timeout to 0.0. Because

this mode writes the most recent value of each frame, Timeout does not apply.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

The raw bytes encode one or more frames using the Raw Frame Format. The session must use

a mode of Frame Output Stream, Frame Output Queued, or Frame Output Single-Point. The

raw frame format is protocol independent.

The raw frames are associated to the session’s list of frames as follows:

• Frame Output Stream Mode: Array of all frame values for transmit (list ignored). For

LIN, if the payload length is 0, only the header part of the LIN frame is transmitted. If

the payload length is nonzero, the header and response parts of the LIN frame are

transmitted.

• Frame Output Queued Mode: Array of frame values to transmit for the single frame

specified in the list.

• Frame Output Single-Point Mode: Array of single frame values, one for each frame

specified in the list.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-138 ni.com

• Any signal or frame input mode: The Buffer parameter is ignored, and you can set it to

NULL. The function transmits an event remote frame.

Chapter 5 NI-XNET API for C

© National Instruments 5-139 NI-XNET Hardware and Software Manual

nxWriteSignalSinglePoint

Purpose

Writes data to a session of Signal Output Single-Point Mode.

Format

nxStatus_t nxWriteSignalSinglePoint (

nxSessionRef_t SessionRef,

f64 * ValueBuffer,

u32 SizeOfValueBuffer);

Inputs

nxSessionRef_t SessionRef

The session to write. This session is returned from nxCreateSession. The session

mode must be Signal Output Single-Point.

f64 * ValueBuffer

Provides a one-dimensional array of signal values. Each signal value is scaled, 64-bit

floating point.

Each array element corresponds to a signal configured for the session. The order of

signals in the array corresponds to the order in the session list.

The data provides the value for the next transmit of each signal. If

nxWriteSignalSinglePoint is called twice before the next transmit, the transmitted

frame uses signal values from the second call to nxWriteSignalSinglePoint.

For an example of how this data applies to network traffic, refer to Signal Output

Single-Point Mode.

A trigger signal written a value of 0.0 suppresses writing of its frame’s data; writing a

value not equal to 0.0 enables it. For more information about trigger signals, refer to

Signal Output Single-Point Mode.

u32 SizeOfValueBuffer

Should be set to the size (in bytes) of the array passed to ValueBuffer. If this is too

small to fit one element for each signal in the session, an error is returned.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-140 ni.com

nxWriteSignalWaveform

Purpose

Writes data to a session of Signal Output Waveform Mode. The data represents a waveform

of resampled values for each signal in the session.

Format

nxStatus_t nxWriteSignalWaveform (

nxSessionRef_t SessionRef,

f64 Timeout,

f64 * ValueBuffer,

u32 SizeOfValueBuffer);

Inputs

nxSessionRef_t SessionRef

The session to write. This session is returned from nxCreateSession. The session

mode must be Signal Output Waveform.

f64 Timeout

The time to wait for the data to be queued for transmit. The timeout does not wait for

frames to be transmitted on the network (refer to nxWait).

The timeout is represented as 64-bit floating-point in units of seconds.

If Timeout is positive, nxWriteSignalWaveform waits up to that timeout for space to

become available in queues. If the space is not available prior to the timeout, a timeout

error is returned.

If Timeout is negative, nxWriteSignalWaveform waits indefinitely for space to

become available in queues.

If Timeout is 0, nxWriteSignalWaveform does not wait and immediately returns an

error if all data cannot be queued. Regardless of the timeout used, if a timeout error

occurs, none of the data is queued, so you can attempt to call nxWriteSignalWaveform

again at a later time with the same data.

f64* ValueBuffer

Provides a two-dimensional array of f64 samples. First, N samples are reserved for the

first signal in the session, then N samples for the second, and so on. N * (number of

signals in the session) * sizeof (f64) should be passed in SizeOfValueBuffer to

recalculate N.

The data you write is queued for transmit on the network. Using the default queue

configuration for this mode, and assuming a 1000 Hz resample rate, you can safely write

64 elements if you have a sufficiently long timeout. To write more data, refer to the

Chapter 5 NI-XNET API for C

© National Instruments 5-141 NI-XNET Hardware and Software Manual

XNET Session Number of Values Unused property to determine the actual amount of

queue space available for writing.

For an example of how this data applies to network traffic, refer to Signal Output

Waveform Mode.

Each array element corresponds to a signal configured for the session. The order of

signals in the array corresponds to the order in the session list.

u32 SizeOfValueBuffer

Should be set to the size (in bytes) of the array passed to ValueBuffer. The number of

samples to be written (N) per signal is calculated from this size. Set this to (N) * (number

of signals in the session) * sizeof (f64).

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

The data represents a waveform for each signal in the session.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-142 ni.com

nxWriteSignalXY

Purpose

Writes data to a session of Signal Output XY Mode. The data represents a sequence of signal

values for transmit using each frame’s timing as the database specifies.

Format

nxStatus_t nxWriteSignalXY (

nxSessionRef_t SessionRef,

f64 Timeout,

f64 * ValueBuffer,

u32 SizeOfValueBuffer,

nxTimestamp_t * TimestampBuffer,

u32 SizeOfTimestampBuffer,

u32 * NumPairsBuffer,

u32 SizeOfNumPairsBuffer);

Inputs

nxSessionRef_t SessionRef

The session to write. This session is returned from nxCreateSession. The session

mode must be Signal Output XY.

f64 Timeout

The time to wait for the data to be queued for transmit. The timeout does not wait for

frames to be transmitted on the network (refer to nxWait).

The timeout is represented as 64-bit floating-point in units of seconds.

If Timeout is positive, nxWriteSignalXY waits up to that timeout for space to become

available in queues. If the space is not available prior to the timeout, a timeout error is

returned.

If Timeout is negative, nxWriteSignalXY waits indefinitely for space to become

available in queues.

If Timeout is 0, nxWriteSignalXY does not wait and immediately returns with a

timeout error if all data cannot be queued. Regardless of the timeout used, if a timeout

error occurs, none of the data is queued, so you can attempt to call nxWriteSignalXY

again at a later time with the same data.

f64* ValueBuffer

Provides a two-dimensional array of f64 samples. First, N samples are reserved for the

first signal in the session, then N samples for the second, and so on. N * (number of

signals in the session) * sizeof (f64) should be passed in SizeOfValueBuffer to

recalculate N.

Chapter 5 NI-XNET API for C

© National Instruments 5-143 NI-XNET Hardware and Software Manual

The data you write is queued for transmit on the network. Using the default queue

configuration for this mode, you can safely write 64 elements if you have a sufficiently

long timeout. To write more data, refer to the XNET Session Number of Values Unused

property to determine the actual amount of queue space available for writing.

For an example of how this data applies to network traffic, refer to Signal Output XY

Mode.

u32 SizeOfValueBuffer

The size (in bytes) of the array passed to ValueBuffer.

nxTimestamp_t* TimestampBuffer

Provides a two-dimensional array of timestamps. First, N timestamps are reserved for the

first signal in the session, then N timestamps for the second and so on. N * (number of

signals in the session) * sizeof (f64) should be passed in SizeOfTimestampBuffer to

recalculate N.

The timestamps are given in 100 ns increments since Jan 1, 1601, 12:00 AM UTC.

This array is for future expansion; it is not used in the current implementation of

NI-XNET. Pass NULL on input.

u32 SizeOfTimestampBuffer

The size (in bytes) of the array passed to TimestampBuffer.

This value is for future expansion; it is not used in the current implementation of

NI-XNET. Pass 0 on input.

u32* NumPairsBuffer

Provides an one-dimensional array of signal/timestamp pair counts, one for each signal

in the session. Upon input, the samples and timestamps for signal #(i) in the preceding

arrays are valid up to, but not including, index NumPairsBuffer[i] (zero based) and are

written up to that point.

u32 SizeOfNumPairsBuffer

The size (in bytes) of the array passed to NumPairsBuffer. For each signal in the

session, an array element should be provided. If the buffer is too small, an error is

returned.

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

The data represents an XY plot of timestamp/value pairs for each signal in the session.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-144 ni.com

nxWriteState

Purpose

Writes communication states of an XNET session.

Format

nxStatus_t nxWriteState (

nxSessionRef_t SessionRef,

u32 StateID,

u32 StateSize,

void * StateValue);

Inputs

nxSessionRef_t SessionRef

The session to write. This session is returned from nxCreateSession. The session

protocol must be LIN.

u32 StateID

Indicates the state to be written. Possible values are:

nxState_LINScheduleChange

Changes the LIN schedule.

nxState_FlexRaySymbol

Transmits a FlexRay symbol.

nxState_LINDiagnosticScheduleChange

Changes the LIN diagnostic schedule.

The value determines the format to be written to StateValue.

u32 StateSize

Indicates the size of the buffer provided for StateValue.

void* StateValue

Writes the desired state. Formats and values are:

StateID = nxState_LINScheduleChange

StateValue must point to a u32 buffer that contains the index to the schedule table

that the LIN master executes. The schedule tables are sorted the way they are

returned from the database with the XNET Cluster Schedules property.

According to the LIN protocol, only the master executes schedules, not slaves. If the

XNET Session Interface:LIN:Master? property is false (slave), this write function

implicitly sets that property to true (master). If the interface currently is running as

a slave, this write returns an error, because it cannot change to master while running.

Chapter 5 NI-XNET API for C

© National Instruments 5-145 NI-XNET Hardware and Software Manual

StateID = nxState_FlexRaySymbol

StateValue must point to a u32 buffer that contains the value 0.

StateID = nxState_LINDiagnosticScheduleChange

StateValue must point to a u32 buffer that contains the diagnostic schedule that

the LIN master executes. Possible values are:

• nxLINDiagnosticSchedule_NULL: The master does not execute any

diagnostic schedule. No master request or slave response headers are

transmitted on the LIN.

• nxLINDiagnosticSchedule_MasterReq: The master executes a

diagnostic master request schedule (transmits a master request header onto

the LIN) if it can. First, a master request schedule must be defined for the

LIN cluster in the imported or in-memory database. Otherwise, error

nxErrDiagnosticScheduleNotDefined is returned when attempting to set this

value. Second, the master must have a frame output queued session created for

the master request frame, and there must be one or more new master request

frames pending in the queue. If no new frames are pending in the output queue,

no master request header is transmitted. This allows the timing of master request

header transmission to be controlled by the timing of master request frame

writes to the output queue.

If there are no normal schedules pending, the master is effectively in

diagnostics-only mode, and master request headers are transmitted at a rate

determined by the slot delay defined for the master request frame slot in the

master request schedule or the nxPropSession_IntfLINDiagSTmin time,

whichever is greater, and the state of the master request frame output queue as

described above.

If there are normal schedules pending, the master is effectively in

diagnostics-interleaved mode, and a master request header transmission is

inserted between each complete execution of a run-once or run-continuous

schedule, as long as the nxPropSession_IntfLINDiagSTmin time has been

met, and there are one or more new master request frames pending in the master

request frame output queue.

• nxLINDiagnosticSchedule_SlaveResp: The master executes a

diagnostic slave response schedule (transmits a slave response header onto

the LIN) if it is able to. A slave response schedule must be defined for the

LIN cluster in the imported or in-memory database. Otherwise, error

nxErrDiagnosticScheduleNotDefined is returned when attempting to set this

value.

If there are no normal schedules pending, the master is effectively in

diagnostics-only mode, and slave response headers are transmitted at the rate of

the slot delay defined for the slave response frame slot in the slave response

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-146 ni.com

schedule. The addressed slave may or may not respond to each header,

depending on its specified P2min and STmin timings.

If there are normal schedules pending, the master is effectively in

diagnostics-interleaved mode, and a slave response header transmission is

inserted between each complete execution of a run-once or run-continuous

schedule. Here again, the addressed slave may or may not respond to each

header, depending on its specified P2min and STmin timings.

Outputs

Return Value

nxStatus_t

The error code the function returns in the event of an error or warning. A value of 0

indicates success. A positive value indicates a warning. A negative value indicates an

error.

Description

You can use nxWriteState with an XNET LIN master session to set the schedule that the

LIN master executes.

You also can use nxWriteState with an XNET FlexRay session to transmit a symbol on the

FlexRay bus.

Executing this function on any other type of session causes an error.

You can use nxWriteState with an XNET LIN master session to set the diagnostic schedule

that the LIN master executes. Use this state to transmit master request messages and query for

slave response messages after node configuration has been performed. Node configuration

should be handled using nxState_LINScheduleChange. Write the node configuration

schedule defined for the LIN cluster using nxState_LINScheduleChange, so that it is the

first schedule executed for the LIN, with a run mode of once. The data for each node

configuration service request entry in the node configuration schedule is automatically

transmitted by the master. After the node configuration schedule has completed, use

nxState_LINDiagnosticScheduleChange to run diagnostic schedules, or

nxState_LINScheduleChange to run normal schedules.

Chapter 5 NI-XNET API for C

© National Instruments 5-147 NI-XNET Hardware and Software Manual

Properties

This section includes the XNET properties.

XNET Cluster Properties

This section includes the XNET Cluster properties.

Baud Rate

Data Type Direction Required? Default

u32 Read/Write No 0

Property Class

XNET Cluster

Property ID

nxPropClst_BaudRate

Description

The Baud Rate property sets the baud rate all cluster nodes use. This baud rate represents the

rate from the database, so it is read-only from the session. Use a session interface property

(for example, XNET Session Interface:Baud Rate) to override the database baud rate with an

application-specific baud rate.

CAN

For CAN, this rate can be 33333, 40000, 50000, 62500, 80000, 83333, 100000, 125000,

160000, 200000, 250000, 400000, 500000, 800000, or 1000000. Some transceivers may

support only a subset of these values.

If you need values other than these, use the custom settings as described in the XNET Session

Interface:Baud Rate property.

FlexRay

For FlexRay, this rate can be 2500000, 5000000, or 10000000.

LIN

For LIN, this rate can be 2400–20000 inclusive.

If you need values other than these, use the custom settings as described in the XNET Session

Interface:Baud Rate property.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-148 ni.com

CAN:FD Baud Rate

Data Type Direction Required? Default

u32 Read/Write No 0

Property Class

XNET Cluster

Property ID

nxPropClst_CanFdBaudRate

Description

The FD Baud Rate property sets the fast data baud rate for the CAN FD + BRS CAN:I/O

Mode property. This property represents the database fast data baud rate for the CAN FD +

BRS I/O Mode. Refer to the CAN:I/O Mode property for a description of this mode. Use a

session interface property (for example, Interface:CAN:FD Baud Rate) to override the

database fast baud rate with an application-specific fast baud rate.

NI-XNET CAN hardware currently accepts the following numeric baud rates: 200000,

250000, 400000, 500000, 800000, 1000000, 1250000, 1600000, 2000000, 2500000,

4000000, 5000000, and 8000000. Some transceivers may support only a subset of these

values.

If you need values other than these, use the custom settings as described in the

Interface:CAN:FD Baud Rate property.

Chapter 5 NI-XNET API for C

© National Instruments 5-149 NI-XNET Hardware and Software Manual

CAN:I/O Mode

Data Type Direction Required? Default

u32 Read/Write No 0

Property Class

XNET Cluster

Property ID

nxPropClst_CanIoMode

Description

This property specifies the CAN I/O Mode of the cluster. It is a ring of three values:

Enumeration Value Meaning

nxCANioMode_

CAN

0 This is the default CAN 2.0 A/B standard I/O

mode as defined in ISO 11898-1:2003. A fixed

baud rate is used for transfer, and the payload

length is limited to 8 bytes.

nxCANioMode_

CAN_FD

1 This is the CAN FD mode as specified in the

CAN with Flexible Data-Rate specification,

version 1.0. Payload lengths up to 64 are

allowed, but they are transmitted at a single

fixed baud rate (defined by the XNET Cluster

Baud Rate or XNET Session Interface:Baud

Rate properties).

nxCANioMode_

CAN_FD_BRS

2 This is the CAN FD as specified in the CAN

with Flexible Data-Rate specification, version

1.0, with the optional Baud Rate Switching

enabled. The same payload lengths as CAN

FD mode are allowed; additionally, the data

portion of the CAN frame is transferred at a

different (higher) baudrate (defined by the

CAN:FD Baud Rate or XNET Session

Interface:CAN:FD Baud Rate properties).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-150 ni.com

Comment

Data Type Direction Required? Default

char * Read/Write No Empty String

Property Class

XNET Cluster

Property ID

nxPropClst_Comment

Description

A comment describing the cluster object.

A comment is a string containing up to 65535 characters.

Configuration Status

Data Type Direction Required? Default

i32 Read Only N/A N/A

Property Class

XNET Cluster

Property ID

nxPropClst_ConfigStatus

Description

The cluster object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to the error code

input of nxStatusToString to convert it to a text description of the configuration problem.

By default, incorrectly configured clusters in the database are not returned from the XNET

Database Clusters property because they cannot be used in the bus communication. You can

change this behavior by setting the XNET Database ShowInvalidFromOpen? property to true.

When the configuration status of a cluster becomes invalid after the database has been opened,

the cluster still is returned from the Clusters property even if ShowInvalidFromOpen? is false.

Chapter 5 NI-XNET API for C

© National Instruments 5-151 NI-XNET Hardware and Software Manual

Database

Data Type Direction Required? Default

nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET Cluster

Property ID

nxPropClst_DatabaseRef

Description

Refnum to the cluster parent database.

The parent database is defined when the cluster object is created. You cannot change it

afterwards.

ECUs

Data Type Direction Required? Default

nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET Cluster

Property ID

nxPropClst_ECURefs

Description

ECUs in this cluster.

Returns an array of references to all ECUs defined in this cluster. An ECU is assigned to a

cluster when the ECU object is created. You cannot change this assignment afterwards.

To add an ECU to a cluster, use nxdbCreateObject. To remove an ECU from the cluster,

use nxdbDeleteObject.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-152 ni.com

FlexRay:Action Point Offset

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayActPtOff

Description

This property specifies the number of macroticks (MT) that the action point is offset from the

beginning of a static slot or symbol window.

This property corresponds to the global cluster parameter gdActionPointOffset in the

FlexRay Protocol Specification.

The action point is that point within a given slot where the actual transmission of a frame

starts. This is slightly later than the start of the slot, to allow for a clock drift between the

network nodes.

The range for this property is 1–63 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-153 NI-XNET Hardware and Software Manual

FlexRay:CAS Rx Low Max

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayCASRxLMax

Description

This property specifies the upper limit of the collision avoidance symbol (CAS) acceptance

window. The CAS symbol is transmitted by the FlexRay interface (node) during the symbol

window within the communication cycle. A receiving FlexRay interface considers the CAS

to be valid if the pattern’s low level is within 29 gdBit (cdCASRxLowMin) and CAS Rx

Low Max.

This property corresponds to the global cluster parameter gdCASRxLowMax in the FlexRay

Protocol Specification.

The values for this property are in the range 67–99 gdBit.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-154 ni.com

FlexRay:Channels

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayChannels

Description

This property specifies the FlexRay channels used in the cluster. Frames defined in this cluster

are expected to use the channels this property specifies. Refer to the XNET Frame

FlexRay:Channel Assignment property.

This property corresponds to the global cluster parameter gChannels in the FlexRay

Protocol Specification.

A FlexRay cluster supports two independent network wires (channels A and B). You can

choose to use both or only one in your cluster.

The values (enumeration) for this property are:

1 Channel A only

2 Channel B only

3 Channels A and B

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-155 NI-XNET Hardware and Software Manual

FlexRay:Cluster Drift Damping

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayClstDriftDmp

Description

This property specifies the cluster drift damping factor, based on the longest microtick used

in the cluster. Use this global FlexRay parameter to compute the local cluster drift damping

factor for each cluster node. You can access the local cluster drift for the XNET FlexRay

interface from the XNET Session Interface:FlexRay:Cluster Drift Damping property.

This property corresponds to the global cluster parameter gdClusterDriftDamping in the

FlexRay Protocol Specification.

The values for this property are in the range 0–5 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-156 ni.com

FlexRay:Cold Start Attempts

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayColdStAts

Description

This property specifies the maximum number of times a node in this cluster can start the

cluster by initiating schedule synchronization. This global cluster parameter is applicable to

all cluster notes that can perform a coldstart (send startup frames).

This property corresponds to the global cluster parameter gColdStartAttempts in the

FlexRay Protocol Specification.

The values for this property are in the range 2–31.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-157 NI-XNET Hardware and Software Manual

FlexRay:Cycle

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayCycle

Description

This property specifies the duration of one FlexRay communication cycle, expressed in

microseconds.

This property corresponds to the global cluster parameter gdCycle in the FlexRay Protocol

Specification.

All frame transmissions complete within a cycle. After this time, the frame transmissions

restart with the first frame in the next cycle. The communication cycle counts increment from

0–63, after which the cycle count resets back to 0.

The range for this property is 10–16000 µs.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-158 ni.com

FlexRay:Dynamic Segment Start

Data Type Direction Required? Default

u32 Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayDynSegStart

Description

This property specifies the start of the dynamic segment, expressed as the number of

macroticks (MT) from the start of the cycle.

The range for this property is 8–15998 MT.

This property is calculated from other cluster properties. It is based on the total static segment

size. It is set to 0 if the FlexRay:Number of Minislots property is 0 (no dynamic segment

exists).

Chapter 5 NI-XNET API for C

© National Instruments 5-159 NI-XNET Hardware and Software Manual

FlexRay:Dynamic Slot Idle Phase

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayDynSlotIdlPh

Description

This property specifies the dynamic slot idle phase duration.

This property corresponds to the global cluster parameter gdDynamicSlotIdlePhase in the

FlexRay Protocol Specification.

The values for this property are in the range 0–2 minislots.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-160 ni.com

FlexRay:Latest Guaranteed Dynamic Slot

Data Type Direction Required? Default

u32 Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayLatestGuarDyn

Description

This property specifies the highest slot ID in the dynamic segment that still can transmit a

full-length (for example, Payload Length Dynamic Maximum) frame, provided all previous

slots in the dynamic segment have transmitted full-length frames also.

A larger slot ID cannot be guaranteed to transmit a full-length frame in each cycle (although

a frame might go out depending on the dynamic segment load).

The range for this property is 2–2047 slots.

This read-only property is calculated from other cluster properties. If the Number of Minislots

is zero, no dynamic slots exist, and this property returns 0. Otherwise, the Number of

Minislots is used along with Payload Length Dynamic Maximum to determine the latest

dynamic slot guaranteed to transmit in the next cycle. In other words, when all preceding

dynamic slots transmit with Payload Length Dynamic Maximum, this dynamic slot also can

transmit with Payload Length Dynamic Maximum, and its frame ends prior to the end of the

dynamic segment.

Chapter 5 NI-XNET API for C

© National Instruments 5-161 NI-XNET Hardware and Software Manual

FlexRay:Latest Usable Dynamic Slot

Data Type Direction Required? Default

u32 Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayLatestUsableDyn

Description

This property specifies the highest slot ID in the dynamic segment that can still transmit a

full-length (that is, Payload Length Dynamic Maximum) frame, provided no other frames

have been sent in the dynamic segment.

A larger slot ID cannot transmit a full-length frame (but could probably still transmit a shorter

frame).

The range for this property is 2–2047.

This read-only property is calculated from other cluster properties. If the Number of Minislots

is zero, no dynamic slots exist, and this property returns 0. Otherwise, Number of Minislots

is used along with Payload Length Dynamic Maximum to determine the latest dynamic slot

that can be used when all preceding dynamic slots are empty (zero payload length). In other

words, this property is calculated under the assumption that all other dynamic slots use only

one minislot, and this dynamic slot uses the number of minislots required to deliver the

maximum payload. The frame for this dynamic slot must end prior to the end of the dynamic

segment. Any frame transmitted in a preceding dynamic slot is likely to preclude this slot’s

frame.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-162 ni.com

FlexRay:Listen Noise

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayLisNoise

Description

This property specifies the upper limit for the startup and wakeup listen timeout in the

presence of noise. It is used as a multiplier for the Interface:FlexRay:Listen Timeout property.

This property corresponds to the global cluster parameter gListenNoise in the FlexRay

Protocol Specification.

The values for this property are in the range 2–16.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-163 NI-XNET Hardware and Software Manual

FlexRay:Macro Per Cycle

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayMacroPerCycle

Description

This property specifies the number of macroticks in a communication cycle. For example, if

the FlexRay cycle has a duration of 5 ms (5000 µs), and the duration of a macrotick is 1 µs,

the XNET Cluster FlexRay:Macro Per Cycle property is 5000.

This property corresponds to the global cluster parameter gMacroPerCycle in the FlexRay

Protocol Specification.

The macrotick (MT) is the basic timing unit in the FlexRay cluster. Nearly all

timing-dependent properties are expressed in terms of macroticks.

The range for this property is 10–16000 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-164 ni.com

FlexRay:Macrotick

Data Type Direction Required? Default

f64 Read Only N/A Calculated from Other Cluster Parameters

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayMacrotick

Description

This property specifies the duration of the clusterwide nominal macrotick, expressed in

microseconds.

This property corresponds to the global cluster parameter gdMacrotick in the FlexRay

Protocol Specification.

The macrotick (MT) is the basic timing unit in the FlexRay cluster. Nearly all

timing-dependent properties are expressed in terms of macroticks.

The range for this property is 1–6 µs.

This property is calculated from the XNET Cluster FlexRay:Cycle and FlexRay:Macro Per

Cycle properties and rounded to the nearest permitted value.

Chapter 5 NI-XNET API for C

© National Instruments 5-165 NI-XNET Hardware and Software Manual

FlexRay:Max Without Clock Correction Fatal

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayMaxWoClkCorFat

Description

This property defines the number of consecutive even/odd cycle pairs with missing clock

correction terms that cause the controller to transition from the Protocol Operation Control

status of Normal Active or Normal Passive to the Halt state. Use this global parameter as a

threshold for testing the clock correction failure counter.

This property corresponds to the global cluster parameter

gMaxWithoutClockCorrectionFatal in the FlexRay Protocol Specification.

The values for this property are in the range 1–15 even/odd cycle pairs.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-166 ni.com

FlexRay:Max Without Clock Correction Passive

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayMaxWoClkCorPas

Description

This property defines the number of consecutive even/odd cycle pairs with missing clock

correction terms that cause the controller to transition from the Protocol Operation Control

status of Normal Active to Normal Passive. Use this global parameter as a threshold for

testing the clock correction failure counter.

Note This property, Max Without Clock Correction Passive, <= Max Without Clock

Correction Fatal <= 15.

This property corresponds to the global cluster parameter

gMaxWithoutClockCorrectionPassive in the FlexRay Protocol Specification.

The values for this property are in the range 1–15 even/odd cycle pairs.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-167 NI-XNET Hardware and Software Manual

FlexRay:Minislot

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayMinislot

Description

This property specifies the duration of a minislot, expressed in macroticks (MT).

This property corresponds to the global cluster parameter gdMinislot in the FlexRay

Protocol Specification.

In the dynamic segment of the FlexRay cycle, frames can have variable payload length.

Minislots are the dynamic segment time increments. In a minislot, a dynamic frame can start

transmission, but it usually spans several minislots. If no frame transmits, the slot counter

(slot ID) is incremented to allow for the next frame.

The total dynamic segment length is determined by multiplying this property by the

FlexRay:Number of Minislots property. The total dynamic segment length must be shorter

than the Macro Per Cycle property minus the total static segment length.

The range for this property is 2–63 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-168 ni.com

FlexRay:Minislot Action Point Offset

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayMinislotActPt

Description

This property specifies the number of macroticks (MT) the minislot action point is offset from

the beginning of a minislot.

This property corresponds to the global cluster parameter

gdMinislotActionPointOffset in the FlexRay Protocol Specification.

The action point is that point within a given slot where the actual transmission of a frame

starts. This is slightly later than the start of the slot to allow for a clock drift between the

network nodes.

The range for this property is 1–31 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-169 NI-XNET Hardware and Software Manual

FlexRay:Network Management Vector Length

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayNMVecLen

Description

This property specifies the length of the Network Management vector (NMVector) in a

cluster.

Only frames transmitted in the static segment of the communication cycle use the NMVector.

The NMVector length specifies the number of bytes in the payload segment of the FlexRay

frame transmitted in the status segment that can be used as the NMVector.

This property corresponds to the global cluster parameter

gNetworkManagementVectorLength in the FlexRay Protocol Specification.

The range for this property is 0–12 bytes.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-170 ni.com

FlexRay:NIT

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayNIT

Description

This property is the Network Idle Time (NIT) duration, expressed in macroticks (MT).

This property corresponds to the global cluster parameter gdNIT in the FlexRay Protocol

Specification.

The NIT is a period at the end of a FlexRay communication cycle where no frames are

transmitted. The network nodes use it to re-sync their clocks to the common network time.

Configure the NIT to be the Macro Per Cycle property minus the total static and dynamic

segment lengths minus the optional symbol window duration.

The range for this property is 2–805 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-171 NI-XNET Hardware and Software Manual

FlexRay:NIT Start

Data Type Direction Required? Default

u32 Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayNITStart

Description

This property specifies the start of the Network Idle Time (NIT), expressed as the number of

macroticks (MT) from the start of the cycle.

The NIT is a period at the end of a FlexRay communication cycle where no frames are

transmitted. The network nodes use it to re-sync their clocks to the common network time.

The range for this property is 8–15998 MT.

This property is calculated from other cluster properties. It is the total size of the static and

dynamic segments plus the symbol window length, which is optional in a FlexRay

communication cycle.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-172 ni.com

FlexRay:Number of Minislots

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayNumMinislt

Description

This property specifies the number of minislots in the dynamic segment.

This property corresponds to the global cluster parameter gNumberOfMinislots in the

FlexRay Protocol Specification.

In the FlexRay cycle dynamic segment, frames can have variable payload lengths.

Minislots are the dynamic segment time increments. In a minislot, a dynamic frame can start

transmission, but it usually spans several minislots. If no frame transmits, the slot counter

(slot ID) is incremented to allow for the next frame.

The total dynamic segment length is determined by multiplying this property by the Minislot

property. The total dynamic segment length must be shorter than the Macro Per Cycle

property minus the total static segment length.

The range for this property is 0–7986.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-173 NI-XNET Hardware and Software Manual

FlexRay:Number of Static Slots

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayNumStatSlt

Description

This property specifies the number of static slots in the static segment.

This property corresponds to the global cluster parameter gNumberOfStaticSlots in the

FlexRay Protocol Specification.

Each static slot is used to transmit one (static) frame on the bus.

The total static segment length is determined by multiplying this property by the Static Slot

property. The total static segment length must be shorter than the Macro Per Cycle property.

The range for this property is 2–1023.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-174 ni.com

FlexRay:Offset Correction Start

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayOffCorSt

Description

This property specifies the start of the offset correction phase within the Network Idle Time

(NIT), expressed as the number of macroticks (MT) from the start of the cycle.

This property corresponds to the global cluster parameter gOffsetCorrectionStart in the

FlexRay Protocol Specification.

The NIT is a period at the end of a FlexRay communication cycle where no frames are

transmitted. The network nodes use it to re-sync their clocks to the common network time.

The Offset Correction Start is usually configured to be NIT Start + 1, but can deviate from

that value. The range for this property is 9–15999 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-175 NI-XNET Hardware and Software Manual

FlexRay:Payload Length Dynamic Maximum

Data Type Direction Required? Default

u32 Read/Write N/A Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayPayldLenDynMax

Description

This property specifies the maximum of the payload lengths of all dynamic frames.

In the FlexRay cycle dynamic segment, frames can have variable payload length.

The range for this property is 0–254 bytes (even numbers only).

The value returned for this property is the maximum of the payload lengths of all frames

defined for the dynamic segment in the database.

Use this property to calculate the XNET Cluster FlexRay:Latest Usable Dynamic Slot and

FlexRay:Latest Guaranteed Dynamic Slot properties.

You may temporarily set this to a larger value (if it is not yet the maximum), and then this

value is returned for this property. But this setting is lost once the database is closed, and after

a reopen, the maximum of the frames is returned again. The changed value is returned from

the FlexRay:Payload Length Dynamic Maximum property until the database is closed.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-176 ni.com

FlexRay:Payload Length Maximum

Data Type Direction Required? Default

u32 Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayPayldLenMax

Description

This property returns the payload length of any frame (static or dynamic) in this cluster with

the longest payload. The payload specifies that the frame transfers the data.

The range for this property is 0–254 bytes (even numbers only).

Chapter 5 NI-XNET API for C

© National Instruments 5-177 NI-XNET Hardware and Software Manual

FlexRay:Payload Length Static

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayPayldLenSt

Description

This property specifies the payload length of a static frame. All static frames in a cluster have

the same payload length.

This property corresponds to the global cluster parameter gPayloadLengthStatic in the

FlexRay Protocol Specification.

The range for this property is 0–254 bytes (even numbers only).

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-178 ni.com

FlexRay:Static Slot

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayStatSlot

Description

This property specifies the duration of a slot in the static segment in macroticks (MT).

This property corresponds to the global cluster parameter gdStaticSlot in the FlexRay

Protocol Specification.

Each static slot is used to transmit one (static) frame on the bus.

The static slot duration takes into account the XNET Cluster FlexRay:Payload Length Static

and FlexRay:Action Point Offset properties, as well as maximum propagation delay.

In the FlexRay cycle static segment, all frames must have the same payload length; therefore,

the duration of a static frame is the same.

The total static segment length is determined by multiplying this property by the

FlexRay:Number of Static Slots property. The total static segment length must be shorter than

the FlexRay:Macro Per Cycle property.

The range for this property is 4–661 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-179 NI-XNET Hardware and Software Manual

FlexRay:Symbol Window

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRaySymWin

Description

This property specifies the symbol window duration, expressed in macroticks (MT).

This property corresponds to the global cluster parameter gdSymbolWindow in the FlexRay

Protocol Specification.

The symbol window is a slot after the static and dynamic segment, and is used to transmit

Collision Avoidance symbols (CAS) and/or Media Access Test symbols (MTS). The symbol

window is optional for a given cluster (the Symbol Window property can be zero). A symbol

transmission starts at the action point offset within the symbol window.

The range for this property is 0–142 MT.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-180 ni.com

FlexRay:Symbol Window Start

Data Type Direction Required? Default

u32 Read Only N/A Calculated from Other Cluster Properties

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRaySymWinStart

Description

This property specifies the macrotick offset at which the symbol window begins from the start

of the cycle. During the symbol window, a channel sends a single Media Test Access Symbol

(MTS).

The range for this property is 8–15998 MT.

This property is calculated from other cluster properties. It is based on the total static and

dynamic segment size. It is set to zero if the Symbol Window property is 0 (no symbol

window exists).

Chapter 5 NI-XNET API for C

© National Instruments 5-181 NI-XNET Hardware and Software Manual

FlexRay:Sync Node Max

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRaySyncNodeMax

Description

This property specifies the maximum number of nodes that may send frames with the sync

frame indicator bit set to one.

This property corresponds to the global cluster parameter gSyncNodeMax in the FlexRay

Protocol Specification.

Sync frames define the zero points for the clock drift measurement. Startup frames are special

sync frames transmitted first after a network startup. There must be at least two startup nodes

in a network.

The range for this property is 2–15.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-182 ni.com

FlexRay:TSS Transmitter

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayTSSTx

Description

This property specifies the number of bits in the Transmission Start Sequence (TSS). A frame

transmission may be truncated at the beginning. The amount of truncation depends on the

nodes involved and the channel topology layout. For example, the purpose of the TSS is to

“open the gates” of an active star (that is, to cause the star to properly set up input and output

connections). During this setup, an active star truncates a number of bits at the beginning of

a communication element. The TSS prevents the frame or symbol content from being

truncated. You must set this property to be greater than the expected worst case truncation of

a frame.

This property corresponds to the global cluster parameter gdTSSTransmitter in the

FlexRay Protocol Specification.

The range for this property is 3–15 bit.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-183 NI-XNET Hardware and Software Manual

FlexRay:Use Wakeup

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayUseWakeup

Description

This property indicates whether the FlexRay cluster supports wakeup. This value is set to True

if the WAKE-UP tree is present in the FIBEX file. This value is set to False if the WAKE-UP

tree is not present in the FIBEX file.

When this property is True, the FlexRay cluster uses wakeup functionality; otherwise, the

FlexRay cluster does not use wakeup functionality.

When creating a new database, the default value of this property is false. However, if you set

any wakeup parameter (for example, nxPropClst_FlexRayWakeSymRxIdl), this property

automatically is set to True, and the WAKE-UP tree is saved in the FIBEX file when saved.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-184 ni.com

FlexRay:Wakeup Symbol Rx Idle

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayWakeSymRxIdl

Description

This property specifies the number of bits the node uses to test the idle portion duration of a

received wakeup symbol. Collisions, clock differences, and other effects can deform the

transmitted wakeup pattern.

This property corresponds to the global cluster parameter gdWakeupSymbolRxIdle in the

FlexRay Protocol Specification.

The range for this property is 14–59 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-185 NI-XNET Hardware and Software Manual

FlexRay:Wakeup Symbol Rx Low

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayWakeSymRxLow

Description

This property specifies the number of bits the node uses to test the low portion duration of a

received wakeup symbol. This lower limit of zero bits must be received for the receiver to

detect the low portion. Active starts, clock differences, and other effects can deform the

transmitted wakeup pattern.

This property corresponds to the global cluster parameter gdWakeupSymbolRxLow in the

FlexRay Protocol Specification.

The range for this property is 10–55 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-186 ni.com

FlexRay:Wakeup Symbol Rx Window

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayWakeSymRxWin

Description

This property specifies the size of the window used to detect wakeups. Detection of a wakeup

requires a low and idle period from one WUS (wakeup symbol) and a low period from another

WUS, to be detected entirely within a window of this size. Clock differences and other effects

can deform the transmitted wakeup pattern.

This property corresponds to the global cluster parameter gdWakeupSymbolRxWindow in the

FlexRay Protocol Specification.

The range for this property is 76–301 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-187 NI-XNET Hardware and Software Manual

FlexRay:Wakeup Symbol Tx Idle

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayWakeSymTxIdl

Description

This property specifies the number of bits the node uses to transmit the wakeup symbol idle

portion.

This property corresponds to the global cluster parameter gdWakeupSymbolTxIdle in the

FlexRay Protocol Specification.

The range for this property is 45–180 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-188 ni.com

FlexRay:Wakeup Symbol Tx Low

Data Type Direction Required? Default

u32 Read/Write Yes Read from Database

Property Class

XNET Cluster

Property ID

nxPropClst_FlexRayWakeSymTxLow

Description

This property specifies the number of bits the node uses to transmit the wakeup symbol low

phase.

This property corresponds to the global cluster parameter gdWakeupSymbolTxLow in the

FlexRay Protocol Specification.

The range for this property is 15–60 gdBit (bit duration).

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this cluster, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-189 NI-XNET Hardware and Software Manual

Frames

Data Type Direction Required? Default

nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET Cluster

Property ID

nxPropClst_FrmRefs

Description

Frames in this cluster.

Returns an array of refnums to all frames defined in this cluster. A frame is assigned to a

cluster when the frame object is created. You cannot change this assignment afterwards.

To add a frame to a cluster, use nxdbCreateObject. To remove a frame from a cluster, use

nxdbDeleteObject.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-190 ni.com

Name (Short)

Data Type Direction Required? Default

char * Read/Write Yes Defined in Create Object

Property Class

XNET Cluster

Property ID

nxPropClst_Name

Description

String identifying the cluster object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the short name. The space (), period (.), and other special characters are not supported within

the name. The short name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The short name is limited to 128 characters.

If you use a FIBEX file, the short name comes from the file. If you use a CANdb (.dbc), LDF

(.ldf), or NI-CAN (.ncd) file, no cluster name is stored in the file, so NI-XNET uses the

name Cluster. If you create the cluster yourself, it comes from the Name input of

nxdbCreateObject.

A cluster name must be unique for all clusters in a database.

This short name does not include qualifiers to ensure that it is unique, such as the database

name. It is for display purposes.

You can write this property to change the cluster’s short name.

Chapter 5 NI-XNET API for C

© National Instruments 5-191 NI-XNET Hardware and Software Manual

PDUs

Data Type Direction Required? Default

nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET Cluster

Property ID

nxPropClst_PDURefs

Description

PDUs in this cluster.

Returns an array of database references (nxDatabaseRef_t) of all PDUs defined in this

cluster. A PDU is assigned to a cluster when the PDU object is created. You cannot change

this assignment afterwards.

To add a PDU to a cluster, use nxdbCreateObject. To remove a PDU from a cluster, use

nxdbDeleteObject.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-192 ni.com

PDUs Required?

Data Type Direction Required? Default

Boolean Read Only N/A N/A

Property Class

XNET Cluster

Property ID

nxPropClst_PDUsReqd

Description

Determines whether using PDUs in the database API is required for this cluster.

If this property returns false, it is safe to use signals as child objects of a frame without PDUs.

This behavior is compatible with NI-XNET 1.1 or earlier. Clusters from .dbc, .ncd, or

FIBEX 2 files always return false for this property, so using PDUs from those files is not

required.

If this property returns true, the cluster contains PDU configuration, which requires reading

the PDUs as frame child objects and then signals as PDU child objects, as shown in the

following figure.

Internally, the database always uses PDUs, but shows the same signal objects also as children

of a frame.

Frame1

PDU1 Signal1

Signal2

Chapter 5 NI-XNET API for C

© National Instruments 5-193 NI-XNET Hardware and Software Manual

The following conditions must be fulfilled for all frames in the cluster to return false from the

PDUs Required? property:

• Only one PDU is mapped to the frame.

• This PDU is not mapped to other frames.

• The PDU Start Bit in the frame is 0.

• The PDU Update Bit is not used.

If the conditions are not fulfilled for a given frame, signals from the frame are still returned,

but reading the property returns a warning.

The NI-XNET session supports frames requiring PDUs only for FlexRay. For frames

requiring PDUs on a CAN or LIN cluster, the XNET Frame Configuration Status property

and nxCreateSession return an error.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-194 ni.com

Protocol

Data Type Direction Required? Default

u32 Read/Write No CAN

Property Class

XNET Cluster

Property ID

nxPropClst_Protocol

Description

Determines the cluster protocol.

The values (enumeration) for this property are:

0 CAN

1 FlexRay

2 LIN

Schedules

Data Type Direction Required? Default

nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET Cluster

Property ID

nxPropClst_LINSchedules

Description

An array of LIN schedules defined in this cluster. You assign a LIN schedule to a cluster when

you create the LIN schedule object. You cannot change this assignment afterwards. The

schedules in this array are sorted alphabetically by schedule name.

Chapter 5 NI-XNET API for C

© National Instruments 5-195 NI-XNET Hardware and Software Manual

Signals

Data Type Direction Required? Default

nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET Cluster

Property ID

nxPropClst_SigRefs

Description

This property returns refnums to all XNET Signals defined in this cluster.

A signal is assigned to a cluster when the signal object is created. You cannot change this

assignment afterwards.

To add a signal to a cluster, use nxdbCreateObject. To remove a signal from a cluster, use

nxdbDeleteObject.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-196 ni.com

Tick

Data Type Direction Required? Default

f64 Read Only N/A N/A

Property Class

XNET Cluster

Property ID

nxPropClst_LINTick

Description

Relative time between LIN ticks (relative f64 in seconds). The LIN Schedule Entry Delay

property must be a multiple of this tick.

This tick is referred to as the “timebase” in the LIN specification.

The XNET ECU LIN Master property defines the Tick property in this cluster. You cannot

use the Tick property when there is no LIN Master property defined in this cluster.

Chapter 5 NI-XNET API for C

© National Instruments 5-197 NI-XNET Hardware and Software Manual

Application Protocol

Data Type Direction Required? Default

u32 Read/Write No Read from Database

Property Class

XNET Cluster

Short Name

nxPropClst_ApplicationProtocol

Description

This property specifies the application protocol. It is a ring of two values:

Enumeration Value Meaning

None 0 The default application protocol.

J1939 1 Indicates J1939 clusters. The

value enables the following

features:

• Sending/receiving long frames

as the SAE J1939 specification

specifies, using the J1939

transport protocol.

• Using a special notation for

J1939 identifiers.

• Using J1939 address claiming.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-198 ni.com

XNET Database Properties

This section includes the XNET Database properties.

Clusters

Data Type Direction Required? Default

nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET Database

Property ID

nxPropDatabase_ClstRefs

Description

Returns an array of refnums to XNET Clusters in this database.

A cluster is assigned to a database when the cluster object is created. You cannot change this

assignment afterwards.

FIBEX files can contain any number of clusters, and each cluster uses a unique name.

For CANdb (.dbc), LDF (.ldf), or NI-CAN (.ncd) files, the file contains only one cluster,

and no cluster name is stored in the file. For these database formats, NI-XNET uses the name

Cluster for the single cluster.

Chapter 5 NI-XNET API for C

© National Instruments 5-199 NI-XNET Hardware and Software Manual

ShowInvalidFromOpen?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Database

Property ID

nxPropDatabase_ShowInvalidFromOpen

Description

Shows frames and signals that are invalid at database open time.

After opening a database, this property always is set to false, meaning that invalid clusters,

frames, and signals are not returned in properties that return XNET I/O Names for the

database (for example, XNET Cluster Frames and XNET Frame Signals). Invalid clusters,

frames, and signals are incorrectly defined and therefore cannot be used in the bus

communication. The false setting is recommended when you use the database to create XNET

sessions.

In case the database was opened to correct invalid configuration (for example, in a database

editor), you must set the property to true prior to reading properties that return XNET I/O

Names for the database (for example, XNET Cluster Frames and XNET Frame Signals).

For invalid objects, the XNET Cluster Configuration Status, XNET Frame Configuration

Status, and XNET Signal Configuration Status properties return an error code that explains

the problem. For valid objects, Configuration Status returns success (no error).

Clusters, frames, and signals that became invalid after the database is opened are still returned

from the XNET Database Clusters, XNET Cluster Frames, and XNET Frame Signals

properties, even if ShowInvalidFromOpen? is false and Configuration Status returns an error

code. For example, if you open the frame with valid properties, then you set the Start Bit

beyond the payload length, the Configuration Status returns an error, but the frame is returned

from XNET Cluster Frames.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-200 ni.com

XNET Device Properties

The XNET Device properties provide information about a specific NI-XNET hardware

device. Within NI-XNET, the term device refers to your National Instruments CAN/FlexRay/

LIN hardware product, such as a PXI or PCI card.

You obtain the handle to a specific device using the XNET System Properties.

Form Factor

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET Device

Property ID

nxPropDev_FormFac

Description

Returns the XNET board physical form factor.

Enumeration Value Define

PXI 0 nxDevForm_PXI

PCI 1 nxDevForm_PCI

C Series 2 nxDevForm_cSeries

Chapter 5 NI-XNET API for C

© National Instruments 5-201 NI-XNET Hardware and Software Manual

Interfaces

Data Type Direction Required? Default

u32[] Read Only No N/A

Property Class

XNET Device

Property ID

nxPropDev_IntfRefs

Description

Returns an array of handles to all interfaces associated with this physical hardware device.

Number of Ports

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET Device

Property ID

nxPropDev_NumPorts

Description

Returns the number of physical port connectors on the XNET board.

Remarks

For example, returns 2 for an NI PCI-8517 two-port FlexRay device.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-202 ni.com

Product Name

Data Type Direction Required? Default

cstr Read Only No N/A

Property Class

XNET Device

Property ID

nxPropDev_Name

Description

Returns the XNET device product name.

Remarks

For example, returns NI PCI-8517 (2 ports) for an NI PCI-8517 device.

Product Number

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET Device

Property ID

nxPropDev_ProductNum

Description

Returns the numeric portion of the XNET device product name.

Remarks

For example, returns 8517 for an NI PCI-8517 two-port FlexRay device.

Chapter 5 NI-XNET API for C

© National Instruments 5-203 NI-XNET Hardware and Software Manual

Serial Number

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET Device

Property ID

nxPropDev_SerNum

Description

Returns the serial number associated with the XNET device.

Remarks

The serial number is written in hex on a label on the physical XNET board. Convert the return

value from this property to hex to match the label.

Slot Number

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET Device

Property ID

nxPropDev_SlotNum

Description

Physical slot where the device (module) is located.

For PXI and C Series, this is the slot number within the chassis.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-204 ni.com

XNET ECU Properties

This section includes the XNET ECU properties.

Cluster

Data Type Direction Required? Default

nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_ClstRef

Description

Refnum to the parent cluster to which the ECU is connected.

The parent cluster is determined when the ECU object is created. You cannot change it

afterwards.

Comment

Data Type Direction Required? Default

char * Read/Write No Empty String

Property Class

XNET ECU

Property ID

nxPropECU_Comment

Description

Comment describing the ECU object.

A comment is a string containing up to 65535 characters.

Chapter 5 NI-XNET API for C

© National Instruments 5-205 NI-XNET Hardware and Software Manual

Configuration Status

Data Type Direction Required? Default

i32 Read Only N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_ConfigStatus

Description

The ECU object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to the

nxStatusToString error code input to convert the value to a text description of the

configuration problem.

By default, incorrectly configured ECUs in the database are not returned from the XNET

Cluster ECUs property because they cannot be used in the bus communication. You can

change this behavior by setting the XNET Database ShowInvalidFromOpen? property to true.

When the configuration status of an ECU became invalid after the database is opened, the

ECU still is returned from the ECUs property even if ShowInvalidFromOpen? is false.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-206 ni.com

FlexRay:Coldstart?

Data Type Direction Required? Default

Boolean Read Only N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_FlexRayIsColdstart

Description

Indicates that the ECU is sending a startup frame.

This property is valid only for ECUs connected to a FlexRay bus. It returns true when one of

the frames this ECU transmits (refer to the XNET ECU Frames Transmitted property) has

the XNET Frame FlexRay:Startup? property set to true. You can determine the frame

transmitting the startup using the XNET ECU FlexRay:Startup Frame property. An ECU can

send only one startup frame on the FlexRay bus.

FlexRay:Connected Channels

Data Type Direction Required? Default

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET ECU

Property ID

nxPropECU_FlexRayConnectedChs

Description

This property specifies the channel(s) that the FlexRay ECU (node) is physically connected

to. The default value of this property is connected to all channels available on the cluster.

This property corresponds to the pChannels node parameter in the FlexRay Protocol

Specification.

The values supported for this property (enumeration) are A = 1, B = 2, and A and B = 3.

Chapter 5 NI-XNET API for C

© National Instruments 5-207 NI-XNET Hardware and Software Manual

FlexRay:Startup Frame

Data Type Direction Required? Default

nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_FlexRayStartupFrameRef

Description

Returns the refnum to the startup frame the ECU sends.

This property is valid only for ECUs connected to a FlexRay bus. If the ECU transmits a

frame (refer to the XNET ECU Frames Transmitted property) with the XNET Frame

FlexRay:Startup? property set to true, this property returns this frame. Otherwise, it is empty.

FlexRay:Wakeup Channels

Data Type Direction Required? Default

u32 Read/Write No None

Property Class

XNET ECU

Property ID

nxPropECU_FlexRayWakeupChs

Description

This property specifies the channel(s) on which the FlexRay ECU (node) is allowed to

generate the wakeup pattern. The default value of this property is not to be a wakeup node.

When importing from a FIBEX file, this parameter corresponds to a WAKE-UP-CHANNEL

being set to True for each connected channel.

The values supported for this property (enumeration) are A = 1, B = 2, A and B = 3, and

None = 4.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-208 ni.com

FlexRay:Wakeup Pattern

Data Type Direction Required? Default

u32 Read/Write No 2

Property Class

XNET ECU

Property ID

nxPropECU_FlexRayWakeupPtrn

Description

This property specifies the number of repetitions of the wakeup symbol that are combined to

form a wakeup pattern when the FlexRay ECU (node) enters the POC:WAKEUP_SEND

state. The POC:WAKEUP_SEND state is one of the FlexRay controller state transitions

during the wakeup process. In this state, the controller sends the wakeup pattern on the

specified Wakeup Channel and checks for collisions on the bus.

This property is used when FlexRay:Wakeup Channels is set to a value other than None and

FlexRay:Use Wakeup is True.

This property corresponds to the pWakeupPattern node parameter in the FlexRay Protocol

Specification.

The supported values for this property are 2–63.

Frames Received

Data Type Direction Required? Default

nxDatabaseRef_t * Read/Write No Empty Array

Property Class

XNET ECU

Property ID

nxPropECU_RxFrmRefs

Description

Returns an array of refnums to frames the ECU receives.

This property defines all frames the ECU receives. All frames an ECU receives in a given

cluster must be defined in the same cluster.

Chapter 5 NI-XNET API for C

© National Instruments 5-209 NI-XNET Hardware and Software Manual

Frames Transmitted

Data Type Direction Required? Default

nxDatabaseRef_t * Read/Write No Empty Array

Property Class

XNET ECU

Property ID

nxPropECU_FrmsTx

Description

Returns an array of refnums to frames the ECU transmits.

This property defines all frames the ECU transmits. All frames an ECU transmits in a given

cluster must be defined in the same cluster.

LIN Master

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET ECU

Property ID

nxPropECU_LINMaster

Description

Determines whether the ECU is a LIN master (true) or LIN slave (false).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-210 ni.com

LIN Version

Data Type Direction Required? Default

u32 Read/Write Yes N/A

Property Class

XNET ECU

Property ID

nxPropECU_LINProtocolVer

Description

Version of the LIN standard this ECU uses. The values (enumeration) for this property are:

• nxLINProtocolVer_1_2

• nxLINProtocolVer_1_3

• nxLINProtocolVer_2_0

• nxLINProtocolVer_2_1

LIN:Initial NAD

Data Type Direction Required? Default

u32 Read Only N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_LINInitialNAD

Description

Initial NAD of a LIN slave node. NAD is the address of a slave node and is used in diagnostic

services. Initial NAD is replaced by configured NAD with node configuration services.

Caution This property is not saved in the FIBEX database. You can import it only from an

LDF file.

Chapter 5 NI-XNET API for C

© National Instruments 5-211 NI-XNET Hardware and Software Manual

LIN:Configured NAD

Data Type Direction Required? Default

u32 Read Only N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_LINConfigNAD

Description

Configured NAD of a LIN slave node. NAD is the address of a slave node and is used in

diagnostic services. Initial NAD is replaced by configured NAD with node configuration

services.

Caution This property is not saved in the FIBEX database. You can import it only from an

LDF file.

LIN:Supplier ID

Data Type Direction Required? Default

u32 Read Only N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_LINSupplierID

Description

Supplier ID is a 16-bit value identifying the supplier of the LIN node (ECU).

Caution This property is not saved in the FIBEX database. You can import it only from an

LDF file.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-212 ni.com

LIN:Function ID

Data Type Direction Required? Default

u32 Read Only N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_LINFunctionID

Description

Function ID is a 16-bit value identifying the function of the LIN node (ECU).

Caution This property is not saved in the FIBEX database. You can import it only from an

LDF file.

LIN:P2min

Data Type Direction Required? Default

Double Read Only N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_LINP2min

Description

The minimum time in seconds between reception of the last frame of the diagnostic request

and the response sent by the node.

Caution This property is not saved in the FIBEX database. You can import it only from an

LDF file.

Chapter 5 NI-XNET API for C

© National Instruments 5-213 NI-XNET Hardware and Software Manual

LIN:STmin

Data Type Direction Required? Default

Double Read Only N/A N/A

Property Class

XNET ECU

Property ID

nxPropECU_LINSTmin

Description

The minimum time in seconds the node requires to prepare for the next frame of the

diagnostic service.

Caution This property is not saved in the FIBEX database. You can import it only from an

LDF file.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-214 ni.com

Name (Short)

Data Type Direction Required? Default

char * Read/Write Yes Defined in Create Object

Property Class

XNET ECU

Property ID

nxPropECU_Name

Description

String identifying the ECU object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the short name. The space (), period (.), and other special characters are not supported within

the name. The short name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The short name is limited to 128 characters.

An ECU name must be unique for all ECUs in a cluster.

This short name does not include qualifiers to ensure that it is unique, such as the database

and cluster name. It is for display purposes.

You can write this property to change the ECU’s short name.

Chapter 5 NI-XNET API for C

© National Instruments 5-215 NI-XNET Hardware and Software Manual

XNET Frame Properties

This section includes the XNET Frame properties.

CAN:Extended Identifier?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Frame

Property ID

nxPropFrm_CANExtID

Description

This property determines whether the XNET Frame Identifier property in a CAN cluster

represents a standard 11-bit (false) or extended 29-bit (true) arbitration ID.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-216 ni.com

CAN:Timing Type

Data Type Direction Required? Default

u32 Read/Write No Event Data (If Not in Database)

Property Class

XNET Frame

Property ID

nxPropFrm_CANTimingType

Description

Specifies the CAN frame timing.

Because this property specifies the behavior of the frame’s transfer within the embedded

system (for example, a vehicle), it describes the transfer between ECUs in the network. In the

following description, transmitting ECU refers to the ECU that transmits the CAN data frame

(and possibly receives the associated CAN remote frame). Receiving ECU refers to an ECU

that receives the CAN data frame (and possibly transmits the associated CAN remote frame).

When you use the frame within an NI-XNET session, an output session acts as the

transmitting ECU, and an input session acts as a receiving ECU. For a description of how

these CAN timing types apply to the NI-XNET session mode, refer to CAN Timing Type and

Session Mode.

The CAN timing types (decimal value in parentheses) are:

nxFrmCANTiming_CyclicData (0)

The transmitting ECU transmits the CAN data frame in a cyclic (periodic) manner.

The XNET Frame CAN:Transmit Time property defines the time between cycles.

The transmitting ECU ignores CAN remote frames received for this frame.

nxFrmCANTiming_EventData (1)

The transmitting ECU transmits the CAN data frame in an event-driven manner. The

XNET Frame CAN:Transmit Time property defines the minimum interval. For

NI-XNET, the event occurs when you call nxWrite. The transmitting ECU ignores

CAN remote frames received for this frame.

nxFrmCANTiming_CyclicRemote (2)

The receiving ECU transmits the CAN remote frame in a cyclic (periodic) manner.

The XNET Frame CAN:Transmit Time property defines the time between cycles.

The transmitting ECU responds to each CAN remote frame by transmitting the

associated CAN data frame.

Chapter 5 NI-XNET API for C

© National Instruments 5-217 NI-XNET Hardware and Software Manual

nxFrmCANTiming_EventRemote (3)

The receiving ECU transmits the CAN remote frame in an event-driven manner. The

XNET Frame CAN:Transmit Time property defines the minimum interval. For

NI-XNET, the event occurs when you call nxWriteFrame. The transmitting ECU

responds to each CAN remote frame by transmitting the associated CAN data frame.

If you are using a FIBEX database, this property is a required part of the XML schema for a

frame, so the default (initial) value is obtained from the file.

If you are using a CANdb (.dbc) database, this property is an optional attribute in the file. If

NI-XNET finds an attribute named GenMsgSendType, that attribute is the default value of

this property. If the GenMsgSendType attribute begins with cyclic, this property’s default

value is Cyclic Data; otherwise, it is Event Data. If the CANdb file does not use the

GenMsgSendType attribute, this property uses a default value of Event Data, which you can

change in your application.

If you are using an .ncd database or an in-memory database (XNET Create Frame), this

property uses a default value of Event Data. Within your application, change this property to

the desired timing type.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-218 ni.com

CAN:Transmit Time

Data Type Direction Required? Default

Double Read/Write No 0.1 (If Not in Database)

Property Class

XNET Frame

Property ID

nxPropFrm_CANTxTime

Description

Specifies the time between consecutive frames from the transmitting ECU.

The data type is 64-bit floating point (DBL). The units are in seconds.

Although the fractional part of the DBL data type can provide resolution of picoseconds, the

NI-XNET CAN transmit supports an accuracy of 500 µs. Therefore, when used within an

NI-XNET output session, this property is rounded to the nearest 500 µs increment (0.0005).

For an XNET Frame CAN:Timing Type of Cyclic Data or Cyclic Remote, this property

specifies the time between consecutive data/remote frames. A time of 0.0 is invalid.

For an XNET Frame CAN:Timing Type of Event Data or Event Remote, this property

specifies the minimum time between consecutive data/remote frames when the event occurs

quickly. This is also known as the debounce time or minimum interval. The time is measured

from the end of previous frame (acknowledgment) to the start of the next frame. A time of 0.0

specifies no minimum (back to back frames allowed).

If you are using a FIBEX database, this property is a required part of the XML schema for a

frame, so the default (initial) value is obtained from the file.

If you are using a CANdb (.dbc) database, this property is an optional attribute in the file. If

NI-XNET finds an attribute named GenMsgCycleTime, that attribute is interpreted as a

number of milliseconds and used as the default value of this property. If the CANdb file does

not use the GenMsgCycleTime attribute, this property uses a default value of 0.1 (100 ms),

which you can change in your application.

If you are using a .ncd database or an in-memory database (XNET Create Frame), this

property uses a default value of 0.1 (100 ms). Within your application, change this property

to the desired time.

Chapter 5 NI-XNET API for C

© National Instruments 5-219 NI-XNET Hardware and Software Manual

Cluster

Data Type Direction Required? Default

nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET Frame

Property ID

nxPropFrm_ClusterRef

Description

This property returns the refnum to the parent cluster in which the frame has been created.

You cannot change the parent cluster after the frame object has been created.

Comment

Data Type Direction Required? Default

char * Read/Write No Empty String

Property Class

XNET Frame

Property ID

nxPropFrm_Comment

Description

Comment describing the frame object.

A comment is a string containing up to 65535 characters.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-220 ni.com

Configuration Status

Data Type Direction Required? Default

i32 Read Only N/A N/A

Property Class

XNET Frame

Property ID

nxPropFrm_ConfigStatus

Description

The frame object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to the

nxStatusToString error code input to convert the value to a text description of the

configuration problem.

By default, incorrectly configured frames in the database are not returned from the XNET

Cluster Frames property because they cannot be used in the bus communication. You can

change this behavior by setting the XNET Database ShowInvalidFromOpen? property to true.

When a frame configuration status became invalid after the database is opened, the frame still

is returned from the XNET Cluster Frames property even if ShowInvalidFromOpen? is false.

Examples of invalid frame configuration:

• A required property of the frame or an object contained in this frame has not been

defined. For example, Frame Payload Length.

• The number of bytes specified for this frame is incorrect. CAN frames must use

0 to 8 bytes. FlexRay frames must use 0 to 254 bytes (even numbers only).

• The CAN arbitration ID is invalid. The standard ID is greater than 0x7FF (11 bits) or the

extended ID is greater than 0x1FFFFFFF (29 bits).

• The FlexRay frame is specified to use channels not defined in the cluster. For example,

the XNET Cluster FlexRay:Channels property is set to Channel A only, but the XNET

Frame FlexRay:Channel Assignment property is set to Channel A and B.

• The XNET Frame FlexRay:Channel Assignment property in this dynamic FlexRay

frame is set to Channel A and B, but dynamic frames can be sent on only one channel

(A or B).

Chapter 5 NI-XNET API for C

© National Instruments 5-221 NI-XNET Hardware and Software Manual

Default Payload

Data Type Direction Required? Default

u8 * Read/Write No Array of All 0

Property Class

XNET Frame

Property ID

nxPropFrm_DefaultPayload

Description

The frame default payload, specified as an array of bytes (U8).

The number of bytes in the array must match the XNET Frame Payload Length property.

This property’s initial value is an array of all 0. For the database formats NI-XNET supports,

this property is not provided in the database file.

When you use this frame within an NI-XNET session, this property’s use varies depending

on the session mode. The following sections describe this property’s behavior for each session

mode.

Frame Output Single-Point and Frame Output Queued Modes

Use this property when a frame transmits prior to a call to nxWrite. This can occur when you

set the XNET Session Auto Start? property to false and call nxStart prior to nxWrite.

When Auto Start? is true (default), the first call to nxWrite also starts frame transmit, so this

property is not used.

The following frame configurations potentially can transmit prior to a call to nxWrite:

• XNET Frame CAN:Timing Type of Cyclic Data.

• XNET Frame CAN:Timing Type of Cyclic Remote (for example, a remote frame

received prior to a call to nxWrite).

• XNET Frame CAN:Timing Type of Event Remote (for example, a remote frame

received prior to a call to nxWrite).

• XNET Frame CAN:Timing Type of Cyclic.

• LIN frame in a schedule entry of Type unconditional

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-222 ni.com

The following frame configurations cannot transmit prior to a call to nxWrite, so this

property is not used:

• XNET Frame CAN:Timing Type of Event Data.

• XNET Frame FlexRay:Timing Type of Event.

• LIN frame in a schedule entry of Type sporadic or event triggered

Frame Output Stream Mode

This property is not used. Transmit is limited to frames provided to nxWrite.

Signal Output Single-Point, Signal Output Waveform, and Signal Output
XY Modes

Use this property when a frame transmits prior to a call to nxWrite. Refer to Frame Output

Single-Point and Frame Output Queued Modes for a list of applicable frame configurations.

This property is used as the initial payload, then each XNET Signal Default Value is mapped

into that payload, and the result is used for the frame transmit.

Frame Input Stream and Frame Input Queued Modes

This property is not used. These modes do not return data prior to receiving frames.

Frame Input Single-Point Mode

This property is used for frames nxRead returns prior to receiving the first frame.

Signal Input Single-Point, Signal Input Waveform, and Signal Input XY
Modes

This property is not used. Each XNET Signal Default Value is used when nxRead is called

prior to receiving the first frame.

Chapter 5 NI-XNET API for C

© National Instruments 5-223 NI-XNET Hardware and Software Manual

FlexRay:Base Cycle

Data Type Direction Required? Default

u32 Read/Write Yes N/A

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayBaseCycle

Description

The first communication cycle in which a frame is sent.

In FlexRay, a communication cycle contains a number of slots in which a frame can be sent.

Every node on the bus provides a 6-bit cycle counter that counts the cycles from 0 to 63 and

then restarts at 0. The cycle number is common for all nodes on the bus.

NI-XNET has two mechanisms for changing the frame sending frequency:

• If the frame should be sent faster than the cycle period, use In-Cycle Repetition (refer to

the XNET Frame FlexRay:In Cycle Repetitions:Identifiers property).

• If the frame should be sent slower than the cycle period, use this property and the XNET

Frame FlexRay:Cycle Repetition property.

The second method is called cycle multiplexing. It allows sending multiple frames in the same

slot, but on different cycle counters.

If a frame should be sent in every cycle, set this property to 0 and the XNET Frame

FlexRay:Cycle Repetition property to 1. For cycle multiplexing, set the FlexRay:Cycle

Repetition property to 2, 4, 8, 16, 32, or 64.

Example:

• FrameA and FrameB are both sent in slot 12.

• FrameA: The FlexRay:Base Cycle property is 0 and XNET Frame FlexRay:Cycle

Repetition property is 2. This frame is sent when the cycle counter has the value 0, 2,

4, 6,

• FrameB: The FlexRay:Base Cycle property is 1 and XNET Frame FlexRay:Cycle

Repetition property is 2. This frame is sent when the cycle counter has the value 1, 3,

5, 7,

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-224 ni.com

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this frame, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-225 NI-XNET Hardware and Software Manual

FlexRay:Channel Assignment

Data Type Direction Required? Default

u32 Read/Write Yes N/A

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayChAssign

Description

This property determines on which FlexRay channels the frame must be transmitted. A frame

can be transmitted only on existing FlexRay channels, configured in the XNET Cluster

FlexRay:Channels property.

Frames in the dynamic FlexRay segment cannot be sent on both channels; they must use

either channel A or B. Frames in the dynamic segment use slot IDs greater than the number

of static slots cluster parameter.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this frame, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-226 ni.com

FlexRay:Cycle Repetition

Data Type Direction Required? Default

u32 Read/Write Yes N/A

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayCycleRep

Description

The number of cycles after which a frame is sent again.

In FlexRay, a communication cycle contains a number of slots in which a frame can be sent.

Every node on the bus provides a 6-bit cycle counter that counts the cycles from 0 to 63 and

then restarts at 0. The cycle number is common for all nodes on the bus.

NI-XNET has two mechanisms for changing the frame sending frequency:

• If the frame should be sent faster than the cycle period, use In-Cycle Repetition (refer to

the XNET Frame FlexRay:In Cycle Repetitions:Identifiers property).

• If the frame should be sent slower than the cycle period, use the XNET Frame

FlexRay:Base Cycle property and this property.

The second method is called cycle multiplexing. It allows sending multiple frames in the same

slot, but on different cycle counters.

If a frame should be sent in every cycle, set the XNET Frame FlexRay:Base Cycle property

property to 0 and this property to 1. For cycle multiplexing, set this property to 2, 4, 8, 16, 32,

or 64.

Examples:

• FrameA and FrameB are both sent in slot 12.

• FrameA: The XNET Frame FlexRay:Base Cycle property is set to 0 and FlexRay:Cycle

Repetition property is set to 2. This frame is sent when the cycle counter has the value 0,

2, 4, 6,

• FrameB: The XNET Frame FlexRay:Base Cycle property is set to 1 and FlexRay:Cycle

Repetition property is set to 2. This frame is sent when the cycle counter has the value 1,

3, 5, 7,

Chapter 5 NI-XNET API for C

© National Instruments 5-227 NI-XNET Hardware and Software Manual

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this frame, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-228 ni.com

FlexRay:In Cycle Repetitions:Channel Assignments

Data Type Direction Required? Default

u32 * Read/Write No Empty Array

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayInCycRepChAssigns

Description

FlexRay channels for in-cycle frame repetition.

A FlexRay frame can be sent multiple times per cycle. The XNET Frame FlexRay:Channel

Assignment property defines the first channel assignment in the cycle. This property defines

subsequent channel assignments. The XNET Frame FlexRay:In Cycle Repetitions:Identifiers

property defines the corresponding slot IDs. Both properties are arrays of maximum three

values, determining the slot ID and channel assignments for the frame. Values at the same

array position are corresponding; therefore, both arrays must have the same size.

You must set the XNET Frame FlexRay:Channel Assignment property before setting this

property. The FlexRay:Channel Assignment is a required property that is undefined when a

new frame is created. When FlexRay:Channel Assignment is undefined, setting FlexRay:In

Cycle Repetitions:Channel Assignments returns an error.

Chapter 5 NI-XNET API for C

© National Instruments 5-229 NI-XNET Hardware and Software Manual

FlexRay:In Cycle Repetitions:Enabled?

Data Type Direction Required? Default

Boolean Read Only No False

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayInCycRepEnabled

Description

FlexRay in-cycle frame repetition is enabled.

A FlexRay frame can be sent multiple times per cycle. The XNET Frame Identifier

property defines the first slot ID in the cycle. The XNET Frame FlexRay:In Cycle

Repetitions:Identifiers property can define the subsequent slot IDs, and the FlexRay:In Cycle

Repetitions:Channel Assignments property defines the corresponding FlexRay channels.

Both properties are arrays of maximum three values determining the slot ID and FlexRay

channels for the frame. Values at the same array position are corresponding; therefore, both

arrays must have the same size.

This property returns true when at least one in-cycle repetition has been defined, which means

that both the FlexRay:In Cycle Repetitions:Identifiers and XNET Frame FlexRay:In Cycle

Repetitions:Channel Assignments arrays are not empty.

This property returns false when at least one of the previously mentioned arrays is empty. In

this case, in-cycle-repetition is not used.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-230 ni.com

FlexRay:In Cycle Repetitions:Identifiers

Data Type Direction Required? Default

u32 * Read/Write No Empty Array

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayInCycRepIDs

Description

FlexRay in-cycle repetition slot IDs.

A FlexRay frame can be sent multiple times per cycle. The XNET Frame Identifier property

defines the first slot ID in the cycle. The FlexRay:In Cycle Repetitions:Identifiers property

defines subsequent slot IDs. The XNET Frame FlexRay:In Cycle Repetitions:Channel

Assignments property defines the corresponding FlexRay channel assignments. Both

properties are arrays of maximum three values, determining the subsequent slot IDs and

channel assignments for the frame. Values at the same array position are corresponding;

therefore, both arrays must have the same size.

You must set the XNET Frame Identifier property before setting the FlexRay:In Cycle

Repetitions:Identifiers property. Identifier is a required property that is undefined when a new

frame is created. When Identifier is undefined, setting in-cycle repetition slot IDs returns an

error.

Chapter 5 NI-XNET API for C

© National Instruments 5-231 NI-XNET Hardware and Software Manual

FlexRay:Payload Preamble?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayPreamble

Description

This property determines whether payload preamble is used in a FlexRay frame:

• For frames in the static segment, it indicates that the network management vector is

transmitted at the beginning of the payload.

• For frames in the dynamic segment, it indicates that the message ID is transmitted at the

beginning of the payload.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-232 ni.com

FlexRay:Startup?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayStartup

Description

This property determines whether the frame is a FlexRay startup frame. FlexRay startup

frames always are FlexRay sync frames also:

• When this property is set to true, the XNET Frame FlexRay:Sync? property

automatically is set to true.

• When this property is set to false, the XNET Frame FlexRay:Sync? property is not

changed.

• When the XNET Frame FlexRay:Sync? property is set to false, this property

automatically is set to false.

• When the XNET Frame FlexRay:Sync? property is set to true, this property is not

changed.

An ECU can send only one startup frame. The startup frame, if an ECU transmits it,

is returned from the XNET ECU FlexRay:Startup Frame property.

Chapter 5 NI-XNET API for C

© National Instruments 5-233 NI-XNET Hardware and Software Manual

FlexRay:Sync?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayStartup

Description

This property determines whether the frame is a FlexRay sync frame. FlexRay startup frames

always are FlexRay sync frames also:

• When this property is set to false, the XNET Frame FlexRay:Startup? property is

automatically set to false.

• When this property is set to true, the XNET Frame FlexRay:Startup? property is not

changed.

• When the XNET Frame FlexRay:Startup? property is set to true, this property is set

to true.

• When the XNET Frame FlexRay:Startup? property is set to false, this property is not

changed.

An ECU can send only one sync frame.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-234 ni.com

FlexRay:Timing Type

Data Type Direction Required? Default

u32 Read/Write No Cyclic in Static Segment, Event in

Dynamic Segment

Property Class

XNET Frame

Property ID

nxPropFrm_FlexRayTimingType

Description

Specifies the FlexRay frame timing (decimal value in parentheses):

nxFrmFlexRayTiming_Cyclic (0)

Payload data transmits on every occurrence of the frame’s slot.

nxFrmFlexRayTiming_Event (1)

Payload data transmits in an event-driven manner. Within the ECU that transmits the

frame, the event typically is associated with the availability of new data.

This property’s behavior depends on the FlexRay segment where the frame is located: static

or dynamic. If the frame’s Identifier (slot) is less than or equal to the cluster’s Number Of

Static Slots, the frame is static.

Static

Cyclic means no null frame is transmitted. If new data is not provided for the cycle, the

previous payload data transmits again.

Event means a null frame is transmitted when no event is pending for the cycle.

This property’s default value for the static segment is Cyclic.

Dynamic

Cyclic means the frame transmits in its minislot on every cycle.

Event means the frame transmits in the minislot when the event is pending for the cycle.

This property’s default value for the dynamic segment is Event.

For a description of how these FlexRay timing types apply to the NI-XNET session mode,

refer to FlexRay Timing Type and Session Mode.

Chapter 5 NI-XNET API for C

© National Instruments 5-235 NI-XNET Hardware and Software Manual

Identifier

Data Type Direction Required? Default

u32 Read/Write Yes N/A

Property Class

XNET Frame

Property ID

nxPropFrm_ID

Description

Determines the frame identifier.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this frame, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value in LabVIEW using the property node.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

CAN

For CAN frames, this is the Arbitration ID.

When the XNET Frame CAN:Extended Identifier? property is set to false, this is the standard

CAN identifier with a size of 11 bits, which results in allowed range of 0–2047. However, the

CAN standard disallows identifiers in which the first 7 bits are all recessive, so the working

range of identifiers is 0–2031.

When the XNET Frame CAN:Extended Identifier? property is set to true, this is the extended

CAN identifier with a size of 29 bits, which results in allowed range of 0–536870911.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-236 ni.com

FlexRay

For FlexRay frames, this is the Slot ID in which the frame is sent. The valid value range for

a FlexRay Slot ID is 1–2047.

You also can send a FlexRay frame in multiple slots per cycle. You can define subsequent slot

IDs for the frame in the XNET Frame FlexRay:In Cycle Repetitions:Identifiers property. Use

this concept to increase a frame’s sending frequency. To decrease a frame’s sending frequency

and share the same slot for different frames depending on the cycle counter, refer to the XNET

Frame FlexRay:Base Cycle and XNET Frame FlexRay:Cycle Repetition properties.

The slot ID determines whether a FlexRay frame is sent in a static or dynamic segment. If the

slot ID is less than or equal to the XNET Cluster FlexRay:Number of Static Slots property,

the frame is sent in the communication cycle static segment; otherwise, it is sent in the

dynamic segment.

If the frame identifier is not in the allowed range, this is reported as an error in the XNET

Cluster Configuration Status property.

LIN

For LIN frames, this is the frame’s ID (unprotected). The valid range for a LIN frame ID is

0–63 (inclusive).

Chapter 5 NI-XNET API for C

© National Instruments 5-237 NI-XNET Hardware and Software Manual

LIN:Checksum

Data Type Direction Required? Default

u32 Read Only N/A nxFrmLINChecksum_Enhanced

Property Class

XNET Frame

Property ID

nxPropFrm_LINChecksum

Description

Determines whether the LIN frame transmitted checksum is classic or enhanced. The

enhanced checksum considers the protected identifier when it is generated.

The values (enumeration) for this property are:

The checksum is determined from the LIN version of ECUs transmitting and receiving the

frame. The lower version of both ECUs is significant. If the LIN version of both ECUs is 2.0

or higher, the checksum type is enhanced; otherwise, the checksum type is classic.

Diagnostic frames (with decimal identifier 60 or 61) always use classic checksum, even on

LIN 2.x.

nxFrmLINChecksum_Classic 0

nxFrmLINChecksum_Enhanced 1

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-238 ni.com

Mux:Data Multiplexer Signal

Data Type Direction Required? Default

nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET Frame

Property ID

nxPropFrm_MuxDataMuxSigRef

Description

Data multiplexer signal in the frame.

This property returns a refnum to the data multiplexer signal. If the data multiplexer is not

defined in the frame, the property returns 0. Use the XNET Frame Mux:Is Data Multiplexed?

property to determine whether the frame contains a multiplexer signal.

You can create a data multiplexer signal by creating a signal and then setting the XNET Signal

Mux:Data Multiplexer? property to true.

A frame can contain only one data multiplexer signal.

Mux:Is Data Multiplexed?

Data Type Direction Required? Default

Boolean Read Only No False

Property Class

XNET Frame

Property ID

nxPropFrm_MuxIsMuxed

Description

Frame is data multiplexed.

This property returns true if the frame contains a multiplexer signal. Frames containing a

multiplexer contain subframes that allow using bits of the frame payload for different

information (signals) depending on the multiplexer value.

Chapter 5 NI-XNET API for C

© National Instruments 5-239 NI-XNET Hardware and Software Manual

Mux:Static Signals

Data Type Direction Required? Default

nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET Frame

Property ID

nxPropFrm_MuxStaticSigRefs

Description

Static signals in the frame.

Returns an array of refnums to signals in the frame that do not depend on the multiplexer

value. Static signals are contained in every frame transmitted, as opposed to dynamic signals,

which are transmitted depending on the multiplexer value.

You can create static signals by specifying the frame as the parent object. You can create

dynamic signals by specifying a subframe as the parent.

If the frame is not multiplexed, this property returns the same array as the XNET Frame

Signals property.

Mux:Subframes

Data Type Direction Required? Default

nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET Frame

Property ID

nxPropFrm_MuxSubframeRefs

Description

Returns an array of references to subframes in the frame. A subframe defines a group of

signals transmitted using the same multiplexer value. Only one subframe at a time is

transmitted in the frame.

A subframe is defined by creating a subframe object as a child of a frame.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-240 ni.com

Name (Short)

Data Type Direction Required? Default

char * Read/Write Yes Defined in Create Object

Property Class

XNET Frame

Property ID

nxPropFrm_Name

Description

String identifying a frame object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the short name. The space (), period (.), and other special characters are not supported within

the name. The short name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The short name is limited to 128 characters.

A frame name must be unique for all frames in a cluster.

This short name does not include qualifiers to ensure that it is unique, such as the database

and cluster name. It is for display purposes.

You can write this property to change the frame’s short name.

Chapter 5 NI-XNET API for C

© National Instruments 5-241 NI-XNET Hardware and Software Manual

Payload Length

Data Type Direction Required? Default

u32 Read/Write Yes N/A

Property Class

XNET Frame

Property ID

nxPropFrm_PayloadLen

Description

Number of bytes of data in the payload.

For CAN and LIN, this is 0–8.

For FlexRay, this is 0–254. As encoded on the FlexRay bus, all frames use an even payload

(16-bit words), and the payload of all static slots must be the same. Nevertheless, this property

specifies the number of payload bytes used within the frame, so its value can be odd. For

example, if a FlexRay cluster uses static slots of 18 bytes, it is valid for this property to be

15, which specifies that the last 3 bytes are unused.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this frame, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-242 ni.com

PDU References

Data Type Direction Required? Default

nxDatabaseRef_t * Read/Write No Empty Array

Property Class

XNET Frame

Property ID

nxPropFrm_PDURefs

Description

This property maps existing PDUs to a frame. A mapped PDU is transmitted inside the frame

payload when the frame is transmitted. You can map one or more PDUs to a frame and one

PDU to multiple frames.

Mapping PDUs to a frame requires setting three frame properties. All three properties are

arrays of values:

• PDU References—Set this property first to define the sequence of values for the other

two properties.

• PDU Start Bits—Defines the start bit of the PDU inside the frame.

• PDU Update Bits—Defines the update bit for the PDU inside the frame. If the update

bit is not used, set the value to –1. (Refer to Update Bit for more information.)

Values on the same array position are corresponding. For example, PDUs[0], StartBits[0], and

UpdateBits[0] define the mapping for the first PDU in the frame.

Databases imported from FIBEX prior to version 3.0, from DBC, NCD, or LDF files have a

strong one-to-one relationship between frames and PDUs. Every frame has exactly one PDU

mapped, and every PDU is mapped to exactly one frame.

To unmap PDUs from a frame, set this property to an empty array. A frame without mapped

PDUs contains no signals.

NI-XNET supports advanced PDU configuration (multiple PDUs in one frame or one PDU

used in multiple frames) only for FlexRay. Refer to the XNET Cluster PDUs Required?

property.

For CAN and LIN, NI-XNET supports only a one-to-one relationship between frames and

PDUs. For those interfaces, advanced PDU configuration returns an error from the XNET

Frame Configuration Status property and nxCreateSession. If you do not use advanced

PDU configuration, you can avoid using PDUs in the database API and create signals and

subframes directly on a frame.

Chapter 5 NI-XNET API for C

© National Instruments 5-243 NI-XNET Hardware and Software Manual

PDU Start Bits

Data Type Direction Required? Default

u32 * Read/Write No Empty Array

Property Class

XNET Frame

Property ID

nxPropFrm_PDUStartBits

Description

This property defines the start bits of PDUs mapped to a frame. A mapped PDU is transmitted

inside the frame payload when the frame is transmitted. You can map one or more PDUs to a

frame and one PDU to multiple frames.

Mapping PDUs to a frame requires setting of three frame properties. All three properties are

arrays of values:

• PDU References—Set this property first to define the sequence of values for the other

two properties.

• PDU Start Bits—This property defines the start bit of the PDU inside the frame.

• PDU Update Bits—Defines the update bit for the PDU inside the frame. If the update

bit is not used, set the value to –1. (Refer to Update Bit for more information.)

Values on the same array position are corresponding. For example, PDUs[0], StartBits[0], and

UpdateBits[0] define the mapping for the first PDU in the frame.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-244 ni.com

PDU Update Bits

Data Type Direction Required? Default

u32 * Read/Write No Empty Array

Property Class

XNET Frame

Property ID

nxPropFrm_PDUUpdateBits

Description

This property defines update bits of PDUs mapped to a frame. If the update bit is not used for

the PDU, set the value to –1. (Refer to Update Bit for more information.)

Mapping PDUs to a frame requires setting three frame properties. All three properties are

arrays of values:

• PDU References: Set this property first to define the sequence of values for the other two

properties.

• PDU Start Bits: Defines the start bit of the PDU inside the frame.

• PDU Update Bits: This property defines the update bit for the PDU inside the frame. If

the update bit is not used, set the value to –1.

Values on the same array position are corresponding. For example, PDUs[0], StartBits[0], and

UpdateBits[0] define the mapping for the first PDU in the frame.

Chapter 5 NI-XNET API for C

© National Instruments 5-245 NI-XNET Hardware and Software Manual

Signals

Data Type Direction Required? Default

nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET Frame

Property ID

nxPropFrm_SigRefs

Description

Refnums to all signals in the frame.

This property returns an array with references to all signals in the frame, including static and

dynamic signals and the multiplexer signal.

This property is read only. You can add signals to a frame using nxdbCreateObject and

remove them using nxdbDeleteObject.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-246 ni.com

Application Protocol

Data Type Direction Required? Default

u32 Read/Write No Read from Database

Property Class

XNET Frame

Short Name

nxPropFrm_ApplicationProtocol

Description

This property specifies the frame’s application protocol. It is a ring of two values:

Enumeration Value Meaning

None 0 The default application protocol.

J1939 1 Indicates J1939 frames. The

value enables the following

features:

• Sending/receiving long frames

as the SAE J1939 specification

specifies, using the J1939

transport protocol.

• Using a special notation for

J1939 identifiers.

Chapter 5 NI-XNET API for C

© National Instruments 5-247 NI-XNET Hardware and Software Manual

XNET Interface Properties

The XNET Interface properties provide information about a specific NI-XNET interface. The

NI-XNET interface represents a single CAN, FlexRay, or LIN connector (port) on the device.

You obtain the handle to a specific interface using the XNET System Properties.

CAN.Termination Capability

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET Interface

Property ID

nxPropIntf_CANTermCap

Description

Returns an enumeration indicating whether the XNET interface can terminate the CAN bus.

Enumeration Value

No 0

Yes 1

Remarks

Signal reflections on the CAN bus can cause communication failure. To prevent reflections,

termination can be present as external resistance or resistance the XNET board applies

internally. This enumeration determines whether the XNET board can add termination to

the bus.

To select the CAN transceiver termination, refer to XNET Session

Interface:CAN:Termination.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-248 ni.com

CAN.Transceiver Capability

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET Interface

Property ID

nxPropIntf_CANTcvrCap

Description

Returns an enumeration indicating the CAN bus physical transceiver support.

Enumeration Value

High-Speed (HS) 0

Low-Speed (LS) 1

XS (HS, LS, SW, or External) 2

Remarks

The XS value in the enumeration indicates the board has the physical transceivers for

High-Speed (HS), Low-Speed (LS), and Single Wire (SW), and can connect to an external

transceiver. This value is switchable through the XNET Session Interface:CAN:Transceiver

Type property.

Chapter 5 NI-XNET API for C

© National Instruments 5-249 NI-XNET Hardware and Software Manual

Device

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET Interface

Property ID

nxPropIntf_DevRef

Description

From the XNET Interface handle, this property returns the XNET device handle.

Remarks

The XNET device handle returned is the physical XNET board that contains the XNET

interface. This property determines the physical XNET device through the XNET Device

Serial Number property for a given XNET Interface handle.

Name

Data Type Direction Required? Default

cstr Read Only No N/A

Property Class

XNET Interface

Property ID

nxPropIntf_Name

Description

Returns the string name assigned to the XNET interface handle.

Remarks

This string is used for identification in MAX.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-250 ni.com

Number

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET Interface

Property ID

nxPropIntf_Num

Description

Returns unique number associated with the XNET interface.

Remarks

The XNET driver assigns each port connector in the system a unique number XNET driver.

This number, plus its protocol name, is the interface name string. For example:

XNET Interface String Name Number

CAN1 1

FlexRay3 3

Chapter 5 NI-XNET API for C

© National Instruments 5-251 NI-XNET Hardware and Software Manual

Port Number

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET Interface

Property ID

nxPropIntf_PortNum

Description

Returns the physical port number printed near the connector on the XNET device.

Remarks

The port numbers on an XNET board are physically identified with numbering. Use this

property, along with the XNET Device Serial Number property, to associate an XNET

interface with a physical (XNET board and port) combination.

Note It is easier to find the physical location of an XNET interface with nxBlink.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-252 ni.com

Protocol

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET Interface

Property ID

nxPropIntf_Protocol

Description

Returns the protocol supported by the interface as an enumeration.

Enumeration Value

CAN 0

FlexRay 1

LIN 2

Remarks

The protocol enumeration will match the protocol portion of the XNET interface name string:

XNET Interface String Name Protocol

CAN1 0

FlexRay3 1

Chapter 5 NI-XNET API for C

© National Instruments 5-253 NI-XNET Hardware and Software Manual

XNET LIN Schedule Properties

Cluster

Data Type Direction Required? Default

nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET LIN Schedule

Property ID

nxPropLINSched_ClstRef

Description

This property returns the reference to the parent cluster in which the you created the schedule.

You cannot change the parent cluster after creating the schedule object.

Comment

Data Type Direction Required? Default

cstr Read/Write No Empty String

Property Class

XNET LIN Schedule

Property ID

nxPropLINSched_Comment

Description

A comment describing the schedule object. A comment is a string containing up to

65535 characters.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-254 ni.com

Configuration Status

Data Type Direction Required? Default

nxStatus_t Read Only N/A N/A

Property Class

XNET LIN Schedule

Property ID

nxPropLINSched_ConfigStatus

Description

The LIN schedule object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to the Status

parameter of the nxStatusToString function to convert the value to a text description of

the configuration problem.

By default, incorrect configured schedules in the database are not returned from the Cluster

Schedules property because they cannot be used in the bus communication. You can change

this behavior by setting the Database ShowInvalidFromOpen? property to true. When the

configuration status of a schedule becomes invalid after opening the database, the schedule

still is returned from the Cluster Schedules property even if ShowInvalidFromOpen? is

false.

An example of invalid schedule configuration is when a required schedule property has not

been defined. For example, a schedule entry within this schedule has an undefined delay time.

Chapter 5 NI-XNET API for C

© National Instruments 5-255 NI-XNET Hardware and Software Manual

Entries

Data Type Direction Required? Default

nxDatabaseRef_t[] Read Only N/A N/A

Property Class

XNET LIN Schedule

Property ID

nxPropLINSched_Entries

Description

The array of entries for this LIN schedule.

The position of each entry in this array specifies the position in the schedule. The database

file and/or the order that you create entries at runtime determine the position.

Name

Data Type Direction Required? Default

cstr Read/Write Yes Defined in nxdbCreateObject

Property Class

XNET LIN Schedule

Property ID

nxPropLINSched_Name

Description

String identifying the LIN schedule object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the short name. The space (), period (.), and other special characters are not supported within

the name. The short name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The short name is limited to 128 characters.

A schedule name must be unique for all schedules in a cluster.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-256 ni.com

Priority

Data Type Direction Required? Default

u32 Read/Write No 42

Property Class

XNET LIN Schedule

Property ID

nxPropLINSched_Priority

Description

Priority of this run-once LIN schedule when multiple run-once schedules are pending for

execution.

The valid range for this property is 1–254. Lower values correspond to higher priority.

This property applies only when the Run Mode property is Once. Run-once schedule requests

are queued for execution based on this property. When all run-once schedules have

completed, the master returns to the previously running continuous schedule (or null).

Run-continuous schedule requests are not queued. Only the most recent run-continuous

schedule is used, and it executes only if no run-once schedule is pending. Therefore, a

run-continuous schedule has an effective priority of 255, but this property is not used.

Null schedule requests take effect immediately and supercede any running run-once or

run-continuous schedule. The queue of pending run-once schedule requests is flushed

(emptied without running them). Therefore, a null schedule has an effective priority of 0, but

this property is not used.

This property is not read from the database, but is handled like a database property. After

opening the database, the default value is returned, and you can change the property. But

similar to database properties, you cannot change it after a session is created.

Chapter 5 NI-XNET API for C

© National Instruments 5-257 NI-XNET Hardware and Software Manual

Run Mode

Data Type Direction Required? Default

u32 Read/Write No See Description

Property Class

XNET LIN Schedule

Property ID

nxPropLINSched_RunMode

Description

This property is a ring (enumerated list) with the following values:

This property specifies how the master runs this schedule:

• Continuous: The master runs the schedule continuously. When the last entry executes,

the schedule starts again with the first entry.

• Once: The master runs the schedule once (all entries), then returns to the previously

running continuous schedule (or null). If requests are submitted for multiple run-once

schedules, each run-once executes in succession based on its Priority, then the master

returns to the continuous schedule (or null).

• Null: All communication stops immediately. A schedule with this run mode is called a

null schedule.

This property is not read from the database, but is handled like a database property. After

opening the database, the default value is returned, and you can change the property. But

similar to database properties, you cannot change it after a session is created.

Usually, the default value for the run mode is Continuous. If the schedule is configured to be

a collision resolving table for an event-triggered entry, the default is Once.

String Value

Continuous 0

Once 1

Null 2

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-258 ni.com

XNET LIN Schedule Entry Properties

Collision Resolving Schedule

Data Type Direction Required? Default

nxDatabaseRef_t Read/Write No Null

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_CollisionResSched

Description

A LIN schedule that resolves a collision for this event-triggered entry.

This property applies only when the entry type is event triggered. When a collision occurs for

the event-triggered entry in this schedule, the master must switch to the collision resolving

schedule to transfer the unconditional frames successfully.

When the entry type is any value other than event triggered, this property returns Null

(invalid).

Delay

Data Type Direction Required? Default

f64 Read/Write Yes N/A

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_Delay

Description

The time from the start of this entry (slot) to the start of the next entry. (The property uses a

double value in seconds, with the fractional part used for milliseconds or microseconds.)

Chapter 5 NI-XNET API for C

© National Instruments 5-259 NI-XNET Hardware and Software Manual

Event Identifier

Data Type Direction Required? Default

u32 Read/Write Yes N/A

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_EventID

Description

The event-triggered entry identifier. This identifier is unprotected (NI-XNET handles the

protection).

This property applies only when the entry type is event triggered. This identifier is for the

event triggered entry itself, and the first payload byte is for the protected identifier of the

contained unconditional frame.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-260 ni.com

Frames

Data Type Direction Required? Default

nxDatabaseRef_t[] Read/Write No Empty Array

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_Frames

Description

The array of frames for this LIN schedule entry.

If the entry Type is unconditional, this array contains one element, which is the single

unconditional frame for this entry.

If the entry Type is sporadic, this array contains one or more unconditional frames for this

entry. When multiple frames are pending for this entry, the order in the array determines the

priority to transmit.

If the entry Type is event triggered, this array contains one or more unconditional frames for

this entry. When multiple frames for this entry are pending to be sent by distinct slaves, this

property uses the Collision Resolving Schedule to process the frames.

Chapter 5 NI-XNET API for C

© National Instruments 5-261 NI-XNET Hardware and Software Manual

Name

Data Type Direction Required? Default

cstr Read/Write Yes Defined in nxdbCreateObject

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_Name

Description

String identifying the LIN schedule entry object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the short name. The space (), period (.), and other special characters are not supported within

the name. The short name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The short name is limited to 128 characters.

A schedule entry name must be unique for all entries in the same schedule.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-262 ni.com

Name Unique to Cluster

Data Type Direction Required? Default

cstr Read Only N/A N/A

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_NameUniqueToCluster

Description

This property returns a LIN schedule entry name unique to the cluster that contains the object.

If the single name is not unique within the cluster, the name is

<schedule-name>.<schedule-entry-name>.

You can pass the name to the nxdbFindObject function to retrieve the reference to the

object, while the single name is not guaranteed success in nxdbFindObject because it may

be not unique in the cluster.

Chapter 5 NI-XNET API for C

© National Instruments 5-263 NI-XNET Hardware and Software Manual

Node Configuration:Free Format:Data Bytes

Data Type Direction Required? Default

u8* Read/Write Yes N/A

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_NC_FF_DataBytes

Description

An array of 8 bytes containing raw data for LIN node configuration.

Node configuration defines a set of services used to configure slave nodes in the cluster. Every

service has a specific set of parameters coded in this byte array. In the LDF, file those

parameters are stored, for example, in the node (ECU) or the frame object. NI-XNET LDF

reader composes those parameters to the byte values like they are sent on the bus. The LIN

specification document describes the node configuration services and the mapping of the

parameters to the free format bytes.

The node configuration service is executed only if the Schedule Entry Type property is set to

Node Configuration.

Caution This property is not saved to the FIBEX file. If you write this property, save the

database, and reopen it, the node configuration services are not contained in the database.

Writing this property is useful only in the NI-XNET session immediately following.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-264 ni.com

Schedule

Data Type Direction Required? Default

nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_Sched

Description

The LIN schedule that uses this entry.

This LIN schedule is considered this entry’s parent. You define the parent schedule when you

create the entry object. You cannot change it afterwards.

Chapter 5 NI-XNET API for C

© National Instruments 5-265 NI-XNET Hardware and Software Manual

Type

Data Type Direction Required? Default

u32 Read/Write No Unconditional

Property Class

XNET LIN Schedule Entry

Property ID

nxPropLINSchedEntry_Type

Description

All frames that contain a payload are unconditional. The LIN schedule entry type determines

the mechanism for transferring frames in this entry (slot):

0 Unconditional: A single frame transfers in this slot.

1 Sporadic: The master transmits in this slot. The master can select from multiple frames

to transmit. Only updated frames are transmitted. When more than one frame is updated,

the master decides by priority which frame to send. The other updated frame remains

pending and can be sent when this schedule entry is processed the following time. The

order of unconditional frames in the LIN Schedule Entry Frames property (the first frame

has the highest priority) determines the frame priority.

2 Event triggered: Multiple slaves can transmit an unconditional frame in this slot. The

slave transmits the frame only if at least one frame signal has been updated. When a

collision occurs (multiple slaves try to transmit in the same slot), this is detected and

resolved using a different schedule specified in the XNET LIN Schedule Collision

Resolving Schedule property. The resolving schedule runs once, starting in the

subsequent slot after the collision, and automatically returns to the previous schedule at

the subsequent position where the collision occurred.

3 Node configuration: The schedule entry contains a node configuration service. The

node configuration service is defined as raw data bytes in the XNET LIN Schedule Entry

Node Configuration:Free Format:Data Bytes property.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-266 ni.com

XNET PDU Properties

This section includes the XNET PDU properties. (For more information about PDUs, refer to

Protocol Data Units (PDUs) in NI-XNET.)

Cluster

Data Type Direction Required? Default

nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET PDU

Property ID

nxPropPDU_ClusterRef

Description

This property returns the reference (nxDatabaseRef_t) to the parent cluster in which the

PDU has been created. (For more information about PDUs, refer to Protocol Data Units

(PDUs) in NI-XNET.) You cannot change the parent cluster after creating the PDU object.

Comment

Data Type Direction Required? Default

char * Read/Write No Empty String

Property Class

XNET PDU

Property ID

nxPropPDU_Comment

Description

Comment describing the PDU object.

A comment is a string containing up to 65535 characters.

Chapter 5 NI-XNET API for C

© National Instruments 5-267 NI-XNET Hardware and Software Manual

Configuration Status

Data Type Direction Required? Default

i32 Read Only N/A N/A

Property Class

XNET PDU

Property ID

nxPropPDU_ConfigStatus

Description

The PDU object’s configuration status. (For more information about PDUs, refer to Protocol

Data Units (PDUs) in NI-XNET.)

Configuration Status returns an NI-XNET error code. The value can be passed to the error

code input of nxStatusToString to convert it to a text description of the configuration

problem.

By default, incorrectly configured PDUs in the database are not returned from the XNET

Cluster PDUs property because they cannot be used in the bus communication. You can

change this behavior by setting the XNET Database ShowInvalidFromOpen? property to true.

When a PDU’s configuration status became invalid after the database has been opened, the

PDU still is returned from the XNET Cluster PDUs property even if ShowInvalidFromOpen?

is false.

Examples of invalid PDU configuration:

• You have not defined a required property of the PDU (for example, PDU Payload

Length).

• The number of bytes specified for this PDU is incorrect. CAN PDUs must use 0 to

8 bytes. FlexRay PDUs must use 0 to 254 bytes (PDUs payload must fit into a frame).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-268 ni.com

Frames

Data Type Direction Required? Default

nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET PDU

Property ID

nxPropPDU_FrmRefs

Description

References of all frames to which the PDU is mapped. (For more information about PDUs,

refer to Protocol Data Units (PDUs) in NI-XNET.) A PDU is transmitted within the frames

to which it is mapped.

To map a PDU to a frame, use the XNET Frame PDU References, XNET Frame PDU Start

Bits, and XNET Frame PDU Update Bits properties. You can map one PDU to multiple

frames.

Mux:Data Multiplexer Signal

Data Type Direction Required? Default

nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET PDU

Property ID

nxPropPDU_MuxDataMuxSigRef

Description

Data multiplexer signal in the PDU. (For more information about PDUs, refer to Protocol

Data Units (PDUs) in NI-XNET.)

This property returns the reference to the data multiplexer signal. If data multiplexer is not

defined in the PDU, the property returns 0. Use the XNET PDU Mux:Is Data Multiplexed?

property to determine whether the PDU contains a multiplexer signal.

You can create a data multiplexer signal by creating a signal and then setting the XNET Signal

Mux:Data Multiplexer? property to true.

A PDU can contain only one data multiplexer signal.

Chapter 5 NI-XNET API for C

© National Instruments 5-269 NI-XNET Hardware and Software Manual

Mux:Is Data Multiplexed?

Data Type Direction Required? Default

Boolean Read Only No False

Property Class

XNET PDU

Property ID

nxPropPDU_MuxIsMuxed

Description

PDU is data multiplexed. (For more information about PDUs, refer to Protocol Data Units

(PDUs) in NI-XNET.)

This property returns true if the PDU contains a multiplexer signal. PDUs containing a

multiplexer contain subframes that allow using bits of the payload for different information

(signals), depending on the multiplexer value.

Mux:Static Signals

Data Type Direction Required? Default

nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET PDU

Property ID

nxPropPDU_MuxStaticSigRefs

Description

Static signals in the PDU. (For more information about PDUs, refer to Protocol Data Units

(PDUs) in NI-XNET.)

Returns an array of references to signals in the PDU that do not depend on the multiplexer

value. Static signals are contained in every PDU transmitted, as opposed to dynamic signals,

which are transmitted depending on the multiplexer value.

You can create static signals by specifying the PDU as the parent object. You can create

dynamic signals by specifying a subframe as the parent.

If the PDU is not multiplexed, this property returns the same array as the XNET PDU Signals

property.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-270 ni.com

Mux:Subframes

Data Type Direction Required? Default

nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET PDU

Property ID

nxPropPDU_MuxSubframeRefs

Description

Returns an array of references to subframes in the PDU. (For more information about PDUs,

refer to Protocol Data Units (PDUs) in NI-XNET.) A subframe defines a group of signals

transmitted using the same multiplexer value. Only one subframe is transmitted in the PDU

at a time.

You can define a subframe by creating a subframe object as a child of a PDU.

Name (Short)

Data Type Direction Required? Default

char * Read/Write Yes Defined in nxdbCreateObject

Property Class

XNET PDU

Property ID

nxPropPDU_Name

Description

String identifying a PDU object. (For more information about PDUs, refer to Protocol Data

Units (PDUs) in NI-XNET.)

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the short name. The space (), period (.), and other special characters are not supported within

the name. The short name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The short name is limited to 128 characters.

A PDU name must be unique for all PDUs in a cluster.

You can write this property to change the PDU’s short name.

Chapter 5 NI-XNET API for C

© National Instruments 5-271 NI-XNET Hardware and Software Manual

Payload Length

Data Type Direction Required? Default

u32 Read/Write Yes N/A

Property Class

XNET PDU

Property ID

nxPropPDU_PayloadLen

Description

Determines the size of the PDU data in bytes. (For more information about PDUs, refer to

Protocol Data Units (PDUs) in NI-XNET.)

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this PDU, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-272 ni.com

Signals

Data Type Direction Required? Default

nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET PDU

Property ID

nxPropPDU_SigRefs

Description

References to all signals in the PDU. (For more information about PDUs, refer to Protocol

Data Units (PDUs) in NI-XNET.)

This property returns an array referencing to all signals in the PDU, including static and

dynamic signals and the multiplexer signal.

This property is read only. You can add signals to a PDU using nxdbCreateObject and

remove them using nxdbDeleteObject.

Chapter 5 NI-XNET API for C

© National Instruments 5-273 NI-XNET Hardware and Software Manual

XNET Session Properties

This section includes the XNET Session properties.

Interface Properties

Properties in the Interface category apply to the interface and not the session. If more than one

session exists for the interface, changing an interface property affects all the sessions.

CAN Interface Properties

This category includes CAN-specific interface properties.

Properties in the Interface category apply to the interface and not the session. If more than one

session exists for the interface, changing an interface property affects all the sessions.

Interface:CAN:External Transceiver Config

Data Type Direction Required? Default

u32 Write Only No 0x00000007

Property Class

XNET Session

Property ID

nxPropSession_IntfCANExtTcvrConfig

Description

This property allows you to configure XS series CAN hardware to communicate properly

with your external transceiver. The connector on your XS series CAN hardware has five lines

for communicating with your transceiver.

Line Direction Purpose

Ext_RX In Data received from the CAN bus.

Ext_TX Out Data to transmit on the CAN bus.

Output0 Out Generic output used to configure the transceiver

mode.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-274 ni.com

The Ext_RX and Ext_TX lines are self explanatory and provide for the transfer of CAN data

to and from the transceiver. The remaining three lines are for configuring the transceiver and

retrieving status from the transceivers. Not all transceivers use all pins. Typically, a

transceiver has one or two lines that can configure the transceiver mode. The NI-XNET driver

natively supports five transceiver modes: Normal, Sleep, Single Wire Wakeup, Single Wire

High Speed, and Power-On. This property configures how the NI-XNET driver sets the

outputs of your external transceiver for each mode.

The configuration is in the form of a u32 written as a bitmask. The u32 bitmask is defined as:

Where each configuration is a 3-bit value defined as:

The Interface:CAN:Transceiver State property changes the transceiver state. Based on the

transceiver configuration, if the state is supported, the configuration determines how the two

pins are set. If the state is not supported, an error is returned, because you tried to set an invalid

configuration. Note that all transceivers must support a Normal state, so the State Supported

bit for that configuration is ignored.

Other internal state changes may occur. For example, if you put the transceiver to sleep and a

remote wakeup occurs, the transceiver automatically is changed to the normal state. For

information about the state machine for the transceiver state, refer to CAN Transceiver State

Machine in Additional Topics.

If nERR Connected is set, the nERR pin into the connector determines a transceiver error. It

is active low, meaning a value of 0 on this pin indicates an error. A value of 1 indicates no

Output1 Out Generic output used to configure the transceiver

mode.

NERR In Input to connect to the nERR pin of your transceiver

to route status back from the transceiver to the

hardware.

31 30..15 14..12 11..9 8..6 5..3 2..0

nERR

Connected

Reserved PowerOn

Configuration

SWHighSpeed

Configuration

SWWakeup

Configuration

Sleep

Configuration

Normal

Configuration

2 1 0

State Supported Output1 Value Output0 Value

Line Direction Purpose

Chapter 5 NI-XNET API for C

© National Instruments 5-275 NI-XNET Hardware and Software Manual

error. If this line is connected, the NI-XNET driver monitors this line and reports its status via

the Transceiver Error field of nxReadState (StateID = nxState_CANComm).

Examples

TJA1041 (HS): To connect to the TJA1041 transceiver, connect Output0 to the nSTB pin and

Output1 to the EN pin. The TJA1041 does have an nERR pin, so that should be connected to

the nERR input. The TJA1041 supports a power-on state, a sleep state, and a normal state. As

this is not a single wire transceiver, it does not support any single wire state. For normal

operation, the TJA1041 uses a 1 for both nSTB and EN. For sleep, the TJA1041 uses the

standby mode, which uses a 0 for both nSTB and EN. For power-on, the TJA1041 uses a 1 for

nSTB and a 0 for EN. The final configuration is 0x80005027.

TJA1054 (LS): You can connect and configure the TJA1054 identically to the TJA1041.

AU5790 (SW): To connect to the AU5790 transceiver, connect Output0 to the nSTB pin and

Output1 to the EN pin. The AU5790 does not support any transceiver status, so you do not

need to connect the nERR pin. The AU5790 supports all states. For normal operation, the

AU5790 uses a 1 for both nSTB and EN. For sleep, the AU5790 uses a 0 for both nSTB and

EN. For Single Wire Wakeup, the AU5790 requires nSTB to be a 0 and EN to be a 1. For

Single Wire High-Speed, the AU5790 requires nSTB to be a 1, and EN to be a 0. For

power-on, the sleep state is used so there is less interference on the bus.The final configuration

is 0x00004DA7.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-276 ni.com

Interface:CAN:FD Baud Rate

Data Type Direction Required? Default

u32 Read/Write No 0

Property Class

XNET Session

Property ID

nxPropSession_IntfCanFdBaudRate

Description

Note You can modify this property only when the interface is stopped.

The Interface:CAN:FD Baud Rate property sets the fast data baud rate for CAN FD + BRS

CAN:I/O Mode. The default value for this interface property is the same as the cluster’s FD

baud rate in the database. Your application can set this interface FD baud rate to override the

value in the database.

When the upper nibble (0xF0000000) is clear, this is a numeric baud rate (for example,

500000).

NI-XNET CAN hardware currently accepts the following numeric baud rates: 200000,

250000, 400000, 500000, 800000, 1000000, 1250000, 1600000, 2000000, 2500000,

4000000, 5000000, and 8000000.

Note Not all CAN transceivers are rated to transmit at the requested rate. If you attempt

to use a rate that exceeds the transceiver’s qualified rate, XNET Start returns a warning.

Chapter 3, NI-XNET Hardware Overview, describes the CAN transceivers’ limitations.

When the upper nibble is set to 0x8 (that is, 0x80000000), the remaining bits provide fields

for more custom CAN communication baud rate programming. The fields are shown in the

following table:

31..28 27..26 25..24 23..20 19..16 15...10 9..8 7..0

Normal b0000 Baud Rate (200 k–8 M)

Custom b1000 Res SJW

(0–3)

TSEG2

(0–7)

TSEG1

(1–15)

Res Tq (25–800)

Chapter 5 NI-XNET API for C

© National Instruments 5-277 NI-XNET Hardware and Software Manual

• (Re-)Synchronization Jump Width (SJW)

– Valid programmed values are 0–3.

– The actual hardware interpretation of this value is one more than the programmed

value.

• Time Segment 2 (TSEG2) is the time segment after the sample point.

– Valid programmed values are 0–7.

– This is the Phase_Seg2(D) from Bosch’s CAN with Flexible Data-Rate specification,

version 1.0.

– The actual hardware interpretation of this value is one more than the programmed

value.

• Time Segment 1 (TSEG1) is the time segment before the sample point.

– Valid programmed values are 1–15.

– This is the combination of Prop_Seg(D) and Phase_Seg1(D) from Bosch’s CAN with

Flexible Data-Rate specification, version 1.0.

– The actual hardware interpretation of this value is one more than the programmed

value.

• Time quantum (Tq) is used to program the baud rate prescaler.

– Valid programmed values are 25–800, in increments of 25 ns.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-278 ni.com

Interface:CAN:I/O Mode

Data Type Direction Required? Default

u32 Read Only — Same as XNET Cluster CAN:I/O Mode

Property Class

XNET Session

Property ID

nxPropSession_IntfCanIoMode

Description

This property indicates the I/O Mode the interface is using. It is a ring of three values, as

described in the following table:

The value is initialized from the database cluster when the session is created and cannot be

changed later. However, you can transmit standard CAN frames on a CAN FD network. Refer

to the Interface:CAN:Transmit I/O Mode property.

Enumeration Value Meaning

CAN 0 This is the default CAN 2.0 A/B standard I/O mode

as defined in ISO 11898-1:2003. A fixed baud rate

is used for transfer, and the payload length is limited

to 8 bytes.

CAN FD 1 This is the CAN FD mode as specified in the CAN

with Flexible Data-Rate specification, version 1.0.

Payload lengths are allowed up to 64 bytes, but they

are transmitted at a single fixed baud rate (defined

by the XNET Cluster Baud Rate or XNET Session

Interface:Baud Rate properties.

CAN FD + BRS 2 This is the CAN FD mode as specified in the CAN

with Flexible Data-Rate specification, version 1.0,

with the optional Baud Rate Switching enabled. The

same payload lengths as CAN FD mode are

allowed; additionally, the data portion of the CAN

frame is transferred at a different (higher) baud rate

(defined by the XNET Cluster CAN:FD Baud Rate

or XNET Session Interface:CAN:FD Baud Rate

properties).

Chapter 5 NI-XNET API for C

© National Instruments 5-279 NI-XNET Hardware and Software Manual

Interface:CAN:Listen Only?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfCANLstnOnly

Description

Note You can modify this property only when the interface is stopped.

The Listen Only? property configures whether the CAN interface transmits any information

to the CAN bus.

When this property is false, the interface can transmit CAN frames and acknowledge received

CAN frames.

When this property is true, the interface can neither transmit CAN frames nor acknowledge a

received CAN frame. The true value enables passive monitoring of network traffic, which can

be useful for debugging scenarios when you do not want to interfere with a communicating

network cluster.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-280 ni.com

Interface:CAN:Pending Transmit Order

Data Type Direction Required? Default

u32[] Read/Write No As Submitted

Property Class

XNET Session

Property ID

nxPropSession_IntfCANPendTxOrder

Description

Note You can modify this property only when the interface is stopped.

Note Setting this property causes the internal queue to be flushed. If you start a session,

queue frames, and then stop the session and change this mode, some frames may be lost.

Set this property to the desired value once; do not constantly change modes.

The Pending Transmit Order property configures how the CAN interface manages the internal

queue of frames. More than one frame may desire to transmit at the same time. NI-XNET

stores the frames in an internal queue and transmits them onto the CAN bus when the bus

is idle.

This property modifies how NI-XNET handles this queue of frames. The following table lists

the accepted values:

When you configure this property to be nxCANPendTxOrder_AsSubmitted, frames are

transmitted in the order that they were submitted into the queue. There is no reordering of any

frames, and a higher priority frame may be delayed due to the transmission or retransmission

of a previously submitted frame. However, this mode has the highest performance.

When you configure this property to be nxCANPendTxOrder_ByIdentifier, frames with

the highest priority identifier (lower CAN ID value) transmit first. The frames are stored in a

priority queue sorted by ID. If a frame currently being transmitted requires retransmission (for

example, it lost arbitration or failed with a bus error), and a higher priority frame is queued in

Enumeration Value

nxCANPendTxOrder_AsSubmitted 0

nxCANPendTxOrder_ByIdentifier 1

Chapter 5 NI-XNET API for C

© National Instruments 5-281 NI-XNET Hardware and Software Manual

the meantime, the lower priority frame is not immediately retried, but the higher priority

frame is transmitted instead. In this mode, you can emulate multiple ECUs and still see a

behavior similar to a real bus in that the highest priority message is transmitted on the bus.

This mode may be slower in performance (possible delays between transmissions as the

queue is re-evaluated), and lower priority messages may be delayed indefinitely due to

frequent high-priority messages.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-282 ni.com

Interface:CAN:Single Shot Transmit?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfCANSingShot

Description

Note You can modify this property only when the interface is stopped.

Note Setting this property causes the internal queue to be flushed. If you start a session,

queue frames, and then stop the session and change this mode, some frames may be lost.

Set this property to the desired value once; do not constantly change modes.

The Single Shot Transmit? property configures whether the CAN interface retries failed

transmissions.

When this property is false, failed transmissions retry as specified by the CAN protocol

(ISO 11898-1, 6.11 Automatic Retransmission). If a CAN frame is not transmitted

successfully, the interface attempts to retransmit the frame as soon as the bus is idle again.

This retransmit process continues until the frame is successfully transmitted.

When this property is true, failed transmissions do not retry. If a CAN frame is not transmitted

successfully, no further transmissions are attempted.

Chapter 5 NI-XNET API for C

© National Instruments 5-283 NI-XNET Hardware and Software Manual

Interface:CAN:Termination

Data Type Direction Required? Default

u32 Read/Write No Off (0)

Property Class

XNET Session

Property ID

nxPropSession_IntfCANTerm

Description

Note You can modify this property only when the interface is stopped.

This property does not take effect until the interface is started.

The Termination property configures the onboard termination of the NI-XNET interface CAN

connector (port). The enumeration is generic and supports two values: Off and On. However,

different CAN hardware has different termination requirements, and the Off and On values

have different meanings, as described below.

High-Speed CAN

High-Speed CAN networks are typically terminated on the bus itself instead of within a node.

However, NI-XNET allows you to configure termination within the node to simplify testing.

If your bus already has the correct amount of termination, leave this property in the default

state of Off. However, if you require termination, set this property to On.

Low-Speed/Fault-Tolerant CAN

Every node on a Low-Speed CAN network requires termination for each CAN data line

(CAN_H and CAN_L). This configuration allows the Low-Speed/Fault-Tolerant CAN port to

provide fault detection and recovery. Refer to Termination for more information about

low-speed termination. In general, if the existing network has an overall network termination

of 125  or less, turn on termination to enable the 4.99 k option. Otherwise, you should

select the default 1.11 k option.

Value Meaning Description

Off Disabled Termination is disabled.

On Enabled Termination (120 ) is enabled.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-284 ni.com

Single Wire CAN

The ISO standard requires single wire transceivers to have a 9.09 k resistor, and no

additional configuration is supported.

Value Meaning Description

Off 1.11 k Termination is set to 1.11 k.

On 4.99 k Termination is set to 4.99 k.

Chapter 5 NI-XNET API for C

© National Instruments 5-285 NI-XNET Hardware and Software Manual

Interface:CAN:Transceiver State

Data Type Direction Required? Default

u32 Read/Write No Normal (0)

Property Class

XNET Session

Property ID

nxPropSession_IntfCANTcvrState

Description

The Transceiver State property configures the CAN transceiver and CAN controller modes.

The transceiver state controls whether the transceiver is asleep or communicating, as well as

configuring other special modes. The following table lists the accepted values.

Enumeration Value

Normal 0

Sleep 1

Single Wire Wakeup 2

Single Wire High-Speed 3

Normal

This state sets the transceiver to normal communication mode. If the transceiver is in the

Sleep mode, this performs a local wakeup of the transceiver and CAN controller chip.

Sleep

This state sets the transceiver and CAN controller chip to Sleep (or standby) mode. You can

set the interface to Sleep mode only while the interface is communicating. If the interface has

not been started, setting the transceiver to Sleep mode returns an error.

Before going to sleep, all pending transmissions are transmitted onto the CAN bus. Once all

pending frames have been transmitted, the interface and transceiver go into Sleep (or standby)

mode. Once the interface enters Sleep mode, further communication is not possible until a

wakeup occurs. The transceiver and CAN controller wake from Sleep mode when either a

local wakeup or remote wakeup occurs.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-286 ni.com

A local wakeup occurs when the application sets the transceiver state to either Normal or

Single Wire Wakeup.

A remote wakeup occurs when a remote node transmits a CAN frame (referred to as the

wakeup frame). The wakeup frame wakes up the NI-XNET interface transceiver and CAN

controller chip. The CAN controller chip does not receive or acknowledge the wakeup frame.

After detecting the wakeup frame and idle bus, the CAN interface enters Normal mode.

When the local or remote wakeup occurs, frame transmissions resume from the point at which

the original Sleep mode was set.

You can use nxReadState to detect when a wakeup occurs. To suspend the application while

waiting for the remote wakeup, use nxWait.

Single Wire Wakeup

For a remote wakeup to occur for Single Wire transceivers, the node that transmits the wakeup

frame first must place the network into the Single Wire Wakeup Transmission mode by

asserting a higher voltage.

This state sets a Single Wire transceiver into the Single Wire Wakeup Transmission mode,

which forces the Single Wire transceiver to drive a higher voltage level on the network to

wake up all sleeping nodes. Other than this higher voltage, this mode is similar to Normal

mode. CAN frames can be received and transmitted normally.

If you are not using a Single Wire transceiver, setting this state returns an error. If your current

mode is Single Wire High-Speed, setting this mode returns an error because you are not

allowed to wake up the bus in high-speed mode.

The application controls the timing of how long the wakeup voltage is driven. The application

typically changes to Single Wire Wakeup mode, transmits a single wakeup frame, and then

returns to Normal mode.

Single Wire High-Speed

This state sets a Single Wire transceiver into Single Wire High-Speed Communication mode.

If you are not using a Single Wire transceiver, setting this state returns an error.

Single Wire High-Speed Communication mode disables the transceiver’s internal

waveshaping function, allowing the SAE J2411 High-Speed baud rate of 83.333 kbytes/s to

be used. The disadvantage versus Single Wire Normal Communication mode, which allows

only the SAE J2411 baud rate of 33.333 kbytes/s, is degraded EMC performance. Other than

the disabled waveshaping, this mode is similar to Normal mode. CAN frames can be received

and transmitted normally.

Chapter 5 NI-XNET API for C

© National Instruments 5-287 NI-XNET Hardware and Software Manual

This mode has no relationship to High-Speed transceivers. It is merely a higher speed mode

of the Single Wire transceiver, typically used to download data when the onboard network is

attached to an offboard tester ECU.

The Single Wire transceiver does not support use of this mode in conjunction with Sleep

mode. For example, a remote wakeup cannot transition from sleep to this Single Wire

High-Speed mode. Therefore, setting the mode to Sleep from Single Wire High-Speed mode

returns an error.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-288 ni.com

Interface:CAN:Transceiver Type

Data Type Direction Required? Default

u32 Read/Write No High-Speed (0) for High-Speed and XS Hardware;

Low-Speed (1) for Low-Speed Hardware

Property Class

XNET Session

Property ID

nxPropSession_IntfCANTcvrType

Description

Note You can modify this property only when the interface is stopped.

For XNET hardware that provides a software-selectable transceiver, the Transceiver Type

property allows you to set the transceiver type. Use the XNET Interface CAN.Transceiver

Capability property to determine whether your hardware supports a software-selectable

transceiver.

You also can use this property to determine the currently configured transceiver type.

The following table lists the accepted values:

Enumeration Value

High-Speed (HS) 0

Low-Speed (LS) 1

Single Wire (SW) 2

External (Ext) 3

Disconnected (Disc) 4

The default value for this property depends on your type of hardware. If you have

fixed-personality hardware, the default value is the hardware value. If you have hardware that

supports software-selectable transceivers, the default is High-Speed.

Chapter 5 NI-XNET API for C

© National Instruments 5-289 NI-XNET Hardware and Software Manual

This attribute uses the following values:

High-Speed

This configuration enables the High-Speed transceiver. This transceiver supports baud rates

of 40 kbaud to 1 Mbaud. When using a High-Speed transceiver, you also can communicate

with a CAN FD bus. Refer to Chapter 3, NI-XNET Hardware Overview, to determine which

CAN FD baud rates are supported.

Low-Speed/Fault-Tolerant

This configuration enables the Low-Speed/Fault-Tolerant transceiver. This transceiver

supports baud rates of 40–125 kbaud.

Single Wire

This configuration enables the Single Wire transceiver. This transceiver supports baud rates

of 33.333 kbaud and 83.333 kbaud.

External

This configuration allows you to use an external transceiver to connect to your CAN bus.

Refer to the XNET Session Interface:CAN:External Transceiver Config property for more

information.

Disconnect

This configuration allows you to disconnect the CAN controller chip from the connector. You

can use this value when you physically change the external transceiver.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-290 ni.com

Interface:CAN:Transmit I/O Mode

Data Type Direction Required? Default

u32 Read/Write No Same as Interface:CAN:I/O Mode

Property Class

XNET Session

Property ID

nxPropSession_IntfCanTxIoMode

Description

This property specifies the I/O Mode the interface uses when transmitting a CAN frame. By

default, it is the same as the XNET Cluster CAN:I/O Mode property. However, even if the

interface is in CAN FD (+ BRS) mode, you can force it to transmit frames in the standard

CAN format. For this purpose, set this property to CAN.

Note This property affects only the transmission of frames. Even if you set the Transmit

I/O mode to CAN, the interface still can receive frames in FD modes (if the XNET Cluster

CAN:I/O Mode property is configured in an FD mode).

The Transmit I/O mode may not exceed the mode set by the XNET Cluster CAN:I/O Mode

property.

Chapter 5 NI-XNET API for C

© National Instruments 5-291 NI-XNET Hardware and Software Manual

FlexRay Interface Properties

This category includes FlexRay-specific interface properties.

Properties in the Interface category apply to the interface and not the session. If more than one

session exists for the interface, changing an interface property affects all the sessions.

These properties are calculated based on constraints in the FlexRay Protocol Specification.

To calculate these properties, the constraints use cluster settings and knowledge of the

oscillator that the FlexRay interface uses.

At Create Session time, the XNET driver automatically calculates these properties, and they

are passed down to the hardware. However, you can use the XNET property node to change

these settings.

Note Changing the interface properties can affect the integration and communication of

the XNET FlexRay interface with the cluster.

Interface:FlexRay:Accepted Startup Range

Data Type Direction Required? Default

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayAccStartRng

Description

Range of measure clock deviation allowed for startup frames during node integration. This

property corresponds to the pdAcceptedStartupRange node parameter in the FlexRay

Protocol Specification.

The range for this property is 0–1875 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-292 ni.com

Interface:FlexRay:Allow Halt Due To Clock?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayAlwHltClk

Description

Controls the FlexRay interface transition to the POC: halt state due to clock synchronization

errors. If set to true, the node can transition to the POC: halt state. If set to false, the node does

not transition to the POC: halt state and remains in the POC: normal passive state, allowing

for self recovery.

This property corresponds to the pAllowHaltDueToClock node parameter in the FlexRay

Protocol Specification.

The property is a Boolean flag.

The default value of this property is false.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Refer to nxReadState for more information about the POC: halt and POC: normal passive

states.

Chapter 5 NI-XNET API for C

© National Instruments 5-293 NI-XNET Hardware and Software Manual

Interface:FlexRay:Allow Passive to Active

Data Type Direction Required? Default

u32 Read/Write No 0

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayAlwPassAct

Description

Number of consecutive even/odd cycle pairs that must have valid clock correction terms

before the FlexRay node can transition from the POC: normal-passive to the POC:

normal-active state. If set to zero, the node cannot transition from POC: normal-passive to

POC: normal-active.

This property corresponds to the pAllowPassiveToActive node parameter in the FlexRay

Protocol Specification.

The property is expressed as the number of even/odd cycle pairs, with values of 0–31.

The default value of this property is zero.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Refer to nxReadState for more information about the POC: normal-active and POC:

normal-passive states.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-294 ni.com

Interface:FlexRay:AutoAsleepWhenStopped

Data Type Direction Required? Default

Boolean Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayAutoAslpWhnStp

Description

This property indicates whether the FlexRay interface (node) automatically places the

FlexRay transceiver and controller into sleep when the interface is stopped. The default value

of this property is False, and you must handle the wakeup/sleep processing manually using

nxSetProperty with the property ID of nxPropSession_IntfFlexRaySleep.

When this property is called with the value True while the interface is asleep, the interface is

put to sleep immediately. When this property is called with the value False, the interface is set

to a local awake state immediately.

If the interface is asleep when nxStart is called, the FlexRay interface waits for a wakeup

pattern on the bus before transitioning out of the POC:READY state. To initiate a bus wakeup,

set nxSetProperty with the property ID of nxPropSession_IntfFlexRaySleep and a

value of nxFlexRaySleep_RemoteWake.

After nxStop is called, if this property is True, the FlexRay interface automatically goes back

to sleep to be ready to handle the wakeup on subsequent nxStart calls. When this property

is False when nxStop is called, the FlexRay interface remains in the sleep state it was in prior

to the nxStop call.

You can overwrite the default value by writing this property prior to starting the FlexRay

interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

© National Instruments 5-295 NI-XNET Hardware and Software Manual

Interface:FlexRay:Cluster Drift Damping

Data Type Direction Required? Default

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayClstDriftDmp

Description

Local cluster drift damping factor used for rate correction.

This property corresponds to the pAllowPassiveToActive node parameter in the FlexRay

Protocol Specification. The range for the property is 0–20 MT.

The cluster drift damping property should be configured in such a way that the damping

values in all nodes within the same cluster have approximately the same duration.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-296 ni.com

Interface:FlexRay:Coldstart?

Data Type Direction Required? Default

Boolean Read Only No False

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayColdstart

Description

This property specifies whether the FlexRay interface operates as a coldstart node

on the cluster. This property is read only and calculated from the XNET Session

Interface:FlexRay:Key Slot Identifier property. If the KeySlot Identifier is 0 (invalid slot

identifier), the XNET FlexRay interface does not act as a coldstart node, and this property is

false. If the KeySlot Identifier is 1 or more, the XNET FlexRay interface transmits a startup

frame from that slot, and the Coldstart? property is true.

This property returns a Boolean flag (true/false).

The default value of this property is false.

Chapter 5 NI-XNET API for C

© National Instruments 5-297 NI-XNET Hardware and Software Manual

Interface:FlexRay:Connected Channels

Data Type Direction Required? Default

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayConnectedChs

Description

This property specifies the channel(s) that the FlexRay interface (node) is physically

connected to. The default value of this property is connected to all channels available on the

cluster. However, if you are using a node connected to only one channel of a multichannel

cluster that uses wakeup, you must set the value properly. If you do not, your node may not

wake up, as the wakeup pattern cannot be received on a channel that is not physically

connected.

This property corresponds to the pChannels node parameter in the FlexRay Protocol

Specification.

The values supported for this property (enumeration) are A = 1, B = 2, and A and B = 3.

You can overwrite the default value by writing this property prior to starting the FlexRay

interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-298 ni.com

Interface:FlexRay:Decoding Correction

Data Type Direction Required? Default

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayDecCorr

Description

This property specifies the value that the receiving FlexRay node uses to calculate the

difference between the primary time reference point and secondary reference point. The clock

synchronization algorithm uses the primary time reference and the sync frame’s expected

arrival time to calculate and compensate for the node’s local clock deviation.

This property corresponds to the pDecodingCorrection node parameter in the FlexRay

Protocol Specification.

The range for the property is 14–143 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

© National Instruments 5-299 NI-XNET Hardware and Software Manual

Interface:FlexRay:Delay Compensation Ch A

Data Type Direction Required? Default

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayDelayCompA

Description

This property specifies the value that the XNET FlexRay interface (node) uses to compensate

for reception delays on channel A. This takes into account the assumed propagation delay up

to the maximum allowed propagation delay (cPropagationDelayMax) for microticks in the

0.0125–0.05 range. In practice, you should apply the minimum of the propagation delays of

all sync nodes.

This property corresponds to the pDelayCompensation[A] node parameter in the FlexRay

Protocol Specification.

The property range is 0–200 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-300 ni.com

Interface:FlexRay:Delay Compensation Ch B

Data Type Direction Required? Default

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayDelayCompB

Description

This property specifies the value that the XNET FlexRay interface (node) uses to compensate

for reception delays on channel B. This takes into account the assumed propagation delay up

to the maximum allowed propagation delay (Propagation Delay Max) for microticks in

the 0.0125–0.05 range. In practice, you should apply the minimum of the propagation delays

of all sync nodes.

This property corresponds to the pDelayCompensation[B] node parameter in the FlexRay

Protocol Specification.

The property range is 0–200 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

© National Instruments 5-301 NI-XNET Hardware and Software Manual

Interface:FlexRay:Key Slot Identifier

Data Type Direction Required? Default

u32 Read/Write No 0

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayKeySlotID

Description

This property specifies the FlexRay slot number from which the XNET FlexRay interface

transmits a startup frame, during the process of integration with other cluster nodes.

For a network (cluster) of FlexRay nodes to start up for communication, at least two nodes

must transmit startup frames. If your application is designed to test only one external ECU,

you must configure the XNET FlexRay interface to transmit a startup frame. If the one

external ECU does not transmit a startup frame itself, you must use two XNET FlexRay

interfaces for the test, each of which must transmit a startup frame.

There are two methods for configuring the XNET FlexRay interface as a coldstart node

(transmit startup frame).

Output Session with Startup Frame

Create an output session that contains a startup frame (or one of its signals). The XNET Frame

FlexRay:Startup? property is true for a startup frame. If you use this method, this Key Slot

Identifier property contains the identifier property of that startup frame. You do not write this

property.

Write this Key Slot Identifier Property

This interface uses the identifier (slot) you write to transmit a startup frame using that slot.

Note If you create an output session that contains the startup frame, with the same

identifier as that specified in the Key Slot Identifier property, the data you write to the

session transmits in the frame. If you do not create an output session that contains the

startup frame, the interface transmits a null frame for startup purposes.

If you create an output session that contains a startup frame with an identifier that does not

match the Key Slot Identifier property, an error is returned.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-302 ni.com

The default value of this property is 0 (no startup frame).

You can overwrite the default value by writing an identifier that corresponds to the identifier

of a startup frame prior to starting the FlexRay interface (refer to Session States for more

information).

Chapter 5 NI-XNET API for C

© National Instruments 5-303 NI-XNET Hardware and Software Manual

Interface:FlexRay:Latest Tx

Data Type Direction Required? Default

u32 Read Only No 0

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayLatestTx

Description

This property specifies the number of the last minislot in which a frame transmission can start

in the dynamic segment. This is a read-only property, as the FlexRay controller evaluates it

based on the configuration of the frames in the dynamic segment.

This property corresponds to the pLatestTx node parameter in the FlexRay Protocol

Specification.

The range of values for this property is 0–7981 minislots.

This property can be read any time prior to closing the FlexRay interface.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-304 ni.com

Interface:FlexRay:Listen Timeout

Data Type Direction Required? Default

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayListTimo

Description

This property specifies the upper limit for the startup listen timeout and wakeup listen

timeout.

Refer to Appendix B, Summary of the FlexRay Standard for more information about startup

and wakeup procedures within the FlexRay protocol.

This property corresponds to the pdListenTimeout node parameter in the FlexRay

Protocol Specification.

The range of values for this property is 1284–1283846 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

© National Instruments 5-305 NI-XNET Hardware and Software Manual

Interface:FlexRay:Macro Initial Offset Ch A

Data Type Direction Required? Default

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayMacInitOffA

Description

This property specifies the integer number of macroticks between the static slot boundary and

the following macrotick boundary of the secondary time reference point based on the nominal

macrotick duration. This property applies only to Channel A.

This property corresponds to the pMacroInitialOffset[A] node parameter in the

FlexRay Protocol Specification.

The range of values for this property is 2–72 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-306 ni.com

Interface:FlexRay:Macro Initial Offset Ch B

Data Type Direction Required? Default

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayMacInitOffB

Description

This property specifies the integer number of macroticks between the static slot boundary and

the following macrotick boundary of the secondary time reference point based on the nominal

macrotick duration. This property applies only to Channel B.

This property corresponds to the pMacroInitialOffset[B] node parameter in the

FlexRay Protocol Specification.

The range of values for this property is 2–72 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

© National Instruments 5-307 NI-XNET Hardware and Software Manual

Interface:FlexRay:Max Drift

Data Type Direction Required? Default

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayMaxDrift

Description

This property specifies the maximum drift offset between two nodes that operate with

unsynchronized clocks over one communication cycle.

This property corresponds to the pdMaxDrift node parameter in the FlexRay Protocol

Specification.

The range of values for this property is 2–1923 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-308 ni.com

Interface:FlexRay:Micro Initial Offset Ch A

Data Type Direction Required? Default

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayMicInitOffA

Description

This property specifies the number of microticks between the closest macrotick boundary

described by the Macro Initial Offset Ch A property and the secondary time reference point.

This parameter depends on the Delay Compensation property for Channel A, and therefore

you must set it independently for each channel.

This property corresponds to the pMicroInitialOffset[A] node parameter in the

FlexRay Protocol Specification.

The range of values for this property is 0–240 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

© National Instruments 5-309 NI-XNET Hardware and Software Manual

Interface:FlexRay:Micro Initial Offset Ch B

Data Type Direction Required? Default

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayMicInitOffB

Description

This property specifies the number of microticks between the closest macrotick boundary

described by the Macro Initial Offset Ch B property and the secondary time reference point.

This parameter depends on the Delay Compensation property for Channel B, and therefore

you must set it independently for each channel.

This property corresponds to the pMicroInitialOffset[B] node parameter in the

FlexRay Protocol Specification.

The range of values for this property is 0–240 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-310 ni.com

Interface:FlexRay:Microtick

Data Type Direction Required? Default

u32 Read Only No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayMicrotick

Description

This property specifies the duration of a microtick. This property is calculated based on the

product of the Interface:FlexRay:Samples Per Microtick and Baud Rate properties. This is a

read-only property.

This property corresponds to the pdMicrotick node parameter in the FlexRay Protocol

Specification.

This property can be read any time prior to closing the FlexRay interface.

Chapter 5 NI-XNET API for C

© National Instruments 5-311 NI-XNET Hardware and Software Manual

Interface:FlexRay:Null Frames To Input Stream?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayNullToInStrm

Description

This property indicates whether the Frame Input Stream Mode session should return FlexRay

null frames from nxReadFrame.

When this property uses the default value of false, FlexRay null frames are not returned for a

Frame Input Stream Mode session. This behavior is consistent with the other two frame input

modes (Frame Input Single-Point Mode and Frame Input Queued Mode), which never return

FlexRay null frames from nxReadFrame.

When you set this property to true for a Frame Input Stream Mode session, nxReadFrame

returns all FlexRay null frames that are received by the interface. This feature is used to

monitor all frames that occur on the network, regardless of whether new payload is available

or not. When you use nxReadFrame, each frame’s type field indicates a null frame.

You can overwrite the default value prior to starting the FlexRay interface (refer to Session

States for more information).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-312 ni.com

Interface:FlexRay:Offset Correction

Data Type Direction Required? Default

i32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayOffCorr

Description

This property provides the maximum permissible offset correction value, expressed in

microticks. The offset correction synchronizes the cycle start time. The value indicates the

number of microticks added or subtracted to the offset correction portion of the network idle

time, to synchronize the interface to the FlexRay network. The value is returned as a signed

32-bit integer (i32). The offset correction value calculation takes place every cycle, but the

correction is applied only at the end of odd cycles. This is a read-only property.

This property can be read anytime prior to closing the FlexRay interface.

Chapter 5 NI-XNET API for C

© National Instruments 5-313 NI-XNET Hardware and Software Manual

Interface:FlexRay:Offset Correction Out

Data Type Direction Required? Default

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayOffCorrOut

Description

This property specifies the magnitude of the maximum permissible offset correction value.

This node parameter is based on the value of the maximum offset correction for the specific

cluster.

This property corresponds to the pOffsetCorrectionOut node parameter in the FlexRay

Protocol Specification.

The value range for this property is 5–15266 MT.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-314 ni.com

Interface:FlexRay:Rate Correction

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayRateCorr

Description

Read-only property that provides the rate correction value, expressed in microticks. The rate

correction synchronizes frequency. The value indicates the number of microticks added to or

subtracted from the configured number of microticks in a cycle, to synchronize the interface

to the FlexRay network.

The value is returned as a signed 32-bit integer (i32). The rate correction value calculation

takes place in the static segment of an odd cycle, based on values measured in an even-odd

double cycle.

This property can be read prior to closing the FlexRay interface.

Chapter 5 NI-XNET API for C

© National Instruments 5-315 NI-XNET Hardware and Software Manual

Interface:FlexRay:Rate Correction Out

Data Type Direction Required? Default

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayRateCorrOut

Description

This property specifies the magnitude of the maximum permissible rate correction value. This

node parameter is based on the value of the maximum rate correction for the specific cluster.

This property corresponds to the pRateCorrectionOut node parameter in the FlexRay

Protocol Specification.

The range of values for this property is 2–1923 MT.

This property is calculated from the microticks per cycle and clock accuracy.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-316 ni.com

Interface:FlexRay:Samples Per Microtick

Data Type Direction Required? Default

u32 Read/Write No Calculated from Cluster Settings

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRaySampPerMicro

Description

This property specifies the number of samples per microtick.

There is a defined relationship between the “ticks” of the microtick timebase and the sample

ticks of bit sampling. Specifically, a microtick consists of an integral number of samples.

As a result, there is a fixed phase relationship between the microtick timebase and the sample

clock ticks.

This property corresponds to the pSamplesPerMicrotick node parameter in the FlexRay

Protocol Specification.

The supported values for this property are 1, 2, and 4 samples.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

© National Instruments 5-317 NI-XNET Hardware and Software Manual

Interface:FlexRay:Single Slot Enabled?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRaySingSlotEn

Description

This property serves as a flag to indicate whether the FlexRay interface (node) should enter

single slot mode following startup.

This Boolean property supports a strategy to limit frame transmissions following startup to a

single frame (designated by the XNET Session Interface:FlexRay:Key Slot Identifier

property). If you leave this property false prior to start (default), all configured output frames

transmit. If you set this property to true prior to start, only the key slot transmits. After the

interface is communicating (integrated), you can set this property to false at runtime to enable

the remaining transmissions (the protocol’s ALL_SLOTS command). After the interface is

communicating, you cannot set this property from false to true.

This property corresponds to the pSingleSlotEnabled node parameter in the FlexRay

Protocol Specification.

You can overwrite the default value prior to starting the FlexRay interface (refer to Session

States for more information).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-318 ni.com

Interface:FlexRay:Sleep

Data Type Direction Required? Default

u32 Write Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRaySleep

Description

Use the Sleep property to change the NI-XNET FlexRay interface sleep/awake state and

optionally to initiate a wakeup on the FlexRay cluster.

The following table lists the accepted values:

This property is write only. Setting a new value is effectively a request, and the property node

returns before the request is complete. To detect the current interface sleep/wake state, use

nxReadState.

The FlexRay interface maintains a state machine to determine the action to perform when this

property is set (request). The following table specifies the sleep/wake action on the FlexRay

interface.

String Value Description

nxFlexRaySleep_LocalSleep 0 Set interface and transceiver(s) to sleep

nxFlexRaySleep_LocalWake 1 Set interface and transceiver(s) to awake

nxFlexRaySleep_RemoteWake 2 Set interface and transceivers to awake

and attempt to wake up the FlexRay bus

by sending the wakeup pattern on the

configured wakeup channel

Chapter 5 NI-XNET API for C

© National Instruments 5-319 NI-XNET Hardware and Software Manual

Request

Current Local State

Sleep Awake

nxFlexRaySleep_LocalSleep No action Change local state

nxFlexRaySleep_LocalWake Attempt to integrate with the bus

(move from POC:READY to

POC:NORMAL)

No action

nxFlexRaySleep_RemoteWake Attempt to wake up the bus

followed by an attempt to integrate

with the bus (move from

POC:READY to POC:NORMAL

ACTIVE). If the interface is

not yet started, setting

nxFlexRaySleep_RemoteWake

schedules a remote wake to be

generated once the interface has

started.

No action

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-320 ni.com

Interface:FlexRay:Statistics Enabled?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayStatisticsEn

Description

This XNET Boolean property enables reporting FlexRay error statistics. When this property

is false (default), calls to nxReadState always return zero for each statistic. To enable

FlexRay statistics, set this property to true in your application.

You can overwrite the default value prior to starting the FlexRay interface (refer to Session

States for more information).

Chapter 5 NI-XNET API for C

© National Instruments 5-321 NI-XNET Hardware and Software Manual

Interface:FlexRay:Symbol Frames To Input Stream?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRaySymToInStrm

Description

This property indicates whether the Frame Input Stream Mode session should return FlexRay

symbols from nxReadFrame.

When this property uses the default value of false, FlexRay symbols are not returned for a

Frame Input Stream Mode session. This behavior is consistent with the other two frame input

modes (Frame Input Single-Point Mode and Frame Input Queued Mode), which never return

FlexRay symbols from nxReadFrame.

When you set this property to True for a Frame Input Stream Mode session, nxReadFrame

returns all FlexRay symbols the interface receives. This feature detects wakeup symbols and

Media Access Test Symbols (MTS). When you use nxReadFrame, each frame’s type field

indicates a symbol.

When the frame type is FlexRay Symbol, the first payload byte (offset 0) specifies the type of

symbol: 0 for MTS, 1 for wakeup. The frame payload length is 1 or higher, with bytes beyond

the first reserved for future use. The frame timestamp specifies when the symbol window

occurred. The cycle count, channel A indicator, and channel B indicator are encoded the same

as FlexRay data frames. All other fields in the frame are unused (0).

You can overwrite the default value prior to starting the FlexRay interface (refer to Session

States for more information).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-322 ni.com

Interface:FlexRay:Sync Frame Status

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRaySyncStatus

Description

This property returns the status of sync frames since the interface (enumeration) start. Within

Limits means the number of sync frames is within the protocol’s limits since the interface

start. Below Minimum means that in at least one cycle, the number of sync frames was below

the limit the protocol requires (2 or 3, depending on number of nodes). Overflow means that

in at least one cycle, the number of sync frames was above the limit set by the XNET Cluster

FlexRay:Sync Node Max property. Both Min and Max means that both minimum and

overflow errors have occurred (this is unlikely).

If the interface is not started, this property returns Within Limits. If you start the interface, but

it fails to communicate (integrate), this property may be helpful in diagnosing the problem.

Refer to Appendix B, Summary of the FlexRay Standard, for more information about the

FlexRay protocol startup and cluster integration procedure.

This property can be read any time prior to closing the FlexRay interface.

Chapter 5 NI-XNET API for C

© National Instruments 5-323 NI-XNET Hardware and Software Manual

Interface:FlexRay:Sync Frames Channel A Even

Data Type Direction Required? Default

u32 [16] Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRaySyncChAEven

Description

This property returns an array of sync frames (slot IDs) transmitted or received on channel A

during the last even cycle. This read-only property returns an array in which each element

holds the slot ID of a sync frame. If the interface is not started, this returns an empty array. If

you start the interface, but it fails to communicate (integrate), this property may be helpful in

diagnosing the problem.

Refer to Appendix B, Summary of the FlexRay Standard, for more information about the

FlexRay protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-324 ni.com

Interface:FlexRay:Sync Frames Channel A Odd

Data Type Direction Required? Default

u32 [16] Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRaySyncChAOdd

Description

This property returns an array of sync frames (slot IDs) transmitted or received on channel A

during the last odd cycle. This read-only property returns an array in which each element

holds the slot ID of a sync frame. If the interface is not started, this returns an empty array. If

you start the interface, but it fails to communicate (integrate), this property may be helpful in

diagnosing the problem.

Refer to Appendix B, Summary of the FlexRay Standard, for more information about the

FlexRay protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

Chapter 5 NI-XNET API for C

© National Instruments 5-325 NI-XNET Hardware and Software Manual

Interface:FlexRay:Sync Frames Channel B Even

Data Type Direction Required? Default

u32 [16] Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRaySyncChBEven

Description

This property returns an array of sync frames (slot IDs) transmitted or received on channel B

during the last even cycle. This read-only property returns an array in which each element

holds the slot ID of a sync frame. If the interface is not started, this returns an empty array. If

you start the interface, but it fails to communicate (integrate), this property may be helpful in

diagnosing the problem.

Refer to Appendix B, Summary of the FlexRay Standard, for more information about the

FlexRay protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-326 ni.com

Interface:FlexRay:Sync Frames Channel B Odd

Data Type Direction Required? Default

u32 [16] Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRaySyncChBOdd

Description

This property returns an array of sync frames (slot IDs) transmitted or received on channel B

during the last odd cycle. This read-only property returns an array in which each element

holds the slot ID of a sync frame. If the interface is not started, this returns an empty array. If

you start the interface, but it fails to communicate (integrate), this property may be helpful in

diagnosing the problem.

Refer to Appendix B, Summary of the FlexRay Standard, for more information about the

FlexRay protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

Chapter 5 NI-XNET API for C

© National Instruments 5-327 NI-XNET Hardware and Software Manual

Interface:FlexRay:Termination

Data Type Direction Required? Default

u32 Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayTerm

Description

This property controls termination at the NI-XNET interface (enumeration) connector (port).

This applies to both channels (A and B) on each FlexRay interface. False means the interface

is not terminated (default). True means the interface is terminated.

You can overwrite the default value by writing this property prior to starting the FlexRay

interface (refer to Session States for more information). You can start the FlexRay interface

by calling nxStart with scope set to either Normal or Interface Only on the session.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-328 ni.com

Interface:FlexRay:Wakeup Channel

Data Type Direction Required? Default

u32 Read/Write No A

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayWakeupCh

Description

This property specifies the channel the FlexRay interface (node) uses to send a wakeup

pattern. This property is used only when the XNET Session Interface:FlexRay:Sleep property

is set to nxFlexRaySleep_RemoteWake.

This property corresponds to the pWakeupChannel node parameter in the FlexRay Protocol

Specification.

The values supported for this property (enumeration) are A = 0 and B = 1.

You can overwrite the default value by writing this property prior to starting the FlexRay

interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

© National Instruments 5-329 NI-XNET Hardware and Software Manual

Interface:FlexRay:Wakeup Pattern

Data Type Direction Required? Default

u32 Read/Write No 2

Property Class

XNET Session

Property ID

nxPropSession_IntfFlexRayWakeupPtrn

Description

This property specifies the number of repetitions of the wakeup symbol that are combined to

form a wakeup pattern when the FlexRay interface (node) enters the POC:wakeup send state.

The POC:wakeup send state is one of the FlexRay controller state transitions during the

wakeup process. In this state, the controller sends the wakeup pattern on the specified Wakeup

Channel and checks for collisions on the bus.

This property corresponds to the pWakeupPattern node parameter in the FlexRay Protocol

Specification.

The supported values for this property are 2–63.

You can overwrite the default value by writing a value within the specified range to this

property prior to starting the FlexRay interface (refer to Session States for more information).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-330 ni.com

LIN Interface Properties

This category includes LIN-specific interface properties.

Properties in the Interface category apply to the interface and not the session. If more than one

session exists for the interface, changing an interface property affects all the sessions.

Interface:LIN:Break Length

Data Type Direction Required? Default

u32 Read/Write No 13

Property Class

XNET Session

Property ID

nxPropSession_IntfLINBreakLength

Description

This property determines the length of the serial break used at the start of a frame header

(schedule entry). The value is specified in bit-times.

The valid range is 13–36 (inclusive). The default value is 13, which is the value the LIN

standard specifies.

At baud rates below 9600, the upper limit may be lower than 36 to avoid violating hold times

for the bus. For example, at 2400 baud, the valid range is 13–14.

This property is applicable only when the interface is the master.

Chapter 5 NI-XNET API for C

© National Instruments 5-331 NI-XNET Hardware and Software Manual

Interface:LIN:DiagP2min

Data Type Direction Required? Default

Double Read/Write No 0.05

Property Class

XNET Session

Property ID

nxPropSession_IntfLINDiagP2min

Description

When the interface is the slave, this is the minimum time in seconds between reception of the

last frame of the diagnostic request message and transmission of the response for the first

frame in the diagnostic response message by the slave.

This property applies only to the interface as slave. An attempt to write the property for

interface as master results in error nxErrInvalidPropertyValue being reported.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-332 ni.com

Interface:LIN:DiagSTmin

Data Type Direction Required? Default

Double Read/Write No 0

Property Class

XNET Session

Property ID

nxPropSession_IntfLINDiagSTmin

Description

When the interface is the slave, this property sets the minimum time in seconds it places

between the end of transmission of a frame in a diagnostic response message and the start of

transmission of the response for the next frame in the diagnostic response message.

When the interface is the master, this property sets the minimum time in seconds it places

between the end of transmission of a frame in a diagnostic request message and the start of

transmission of the next frame in the diagnostic request message.

Chapter 5 NI-XNET API for C

© National Instruments 5-333 NI-XNET Hardware and Software Manual

Interface:LIN:Master?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfLINMaster

Description

Note You can set this property only when the interface is stopped.

This Boolean property specifies the NI-XNET LIN interface role on the network: master

(true) or slave (false).

In a LIN network (cluster), there always is a single ECU in the system called the master. The

master transmits a schedule of frame headers. Each frame header is a remote request for a

specific frame ID. For each header, typically a single ECU in the network (slave) responds by

transmitting the requested ID payload. The master ECU can respond to a specific header as

well, and thus the master can transmit payload data for the slave ECUs to receive. For more

information, refer to Appendix C, Summary of the LIN Standard.

The default value for this property is false (slave). This means that by default, the interface

does not transmit frame headers onto the network. When you use input sessions, you read

frames that other ECUs transmit. When you use output sessions, the NI-XNET interface waits

for the remote master to send a header for a frame in the output sessions, then the interface

responds with data for the requested frame.

If you call the nxWriteState function to request execution of a schedule, that implicitly sets

this property to true (master). You also can set this property to true using nxSetProperty,

but no schedule is active by default, so you still must call the nxWriteState function at

some point to request a specific schedule.

Regardless of this property’s value, you use can input and output sessions. This property

specifies which hardware transmits the scheduled frame headers: NI-XNET (true) or a remote

master ECU (false).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-334 ni.com

Interface:LIN:Output Stream Slave Response List By NAD

Data Type Direction Required? Default

u32[] Read/Write No Empty Array

Property Class

XNET Session

Property ID

nxPropSession_IntfLINOStrSlvRspLstByNAD

Description

The Output Stream Slave Response List by NAD property provides a list of NADs for use

with the replay feature (Interface:Output Stream Timing property set to Replay Exclusive or

Replay Inclusive).

For LIN, the array of frames to replay might contain multiple slave response frames, each

with the same slave response identifier, but each having been transmitted by a different slave

(per the NAD value in the data payload). This means that processing slave response frames

for replay requires two levels of filtering. First, you can include or exclude the slave response

frame or ID for replay using Interface:Output Stream List or Interface:Output Stream List By

ID. If you do not include the slave response frame or ID for replay, no slave responses are

transmitted. If you do include the slave response frame or ID for replay, you can use the

Output Stream Slave Response List by NAD property to filter which slave responses (per the

NAD values in the array) are transmitted. This property is always inclusive, regardless of the

replay mode (inclusive or exclusive). If the NAD is in the list and the response frame or ID

has been enabled for replay, any slave response for that NAD is transmitted. If the NAD is not

in the list, no slave response for that NAD is transmitted. The property’s data type is an array

of unsigned 32-bit integer (u32). Currently, only byte 0 is required to hold the NAD value.

The remaining bits are reserved for future use.

Chapter 5 NI-XNET API for C

© National Instruments 5-335 NI-XNET Hardware and Software Manual

Interface:LIN:Schedule Names

Data Type Direction Required? Default

cstr Read Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfLINSchedNames

Description

This property returns a comma-separated list of schedules for use when the NI-XNET LIN

interface acts as a master (Interface:LIN:Master? is true). When the interface is master, you

can pass the index of one of these schedules to the nxWriteState function to request a

schedule change.

When the interface does not act as a master, you cannot control the schedule, and the

nxWriteState function returns an error if it cannot set the interface into master mode (for

example, if the interface already is started).

This list of schedules is the same list the XNET Cluster Schedules property used to configure

the session.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-336 ni.com

Interface:LIN:Sleep

Data Type Direction Required? Default

u32 Write Only No N/A

Property Class

XNET Session

Property ID

nxPropSession_IntfLINSleep

Description

Use the Sleep property to change the NI-XNET LIN interface sleep/awake state and

optionally to change remote node (ECU) sleep/awake states.

The following table lists the accepted values:

The property is write only. Setting a new value is effectively a request, and the property node

returns before the request is complete. To detect the current interface sleep/wake state, use

nxReadState.

The LIN interface maintains a state machine to determine the action to perform when this

property is set (request). The following sections specify the action when the interface is

master and slave.

String Value Description

nxLINSleep_RemoteSleep 0 Set interface to sleep locally and transmit

sleep requests to remote nodes

nxLINSleep_RemoteWake 1 Set interface to awake locally and transmit

wakeup requests to remote nodes

nxLINSleep_LocalSleep 2 Set interface to sleep locally and not to

interact with the network

nxLINSleep_LocalWake 3 Set interface to awake locally and not to

interact with the network

Chapter 5 NI-XNET API for C

© National Instruments 5-337 NI-XNET Hardware and Software Manual

When the master’s scheduler pauses, it finishes the pending entry (slot) and saves its current

position. When the master’s scheduler resumes, it continues with the schedule where it left

off (entry after the pause).

The go-to-sleep request is frame ID 63, payload length 8, payload byte 0 has the value 0, and

the remaining bytes have the value 0xFF.

If the master is in the Sleep state, and a remote slave (ECU) transmits the slave wakeup

pattern, this is equivalent to setting this property to Local Wake. In addition, a pending

nxWait for nxCondition_IntfRemoteWakeup returns. This nxWait does not apply to

setting this property, because you know when you set it.

Table 5-1. Sleep/Wake Action for Master

Request

Current Local State

Sleep Awake

nxLINSleep_RemoteSleep No action Change local state; pause

scheduler; transmit

go-to-sleep request frame

nxLINSleep_RemoteWake Change local state; transmit

master wakeup pattern

(serial break); resume

scheduler

No action

nxLINSleep_LocalSleep No action Change local state

nxLINSleep_LocalWake Change local state; resume

scheduler

No action

Table 5-2. Sleep/Wake Action for Slave

Request

Current Local State

Sleep Awake

nxLINSleep_RemoteSleep Error Error

nxLINSleep_RemoteWake Change local state;

transmit slave wakeup

pattern

No action

nxLINSleep_LocalSleep No action Change local state

nxLINSleep_LocalWake Change local state No action

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-338 ni.com

According to the LIN protocol standard, Remote Sleep is not supported for slave mode, so

that request returns an error.

If the slave is in Sleep state, and a remote master (ECU) transmits the master wakeup pattern,

this is equivalent to setting this property to Local Wake. In addition, a pending nxWait for

nxCondition_IntfRemoteWakeup returns. This nxWait does not apply to setting this

property, because you know when you set it.

Chapter 5 NI-XNET API for C

© National Instruments 5-339 NI-XNET Hardware and Software Manual

Interface:LIN:Start Allowed without Bus Power?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfLINAlwStartWoBusPwr

Description

Note You can modify this property only when the interface is stopped.

The Start Allowed Without Bus Power? property configures whether the LIN interface does

not check for bus power present at interface start, or checks and reports an error if bus power

is missing.

When this property is true, the LIN interface does not check for bus power present at start, so

no error is reported if the interface is started without bus power.

When this property is false, the LIN interface checks for bus power present at start, and

nxErrMissingBusPower is reported if the interface is started without bus power.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-340 ni.com

Interface:LIN:Termination

Data Type Direction Required? Default

u32 Read/Write No Off (0)

Property Class

XNET Session

Property ID

nxPropSession_IntfLINTerm

Description

Notes You can modify this property only when the interface is stopped.

This property does not take effect until the interface is started.

The Termination property configures the NI-XNET interface LIN connector (port) onboard

termination. The enumeration is generic and supports two values: Off (disabled) and On

(enabled).

The following table lists the accepted values:

Per the LIN 2.1 standard, the Master ECU has a ~1 k termination resistor between Vbat and

Vbus. Therefore, use this property only if you are using your interface as the master and do

not already have external termination.

For more information about LIN cabling and termination, refer to NI-XNET LIN Hardware.

String Value

nxLINTerm_Off 0

nxLINTerm_On 1

Chapter 5 NI-XNET API for C

© National Instruments 5-341 NI-XNET Hardware and Software Manual

Source Terminal Interface Properties

This category includes properties to route trigger signals between multiple DAQmx and

XNET devices.

Interface:Source Terminal:Start Trigger

Data Type Direction Required? Default

cstr Read/Write No (Disconnected)

Property Class

XNET Session

Property ID

nxPropSession_IntfSrcTermStartTrigger

Description

This property specifies the name of the internal terminal to use as the interface Start Trigger.

The data type is NI Terminal (DAQmx terminal), represented as a string.

This property is supported for C Series modules in a CompactDAQ chassis. It is not supported

for CompactRIO, PXI, or PCI (refer to nxConnectTerminals for those platforms).

The digital trigger signal at this terminal is for the Start Interface transition, to begin

communication for all sessions that use the interface. This property routes the start trigger, but

not the timebase (used for timestamp of received frames and cyclic transmit of frames).

Routing the timebase is not required for CompactDAQ, because all modules in the chassis

automatically use a shared timebase.

Use this property to connect the interface Start Trigger to triggers in other modules and/or

interfaces. When you read this property, you specify the interface Start Trigger as the source

of a connection. When you write this property, you specify the interface Start Trigger as the

destination of a connection, and the value you write represents the source. For examples that

demonstrate use of this property to synchronize NI-XNET and NI-DAQmx hardware, refer to

the Synchronization category within the NI-XNET examples.

The connection this property creates is disconnected when you clear (close) all sessions that

use the interface.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-342 ni.com

Interface:Baud Rate

Data Type Direction Required? Default

u32 Read/Write Yes (If Not in Database) 0 (If Not in Database)

Property Class

XNET Session

Property ID

nxPropSession_IntfBaudRate

Description

Note You can modify this property only when the interface is stopped.

The Interface:Baud Rate property sets the CAN, FlexRay, or LIN interface baud rate. The

default value for this interface property is the same as the cluster’s baud rate in the database.

Your application can set this interface baud rate to override the value in the database, or when

no database is used.

CAN

When the upper nibble (0xF0000000) is clear, this is a numeric baud rate (for example,

500000).

NI-XNET CAN hardware currently accepts the following numeric baud rates: 33333, 40000,

50000, 62500, 80000, 83333, 100000, 125000, 160000, 200000, 250000, 400000, 500000,

800000, and 1000000.

Note The 33333 baud rate is supported with single-wire transceivers only.

Note Baud rates greater than 125000 are supported with high-speed transceivers only.

When the upper nibble is set to 0x8 (that is, 0x80000000), the remaining bits provide

fields for more custom CAN communication baud rate programming. Additionally, if the

upper nibble is set to 0xC (that is, 0xC0000000), the remaining bits provide fields for

higher-precision custom CAN communication baud rate programming. The higher-precision

Chapter 5 NI-XNET API for C

© National Instruments 5-343 NI-XNET Hardware and Software Manual

bit timings facilitate connectivity to a CAN FD cluster. The baud rate models are shown in the

following table:

The baud rate format in advanced mode is 0x8ABCDDDD, where A, B, C, and DDDD are

defined as follows:

• (Re-)Synchronization Jump Width (SJW)

– Valid programmed values are 0–3 in normal custom mode and 0–15 in

high-precision custom mode.

– The actual hardware interpretation of this value is one more than the programmed

value.

• Time Segment 2 (TSEG2), which is the time segment after the sample point

– Valid programmed values are 0–7 in normal custom mode and 0–15 in

high-precision custom mode.

– This is the Phase_Seg2 time from ISO 11898–1, 12.4.1 Bit Encoding/Decoding.

– The actual hardware interpretation of this value is one more than the programmed

value.

• Time Segment 1 (TSEG1), which is the time segment before the sample point

– Valid programmed values are 1–0xF (1–15 decimal) in normal custom mode and

1–0x3F (1–63 decimal) in high-precision custom mode.

– This is the combination of the Prop_Seg and Phase_Seg1 time from ISO 11898–1,

12.4.1 Bit Encoding/Decoding.

– The actual hardware interpretation of this value is one more than the programmed

value.

• Time quantum (Tq), which is used to program the baud rate prescaler

– Valid programmed values are 125–12800, in increments of 0x7D (125 decimal) ns

for normal custom mode and 25–12800, in increments of 0x19 (25 decimal) ns for

high-precision custom mode.

– This is the time quantum from ISO 11898–1, 12.4.1 Bit Encoding/Decoding.

31..28 27..26 25..24 23 22..20 19..16 15..14 13..12 11..8 7..4 3..0

Normal b0000 Baud Rate (33.3 k–1 M)

Custom b1000 Res SJW

(0–3)

TSEG2 (0–7) TSEG1

(1–15)

Res Tq (125–0x3200)

High

Precision

b1100 SJW (0–15) TSEG2 (0–15) TSEG1 (1–63) Tq (25–0x3200)

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-344 ni.com

An advanced baud rate example is 0x8014007D. This example breaks down into the

following values:

• SJW = 0x0 (0x01 in hardware, due to the + 1)

• TSEG2 = 0x1 (0x02 in hardware, due to the + 1)

• TSEG 1 = 0x4 (0x05 in hardware, due to the + 1)

• Tq = 0x7D (125 ns in hardware)

Each time quanta is 125 ns. From IS0 11898–1, 12.4.1.2 Programming of Bit Time, the

nominal time segments length is Sync_Seg(Fixed at 1) + (Prop_Seg + Phase_Seg1)(B) +

Phase_Seg2(C) = 1 + 2 + 5 = 8. So, the total time for a bit in this example is 8 * 125 ns =

1000 ns = 1 µs. A 1 µs bit time is equivalent to a 1 MHz baud rate.

LIN

When the upper nibble (0xF0000000) is clear, you can set only baud rates within the

LIN-specified range (2400 to 20000) for the interface.

When the upper nibble is set to 0x8 (0x80000000), no check for baud rate within

LIN-specified range is performed, and the lowest 16 bits of the value may contain the custom

baud rate. Any custom value higher than 65535 is masked to a 16-bit value. As with the

noncustom values, the interface internally calculates the appropriate divisor values to

program into its UART. Because the interface uses the Atmel ATA6620 LIN transceiver,

which is guaranteed to operate within the LIN 2.0 specification limits, there are some special

considerations when programming custom baud rates for LIN:

• The ATA6620 transceiver incorporates a TX dominant timeout function to prevent a

faulty device it is built into from holding the LIN dominant indefinitely. If the TX line

into the transceiver is held in the dominant state for too long, the transceiver switches its

driver to the recessive state. This places a limit on how long the break field of a LIN

header transmitted by the interface may be, and thus limits the lowest baud rate that may

be set. At the point the baud rate or break length is set for the interface, it internally uses

the baud rate bit time and break length settings to calculate the resulting break duration,

and returns an error if that duration would be long enough to trigger the TX dominant

timeout.

• At the other end of the baud range, the ATA6620 is specified to work up to 20000 baud.

While the custom bit allows rates higher than that to be programmed, the transceiver

behavior operating above that rate is not guaranteed.

Chapter 5 NI-XNET API for C

© National Instruments 5-345 NI-XNET Hardware and Software Manual

Interface:Echo Transmit?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfEchoTx

Description

The Interface:Echo Transmit? property determines whether Frame Input or Signal Input

sessions contain frames that the interface transmits.

When this property is true, and a frame transmit is complete for an Output session, the frame

is echoed to the Input session. Frame Input sessions can use the Flags field to differentiate

frames received from the bus and frames the interface transmits. When using nxReadFrame

with the raw frame format, you can parse the Flags field manually by reviewing the Raw

Frame Format section. Signal Input sessions cannot differentiate the origin of the incoming

data.

Note Echoed frames are placed into the input sessions only after the frame transmit is

complete. If there are bus problems (for example, no listener) such that the frame did not

transmit, the frame is not received.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-346 ni.com

Interface:Output Stream List

Data Type Direction Required? Default

nxDatabaseRef_t[] Read/Write No Empty Array

Property Class

XNET Session

Property ID

nxPropSession_IntfOutStrmList

Description

Note Only CAN and LIN interfaces currently support this property.

The Output Stream List property provides a list of frames for use with the replay feature

(Interface:Output Stream Timing property set to nxOutStrmTimng_ReplayExclusive or

nxOutStrmTimng_ReplayInclusive). In Replay Exclusive mode, the hardware transmits

only frames that do not appear in the list. In Replay Inclusive mode, the hardware transmits

only frames that appear in the list. For a LIN interface, the header of each frame written to

stream output is transmitted, and the Exclusive or Inclusive mode controls the response

transmission. Using these modes, you can either emulate an ECU (Replay Inclusive, where

the list contains the frames the ECU transmits) or test an ECU (Replay Exclusive, where the

list contains the frames the ECU transmits), or some other combination.

This property’s data type is an array of database handles to frames. If you are not using a

database file or prefer to specify the frames using CAN arbitration IDs or LIN unprotected

IDs, you can use Interface:Output Stream List By ID instead of this property.

Chapter 5 NI-XNET API for C

© National Instruments 5-347 NI-XNET Hardware and Software Manual

Interface:Output Stream List By ID

Data Type Direction Required? Default

u32[] Read/Write No Empty Array

Property Class

XNET Session

Property ID

nxPropSession_IntfOutStrmListById

Description

Note Only CAN and LIN interfaces currently support this property.

The Output Stream List By ID property provides a list of frames for use with the replay

feature (Interface:Output Stream Timing property set to

nxOutStrmTimng_ReplayExclusive or nxOutStrmTimng_ReplayInclusive).

This property serves the same purpose as Interface:Output Stream List, in that it provides a

list of frames for replay filtering. This property provides an alternate format for you to specify

the frames by their CAN arbitration ID or LIN unprotected ID. The property’s data type is an

array of unsigned 32-bit integer (u32). Each integer represents a CAN or LIN frame’s

identifier, using the same encoding as the Raw Frame Format.

Within each CAN frame ID value, bit 29 (hex 20000000) indicates the CAN identifier format

(set for extended, clear for standard). If bit 29 is clear, the lower 11 bits (0–10) contain the

CAN frame identifier. If bit 29 is set, the lower 29 bits (0–28) contain the CAN frame

identifier. LIN frame ID values may be within the range of possible LIN IDs (0–63).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-348 ni.com

Interface:Output Stream Timing

Data Type Direction Required? Default

u32 Read/Write No Immediate

Property Class

XNET Session

Property ID

nxPropSession_IntfOutStrmTimng

Description

Note Only CAN and LIN interfaces currently support this property.

The Output Stream Timing property configures how the hardware transmits frames queued

using a Frame Output Stream session. The following table lists the accepted values:

When you configure this property to be nxOutStrmTimng_Immediate, frames are

dequeued from the queue and transmitted immediately to the bus. The hardware transmits all

frames in the queue as fast as possible.

When you configure this property as nxOutStrmTimng_ReplayExclusive or

nxOutStrmTimng_ReplayInclusive, the hardware is placed into a Replay mode. In this

mode, the hardware evaluates the frame timestamps and attempts to maintain the original

transmission times as the timestamp stored in the frame indicates. The actual transmission

time is based on the relative time difference between the first dequeued frame and the time

contained in the dequeued frame.

When in one of the replay modes, you can use the Interface:Output Stream List property to

supply a list. In Replay Exclusive mode, the hardware transmits only frames that do not

appear in the list. In Replay Inclusive mode, the hardware transmits only frames that appear

in the list. Using these modes, you can either emulate an ECU (Replay Inclusive, where the

list contains the frames the ECU transmits) or test an ECU (Replay Exclusive, where the list

Enumeration Value

nxOutStrmTimng_Immediate 0

nxOutStrmTimng_ReplayExclusive 1

nxOutStrmTimng_ReplayInclusive 2

Chapter 5 NI-XNET API for C

© National Instruments 5-349 NI-XNET Hardware and Software Manual

contains the frames the ECU transmits), or some other combination. You can replay all frames

by using Replay Exclusive mode without setting any list.

Special Considerations for LIN

Only LIN interface as Master supports stream output. You do not need to set the interface

explicitly to Master if you want to use stream output. Just create a stream output session, and

the driver automatically sets the interface to Master at interface start.

You can use immediate mode to transmit a header or full frame. You can transmit only the

header for a frame by writing the frame to stream output with the desired ID and an empty

data payload. You can transmit a full frame by writing the frame to stream output with the

desired ID and data payload. If you write a full frame for ID n to stream output, and you have

created a frame output session for frame with ID n, the stream output data takes priority (the

stream output frame data is transmitted and not the frame output data). If you write a full

frame to stream output, but the frame has not been defined in the database, the frame transmits

with Enhanced checksum. To control the checksum type transmitted for a frame, you first

must create the frame in the database and assign it to an ECU using the LIN specification you

desire (the specification number determines the checksum type). You then must create a frame

output object to transmit the response for the frame, and use stream output to transmit the

header. Similarly, to transmit n corrupted checksums for a frame, you first must create a frame

object in the database, create a frame output session for it, set the transmit n corrupted

checksums property, and then use stream output to transmit the header.

Regarding event-triggered frame handling for immediate mode, if the hardware can determine

that an ID is for an event-triggered frame, which means an event-triggered frame has been

defined for the ID in the database, the frame is processed as if it were in an event-triggered

slot in a schedule. If you write a full frame with event-triggered ID, the full frame is

transmitted. If there is no collision, the next stream output frame is processed. If there is a

collision, the hardware executes the collision-resolving schedule. The hardware retransmits

the frame response at the corresponding slot time in the collision resolving schedule. If you

write a header frame with an event-triggered ID and there is no collision, the next stream

output frame is processed. If there is a collision, the hardware executes the collision-resolving

schedule.

You can mix use of the hardware scheduler and stream output immediate mode. Basically, the

hardware treats each stream output frame as a separate run-once schedule containing a single

slot for the frame. Transmission of a stream output frame may interrupt a run-continuous

schedule, but may not interrupt a run-once schedule. Transmission of stream output frames is

interleaved with run-continuous schedule slot executions, depending on the application

timing of writes to stream output. Stream output is prioritized to the equivalent of the lowest

priority level for a run-once schedule. If you write one or more run-once schedules with

higher-than-lowest priority and write frames to stream output, all the run-once schedules are

executed before stream output transmits anything. If you write one or more run-once

schedules with the lowest priority and write frames to stream output, the run-once schedules

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-350 ni.com

execute in the order you wrote them, and are interleaved with stream output frames,

depending on the application timing of writes to stream output and writes of run-once

schedule changes.

In contrast to the immediate mode, neither replay mode allows for the concurrent use of the

hardware scheduler, and an error is reported if you attempt to do so. Event-triggered frame

handling is different for the replay modes. If the hardware can determine that an ID is for an

event-triggered frame, which means an event-triggered frame has been defined for the ID in

the database, the frame is transmitted as if it were being transmitted during the

collision-resolving schedule for the event triggered frame. The full frame is transmitted with

the Data[0] value (the underlying unconditional frame ID), copied into the header ID. If a

frame cannot be found in the database, it is transmitted with Enhanced checksum. Otherwise,

it is transmitted with the checksum type defined in the database.

The reply modes provide an easy means to replay headers only, full frames only, or some mix

of the two. For either replay mode, the header for each frame is always transmitted and the

slot delay is preserved. For replay inclusive, if you want only to replay headers, leave the

Interface:Output Stream List property empty. To replay some of the responses, add their

frames to Interface:Output Stream List. For frames that are not in Interface:Output Stream

List, you are free to create frame output objects for them, for which you can change the

checksum type or transmit corrupted checksums.

There is another consideration for the replay of diagnostic slave response frames. Because the

master always transmits only the diagnostic slave response header, and a slave transmits the

response if its NAD matches the one transmitted in the preceding master request frame, an

array of frames for replay might include multiple slave response frames (each having the same

slave response header ID) transmitted by different slaves (each having a different NAD value

in the data payload). If you are using inclusive mode, you can choose not to replay any slave

response frames by not including the slave response frame in Interface:Output Stream List.

You can choose to replay some or all of the slave response frames by first including the slave

response frame in Interface:Output Stream List, then including the NAD values for the slave

responses you want to play back, in Interface:LIN:Output Stream Slave Response List By

NAD. In this way, you have complete control over which slave responses are replayed (which

diagnostic slaves you emulate). Replay of a diagnostic master request frame is handled like

replay of any other frame; the header is always transmitted. Using the inclusive mode as an

example, the response may or may not be transmitted depending on whether or not the master

request frame is in Interface:Output Stream List.

Runtime Behavior

When the hardware is in a replay mode, the first frame received from the application is

considered the start time, and all subsequent frames are transmitted at the appropriate delta

from the start time. For example, if the first frame has a timestamp of 12:01.123, and the

second frame has a timestamp of 12:01.456, the second frame is transmitted 333 ms after the

first frame.

Chapter 5 NI-XNET API for C

© National Instruments 5-351 NI-XNET Hardware and Software Manual

If a frame’s time is identical or goes backwards relative to the first timestamp, this is treated

as a new start time, and the frame is transmitted immediately on the bus. Subsequent frames

are compared to this new start time to determine the transmission time. For example, assume

that the application sends the hardware four frames with the following timestamps:

12:01.123, 12:01.456, 12:01.100, and 12:02.100. In this scenario, the first frame transmits

immediately, the second frame transmits 333 ms after the first, the third transmits

immediately after the second, and the fourth transmits one second after the third. Using this

behavior, you can replay a logfile of frames repeatedly, and each new replay of the file begins

with new timing.

A frame whose timestamp goes backwards relative to the previous timestamp, but still is

forward relative to the start time, is transmitted immediately. For example, assume that the

application sends the hardware four frames with the following timestamps: 12:01.123,

12:01.456, 12:01.400, and 12:02.100. In this scenario, the first frame transmits immediately,

the second frame transmits 333 ms after the first, the third transmits immediately after the

second, and the fourth transmits 544 ms after the third.

When a frame with an nxFrameType_Special_Delay frame type is received, the hardware

delays for the requested time. The next frame to be dequeued is treated as a new first frame

and transmitted immediately. You can use a Delay Frame with a time of 0 to restart time

quickly. If you replay a logfile of frames repeatedly, you can insert a Delay Frame at the start

of each replay to insert a delay between each iteration through the file.

When a frame with an nxFrameType_Special_StartTrigger frame type is received, the

hardware treats this frame as a new first frame and uses the absolute time associated with this

frame as the new start time. Subsequent frames are compared to this new start time to

determine the transmission time. Using a Start Trigger is especially useful when

synchronizing with data acquisition products so that you can replay the first frame at the

correct time relative to the start trigger for accurate synchronized replay.

Restrictions on Other Sessions

When you use Immediate mode, there are no restrictions on frames that you use in other

sessions.

When you use Replay Inclusive mode, you can create output sessions that use frames that do

not appear in the Interface:Output Stream List property. Attempting to create an output

session that uses a frame from the Interface:Output Stream List property results in an error.

Input sessions have no restrictions.

When you use Replay Exclusive mode, you cannot create any other output sessions.

Attempting to create an output session returns an error. Input sessions have no restrictions.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-352 ni.com

Interface:Start Trigger Frames to Input Stream?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfStartTrigToInStrm

Description

The nxPropSession_IntfStartTrigToInStrm property configures the hardware to

place a start trigger frame into the Stream Input queue after it is generated. A Start Trigger

frame is generated when the interface is started. The interface start process is described in

Interface Transitions. For more information about the start trigger frame, refer to Special

Frames.

The start trigger frame is especially useful if you plan to log and replay CAN data.

Chapter 5 NI-XNET API for C

© National Instruments 5-353 NI-XNET Hardware and Software Manual

Interface:Bus Error Frames to Input Stream?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Session

Property ID

nxPropSession_IntfBusErrToInStrm

Description

Note Only CAN and LIN interfaces currently support this property.

The nxPropSession_IntfBusErrToInStrm property configures the hardware to place a

CAN or LIN bus error frame into the Stream Input queue after it is generated. A bus error

frame is generated when the hardware detects a bus error. For more information about the bus

error frame, refer to Special Frames.

Session:Application Protocol

Data Type Direction Required? Default

u32 Read Only N/A None

Property Class

XNET Session

Short Name

nxPropSession_ApplicationProtocol

Description

This property returns the application protocol that the session uses.

The database used with nxCreateSession determines the application protocol.

The values (enumeration) for this property are:

0 nxAppProtocol_None

1 nxAppProtocol_J1939

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-354 ni.com

SAE J1939:ECU

Data Type Direction Required? Default

nxDatabaseRef_t Write Only No Unassigned

Property Class

XNET Session

Short Name

nxPropSession_J1939ECU

Description

Note This property applies to only the CAN J1939 application protocol. The database

from which the ECU reference is passed in this property must be open when this property

is called, because database references are valid only when the database is open.

This property assigns a database ECU to a J1939 session. Setting this property changes the

node address and J1939 64-bit ECU name of the session to the values stored in the database

ECU object. Changing the node address starts an address claiming procedure, as described in

the SAE J1939:Node Address property.

You can assign the same ECU to multiple sessions running on the same CAN interface (for

example, CAN1). All sessions with the same assigned ECU represent one J1939 node.

If multiple sessions have assigned the same ECU, setting the SAE J1939:Node Address

property in one session changes the address in all sessions with the same assigned ECU

running on the same CAN interface.

For more information, refer to the SAE J1939:Node Address property.

Chapter 5 NI-XNET API for C

© National Instruments 5-355 NI-XNET Hardware and Software Manual

SAE J1939:ECU Busy

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Session

Short Name

nxPropSession_J1939ECUBusy

Description

Note This property applies to only the CAN J1939 application protocol.

Busy is a special ECU state defined in the SAE J1939 standard. A busy ECU receives

subsequent RTS messages while handling a previous RTS/CTS communication.

If the ECU cannot respond immediately to an RTS request, the ECU may send CTS Hold

messages. In this case, the originator receives information about the busy state and waits until

the ECU leaves the busy state. (That is, the ECU no longer sends CTS Hold messages and

sends the first CTS message with the requested data.)

Use the ECU Busy property to simulate this ECU behavior. If a busy XNET ECU receives a

CTS message, it sends CTS Hold messages instead of CTS data messages immediately.

Afterward, if clearing the busy property, the XNET ECU resumes handling the transport

protocol starting with CTS data messages, as the originator expects.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-356 ni.com

SAE J1939:Hold Time Th

Data Type Direction Required? Default

f64 Read/Write No 0.5 s

Property Class

XNET Session

Short Name

nxPropSession_J1939HoldTimeTh

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the Hold Time Timeout value at the responder node. The value is the

maximum time between a TP.CM_CTS hold message and the next TP.CM_CTS message, in

seconds.

This property is related to handling the transport protocol.

Chapter 5 NI-XNET API for C

© National Instruments 5-357 NI-XNET Hardware and Software Manual

SAE J1939:Maximum Repeat CTS

Data Type Direction Required? Default

u32 Read/Write No 2

Property Class

XNET Session

Short Name

nxPropSession_J1939MaxRepeatCTS

Description

Note This property applies to only the CAN J1939 application protocol.

This property limits the number of requests for retransmission of data packet(s) using the

TP.CM_CTS message.

This property is related to handling the transport protocol.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-358 ni.com

SAE J1939:Node Address

Data Type Direction Required? Default

u32 Read/Write No Null (254)

Property Class

XNET Session

Short Name

nxPropSession_J1939Address

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the node address of a J1939 session by starting an address claiming

procedure. After setting this property to a valid value (253), reading the property returns the

null address (254) until the address is granted. Poll the property and wait until the address gets

to a valid value again before starting to write. Refer to the NI-XNET examples that

demonstrate this procedure.

The node address value determines the source address in a transmitting session or a

destination address in a receiving session. The source address in the extended frame identifier

is overwritten with the node address of the session before transmitting.

A session with a null (254) or global address (255) receives all messages sent on the bus, but

cannot transmit messages. A session with an assigned address of less than 254 receives only

messages sent to this address or global messages, but not messages sent to other nodes. This

session also can transmit messages.

In NI-XNET, you can assign the same J1939 node address to multiple sessions running on the

same interface (for example, CAN1). Those sessions represent one J1939 node. By assigning

different J1939 node addresses to multiple sessions running on the same interface, you also

can create multiple nodes on the same interface.

If a J1939 ECU is assigned to multiple sessions, changing the address in one session also

changes the address in all other sessions with the same assigned ECU.

For more information, refer to the SAE J1939:ECU property.

Chapter 5 NI-XNET API for C

© National Instruments 5-359 NI-XNET Hardware and Software Manual

SAE J1939:NodeName

Data Type Direction Required? Default

u64 Read/Write Yes 0

Property Class

XNET Session

Short Name

nxPropSession_J1939Name

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the name value of a J1939 session. The name is an unsigned 64-bit

integer value. Beside the SAE J1939:Node Address property, the value is specific to the ECU

you want to emulate using the session. That means the session can act as if it were the

real-world ECU, using the identical address and name value.

The name value is used within the address claiming procedure. If the ECU (session) wants to

claim its address, it sends out an address claiming message. That message contains the ECU

address and the name value of the current session’s ECU. If there is another ECU within the

network with an identical address but lower name value, the current session loses its address.

In this case, the session cannot send out further messages, and all addressed messages using

the previous address of the current session are addressed to another ECU within the network.

The most significant bit (bit 63) in the Node Name defines the ECU’s arbitrary address

capability (bit 63 = 1 means it is arbitrary address capable). If the node cannot use the

assigned address, it automatically tries to claim another random value between 128 and 247

until it is successful.

If multiple sessions are assigned the same ECU, setting the SAE J1939.NodeName property

in one session changes the address in all sessions with the same assigned ECU running on the

same CAN interface.

The name value has multiple bit fields, as described in SAE J1939-81 (Network

Management). A single 64-bit value represents the name value within XNET.

For more information, refer to the SAE J1939:Node Address property.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-360 ni.com

SAE J1939:Number of Packets Received

Data Type Direction Required? Default

u32 Read/Write No 255

Property Class

XNET Session

Short Name

nxPropSession_J1939NumPacketsRecv

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the maximum number of data packet(s) that can be received in one

block at the responder node.

This property is related to handling the transport protocol.

Chapter 5 NI-XNET API for C

© National Instruments 5-361 NI-XNET Hardware and Software Manual

SAE J1939:Number of Packets Response

Data Type Direction Required? Default

u32 Read/Write No 255

Property Class

XNET Session

Short Name

nxPropSession_J1939NumPacketsResp

Description

Note This property applies to only the CAN J1939 application protocol.

This property limits the maximum number of packets in a response. This allows the originator

node to limit the number of packets in the TP.CM_CTS message. When the responder

complies with this limit, it ensures the sender always can retransmit packets that the responder

may not have received.

This property is related to handling the transport protocol.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-362 ni.com

SAE J1939:Response Time Tr_GD

Data Type Direction Required? Default

f64 Read/Write No 0.05 s

Property Class

XNET Session

Short Name

nxPropSession_J1939ResponseTimeTrGD

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the Device Response Time for global destination messages

(TP.CM_BAM messages). The value is the maximum delay between sending two

TP.CM_BAM messages, in seconds. The recommended range is 0.05–200 s.

This property is related to handling the transport protocol.

Chapter 5 NI-XNET API for C

© National Instruments 5-363 NI-XNET Hardware and Software Manual

SAE J1939:Response Time Tr_SD

Data Type Direction Required? Default

f64 Read/Write No 0.05 s

Property Class

XNET Session

Short Name

nxPropSession_J1939ResponseTimeTrSD

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the Device Response Time value for specific destination messages

(TP.CM_RTS/CTS messages). The value is the maximum time between receiving a message

and sending the response message, in seconds. The recommended range is 0.05–0.200 s.

This property is related to handling the transport protocol.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-364 ni.com

SAE J1939:Timeout T1

Data Type Direction Required? Default

f64 Read/Write No 0.75 s

Property Class

XNET Session

Short Name

nxPropSession_J1939TimeoutT1

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T1 value for the responder node. The value is the maximum

gap between two received TP.DT messages in seconds.

This property is related to handling the transport protocol.

Chapter 5 NI-XNET API for C

© National Instruments 5-365 NI-XNET Hardware and Software Manual

SAE J1939:Timeout T2

Data Type Direction Required? Default

f64 Read/Write No 1.25 s

Property Class

XNET Session

Short Name

nxPropSession_J1939TimeoutT2

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T2 value at the responder node. This value is the maximum

gap between sending out the TP.CM_CTS message and receiving the next TP.DT message, in

seconds.

This property is related to handling the transport protocol.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-366 ni.com

SAE J1939:Timeout T3

Data Type Direction Required? Default

f64 Read/Write No 1.25 s

Property Class

XNET Session

Short Name

nxPropSession_J1939TimeoutT3

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T3 value at the originator node. This value is the maximum

gap between sending out a TP.CM_RTS message or the last TP.DT message and receiving the

TP.CM_CTS response, in seconds.

This property is related to handling the transport protocol.

Chapter 5 NI-XNET API for C

© National Instruments 5-367 NI-XNET Hardware and Software Manual

SAE J1939:Timeout T4

Data Type Direction Required? Default

f64 Read/Write No 1.05 s

Property Class

XNET Session

Short Name

nxPropSession_J1939TimeoutT4

Description

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T4 value at the originator node. This value is the maximum

gap between the TP.CM_CTS hold message and the next TP.CM_CTS message, in seconds.

This property is related to handling the transport protocol.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-368 ni.com

Frame Properties

This section includes the frame-specific properties in the session property node.

CAN Frame Properties

This category includes CAN-specific frame properties.

Frame:CAN:Start Time Offset

Data Type Direction Required? Default

double Write Only No –1

Property Class

XNET Session

Property ID

nxPropSessionSub_CANStartTimeOff

Description

Use this property to configure the amount of time that must elapse between the session being

started and the time that the first frame is transmitted across the bus. This is different than the

cyclic rate, which determines the time between subsequent frame transmissions.

Use this property to have more control over the schedule of frames on the bus, to offer more

determinism by configuring cyclic frames to be spaced evenly.

If you do not set this property or you set it to a negative number, NI-XNET chooses this start

time offset based on the arbitration identifier and periodic transmit time.

This property takes effect whenever a session is started. If you stop a session and restart it, the

start time offset is re-evaluated.

Note This property affects the active frame object in the session. Review the

nxSetSubProperty function to learn more about setting a property on an active frame.

Chapter 5 NI-XNET API for C

© National Instruments 5-369 NI-XNET Hardware and Software Manual

Frame:CAN:Transmit Time

Data Type Direction Required? Default

double Write Only No From Database

Property Class

XNET Session

Property ID

nxPropSessionSub_CANTxTime

Description

Use this property to change the frame’s transmit time while the session is running. The

transmit time is the amount of time that must elapse between subsequent transmissions of a

cyclic frame. The default value of this property comes from the database (the XNET Frame

CAN:Transmit Time property).

If you set this property while a frame object is currently started, the frame object is stopped,

the cyclic rate updated, and then the frame object is restarted. Because of the stopping and

starting, the frame’s start time offset is re-evaluated.

Note This property affects the active frame object in the session. Review the

nxSetSubProperty function to learn more about setting a property on an active frame.

Note The first time a queued frame object is started, the XNET frame’s transmit time

determines the object’s default queue size. Changing this rate has no impact on the queue

size. Depending on how you change the rate, the queue may not be sufficient to store data

for an extended period of time. You can mitigate this by setting the session Queue Size

property to provide sufficient storage for all rates you use. If you are using a single-point

session, this is not relevant.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-370 ni.com

Frame:LIN:Transmit N Corrupted Checksums

Data Type Direction Required? Default

u32 Write Only No 0

Property Class

XNET Session

Property ID

nxPropSessionSub_LINTxNCorruptedChksums

Description

When set to a nonzero value, this property causes the next N number of checksums to be

corrupted. The checksum is corrupted by negating the value calculated per the database;

(EnhancedValue * –1) or (ClassicValue * –1). This property is valid only for output

sessions. If the frame is transmitted in an unconditional or sporadic schedule slot, N is always

decremented for each frame transmission. If the frame is transmitted in an event-triggered slot

and a collision occurs, N is not decremented. In that case, N is decremented only when the

collision resolving schedule is executed and the frame is successfully transmitted. If the frame

is the only one to transmit in the event-triggered slot (no collision), N is decremented at

event-triggered slot time.

This property is useful for testing ECU behavior when a corrupted checksum is transmitted.

Note This property affects the active frame object in the session. Review the

nxSetSubProperty property to learn more about setting a property on an active frame.

Chapter 5 NI-XNET API for C

© National Instruments 5-371 NI-XNET Hardware and Software Manual

Frame:Skip N Cyclic Frames

Data Type Direction Required? Default

u32 Write Only No 0

Property Class

XNET Session

Property ID

nxPropSessionSub_SkipNCyclicFrames

Description

Note Only CAN interfaces currently support this property.

When set to a nonzero value, this property causes the next N cyclic frames to be skipped.

When the frame’s transmission time arrives and the skip count is nonzero, a frame value is

dequeued (if this is not a single-point session), and the skip count is decremented, but the

frame actually is not transmitted across the bus. When the skip count decrements to zero,

subsequent cyclic transmissions resume. This property is valid only for output sessions and

frames with cyclic timing (that is, not event-based frames).

This property is useful for testing of ECU behavior when a cyclic frame is expected, but is

missing for N cycles.

Note This property affects the active frame object in the session. Review the

nxSetSubProperty property to learn more about setting a property on an active frame.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-372 ni.com

Auto Start?

Data Type Direction Required? Default

Boolean Read/Write No True

Property Class

XNET Session

Property ID

nxPropSession_AutoStart

Description

Automatically starts the output session on the first call to the appropriate nxWrite function.

For input sessions, start always is performed within the first call to the appropriate nxRead

function (if not already started using nxStart). This is done because there is no known use

case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate nxWrite function contains

valid data, you can leave this property at its default value of true. If you need to call the

appropriate nxWrite function multiple times prior to starting the session, or if you are

starting multiple sessions simultaneously, you can set this property to false. After calling the

appropriate nxWrite function as desired, you can call nxStart to start the session(s).

When automatic start is performed, it is equivalent to nxStart with scope set to Normal.

This starts the session itself, and if the interface is not already started, it starts the

interface also.

Chapter 5 NI-XNET API for C

© National Instruments 5-373 NI-XNET Hardware and Software Manual

ClusterName

Data Type Direction Required? Default

cstr Read Only N/A N/A

Property Class

XNET Session

Property ID

nxPropSession_ClusterName

Description

This property returns the cluster (network) used with nxCreateSession.

DatabaseName

Data Type Direction Required? Default

cstr Read Only N/A N/A

Property Class

XNET Session

Property ID

nxPropSession_DatabaseName

Description

This property returns the database used with nxCreateSession.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-374 ni.com

List

Data Type Direction Required? Default

cstr Read Only N/A N/A

Property Class

XNET Session

Property ID

nxPropSession_List

Description

This property returns a comma separated list of frames or signals in the session.

For a Frame Input or Frame Output session, this property returns a list of frames. For a Signal

Input/Output session, it returns the list of signals.

Mode

Data Type Direction Required? Default

u32 Read Only N/A N/A

Property Class

XNET Session

Property ID

nxPropSession_Mode

Description

This property returns the session mode (ring). You provided this mode when you created the

session. For more information, refer to Session Modes.

Chapter 5 NI-XNET API for C

© National Instruments 5-375 NI-XNET Hardware and Software Manual

Number in List

Data Type Direction Required? Default

u32 Read Only N/A N/A

Property Class

XNET Session

Property ID

nxPropSession_NumInList

Description

This property returns the number of frames or signals in the session’s list. This is a quick way

to get the size of the List property.

Number of Values Pending

Data Type Direction Required? Default

u32 Read Only N/A N/A

Property Class

XNET Session

Property ID

nxPropSession_NumPend

Description

This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available to the appropriate

nxRead function. If you call the appropriate nxRead function with number to read of this

number and timeout of 0.0, the appropriate nxRead function should return this number of

values successfully.

For output sessions, this is the number of frames/signal values provided to the appropriate

nxWrite function but not yet transmitted onto the network.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-376 ni.com

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames.

In these cases, this property assumes the largest possible frame size. If you use smaller

frames, the real number of pending values might be higher.

The largest possible frames sizes are:

• CAN FD: 64 byte payload.

• FlexRay: The higher value of the frame size in the static segment and the maximum

frame size in the dynamic segment. The XNET Cluster FlexRay:Payload Length

Maximum property provides this value.

Chapter 5 NI-XNET API for C

© National Instruments 5-377 NI-XNET Hardware and Software Manual

Number of Values Unused

Data Type Direction Required? Default

u32 Read Only N/A N/A

Property Class

XNET Session

Property ID

nxPropSession_NumUnused

Description

This property returns the number of values (frames or signals) unused for the session. If you

get this property prior to starting the session, it provides the size of the underlying queue(s).

Contrary to the Queue Size property, this value is in number of frames for Frame I/O, not

number of bytes; for Signal I/O, it is the number of signal values in both cases. After start,

this property returns the queue size minus the Number of Values Pending property.

For input sessions, this is the number of frame/signal values unused in the underlying

queue(s).

For output sessions, this is the number of frame/signal values you can provide to a subsequent

call to the appropriate nxWrite function. If you call the appropriate nxWrite function with

this number of values and timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames.

In these cases, this property assumes the largest possible frame size. If you use smaller

frames, the real number of pending values might be higher.

The largest possible frames sizes are:

• CAN FD: 64 byte payload.

• FlexRay: The higher value of the frame size in the static segment and the maximum

frame size in the dynamic segment. The XNET Cluster FlexRay:Payload Length

Maximum property provides this value.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-378 ni.com

Payload Length Maximum

Data Type Direction Required? Default

u32 Read Only N/A N/A

Property Class

XNET Session

Property ID

nxPropSession_PayldLenMax

Description

This property returns the maximum payload length of all frames in this session, expressed as

bytes (0–254).

This property does not apply to Signal sessions (only Frame sessions).

For CAN Stream (Input and Output), this property depends on the XNET Cluster CAN:I/O

Mode property. If the I/O mode is CAN, this property is 8 bytes. If the I/O mode is

nxCANioMode_CAN_FD or nxCANioMode_CAN_FD_BRS, this property is 64 bytes.

For LIN Stream (Input and Output), this property always is 8 bytes. For FlexRay Stream

(Input and Output), this property is the same as the XNET Cluster FlexRay:Payload Length

Maximum property value. For Queued and Single-Point (Input and Output), this is the

maximum payload of all frames specified in the List property.

Protocol

Data Type Direction Required? Default

u32 Read Only N/A N/A

Property Class

XNET Session

Property ID

nxPropSession_Protocol

Description

This property returns the protocol that the interface in the session uses.

The values (enumeration) for this property are:

Chapter 5 NI-XNET API for C

© National Instruments 5-379 NI-XNET Hardware and Software Manual

0 CAN

1 FlexRay

2 LIN

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-380 ni.com

Queue Size

Data Type Direction Required? Default

u32 Read/Write No Refer to Description

Property Class

XNET Session

Property ID

nxPropSession_QueueSize

Description

For output sessions, queues store data passed to the appropriate nxWrite function and not yet

transmitted onto the network. For input sessions, queues store data received from the network

and not yet obtained using the appropriate nxRead function.

For most applications, the default queue sizes are sufficient. You can write to this property to

override the default. When you write (set) this property, you must do so prior to the first

session start. You cannot set this property again after calling nxStop.

For signal I/O sessions, this property is the number of signal values stored. This is analogous

to the number of values you use with the appropriate nxRead or nxWrite function.

For frame I/O sessions, this property is the number of bytes of frame data stored.

For standard CAN and LIN frame I/O sessions, each frame uses exactly 24 bytes. You can use

this number to convert the Queue Size (in bytes) to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can vary depending on

the payload length. For more information, refer to Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame. Within the

implementation, each frame uses a dedicated queue. According to the formulas below, the

default queue sizes can be different for each frame. If you read the default Queue Size

property for a Signal Input XY session, the largest queue size is returned, so that a call to the

appropriate nxRead function of that size can empty all queues. If you read the default Queue

Size property for a Signal Output XY session, the smallest queue size is returned, so that a

call to the appropriate nxWrite function of that size can succeed when all queues are empty.

If you write the Queue Size property for a Signal I/O XY session, that size is used for all

frames, so you must ensure that it is sufficient for the frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one frame. Within the

implementation, each frame uses a dedicated queue. The Queue Size property does not

Chapter 5 NI-XNET API for C

© National Instruments 5-381 NI-XNET Hardware and Software Manual

represent the memory in these queues, but rather the amount of time stored. The default queue

allocations store Application Time worth of resampled signal values. If you read the default

Queue Size property for a Signal I/O Waveform session, it returns Application Time

multiplied by the time Resample Rate. If you write the Queue Size property for a Signal I/O

Waveform session, that value is translated from a number of samples to a time, and that time

is used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored. Single-Point sessions

always use a value of 1 as the effective queue size.

Default Value

You calculate the default queue size based on the following assumptions:

• Application Time: The time between calls to the appropriate nxRead/nxWrite function

in your application.

• Frame Time: The time between frames on the network for this session.

The following pseudo code describes the default queue size formula:

if (session is Signal I/O Waveform)

Queue_Size = (Application_Time * Resample_Rate);

else

Queue_Size = (Application_Time / Frame_Time);

if (Queue_Size < 64)

Queue_Size = 64;

if (session mode is Frame I/O)

Queue_Size = Queue_Size * Frame_Size;

For Signal I/O Waveform sessions, the initial formula calculates the number of resampled

values that occur within the Application Time. This is done by multiplying Application Time

by the XNET Session Resample Rate property.

For all other

, the initial formula divides Application Time by Frame Time.

The minimum for this formula is 64. This minimum ensures that you can read or write at least

64 elements. If you need to read or write more elements for a slow frame, you can set the

Queue Size property to a larger number than the default. If you set a large Queue Size, this

may limit the maximum number of frames you can use in all sessions.

For Frame I/O sessions, this formula result is multiplied by each frame value size to obtain a

queue size in bytes.

For Signal I/O sessions, this formula result is used directly for the queue size property to

provide the number of signal values for the appropriate nxRead or nxWrite function. Within

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-382 ni.com

the Signal I/O session, the memory allocated for the queue incorporates frame sizes, because

the signal values are mapped to/from frame values internally.

Application Time

The target in which your application runs determines the Application Time:

• Windows: 400 ms (0.4 s)

• Real-Time (RT): 100 ms (0.1 s)

This works under the assumption that for Windows, more memory is available for input

queues, and you have limited control over the application timing. RT targets typically have

less available memory, but your application has better control over application timing.

Frame Time

Frame Time is calculated differently for Frame I/O Stream sessions compared to other modes.

For Frame I/O Stream, you access all frames in the network (cluster), so the Frame Time is

related to the average bus load on your network. For other modes, you access specific frames

only, so the Frame Time is obtained from database properties for those frames.

The Frame Time used for the default varies by session mode and protocol, as described below.

CAN, Frame I/O Stream

Frame Time is 100 µs (0.0001 s).

This time assumes a baud rate of 1 Mbps, with frames back to back (100 percent busload).

For CAN sessions created for a standard CAN bus, the Frame Size is 24 bytes. For CAN

sessions created for a CAN FD Bus (the cluster I/O mode is CAN FD or CAN FD+BRS), the

frame size can vary up to 64 bytes. However, the default queue size is based on the 24-byte

frame time. When connecting to a CAN FD bus, you may need to adjust this size as necessary.

When you create an application to stress test NI-XNET performance, it is possible to generate

CAN frames faster than 100 s. For this application, you must set the queue size to larger than

the default.

FlexRay, Frame I/O Stream

Frame Time is 20 µs (0.00002 s).

This time assumes a baud rate of 10 Mbps, with a cycle containing static slots only

(no minislots or NIT), and frames on channel A only.

Small frames at a fast rate require a larger queue size than large frames at a slow rate.

Therefore, this default assumes static slots with 4 bytes, for a Frame Size of 24 bytes.

Chapter 5 NI-XNET API for C

© National Instruments 5-383 NI-XNET Hardware and Software Manual

When you create an application to stress test NI-XNET performance, it is possible to generate

FlexRay frames faster than 20 s. For this application, you must set the queue size to larger

than the default.

LIN, Frame I/O Stream

Frame Time is 2 ms (0.002 s).

This time assumes a baud rate of 20 kbps, with 1 byte frames back to back (100 percent

busload).

For all LIN sessions, Frame Size is 24 bytes.

CAN, Other Modes

For Frame I/O Queued, Signal I/O XY, and Signal I/O Waveform, the Frame Time is different

for each frame in the session (or frame within which signals are contained).

For CAN frames, Frame Time is the frame property CAN Transmit Time, which specifies the

time between successive frames (in floating-point seconds).

If the frame’s CAN Transmit Time is 0, this implies the possibility of back-to-back frames on

the network. Nevertheless, this back-to-back traffic typically occurs in bursts, and the average

rate over a long period of time is relatively slow. To keep the default queue size to a reasonable

value, when CAN Transmit Time is 0, the formula uses a Frame Time of 50 ms (0.05 s).

For CAN sessions using a standard CAN cluster, the frame size is 24 bytes. For CAN sessions

using a CAN FD cluster, the frame size may differ for each frame in the session. Each frame

size is obtained from its XNET Frame Payload Length property in the database.

FlexRay, Other Modes

For Frame I/O Queued, Signal I/O XY, and Signal I/O Waveform, the Frame Time is different

for each frame in the session (or frame within which signals are contained).

For FlexRay frames, Frame Time is the time between successive frames (in floating-point

seconds), calculated from cluster and frame properties. For example, if a cluster Cycle (cycle

duration) is 10000 µs, and the frame Base Cycle is 0 and Cycle Repetition is 1, the frame’s

Transmit Time is 0.01 (10 ms).

For these session modes, the Frame Size is different for each frame in the session. Each Frame

Size is obtained from its XNET Frame Payload Length property in the database.

LIN, Other Modes

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-384 ni.com

For LIN frames, Frame Time is a property of the schedule running in the LIN master node.

It is assumed that the Frame Time for a single frame always is larger than 8 ms, so that the

default queue size is set to 64 frames throughout.

For all LIN sessions, Frame Size is 24 bytes.

Examples

The following table lists example session configurations and the resulting default queue sizes.

Session Configuration

Default

Queue Size Formula

Frame Input Stream, CAN,

Windows

96000 (0.4 / 0.0001) = 4000;

4000  24 bytes

Frame Output Stream, CAN,

Windows

96000 (0.4 / 0.0001) = 4000;

4000  24 bytes; output is

always same as input

Frame Input Stream, FlexRay,

Windows

480000 (0.4 / 0.00002) = 20000;

20000  24 bytes

Frame Input Stream, CAN, RT 24000 (0.1 / 0.0001) = 1000;

1000  24 bytes

Frame Input Stream,

FlexRay, RT

120000 (0.1 / 0.00002) = 5000;

5000  24 bytes

Frame Input Queued, CAN,

Transmit Time 0.0, Windows

1536* (0.4 / 0.05) = 8; Transmit Time 0

uses Frame Time 50 ms; use

minimum of 64 frames (64  24)

Frame Input Queued, CAN,

Transmit Time 0.0005, Windows

19200* (0.4 / 0.0005) = 800; 800  24 bytes

Frame Input Queued, CAN,

Transmit Time 1.0 (1 s),

Windows

1536* (0.4 / 1.0) = 0.4; use minimum of

64 frames (64  24)

Frame Input Queued, FlexRay,

every 2 ms cycle, payload

length 4, Windows

4800 (0.4 / 0.002) = 200; 200  24 bytes

Frame Input Queued, FlexRay,

every 2 ms cycle, payload

length 16, RT

2048 (0.1 / 0.002) = 50, use minimum

of 64; payload length 16 requires

32 bytes; 64  32 bytes

Chapter 5 NI-XNET API for C

© National Instruments 5-385 NI-XNET Hardware and Software Manual

Signal Input XY, two CAN

frames, Transmit Time 0.0

and 0.0005, Windows

64* and 800*

(read as 800)

(0.4 / 0.05) = 8, use minimum of 64;

(0.4 / 0.0005) = 800; expressed as

signal values

Signal Output XY, two CAN

frames, Transmit Time 0.0

and 0.0005, Windows

64* and 800*

(read as 64)

(0.4 / 0.05) = 8, use minimum of 64;

(0.4 / 0.0005) = 800; expressed as

signal values

Signal Output Waveform, two

CAN frames, 1 ms and 400 ms,

resample rate 1000 Hz, Windows

400* Memory allocation is 400 and

64 frames to provide 0.4 sec of

storage, queue size represents

number of samples, or

(0.4 1000.0)

Signal Output Waveform, two

CAN frames, 1 ms and 400 ms,

resample rate 1000 Hz, Windows

400* Memory allocation is 400 and

64 frames to provide 0.4 sec of

storage, queue size represents

number of samples, or

(0.4  1000.0)

* For a CAN FD cluster, the default queue size is based on the frame’s database payload length, which may be larger
than 24 bytes (up to 64 bytes).

Session Configuration

Default

Queue Size Formula

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-386 ni.com

Resample Rate

Data Type Direction Required? Default

f64 Read/Write No 1000.0 (Sample Every Millisecond)

Property Class

XNET Session

Property ID

nxPropSession_ResampRate

Description

Rate used to resample frame data to/from signal data in waveforms.

This property applies only when the session mode is Signal Input Waveform or Signal Output

Waveform. This property is ignored for all other modes.

The data type is 64-bit floating point (DBL). The units are in Hertz (samples per second).

Chapter 5 NI-XNET API for C

© National Instruments 5-387 NI-XNET Hardware and Software Manual

XNET Signal Properties

This section includes the XNET Signal properties.

Byte Order

Data Type Direction Required? Default

u32 Read/Write Yes N/A

Property Class

XNET Signal

Property ID

nxPropSig_ByteOrdr

Description

Signal byte order in the frame payload.

This property defines how signal bytes are ordered in the frame payload when the frame is

loaded in memory.

• Little Endian: Higher significant signal bits are placed on higher byte addresses. In

NI-CAN, this was called Intel Byte Order.

Figure 5-2. Little Endian Signal with Start Bit 12

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-388 ni.com

• Big Endian: Higher significant signal bits are placed on lower byte addresses. In

NI-CAN, this was called Motorola Byte Order.

Figure 5-3. Big Endian Signal with Start Bit 12

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this signal, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-389 NI-XNET Hardware and Software Manual

Comment

Data Type Direction Required? Default

char * Read/Write No Empty String

Property Class

XNET Signal

Property ID

nxPropSig_Comment

Description

Comment describing the signal object.

A comment is a string containing up to 65535 characters.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-390 ni.com

Configuration Status

Data Type Direction Required? Default

i32 Read Only No N/A

Property Class

XNET Signal

Property ID

nxPropSig_ConfigStatus

Description

The signal object configuration status.

Configuration Status returns an NI-XNET error code. You can pass the value to the

nxStatusToString error code input to convert the value to a text description of the

configuration problem.

By default, incorrectly configured signals in the database are not returned from the XNET

Frame Signals property because they cannot be used in the bus communication. You can

change this behavior by setting the XNET Database ShowInvalidFromOpen? property to true.

When a signal configuration status becomes invalid after the database is opened, the signal

still is returned from the Signals property even if the ShowInvalidFromOpen? property is

false.

Examples of invalid signal configuration:

• The signal is specified using bits outside the frame payload.

• The signal overlaps another signal in the frame. For example, two multiplexed signals

with the same multiplexer value are using the same bit in the frame payload.

• The signal with integer data type (signed or unsigned) is specified with more than 52 bits.

This is not allowed due to internal limitation of the double data type that NI-XNET uses

for signal values.

• The frame containing the signal is invalid (for example, a CAN frame is defined with

more than 8 payload bytes).

Chapter 5 NI-XNET API for C

© National Instruments 5-391 NI-XNET Hardware and Software Manual

Data Type

Data Type Direction Required? Default

u32 Read/Write Yes N/A

Property Class

XNET Signal

Property ID

nxPropSig_DataType

Description

The signal data type.

This property determines how the bits of a signal in a frame must be interpreted to build a

value.

• Signed: Signed integer with positive and negative values.

• Unsigned: Unsigned integer with no negative values.

• IEEE Float: Float value with 7 or 15 significant decimal digits (32 bit or 64 bit).

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this signal, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-392 ni.com

Default Value

Data Type Direction Required? Default

Double Read/Write No 0.0 (If Not in Database)

Property Class

XNET Signal

Property ID

nxPropSig_Default

Description

The signal default value, specified as scaled floating-point units.

The data type is 64-bit floating point (DBL).

The initial value of this property comes from the database. If the database does not provide a

value, this property uses a default value of 0.0.

For all three signal output sessions, this property is used when a frame transmits prior to a call

to nxWrite. The XNET Frame Default Payload property is used as the initial payload, then

the default value of each signal is mapped into that payload using this property, and the result

is used for the frame transmit.

For all three signal input sessions, this property is returned for each signal when nxRead is

called prior to receiving the first frame.

For more information about when this property is used, refer to the discussion of

nxRead/nxWrite for each session mode.

Chapter 5 NI-XNET API for C

© National Instruments 5-393 NI-XNET Hardware and Software Manual

Frame

Data Type Direction Required? Default

nxPropSig_FrameRef Read Only N/A Parent Frame

Property Class

XNET Signal

Property ID

nxPropSig_FrameRef

Description

Reference to the signal parent frame.

This property returns the refnum to the signal parent frame. The parent frame is defined when

the signal object is created. You cannot change it afterwards.

Maximum Value

Data Type Direction Required? Default

Double Read/Write No 1000.0

Property Class

XNET Signal

Property ID

nxPropSig_Max

Description

The scaled signal value maximum.

nxRead and nxWrite do not limit the signal value to a maximum value. Use this database

property to set the maximum value.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-394 ni.com

Minimum Value

Data Type Direction Required? Default

Double Read/Write No 0.0

Property Class

XNET Signal

Property ID

nxPropSig_Min

Description

The scaled signal value minimum.

nxRead and nxWrite do not limit the signal value to a minimum value. Use this database

property to set the minimum value.

Chapter 5 NI-XNET API for C

© National Instruments 5-395 NI-XNET Hardware and Software Manual

Mux:Data Multiplexer?

Data Type Direction Required? Default

Boolean Read/Write No False

Property Class

XNET Signal

Property ID

nxPropSig_MuxIsDataMux

Description

This property defines the signal that is a multiplexer signal. A frame containing a multiplexer

value is called a multiplexed frame.

A multiplexer defines an area within the frame to contain different information (dynamic

signals) depending on the multiplexer signal value. Dynamic signals with a different

multiplexer value (defined in a different subframe) can share bits in the frame payload. The

multiplexer signal value determines which dynamic signals are transmitted in the given frame.

To define dynamic signals in the frame transmitted with a given multiplexer value, you first

must create a subframe in this frame and set the multiplexer value in the subframe. Then you

must create dynamic signals using nxdbCreateObject to create child signals of this

subframe.

Multiplexer signals may not overlap other static or dynamic signals in the frame.

Dynamic signals may overlap other dynamic signals when they have a different multiplexer

value.

A frame may contain only one multiplexer signal.

The multiplexer signal is not scaled. Scaling factor and offset do not apply.

In NI-CAN, the multiplexer signal was called mode channel.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-396 ni.com

Mux:Dynamic?

Data Type Direction Required? Default

Boolean Read Only No False

Property Class

XNET Signal

Property ID

nxPropSig_MuxIsDynamic

Description

Use this property to determine if a signal is static or dynamic. Dynamic signals are transmitted

in the frame when the multiplexer signal in the frame has a given value specified in the

subframe. Use the Mux:Multiplexer Value property to determine with which multiplexer

value the dynamic signal is transmitted.

This property is read only. To create a dynamic signal, create the signal object as a child of a

subframe instead of a frame. The dynamic signal cannot be changed to a static signal

afterwards.

In NI-CAN, dynamic signals were called mode-dependent signals.

Chapter 5 NI-XNET API for C

© National Instruments 5-397 NI-XNET Hardware and Software Manual

Mux:Multiplexer Value

Data Type Direction Required? Default

u32 Read Only N/A N/A

Property Class

XNET Signal

Property ID

nxPropSig_MuxValue

Description

The multiplexer value applies to dynamic signals only (the XNET Signal Mux:Dynamic?

property returns true). This property defines which multiplexer value is transmitted in the

multiplexer signal when this dynamic signal is transmitted in the frame.

The multiplexer value is determined in the subframe. All dynamic signals that are children of

the same subframe object use the same multiplexer value.

Dynamic signals with the same multiplexer value may not overlap each other, the multiplexer

signal, or static signals.

Mux:Subframe

Data Type Direction Required? Default

nxDatabaseRef_t Read Only N/A Parent Subframe

Property Class

XNET Signal

Property ID

nxPropSig_MuxSubfrmRef

Description

Reference to the subframe parent.

This property is valid only for dynamic signals that have a subframe parent. For static signals

or the multiplexer signal, this property returns 0 and an error indication.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-398 ni.com

Name (Short)

Data Type Direction Required? Default

char * Read/Write Yes Defined in nxdbCreateObject

Property Class

XNET Signal

Property ID

nxPropSig_Name

Description

String identifying a signal object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the short name. The space (), period (.), and other special characters are not supported within

the name. The short name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The short name is limited to 128 characters.

A signal name must be unique for all signals in a frame.

This short name does not include qualifiers to ensure that it is unique, such as the database,

cluster, and frame name. It is for display purposes.

You can write this property to change the signal’s short name.

Chapter 5 NI-XNET API for C

© National Instruments 5-399 NI-XNET Hardware and Software Manual

Name Unique to Cluster

Data Type Direction Required? Default

cstr Read Only N/A N/A

Property Class

XNET Signal

Property ID

nxPropSig_NameUniqueToCluster

Description

This property returns a signal name unique to the cluster that contains the signal. If the single

name is not unique within the cluster, the name is <frame-name>.<signal-name>.

You can pass the name to the nxdbFindObject function to retrieve the reference to the

object, while the single name is not guaranteed success in nxdbFindObject because it may

be not unique in the cluster.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-400 ni.com

Number of Bits

Data Type Direction Required? Default

u32 Read/Write Yes N/A

Property Class

XNET Signal

Property ID

nxPropSig_NumBits

Description

The number of bits the signal uses in the frame payload.

IEEE Float numbers are limited to 32 bit or 64 bit.

Integer (signed and unsigned) numbers are limited to 1–52 bits. NI-XNET converts all

integers to doubles (64-bit IEEE Float). Integer numbers with more than 52 bits (the size of

the mantissa in a 64-bit IEEE Float) cannot be converted exactly to double, and vice versa;

therefore, NI-XNET does not support this.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this signal, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-401 NI-XNET Hardware and Software Manual

PDU

Data Type Direction Required? Default

nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET Signal

Property ID

nxPropSig_PDURef

Description

Reference to the signal’s parent PDU.

This property returns the reference to the signal’s parent PDU. The parent PDU is defined

when the signal object is created. You cannot change it afterwards.

Scaling Factor

Data Type Direction Required? Default

Double Read/Write No 1.0

Property Class

XNET Signal

Property ID

nxPropSig_ScaleFac

Description

Factor a for linear scaling ax+b.

Linear scaling is applied to all signals with the IEEE Float data type, unsigned and signed.

For identical scaling 1.0x+0.0, NI-XNET optimized scaling routines do not perform the

multiplication and addition.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-402 ni.com

Scaling Offset

Data Type Direction Required? Default

Double Read/Write No 0.0

Property Class

XNET Signal

Property ID

nxPropSig_ScaleOff

Description

Offset b for linear scaling ax+b.

Linear scaling is applied to all signals with the IEEE Float data type, unsigned and signed.

For identical scaling 1.0x+0.0, NI-XNET optimized scaling routines do not perform the

multiplication and addition.

Chapter 5 NI-XNET API for C

© National Instruments 5-403 NI-XNET Hardware and Software Manual

Start Bit

Data Type Direction Required? Default

u32 Read/Write Yes N/A

Property Class

XNET Signal

Property ID

nxPropSig_StartBit

Description

The least significant signal bit position in the frame payload.

This property determines the signal starting point in the frame. For the integer data type

(signed and unsigned), it means the binary signal representation least significant bit position.

For IEEE Float signals, it means the mantissa least significant bit.

The NI-XNET Database Editor shows a graphical overview of the frame. It enumerates

the frame bytes on the left and the byte bits on top. The bit number in the frame is

calculated as byte number  8 + bit number. The maximum bit number in a CAN or LIN frame

is 63 (7 × 8 + 7); the maximum bit number in a FlexRay frame is 2031 (253 × 8 + 7).

Figure 5-4. Frame Overview in the NI-XNET Database Editor with a Signal Starting in Bit 12

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-404 ni.com

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this signal, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

© National Instruments 5-405 NI-XNET Hardware and Software Manual

Unit

Data Type Direction Required? Default

char * Read/Write No Empty String

Property Class

XNET Signal

Property ID

nxPropSig_Unit

Description

This property describes the signal value unit. NI-XNET does not use the unit internally for

calculations. You can use the string to display the signal value along with the unit.

XNET Subframe Properties

This section includes the XNET Subframe properties.

Dynamic Signals

Data Type Direction Required? Default

nxDatabaseRef_t * Read Only N/A N/A

Property Class

XNET Subframe

Property ID

nxPropSubfrm_DynSigRefs

Description

Dynamic signals in the subframe.

This property returns an array of refnums to dynamic signals in the subframe. Those signals

are transmitted when the multiplexer signal in the frame has the multiplexer value defined in

the subframe.

Dynamic signals are created with nxdbCreateObject by specifying a subframe as the

parent.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-406 ni.com

Frame

Data Type Direction Required? Default

nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET Subframe

Property ID

nxPropSubfrm_FrmRef

Description

Returns the refnum to the parent frame. The parent frame is defined when the subframe is

created, and you cannot change it afterwards.

Chapter 5 NI-XNET API for C

© National Instruments 5-407 NI-XNET Hardware and Software Manual

Multiplexer Value

Data Type Direction Required? Default

u32 Read/Write Yes N/A

Property Class

XNET Subframe

Property ID

nxPropSubfrm_MuxValue

Description

Multiplexer value for this subframe.

This property specifies the multiplexer signal value used when the dynamic signals in this

subframe are transmitted in the frame. Only one subframe is transmitted at a time in the frame.

There also is a multiplexer value for a signal object as a read-only property. It reflects the

value set on the parent subframe object.

This property is required. If the property does not contain a valid value, and you create an

XNET session that uses this subframe, the session returns an error. To ensure that the property

contains a valid value, you can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than

use a file. The property does not contain a default in this case, so you must set a valid

value prior to creating a session.

For more information about using database files and in-memory databases, refer to

Databases.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-408 ni.com

Name (Short)

Data Type Direction Required? Default

char * Read/Write Yes Defined in nxdbCreateObject

Property Class

XNET Subframe

Property ID

nxPropSubfrm_Name

Description

String identifying a subframe object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for

the short name. The space (), period (.), and other special characters are not supported within

the name. The short name must begin with a letter (uppercase or lowercase) or underscore,

and not a number. The short name is limited to 128 characters.

A subframe name must be unique for all subframes in a frame.

This short name does not include qualifiers to ensure that it is unique, such as the database,

cluster, and frame name. It is for display purposes.

You can write this property to change the subframe’s short name.

Chapter 5 NI-XNET API for C

© National Instruments 5-409 NI-XNET Hardware and Software Manual

Name Unique to Cluster

Data Type Direction Required? Default

cstr Read Only N/A N/A

Property Class

XNET Subframe

Property ID

nxPropSubfrm_NameUniqueToCluster

Description

This property returns a subframe name unique to the cluster that contains the subframe. If the

single name is not unique within the cluster, the name is <frame-name>.<subframe-name>.

You can pass the name to the nxdbFindObject function to retrieve the reference to the

object, while the single name is not guaranteed success in nxdbFindObject because it may

be not unique in the cluster.

PDU

Data Type Direction Required? Default

nxDatabaseRef_t Read Only N/A N/A

Property Class

XNET Subframe

Property ID

nxPropSubfrm_PDURef

Description

Reference to the subframe’s parent PDU.

This property returns the reference to the subframe’s parent PDU. The parent PDU is defined

when the subframe object is created. You cannot change it afterwards.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-410 ni.com

XNET System Properties

Description

The XNET System properties provide information about all NI-XNET hardware in your

system, including all devices and interfaces.

You retrieve a system handle with nxSystemOpen and release it with nxSystemClose. Pass

the system handle to all system property calls.

Devices

Data Type Direction Required? Default

u32[] Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_DevRefs

Description

Returns an array of handles to physical XNET devices in the system. Each physical XNET

board is a hardware product such as a PCI/PXI board.

You can pass the XNET Device handle to nxGetProperty and nxGetPropertySize to

access properties of the device.

Chapter 5 NI-XNET API for C

© National Instruments 5-411 NI-XNET Hardware and Software Manual

Interfaces (All)

Data Type Direction Required? Default

u32[] Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_IntfRefs

Description

Returns an array of handles to all available interfaces on the system.

Interfaces (CAN)

Data Type Direction Required? Default

u32[] Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_IntfRefsCAN

Description

Returns an array of handles to all available interfaces on the system that support the CAN

Protocol.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-412 ni.com

Interfaces (FlexRay)

Data Type Direction Required? Default

u32[] Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_IntfRefsFlexRay

Description

Returns an array of handles to all available interfaces on the system that support the FlexRay

protocol.

Interfaces (LIN)

Data Type Direction Required? Default

u32[] Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_IntfRefsLIN

Description

Returns an array of handles to all available interfaces on the system that support the LIN

Protocol.

Chapter 5 NI-XNET API for C

© National Instruments 5-413 NI-XNET Hardware and Software Manual

Version:Build

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_VerBuild

Description

Returns the driver version [Build] as a u32.

Remarks

The driver version is specified in the following format:

[Major].[Minor].[Update][Phase][Build].

For example, 1.2.3f4 returns:

• [Major] = 1

• [Minor] = 2

• [Update] = 3

• [Phase] = Final/Release

• [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

• Determining driver functionality or release date.

• Determining upgrade availability.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-414 ni.com

Version:Major

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_VerMajor

Description

Returns the driver version [Major] as a u32.

Remarks

The driver version is specified in the following format:

[Major].[Minor].[Update][Phase][Build].

For example, 1.2.3f4 returns:

• [Major] = 1

• [Minor] = 2

• [Update] = 3

• [Phase] = Final/Release

• [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

• Determining driver functionality or release date.

• Determining upgrade availability.

Chapter 5 NI-XNET API for C

© National Instruments 5-415 NI-XNET Hardware and Software Manual

Version:Minor

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_VerMinor

Description

Returns the driver version [Minor] as a u32.

Remarks

The driver version is specified in the following format:

[Major].[Minor].[Update][Phase][Build].

For example, 1.2.3f4 returns:

• [Major] = 1

• [Minor] = 2

• [Update] = 3

• [Phase] = Final/Release

• [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

• Determining driver functionality or release date.

• Determining upgrade availability.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-416 ni.com

Version:Phase

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_VerPhase

Description

Returns the driver version [Phase] as a u32.

Enumeration Value

nxPhase_Development 0

nxPhase_Alpha 1

nxPhase_Beta 2

nxPhase_Release 3

Note The driver’s official version always has a phase of Release.

Remarks

The driver version is specified in the following format:

[Major].[Minor].[Update][Phase][Build].

For example, 1.2.3f4 returns:

• [Major] = 1

• [Minor] = 2

• [Update] = 3

• [Phase] = Final/Release

• [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

• Determining driver functionality or release date.

• Determining upgrade availability.

Chapter 5 NI-XNET API for C

© National Instruments 5-417 NI-XNET Hardware and Software Manual

Version:Update

Data Type Direction Required? Default

u32 Read Only No N/A

Property Class

XNET System

Property ID

nxPropSys_VerUpdate

Description

Returns the driver version [Update] as a u32.

Remarks

The driver version is specified in the following format:

[Major].[Minor].[Update][Phase][Build].

For example, 1.2.3f4 returns:

• [Major] = 1

• [Minor] = 2

• [Update] = 3

• [Phase] = Final/Release

• [Build] = 4

A larger version number implies a newer XNET driver version.

Use this property for:

• Determining driver functionality or release date.

• Determining upgrade availability.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-418 ni.com

Additional Topics

This section includes additional CAN, FlexRay, and LIN-related information.

Overall

Cyclic and Event Timing
For all embedded network protocols (for example, CAN, LIN, and FlexRay), the transmit of

a specific frame is classified as one of the following:

• Cyclic: The frame transmits at a cyclic (periodic) rate, regardless of whether the

application has updated its payload data. The advantage of cyclic behavior is that the

application does not need to worry about when to transmit, yet data changes arrive at

other ECUs within a well-defined deadline.

• Event: The frame transmits when a specific event occurs. This event often is simply that

the application updated the payload data, but other events are possible. The advantage is

that the frame transmits on the network only as needed.

The following sections describe how the cyclic and event concept apply to each protocol.

Within NI-XNET, a Cyclic frame begins transmit as soon as the session starts, regardless of

whether you called the nxWrite... function. The call to the nxWrite... function is the

event that drives an Event frame transmit.

CAN

For each frame, the XNET Frame CAN:Timing Type property determines whether the

network transfer is cyclic or event:

• Cyclic Data: This is typical Cyclic frame behavior.

• Event Data: This is typical Event frame behavior.

• Cyclic Remote: Because one ECU in the network transmits the CAN remote frame at a

cyclic (periodic) rate, the resulting CAN data frame also is cyclic.

• Event Remote: One ECU in the network transmits the CAN remote frame based on an

event. Another ECU responds with the corresponding CAN data frame. In NI-XNET, the

nxWrite... function generates the event to transmit the CAN remote frame.

Chapter 5 NI-XNET API for C

© National Instruments 5-419 NI-XNET Hardware and Software Manual

FlexRay

For each frame, the XNET Frame FlexRay:Timing Type property determines whether the

network transfer is cyclic or event:

• Cyclic (in static segment): No null frame transmits, so this is typical Cyclic frame

behavior.

• Event (in static segment): The null frame indicates no event.

• Cyclic (in dynamic segment): The frame transmits each FlexRay cycle. This

configuration is not common for the dynamic segment, which typically is for Event

frames only.

• Event (in dynamic segment): This is typical Event frame behavior.

LIN

As described in the Using LIN section, the currently running schedule entries determine each

LIN frame’s timing. In each schedule entry, the master transmits a single frame header, and

the payload of one (or more) frames can follow.

For each schedule entry, the XNET LIN Schedule Entry Type property determines how the

associated Frames transmit. The schedule Run Mode also contributes to the cyclic or event

behavior.

• Cyclic: Unconditional type, Continuous run mode: This is typical Cyclic frame

behavior.

• Event: Unconditional type, Once run mode: Although the frame transmits

unconditionally, the schedule runs once based on an event, so this is Event frame

behavior. In NI-XNET, the nxWriteState (nxState_LINScheduleChange) function

changes the mode to the run-once schedule. This effectively generates the event to

transmit the LIN frame.

• Event: Sporadic type: In this schedule entry, the master can transmit one of multiple

Event-driven frames. In NI-XNET, the nxWrite... function writes signal or frame

values to generate the event to transmit. Because the entry itself is Event, this behavior

applies regardless of the schedule’s run mode.

• Event: Event-triggered type: In this schedule entry, multiple slave ECUs can transmit

in the entry, each using an Event-driven frame. In NI-XNET, the nxWrite... function

writes signal or frame values to generate the event to transmit. Because the entry itself is

Event, this behavior applies regardless of the schedule’s run mode.

Multiplexed Signals
Multiplexed signals do not appear in every instance of a frame; they appear only if the frame

indicates this.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-420 ni.com

For this reason, a frame can contain a multiplexer signal and several subframes. The

multiplexer signal is at most 16 bits long and contains an unsigned integer number that

identifies the subframe instance in the instance of a frame. The subframes contain the

multiplexed signals.

This means the frame signal content is not fixed (static), but can change depending on the

multiplexer signal (dynamic) value.

A frame can contain both a static and a dynamic part.

Creating Multiplexed Signals

In the API

Creating multiplexed signals in the API is a two-step process:

1. Create the multiplexer signal and subframes as children of the frame object. The

subframes are assigned the mode value; that is, the value of the multiplexer signal for

which this subframe becomes active.

2. Create the multiplexed signals as children of their respective subframes. This

automatically assigns the signals as dynamic signals to the subframe’s parent frame.

In the NI-XNET Database Editor

You create multiplexed signals simply by changing their Signal Type to Multiplexed and

assigning them mode values. The Database Editor handles subframe manipulation completely

behind the scenes.

Reading Multiplexed Signals

You can read multiplexed signals like static signals without any additional effort. Because the

frame read also contains the multiplexer signal, the NI-XNET driver can decide which signals

are present in the frame and return new values for only those signals.

Writing Multiplexed Signals

Writing multiplexed signals needs additional consideration. As writing signals results in a

frame being created and sent over the network, writing multiplexed signals requires the

multiplexer signal be part of the writing session. This is needed for the NI-XNET driver to

decide which set of dynamic signals a certain frame contains. Only the subframe dynamic

signals selected with the multiplexer signal value are written to the frame; the values for the

other dynamic signals of that frame are ignored.

Support for Multiplexed Signals

Multiplexed signals are currently supported for CAN only. FlexRay does not support them.

Chapter 5 NI-XNET API for C

© National Instruments 5-421 NI-XNET Hardware and Software Manual

Raw Frame Format
This section describes the raw data format for frames. nxReadFrame and nxWriteFrame

use this format.

The raw frame format is for examples that demonstrate access to log files. The raw frame

format is ideal for log files, because you can transfer the data between NI-XNET and the file

with very little conversion.

Refer to the NI-XNET logfile examples for functions that convert raw frame data for CAN,

FlexRay, or LIN frames.

The raw frame format consists of one or more frames encoded in a sequence of bytes. Each

frame is encoded as one Base Unit, followed by zero or more Payload Units.

Base Unit

In the following table, Byte Offset refers to the offset from the frame start. For example, if the

first frame is in raw data bytes 0–23, and the second frame is in bytes 24–47, the second frame

Identifier starts at byte 32 (24 + Byte Offset 8).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-422 ni.com

Table 5-3. Base Unit Elements

Element Byte Offset Description

Timestamp 0 to 7 64-bit timestamp in 100 ns increments.

The timestamp format is absolute. The 64-bit element

contains the number of 100 ns intervals that have elapsed since

12:00 a.m. January 1 1601 Coordinated Universal Time (UTC).

This element contains a 64-bit unsigned integer (U64) in native

byte order. For little-endian computing platforms (for example,

Windows), Byte Offset 0 is the least significant byte.

For big-endian computing platforms (for example,

CompactRIO with a PowerPC), Byte Offset 0 is the most

significant byte. For more information, refer to the NI-XNET

examples for logfile access.

Identifier 8 to 11 The frame identifier.

This element contains a 32-bit unsigned integer (u32) in native

byte order.

When Type specifies a CAN frame, bit 29 (hex 20000000)

indicates the CAN identifier format: set for extended, clear for

standard. If bit 29 is clear, the lower 11 bits (0–10) contain the

CAN frame identifier. If bit 29 is set, the lower 29 bits (0–28)

contain the CAN frame identifier. When Type specifies a

FlexRay frame, the lower 16 bits contain the slot number.

When Type specifies a LIN frame, this element contains a

number in the range 0–63 (inclusive). This number is the LIN

frame’s ID (unprotected).

All unused bits are 0.

Chapter 5 NI-XNET API for C

© National Instruments 5-423 NI-XNET Hardware and Software Manual

Type 12 The frame type.

This element specifies the fundamental frame type. The

Identifier, Flag, and Info element interpretation is different for

each type.

The upper 4 bits of this element specify the protocol: The valid

values in decimal are:

0 CAN

2 FlexRay

4 LIN

14 Special

The lower 4 bits of this element contain the specific type.

The following Type values may occur for CAN:

CAN Data (0) The CAN data frame contains payload

data. This is the most commonly used

frame type for CAN.

CAN Remote (1) A CAN remote frame. An ECU

transmits a CAN remote frame to

request data for the corresponding

identifier. Your application can respond

by writing a CAN data frame for the

identifier.

Delay (224) The Delay frame is used with the replay

feature to insert a relative time delay

between frame transmissions. For

information about this frame, including

the other frame fields, refer to Special

Frames.

Table 5-3. Base Unit Elements (Continued)

Element Byte Offset Description

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-424 ni.com

Log Trigger (225) A Log Trigger frame. This frame is

generated when a trigger occurs on an

external connection (for example,

PXI_Trig0). For information about this

frame, including the other frame fields,

refer to Special Frames.

Start Trigger (226) A Start Trigger frame is generated when

the interface is started. (Refer to Start

Interface for more information.) For

information about this frame, including

the other frame fields, refer to Special

Frames.

CAN Bus Error (2) A CAN Bus Error frame is generated

when a bus error is detected on the

CAN bus. For information about this

frame, including the other frame

fields, refer to Special Frames.

The following Type values may occur for FlexRay:

FlexRay Data (32) FlexRay data frame. The frame

contains payload data. This is the most

commonly used frame type for FlexRay.

All elements in the frame are applicable.

FlexRay Null (33) FlexRay null frame. When a FlexRay

null frame is received, it indicates that

the transmitting ECU did not have new

data for the current cycle.

Null frames occur in the static segment

only. This frame type does not apply to

frames in the dynamic segment. This

frame type occurs only when you set the

XNET Session Interface:FlexRay:Null

Frames To Input Stream? property to

true. This property enables logging of

received null frames to a session with

the Frame Input Stream Mode. Other

sessions are not affected.

Table 5-3. Base Unit Elements (Continued)

Element Byte Offset Description

Chapter 5 NI-XNET API for C

© National Instruments 5-425 NI-XNET Hardware and Software Manual

For this frame type, the payload array

is empty (size 0), and preamble?

and echo? are false. The remaining

elements in the frame reflect the data

in the received null frame and the

timestamp when it was received.

FlexRay Symbol (34) FlexRay symbol frame. The frame

contains a symbol received on the

FlexRay bus.

For this frame type, the first payload

byte (offset 0) specifies the type of

symbol: 0 for MTS, 1 for wakeup. The

frame payload length is 1 or higher, with

bytes beyond the first byte reserved for

future use. The frame timestamp

specifies when the symbol window

occurred. The cycle count, channel A

indicator, and channel B indicator

are encoded the same as FlexRay

data frames. All other fields in the

frame are unused (0).

Log Trigger (225) A Log Trigger frame. This frame is

generated when a trigger occurs on

an external connection (for example,

PXI_Trig0). For information about

this frame, including the other frame

fields, refer to Special Frames.

Start Trigger (226) A Start Trigger frame is generated

when the interface is started. (Refer

to Start Interface for more

information.) For information about

this frame, including the other frame

fields, refer to Special Frames.

The following Type values may occur for LIN:

LIN Data (64) The LIN data frame contains payload

data. This currently is the only frame

type for LIN.

Table 5-3. Base Unit Elements (Continued)

Element Byte Offset Description

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-426 ni.com

Log Trigger (225) A Log Trigger frame. This frame is

generated when a trigger occurs on an

external connection (for example,

PXI_Trig0). For information about this

frame, including the other frame fields,

refer to Special Frames.

Start Trigger (226) A Start Trigger frame is generated when

the interface is started. (Refer to Start

Interface for more information.) For

information about this frame, including

the other frame fields, refer to Special

Frames.

LIN Bus Error (65) A LIN Bus Error frame is generated

when a bus error is detected on the

LIN bus. For information about this

frame, including the other frame

fields, refer to Special Frames.

Table 5-3. Base Unit Elements (Continued)

Element Byte Offset Description

Chapter 5 NI-XNET API for C

© National Instruments 5-427 NI-XNET Hardware and Software Manual

Flags 13 Eight Boolean flags that qualify the frame type.

Bit 7 (hex 80) is protocol independent (supported in CAN,

FlexRay, and LIN frames). If set, the frame is echoed (returned

from the nxRead function after NI-XNET transmitted on the

network). If clear, the frame was received from the network

(from a remote ECU).

For FlexRay frames:

• Bit 0 is set if the frame is a Startup frame

• Bit 1 is set if the frame is a Sync frame

• Bit 2 specifies the frame Preamble bit

• Bit 4 specifies if the frame transfers on Channel A

• Bit 5 specifies if the frame transfers on Channel B

For LIN frames:

• Bit 0 is set if the frame occurred in an event-triggered entry

(slot). When bit 0 is set, the Info element contains the

event-triggered frame ID, and the Identifier element

contains the Unconditional ID from the first payload byte.

All unused bits are zero.

Info 14 Information that qualifies the frame type.

This element is not used for CAN.

For FlexRay frames, this element provides the frame cycle

count (0–63).

For LIN frames, if bit 0 of the Flags element is clear, the Info

element is unused (0). If bit 0 of the Flags element is set

(event-triggered entry), the Info element contains the

event-triggered frame ID, and the Identifier element contains

the Unconditional ID from the first payload byte.

Table 5-3. Base Unit Elements (Continued)

Element Byte Offset Description

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-428 ni.com

PayloadLength 15 The PayloadLength indicates the number of valid data bytes in

Payload.

For all standard CAN and LIN frames, PayloadLength cannot

exceed 8. Because this base unit always contains 8 bytes of

payload data, the entire frame is contained in the base unit, and

no additional payload units exist.

For CAN FD frames, PayloadLength can be 0–8, 12, 16, 20, 24,

32, 48, or 64. For FlexRay frames, PayloadLength is 0–254

bytes. If PayloadLength is 0–8, only the base unit exists. If

PayloadLength is 9 or greater, one or more payload units follow

the base unit. Additional payload units are provided in

increments of 8 bytes, to optimize efficiency for DMA

transfers. For example, if PayloadLength is 12, bytes 0–7 are in

the base unit Payload, bytes 8–11 are in the first byte of the next

payload unit, and the last 4 bytes of the next payload unit are

ignored.

In other words, each raw data frame can vary in length. You can

calculate each frame size (in bytes) using the following

pseudocode:

U16 FrameSize // maximum 272 for largest

FlexRay frame

FrameSize = 24; // 24 byte base unit

if (PayloadLength > 8)

FrameSize = FrameSize +

(U16)(PayloadLength - 1) AND 0xFFF8;

The last pseudocode line subtracts 1 and truncates to the

nearest multiple of 8 (using bitwise AND). This adds bytes for

additional payload units. For example, PayloadLength of

9 through 16 requires one additional payload unit of 8 bytes.

The NI-XNET example code helps you handle the

variable-length frame encoding details.

Payload 16 to 23 This element always uses 8 bytes in the logfile, but

PayloadLength determines the number of valid bytes.

Table 5-3. Base Unit Elements (Continued)

Element Byte Offset Description

Chapter 5 NI-XNET API for C

© National Instruments 5-429 NI-XNET Hardware and Software Manual

Payload Unit

The base unit PayloadLength element determines the number of additional payload

units (0–31).

Special Frames
The NI-XNET driver offers a few special frames not directly used in bus communication.

Delay Frame

A Delay frame is used during replay. When a frame with a Delay frame type is in the stream

output queue while the Interface:Output Stream Timing property is set to a replay mode, the

hardware delays for the requested time. The fields of the Delay frame are as follows:

Log Trigger Frame

A Log Trigger frame is a special frame that can be received by a Frame Stream Input session.

This frame is generated when a rising edge is detected on an external connection (PXI_Trig

or FrontPanel trigger). To enable the hardware to log this frame, you must use

nxConnectTerminals to connect the external connection to the internal LogTrigger

Table 5-4. Payload Unit Elements

Element Byte Offset Description

Payload 0 to 7 This element always uses 8 bytes in the logfile, but

PayloadLength determines the number of valid bytes.

Element Description

Timestamp Amount of time to delay. Note that this is not an

absolute time and is not related to any other time

in the replay frames. A time of 0.25 (that is,

absolute time of 6:00:00.250PM 12/31/1903)

will delay 250 ms.

Identifier 0 (Ignored)

Type nxFrameType_Special_Delay

Flags 0 (Ignored)

Info 0 (Ignored)

Payload Length 0

Payload N/A

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-430 ni.com

terminal. A Log Trigger frame is applicable to CAN, LIN, and FlexRay. The fields of the Log

Trigger frame are as follows:

Start Trigger Frame

A Start Trigger frame is a special frame that a Frame Stream Input session can receive. This

frame is generated when the interface is started. (Refer to Start Interface for more

information.) To enable the hardware to log this frame, you must enable the Interface:Start

Trigger Frames to Input Stream? property. A Start Trigger frame is applicable to CAN, LIN,

and FlexRay. The fields of the Start Trigger frame are as follows:

Bus Error Frame

A CAN Bus Error frame is a special that can be received by a Frame Stream Input session.

This frame is generated when a bus error is detected on the CAN bus. To enable the hardware

to log this frame, you must enable the Interface:Bus Error Frames to Input Stream? property.

Element Description

Timestamp Time when the trigger occurred.

Identifier 0

Type nxFrameType_Special_LogTrigger

Flags 0

Info 0

Payload Length 0

Payload N/A

Element Description

Timestamp Time when the interface started.

Identifier 0

Type nxFrameType_Special_StartTrigger

Flags 0

Info 0

Payload Length 0

Payload N/A

Chapter 5 NI-XNET API for C

© National Instruments 5-431 NI-XNET Hardware and Software Manual

A Bus Error frame is applicable to CAN and LIN. The fields of the Bus Error frame are as

follows:

CAN Frame

Element Description

Timestamp Time when the bus error was detected.

Identifier 0

Type nxFrameType_Special_CANBusError

Flags 0

Info 0

Payload Length 5 (may increase in the future)

Payload Byte 0: CAN Comm State

0 = Error Active

1 = Error Passive

2 = Bus Off

Byte 1: TX Error Counter

Byte 2: RX Error Counter

Byte 3: Detected Bus Error

0 = None (never returned)

1 = Stuff

2 = Form

3 = Ack

4 = Bit 1

5 = Bit 0

6 = CRC

Byte 4: Transceiver Error?

0 = no error

1 = error

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-432 ni.com

LIN Frame

Required Properties
When you create a new object in a database, the object properties may be:

• Optional: The property has a default value after creation, and the application does not

need to set the property when the default value is desired for the session.

• Required: The property has no default value after creation. An undefined required

property returns an error from nxCreateSession. A required property means you must

provide a value for the property after you create the object.

The following NI-XNET object classes have no required properties:

Element Description

Timestamp Time when the bus error was detected.

Identifier 0

Type nxFrameType_Special_LINBusError

Flags 0

Info 0

Payload Length 5 (may increase in the future)

Payload Byte 0: LIN Comm State

0 = Idle

1 = Active

2 = Inactive

Byte 1: Detected Bus Error

0 = None (never returned)

1 = UnknownId

2 = Form

3 = Framing

4 = Readback

5 = Timeout

6 = CRC

Byte 2: Identifier on bus

Byte 3: Received byte on bus

Byte 4: Expected byte on bus

Chapter 5 NI-XNET API for C

© National Instruments 5-433 NI-XNET Hardware and Software Manual

• Session

• System

• Device

• Interface

• Database

• ECU

• LIN Schedule

This section lists all required properties. Properties with a protocol prefix (for example,

FlexRay:) in the property name apply only a session that uses the specified protocol.

The Cluster object class requires the following properties:

• Baud Rate1

• FlexRay:Action Point Offset

• FlexRay:CAS Rx Low Max

• FlexRay:Channels

• FlexRay:Cluster Drift Damping

• FlexRay:Cold Start Attempts

• FlexRay:Cycle

• FlexRay:Dynamic Slot Idle Phase

• FlexRay:Listen Noise

• FlexRay:Macro Per Cycle

• FlexRay:Max Without Clock Correction Fatal

• FlexRay:Max Without Clock Correction Passive

• FlexRay:Minislot Action Point Offset

• FlexRay:Minislot

• FlexRay:Network Management Vector Length

• FlexRay:NIT

• FlexRay:Number of Minislots

• FlexRay:Number of Static Slots

• FlexRay:Offset Correction Start

• FlexRay:Payload Length Static

1 For FlexRay, Baud Rate always is required. For CAN and LIN, when you use a Frame I/O Stream session, you can specify
Baud Rate using either the XNET Cluster Baud Rate property or XNET Session Interface:Baud Rate property. For CAN and
LIN with other session modes, the XNET Cluster Baud Rate property is required.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-434 ni.com

• FlexRay:Static Slot

• FlexRay:Symbol Window

• FlexRay:Sync Node Max

• FlexRay:TSS Transmitter

• FlexRay:Wakeup Symbol Rx Idle

• FlexRay:Wakeup Symbol Rx Low

• FlexRay:Wakeup Symbol Rx Window

• FlexRay:Wakeup Symbol Tx Idle

• FlexRay:Wakeup Symbol Tx Low

• Tick

The Frame object class requires the following properties:

• FlexRay:Base Cycle

• FlexRay:Channel Assignment

• FlexRay:Cycle Repetition

• Identifier

• Payload Length

The Subframe object class requires the following property:

• Multiplexer Value

The Signal object class requires the following properties:

• Byte Order

• Data Type

• Number of Bits

• Start Bit

The LIN Schedule Entry object class requires the following properties:

• Delay

• Event Identifier

State Models
The following figures show the state model for the NI-XNET session and the associated

NI-XNET interface.

Chapter 5 NI-XNET API for C

© National Instruments 5-435 NI-XNET Hardware and Software Manual

The session controls the transfer of frame values between the interface (network) and the data

structures that can be accessed using the API. In other words, the session controls receive or

transmit of specific frames for the session.

The interface controls communication on the physical network cluster. Multiple sessions can

share the interface. For example, you can use one session for input on interface CAN1 and a

second session for output on interface CAN1.

Although most state transitions occur automatically when you call the the appropriate

nxRead or nxWrite function, you can perform a more specific transition using nxStart and

nxStop. If you invoke a transition that has already occurred, the transition is not repeated,

and no error is returned.

Session State Model

For a description of each state, refer to Session States. For a description of each transition,

refer to Session Transitions.

Figure 5-5. Session State Model

Interface State Model

For a description of each state, refer to Interface States. For a description of each transition,

refer to Interface Transitions.

Create Start Session

Stopped Started Communicating

Clear

Set Session

Property

Stop Session

Interface

Communicating

Interface

Not Communicating

OR

Stop Session

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-436 ni.com

Figure 5-6. Interface State Model

Session States

Stopped

The session initially is created in the Stopped state. In the Stopped state, the session does not

transfer frame values to or from the interface.

While the session is Stopped, you can change properties specific to this session. You can set

any property in the Session Property Node except those in the Interface category (refer to

Stopped in Interface States).

While the session is Started, you cannot change properties of objects in the database, such as

frames or signals. The properties of these objects are committed when the session is created.

Started

In the Started state, the session is started, but is waiting for the associated interface to be

started also. The interface must be communicating for the session to exchange data on the

network.

For most applications, the Started state is transitory in nature. When you call the appropriate

nxRead or nxWrite function or nxStart using defaults, the interface is started along with

the session. Once the interface is Communicating, the session automatically transitions to

Communicating without interaction by your application.

If you call nxStart with the scope of Session Only, the interface is not started. You can use

this advanced feature to prepare multiple sessions for the interface, then start communication

for all sessions together by starting the interface (nxStart with scope of Interface Only).

Communicating

In the Communicating state, the session is communicating on the network with remote ECUs.

Frame or signal values are received for an input session. Frame or signal values are

Start Interface

Stopped Started Communicating

Set Interface

Property

Stop Interface

Comm State

Communicating

Comm State

Not communicating

OR

Stop Interface

Chapter 5 NI-XNET API for C

© National Instruments 5-437 NI-XNET Hardware and Software Manual

transmitted for an output session. Your application accesses these values using the appropriate

nxRead or nxWrite function.

Session Transitions

Create

When the session is created, the database, cluster, and frame properties are committed to the

interface. For this configuration to succeed, the interface must be in the Stopped state. There

is one exception: You can create a Frame Stream Input session while the interface is

communicating.

When your application calls nxCreateSession, the session is created. To ensure that all

sessions for the interface are created prior to start, you typically place all calls to

nxCreateSession in sequence prior to the first use of the appropriate nxRead or nxWrite

function (for example, prior to the main loop).

Clear

When the session is cleared, it is stopped (no longer communicates), and then all its resources

are removed. This clears the session explicitly. To change the properties of database objects

that a session uses, you may need to call nxdbSetProperty to change those properties, then

recreate the session.

Set Session Property

While the session is Stopped, you can change properties specific to this session. You can set

any property in the XNET Session Property Node except those in the Interface category (refer

to Stopped in Interface States).

You cannot set properties of a session in the Started or Communicating state. If there is an

exception for a specific property, the property help states this.

Start Session

For an input session, you can start the session simply by calling the appropriate nxRead

function. To read received frames, the appropriate nxRead function performs an automatic

Start of scope Normal, which starts the session and interface.

For an output session, if you leave the Auto Start? property at its default value of true, you

can start the session simply by calling the appropriate nxWrite function. The auto-start

feature of the appropriate nxWrite function performs a Start of scope Normal, which starts

the session and interface.

To start the session prior to calling the appropriate nxRead or nxWrite function, you can call

nxStart. The nxStart default scope is Normal, which starts the session and interface. You

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-438 ni.com

also can use nxStart with scope of Session Only (this Start Session transition) or Interface

Only (the interface Start Interface transition).

Stop Session

You can stop the session by calling nxStop. nxStop provides the same scope as nxStart,

allowing you to stop the session, interface, or both (normal scope).

When the session stops, the underlying queues are not flushed. For example, if an input

session receives frames, then you call nxStop, you still can call the appropriate nxRead

function to read the frame values from the queues. To flush the queues of a session, call

nxFlush.

Interface Communicating

This transition occurs when the session interface enters the Communicating state.

Interface Not Communicating

This transition occurs when the session interface exits the Communicating state.

The session also exits its Communicating state when the session stops due to nxStop.

Interface States

Stopped

The interface always exists, because it represents the communication controller of the

NI-XNET hardware product port. This physical port is wired to a cable that connects to one

or more remote ECUs.

The NI-XNET interface initially powers on in the Stopped state. In the Stopped state, the

interface does not communicate on its port.

While the interface is Stopped, you can change properties specific to the interface. These

properties are contained within the Session Property Node Interface category. When more

than one session exists for a given interface, the Interface category properties provide shared

access to the interface configuration. For example, if you set an interface property using one

session, then get that same property using a second session, the returned value reflects the

change.

Properties that you change in the interface are not saved from one execution of your

application to another. When the last session for an interface is cleared, the interface

properties are restored to defaults.

Chapter 5 NI-XNET API for C

© National Instruments 5-439 NI-XNET Hardware and Software Manual

Started

In the Started state, the interface is started, but it is waiting for the associated communication

controller to complete its integration with the network.

This state is transitory in nature, in that your application does not control transition out of the

Started state. For CAN and LIN, integration with the network occurs in a few bit times, so the

transition is effectively from Stopped to Communicating. For FlexRay, integration with the

network entails synchronization with global FlexRay time, which can take as long as

hundreds of milliseconds.

Communicating

In the Communicating state, the interface is communicating on the network. One or more

communicating sessions can use the interface to receive and/or transmit frame values.

The interface remains in the Communicating state as long as communication is feasible. For

information about how the interface transitions in and out of this state, refer to Comm State

Communicating and Comm State Not Communicating.

Interface Transitions

Set Interface Property

While the interface is Stopped, you can change interface-specific properties. These properties

are in the Session Property Node Interface category. When more than one session exists for a

given interface, the Interface category properties provide shared access to the interface

configuration. For example, if you set an interface property using one session, then get that

same property using a second session, the returned value reflects the change.

You cannot set properties of the interface while it is in the Started or Communicating state. If

there is an exception for a specific property, the property help states this.

Start Interface

You can request the interface start in two ways:

• The appropriate nxRead or nxWrite function method: The automatic start described

for the Start Session transition uses a scope of Normal, which requests the interface and

session start.

• nxStart method: If you call this function with scope of Normal or Interface Only, you

request the interface start.

After you request the interface start, the actual transition depends on whether you have

connected the interface start trigger. You connect the start trigger by calling

nxConnectTerminals with a destination of Interface Start Trigger, or by setting the XNET

Session Interface:Source Terminal:Start Trigger property.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-440 ni.com

The Start Interface transition occurs as follows, based on the start trigger connection:

• Disconnected (default): Start Interface occurs as soon as it is requested (the appropriate

nxRead or nxWrite function or nxStart).

• Connected: Start Interface occurs when the connected source terminal transistions

low-to-high (for example, pulses). Every Start Interface transition requires a new

low-to-high transition, so if your application stops the interface (for example, nxStop),

then restarts the interface, the connected source terminal must transition low-to-high

again.

Stop Interface

Under normal conditions, the interface is stopped when the last session is stopped (or

cleared). In other words, the interface communicates as long as at least one session is in use.

If a significant number of errors occur on the network, the communication controller may stop

the interface on its own. For more information, refer to Comm State Not Communicating.

If your application calls nxStop with scope of Interface Only, that immediately transitions

the interface to the Stopped state. Use this feature with care, because it affects all sessions that

use the interface and is not limited to the session passed to nxStop. In other words, using

nxStop with a scope of Interface Only stops communication by all sessions simultaneously.

Comm State Communicating

This transition occurs when the interface is integrated with the network.

For CAN, this occurs when communication enters Error Active or Error Passive state. For

information about the specific CAN interface communication states, refer to nxReadState.

For FlexRay, this occurs when communication enters one Normal Active or Normal Passive

state. For information about the specific FlexRay interface communication states, refer to

nxReadState.

For LIN, this occurs when communication enters the Active state. The interface remains

communicating while in the Active or Inactive state (not affected by bus activity). For more

information about the specific LIN interface communication states, refer to nxReadState.

Comm State Not Communicating

This transition occurs when the interface no longer is integrated with the network.

For CAN, this occurs when communication enters Bus Off or Idle state. For information about

the specific CAN interface communication states, refer to nxReadState.

Chapter 5 NI-XNET API for C

© National Instruments 5-441 NI-XNET Hardware and Software Manual

For FlexRay, this occurs when communication enters the Halt, Config, Default Config, or

Ready state. For information about the specific FlexRay interface communication states, refer

to nxReadState.

For LIN, this occurs when communication enters the Idle state. For more information about

the specific LIN interface communication states, refer to nxReadState.

CAN

NI-CAN
NI-CAN is the legacy application programming interface (API) for National Instruments

CAN hardware. Generally speaking, NI-CAN is associated with the legacy CAN hardware,

and NI-XNET is associated with the new NI-XNET hardware.

If you are starting a new application, you typically use NI-XNET (not NI-CAN).

Compatibility

If you have an existing application that uses NI-CAN, a compatibility library is provided so

that you can reuse that code with a new NI-XNET CAN product. Because the features of the

compatibility library apply to the NI-CAN API and not NI-XNET, it is described in the

NI-CAN documentation. For more information, refer to the NI-CAN Hardware and Software

Manual.

NI-XNET CAN Products in MAX

When the compatibility library is installed, NI-XNET CAN products also are visible in the

NI-CAN branch under Devices and Interfaces. Here you can configure the devices for use

with the NI-CAN API. This configuration is independent from the configuration of the same

device for NI-XNET under the root of Devices and Interfaces. The following figure shows

the same NI-XNET device, the NI PCI-8513, configured for use with the NI-XNET API

(interfaces CAN1 and CAN2) and with the NI-CAN API (interfaces CAN3 and CAN4).

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-442 ni.com

Transition

If you have an existing application that uses NI-CAN and intend to use only new NI-XNET

hardware from now on, you may want to transition your code to NI-XNET.

NI-XNET unifies many concepts of the earlier NI-CAN API, but the key features are similar.

The following table lists NI-CAN terms and analogous NI-XNET terms.

Table 5-5. NI-CAN and NI-XNET Terms

NI-CAN Term NI-XNET Term Comment

CANdb file Database NI-XNET supports more database file formats than

the NI-CAN Channel API, including the FIBEX

format.

Message Frame The term Frame is the industry convention for the bits

that transfer on the bus. This term is used in standards

such as CAN.

Channel Signal The term Signal is the industry convention. This term

is used in standards such as FIBEX.

Chapter 5 NI-XNET API for C

© National Instruments 5-443 NI-XNET Hardware and Software Manual

CAN Timing Type and Session Mode
For each XNET Frame CAN:Timing Type property value, this section describes how the

frame behaves for each XNET session mode.

An input session receives the CAN data frame from the network, and an output session

transmits the CAN data frame. The CAN data frame data (payload) is mapped to/from signal

values.

You use CAN remote frames to request the associated CAN data frame from a remote ECU.

When Timing Type is Cyclic Remote or Event Remote, an input session transmits the CAN

remote frame, and an output session receives the CAN remote frame.

Cyclic Data

The data frame transmits in a cyclic (periodic) manner. The XNET Frame CAN:Transmit

Time property defines the time between cycles.

Channel API Task Session

(Signal I/O)

Unlike NI-CAN, NI-XNET supports simultaneous

use of channel (signal) I/O and frame I/O.

Frame API CAN

Object (Queue

Length Zero)

Session (Frame I/O

Single-Point)

The NI-CAN CAN Object provided both input (read)

and output (write) in one object. NI-XNET provides a

different object for each direction, for better control.

If the NI-CAN queue length for a direction is zero,

that is analogous to NI-XNET Frame I/O

Single-Point.

Frame API CAN

Object (Queue

Length Nonzero)

Session (Frame I/O

Queued)

If the NI-CAN queue length for a direction is nonzero,

that is analogous to NI-XNET Frame I/O Queued.

Frame API

Network Interface

Object

Session (Frame I/O

Stream)

The NI-CAN Network Interface Object provided both

input (read) and output (write) in one object.

NI-XNET provides a different object for each

direction, for better control.

Interface Interface NI-CAN started interface names at CAN0, but

NI-XNET starts at CAN1 (or FlexRay1).

Table 5-5. NI-CAN and NI-XNET Terms (Continued) (Continued)

NI-CAN Term NI-XNET Term Comment

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-444 ni.com

Signal Input Single-Point, Signal Input Waveform, Signal Input XY, Frame Input
Single-Point, and Frame Input Queued Modes

You specify the CAN frame (or its signals) when you create the session. When the CAN data

frame is received, a subsequent call to the appropriate nxRead function returns its data. For

information about how the data is represented for each mode, refer to Session Modes.

If the CAN remote frame is received, it is ignored (with no effect on the appropriate nxRead

function).

Frame Input Stream Mode

You specify the CAN cluster when you create the session, but not the specific CAN frame.

When the CAN data frame is received, a subsequent call to the appropriate nxRead function

returns its data.

If the CAN remote frame is received, a subsequent call to the appropriate nxRead function

for the stream returns it.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY, Frame Output
Single-Point, and Frame Output Queued Modes

You specify the CAN frame (or its signals) when you create the session. When you write data

using the appropriate nxWrite function, the CAN data frame is transmitted onto the network.

For information about how the data is represented for each mode, refer to Session Modes.

When the session and its associated interface are started, the first cycle occurs, and the CAN

data frame transmits. After that first transmit, the CAN data frame transmits once every cycle,

regardless of whether the appropriate nxWrite function is called. If no new data is available

for transmit, the next cycle transmits using the previous CAN data frame (repeats the

payload).

If you pass the CAN remote frame to the appropriate nxWrite function, it is ignored.

Frame Output Stream Mode

You specify the CAN cluster when you create the session, but not the specific CAN frame.

When you write the CAN data frame using the nxWrite function, it is transmitted onto the

network.

The stream I/O modes do not use the database-specified timing for frames. Therefore, CAN

data and CAN remote frames transmit only when you pass them to the nxWrite function, and

do not transmit cyclically afterward.

When using a stream output timing of immediate mode, data is transmitted onto the network

as soon as possible.

Chapter 5 NI-XNET API for C

© National Instruments 5-445 NI-XNET Hardware and Software Manual

When using a stream output timing of either Replay Exclusive or Replay Inclusive, data is

transmitted onto the network based on the timestamps in the frame.

Event Data

The data frame transmits in an event-driven manner. For output sessions, the event is the

appropriate nxWrite function. The XNET Frame CAN:Transmit Time property defines the

minimum interval.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY, Frame Input
Single-Point, and Frame Input Queued Modes

The behavior is the same as Cyclic Data.

Frame Input Stream Mode

The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the

database-specified timing for all frames, you can read either CAN data or CAN remote

frames.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY, Frame Output
Single-Point, and Frame Output Queued Modes

The behavior is the same as Cyclic Data, except that the CAN data frame does not continue

to transmit cyclically after the data from the appropriate nxWrite function has transmitted.

Because the database-specified timing for the frame is event based, after the CAN data frames

for the appropriate nxWrite function have transmitted, the CAN data frame does not transmit

again until a subsequent call to the appropriate nxWrite function.

Frame Output Stream Mode

The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the

database-specified timing for all frames, you can write either CAN data or CAN remote

frames.

Cyclic Remote

The CAN remote frame transmits in a cyclic (periodic) manner, followed by the associated

CAN data frame as a response.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY, Frame Input
Single-Point, and Frame Input Queued Modes

You specify the CAN frame (or its signals) when you create the session. When the CAN data

frame is received, a subsequent call to the appropriate nxRead function returns its data. For

information about how the data is represented for each mode, refer to Session Modes.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-446 ni.com

When the session and its associated interface are started, the first cycle occurs, and the CAN

remote frame transmits. This CAN remote frame requests data from the remote ECU, which

soon responds with the associated CAN data frame (same identifier). After that first transmit,

the CAN remote frame transmits once every cycle. You do not call the appropriate nxWrite

function for the session.

The CAN remote frame cyclic transmit is independent of the corresponding CAN data frame

reception. When NI-XNET transmits a CAN remote frame, it transmits a CAN remote frame

again CAN:Transmit Time later, even if no CAN data frame is received.

Frame Input Stream Mode

The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the

database-specified timing for all frames, you can read either CAN data or CAN remote

frames.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY, Frame Output
Single-Point, and Frame Output Queued Modes

You specify the CAN frame (or its signals) when you create the session. When you write data

using the appropriate nxWrite function, the CAN data frame is transmitted onto the network

when the associated CAN remote frame is received (same identifier). For information about

how the data is represented for each mode, refer to Session Modes.

Although the session receives the CAN remote frame, you do not call nxRead to read that

frame. NI-XNET detects the received CAN remote frame, and immediately transmits the next

CAN data frame. Your application uses the appropriate nxWrite function to provide the

CAN data frames used for transmit. When you call the appropriate nxWrite function, the

CAN data frame does not transmit immediately, but instead waits for the associated CAN

remote frame to be received.

Frame Output Stream Modes

The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the

database-specified timing for all frames, you can write either CAN data or CAN remote

frames.

Event Remote

The CAN remote frame transmits in an event-driven manner, followed by the associated CAN

data frame as a response. For input sessions, the event is the appropriate nxWrite function.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY, Frame Input
Single-Point, and Frame Input Queued Modes

You specify the CAN frame (or its signals) when you create the session. When the CAN

data frame is received, its data is returned from a subsequent call to the appropriate nxRead

Chapter 5 NI-XNET API for C

© National Instruments 5-447 NI-XNET Hardware and Software Manual

function. For information about how the data is represented for each mode, refer to Session

Modes.

This CAN Timing Type and mode combination is somewhat advanced, in that you must call

both the appropriate nxRead and nxWrite functions. You must call the appropriate nxWrite

function to provide the event that triggers the CAN remote frame transmit. When you call the

appropriate nxWrite function, the data is ignored, and one CAN remote frame transmits as

soon as possible. Each call to the appropriate nxWrite function transmits only one CAN

remote frame, even if you provide multiple signal or frame values. When the remote ECU

receives the CAN remote frame, it responds with a CAN data frame, which is received and

read using the appropriate nxRead function.

Frame Input Stream Modes

The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the

database-specified timing for all frames, you can read either CAN data or CAN remote

frames.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY, Frame Output
Single-Point, and Frame Output Queued Modes

The behavior is the same as Cyclic Remote. When you write data using the appropriate

nxWrite function, the CAN data frame transmits onto the network when the associated CAN

remote frame is received (same identifier). Unlike Cyclic Data, the remote ECU sends the

associated CAN remote frame in an event-driven manner, but the behavior is the same

regarding the appropriate nxWrite function and the CAN data frame transmit.

Frame Output Stream Mode

The behavior is the same as Cyclic Data. Because the stream I/O modes ignore the

database-specified timing for all frames, you can write either CAN data or CAN remote

frames.

CAN Transceiver State Machine
The CAN hardware internally runs a state machine for controlling the transceiver state. The

transceiver can either be an internal transceiver or an external transceiver. On hardware that

contains software selectable transceivers, you can configure the selected transceriver by

setting the Interface:CAN:Transceiver Type property. If you choose an external transceiver,

you can configure its behaviors by setting the Interface:CAN:External Transceiver Config

property. Both bus conditions as well as the Interface:CAN:Transceiver State property can

affect the current transceiver state. The following state machine shows the different states of

the transceiver state machine and how the various states transition.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-448 ni.com

T# Condition From To

1 Power-on/close last session Any Power-on

2 Interface is started Power-on Normal

3 Interface:CAN:Transceiver State with value Normal Power-on Normal

4 Interface:CAN:Transceiver State with value Normal Sleep Normal

5 Interface:CAN:Transceiver State with value Normal SW Wakeup Normal

6 Interface:CAN:Transceiver State with value Normal SW High

Speed

Normal

7 Interface:CAN:Transceiver State with value Sleep Normal Sleep

8 Interface:CAN:Transceiver State with value Sleep SW Wakeup Sleep

9 Wakeup pattern received on the bus Sleep Normal

Power-On

Normal

Single-Wire

Wakeup
Sleep

Single-Wire

High Speed

T1

T2/T3

T4/T9

T5
T6

T7

T8

T10

T11

T12

T13

T14

T15

T16

Transition Triggered by NI-XNET API Call

Transition Triggered by NI-XNET API Call or Bus Conditions

Chapter 5 NI-XNET API for C

© National Instruments 5-449 NI-XNET Hardware and Software Manual

FlexRay

FlexRay Timing Type and Session Mode
For each XNET Frame FlexRay:Timing Type property value, this section describes how the

frame behaves for each XNET session mode.

An input session receives the FlexRay data frame from the network, and an output session

transmits the FlexRay data frame. The FlexRay data frame data (payload) is mapped to/from

signal values.

You use FlexRay null frames in the static segment to indicate that no new payload exists for

the frame. In the dynamic segment, if no new payload exists for the frame, it simply does not

transmit (no frame).

For NI-XNET input sessions, the Timing Type does not directly impact the representation of

data from the appropriate nxRead function.

For NI-XNET output sessions, the Timing Type determines whether to transmit a data frame

when no new payload data is available.

Cyclic Data

The data frame transmits in a cyclic (periodic) manner.

10 Interface:CAN:Transceiver State with value SW

Wakeup

Power-on SW Wakeup

11 Interface:CAN:Transceiver State with value SW

Wakeup

Normal SW Wakeup

12 Interface:CAN:Transceiver State with value SW

Wakeup

Sleep SW Wakeup

13 Interface:CAN:Transceiver State with value SW

HighSpeed

Power-on SW

High Speed

14 Interface:CAN:Transceiver State with value SW

HighSpeed

Normal SW

High Speed

15 Interface:CAN:Transceiver State with value SW

HighSpeed

Sleep SW

High Speed

16 Interface:CAN:Transceiver State with value SW

HighSpeed

SW Wakeup SW

High Speed

T# Condition From To

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-450 ni.com

If the frame is in the static segment, the rate can be once per cycle (FlexRay:Cycle

Repetition 1), once every N cycles (FlexRay:Cycle Repetition N), or multiple times per cycle

(FlexRay:In Cycle Repetitions:Enabled?).

If the frame is in the dynamic segment, the rate is once per cycle.

If no new payload data is available when it is time to transmit, the payload data from the

previous transmit is repeated.

Signal Input Single-Point, Signal Input Waveform, and Signal Input XY Modes

You specify the FlexRay signals when you create the session, and a specific FlexRay data

frame contains each signal. When the FlexRay data frame is received, a subsequent call

to the appropriate nxRead function returns its data. For information about how the data is

represented for each mode, refer to Session Modes.

If a FlexRay null frame is received, it is ignored (no effect on the nxRead function). FlexRay

null frames are not used to map signal values.

Frame Input Queued and Frame Input Single-Point Modes

You specify the FlexRay frame(s) when you create the session. When the FlexRay data frame

is received, a subsequent call to the appropriate nxRead function returns its data. For

information about how the data is represented for each mode, refer to Session Modes.

If a FlexRay null frame is received, it is ignored (not returned).

Frame Input Stream Mode

You specify the FlexRay cluster when you create the session, but not the specific FlexRay

frames. When any FlexRay data frame is received, a subsequent call to the appropriate

nxRead function returns it.

If the XNET Session Interface:FlexRay:Null Frames To Input Stream? property is true, and

FlexRay null frames are received, a subsequent call to nxRead for the stream returns them.

If Null Frames To Input Stream? is false (default), FlexRay null frames are ignored (not

returned). You can determine whether each frame value is data or null by evaluating the type

element (refer to the appropriate nxRead function).

Signal Output Single-Point, Signal Output Waveform, Signal Output XY, Frame Output
Single-Point, and Frame Output Queued Modes

You specify the FlexRay frame (or its signals) when you create the session. When you write

data using the appropriate nxWrite function, the FlexRay data frame is transmitted onto the

network. For information about how the data is represented for each mode, refer to Session

Modes.

Chapter 5 NI-XNET API for C

© National Instruments 5-451 NI-XNET Hardware and Software Manual

When the session and its associated interface are started, the FlexRay data frame transmits

according to its rate. After that first transmit, the FlexRay data frame transmits according to

its rate, regardless of whether the appropriate nxWrite function is called. If no new data is

available for transmit, the next cycle transmits using the previous FlexRay data frame (repeats

the payload).

If the frame is contained in the static segment, a FlexRay data frame transmits at all times.

The FlexRay null frame is not transmitted. If you pass the FlexRay null frame to the

appropriate nxWrite function, it is ignored.

If the frame is contained in the dynamic segment, a FlexRay data frame transmits every cycle.

The dynamic frame minislot is always used.

Frame Output Stream Mode

This session mode is not supported for FlexRay.

Event Data

The data frame transmits in an event-driven manner. The event is the appropriate nxWrite

function.

Because FlexRay is a time-driven protocol, the minimum interval between events is specified

based on the FlexRay cycle. This minimum interval is configured in the same manner as a

Cyclic frame.

If the frame is in the static segment, the interval can be once per cycle (FlexRay:Cycle

Repetition 1), once every N cycles (FlexRay:Cycle Repetition N), or multiple times per cycle

(FlexRay:In Cycle Repetitions:Enabled?).

If the frame is in the dynamic segment, the interval is once per cycle.

If no new event (payload data) is available when it is time to transmit, no frame transmits.

In the static segment, this lack of new data is represented as a null frame.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY, Frame Input
Single-Point, Frame Input Queued, and Frame Input Stream Modes

The behavior is the same as Cyclic Data.

Signal Output Single-Point, Signal Output Waveform, Signal Output XY, Frame Output
Single-Point, and Frame Output Queued Modes

The behavior is similar to Cyclic Data, except that the FlexRay data frame does not continue

to transmit cyclically after the data from the appropriate nxWrite function has transmitted.

Because the database-specified timing for the frame is event based, after the FlexRay data

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-452 ni.com

frames for the appropriate nxWrite function have transmitted, the FlexRay data frame does

not transmit again until a subsequent call to the appropriate nxWrite function.

If the frame is contained in the static segment, a FlexRay null frame transmits when no new

data is available (no new call to the appropriate nxWrite function). If you pass the FlexRay

null frame to the appropriate nxWrite function, it is ignored.

If the frame is contained in the dynamic segment, the frame does not transmit when no new

data is available. The dynamic frame minislot is used only when new data is provided to the

appropriate nxWrite function.

Frame Output Stream Mode

This session mode is not supported for FlexRay.

Protocol Data Units (PDUs) in NI-XNET

Introduction to Protocol Data Units

Protocol Data Units (PDUs) are encapsulated network data that are a way to communicate

information between independent protocols, such as in a CAN-FlexRay gateway. You can

think of them as containers of signals. The container (PDU) can be in multiple frames. A

single frame can contain multiple PDUs.

Relationship Between Frames, Signals, and PDUs

Frames and PDUs

The frame element contains an arbitrary number of nonoverlapping PDUs. A frame can have

multiple PDUs, and the same PDU can exist in different frames. Figure 5-7 shows the

one-to-n (one PDU in n number of frames) and n-to-one (n number of PDUs in one frame)

relationships.

Chapter 5 NI-XNET API for C

© National Instruments 5-453 NI-XNET Hardware and Software Manual

Figure 5-7. Relationships Between PDUs and Frames

Signals and PDUs

A PDU acts like a container for a logical group of signals.

Figure 5-8 represents the relationship between frames, PDUs, and signals.

Figure 5-8. Relationships Between Frames, PDUs, and Signals

Protocol Data Unit Properties

Start Bit

The start bit of the PDU within the frame indicates where in the frame the particular PDU data

starts.

One PDU in n (Three) Frames

n (Three) PDUs in One Frame

PDU

Frame 1 Frame 2 Frame 3

Frame

PDU 1 PDU 2 PDU 3

Signals

PDUs

Frames

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-454 ni.com

Length

The PDU length defines the PDU size in bytes.

Update Bit

The receiver uses the update bit to determine whether the frame sender has updated data in a

particular PDU. Update bits allow for the decoupling of a signal update from a frame

occurrence. Update bits is an optional PDU property.

PDU Timing and Frame Timing

Because the same PDU can exist in multiple Frames, PDUs can have flexible transmission

schedules. For example, if PDU A is present in Frame 1 (Timing 1) as well as in Frame 2

(Timing 2), the receiving node receives it as per the different timings of the containing frames.

(Refer to Figure 5-9.)

Figure 5-9. PDU Timing and Frame Timing

Programming PDUs with NI-XNET

You can use PDUs in two ways to create a session for read/write:

• Create a signal I/O session using signals within the PDU. To do this, use the signal name

as you would with signals contained within a frame.

• Create an I/O session to read/write the raw PDU data. To do this, pass the PDU(s) to the

special Create Session modes for PDU. (Refer to nxCreateSession for more

information.) These modes operate like the equivalent frame modes.

Important points to consider while programming with PDUs:

• PDUs currently are supported only on FlexRay interfaces.

• On the receive side, if the PDU has an update bit associated with it, the NI-XNET driver

sets the update bit when new data is received for the particular PDU from the bus.

Otherwise, if no new data is received for this PDU, the PDU is discarded. On the transmit

side, the NI-XNET driver sets the update bit when it detects that new data is available for

the particular PDU in the PDUs queue or table. The NI-XNET driver clears the bit if no

new data is detected in the PDU queue or table. If the frame containing the PDUs has

cyclic timing, even if no new data is available for any of the PDUs in the frame, the frame

is transmitted across the bus with the update bits all cleared. However, if the PDU

PDUs

Frames

Frame 1, Timing 1 Frame 2, Timing 2 Frame 3, Timing 3

Chapter 5 NI-XNET API for C

© National Instruments 5-455 NI-XNET Hardware and Software Manual

containing the frame has event timing, it is transmitted across the bus only if at least one

PDU that it contains has new data (with update bit set).

• The read-only XNET Cluster PDUs Required? property is useful when programming

traversal through the database, as it indicates whether to consider PDUs in the traversal.

FlexRay Startup/Wakeup
Use the FlexRay Startup mechanism to take an idle interface and properly integrate into a

FlexRay cluster.

If your cluster does not support the wakeup mechanism, this process is straightforward. After

creating your FlexRay session, call nxStart, which causes the interface to transition from

Default Config to Ready, where it attempts to integrate with the FlexRay cluster. If your node

is a coldstart node, it initiates integration; otherwise, it attempts to integrate with a running

FlexRay cluster. Once integration has occurred, the interface transitions to Normal Active,

where it typically remains while it is communicating with other FlexRay nodes. When you

call nxStop, the interface transitions back to Default Config (via Halt) to be ready to start

the process again.

If your cluster supports the wakeup mechanism, the process becomes a bit more complex. The

route the XNET hardware takes depends on whether the interface is currently awake or asleep.

By default, XNET hardware starts in the awake state, and the startup process is exactly the

same as if your cluster does not support wakeup. However, to use the wakeup mechanism your

cluster is configured for, before calling nxStart, you need to put the interface to sleep. You

can do this in one of two ways. First, you can set the Interface:FlexRay:Sleep property to

nxFlexRaySleep_LocalSleep. This performs the one-time action of putting the interface

to sleep. Alternately, you can set the Interface:FlexRay:AutoAsleepWhenStopped property to

true. This puts the interface to sleep immediately. It also puts the interface to sleep

automatically every time the interface is stopped, so the startup process is the same between

your first start and subsequent starts.

If your interface is asleep when the nxStart API call is invoked, the interface progresses to

Ready, where it waits for all connected channels to be awake before attempting to integrate

with the cluster. After all connected channels are awake, the integration process occurs

exactly like a cluster that does not support wakeup.

If you want your interface to wake up a sleeping network, you must configure your FlexRay

interface to wake up the bus. You can do this in two ways. The first way is to set the

Interface:FlexRay:Sleep property to nxFlexRaySleep_RemoteWake after you put your

FlexRay interface to sleep. When you invoke the nxStart API call, the interface progresses

though the Ready state and into the Wakeup state. In Wakeup, the interface generates the

wakeup pattern on the FlexRay channel configured by the Interface:FlexRay:Wakeup

Channel property and transitions back to Ready. If you have a multichannel bus, a separate

node on the bus wakes up the other channel.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-456 ni.com

After all connected channels are awake, the integration process occurs exactly like a cluster

that does not support wakeup. The second way is to invoke the nxStart API call to start the

interface. The interface progresses to Ready, where it waits for all connected channels to be

awake before attempting to integrate with the cluster. During this time, if you set the

Interface:FlexRay:Sleep property to nxFlexRaySleep_RemoteWake, the interface

transitions into Wakeup, where it generates the wakeup pattern on the FlexRay channel

configured by the Interface:FlexRay:Wakeup Channel property and transitions back to

Ready. If you have a multichannel bus, a separate node on the bus wakes up the other channel.

After all connected channels are awake, the integration process occurs exactly like a cluster

that does not support wakeup.

Power On Reset

Default Config

Config

Wakeup Ready Halt

Normal Active Normal Passive

Transition Triggered by NI-XNET API Call

Transition Triggered by NI-XNET API Call or Internal Conditions
Transition Triggered by NI-XNET API Call or Bus Conditions

T2

T3

T4

T5
T8

T7

T6

T1

T9

Chapter 5 NI-XNET API for C

© National Instruments 5-457 NI-XNET Hardware and Software Manual

LIN

LIN Frame Timing and Session Mode
This section describes the LIN behavior for each XNET session mode. As context for

describing LIN frame transfer on the network, this section uses the timing concepts described

in the LIN section of Cyclic and Event Timing.

An input session receives the LIN data frame (payload) from the network, and an output

session transmits the LIN data frame. The LIN data frame payload is mapped to/from signal

values.

For NI-XNET input sessions, the timing of each LIN schedule entry does not directly impact

the representation of data from the appropriate nxRead function.

T# Condition From To

1 Start trigger received1 Default Config Config2

2 Startup process initiated Config Ready

3 Remote Wakeup initiated (Interface:FlexRay:Sleep

property set to nxFlexRaySleep_RemoteWake)

Ready Wakeup

4 Wakeup channel awake Wakeup Ready

5 All connected channels are awake and integration is

successful3

Ready Normal Active

6 Clock Correction Failed counter reached Maximum

Without Clock Correction Passive Value

Normal Active Normal

Passive

7 Number of valid correction terms reached the passive

to active limit

Normal

Passive

Normal Active

8 1. Clock Correction Failed counter reached

Maximum Without Clock Correction Fatal Value

2. Interface stopped (nxStop)

9 Interface stopped (nxStop) Halt Default Config

1If you are not using synchronization, the nxStart API call internally generates the Start Trigger.

2In NI-XNET, this is a transitory state under normal situations. The Config state is nontransitory only if the startup procedure
fails to continue.

3Any of the following conditions can satisfy all channels awake: the wakeup pattern was transmitted or received on all
connected channels, a local wakeup is requested, or the interface is not asleep.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-458 ni.com

For NI-XNET output sessions, the timing of each LIN schedule entry determines whether to

transmit a data frame when no new payload data is available.

You can configure the NI-XNET LIN interface to run as the LIN master by requesting a

schedule (nxWriteState). If the NI-XNET LIN interface runs as a LIN slave (default), a

remote ECU on the network must execute schedules as LIN master for these modes to operate.

Cyclic

The LIN data frame transmits in a cyclic (periodic) manner.

This implies that the LIN master is running a continuous schedule, and the LIN data frame is

contained within an unconditional schedule entry.

If no new payload data is available when it is time to transmit, the payload data from the

previous transmit is repeated.

Signal Input Single-Point, Signal Input Waveform, and Signal Input XY Modes

You specify the signals when you create the session, and a specific LIN data frame contains

each signal. When the LIN data frame is received, a subsequent call to the appropriate

nxRead function returns its signal data. For information about how the data is represented for

each mode, refer to Session Modes.

Frame Input Queued and Frame Input Single-Point Modes

You specify the LIN frame(s) when you create the session. When the LIN data frame is

received, a subsequent call to the appropriate nxRead function returns its data. For

information about how the data is represented for each mode, refer to Session Modes.

Frame Input Stream Mode

You specify the LIN cluster when you create the session, but not the specific LIN frames.

When any LIN data frame is received, a subsequent call to the appropriate nxRead function

returns it.

Signal Output Single-Point, Signal Output XY, Frame Output Single-Point, and Frame Output
Queued Modes

You specify the LIN frame (or its signals) when you create the session. When you write data

using the appropriate nxWrite function, the LIN data frame is transmitted onto the network.

For information about how the data is represented for each mode, refer to Session Modes.

When the session and its associated interface are started, the LIN data frame transmits

according to its schedule entry. Assuming that the LIN frame is contained in only one entry

of the continuous schedule, the time between frame transmissions is the same as the time to

execute the entire schedule (all entries). After that first transmit, the LIN data frame transmits

Chapter 5 NI-XNET API for C

© National Instruments 5-459 NI-XNET Hardware and Software Manual

according to its schedule entry, regardless of whether the appropriate nxWrite function is

called. If no new data is available for transmit, the next cycle transmits using the previous LIN

data frame (repeats the payload).

Signal Output Waveform Mode

If the NI-XNET interface runs as a LIN master, NI-XNET executes schedules, and therefore

controls the timing of LIN frames. When running as a LIN master, this session mode is

supported, and NI-XNET resamples the waveform data such that it transmits at the scheduled

frame rates.

If the NI-XNET interface runs as a LIN slave (default), this session mode is not supported.

When running as a LIN slave, NI-XNET does not know which schedule the LIN master is

executing. Because the LIN schedule is not known, the frame transfer rates also are not

known, which makes it impossible to resample the waveform data.

Frame Output Stream Mode

This mode is available only when the LIN interface is master. You specify the LIN cluster

when you create the session, but not the specific LIN frame.

The stream I/O modes do not use the database-specified timing for frames. Therefore, LIN

data frames transmit only when you pass them to the nxWrite function and do not transmit

cyclically afterward.

When using a stream output timing of immediate mode, data is transmitted onto the network

as soon as possible. Specifically, if the data array is empty, only the header part of the frame

is transmitted (with the expectation that a slave transmits the response). If the data array is not

empty, the header + response parts of the frame (the full frame) is transmitted. You can use

this mode in conjunction with the scheduler, in which case each frame written to stream

output is handled as a run-once schedule with lowest priority and having a single one-frame

entry. A run-continuous schedule is interrupted to transmit the frame. A run-once schedule is

not interrupted, and the frame is transmitted only when there are no pending run-once

schedules with higher-than-lowest priority.

When using a stream output timing of either Replay Exclusive or Replay Inclusive, data is

transmitted onto the network based on the timestamps in the frame.

Refer to the Interface:Output Stream Timing property for more details about using this mode

with LIN.

Event

The LIN data frame transmits in an event-driven manner. The event is the appropriate

nxWrite function.

Chapter 5 NI-XNET API for C

NI-XNET Hardware and Software Manual 5-460 ni.com

If no new event (payload data) is available when it is time to transmit, no frame transmits. This

means that the LIN master transmits the frame header, but no payload data follows this header.

Signal Input Single-Point, Signal Input Waveform, Signal Input XY, Frame Input
Single-Point, Frame Input Queued, and Frame Input Stream Modes

The behavior is the same as Cyclic.

Signal Output Single-Point, Signal Output XY, Frame Output Single-Point, and Frame Output
Queued Modes

The behavior is similar to Cyclic, except that the LIN data frame does not continue to transmit

after the data from the appropriate nxWrite function has transmitted.

If the frame is contained in a sporadic schedule entry, and there are values for multiple frames

pending for that entry, NI-XNET selects a single frame to transmit in each entry. NI-XNET

selects the frame using the order in the XNET LIN Schedule Entry Frames property. For

example, if the Frames property contains three frames, and you write data for the first and

third, NI-XNET transmits the first frame (index 0) in the next occurrence of the sporadic

entry, and then transmits the third frame (index 2) when that sporadic entry executes again.

If the frame is contained in an event-triggered schedule entry, a collision may occur if another

ECU transmits in the same schedule entry. If the NI-XNET LIN interface runs as a LIN

master, it automatically uses the XNET LIN Schedule Entry Collision Resolving Schedule

property to resolve this collision.

Signal Output Waveform Mode

The behavior is the same as Cyclic.

If the NI-XNET interface runs as a LIN master, NI-XNET executes schedules, and therefore

controls the timing of LIN frames. An event-driven LIN frame can transmit at most once per

execution of its schedule entry.

If the NI-XNET interface runs as a LIN slave (default), this session mode is not supported.

Frame Output Stream Mode

When using a stream output timing of immediate mode, if the frame for transmit is defined as

an event-triggered frame in the database, and a collision occurs during transmit, the interface

automatically executes the collision resolving schedule defined for the frame, exactly as if the

frame were transmitted in a scheduled event-triggered slot.

When using a stream output timing of either Replay Exclusive or Replay Inclusive, if the

frame for transmit is determined to be defined as an event-triggered frame in the database, the

frame is transmitted with a header ID equal to the unconditional frame ID contained in data

Chapter 5 NI-XNET API for C

© National Instruments 5-461 NI-XNET Hardware and Software Manual

byte 0. The data is transmitted without modification. In other words, the frame is transmitted

as an unconditional frame associated with the event-triggered frame.

Refer to the Interface:Output Stream Timing property for more details about using this mode

with LIN.

© National Instruments 6-1 NI-XNET Hardware and Software Manual

6
Troubleshooting and Common
Questions

This chapter includes NI-XNET troubleshooting tips and common

questions

Where is my database on my disk?

The NI-XNET driver works with database aliases, which can cause some

confusion when trying to share the actual database file. This also can cause

problems if the database file is deleted on the disk, but the alias remains

in the editor. There are two ways to find the path of your database on

your disk:

• In the NI-XNET Database Editor, select File»Manage Aliases.

• In LabVIEW, right-click the I/O control and select Manage Aliases.

Chapter 6 Troubleshooting and Common Questions

NI-XNET Hardware and Software Manual 6-2 ni.com

The following window appears, and you can see where your database file

is on the disk.

The NIXNET_example database is at C:\Documents and Settings\

All Users\Documents\National Instruments\NI-XNET\

Examples.

How is the example database alias automatically added?

NI-XNET is hard coded to detect whether you are trying to open a session

using the NIXNET_example database and programmatically add the alias

for you if it is not already present.

How is the example database automatically deployed on

LabVIEW RT?

The NI-XNET LabVIEW RT installer automatically deploys the

NIXNET_example database during the installation. This makes it easier to

test the example on your LabVIEW RT system.

Chapter 6 Troubleshooting and Common Questions

© National Instruments 6-3 NI-XNET Hardware and Software Manual

The example database is added automatically on Windows and

LabVIEW RT. Can I erase all traces of it?

Yes. Complete the following steps to erase all traces of the example

database.

On Windows

1. Open the Manage NI-XNET Databases dialog (see above), select the

NIXNET_example alias on your local machine, and select Remove

Alias.

2. Browse to C:\Documents and Settings\All Users\

Documents\National Instruments\NI-XNET\Examples on

your local machine and delete the nixnet_example.xml file.

Notes The NI-XNET LabVIEW, CVI, and C examples work with this database file and

therefore are not guaranteed to work if you delete the database file.

The NI-XNET database is installed automatically with NI-XNET.

On LabVIEW RT

Open the Manage NI-XNET Databases dialog (see above) and connect to

your LabVIEW RT target by entering the IP address and clicking Connect.

Select the NIXNET_example database and click Undeploy.

Can I permanently set the baud rate setting for my device as in

NI-CAN?

There is no way to set the baud rate permanently in NI-XNET. The cluster

in the FIBEX database file sets the baud rate. If you are using a frame

streaming session without a database, you must set the baud rate

programmatically.

Can I permanently set the transceiver type for my CAN XS device as

in NI-CAN?

There is no way to set the transceiver type permanently in NI-XNET.

The NI-XNET CAN XS device always defaults to a High Speed (HS)

transceiver type. If you want a different transceiver type, you always

must set it programmatically. You can set it programmatically in the

following ways.

Chapter 6 Troubleshooting and Common Questions

NI-XNET Hardware and Software Manual 6-4 ni.com

In LabVIEW

Use a property node (shown below) for the session.

In C

Use the following code:

Property = nxCANTcvrType_LS;

//(or Property = nxCANTcvrType_HS or Property =

nxCANTcvrType_SW)

nxGetPropertySize (SessionRef,

nxPropSession_IntfCANTcvrType, &PropertySize);

nxSetProperty (SessionRef,

nxPropSession_IntfCANTcvrType, PropertySize,

&Property);

Can I change the database or object properties setting

programmatically (for example, change the cycle time of a cyclic

frame)?

Yes. You can open an object and change its properties programmatically.

This has no effect on the actual database. It only changes the properties of

the objects loaded in memory until the session is closed and the objects are

released from memory. Examples of how to do this are in the example

finder at Hardware Input and Output»CAN»NI-XNET» Advanced»

CAN Change Objects Properties Dynamically.

Why is there no XNET Clear VI at the end of the examples?

When the VI or application is stopped, NI-XNET takes care of closing all

references for you. This makes programming simpler and more robust, as

you do not need to ensure all references are closed.

© National Instruments A-1 NI-XNET Hardware and Software Manual

A
Summary of the CAN Standard

This appendix summarizes the CAN standard.

History and Use of CAN

In the past few decades, advances in automotive technology have led to

increased use of electronic control systems for engine timing, anti-lock

brake systems, and distributorless ignition. With conventional wiring,

data is exchanged in these systems using dedicated signal lines. As the

complexity and number of devices has increased, using dedicated signal

lines becomes increasingly difficult and expensive.

To overcome the limitations of conventional automotive wiring, Bosch

developed the Controller Area Network (CAN) in the mid-1980s. Using

CAN, devices (controllers, sensors, and actuators) are connected on a

common serial bus. This network of devices can be thought of as a

scaled-down, real-time, low-cost version of networks used to connect

personal computers. Any device on a CAN network can communicate with

any other device using a common pair of wires.

As CAN implementations increased in the automotive industry, CAN was

standardized internationally as ISO 11898. CAN chips were created by

major semiconductor manufacturers such as Intel, Motorola, and Philips.

With these developments, manufacturers of industrial automation

equipment began to consider CAN for use in industrial applications.

Comparison of the requirements for automotive and industrial device

networks showed numerous similarities, including the transition away from

dedicated signal lines, low cost, resistance to harsh environments, and high

real-time capabilities.

Because of these similarities, CAN became widely used in photoelectric

sensors and motion controllers for textile machinery, packaging machines,

and production line equipment. By the mid-1990s, CAN was specified as

the basis of many industrial device networking protocols, including

DeviceNet, and CANopen.

Appendix A Summary of the CAN Standard

NI-XNET Hardware and Software Manual A-2 ni.com

On April 17, 2012, Bosch released an updated CAN specification, CAN

with Flexible Data-Rate. This specification improves CAN performance by

making two key additions to the CAN standard: increasing the maximum

payload size from 8 to 64 bytes and maximum baud rate from 1 to 2 Mb/s

or more. Remote frames always are transmitted in the CAN 2.0 standard

format.

With its growing popularity in automotive and industrial applications, CAN

has been increasingly used in a wide variety of diverse applications.

Use in agricultural equipment, nautical machinery, medical apparatus,

semiconductor manufacturing equipment, and machine tools testify to the

versatility of CAN.

CAN Identifiers and Message Priority

When a CAN device transmits data onto the network, an identifier that is

unique throughout the network precedes the data. The identifier defines not

only the content of the data, but also the priority.

When a device transmits a message onto the CAN network, all other

devices on the network receive that message. Each receiving device

performs an acceptance test on the identifier to determine if the message is

relevant to it. If the received identifier is not relevant to the device (such as

RPM received by an air conditioning controller), the device ignores the

message.

When more than one CAN device transmits a message simultaneously, the

identifier is used as a priority to determine which device gains access to the

network. The lower the numerical value of the identifier, the higher its

priority.

Figure A-1 shows two CAN devices attempting to transmit messages, one

using identifier 647 hex, and the other using identifier 6FF hex. As each

device transmits the 11 bits of its identifier, it examines the network to

determine if a higher-priority identifier is being transmitted simultaneously.

If an identifier collision is detected, the losing device(s) immediately stop

transmission and wait for the higher-priority message to complete before

automatically retrying. Because the highest priority identifier continues

its transmission without interruption, this scheme is referred to as

nondestructive bitwise arbitration, and CAN’s identifier is often referred to

as an arbitration ID. This ability to resolve collisions and continue with

high-priority transmissions is one feature that makes CAN ideal for

real-time applications.

Appendix A Summary of the CAN Standard

© National Instruments A-3 NI-XNET Hardware and Software Manual

Figure A-1. Example of CAN Arbitration

CAN Frames

In a CAN network, the messages transferred across the network are called

frames. The CAN protocol supports two frame formats as defined in the

Bosch version 2.0 specifications, the essential difference being in the length

of the arbitration ID. In the standard frame format (also known as 2.0A),

the length of the ID is 11 bits. In the extended frame format (also known

as 2.0B), the length of the ID is 29 bits. Figure A-2 shows the essential

fields of the standard and extended frame formats, and the following

sections describe each field.

Figure A-2. Standard and Extended Frame Formats

1 Device A: ID = 11001000111 (647 hex)
2 Device B: ID = 11011111111 (6FF hex)
3 Device B Loses Arbitration; Device A Wins Arbitration and Proceeds

S = Start Frame Bit

S

S

Device B Loses Arbitration
Device A Wins Arbitration and Proceeds

Device A

ID = 11001000111 (647 hex)

Device B

ID = 11011111111 (6FF hex)

S = Start Frame Bit

Standard Frame Format

DLC 0-8 Data Bytes
11-Bit

Arbitration ID

High 11 Bits

of Arbitration ID

Low 18 Bits

of Arbitration ID

15-Bit CRC

0-8 Data Bytes 15-Bit CRC End of FrameDLC

End of Frame
S
O
F

R
T
R

I
D
E

S
O
F

I
D
E

R
T
R

A
C
K

A
C
K

Extended Frame Format

Appendix A Summary of the CAN Standard

NI-XNET Hardware and Software Manual A-4 ni.com

Start of Frame (SOF)
Start of Frame is a single bit (0) that marks the beginning of a CAN frame.

Arbitration ID
The arbitration ID fields contain the identifier for a CAN frame. The

standard format has one 11-bit field, and the extended format has two

fields, which are 11 and 18 bits in length. In both formats, bits of the

arbitration ID are transmitted from high to low order.

Remote Transmit Request (RTR)
The Remote Transmit Request bit is dominant (0) for data frames, and

recessive (1) for remote frames. Data frames are the fundamental means of

data transfer on a CAN network, and are used to transmit data from one

device to one or more receivers. A device transmits a remote frame to

request transmission of a data frame for the given arbitration ID. The

remote frame is used to request data from its source device, rather than

waiting for the data source to transmit the data on its own.

Identifier Extension (IDE)
The Identifier Extension bit differentiates standard frames from extended

frames. Because the IDE bit is dominant (0) for standard frames and

recessive (1) for extended frames, standard frames are always higher

priority than extended frames.

Data Length Code (DLC)
The Data Length Code is a 4-bit field that indicates the number of data

bytes in a data frame. In a remote frame, the Data Length Code indicates

the number of data bytes in the requested data frame. Valid Data Length

Codes range from zero to eight.

Data Bytes
For data frames, this field contains from 0 to 8 data bytes. Remote CAN

frames always contain zero data bytes.

Cyclic Redundancy Check (CRC)
The 15-bit Cyclic Redundancy Check detects bit errors in frames. The

transmitter calculates the CRC based on the preceding bits of the frame,

and all receivers recalculate it for comparison. If the CRC calculated by a

receiver differs from the CRC in the frame, the receiver detects an error.

Appendix A Summary of the CAN Standard

© National Instruments A-5 NI-XNET Hardware and Software Manual

Acknowledgment Bit (ACK)
All receivers use the Acknowledgment Bit to acknowledge successful

reception of the frame. The ACK bit is transmitted recessive (1), and

is overwritten as dominant (0) by all devices that receive the frame

successfully. The receivers acknowledge correct frames regardless of the

acceptance test performed on the arbitration ID. If the transmitter of the

frame detects no acknowledgment, it could mean that the receivers detected

an error (such as a CRC error), the ACK bit was corrupted, or there are no

receivers (for example, only one device on the network). In such cases, the

transmitter automatically retransmits the frame.

End of Frame
Each frame ends with a sequence of recessive bits. After the required

number of recessive bits, the CAN bus is idle, and the next frame

transmission can begin.

CAN FD Frames

The CAN FD standard supports the same two frame formats as defined in

the Bosch version 2.0 specification, as well as two additional frame

formats. The essential difference between the original and new format is the

addition of a few bits to redefine the DLC and increase the data phase

speed. Figure A-3 shows the essential fields of the standard and extended

FD frame formats, and the following sections describe each field that

differs from the CAN 2.0 specification.

Figure A-3. CAN FD Standard and Extended Frame Formats

CAN FD Base Format

Arbitration Field Control Field CRC Field
Ack Field

Base Identifier
r
1

S
O
F

I
D
E

r
0

E
D
L

B
R
S

E
S
I

DLC DATA CRC Sequence
CRC

Delim-
iter

Ack
Slot

Ack
Delimiter

Arbitration Phase Data Phase Arbitration Phase

CAN FD Extended Format

Arbitration Field Control Field CRC Field
Ack Field

Base Identifier
S
O
F

I
D
E

S
R
R

Identifier Extension r
1

E
D
L

r
0

B
R
S

E
S
I

DLC DATA CRC Sequence
CRC

Delim-
iter

Ack
Slot

Ack
Delimiter

Arbitration Phase Data Phase Arbitration Phase

Appendix A Summary of the CAN Standard

NI-XNET Hardware and Software Manual A-6 ni.com

Extended Data Length Bit (EDL)
The EDL bit indicates the frame is a CAN FD frame. This is the r0 bit in a

standard frame and is transmitted dominate. For a CAN FD frame, the EDL

bit is transmitted recessive.

When this bit is set, the DLC is interpreted differently than when the frame

is a standard CAN 2.0 frame. as shown in the following table:

Bit Rate Switch Bit (BRS)
The BRS bit indicates whether the bit rate of the nonarbitration portion of

the CAN frame is transmitted at the standard data rate or the fast CAN FD

rate. This bit is transmitted dominate to transmit at the standard rate and

recessive to transmit at the CAN FD rate.

Error State Indicator Bit (ESI)
The ESI bit is transmitted dominate by a node in the Error Active State and

recessive by a node in the Error Passive State.

Cyclic Redundancy Check Sequence (CRC)
The CAN FD standard uses a different CRC polynomial than the CAN 2.0

standard. The CAN 2.0 standard uses a 15-bit CRC, while the CAN FD

standard uses two separate CRC polynomials. The first CRC is 17 bits, for

frames with a payload of 0–16 bytes. The second CRC is 21 bits, for frames

larger than 16 bytes.

DLC CAN 2.0 CAN FD

0..8 0..8 0..8

9 8 12

10 8 16

11 8 20

12 8 24

13 8 32

14 8 48

15 8 64

Appendix A Summary of the CAN Standard

© National Instruments A-7 NI-XNET Hardware and Software Manual

CAN Error Detection and Confinement

One of the most important and useful features of CAN is its high reliability,

even in extremely noisy environments. CAN provides a variety of

mechanisms to detect errors in frames. This error detection is used to

retransmit the frame until it is received successfully. CAN also provides an

error confinement mechanism used to remove a malfunctioning device

from the CAN network when a high percentage of its frames result in

errors. This error confinement prevents malfunctioning devices from

disturbing the overall network traffic.

Error Detection
Whenever any CAN device detects an error in a frame, that device transmits

a special sequence of bits called an error flag. This error flag is normally

detected by the device transmitting the invalid frame, which then

retransmits to correct the error. The retransmission starts over from the start

of frame, and thus arbitration with other devices can occur again.

CAN devices detect the following errors, which are described in the

following sections:

• Bit error

• Stuff error

• CRC error

• Form error

• Acknowledgment error

Bit Error
During frame transmissions, a CAN device monitors the bus on a bit-by-bit

basis. If the bit level monitored is different from the transmitted bit, a bit

error is detected. This bit error check applies only to the Data Length Code,

Data Bytes, and Cyclic Redundancy Check fields of the transmitted frame.

Stuff Error
Whenever a transmitting device detects five consecutive bits of equal value,

it automatically inserts a complemented bit into the transmitted bit stream.

This stuff bit is automatically removed by all receiving devices. The bit

stuffing scheme is used to guarantee enough edges in the bit stream to

maintain synchronization within a frame.

Appendix A Summary of the CAN Standard

NI-XNET Hardware and Software Manual A-8 ni.com

A stuff error occurs whenever six consecutive bits of equal value are

detected on the bus.

CRC Error
A CRC error is detected by a receiving device whenever the calculated

CRC differs from the actual CRC in the frame.

Form Error
A form error occurs when a violation of the fundamental CAN frame

encoding is detected. For example, if a CAN device begins transmitting the

Start Of Frame bit for a new frame before the End Of Frame sequence

completes for a previous frame (does not wait for bus idle), a form error is

detected.

Acknowledgment Error
An acknowledgment error is detected by a transmitting device whenever it

does not detect a dominant Acknowledgment Bit (ACK).

Error Confinement
To provide for error confinement, each CAN device must implement a

transmit error counter and a receive error counter. The transmit error

counter is incremented when errors are detected for transmitted frames, and

decremented when a frame is transmitted successfully. The receive error

counter is used for received frames in much the same way. The error

counters are increased more for errors than they are decreased for

successful reception/transmission. This ensures that the error counters will

generally increase when a certain ratio of frames (roughly 1/8) encounter

errors. By maintaining the error counters in this manner, the CAN protocol

can generally distinguish temporary errors (such as those caused by

external noise) from permanent failures (such as a broken cable). For

complete information on the rules used to increment/decrement the error

counters, refer to the CAN specification (ISO 11898).

With regard to error confinement, each CAN device may be in one of

three states: Error Active State, Error Passive State, and Bus Off State.

Appendix A Summary of the CAN Standard

© National Instruments A-9 NI-XNET Hardware and Software Manual

Error Active State
When a CAN device is powered on, it begins in the error active state.

A device in error active state can normally take part in communication, and

transmits an active error flag when an error is detected. This active error

flag (sequence of dominant 0 bits) causes the current frame transmission to

abort, resulting in a subsequent retransmission. A CAN device remains in

the error active state as long as the transmit and receive error counters are

both below 128. In a normally functioning network of CAN devices,

all devices are in the error active state.

Error Passive State
If either the transmit error counter or the receive error counter increments

above 127, the CAN device transitions into the error passive state. A device

in error passive state can still take part in communication, but transmits

a passive error flag when an error is detected. This passive error flag

(sequence of recessive 1 bits) generally does not abort frames transmitted

by other devices. Because passive error flags cannot prevail over any

activity on the bus line, they are noticed only when the error passive device

is transmitting a frame. Thus, if an error passive device detects a receive

error on a frame which is received successfully by other devices, the frame

is not retransmitted.

One special rule to keep in mind: When an error passive device detects an

acknowledgment error, it does not increment its transmit error counter.

Thus, if a CAN network consists of only one device (for example, if you do

not connect a cable to the National Instruments CAN interface), and that

device attempts to transmit a frame, it retransmits continuously but never

goes into bus off state (although it eventually reaches error passive state).

Bus Off State
If the transmit error counter increments above 255, the CAN device

transitions into the bus off state. A device in the bus off state does not

transmit or receive any frames, and thus cannot have any influence on the

bus. The bus off state disables a malfunctioning CAN device that frequently

transmits invalid frames, so that the device does not adversely affect other

devices on the network. When a CAN device transitions to bus off, it can

be placed back into error active state (with both counters reset to zero) only

by manual intervention. For sensor/actuator types of devices, this often

involves powering the device off then on. For NI-XNET network interfaces,

communication can be started again using an API function.

Low-Speed CAN

Low-Speed CAN is commonly used to control “comfort” devices in an

automobile, such as seat adjustment, mirror adjustment, and door locking.

It differs from High-Speed CAN in that the maximum baud rate is 125 K

and it utilizes CAN transceivers that offer fault-tolerant capability. This

enables the CAN bus to keep operating even if one of the wires is cut or

short-circuited because it operates on relative changes in voltage, and thus

provides a much higher level of safety. The transceiver solves many

common and frequent wiring problems such as poor connectors, and also

overcomes short circuits of either transmission wire to ground or battery

voltage, or the other transmission wire. The transceiver resolves the fault

situation without involvement of external hardware or software. On the

detection of a fault, the transceiver switches to a one wire transmission

mode and automatically switches back to differential mode if the fault is

removed.

Special resistors are added to the circuitry for the proper operation of

the fault-tolerant transceiver. The values of the resistors depend on the

number of nodes and the resistance values per node. For guidelines on

selecting the resistor, refer to the Cabling Requirements for Low-Speed/

Fault-Tolerant CAN section of Chapter 3, NI-XNET Hardware Overview.

Appendix A Summary of the CAN Standard

© National Instruments A-11 NI-XNET Hardware and Software Manual

Single Wire CAN

Single wire CAN is found primarily in specialty automotive applications

and emphasizes low cost. Defined in the SAE 2411 specification, single

wire CAN uses only one single-ended CAN data wire, as opposed to the

differential CAN wires found in most applications. The reduced noise

immunity of single wire CAN limit its speed compared to the other CAN

physical layers.

Single wire CAN offers four communication modes. The first two modes

relate the CAN bus speed. The first mode, Normal Mode, allows the

controller to run at 33.333 Kbits/s and is the mode the bus runs in when

conducting in-vehicle traffic. The second mode, High Speed Mode, allows

the controller to run at 83.333 Kbits/s and is for data download when

attached to an offboard tester ECU.

When running in either of the first two modes, the nominal voltage levels

are 0 V and 4 V. If a controller goes into Sleep Mode, it ignores all traffic

running at these voltage levels. The final mode is called High Voltage

Wakeup mode and transmits only at normal communication speeds at

nominal voltage levels of 0 V and 12 V (actual high voltage is typically

close to Vbat). If a controller goes into Sleep Mode, it wakes up when

receiving a CAN frame at the high-voltage signaling levels.

For cabling guidelines and other information, refer to Single Wire CAN

Physical Layer in Chapter 3, NI-XNET Hardware Overview.

© National Instruments B-1 NI-XNET Hardware and Software Manual

B
Summary of the FlexRay Standard

This appendix summarizes the FlexRay standard.

FlexRay Overview

The FlexRay communications network is a new, deterministic,

fault-tolerant, and high-speed bus system developed in conjunction with

automobile manufacturers and leading suppliers.

FlexRay delivers the error tolerance and time-determinism performance

requirements for X-by-wire applications (for example, drive-by-wire,

steer-by-wire, brake-by-wire, etc.). The FlexRay protocol serves as a

communication infrastructure for future generation high-speed control

applications in vehicles by providing the following services:

• Message exchange service—Provides deterministic cycle-based

message transport.

• Synchronization service—Provides a common timebase to all nodes.

• Start-up service—Provides an autonomous start-up procedure.

• Error management service—Provides error handling and error

signaling.

• Symbol service—Allows the realization of a redundant

communication path.

• Wakeup service—Addresses power management needs.

Appendix B Summary of the FlexRay Standard

NI-XNET Hardware and Software Manual B-2 ni.com

Increasing Communications Demands

In recent years, the amount of electronics introduced into automobiles has

increased significantly. This trend is expected to continue as automobile

manufacturers initiate further advances in safety, reliability, and comfort.

The introduction of advanced control systems—combining multiple

sensors, actuators, and electronic control units—is placing boundary

demands on the existing Controller Area Network (CAN)

communication bus.

Requirements for future in-car control applications include the

combination of higher data rates, deterministic behavior, and the support of

fault tolerance. For example, drive-by-wire, which replaces direct

mechanical control of a vehicle with CPU-generated bus commands,

demands high-speed bus systems that are fault tolerant, are deterministic,

and can support distributed control systems.

Increased functionality requires more flexibility in both bandwidth and

system extension. Communications availability, reliability, and data

bandwidth are the keys for targeted applications in power train, chassis, and

body control.

Figure B-1. Requirements Comparison

As shown in Figure B-1, the FlexRay bus addresses the significant increase

in requirements for in-vehicle applications. As the amount of electronics in

automobiles increases, high-bandwidth, deterministic, and redundant

communications are available through the FlexRay communications bus.

FlexRay

CAN

LIN

R
e

q
u

ir
e

m
e

n
ts

Data Rate

Appendix B Summary of the FlexRay Standard

© National Instruments B-3 NI-XNET Hardware and Software Manual

FlexRay Network

FlexRay Bus Benefits
The FlexRay Communications System Specification Version 2.0 outlines

many key bus network benefits:

• Provides up to 10 Mbits/s data rate on each channel, or a gross data rate

up to 20 Mbits/s.

• Significantly increases Frame Length (compared to CAN—8 bytes per

frame).

• Makes synchronous and asynchronous data transfer possible.

• Guarantees frame latency and jitter during synchronous transfer

(real-time capabilities).

• Provides prioritization of messages during asynchronous transfer.

• Provides fault-tolerant clock synchronization via a global timebase.

• Gives error detection and signaling.

• Enables error containment on the physical layer through the use of an

independent Bus Guardian mechanism.

• Provides scalable fault tolerance through single or dual-channel

communication.

Data Security and Error Handling
The FlexRay network provides scalable fault tolerance by allowing single

or dual-channel communication. For security-critical applications, the

devices connected to the bus may use both channels for transferring data.

However, you also can connect only one channel when redundancy is not

needed, or to increase the bandwidth by using both channels for

transferring nonredundant data.

Within the physical layer, FlexRay provides fast error detection and

signaling, as well as error containment through an independent Bus

Guardian. The Bus Guardian is a mechanism on the physical layer that

protects a channel from interference caused by communication not aligned

with the cluster communication schedule.

Appendix B Summary of the FlexRay Standard

NI-XNET Hardware and Software Manual B-4 ni.com

Protocol Operation Control

In the default config state, the controller is stopped. This is the power-on

state.

In the config state, the controller is stopped. You can configure the

controller in this state.

In the ready state, the controller can transition to the wakeup or startup

states to perform a coldstart (startup of a bus) or integrate into a running

cluster.

In the wakeup state, the controller can wake up nodes that are sleeping

while the rest of the cluster is active.

POCOperational

Default

Config

Config

Ready

StartupWakeup

Halt

Normal

Passive

Normal

Active

Appendix B Summary of the FlexRay Standard

© National Instruments B-5 NI-XNET Hardware and Software Manual

The startup state is not a single state, but represents a state machine that is

used for bus startup. The state machine has three different paths, depending

on how the interface will participate in the startup process. The

leading coldstart node is the interface that is initiating the schedule

synchronization. The following coldstart node(s) are other

coldstart-capable interfaces joining the leading coldstarter in

starting up the FlexRay bus. The non-coldstart nodes connect to a

currently running bus.

After properly integrating onto the bus, the controller transitions through

the three operating states (Normal Active, Normal Passive, and Halt),

which are similar to the CAN operating states of Error Active, Error

Passive, and Bus Off.

When the interface is in Normal Active state, it is fully synchronized and

supports clusterwide clock synchronization.

When the interface is in Normal Passive state, it stops transmitting frames

and symbols, but received frames are still processed. It still can perform

clock synchronization based on received frames, but it does not contribute

to the clock synchronization.

When the interface is in Halt state, all frame and symbol processing is

stopped, as is macrotick generation.

Communication Cycle
The Communication Cycle is the fundamental element of the media-access

scheme within FlexRay. A cycle duration is fixed when the network

becomes configured. A FlexRay schedule has 64 cycles, numbered 0–63.

After cycle 63, the schedule restarts at cycle 0. The time window the

Communication Cycle defines has two parts, a static segment and dynamic

segment. The configuration also defines the segment lengths.

The Static Segment’s purpose is to provide a time window for scheduling

a number of time-triggered messages. This part of the Communication

Cycle is reserved for the synchronous communication, which guarantees

a specified frame latency and jitter through fault-tolerant clock

synchronization. You must configure the messages to be transferred in the

Static Segment before starting the communication, and the maximum

amount of data transferred in the Static Segment cannot exceed the Static

Segment duration. This provides for bus determinism, because each static

slot is given a guaranteed time on the bus, and only one device may transfer

data within a given slot.

Appendix B Summary of the FlexRay Standard

NI-XNET Hardware and Software Manual B-6 ni.com

In the Dynamic Segment, each device may transfer event-triggered

messages, which its Frame ID prioritizes. This part of the cycle forms a

communication scheme similar to the CAN bus. The Frame ID is for

controlling the media access.

The Symbol Window is an optional part of the communication cycle where

you can transmit a special symbol (Media Access Test Symbol (MTS)) on

the network to test the Bus Guardian.

The Network Idle Time (NIT) is the part of the communication cycle where

the node calculates and applies clock correction to maintain

synchronization with the FlexRay bus.

Figure B-2 shows the communication cycle of a given time period. The

figure shows that the bandwidth used for time-triggered and event-triggered

messages is scalable.

Figure B-2. Communication Cycle

Startup
The action of initiating a startup process is called a coldstart. Only a subset

of nodes, called coldstart nodes, may initiate a startup.

A coldstart attempt begins with the transmission of the collision avoidance

symbol (CAS). Only the coldstart node that transmits the CAS can transmit

frames in the four cycles that follow the CAS. During the fifth cycle, other

coldstart nodes can join it; later on, all other nodes can join it also.

In each cluster consisting of at least three nodes, at least three nodes must

be configured as coldstart nodes. If a cluster has only two nodes, both of

them must be configured as coldstart nodes.

The coldstart node that transmits the CAS is called a leading coldstart

node. The other coldstart nodes are called following coldstart nodes.

Communication

Static Segment Dynamic Segment NIT

t

Symbol Window

Appendix B Summary of the FlexRay Standard

© National Instruments B-7 NI-XNET Hardware and Software Manual

During the startup process, a node can transmit only startup frames. A

startup frame has an indicator in the header segment (refer to Frame

Format) that indicates it is a startup frame. All startup frames are also sync

frames, which contain an indicator that nodes use to assist with clock

correction.

Figure B-3 shows the startup state machine as the FlexRay Protocol

Specification v. 2.1 defines it.

Figure B-3. Startup State Machine

µT timer tStartup;

tStartup := pdListenTimeout;
tStartupNoise := gListenNoise * pdListenTimeout;

vRemainingColdstartAttempts := gColdstartAttempts;

µT timer tStartupNoise;

dcl vRemainingColdstartAttempts Integer;

COLDSTART_LISTEN

ABORT_STARTUP

INITIALIZE_
SCHEDULE

STARTUP_PREPARE

STARTUP

Done

DoneDone

dcl zColdstartNoise

dcl zColdstartAborted

dcl zCycle Temp

dcl zIntegrating

dcl zRefNode

dcl zStartupNodes

dcl zTwoSNSeen

dcl zTwoSNRequired

dcl zStartupNoiseOut

Boolean;

Boolean;

T_CycleCounter;

T_ChannelBoolArray;

Boolean;

Integer;

Integer;

Boolean;

Boolean;

INTEGRATION_COLD-
START_CHECK

COLDSTART_JOIN

COLDSTART_GAP

INTEGRATION_CON-
SISTENCY_CHECK

INTEGRATION_
LISTEN

Enter
Coldstart Listen

Enter
Integration Listen

Enter Coldstart
Collision Resolution

Enter
Initialize Schedule

Enter
Initialize Schedule

Enter Startup
Prepare

Abort
Startup

Enter
Operation

Enter Coldstart
Collision Resolution

Enter
Coldstart Gap

Enter
Coldstart Join

Enter
Operation

Abort
Startup

Abort
Startup

Abort
Startup

Abort
Startup

Abort
Startup

Enter
Operation

Enter Coldstart
Consistency Check

Enter Integration
Coldstart Check

Enter Integration
Consistency Check

Enter Startup
Prepare

COLDSTART_COL-
LISION RESOLUTION

COLDSTART_CON-
SISTENCY_CHECK

Appendix B Summary of the FlexRay Standard

NI-XNET Hardware and Software Manual B-8 ni.com

Figure B-4 shows the state transitions for a leading coldstart node

(Node A), following coldstart node (Node B), and non-coldstart node

(Node C).

Figure B-4. State Transitions

Path of the Leading Coldstart Node
When a coldstart node enters startup, it listens to the FlexRay bus to

make sure the bus is idle before commencing a coldstart attempt. If no

communication is detected, the node transmits a CAS symbol followed by

the first regular cycle, numbered cycle zero. From cycle zero onward, the

node transmits its startup frame. During this time, only one node (the

leading coldstart node) can transmit startup frames. If two nodes happen to

transmit the CAS at the same time, both would transmit startup nodes

during this time, and both would detect the error and restart the coldstart

process.

Starting in cycle four, other coldstart nodes begin to transmit their startup

frames. The leading coldstart node collects startup frames in cycles four

and five and performs clock correction. If there are no errors, the node

leaves startup and enters normal active.

Node A POC
State Ready

No Schedule Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Coldstart Collision Resolution Normal Active
Coldstart

Consistency Check
Coldstart

Listen

POC
State

POC
State

Cycle
Schedule

Coldstart Node

Coldstart Node

Node B

Node C
Ready

CAS

CAS

S

A A A A A B A B A B A B A B C

S S

S S S S S S S S S S S S S

Integration Consistency CheckIntegration Listen

: Startup Frame of Node A : Startup Frame of Node B : Frame of Node C: CAS Symbol

Initialize
Schedule

Channel

Legend

Ready
Coldstart

Listen
Integration Coldstart

Check
Coldstart Join Normal Active

Normal
Active

Initialize
Schedule

BA C

Appendix B Summary of the FlexRay Standard

© National Instruments B-9 NI-XNET Hardware and Software Manual

Path of a Following Coldstart Node
When a coldstart node enters startup, it listens to the FlexRay bus to

make sure the bus is idle before commencing a coldstart attempt. If

communication is detected, the node tries to receive a valid pair of startup

frames to derive its schedule and calculate its initial clock correction.

After successfully receiving these frames, it collects all sync frames during

the following two cycles and performs clock correction. If there are no

errors during the clock correction, the node begins to transmit its own

startup frames.

If there still are no errors after three cycles of transmitting startup frames,

the node leaves startup and enters normal active.

Path of a Non-Coldstart Node
When a non-coldstart node enters startup, it listens to the FlexRay bus and

tries to receive FlexRay frames. If communication is detected, the node

tries to receive a valid pair of startup frames to derive its schedule and clock

correction from the coldstart nodes.

In the following two cycles, the node receives startup frames. After

receiving valid startup frames during four consecutive cycles from at least

two different coldstart nodes, the node leaves startup and enters normal

active.

Clock Synchronization
FlexRay is a time-triggered bus, requiring every node in the cluster to have

approximately the same view of time. Time in FlexRay is based on cycles,

macroticks, and microticks. A cycle is composed of an integer number of

macroticks, and a macrotick is composed of an integer number of

microticks.

A cycle consists of an integer number of macroticks, which must be

identical for all nodes in the cluster. This value remains the same for each

cycle. The duration of a macrotick also is identical (within tolerances) for

all nodes in a cluster. However, each node derives the macrotick from its

microtick, which is derived from a local oscillator. The number of

microticks per macrotick may differ for each node on the cluster (because

they may use different local oscillators). In addition, the number of

microticks per macrotick may differ from macrotick to macrotick within

the same node, if required.

Appendix B Summary of the FlexRay Standard

NI-XNET Hardware and Software Manual B-10 ni.com

Clock synchronization is required to ensure that the time differences

between the nodes of a cluster remain consistent. There are two types of

time differences—phase (offset) differences and frequency (rate)

differences. FlexRay nodes perform both offset and rate correction to

remain synchronized.

Rate correction is performed during the entire cycle. A positive or negative

integer number of microticks are added to the configured number of

microticks in a communication cycle. The actual number is determined by

a clock synchronization algorithm computed after the static segment of

every odd cycle.

Offset correction is performed only during the NIT of every odd cycle. A

positive or negative integer number of microticks are added during the NIT

offset correction segment. The actual number is determined by a clock

synchronization algorithm computed during every cycle (but as mentioned

above, the correction actually is performed only during odd cycles).

Frame Format
Figure B-5 shows the FlexRay frame format. The FlexRay frame has three

segments: header, payload, and trailer.

Figure B-5. FlexRay Frame Format

• Header—Includes the Frame ID, Payload Length, Header CRC, and

Cycle Count. The Frame ID identifies a frame and is for prioritizing

event-triggered frames. The Payload Length contains the number of

words transferred in the frame. The Header CRC is for detecting errors

during the transfer. The Cycle Count contains the value of a counter

that advances incrementally each time a Communication Cycle starts.

Additionally, the header includes some indicators to help identify the

frame type. The Payload Preamble indicator indicates whether an

Header Segment

11 Bits

Frame ID
Payload

Length

Header

CRC
CRC CRC CRC

Cycle

Count
Data 0 Data 1 Data 2 Data n

7 Bits 11 Bits 6 Bits 0…254 Bytes 24 Bits

Payload Segment Trailer Segment

Startup Frame Indicator

Sync Frame Indicator

Null Frame Indicator

Payload Preamble Indicator

Frame Length = 5 + (0…254) + 3 Bytes

Reserved Bit

Appendix B Summary of the FlexRay Standard

© National Instruments B-11 NI-XNET Hardware and Software Manual

optional vector is contained within the payload segment of the

transmitted frame (for example, a network management vector). The

Null Frame indicator indicates whether the frame is a normal or null

frame (a frame that does not contain a valid payload). The Sync Frame

indicator indicates whether the frame is a special sync frame used for

clock synchronization. Finally, the Startup Frame indicator indicates

whether the frame is a startup frame to help start the FlexRay cluster.

• Payload—Contains the data the frame transfers. The FlexRay payload

or data frame length is up to 127 words (254 bytes), which is more than

30 times greater than CAN.

• Trailer—Contains three 8-bit CRCs to detect errors.

© National Instruments C-1 NI-XNET Hardware and Software Manual

C
Summary of the LIN Standard

This appendix summarizes the LIN standard.

History and Use of LIN

Local Interconnect Network (LIN) was developed to create a standard for

low-cost, low-end multiplexed communication in automotive networks.

Whereas CAN addressed the need for high-bandwidth, advanced

error-handling networks, the hardware and software costs of CAN

implementation became prohibitive for lower performance devices like

power window and seat controllers. LIN provides cost-efficient

communication in applications where the bandwidth and versatility of

CAN are not required. LIN can be implemented relatively inexpensively

using the standard serial UART embedded into most modern low-cost 8-bit

microcontrollers.

LIN Topology and Behavior

The LIN bus connects a single master device (node) and one or more slave

devices (nodes) together in a LIN cluster. A node capability file describes

the behavior of each node. The node capability files are inputs to a system

defining tool, which generates a LIN description file (LDF) that describes

the behavior of the entire cluster. You can parse the LDF to generate the

specified behavior in the desired nodes. At this point, the master device’s

master task starts transmitting headers on the bus, and all the slave tasks in

the cluster (including the master devices’s own slave task) respond, as

specified in the LDF.

In general terms, you use the LDF to configure and create the LIN cluster’s

scheduling behavior. For example, it defines the cluster’s baud rate, the

ordering and time delays for the master task’s transmission of headers, and

the behavior of each slave task in response.

Appendix C Summary of the LIN Standard

NI-XNET Hardware and Software Manual C-2 ni.com

LIN Frame Format

LIN is a polled bus with a single master node and one or more slave nodes.

The master node contains both a master task and a slave task. Each slave

node contains only a slave task. The master task in the master node controls

all communication over LIN.

The basic unit of transfer on the LIN bus is the frame, which is divided into

a header and a response. The master node always transmits the header,

which consists of three distinct fields: the Break, the Synchronization Field

(Sync), and the Identifier Field (ID). A slave task (which can reside in

either the master node or a slave node) always transmits the response; a

response consists of a data payload and a checksum.

Normally, the master task runs a predefined schedule, which describes the

headers to transmit on the bus, in a continuously repeating loop. Prior to

starting the LIN, each slave task is configured either to publish data to the

bus or subscribe to data in response to each received header ID. On

receiving the header, each slave task verifies ID parity and then checks the

ID to determine whether it needs to publish or subscribe during the

response portion of the frame. If the slave task needs to publish a response,

it transmits one to eight data bytes to the bus, followed by a checksum byte.

If the slave task needs to subscribe, it reads the data payload and checksum

byte from the bus and takes appropriate internal action. For standard

slave-to-master communication, the master broadcasts the identifier to the

network, and one and only one slave responds with a data payload.

A separate slave task that exists in the master node accomplishes

master-to-slave communication. This task self-receives all headers

transmitted on the bus and responds as if it were an independent slave.

To transmit data bytes, the master first must update its internal slave

task’s response with the data values it wants to transmit. The master then

transmits the appropriate header, and the internal slave task transmits its

response to the bus.

Break
Every LIN frame begins with the Break, comprised of at least 13 dominant

bits followed by a break delimiter of at least one recessive bit. This serves

as a start-of-frame notice to all nodes on the bus.

Appendix C Summary of the LIN Standard

© National Instruments C-3 NI-XNET Hardware and Software Manual

Sync
The Sync field is the second field that the master task transmits in the

header. Sync is defined as the character x55. The Sync field allows slave

nodes that perform automatic baud rate detection to measure the baud rate

period and adjust their internal baud rate to synchronize with the bus.

ID
The ID field is the final field in the header transmitted by the master task.

This field provides identification for each message on the network and

ultimately determines which devices in the network receive or respond to

each transmission. All slave tasks continually listen for Identifier Fields,

verify their parity, and determine whether they are publishers or subscribers

for this particular identifier. LIN provides 64 IDs. IDs 0–59 (0x3B) are for

signal-carrying (data) frames, 60 (0x3C) and 61 (0x3D) carry diagnostic

data, and 62 (0x3E) and 63 (0x3F) are reserved for future protocol

enhancements. The ID is protected, as it is transmitted over the bus by

performing a 2-bit parity calculation on the 6-bit ID and combining the

parity and the ID into a single byte called the protected ID. This protected

ID has the lower 6 bits containing the raw ID and the upper two bits

containing the parity.

Figure C-1 shows how parity is calculated using the raw ID and how the

protected ID is formed from the combination of the parity bits and raw ID.

Figure C-1. Parity Calculation Method

Data Payload
The slave task transmits the Data Payload field in the response. This field

contains one to eight bytes of data.

Protected ID(7:6) Protected ID(5:0)

P(1) P(0) Raw ID(5:0)

¬ (ID(1) ID(3) 
ID(4) ID(5))

ID(0) ID(1) 
ID(2) ID(4)

0–63

Appendix C Summary of the LIN Standard

NI-XNET Hardware and Software Manual C-4 ni.com

Checksum
The slave task transmits the Checksum field as the last byte in the response.

The message portion included in the checksum can differ based on the

checksum mode in use. The classic checksum is calculated using the data

bytes. The enhanced checksum is calculated using the data bytes and

protected ID.

The LIN 2.1 specification defines the checksum calculation process as the

summing of all values, subtracting 255 every time the sum is greater than

or equal to 256, then inverting the result. Per the LIN 2.1 specification,

classic checksum is for use with LIN 1.x slave devices and enhanced

checksum with LIN 2.x slave devices. It further specifies that IDs 60–61

always use classic checksum. NI-XNET uses the checksum configuration

obtained from the database to determine which checksum algorithm to use

for a particular frame. Per the LIN 2.1 specification, IDs 60–61 always use

classic checksum, regardless of the setting of the checksum attribute.

Figure C-2 shows how a master task header and slave task response

combine to create a LIN full frame.

Figure C-2. Creation of LIN Full Frames

T3: Master task transmits header for ID 1;

T4: On receiving the header, the

 slave task configured to publish

 data for ID 1 transmits a response.
The schedule table specifies the

interframe delay for each ID.

Break Sync ID 1

Databytes Checksum

Break Sync ID 1 Databytes ChecksumBreak Sync ID 0 Databytes Checksum

T1: Master task transmits header for ID 0;

T2: On receiving the header, the

 slave task configured to publish

 data for ID 0 transmits a response.

Break Sync ID 0

Databytes Checksum

Result on LIN Bus

Appendix C Summary of the LIN Standard

© National Instruments C-5 NI-XNET Hardware and Software Manual

LIN Bus Timing

A nominal time for a LIN frame to be transmitted across the bus is the

number of bits multiplied by the time for each bit. Because different entities

transmit the two LIN frame fields, the timing breaks down into the time for

the header to be transmitted and the time for the response to be transmitted,

as shown below.

TBit = Time it takes to transmit 1 bit (1/Baud_Rate)

NData = Number of data bytes in response

THeader_Nominal = 34 * TBit

TResponse_Nominal = 10 * (NData + 1) * TBit

TFrame_Nominal = THeader_Nominal + TResponse_Nominal

However, to allow for byte processing and other delays within a device,

each segment is allocated an additional 40 percent as compared to the

nominal time for the frame to transmit.

THeader_Maximum = 1.4 * THeader_Nominal

TResponse_Maximum = 1.4 * TResponse_Nominal

TFrame_Maximum = THeader_Maximum + TResponse_Maximum

LIN Error Detection and Confinement

The LIN 2.1 specification specifies that slave tasks should handle error

detection and that error monitoring by the master task is not required. The

LIN 2.1 specification does not require handling of multiple errors within

one LIN frame or the use of error counters. On encountering the first error

in a frame, the slave task aborts processing of the frame until detection of

the next Break-Sync sequence (in the next header the master transmits).

With NI-XNET, you can determine whether any of these errors have

occurred by checking the Last Error Code (LEC) field by reading XNET

Read (State LIN Comm).vi.

LIN also provides a mechanism for slave nodes to report errors to the

master node. The LIN 2.1 specification defines a 1-bit scalar signal named

response_error, which each slave publishes to the master in one of its

unconditional frames. This bit is set whenever a frame that a slave node

Appendix C Summary of the LIN Standard

NI-XNET Hardware and Software Manual C-6 ni.com

receives or transmits (except for an event-triggered response) contains an

error in the response field. The bit is cleared after the frame containing the

signal is successfully published to the master.

LIN Sleep and Wakeup

LIN provides a mechanism for devices to enter sleep state and potentially

conserve power. Per the LIN 2.1 specification, the master may force all

slaves into sleep mode by sending a diagnostic master request frame

(ID=60, 0x3C) with the first data byte equal to 0 and the remaining bytes

set to 0xFF. This special frame is called the go-to-sleep command. Slaves

also enter sleep mode automatically if LIN is inactive for more than

4 seconds.

LIN also provides a mechanism for waking devices on the bus. Wakeup is

one task that any node on the bus (a slave as well as the master) may initiate.

Per the LIN 2.1 specification, force the bus dominant for 250 µs to 5 ms to

issue the wakeup request. Each slave should detect the wakeup request and

be ready to process headers within 100 ms. The master also should detect

the wakeup request and start sending headers when the slave nodes are

ready (within 100–150 ms after receiving the wakeup request). If the master

does not issue headers within 150 ms after receiving the first wakeup

request, the slave requesting wakeup may try issuing a second wakeup

request (and waiting for another 150 ms). If the master still does not

respond, the slave may issue the wakeup request and wait 150 ms a third

time. If there still is no response, the slave must wait for 1.5 seconds before

issuing a fourth wakeup request.

The master may wake up the bus just by starting to send a normal break.

However, if this happens, the slaves may not be awake, and the slave nodes

may not process the first header transmitted.

Advanced Frame Types

The LIN 2.1 specification classifies LIN frames into five types:

unconditional, event triggered, sporadic, diagnostic, and reserved. It is

important to note that the differences in these frame types are due to either

the timing of how they are transmitted or the data bytes’ content.

Regardless of frame classification, a LIN frame always consists of a header

that the master task transmits and a response that a slave task transmits.

The unconditional frame type is most commonly used. Unconditional

frames carry signals (data), and their identifiers are 0–59 (0x3B). Whenever

Appendix C Summary of the LIN Standard

© National Instruments C-7 NI-XNET Hardware and Software Manual

the publisher of an unconditional frame receives the header, it always

transmits a response.

The event-triggered frame type attempts to conserve bus bandwidth

by requesting an unconditional frame response from multiple slaves

within one frame slot time. The event-triggered frame may have an ID of

0–59 (0x3B). When an unconditional frame is used as an event frame, the

bytes of data are restricted to 1–7 bytes instead of 1–8 bytes. This is because

the first data byte must be loaded with the protected ID of the slave’s

unconditional frame.

The event-triggered frame works as follows: The master writes an

event-triggered ID in a header. The slaves respond to the event-triggered ID

only if their data has been updated. If only one slave publishes a response,

the master receives it and looks at the first data byte, which indicates which

slave (through the protected ID) published the response. If multiple slaves

publish a response, a collision occurs. When the master detects this

collision, it invokes a new schedule to resolve the collision. This collision

resolving schedule queries each unconditional frame associated with the

event-triggered frame to get the responses from all objects. Afterwards, the

original schedule is continued.

Sporadic frames attempt to provide some dynamic behavior to LIN.

Sporadic frames always carry signals (data), and their IDs are 0–59 (0x3B).

Only the slave task associated with the master node can send sporadic

frames. The header of a sporadic frame is sent in its frame slot only when

the master task knows that a data value (signal) within the frame has been

updated. If multiple unconditional frames associated with a sporadic slot

have updated data, the master transmits only the highest priority frame,

which the order that the frames appear in the sporadic frame list determines.

Diagnostic frames are always eight data bytes in length and always carry

diagnostic or configuration data. Their ID is either 60 (0x3C) for a master

request frame or 61 (0x3D) for a slave response frame.

Reserved frames have an ID of 62 (0x3E) and 63 (0x3F). You must not use

them in a LIN 2.x cluster.

Additional LIN Information

For further LIN specification details, refer to the LIN consortium Web site

at www.lin-subbus.org.

© National Instruments D-1 NI-XNET Hardware and Software Manual

D
Specifications

This appendix lists specifications for PXI-XNET, PCI-XNET, and C Series

NI XNET hardware.

PXI-XNET

This section lists specifications for PXI-XNET hardware.

Physical Layers

CAN Physical Layers

High-Speed CAN

Transceiver... NXP TJA1041

Max baud rate... 1 Mbps

Min baud rate ... 40 kbps

CAN_H, CAN_L bus lines –27 to +40 VDC

Low-Speed/Fault-Tolerant CAN

Transceiver1 ... NXP TJA1054A or TJA 1055T

Max baud rate... 125 kbps

Min baud rate ... 40 kbps, 10 kbps min for all error

modes

Single Wire CAN

Transceiver2 ... NXP AU5790 or

ON Semiconductor NCV7356

1 Refer to Low-Speed/Fault-Tolerant Physical Layer in Chapter 3, NI-XNET Hardware Overview, to determine the transceiver
used.

2 Refer to Single Wire CAN Physical Layer in Chapter 3, NI-XNET Hardware Overview, to determine the transceiver used.

Appendix D Specifications

NI-XNET Hardware and Software Manual D-2 ni.com

Max baud rate ...83.3 kbps

Min baud rate..33.3 kbps

Bus Power Required+8 to +18 V

External CAN Transceiver

Digital I/O Characteristics

FlexRay Physical Layer
Transceiver ...NXP TJA1080  2

Max baud rate ...10 Mbps

Min baud rate..1 Mbps

LIN Physical Layer
Transceiver1 ..ATMEL ATA6620 or ATA6625

Max baud rate ...20 kbps

Min baud rate..2.4 kbps

Bus Power Required+8 to +18 V

RTSI/Front Panel Sync Connectors
Trigger lines..7 input/output

Clock lines ..1 input/output

Parameter Min Max

Output0, Output1

VOH (IOH = –8 mA) 3.8 V —

VOL (IOL = 8 mA) — 0.44 V

NERR

VIH 2.0 V —

VIL — 0.8 V

1 Refer to LIN Physical Layer in Chapter 3, NI-XNET Hardware Overview, to determine the transceiver used.

Appendix D Specifications

© National Instruments D-3 NI-XNET Hardware and Software Manual

Front Panel Sync Connectors 2 input/output

(XS/FlexRay only)

I/O compatibility TTL

Power-on state.. Input (High-Z)

Response .. Rising Edge Triggers

Physical Dimensions
Dimensions... 10.00 cm  16.00 cm

(3.9 in.   in.)

I/O connector.. 9-pin male D-SUB for each port

Sync connector SMB jack  2

(XS/FlexRay only)

Power Requirements

CAN
+5 VDC (±5%)....................................... 640 mA typical

+3.3 VDC (±5%).................................... 940 mA typical

FlexRay
+5 VDC (±5%)....................................... 210 mA typical

+3.3 VDC (±5%).................................... 940 mA typical

LIN
+3.3 VDC (±5%).................................... 940 mA typical

Shock
Operating.. 30 g peak, half-sine, 11 ms pulse

(Tested in accordance with

IEC-60068-2-27. Test profile

developed in accordance with

MIL-PRF-28800F.)

Appendix D Specifications

NI-XNET Hardware and Software Manual D-4 ni.com

Random Vibration
Operating ..5 to 500 Hz, 0.3 grms

Non-operating ...5 to 500 Hz, 2.4 grms

(Tested in accordance

with IEC-60068-2-64.

Non-operating test profile

exceeds the requirements of

MIL-PRF-28800F, Class 3.)

Safety

Isolation Voltages
Port-to-port ground

Continuous.......................................60 VDC,

Measurement Category I

Port-to-earth ground

Continuous.......................................60 VDC,

Measurement Category I

This isolation is intended to prevent ground loops.

Safety Standards
This product meets the requirements of the following standards of safety

for electrical equipment for measurement, control, and laboratory use:

• IEC 61010-1, EN 61010-1

• UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the Online

Product Certification section.

Environmental
Operating temperature0 to 55 °C

Storage temperature–20 to 70 °C

(Tested in accordance with

IEC-60068-2-1 and

IEC-60068-2-2.)

Operating humidity.................................10 to 90% RH, noncondensing

Appendix D Specifications

© National Instruments D-5 NI-XNET Hardware and Software Manual

Storage humidity 5 to 95% RH, noncondensing

(Tested in accordance with

IEC-60068-2-56.)

Maximum altitude 2000 m

Pollution Degree (IEC 60664) 2

Indoor use only.

PCI-XNET

This section lists specifications for PCI-XNET hardware.

Physical Layers

CAN Physical Layers

High-Speed CAN

Transceiver... NXP TJA1041

Max baud rate... 1 Mbps

Min baud rate ... 40 kbps

CAN_H, CAN_L bus lines –27 to +40 VDC

Low-Speed/Fault-Tolerant CAN

Transceiver1 ... NXP TJA1054A or TJA 1055T

Max baud rate... 125 kbps

Min baud rate ... 40 kbps, 10 kbps min for all error

modes

Single Wire CAN

Transceiver2 ... NXP AU5790 or

ON Semiconductor NCV7356

Max baud rate... 83.3 kbps

1 Refer to Low-Speed/Fault-Tolerant Physical Layer in Chapter 3, NI-XNET Hardware Overview, to determine the transceiver
used.

2 Refer to Single Wire CAN Physical Layer in Chapter 3, NI-XNET Hardware Overview, to determine the transceiver used.

Appendix D Specifications

NI-XNET Hardware and Software Manual D-6 ni.com

Min baud rate..33.3 kbps

Bus Power Required+8 to +18 V

External CAN Transceiver

Digital I/O Characteristics

FlexRay Physical Layer
Transceiver ...NXP TJA1080  2

Max baud rate ...10 Mbps

Min baud rate..1 Mbps

LIN Physical Layer
Transceiver1 ..ATMEL ATA6620 or ATA6625

Max baud rate ...20 kbps

Min baud rate..2.4 kbps

Bus Power Required+8 to +18 V

RTSI/Front Panel Sync Connectors
Trigger lines..7 input/output

Clock lines ..1 input/output

Front Panel Sync Connectors2 input/output

(XS/FlexRay only)

Parameter Min Max

Output0, Output1

VOH (IOH = –8 mA) 3.8 V —

VOL (IOL = 8 mA) — 0.44 V

NERR

VIH 2.0 V —

VIL — 0.8 V

1 Refer to LIN Physical Layer in Chapter 3, NI-XNET Hardware Overview, to determine the transceiver used.

Appendix D Specifications

© National Instruments D-7 NI-XNET Hardware and Software Manual

I/O compatibility TTL

Power-on state.. Input (High-Z)

Response .. Rising edge triggers

Physical Dimensions
Dimensions... 10.67 cm  16.76 cm

(4.2 in.  6.6 in.)

I/O connector.. 9-pin male D-SUB for each port

Sync connector SMB jack  2

(XS/FlexRay only)

Power Requirements

CAN
+5 VDC (±5%)....................................... 640 mA typical

+3.3 VDC (±5%).................................... 940 mA typical

FlexRay
+5 VDC (±5%)....................................... 210 mA typical

+3.3 VDC (±5%).................................... 940 mA typical

LIN
+3.3 VDC (±5%).................................... 940 mA typical

Safety

Isolation Voltages
Port-to-port ground

Continuous 60 VDC,

Measurement Category I

Port-to-earth ground

Continuous 60 VDC,

Measurement Category I

This isolation is intended to prevent ground loops.

Appendix D Specifications

NI-XNET Hardware and Software Manual D-8 ni.com

Safety Standards
This product meets the requirements of the following standards of safety

for electrical equipment for measurement, control, and laboratory use:

• IEC 61010-1, EN 61010-1

• UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the Online

Product Certification section.

Environmental
Operating temperature0 to 55 °C

Storage temperature–20 to 70 °C (Tested in

accordance with IEC-60068-2-1

and IEC-60068-2-2.)

Operating humidity.................................10 to 90% RH, noncondensing

Storage humidity.....................................5 to 95% RH, noncondensing

(Tested in accordance with

IEC-60068-2-56.)

Maximum altitude...................................2000 m

Pollution Degree (IEC 60664)2

Indoor use only.

C Series XNET

For C Series hardware specifications, refer to your C Series hardware

operating instructions.

NI-XNET Transceiver Cables

For NI-XNET Transceiver Cable hardware specifications, refer to your

NI-XNET Transceiver Cable hardware operating instructions.

Appendix D Specifications

© National Instruments D-9 NI-XNET Hardware and Software Manual

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for

electrical equipment for measurement, control, and laboratory use:

• EN 61326 (IEC 61326): Class A emissions; Basic immunity

• EN 55011 (CISPR 11): Group 1, Class A emissions

• AS/NZS CISPR 11: Group 1, Class A emissions

• FCC 47 CFR Part 15B: Class A emissions

• ICES-001: Class A emissions

Note For the standards applied to assess the EMC of this product, refer to the Online

Product Certification section.

Note For EMC compliance, operate this product according to the documentation.

Caution When operating this product, use shielded cables and accessories.

CE Compliance

This product meets the essential requirements of applicable European

Directives as follows:

• 2006/95/EC; Low-Voltage Directive (safety)

• 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional

regulatory compliance information. To obtain product certifications and

the DoC for this product, visit ni.com/certification, search by model

number or product line, and click the appropriate link in the Certification

column.

Environmental Management

NI is committed to designing and manufacturing products in an

environmentally responsible manner. NI recognizes that eliminating

certain hazardous substances from our products is beneficial to the

environment and to NI customers.

Appendix D Specifications

NI-XNET Hardware and Software Manual D-10 ni.com

For additional environmental information, refer to the NI and the

Environment Web page at ni.com/environment. This page contains the

environmental regulations and directives with which NI complies, as well

as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)
EU Customers At the end of the product life cycle, all products must be sent to a WEEE

recycling center. For more information about WEEE recycling centers, National

Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on

Waste and Electronic Equipment, visit ni.com/environment/weee.

RoHS

National Instruments (RoHS)
National Instruments RoHS ni.com/environment/rohs_china

(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

© National Instruments E-1 NI-XNET Hardware and Software Manual

E
LabVIEW Project Provider

You can use NI-XNET features to create NI-XNET sessions within your

LabVIEW project. You can drag these preconfigured NI-XNET sessions

from the project to the block diagram and wire them directly to XNET

Read.vi and XNET Write.vi.

You typically use a LabVIEW project when your application accesses the

network using a fixed configuration. For example, if you are testing a single

product, and your VI reads/writes a predetermined set of signals, a

LabVIEW project is ideal.

Follow these steps to use NI-XNET within a LabVIEW project:

1. Right-click on the LabVIEW target you plan to use with NI-XNET.

For Windows, this is My Computer. For LabVIEW Real-Time (RT),

this is an RT target, such as a PXI controller.

2. Select New»NI-XNET Session.

3. Use the wizard and setup dialog to configure the session. Each

configuration step has online help. When you are done, click OK to

close the setup dialog.

4. If you do not have a VI already, add a VI under the LabVIEW target.

You must use the new session within a VI listed under the same target.

5. Drag the new session to the VI block diagram. NI-XNET creates an

XNET Read.vi or XNET Write.vi that matches the session mode.

You need to make some changes to the block diagram, such as creating

a loop. You now can run the VI.

If you require configuration of NI-XNET sessions at run time, you can use

XNET Create Session.vi as an alternative to a LabVIEW project. For

example, if your application tests a wide variety of products, and the end

user of your application must select a database and its signals using the

front panel, XNET Create Session.vi is ideal.

© National Instruments F-1 NI-XNET Hardware and Software Manual

F
Bus Monitor

Overview

The NI-XNET Bus Monitor is a universal analysis tool for displaying and

logging CAN, FlexRay, or LIN network data. You can display network

information as either last recent data or historical data view. To identify

more detailed frame information, you can assign a network database to the

Bus Monitor. If a received frame is found in the database, you can display

the message name and comment information in the Monitor view or ID Log

view. In addition to the network data, the Bus Monitor can provide

statistical information. For offline data analysis, you can stream all received

network data to disk in two log file formats.

In the Bus Monitor in the CAN protocol mode, you can interactively

transmit an event frame or a periodic frame onto the network. In this mode,

you can quickly verify the correct setup of your CAN network and debug

your communication with the device under test.

NI-XNET errors that appear while doing a CAN, FlexRay, or LIN

measurement within the Bus Monitor are shown in the main user interface.

You can launch the NI-XNET Bus Monitor in three distinct protocol

modes: CAN, FlexRay, or LIN, from MAX or the NI-XNET Windows

Start menu category. You cannot switch from one protocol mode to the

other during run time. You can run the Bus Monitor in multiple instances

on different ports, and can verify the network communication on several

CAN, FlexRay, or LIN bus topologies in parallel.

© National Instruments G-1 NI-XNET Hardware and Software Manual

G
Database Editor

The NI-XNET Database Editor is a small standalone tool for creating and

maintaining embedded network databases. You can use the editor to:

• Configure the basic network

• Define frames and signals exchanged on the network

• Assign frames to ECUs that send and receive them

To launch the Database Editor, go to Start»All Programs»National

Instruments»NI-XNET»Database Editor.

Why Databases?
Databases are the means of choice for managing your embedded networks.

Although it is possible (and supported) in principle to run a network

without a database, using a database is highly recommended to have a

consistent set of network parameters for all nodes in the network. This is

especially true for FlexRay, where you need to set up about 30 parameters

consistently to get a running network.

Additionally, a database can manage the contents of the data exchanged

over the network. You can store frames and signals running on the network

in a database, as well as information about which ECU is transmitting or

receiving which data. This information also is needed for each node in the

network.

Database Formats
For NI-XNET, NI adopted the ASAM FIBEX standard as a database

storage format. FIBEX (FIeld Bus EXchange) is a vendor-independent

exchange format for embedded network data. It is an XML-based text

format. The NI-XNET Database Editor can read and write this format.

In addition, the NI-XNET Database Editor can import the NI-CAN

database format (.ncd), vector CANdb format (.dbc), and LIN

description file format (.ldf) and convert them to FIBEX.

Appendix G Database Editor

NI-XNET Hardware and Software Manual G-2 ni.com

Clusters
The basic entity of a database is a cluster. A cluster is the description of a

single network (for example, a CAN or FlexRay bus).

For CAN, the cluster contains only the baud rate. For FlexRay, there

are about 30 global network parameters to set for a cluster. The NI-XNET

Database Editor includes an Easy view, where you can set the six most

important parameters; the other parameters are then chosen automatically

to obtain a functioning network. If you start with FlexRay, this is probably

the method of choice. However, if you have an existing database, you can

use the Expert view to set individual parameters.

Usually, a database contains only one cluster. For example, the NI-CAN

database and Vector CANdb formats support only one cluster. However,

FIBEX supports multiple clusters per database; for example, you might

describe all of a car’s networks in a single database.

Frames
Each cluster can contain an arbitrary number of frames. A frame is a single

message that is exchanged on the cluster. In NI-CAN, this is equivalent to

an NI-CAN message.

The basic properties of a frame are its identifier (Arbitration ID for CAN,

Slot ID for FlexRay) and the payload length, which can be any value

between 0 and 8 for CAN and any even value between 0 and 254 for

FlexRay.

In addition, several protocol-specific properties exist. You can use the

NI-XNET Database Editor to edit these properties in a protocol

type-specific way.

PDUs
A Protocol Data Unit (PDU) is a data unit defined in a cluster and

exchanged within a frame. Like a frame, a PDU contains an arbitrary

number of signals. You can map one or more PDUs to a frame by defining

a start bit and update bit in the frame properties window. You can map one

PDU to multiple frames.

For CAN and LIN, NI-XNET supports only a one-to-one relationship

between frames and PDUs, and does not support an update bit for PDUs.

Signals returned from the frame are the same as signals returned from the

mapped PDU. In this case, you can deactivate the Use PDUs editor option

to hide PDUs in the editor. If the file contains frames with advanced PDU

Appendix G Database Editor

© National Instruments G-3 NI-XNET Hardware and Software Manual

configuration (using a one-to-n or n-to-one relationship or update bits), you

cannot deactivate Use PDUs in the editor.

FIBEX files prior to version 3.0, .DBC files, and .NCD files cannot contain

an advanced PDU configuration.

Signals
Each frame contains an arbitrary number of signals, which are the basic

data exchange units on the network. These signals are equivalent to

NI-CAN channels.

Some of the signal properties are:

• Start bit: the signal start position within the frame

• Number of bits: the signal length within the frame

• Data type: the data type (signed, unsigned, or float)

• Byte order: little or big endian

• Scaling factor and offset: for converting physical data to binary

representation

ECUs
ECUs appear in the NI-XNET Database Editor only as transmitters and

receivers of frames within clusters. They are not separate entities. That is,

the same ECU might appear in different database clusters, but in the

exported FIBEX file, they appear as different ECU entities.

In the LabVIEW Project Provider, you can sort frames by ECUs.

© National Instruments H-1 NI-XNET Hardware and Software Manual

H
NI Services

National Instruments provides global services and support as part of our

commitment to your success. Take advantage of product services in

addition to training and certification programs that meet your needs during

each phase of the application life cycle; from planning and development

through deployment and ongoing maintenance.

To get started, register your product at ni.com/myproducts.

As a registered NI product user, you are entitled to the following benefits:

• Access to applicable product services.

• Easier product management with an online account.

• Receive critical part notifications, software updates, and service

expirations.

Log in to your National Instruments ni.com User Profile to get

personalized access to your services.

Services and Resources

• Maintenance and Hardware Services—NI helps you identify your

systems’ accuracy and reliability requirements and provides warranty,

sparing, and calibration services to help you maintain accuracy and

minimize downtime over the life of your system. Visit ni.com/

services for more information.

– Warranty and Repair—All NI hardware features a one-year

standard warranty that is extendable up to five years. NI offers

repair services performed in a timely manner by highly trained

factory technicians using only original parts at a National

Instruments service center.

– Calibration—Through regular calibration, you can quantify and

improve the measurement performance of an instrument. NI

provides state-of-the-art calibration services. If your product

supports calibration, you can obtain the calibration certificate for

your product at ni.com/calibration.

http://www.ni.com/services
http://www.ni.com/services
http://www.ni.com/calibration
http://www.ni.com/myproducts
http://www.ni.com

Appendix H NI Services

NI-XNET Hardware and Software Manual H-2 ni.com

• System Integration—If you have time constraints, limited in-house

technical resources, or other project challenges, National Instruments

Alliance Partner members can help. To learn more, call your local NI

office or visit ni.com/alliance.

• Training and Certification—The NI training and certification

program is the most effective way to increase application development

proficiency and productivity. Visit ni.com/training for more

information.

– The Skills Guide assists you in identifying the proficiency

requirements of your current application and gives you options for

obtaining those skills consistent with your time and budget

constraints and personal learning preferences. Visit ni.com/

skills-guide to see these custom paths.

– NI offers courses in several languages and formats including

instructor-led classes at facilities worldwide, courses on-site at

your facility, and online courses to serve your individual needs.

• Technical Support—Support at ni.com/support includes the

following resources:

• Self-Help Technical Resources—Visit ni.com/support for

software drivers and updates, a searchable KnowledgeBase, product

manuals, step-by-step troubleshooting wizards, thousands of example

programs, tutorials, application notes, instrument drivers, and so on.

Registered users also receive access to the NI Discussion Forums at

ni.com/forums. NI Applications Engineers make sure every question

submitted online receives an answer.

• Software Support Service Membership—The Standard Service

Program (SSP) is a renewable one-year subscription included with

almost every NI software product, including NI Developer Suite. This

program entitles members to direct access to NI Applications

Engineers through phone and email for one-to-one technical support,

as well as exclusive access to online training modules at ni.com/

self-paced-training. NI also offers flexible extended contract

options that guarantee your SSP benefits are available without

interruption for as long as you need them. Visit ni.com/ssp for more

information.

• Declaration of Conformity (DoC)—A DoC is our claim of

compliance with the Council of the European Communities using the

manufacturer’s declaration of conformity. This system affords the user

protection for electromagnetic compatibility (EMC) and product

safety. You can obtain the DoC for your product by visiting

ni.com/certification.

http://www.ni.com/alliance
http://www.ni.com/training
http://www.ni.com/skills-guide
http://www.ni.com/skills-guide
http://www.ni.com/support
http://www.ni.com/support
http://www.ni.com/forums
http://www.ni.com/self-paced-training
http://www.ni.com/self-paced-training
http://www.ni.com/ssp
http://www.ni.com/certification

Appendix H NI Services

© National Instruments H-3 NI-XNET Hardware and Software Manual

For information about other technical support options in your area, visit

ni.com/services, or contact your local office at ni.com/contact.

You also can visit the Worldwide Offices section of ni.com/niglobal to access

the branch office websites, which provide up-to-date contact information, support

phone numbers, email addresses, and current events.

http://www.ni.com/services
http://www.ni.com/contact
http://www.ni.com/niglobal

© National Instruments I-1 NI-XNET Hardware and Software Manual

Index

A
acknowledgement error, A-8

Acknowledgment Bit (ACK), A-5

advanced database example using property

nodes (figure), 4-11

Advanced subpalette, 4-499

alias, definition of

in C, 5-5

in LabVIEW, 4-8

API

for C, 5-1

for LabVIEW, 4-1

reference

NI-XNET API for C, 5-47

NI-XNET API for LabVIEW, 4-61

Application Protocol

in C, 5-197, 5-246

in LabVIEW, 4-319, 4-351

Arbitration ID, A-4

Auto Start?

in C, 5-372

in LabVIEW, 4-185

B
basic programming model, NI-XNET API, in

LabVIEW, 4-3

Baud Rate

in C, 5-147

in LabVIEW, 4-320

bit error, A-7

bit rate switch bit (BRS), A-6

Break field in LIN, C-2

BRS (bit rate switch bit), A-6

built application, creating using a LabVIEW

project, 4-560

Bus Monitor, F-1

bus off state, A-9

bus power requirements

CAN hardware

High-Speed physical layer, 3-4

Low-Speed/Fault-Tolerant physical

layer, 3-8

Single Wire physical layer, 3-12

FlexRay hardware, 3-1

LIN hardware, 3-15

Byte Order

in C, 5-387

in LabVIEW, 4-394

C
C Series modules firmware update, 2-5

cable connecting two CAN devices

(figure), 3-7

cable lengths

CAN hardware

High-Speed, 3-5

Single Wire physical layer, 3-12

FlexRay hardware, 3-2

LIN hardware, 3-15

cable termination, CAN hardware

High-Speed, 3-5

High-Speed termination resistor

placement (figure), 3-6

Low-Speed/Fault-Tolerant, 3-9

Low-Speed/Fault-Tolerant termination

resistor placement (figure), 3-9

cabling example, High-Speed CAN

hardware, 3-7

cabling requirements

CAN hardware

High-Speed, 3-5

Low-Speed/Fault-Tolerant, 3-8

Single Wire physical layer, 3-12

Index

NI-XNET Hardware and Software Manual I-2 ni.com

FlexRay hardware, 3-1

LIN hardware, 3-15

CAN

DB9 pinouts

C Series NI-XNET (table), 3-14

PXI and PCI NI-XNET

external CAN transceiver

(table), 3-13

interfaces (table), 3-13

error detection and confinement, A-7

external transceiver, 3-12

FD frames, A-5

Frame properties

in C, 5-368

in LabVIEW, 4-180

frames, A-3

hardware, 3-3

High-Speed physical layer

bus power requirements, 3-4

cable example, 3-7

cable lengths, 3-5

cable termination, 3-5

cabling requirements, 3-5

number of devices, 3-5

transceiver, 3-4

Low-Speed/Fault-Tolerant physical

layer

bus power requirements, 3-8

cabling requirements, 3-8

determining necessary

termination resistance for a

board, 3-10

number of devices, 3-9

termination, 3-9

transceiver, 3-7

Single Wire physical layer

bus power requirements, 3-12

cable lengths, 3-12

cabling requirements, 3-12

number of devices, 3-12

termination (bus loading), 3-12

transceiver, 3-11

history and use, A-1

identifiers and message priority, A-2

interface configuration, 2-7

Interface properties

in C, 5-273

in LabVIEW, 4-83

Low-Speed, A-10

NI-XNET transceiver cables, 3-3

Single Wire, A-11

summary of CAN standard, A-1

using with NI-XNET API for LabVIEW

configuring frame I/O stream

sessions, 4-49

understanding CAN frame timing,

4-48

XS software selectable physical layer, 3-3

CAN FD standard and extended frame formats

(figure), A-5

CAN frames

Acknowledgment Bit (ACK), A-5

Arbitration ID, A-4

CAN FD standard and extended frame

formats (figure), A-5

Cyclic Redundancy Check (CRC), A-4

Data Bytes, A-4

Data Length Code (DLC), A-4

End of Frame, A-5

Identifier Extension (IDE), A-4

Remote Transmit Request (RTR), A-4

standard and extended frame formats

(figure), A-3

Start of Frame (SOF), A-4

CAN timing type and session mode

in C, 5-443

cyclic data, 5-443

cyclic remote, 5-445

event data, 5-445

event remote, 5-446

Index

© National Instruments I-3 NI-XNET Hardware and Software Manual

in LabVIEW

cyclic data, 4-595

cyclic remote, 4-596

event data, 4-596

event remote, 4-597

CAN:Extended Identifier?

in C, 5-215

in LabVIEW, 4-347

CAN:FD Baud Rate

in C, 5-148

in LabVIEW, 4-321

CAN:I/O Mode

in C, 5-149

in LabVIEW, 4-322

CAN:Timing Type

in C, 5-216

in LabVIEW, 4-348

CAN:Transmit Time

in C, 5-218

in LabVIEW, 4-350

CAN.Termination Capability

in C, 5-247

in LabVIEW, 4-528

CAN.Transceiver Capability

in C, 5-248

in LabVIEW, 4-529

CE compliance specifications, D-9

changing LIN schedule, 4-51

Checksum field in LIN, C-4

clock synchronization in FlexRay, B-9

Cluster

XNET ECU

in C, 5-204

in LabVIEW, 4-335

XNET Frame

in C, 5-219

in LabVIEW, 4-352

XNET LIN Schedule

in C, 5-253

in LabVIEW, 4-467

XNET PDU

in C, 5-266

in LabVIEW, 4-379

XNET Session, 4-186

ClusterName, 5-373

Clusters

in C, 5-198

in LabVIEW, 4-279

clusters, in databases, G-2

coldstart nodes in FlexRay, B-6

Collision Resolving Schedule

XNET LIN Schedule Entry

in C, 5-258

in LabVIEW, 4-475

Comment

XNET Cluster

in C, 5-150

in LabVIEW, 4-323

XNET ECU

in C, 5-204

in LabVIEW, 4-339

XNET Frame

in C, 5-219

in LabVIEW, 4-352

XNET LIN Schedule

in C, 5-253

in LabVIEW, 4-468

XNET PDU

in C, 5-266

in LabVIEW, 4-379

XNET Signal

in C, 5-389

in LabVIEW, 4-396

common questions, 6-1

Communication Cycle in FlexRay, B-5

CompactRIO, getting started with, 2-8

configuration, 2-1

in LabVIEW Real-Time (RT), 2-7

NI-XNET interfaces, 2-7

NI-XNET tools, 2-12

Index

NI-XNET Hardware and Software Manual I-4 ni.com

Configuration Status

XNET Cluster

in C, 5-150

in LabVIEW, 4-323

XNET ECU

in C, 5-205

in LabVIEW, 4-339

XNET Frame

in C, 5-220

in LabVIEW, 4-353

XNET LIN Schedule

in C, 5-254

in LabVIEW, 4-469

XNET PDU

in C, 5-267

in LabVIEW, 4-380

XNET Signal

in C, 5-390

in LabVIEW, 4-397

configuring frame I/O stream sessions, 4-49

Controls palette, 4-558

Conversion Mode

in C, 5-38

in LabVIEW, 4-45

CRC (cyclic redundancy check sequence), A-6

CRC error, A-8

creating a built application using a LabVIEW

project

databases, 4-560

NI-XNET sessions, 4-560

creating a built real-time application in

LabVIEW Real-Time (RT), 4-55

creating cluster and frame for CAN

(figure), 4-13

cyclic data

CAN

in C, 5-443

in LabVIEW, 4-595

FlexRay

in C, 5-449

in LabVIEW, 4-601

Cyclic Redundancy Check (CRC), A-4

cyclic redundancy check sequence (CRC), A-6

cyclic remote

in C, 5-445

in LabVIEW, 4-596

cyclic timing

CAN

in C, 5-418

in LabVIEW, 4-561

FlexRay

in C, 5-419

in LabVIEW, 4-562

in C, 5-418

in LabVIEW, 4-561

LIN

in C, 5-419

in LabVIEW, 4-562

D
Data Bytes, A-4

Data Length Code (DLC), A-4

Data Payload field in LIN, C-3

data security in FlexRay, B-3

Data Type

in C, 5-391

in LabVIEW, 4-398

Database

in C, 5-151

in LabVIEW, 4-324

database classes, 4-614

database controls, 4-558

Database Editor

clusters, G-2

database formats, G-1

ECUs, G-3

frames, G-2

PDUs, G-2

reasons to use databases, G-1

signals, G-3

Index

© National Instruments I-5 NI-XNET Hardware and Software Manual

database programming

NI-XNET API for C

creating a new file using NI-XNET

Database Editor, 5-7

creating in memory, 5-7

editing and selecting

editing in file, 5-7

editing in memory, 5-7

selecting from file, 5-7

using a file, 5-7

using existing file, 5-6

using existing file as is, 5-6

NI-XNET API for LabVIEW

creating a new file using NI-XNET

Database Editor, 4-12

creating in memory, 4-12

creating cluster and frame for

CAN (figure), 4-13

editing and selecting

editing in file, 4-12

editing in memory, 4-11

multiple databases

simultaneously, 4-13

selecting from file

advanced database example

using property nodes

(figure), 4-11

using I/O names, 4-10

using LabVIEW project, 4-10

using a file, 4-12

using existing file, 4-9

using existing file as is, 4-9

Database subpalette, 4-278

DatabaseName, 5-373

databases

definition

in C, 5-4

in LabVIEW, 4-7

deploying in LabVIEW Real-Time

(RT), 4-54

formats, G-1

reasons to use, G-1

using

with NI-XNET API for C, 5-4

with NI-XNET API for

LabVIEW, 4-7

Default Payload

in C, 5-221

in LabVIEW, 4-354

Default Value

in C, 5-392

in LabVIEW, 4-399

Delay, XNET LIN Schedule Entry

in C, 5-258

in LabVIEW, 4-476

deploying databases in LabVIEW Real-Time

(RT), 4-54

determining necessary termination resistance

for Low-Speed/Fault-Tolerant CAN

hardware, 3-10

Device

in C, 5-249

in LabVIEW, 4-530

Devices

in C, 5-410

in LabVIEW, 4-515

documentation

related documentation, xxxiii

Dynamic Signals

in C, 5-405

in LabVIEW, 4-388

E
ECUs

in C, 5-151

in databases, G-3

in LabVIEW, 4-324

EDL (extended data length bit), A-6

electromagnetic compatibility

specifications, D-9

End of Frame, A-5

Index

NI-XNET Hardware and Software Manual I-6 ni.com

Entries, XNET LIN Schedule

in C, 5-255

in LabVIEW, 4-470

environmental management

specifications, D-9

error active state, A-9

error detection and confinement, CAN, A-7

acknowledgement error, A-8

bit error, A-7

bus off state, A-9

CRC error, A-8

error active state, A-9

error passive state, A-9

form error, A-8

stuff error, A-7

error handling

in FlexRay, B-3

in LabVIEW, 4-562

error passive state, A-9

error state indicator bit (ESI), A-6

ESI (error state indicator bit), A-6

event data

CAN

in C, 5-445

in LabVIEW, 4-596

FlexRay

in C, 5-451

in LabVIEW, 4-602

Event Identifier, XNET LIN Schedule Entry

in C, 5-259

in LabVIEW, 4-476

event remote

in C, 5-446

in LabVIEW, 4-597

event timing

CAN

in C, 5-418

in LabVIEW, 4-561

FlexRay

in C, 5-419

in LabVIEW, 4-562

in C, 5-418

in LabVIEW, 4-561

LIN

in C, 5-419

in LabVIEW, 4-562

examples

NI-XNET API for LabVIEW, 4-1

extended data length bit (EDL), A-6

external CAN transceiver, 3-12

F
fault handling in LabVIEW, 4-563

FD frames, CAN, A-5

FIBEX database format, definition, G-1

File Management subpalette, 4-459

firmware update, XNET C series modules, 2-5

FlexRay

bus benefits, B-3

cable characteristics (table), 3-2

clock synchronization, B-9

coldstart nodes, B-6

Communication Cycle, B-5

data security, B-3

DB9 pinouts (table), 3-2

error handling, B-3

frame format, B-10

hardware, 3-1

bus power requirements, 3-1

cable lengths, 3-2

cabling requirements, 3-1

number of devices, 3-2

physical layer, 3-1

termination, 3-2

transceiver, 3-1

interface configuration, 2-7

Interface properties

in C, 5-291

in LabVIEW, 4-102

network, B-3

overview, B-1

Index

© National Instruments I-7 NI-XNET Hardware and Software Manual

Protocol Data Units, 4-51

protocol operation control, B-4

startup, B-6

path of following coldstart node, B-9

path of leading coldstart node, B-8

path of non-coldstart node, B-9

startup state machine (figure), B-7

state transitions (figure), B-8

summary of FlexRay standard, B-1

timing source in LabVIEW Real-Time

(RT), 4-55

timing type and session mode

in C

cyclic data, 5-449

event data, 5-451

in LabVIEW

cyclic data, 4-601

event data, 4-602

using with NI-XNET API for LabVIEW

starting communication, 4-50

understanding FlexRay frame

timing, 4-51

FlexRay startup/wakeup

in C, 5-455

in LabVIEW, 4-606

FlexRay:Action Point Offset

in C, 5-152

in LabVIEW, 4-282

FlexRay:Base Cycle

in C, 5-223

in LabVIEW, 4-356

FlexRay:CAS Rx Low Max

in C, 5-153

in LabVIEW, 4-283

FlexRay:Channel Assignment

in C, 5-225

in LabVIEW, 4-358

FlexRay:Channels

in C, 5-154

in LabVIEW, 4-284

FlexRay:Cluster Drift Damping

in C, 5-155

in LabVIEW, 4-285

FlexRay:Cold Start Attempts

in C, 5-156

in LabVIEW, 4-286

FlexRay:Coldstart?

in C, 5-206

in LabVIEW, 4-335

FlexRay:Connected Channels

in C, 5-206

in LabVIEW, 4-336

FlexRay:Cycle

in C, 5-157

in LabVIEW, 4-287

FlexRay:Cycle Repetition

in C, 5-226

in LabVIEW, 4-359

FlexRay:Dynamic Segment Start

in C, 5-158

in LabVIEW, 4-288

FlexRay:Dynamic Slot Idle Phase

in C, 5-159

in LabVIEW, 4-289

FlexRay:In Cycle Repetitions:Channel

Assignments

in C, 5-228

in LabVIEW, 4-365

FlexRay:In Cycle Repetitions:Enabled?

in C, 5-229

in LabVIEW, 4-366

FlexRay:In Cycle Repetitions:Identifiers

in C, 5-230

in LabVIEW, 4-367

FlexRay:Latest Guaranteed Dynamic Slot

in C, 5-160

in LabVIEW, 4-290

FlexRay:Latest Usable Dynamic Slot

in C, 5-161

in LabVIEW, 4-291

Index

NI-XNET Hardware and Software Manual I-8 ni.com

FlexRay:Listen Noise

in C, 5-162

in LabVIEW, 4-292

FlexRay:Macro Per Cycle

in C, 5-163

in LabVIEW, 4-293

FlexRay:Macrotick

in C, 5-164

in LabVIEW, 4-294

FlexRay:Max Without Clock Correction Fatal

in C, 5-165

in LabVIEW, 4-295

FlexRay:Max Without Clock Correction

Passive

in C, 5-166

in LabVIEW, 4-296

FlexRay:Minislot

in C, 5-167

in LabVIEW, 4-298

FlexRay:Minislot Action Point Offset

in C, 5-168

in LabVIEW, 4-297

FlexRay:Network Management Vector Length

in C, 5-169

in LabVIEW, 4-299

FlexRay:NIT

in C, 5-170

in LabVIEW, 4-301

FlexRay:NIT Start

in C, 5-171

in LabVIEW, 4-300

FlexRay:Number of Minislots

in C, 5-172

in LabVIEW, 4-302

FlexRay:Number of Static Slots

in C, 5-173

in LabVIEW, 4-303

FlexRay:Offset Correction Start

in C, 5-174

in LabVIEW, 4-304

FlexRay:Payload Length Dynamic Maximum

in C, 5-175

in LabVIEW, 4-305

FlexRay:Payload Length Maximum

in C, 5-176

in LabVIEW, 4-306

FlexRay:Payload Length Static

in C, 5-177

in LabVIEW, 4-307

FlexRay:Payload Preamble?

in C, 5-231

in LabVIEW, 4-361

FlexRay:Startup Frame

in C, 5-207

in LabVIEW, 4-336

FlexRay:Startup?

in C, 5-232

in LabVIEW, 4-362

FlexRay:Static Slot

in C, 5-178

in LabVIEW, 4-308

FlexRay:Symbol Window

in C, 5-179

in LabVIEW, 4-310

FlexRay:Symbol Window Start

in C, 5-180

in LabVIEW, 4-309

FlexRay:Sync Node Max

in C, 5-181

in LabVIEW, 4-311

FlexRay:Sync?

in C, 5-233

in LabVIEW, 4-363

FlexRay:Timing Type

in C, 5-234

in LabVIEW, 4-364

FlexRay:TSS Transmitter

in C, 5-182

in LabVIEW, 4-312

Index

© National Instruments I-9 NI-XNET Hardware and Software Manual

FlexRay:Use Wakeup

in C, 5-183

in LabVIEW, 4-313

FlexRay:Wakeup Channels

in C, 5-207

in LabVIEW, 4-337

FlexRay:Wakeup Pattern

in C, 5-208

in LabVIEW, 4-337

FlexRay:Wakeup Symbol Rx Idle

in C, 5-184

in LabVIEW, 4-314

FlexRay:Wakeup Symbol Rx Low

in C, 5-185

in LabVIEW, 4-315

FlexRay:Wakeup Symbol Rx Window

in C, 5-186

in LabVIEW, 4-316

FlexRay:Wakeup Symbol Tx Idle

in C, 5-187

in LabVIEW, 4-317

FlexRay:Wakeup Symbol Tx Low

in C, 5-188

in LabVIEW, 4-318

form error, A-8

Form Factor

in C, 5-200

in LabVIEW, 4-523

Frame

in C, 5-393, 5-406

in LabVIEW, 4-388, 4-401

frame format in FlexRay, B-10

Frame Input Queued mode

in C, 5-10

example, 5-10

in LabVIEW, 4-15

example, 4-16

Frame Input Single-Point mode

in C, 5-12

example, 5-12

in LabVIEW, 4-18

example, 4-18

Frame Input Stream mode

in C, 5-13

example, 5-14

in LabVIEW, 4-19

example, 4-20

Frame Output Queued mode

in C, 5-16

examples, 5-16

in LabVIEW, 4-22

examples, 4-22

Frame Output Single-Point mode

in C, 5-18

example, 5-19

in LabVIEW, 4-24

example, 4-25

Frame Output Stream mode

in C, 5-21

example, 5-21

in LabVIEW, 4-27

example, 4-28

Frame properties

CAN

in C, 5-368

in LabVIEW, 4-180

in C, 5-368

in LabVIEW, 4-180

frame timing in LabVIEW

CAN, 4-48

FlexRay, 4-51

LIN, 4-52

Frame:Active

in LabVIEW, 4-182

Frame:CAN:Start Time Offset

in C, 5-368

in LabVIEW, 4-180

Index

NI-XNET Hardware and Software Manual I-10 ni.com

Frame:CAN:Transmit Time

in C, 5-369

in LabVIEW, 4-181

Frame:LIN:Transmit N Corrupted Checksums

in C, 5-370

in LabVIEW, 4-183

Frame:Skip N Cyclic Frames

in C, 5-371

in LabVIEW, 4-184

Frames

XNET Cluster

in C, 5-189

in LabVIEW, 4-325

XNET LIN Schedule Entry

in C, 5-260

in LabVIEW, 4-477

XNET PDU

in C, 5-268

in LabVIEW, 4-381

Frames Received

in C, 5-208

in LabVIEW, 4-340

Frames Transmitted

in C, 5-209

in LabVIEW, 4-340

frames, CAN, A-3

in databases, G-2

G
getting started

with Compact RIO, 2-8

with NI-XNET API

for C, 5-1

for LabVIEW, 4-1

H
hardware overview, 3-1

high-priority loops in LabVIEW Real-Time

(RT), 4-53

High-Speed physical layer, CAN, 3-4

history and use of CAN, A-1

I
I/O name classes

database classes, 4-614

session, 4-614

system classes, 4-615

I/O name, viewing available interfaces in, 4-6

ID field in LIN, C-3

Identifier

in C, 5-235

in LabVIEW, 4-368

Identifier Extension (IDE), A-4

increasing communication demands, B-2

installation, 2-1

verifying NI-XNET hardware

installation, 2-4

XNET C Series modules firmware

update, 2-5

Interface properties

CAN

in C, 5-273

in LabVIEW, 4-83

FlexRay

in C, 5-291

in LabVIEW, 4-102

in C, 5-273

in LabVIEW, 4-83

LIN

in C, 5-330

in LabVIEW, 4-141

source terminal

in C, 5-341

in LabVIEW, 4-152

Index

© National Instruments I-11 NI-XNET Hardware and Software Manual

interface state model

in C, 5-435

in LabVIEW, 4-581

interface states

in C, 5-438

in LabVIEW, 4-584

interface transitions

in C, 5-439

in LabVIEW, 4-585

Interface:Baud Rate

in C, 5-342

in LabVIEW, 4-153

Interface:Bus Error Frames to Input Stream?

in C, 5-353

in LabVIEW, 4-164

Interface:CAN:External Transceiver Config

in C, 5-273

in LabVIEW, 4-84

Interface:CAN:FD Baud Rate

in C, 5-276

in LabVIEW, 4-87

Interface:CAN:I/O Mode

in C, 5-278

in LabVIEW, 4-89

Interface:CAN:Listen Only?

in C, 5-279

in LabVIEW, 4-90

Interface:CAN:Pending Transmit Order

in C, 5-280

in LabVIEW, 4-91

Interface:CAN:Single Shot Transmit?

in C, 5-282

in LabVIEW, 4-93

Interface:CAN:Termination

in C, 5-283

in LabVIEW, 4-94

Interface:CAN:Transceiver State

in C, 5-285

in LabVIEW, 4-96

Interface:CAN:Transceiver Type

in C, 5-288

in LabVIEW, 4-99

Interface:CAN:Transmit I/O Mode

in C, 5-290

in LabVIEW, 4-101

Interface:Echo Transmit?

in C, 5-345

in LabVIEW, 4-156

Interface:FlexRay:Accepted Startup Range

in C, 5-291

in LabVIEW, 4-102

Interface:FlexRay:Allow Halt Due To Clock?

in C, 5-292

in LabVIEW, 4-103

Interface:FlexRay:Allow Passive to Active

in C, 5-293

in LabVIEW, 4-104

Interface:FlexRay:Auto Asleep When

Stopped

in LabVIEW, 4-105

Interface:FlexRay:AutoAsleepWhenStopped

in C, 5-294

Interface:FlexRay:Cluster Drift Damping

in C, 5-295

in LabVIEW, 4-106

Interface:FlexRay:Coldstart?

in C, 5-296

in LabVIEW, 4-107

Interface:FlexRay:Connected Channels

in C, 5-297

in LabVIEW, 4-108

Interface:FlexRay:Decoding Correction

in C, 5-298

in LabVIEW, 4-109

Interface:FlexRay:Delay Compensation Ch A

in C, 5-299

in LabVIEW, 4-110

Interface:FlexRay:Delay Compensation Ch B

in C, 5-300

in LabVIEW, 4-111

Index

NI-XNET Hardware and Software Manual I-12 ni.com

Interface:FlexRay:Key Slot Identifier

in C, 5-301

in LabVIEW, 4-112

Interface:FlexRay:Latest Tx

in C, 5-303

in LabVIEW, 4-114

Interface:FlexRay:Listen Timeout

in C, 5-304

in LabVIEW, 4-115

Interface:FlexRay:Macro Initial Offset Ch A

in C, 5-305

in LabVIEW, 4-116

Interface:FlexRay:Macro Initial Offset Ch B

in C, 5-306

in LabVIEW, 4-117

Interface:FlexRay:Max Drift

in C, 5-307

in LabVIEW, 4-118

Interface:FlexRay:Micro Initial Offset Ch A

in C, 5-308

in LabVIEW, 4-119

Interface:FlexRay:Micro Initial Offset Ch B

in C, 5-309

in LabVIEW, 4-120

Interface:FlexRay:Microtick

in C, 5-310

in LabVIEW, 4-121

Interface:FlexRay:Null Frames To Input

Stream?

in C, 5-311

in LabVIEW, 4-122

Interface:FlexRay:Offset Correction

in C, 5-312

in LabVIEW, 4-123

Interface:FlexRay:Offset Correction Out

in C, 5-313

in LabVIEW, 4-124

Interface:FlexRay:Rate Correction

in C, 5-314

in LabVIEW, 4-125

Interface:FlexRay:Rate Correction Out

in C, 5-315

in LabVIEW, 4-126

Interface:FlexRay:Samples Per Microtick

in C, 5-316

in LabVIEW, 4-127

Interface:FlexRay:Single Slot Enabled?

in C, 5-317

in LabVIEW, 4-128

Interface:FlexRay:Sleep

in C, 5-318

in LabVIEW, 4-129

Interface:FlexRay:Statistics Enabled?

in C, 5-320

in LabVIEW, 4-131

Interface:FlexRay:Symbol Frames To Input

Stream?

in C, 5-321

in LabVIEW, 4-132

Interface:FlexRay:Sync Frame Status

in C, 5-322

in LabVIEW, 4-137

Interface:FlexRay:Sync Frames Channel A

Even

in C, 5-323

in LabVIEW, 4-133

Interface:FlexRay:Sync Frames Channel A

Odd

in C, 5-324

in LabVIEW, 4-134

Interface:FlexRay:Sync Frames Channel B

Even

in C, 5-325

in LabVIEW, 4-135

Interface:FlexRay:Sync Frames Channel B

Odd

in C, 5-326

in LabVIEW, 4-136

Interface:FlexRay:Termination

in C, 5-327

in LabVIEW, 4-138

Index

© National Instruments I-13 NI-XNET Hardware and Software Manual

Interface:FlexRay:Wakeup Channel

in C, 5-328

in LabVIEW, 4-139

Interface:FlexRay:Wakeup Pattern

in C, 5-329

in LabVIEW, 4-140

Interface:I/O Name, 4-157

Interface:LIN:Break Length

in C, 5-330

in LabVIEW, 4-141

Interface:LIN:DiagP2min

in C, 5-331

in LabVIEW, 4-142

Interface:LIN:DiagSTmin

in C, 5-332

in LabVIEW, 4-143

Interface:LIN:Master?

in C, 5-333

in LabVIEW, 4-144

Interface:LIN:Output Stream Slave Response

List By NAD

in C, 5-334

in LabVIEW, 4-145

Interface:LIN:Schedule Names

in C, 5-335

Interface:LIN:Schedules

in LabVIEW, 4-146

Interface:LIN:Sleep

in C, 5-336

in LabVIEW, 4-147

Interface:LIN:Start Allowed without Bus

Power?

in C, 5-339

in LabVIEW, 4-150

Interface:LIN:Termination

in C, 5-340

in LabVIEW, 4-151

Interface:Output Stream List

in C, 5-346

in LabVIEW, 4-158

Interface:Output Stream List By ID

in C, 5-347

in LabVIEW, 4-159

Interface:Output Stream Timing

in C, 5-348

in LabVIEW, 4-160

Interface:Source Terminal:Start Trigger

in C, 5-341

in LabVIEW, 4-152

Interface:Start Trigger Frames to Input

Stream?

in C, 5-352

in LabVIEW, 4-164

Interfaces

in C, 5-201

in LabVIEW, 4-524

interfaces

definition

in C, 5-3

in LabVIEW, 4-4

in NI-XNET API

for C, 5-3

for LabVIEW, 4-4

viewing

in C, 5-4

in LabVIEW, 4-5

Interfaces (All)

in C, 5-411

in LabVIEW, 4-516

Interfaces (CAN)

in C, 5-411

in LabVIEW, 4-516

Interfaces (FlexRay)

in C, 5-412

in LabVIEW, 4-515

Interfaces (LIN)

in C, 5-412

in LabVIEW, 4-517

introduction, 1-1

in-vehicle application requirements

comparison (figure), B-2

Index

NI-XNET Hardware and Software Manual I-14 ni.com

ISO 11898 specifications for characteristics of

a CAN_H and CAN_L pair of wires

(table), 3-5

isolation, 3-17

J
J1939

address claiming procedure, 4-59, 5-44

basics, 4-57, 5-42

compatibility issue, 4-56, 5-41

functionality not supported, 4-60, 5-46

mixing J1939 and CAN messages, 4-59,

5-45

NI-XNET sessions, 4-60, 5-46

node address in NI-XNET, 4-58, 5-43

sessions, 4-55, 5-41

signal ranges, 4-60, 5-46

transmitting frames, 4-59, 5-45

without granted node address, 4-59,

5-45

transport protocol, 4-60, 5-45

L
LabVIEW project, 4-1

viewing available interfaces in, 4-6

LabVIEW project provider, E-1

LabVIEW Real-Time (RT)

configuration in, 2-7

using with NI-XNET API for LabVIEW

creating a built real-time

application, 4-55

deploying databases, 4-54

FlexRay timing source, 4-55

high-priority loops, 4-53

memory use for databases, 4-54

XNET I/O names, 4-54

LabWindows/CVI, 5-1

examples, 5-1

LEDs, 3-18

LIN

additional information, C-7

advanced frame types, C-6

Break field, C-2

bus timing, C-5

C Series DB9 pinouts (table), 3-17

Checksum field, C-4

Data Payload field, C-3

diagnostics, 4-52

error detection and confinement, C-5

frame format, C-2

frame timing and session mode

in C, 5-457

in LabVIEW, 4-609

full frames, creation (figure), C-4

hardware, 3-14

bus power requirements, 3-15

cable lengths, 3-15

cabling requirements, 3-15

number of devices, 3-16

physical layer, 3-14

termination, 3-16

transceiver, 3-15

history and use, C-1

ID field, C-3

interface configuration, 2-7

Interface properties

in C, 5-330

in LabVIEW, 4-141

PXI and PCI DB9 pinouts (table), 3-16

schedule, changing, 4-51

sleep and wakeup, C-6

Steam Output Mode, using with, 4-52

summary of LIN standard, C-1

Sync field, C-3

topology and behavior, C-1

using with NI-XNET API for

LabVIEW, 4-51

LIN diagnostics, 4-52

Index

© National Instruments I-15 NI-XNET Hardware and Software Manual

Stream Output Mode, using with

LIN, 4-52

understanding LIN frame

timing, 4-52

LIN Master

XNET ECU

in C, 5-209

LIN Version

XNET ECU

in C, 5-210

LIN:Checksum

in C, 5-237

in LabVIEW, 4-370

LIN:Configured NAD

in C, 5-211

in LabVIEW, 4-342

LIN:Function ID

in C, 5-212

in LabVIEW, 4-343

LIN:Initial NAD

in C, 5-210

in LabVIEW, 4-342

LIN:Master?

in LabVIEW, 4-341

LIN:P2min

in C, 5-212

in LabVIEW, 4-344

LIN:Protocol Version

in LabVIEW, 4-341

LIN:Schedules

in LabVIEW, 4-326

LIN:STmin

in C, 5-213

in LabVIEW, 4-344

LIN:Supplier ID

in C, 5-211

in LabVIEW, 4-343

LIN:Tick

in LabVIEW, 4-327

List, 5-374

List of Frames, 4-188

List of Signals, 4-189

Low-Speed CAN, A-10

Low-Speed/Fault-Tolerant physical layer, 3-7

M
Maximum Value

in C, 5-393

in LabVIEW, 4-401

Measurement & Automation Explorer

configuring NI-XNET hardware and

software in, 2-3

viewing interfaces

in C, 5-4

in LabVIEW, 4-5

memory use for databases in LabVIEW

Real-Time (RT), 4-54

Minimum Value

in C, 5-394

in LabVIEW, 4-402

Mode

in C, 5-374

in LabVIEW, 4-190

multiplexed signals

in C, 5-419

creating, 5-420

reading, 5-420

support for, 5-420

writing, 5-420

in LabVIEW, 4-565

creating, 4-566

reading, 4-566

support for, 4-566

writing, 4-566

Multiplexer Value

in C, 5-407

in LabVIEW, 4-389

Mux:Data Multiplexer Signal

XNET Frame

in C, 5-238

in LabVIEW, 4-371

Index

NI-XNET Hardware and Software Manual I-16 ni.com

XNET PDU

in C, 5-268

in LabVIEW, 4-381

Mux:Data Multiplexer?

in C, 5-395

in LabVIEW, 4-403

Mux:Dynamic?

in C, 5-396

in LabVIEW, 4-400

Mux:Is Data Multiplexed?

XNET Frame

in C, 5-238

in LabVIEW, 4-371

XNET PDU

in C, 5-269

in LabVIEW, 4-382

Mux:Multiplexer Value

XNET Frame

in LabVIEW, 4-402

XNET Signal

in C, 5-397

Mux:Static Signals

XNET Frame

in C, 5-239

in LabVIEW, 4-372

XNET PDU

in C, 5-269

in LabVIEW, 4-382

Mux:Subframe

in C, 5-397

in LabVIEW, 4-411

Mux:Subframes

XNET Frame

in C, 5-239

in LabVIEW, 4-372

XNET PDU

in C, 5-270

in LabVIEW, 4-383

N
Name

XNET Interface

in C, 5-249

in LabVIEW, 4-530

XNET LIN Schedule

in C, 5-255

XNET LIN Schedule Entry

in C, 5-261

Name (Short)

XNET Cluster

in C, 5-190

in LabVIEW, 4-328

XNET ECU

in C, 5-214

in LabVIEW, 4-345

XNET Frame

in C, 5-240

in LabVIEW, 4-373

XNET LIN Schedule

in LabVIEW, 4-471

XNET LIN Schedule Entry

in LabVIEW, 4-478

XNET PDU

in C, 5-270

in LabVIEW, 4-384

XNET Signal

in C, 5-398

in LabVIEW, 4-404

XNET Subframe

in C, 5-408

in LabVIEW, 4-390

Name Unique to Cluster

XNET LIN Schedule Entry

in C, 5-262

XNET Signal

in C, 5-399

XNET Subframe

in C, 5-409

Index

© National Instruments I-17 NI-XNET Hardware and Software Manual

NI-CAN

in C

CAN timing type and session mode,

5-443

CAN transceiver state

machine, 5-447

compatibility, 5-441

NI-XNET CAN products in

MAX, 5-441

transition, 5-442

in LabVIEW

CAN timing type and session mode,

4-594

CAN transceiver state

machine, 4-598

compatibility, 4-592

NI-XNET CAN products in

MAX, 4-592

transition, 4-593

terms (table), 4-594, 5-442

NI-CAN and NI-XNET terms comparison

(table), 4-594, 5-442

NI-XNET

Bus Monitor, F-1

Database Editor

clusters, G-2

database formats, G-1

ECUs, G-3

frames, G-2

PDUs, G-2

reasons to use databases, G-1

signals, G-3

hardware overview, 3-1

programming PDUs with

in C, 5-454

in LabVIEW, 4-605

System Configuration API, 2-13

terms (table), 4-594, 5-442

tools, 2-12

NI-XNET API

for C

API reference

functions, 5-47

properties, 5-147

CAN timing type and session

mode, 5-443

CAN transceiver state

machine, 5-447

cyclic and event timing

CAN, 5-418

FlexRay, 5-419

LIN, 5-419

databases, 5-4

getting started, 5-1

interface states, 5-438

interface transitions, 5-439

interfaces, 5-3

LIN frame timing and session

mode, 5-457

multiplexed signals, 5-419

creating, 5-420

reading, 5-420

support for, 5-420

writing, 5-420

NI-CAN

compatibility, 5-441

NI-XNET CAN products in

MAX, 5-441

transition, 5-442

raw frame format

base unit, 5-421

payload unit, 5-429

required properties, 5-432

session, 5-8

session states, 5-436

session transitions, 5-437

special frames, 5-429

Bus Error frame, 5-430

Delay frame, 5-429

Log Trigger frame, 5-429

Index

NI-XNET Hardware and Software Manual I-18 ni.com

Start Trigger frame, 5-430

state models

interface state model, 5-435

session state model, 5-435

for LabVIEW, 4-1, 4-50, 4-51

API reference, 4-61

basic programming model, 4-3

CAN timing type and session

mode, 4-594

CAN transceiver state

machine, 4-598

creating a built application, 4-560

cyclic and event timing

CAN, 4-561

FlexRay, 4-562

LIN, 4-562

databases, 4-7

error handling, 4-562

fault handling, 4-563

getting started, 4-1

I/O name classes, 4-614

interface states, 4-584

interface transitions, 4-585

interfaces, 4-4

J1939 sessions, 4-55, 5-41

LIN frame timing and session

mode, 4-609

multiplexed signals, 4-565

creating, 4-566

reading, 4-566

support for, 4-566

writing, 4-566

NI-CAN

compatibility, 4-592

NI-XNET CAN products in

MAX, 4-592

transition, 4-593

raw frame format

base unit, 4-567

payload unit, 4-572

required properties, 4-577

session, 4-13

session states, 4-581

session transitions, 4-582

special frames, 4-572

Bus Error frame, 4-576

Delay frame, 4-572

Lot Trigger frame, 4-572

Start Trigger frame, 4-574

state models

interface state model, 4-581

session state model, 4-580

Technical Data Management

Streaming (TDMS)

using CAN, 4-48

using LabVIEW Real-Time

(RT), 4-53

XNET Cluster I/O name, 4-615

XNET Database I/O name, 4-618

XNET Device I/O name, 4-621

XNET ECU I/O name, 4-621

XNET Frame I/O name, 4-624

XNET I/O names, 4-613

XNET Interface I/O name, 4-627

XNET LIN Schedule Entry I/O

name, 4-637

XNET LIN Schedule I/O

name, 4-635

XNET PDU I/O name, 4-638

XNET Session I/O name, 4-628

XNET Signal I/O name, 4-630

XNET Subframe I/O name, 4-633

XNET Terminal I/O name, 4-634

NI-XNET transceiver cables, 3-3

Node Configuration:Free Format:Data Bytes

XNET LIN Schedule Entry

in C, 5-263

in LabVIEW, 4-479

Notify subpalette, 4-484

Index

© National Instruments I-19 NI-XNET Hardware and Software Manual

Number

in C, 5-250

in LabVIEW, 4-531

Number in List

in C, 5-375

in LabVIEW, 4-190

Number of Bits

in C, 5-400

in LabVIEW, 4-406

number of CAN hardware devices

High-Speed, 3-5

Low-Speed/Fault-Tolerant, 3-9

Single Wire physical layer, 3-12

number of devices

FlexRay hardware, 3-2

number of LIN hardware devices, 3-16

Number of Ports

in C, 5-201

in LabVIEW, 4-525

Number of Values Pending

in C, 5-375

in LabVIEW, 4-191

Number of Values Unused

in C, 5-377

in LabVIEW, 4-192

nxBlink, 5-47

nxClear, 5-49

nxConnectTerminals, 5-50

nxConvertFramesToSignalsSinglePoint, 5-57

nxConvertSignalsToFramesSinglePoint, 5-59

nxCreateSession, 5-61

nxCreateSessionByRef, 5-66

nxdbAddAlias, 5-68

nxdbCloseDatabase, 5-70

nxdbCreateObject, 5-71

nxdbDeleteObject, 5-73

nxdbDeploy, 5-74

nxdbFindObject, 5-76

nxdbGetDatabaseList, 5-78

nxdbGetDatabaseListSizes, 5-80

nxdbGetDBCAttribute, 5-82

nxdbGetDBCAttributeSize, 5-84

nxdbGetProperty, 5-85

nxdbGetPropertySize, 5-86

nxdbMerge, 5-87

nxdbOpenDatabase, 5-90

nxdbRemoveAlias, 5-91

nxdbSaveDatabase, 5-92

nxdbSetProperty, 5-94

nxdbUndeploy, 5-95

nxDisconnectTerminals, 5-96

nxFlush, 5-98

nxGetProperty, 5-99

nxGetPropertySize, 5-101

nxGetSubProperty, 5-102

nxGetSubPropertySize, 5-103

nxReadFrame, 5-104

nxReadSignalSinglePoint, 5-107

nxReadSignalWaveform, 5-109

nxReadSignalXY, 5-111

nxReadState, 5-113

nxSetProperty, 5-125

nxSetSubProperty, 5-126

nxStart, 5-127

nxStatusToString, 5-129

nxStop, 5-130

nxSystemClose, 5-132

nxSystemOpen, 5-133

nxWait, 5-134

nxWriteFrame, 5-136

nxWriteSignalSinglePoint, 5-139

nxWriteSignalWaveform, 5-140

nxWriteSignalXY, 5-142

nxWriteState, 5-144

O
online product certification specifications, D-9

Index

NI-XNET Hardware and Software Manual I-20 ni.com

P
palettes, NI-XNET API for LabVIEW, 4-2

parity calculation method (figure), C-3

Payload Length

XNET Frame

in C, 5-241

in LabVIEW, 4-375

XNET PDU

in C, 5-271

in LabVIEW, 4-385

Payload Length Maximum

in C, 5-378

in LabVIEW, 4-193

PCI-XNET specifications

environmental, D-8

isolation voltages, D-7

physical dimensions, D-7

physical layers

external CAN transceiver, D-6

FlexRay, D-6

High-Speed CAN, D-5

LIN, D-6

Low-Speed/Fault-Tolerant CAN, D-5

Single Wire CAN, D-5

power requirements

CAN, D-7

FlexRay, D-7

LIN, D-7

RTSI/front panel sync connectors, D-6

safety, D-7

PDU

XNET Signal

in C, 5-401

in LabVIEW, 4-407

XNET Subframe

in C, 5-409

in LabVIEW, 4-392

PDU References

in C, 5-242

PDU Start Bits

in C, 5-243

PDU Update Bits

in C, 5-244

PDU_Mapping, 4-376

PDUs

in C, 5-191

in LabVIEW, 4-330

PDUs Required?

in C, 5-192

in LabVIEW, 4-331

PDUs, CAN

in databases, G-2

physical layer, FlexRay hardware, 3-1

pinouts, 3-13

C Series LIN DB9 (table), 3-17

C Series NI 9861/9862, 3-14

C Series NI 9866, 3-16

CAN DB9

C Series NI-XNET (table), 3-14

PXI and PCI NI-XNET

external CAN transceiver

(table), 3-13

interfaces (table), 3-13

FlexRay DB9 (table), 3-2

PCI-8511/8512/8513, 3-13

PCI-8516, 3-16

PCI-8517, 3-2

PXI and PCI LIN DB9 (table), 3-16

PXI-8511/8512/8513, 3-13

PXI-8516, 3-16

PXI-8517, 3-2

Port Number

in C, 5-251

in LabVIEW, 4-532

Priority, XNET LIN Schedule

in C, 5-256

in LabVIEW, 4-472

Product Name

in C, 5-202

in LabVIEW, 4-525

Index

© National Instruments I-21 NI-XNET Hardware and Software Manual

Product Number

in C, 5-202

in LabVIEW, 4-526

Protocol

XNET Cluster

in C, 5-194

in LabVIEW, 4-333

XNET Interface

in C, 5-252

in LabVIEW, 4-533

XNET Session

in C, 5-378

in LabVIEW, 4-194

Protocol Data Units (PDUs), 4-51

in C, 5-452

introduction, 5-452

programming with NI-XNET, 5-454

properties, 5-453

timing compared to frame

timing, 5-454

in LabVIEW, 4-603

introduction, 4-603

programming with NI-XNET, 4-605

properties, 4-605

timing compared to frame timing,

4-605

protocol operation control in FlexRay, B-4

PXI-XNET specifications

environmental, D-4

isolation voltages, D-4

physical dimensions, D-3

physical layers

external CAN transceiver, D-2

FlexRay, D-2

High-Speed CAN, D-1

LIN, D-2

Low-Speed/Fault-Tolerant CAN, D-1

Single Wire CAN, D-1

power requirements

CAN, D-3

FlexRay, D-3

LIN, D-3

random vibration, D-4

RTSI/front panel sync connectors, D-2

safety, D-4

shock, D-3

Q
Queue Size

in C, 5-380

in LabVIEW, 4-195

R
raw frame format

in C

base unit, 5-421

payload unit, 5-429

in LabVIEW

base unit, 4-567

payload unit, 4-572

related documentation, xxxiii

Remote Transmit Request (RTR), A-4

required properties

in C, 5-432

in LabVIEW, 4-577

Resample Rate

in C, 5-386

in LabVIEW, 4-201

Run Mode, XNET LIN Schedule

in C, 5-257

in LabVIEW, 4-473

S
SAE J1939:ECU

in C, 5-354

in LabVIEW, 4-166

Index

NI-XNET Hardware and Software Manual I-22 ni.com

SAE J1939:ECU Busy

in C, 5-355

in LabVIEW, 4-167

SAE J1939:Hold Time Th

in C, 5-356

in LabVIEW, 4-168

SAE J1939:Maximum Repeat CTS

in C, 5-357

in LabVIEW, 4-169

SAE J1939:Node Address

in C, 5-358

in LabVIEW, 4-170

SAE J1939:NodeName

in C, 5-359

in LabVIEW, 4-171

SAE J1939:Number of Packets Received

in C, 5-360

in LabVIEW, 4-172

SAE J1939:Number of Packets Response

in C, 5-361

in LabVIEW, 4-173

SAE J1939:Response Time Tr_GD

in C, 5-362

in LabVIEW, 4-174

SAE J1939:Response Time Tr_SD

in C, 5-363

in LabVIEW, 4-175

SAE J1939:Timeout T1

in C, 5-364

in LabVIEW, 4-176

SAE J1939:Timeout T2

in C, 5-365

in LabVIEW, 4-177

SAE J1939:Timeout T3

in C, 5-366

in LabVIEW, 4-178

SAE J1939:Timeout T4

in C, 5-367

in LabVIEW, 4-179

safety

information, 2-1

Scaling Factor

in C, 5-401

in LabVIEW, 4-408

Scaling Offset

in C, 5-402

in LabVIEW, 4-408

Schedule, XNET LIN Schedule Entry

in C, 5-264

in LabVIEW, 4-480

Schedules, XNET Cluster

in C, 5-194

Serial Number

in C, 5-203

in LabVIEW, 4-526

session

creating in LabVIEW

using LabVIEW project, 4-48

using XNET Create Session.vi, 4-48

definition

in C, 5-8

in LabVIEW, 4-13

modes

in C, 5-9

in LabVIEW, 4-14

session state model

in C, 5-435

in LabVIEW, 4-580

session states

in C, 5-436

in LabVIEW, 4-581

session transitions

in C, 5-437

in LabVIEW, 4-582

Session:Application Protocol

in C, 5-353

in LabVIEW, 4-165

Index

© National Instruments I-23 NI-XNET Hardware and Software Manual

ShowInvalidFromOpen?

in C, 5-199

in LabVIEW, 4-280

Signal Input Single-Point mode

in C, 5-24

example, 5-24

in LabVIEW, 4-29

example, 4-30

Signal Input Waveform mode

in C, 5-26

example, 5-26

in LabVIEW, 4-32

example, 4-33

Signal Input XY mode

in C, 5-28

example, 5-28

in LabVIEW, 4-35

example, 4-35

Signal Output Single-Point mode

in C, 5-30

example, 5-30

in LabVIEW, 4-37

example, 4-37

Signal Output Waveform mode

in C, 5-31

example, 5-32

in LabVIEW, 4-38

example, 4-39

Signal Output XY mode

in C, 5-34

examples, 5-34

in LabVIEW, 4-41

examples, 4-41

Signals

XNET Cluster

in C, 5-195

in LabVIEW, 4-333

XNET Frame

in C, 5-245

in LabVIEW, 4-377

XNET PDU

in C, 5-272

in LabVIEW, 4-386

signals, in databases, G-3

Single Wire CAN, A-11

physical layer, 3-11

Slot Number

in C, 5-203

in LabVIEW, 4-527

source terminal

Interface properties

in C, 5-341

in LabVIEW, 4-152

special frames

in C, 5-429

Bus Error frame, 5-430

Delay frame, 5-429

Log Trigger frame, 5-429

Start Trigger frame, 5-430

in LabVIEW, 4-572

Bus Error frame, 4-576

Delay frame, 4-572

Lot Trigger frame, 4-572

Start Trigger frame, 4-574

specifications

C Series XNET, D-8

CE compliance, D-9

electromagnetic compatibility, D-9

environmental management, D-9

for characteristics of a CAN_H and

CAN_L Pair of wires (table), 3-9

NI-XNET Transceiver Cables, D-8

online product certification, D-9

PCI-XNET, D-5

environmental, D-8

isolation voltages, D-7

physical dimensions, D-7

physical layers

external CAN transceiver, D-6

FlexRay, D-6

High-Speed CAN, D-5

Index

NI-XNET Hardware and Software Manual I-24 ni.com

LIN, D-6

Low-Speed/Fault-Tolerant

CAN, D-5

Single Wire CAN, D-5

power requirements

CAN, D-7

FlexRay, D-7

LIN, D-7

RTSI/front panel sync

connectors, D-6

safety, D-7

PXI-XNET, D-1

environmental, D-4

isolation voltages, D-4

physical dimensions, D-3

physical layers

external CAN transceiver, D-2

FlexRay, D-2

High-Speed CAN, D-1

LIN, D-2

Low-Speed/Fault-Tolerant

CAN, D-1

Single Wire CAN, D-1

power requirements

CAN, D-3

FlexRay, D-3

LIN, D-3

random vibration, D-4

RTSI/front panel sync

connectors, D-2

safety, D-4

shock, D-3

standard and extended frame formats

(figure), A-3

Start Bit

in C, 5-403

in LabVIEW, 4-409

Start of Frame (SOF), A-4

starting FlexRay communication in

LabVIEW, 4-50

startup in FlexRay, B-6

path of following coldstart node, B-9

path of leading coldstart node, B-8

path of non-coldstart node, B-9

startup state machine in FlexRay (figure), B-7

state models

in C

interface state model, 5-435

session state model, 5-435

in LabVIEW

interface state model, 4-581

session state model, 4-580

state transitions in FlexRay (figure), B-8

stuff error, A-7

Sync field in LIN, C-3

synchronization, 3-20

C Series and NI-XNET Transceiver

Cables, 3-20

PXI NI-XNET and PCI NI-XNET, 3-20

system classes, 4-615

System Configuration API, 2-13

system controls, 4-559

system node, viewing available interfaces

in, 4-6

T
TDMS

See Technical Data Management

Streaming (TDMS)

Technical Data Management Streaming

(TDMS)

channel data, 4-588

channel name, 4-587

channel properties, 4-588

group name, 4-587

termination

CAN hardware

Low-Speed/Fault-Tolerant, 3-9

Single Wire physical layer, 3-12

FlexRay hardware, 3-2

LIN hardware, 3-16

Index

© National Instruments I-25 NI-XNET Hardware and Software Manual

termination resistor placement, CAN

High Speed (figure), 3-6

Low-Speed/Fault-Tolerant (figure), 3-9

Tick, XNET Cluster

in C, 5-196

transceiver

CAN hardware

High-Speed physical layer, 3-4

Low-Speed/Fault-Tolerant physical

layer, 3-7

Single Wire physical layer, 3-11

FlexRay hardware, 3-1

LIN hardware, 3-15

troubleshooting, 6-1

Type, XNET LIN Schedule Entry

in C, 5-265

in LabVIEW, 4-481

U
Unit

in C, 5-405

in LabVIEW, 4-411

using CAN, 4-48

using FlexRay, 4-50

using LIN, 4-51

V
verifying NI-XNET hardware installation, 2-4

Version:Build

in C, 5-413

in LabVIEW, 4-518

Version:Major

in C, 5-414

in LabVIEW, 4-519

Version:Minor

in C, 5-415

in LabVIEW, 4-520

Version:Phase

in C, 5-416

in LabVIEW, 4-521

Version:Update

in C, 5-417

in LabVIEW, 4-522

Visual C++, 5-2

Visual C++ 6

examples, 5-3

X
XNET Blink.vi, 4-534

XNET C Series modules firmware update, 2-5

XNET Clear.vi, 4-504

XNET Cluster constant, 4-334

XNET Cluster control, 4-558

XNET Cluster I/O name

string use, 4-617

user interface, 4-616

XNET Cluster properties, 5-147

XNET Cluster property node, 4-281

XNET Connect Terminals.vi, 4-506

XNET Convert (Frame CAN to

Signal).vi, 4-539

XNET Convert (Frame FlexRay to

Signal).vi, 4-542

XNET Convert (Frame LIN to

Signal).vi, 4-545

XNET Convert (Frame Raw to

Signal).vi, 4-547

XNET Convert (Signal to Frame

CAN).vi, 4-549

XNET Convert (Signal to Frame

FlexRay).vi, 4-551

XNET Convert (Signal to Frame

LIN).vi, 4-554

XNET Convert (Signal to Frame

Raw).vi, 4-556

XNET Convert.vi, 4-538

XNET Create Session (Conversion).vi, 4-63

Index

NI-XNET Hardware and Software Manual I-26 ni.com

XNET Create Session (Frame Input

Queued).vi, 4-64

XNET Create Session (Frame Input

Single-Point).vi, 4-65

XNET Create Session (Frame Input

Stream).vi, 4-66

XNET Create Session (Frame Output

Queued).vi, 4-69

XNET Create Session (Frame Output

Single-Point).vi, 4-70

XNET Create Session (Frame Output

Stream).vi, 4-71

XNET Create Session (Generic).vi, 4-74

XNET Create Session (PDU Input

Queued).vi, 4-68

XNET Create Session (PDU Input Single

Point).vi, 4-68

XNET Create Session (PDU Output

Queued).vi, 4-73

XNET Create Session (PDU Output

Single-Point).vi, 4-73

XNET Create Session (Signal Input

Single-Point).vi, 4-76

XNET Create Session (Signal Input

Waveform).vi, 4-77

XNET Create Session (Signal Input

XY).vi, 4-78

XNET Create Session (Signal Output

Single-Point).vi, 4-79

XNET Create Session (Signal Output

Waveform).vi, 4-80

XNET Create Session (Signal Output

XY).vi, 4-81

XNET Create Session.vi, 4-62

using to create a session, 4-48

XNET Create Timing Source (FlexRay

Cycle).vi, 4-490

XNET Create Timing Source.vi, 4-490

XNET Database Add Alias.vi, 4-459

XNET Database Close (Cluster).vi, 4-414

XNET Database Close (Database).vi, 4-415

XNET Database Close (ECU).vi, 4-416

XNET Database Close (Frame).vi, 4-417

XNET Database Close (LIN Schedule

Entry).vi, 4-422

XNET Database Close (LIN

Schedule).vi, 4-421

XNET Database Close (PDU).vi, 4-418

XNET Database Close (Signal).vi, 4-419

XNET Database Close (Subframe).vi, 4-420

XNET Database Close.vi, 4-413

XNET Database constant, 4-281

XNET Database control, 4-558

XNET Database Create (Cluster).vi, 4-424

XNET Database Create (Dynamic

Signal).vi, 4-426

XNET Database Create (ECU).vi, 4-428

XNET Database Create (Frame).vi, 4-429

XNET Database Create (LIN Schedule

Entry).vi, 4-435

XNET Database Create (LIN

Schedule).vi, 4-434

XNET Database Create (PDU).vi, 4-430

XNET Database Create (Signal).vi, 4-431

XNET Database Create (Subframe).vi, 4-432

XNET Database Create Object.vi, 4-423

XNET Database Delete (Cluster).vi, 4-438

XNET Database Delete (ECU).vi, 4-439

XNET Database Delete (Frame).vi, 4-440

XNET Database Delete (LIN Schedule

Entry).vi, 4-445

XNET Database Delete (LIN

Schedule).vi, 4-444

XNET Database Delete (PDU).vi, 4-441

XNET Database Delete (Signal).vi, 4-442

XNET Database Delete (Subframe).vi, 4-443

XNET Database Delete Object.vi, 4-437

XNET Database Deploy.vi, 4-464

XNET Database Export.vi, 4-458

XNET Database Get DBC Attribute.vi, 4-482

XNET Database Get List.vi, 4-462

Index

© National Instruments I-27 NI-XNET Hardware and Software Manual

XNET Database I/O name, 4-618

refnum use, 4-620

string use, 4-619

user interface, 4-618

XNET Database Merge (Cluster).vi, 4-455

XNET Database Merge (ECU).vi, 4-451

XNET Database Merge (Frame).vi, 4-447

XNET Database Merge (LIN

Schedule).vi, 4-453

XNET Database Merge (PDU).vi, 4-449

XNET Database Merge.vi, 4-446

XNET Database Open.vi, 4-412

XNET Database properties, 5-198

XNET Database property node, 4-278

XNET Database Remove Alias.vi, 4-461

XNET Database Save.vi, 4-457

XNET Database Undeploy.vi, 4-466

XNET Device I/O name, 4-621

refnum use, 4-621

string use, 4-621

user interface, 4-621

XNET Device properties, 5-200

XNET Device property node, 4-523

XNET Disconnect Terminals.vi, 4-513

XNET ECU constant, 4-347

XNET ECU control, 4-558

XNET ECU I/O name, 4-621

refnum use, 4-624

string use, 4-623

user interface, 4-621

XNET ECU properties, 5-204

XNET ECU property node, 4-334

XNET Flush.vi, 4-505

XNET Frame constant, 4-378

XNET Frame control, 4-559

XNET Frame I/O name, 4-624

refnum use, 4-626

string use, 4-625

user interface, 4-624

XNET Frame properties, 5-215

XNET Frame property node, 4-347

XNET I/O names, 4-613

I/O name classes, 4-614

in LabVIEW Real-Time (RT), 4-54

XNET Interface constant, 4-534

XNET Interface control, 4-559

XNET Interface I/O name, 4-627

refnum use, 4-628

string use, 4-628

user interface, 4-627

XNET Interface properties, 5-247

XNET Interface property node, 4-527

XNET LIN Schedule control, 4-559

XNET LIN Schedule Entry control, 4-559

XNET LIN Schedule Entry I/O name, 4-637

refnum use, 4-638

string use, 4-638

user interface, 4-638

XNET LIN Schedule Entry properties, 5-258

XNET LIN Schedule Entry property

node, 4-474

XNET LIN Schedule I/O name, 4-635

refnum use, 4-637

string use, 4-636

user interface, 4-635

XNET LIN Schedule properties, 5-253

XNET LIN Schedule property node, 4-467

XNET PDU constant, 4-386

XNET PDU I/O name, 4-638

refnum use, 4-641

string use, 4-640

user interface, 4-638

XNET PDU properties, 5-266

XNET PDU property node, 4-378

XNET Read (Frame CAN).vi, 4-204

XNET Read (Frame FlexRay).vi, 4-208

XNET Read (Frame LIN).vi, 4-213

XNET Read (Frame Raw).vi, 4-218

XNET Read (Signal Single-Point).vi, 4-221

XNET Read (Signal Waveform).vi, 4-222

XNET Read (Signal XY).vi, 4-224

XNET Read (State CAN Comm).vi, 4-227

Index

NI-XNET Hardware and Software Manual I-28 ni.com

XNET Read (State FlexRay Comm).vi, 4-231

XNET Read (State FlexRay Cycle

Macrotick).vi, 4-240

XNET Read (State FlexRay

Statistics).vi, 4-242

XNET Read (State LIN Comm).vi, 4-235

XNET Read (State Session Info).vi, 4-248

XNET Read (State Time Comm).vi, 4-244

XNET Read (State Time Current).vi, 4-245

XNET Read (State Time Start).vi, 4-246

XNET Read.vi, 4-202

XNET Session constant, 4-61

XNET Session control, 4-558

XNET Session I/O name, 4-628

refnum use, 4-630

string use, 4-629

user interface, 4-629

XNET Session properties, 5-273

XNET Session property node, 4-82

XNET Signal constant, 4-412

XNET Signal control, 4-559

XNET Signal I/O name, 4-630

refnum use, 4-633

string use, 4-632

user interface, 4-631

XNET Signal properties, 5-387

XNET Signal property node, 4-393

XNET Start.vi, 4-499

XNET Stop.vi, 4-502

XNET String to IO Name.vi, 4-537

XNET Subframe I/O name, 4-633

refnum use, 4-634

string use, 4-634

user interface, 4-633

XNET Subframe properties, 5-405

XNET Subframe property node, 4-387

XNET System Close.vi, 4-536

XNET System properties, 5-410

XNET System property node, 4-514

XNET Terminal constant, 4-514

XNET Terminal control, 4-559

XNET Terminal I/O name, 4-634

refnum use, 4-635

string use, 4-634

user interface, 4-634

XNET Wait (CAN Remote Wakeup).vi, 4-488

XNET Wait (Interface

Communicating).vi, 4-486

XNET Wait (LIN Remote Wakeup).vi, 4-489

XNET Wait (Transmit Complete).vi, 4-485

XNET Wait.vi, 4-484

XNET Write (Frame CAN).vi, 4-256

XNET Write (Frame FlexRay).vi, 4-260

XNET Write (Frame LIN).vi, 4-264

XNET Write (Frame Raw).vi, 4-268

XNET Write (Signal Single-Point).vi, 4-251

XNET Write (Signal Waveform).vi, 4-252

XNET Write (Signal XY).vi, 4-254

XNET Write (State FlexRay

Symbol).vi, 4-271

XNET Write (State LIN Diagnostic Schedule

Change).vi, 4-275

XNET Write (State LIN Schedule

Change).vi, 4-272

XNET Write.vi, 4-249

XS software selectable physical layer, 3-3

	NI-XNET Hardware and Software Manual
	Support
	Worldwide Technical Support and Product Information
	Worldwide Offices
	National Instruments Corporate Headquarters

	Legal Information
	Limited Warranty
	Copyright
	End-User License Agreements and Third-Party Legal Notices
	U.S. Government Restricted Rights
	Trademarks
	Patents
	Export Compliance Information
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Compliance
	Contents
	About This Manual
	Related Documentation

	Chapter 1 Introduction
	Chapter 2 Installation and Configuration
	Safety Information
	Measurement & Automation Explorer (MAX)
	Verifying NI-XNET Hardware Installation
	XNET C Series Modules Firmware Update
	Configuring NI-XNET Interfaces
	LabVIEW Real-Time (RT) Configuration
	Getting Started with CompactRIO
	Tools
	System Configuration API

	Chapter 3 NI-XNET Hardware Overview
	Overview
	NI-XNET FlexRay Hardware
	FlexRay Physical Layer
	Transceiver
	Bus Power Requirements
	Cabling Requirements for FlexRay
	Cable Lengths and Number of Devices
	Termination

	Pinout

	NI-XNET CAN Hardware
	NI-XNET Transceiver Cables
	XS Software Selectable Physical Layer
	High-Speed Physical Layer
	Transceiver
	Bus Power Requirements
	Cabling Requirements for High-Speed CAN
	Cable Lengths
	Number of Devices
	Cable Termination
	Cabling Example

	Low-Speed/Fault-Tolerant Physical Layer
	Transceiver
	Bus Power Requirements
	Cabling Requirements for Low-Speed/ Fault-Tolerant CAN
	Number of Devices
	Termination
	Determining the Necessary Termination Resistance for the Board

	Single Wire CAN Physical Layer
	Transceiver
	Bus Power Requirements
	Cabling Requirements for Single Wire CAN
	Cable Length
	Number of Devices
	Termination (Bus Loading)

	External CAN Transceiver
	Pinouts
	PXI-8511/8512/8513 and PCI-8511/8512/8513
	C Series NI 9861/9862

	NI-XNET LIN Hardware
	LIN Physical Layer
	Transceiver
	Bus Power Requirements
	Cabling Requirements for LIN
	Cable Lengths
	Number of Devices
	Termination

	Pinout
	PXI-8516 and PCI-8516
	C Series NI 9866 and NI-XNET LIN Transceiver Cable

	Isolation
	LEDs
	Synchronization
	PXI NI-XNET and PCI NI-XNET
	C Series and NI-XNET Transceiver Cables

	Chapter 4 NI-XNET API for LabVIEW
	Getting Started
	LabVIEW Project
	Examples
	Palettes

	Basic Programming Model
	Interfaces
	What Is an Interface?
	How Do I View Available Interfaces?
	Measurement and Automation Explorer (MAX)
	I/O Name
	LabVIEW Project
	System Node

	Databases
	What Is a Database?
	What Is an Alias?
	Database Programming
	Already Have File?
	Can Use File As Is?
	Select From File
	Edit and Select
	Want to Use a File?
	Create New File Using the Database Editor
	Create in Memory
	Multiple Databases Simultaneously

	Sessions
	What Is a Session?
	Session Modes
	Frame Input Queued Mode
	Frame Input Single-Point Mode
	Frame Input Stream Mode
	Frame Output Queued Mode
	Frame Output Single-Point Mode
	Frame Output Stream Mode
	Signal Input Single-Point Mode
	Signal Input Waveform Mode
	Signal Input XY Mode
	Signal Output Single-Point Mode
	Signal Output Waveform Mode
	Signal Output XY Mode
	Conversion Mode

	How Do I Create a Session?
	LabVIEW Project
	XNET Create Session.vi

	Using CAN
	Understanding CAN Frame Timing
	Configuring Frame I/O Stream Sessions

	Using FlexRay
	Starting Communication
	Understanding FlexRay Frame Timing
	Protocol Data Unit (PDU)

	Using LIN
	Changing the LIN Schedule
	Understanding LIN Frame Timing
	LIN Diagnostics
	Special Considerations for Using Stream Output Mode with LIN

	Using LabVIEW Real-Time
	High Priority Loops
	XNET I/O Names
	Deploying Databases
	Memory Use for Databases
	FlexRay Timing Source
	Creating a Built Real-Time Application

	J1939 Sessions
	Compatibility Issue
	J1939 Basics
	Node Addresses in NI-XNET
	Address Claiming Procedure
	Transmitting Frames
	Transmitting Frames without Granted Node Address
	Mixing J1939 and CAN Messages
	Transport Protocol (TP)
	NI-XNET Sessions
	Not Supported in the Current NI-XNET Version
	Signal Ranges

	NI-XNET API for LabVIEW Reference
	XNET Session Constant
	XNET Create Session.vi
	XNET Create Session (Conversion).vi
	XNET Create Session (Frame Input Queued).vi
	XNET Create Session (Frame Input Single-Point).vi
	XNET Create Session (Frame Input Stream).vi
	XNET Create Session (PDU Input Queued).vi
	XNET Create Session (PDU Input Single Point).vi
	XNET Create Session (Frame Output Queued).vi
	XNET Create Session (Frame Output Single-Point).vi
	XNET Create Session (Frame Output Stream).vi
	XNET Create Session (PDU Output Queued).vi
	XNET Create Session (PDU Output Single-Point).vi
	XNET Create Session (Generic).vi
	XNET Create Session (Signal Input Single-Point).vi
	XNET Create Session (Signal Input Waveform).vi
	XNET Create Session (Signal Input XY).vi
	XNET Create Session (Signal Output Single-Point).vi
	XNET Create Session (Signal Output Waveform).vi
	XNET Create Session (Signal Output XY).vi

	XNET Session Property Node
	Interface Properties
	CAN Interface Properties
	Interface:CAN:External Transceiver Config
	Interface:CAN:FD Baud Rate
	Interface:CAN:I/O Mode
	Interface:CAN:Listen Only?
	Interface:CAN:Pending Transmit Order
	Interface:CAN:Single Shot Transmit?
	Interface:CAN:Termination
	Interface:CAN:Transceiver State
	Interface:CAN:Transceiver Type
	Interface:CAN:Transmit I/O Mode

	FlexRay Interface Properties
	Interface:FlexRay:Accepted Startup Range
	Interface:FlexRay:Allow Halt Due To Clock?
	Interface:FlexRay:Allow Passive to Active
	Interface:FlexRay:Auto Asleep When Stopped
	Interface:FlexRay:Cluster Drift Damping
	Interface:FlexRay:Coldstart?
	Interface:FlexRay:Connected Channels
	Interface:FlexRay:Decoding Correction
	Interface:FlexRay:Delay Compensation Ch A
	Interface:FlexRay:Delay Compensation Ch B
	Interface:FlexRay:Key Slot Identifier
	Interface:FlexRay:Latest Tx
	Interface:FlexRay:Listen Timeout
	Interface:FlexRay:Macro Initial Offset Ch A
	Interface:FlexRay:Macro Initial Offset Ch B
	Interface:FlexRay:Max Drift
	Interface:FlexRay:Micro Initial Offset Ch A
	Interface:FlexRay:Micro Initial Offset Ch B
	Interface:FlexRay:Microtick
	Interface:FlexRay:Null Frames To Input Stream?
	Interface:FlexRay:Offset Correction
	Interface:FlexRay:Offset Correction Out
	Interface:FlexRay:Rate Correction
	Interface:FlexRay:Rate Correction Out
	Interface:FlexRay:Samples Per Microtick
	Interface:FlexRay:Single Slot Enabled?
	Interface:FlexRay:Sleep
	Interface:FlexRay:Statistics Enabled?
	Interface:FlexRay:Symbol Frames To Input Stream?
	Interface:FlexRay:Sync Frames Channel A Even
	Interface:FlexRay:Sync Frames Channel A Odd
	Interface:FlexRay:Sync Frames Channel B Even
	Interface:FlexRay:Sync Frames Channel B Odd
	Interface:FlexRay:Sync Frame Status
	Interface:FlexRay:Termination
	Interface:FlexRay:Wakeup Channel
	Interface:FlexRay:Wakeup Pattern

	LIN Interface Properties
	Interface:LIN:Break Length
	Interface:LIN:DiagP2min
	Interface:LIN:DiagSTmin
	Interface:LIN:Master?
	Interface:LIN:Output Stream Slave Response List By NAD
	Interface:LIN:Schedules
	Interface:LIN:Sleep
	Interface:LIN:Start Allowed without Bus Power?
	Interface:LIN:Termination

	Source Terminal Interface Properties
	Interface:Source Terminal:Start Trigger

	Interface:Baud Rate
	Interface:Echo Transmit?
	Interface:I/O Name
	Interface:Output Stream List
	Interface:Output Stream List By ID
	Interface:Output Stream Timing
	Interface:Start Trigger Frames to Input Stream?
	Interface:Bus Error Frames to Input Stream?
	Session:Application Protocol
	SAE J1939:ECU
	SAE J1939:ECU Busy
	SAE J1939:Hold Time Th
	SAE J1939:Maximum Repeat CTS
	SAE J1939:Node Address
	SAE J1939:NodeName
	SAE J1939:Number of Packets Received
	SAE J1939:Number of Packets Response
	SAE J1939:Response Time Tr_GD
	SAE J1939:Response Time Tr_SD
	SAE J1939:Timeout T1
	SAE J1939:Timeout T2
	SAE J1939:Timeout T3
	SAE J1939:Timeout T4

	Frame Properties
	CAN Frame Properties
	Frame:CAN:Start Time Offset
	Frame:CAN:Transmit Time

	Frame:Active
	Frame:LIN:Transmit N Corrupted Checksums
	Frame:Skip N Cyclic Frames

	Auto Start?
	Cluster
	Database
	List of Frames
	List of Signals
	Mode
	Number in List
	Number of Values Pending
	Number of Values Unused
	Payload Length Maximum
	Protocol
	Queue Size
	Resample Rate

	XNET Read.vi
	XNET Read (Frame CAN).vi
	XNET Read (Frame FlexRay).vi
	XNET Read (Frame LIN).vi
	XNET Read (Frame Raw).vi
	XNET Read (Signal Single-Point).vi
	XNET Read (Signal Waveform).vi
	XNET Read (Signal XY).vi
	XNET Read (State CAN Comm).vi
	XNET Read (State FlexRay Comm).vi
	XNET Read (State LIN Comm).vi
	XNET Read (State FlexRay Cycle Macrotick).vi
	XNET Read (State FlexRay Statistics).vi
	XNET Read (State Time Comm).vi
	XNET Read (State Time Current).vi
	XNET Read (State Time Start).vi
	XNET Read (State Session Info).vi

	XNET Write.vi
	XNET Write (Signal Single-Point).vi
	XNET Write (Signal Waveform).vi
	XNET Write (Signal XY).vi
	XNET Write (Frame CAN).vi
	XNET Write (Frame FlexRay).vi
	XNET Write (Frame LIN).vi
	XNET Write (Frame Raw).vi
	XNET Write (State FlexRay Symbol).vi
	XNET Write (State LIN Schedule Change).vi
	XNET Write (State LIN Diagnostic Schedule Change).vi

	Database Subpalette
	XNET Database Property Node
	Clusters
	ShowInvalidFromOpen?

	XNET Database Constant
	XNET Cluster Property Node
	FlexRay Properties
	FlexRay:Action Point Offset
	FlexRay:CAS Rx Low Max
	FlexRay:Channels
	FlexRay:Cluster Drift Damping
	FlexRay:Cold Start Attempts
	FlexRay:Cycle
	FlexRay:Dynamic Segment Start
	FlexRay:Dynamic Slot Idle Phase
	FlexRay:Latest Guaranteed Dynamic Slot
	FlexRay:Latest Usable Dynamic Slot
	FlexRay:Listen Noise
	FlexRay:Macro Per Cycle
	FlexRay:Macrotick
	FlexRay:Max Without Clock Correction Fatal
	FlexRay:Max Without Clock Correction Passive
	FlexRay:Minislot Action Point Offset
	FlexRay:Minislot
	FlexRay:Network Management Vector Length
	FlexRay:NIT Start
	FlexRay:NIT
	FlexRay:Number of Minislots
	FlexRay:Number of Static Slots
	FlexRay:Offset Correction Start
	FlexRay:Payload Length Dynamic Maximum
	FlexRay:Payload Length Maximum
	FlexRay:Payload Length Static
	FlexRay:Static Slot
	FlexRay:Symbol Window Start
	FlexRay:Symbol Window
	FlexRay:Sync Node Max
	FlexRay:TSS Transmitter
	FlexRay:Use Wakeup
	FlexRay:Wakeup Symbol Rx Idle
	FlexRay:Wakeup Symbol Rx Low
	FlexRay:Wakeup Symbol Rx Window
	FlexRay:Wakeup Symbol Tx Idle
	FlexRay:Wakeup Symbol Tx Low

	Application Protocol
	Baud Rate
	CAN:FD Baud Rate
	CAN:I/O Mode

	Comment
	Configuration Status
	Database
	ECUs
	Frames
	LIN:Schedules
	LIN:Tick
	Name (Short)
	PDUs
	PDUs Required?
	Protocol
	Signals

	XNET Cluster Constant
	XNET ECU Property Node
	Cluster
	FlexRay:Coldstart?
	FlexRay:Connected Channels
	FlexRay:Startup Frame
	FlexRay:Wakeup Channels
	FlexRay:Wakeup Pattern
	Comment
	Configuration Status
	Frames Received
	Frames Transmitted
	LIN:Master?
	LIN:Protocol Version
	LIN:Initial NAD
	LIN:Configured NAD
	LIN:Supplier ID
	LIN:Function ID
	LIN:P2min
	LIN:STmin
	Name (Short)

	XNET ECU Constant
	XNET Frame Property Node
	CAN:Extended Identifier?
	CAN:Timing Type
	CAN:Transmit Time
	Application Protocol
	Cluster
	Comment
	Configuration Status
	Default Payload
	FlexRay:Base Cycle
	FlexRay:Channel Assignment
	FlexRay:Cycle Repetition
	FlexRay:Payload Preamble?
	FlexRay:Startup?
	FlexRay:Sync?
	FlexRay:Timing Type
	FlexRay:In Cycle Repetitions:Channel Assignments
	FlexRay:In Cycle Repetitions:Enabled?
	FlexRay:In Cycle Repetitions:Identifiers
	Identifier
	LIN:Checksum
	Mux:Data Multiplexer Signal
	Mux:Is Data Multiplexed?
	Mux:Static Signals
	Mux:Subframes
	Name (Short)
	Payload Length
	PDU_Mapping
	Signals

	XNET Frame Constant
	XNET PDU Property Node
	Cluster
	Comment
	Configuration Status
	Frames
	Mux:Data Multiplexer Signal
	Mux:Is Data Multiplexed?
	Mux:Static Signals
	Mux:Subframes
	Name (Short)
	Payload Length
	Signals

	XNET PDU Constant
	XNET Subframe Property Node
	Dynamic Signals
	Frame
	Multiplexer Value
	Name (Short)
	PDU

	XNET Signal Property Node
	Byte Order
	Comment
	Configuration Status
	Data Type
	Default Value
	Mux:Dynamic?
	Frame
	Maximum Value
	Minimum Value
	Mux:Multiplexer Value
	Mux:Data Multiplexer?
	Name (Short)
	Number of Bits
	PDU
	Scaling Factor
	Scaling Offset
	Start Bit
	Mux:Subframe
	Unit

	XNET Signal Constant
	XNET Database Open.vi
	XNET Database Close.vi
	XNET Database Close (Cluster).vi
	XNET Database Close (Database).vi
	XNET Database Close (ECU).vi
	XNET Database Close (Frame).vi
	XNET Database Close (PDU).vi
	XNET Database Close (Signal).vi
	XNET Database Close (Subframe).vi
	XNET Database Close (LIN Schedule).vi
	XNET Database Close (LIN Schedule Entry).vi

	XNET Database Create Object.vi
	XNET Database Create (Cluster).vi
	XNET Database Create (Dynamic Signal).vi
	XNET Database Create (ECU).vi
	XNET Database Create (Frame).vi
	XNET Database Create (PDU).vi
	XNET Database Create (Signal).vi
	XNET Database Create (Subframe).vi
	XNET Database Create (LIN Schedule).vi
	XNET Database Create (LIN Schedule Entry).vi

	XNET Database Delete Object.vi
	XNET Database Delete (Cluster).vi
	XNET Database Delete (ECU).vi
	XNET Database Delete (Frame).vi
	XNET Database Delete (PDU).vi
	XNET Database Delete (Signal).vi
	XNET Database Delete (Subframe).vi
	XNET Database Delete (LIN Schedule).vi
	XNET Database Delete (LIN Schedule Entry).vi

	XNET Database Merge.vi
	XNET Database Merge (Frame).vi
	XNET Database Merge (PDU).vi
	XNET Database Merge (ECU).vi
	XNET Database Merge (LIN Schedule).vi
	XNET Database Merge (Cluster).vi

	XNET Database Save.vi
	XNET Database Export.vi
	File Management Subpalette
	XNET Database Add Alias.vi
	XNET Database Remove Alias.vi
	XNET Database Get List.vi
	XNET Database Deploy.vi
	XNET Database Undeploy.vi

	XNET LIN Schedule Property Node
	Cluster
	Comment
	Configuration Status
	Entries
	Name (Short)
	Priority
	Run Mode

	XNET LIN Schedule Entry Property Node
	Collision Resolving Schedule
	Delay
	Event Identifier
	Frames
	Name (Short)
	Node Configuration:Free Format:Data Bytes
	Schedule
	Type

	XNET Database Get DBC Attribute.vi

	Notify Subpalette
	XNET Wait.vi
	XNET Wait (Transmit Complete).vi
	XNET Wait (Interface Communicating).vi
	XNET Wait (CAN Remote Wakeup).vi
	XNET Wait (LIN Remote Wakeup).vi

	XNET Create Timing Source.vi
	XNET Create Timing Source (FlexRay Cycle).vi

	Advanced Subpalette
	XNET Start.vi
	XNET Stop.vi
	XNET Clear.vi
	XNET Flush.vi
	XNET Connect Terminals.vi
	XNET Disconnect Terminals.vi
	XNET Terminal Constant
	XNET System Property Node
	Devices
	Interfaces (FlexRay)
	Interfaces (All)
	Interfaces (CAN)
	Interfaces (LIN)
	Version:Build
	Version:Major
	Version:Minor
	Version:Phase
	Version:Update

	XNET Device Property Node
	Form Factor
	Interfaces
	Number of Ports
	Product Name
	Product Number
	Serial Number
	Slot Number

	XNET Interface Property Node
	CAN.Termination Capability
	CAN.Transceiver Capability
	Device
	Name
	Number
	Port Number
	Protocol

	XNET Interface Constant
	XNET Blink.vi
	XNET System Close.vi
	XNET String to IO Name.vi
	XNET Convert.vi
	XNET Convert (Frame CAN to Signal).vi
	XNET Convert (Frame FlexRay to Signal).vi
	XNET Convert (Frame LIN to Signal).vi
	XNET Convert (Frame Raw to Signal).vi
	XNET Convert (Signal to Frame CAN).vi
	XNET Convert (Signal to Frame FlexRay).vi
	XNET Convert (Signal to Frame LIN).vi
	XNET Convert (Signal to Frame Raw).vi

	Controls Palette
	XNET Session Control
	Database Controls
	System Controls

	Additional Topics
	Overall
	Creating a Built Application
	Cyclic and Event Timing
	Error Handling
	Fault Handling
	Multiplexed Signals
	Raw Frame Format
	Special Frames
	Required Properties
	State Models
	TDMS

	CAN
	NI-CAN
	CAN Timing Type and Session Mode
	CAN Transceiver State Machine

	FlexRay
	FlexRay Timing Type and Session Mode
	Protocol Data Units (PDUs) in NI-XNET
	FlexRay Startup/Wakeup

	LIN
	LIN Frame Timing and Session Mode

	XNET I/O Names
	I/O Name Classes
	XNET Cluster I/O Name
	XNET Database I/O Name
	XNET Device I/O Name
	XNET ECU I/O Name
	XNET Frame I/O Name
	XNET Interface I/O Name
	XNET Session I/O Name
	XNET Signal I/O Name
	XNET Subframe I/O Name
	XNET Terminal I/O Name
	XNET LIN Schedule I/O Name
	XNET LIN Schedule Entry I/O Name
	XNET PDU I/O Name

	Chapter 5 NI-XNET API for C
	Getting Started
	LabWindows/CVI
	Examples

	Visual C++
	Examples

	Interfaces
	What Is an Interface?
	How Do I View Available Interfaces?
	Measurement and Automation Explorer (MAX)

	Databases
	What Is a Database?
	What Is an Alias?
	Database Programming
	Already Have File?
	Can I Use File as Is?
	Select From File
	Edit and Select
	Want to Use a File?
	Create New File Using the Database Editor
	Create in Memory

	Sessions
	What Is a Session?
	Session Modes
	Frame Input Queued Mode
	Frame Input Single-Point Mode
	Frame Input Stream Mode
	Frame Output Queued Mode
	Frame Output Single-Point Mode
	Frame Output Stream Mode
	Signal Input Single-Point Mode
	Signal Input Waveform Mode
	Signal Input XY Mode
	Signal Output Single-Point Mode
	Signal Output Waveform Mode
	Signal Output XY Mode
	Conversion Mode

	J1939 Sessions
	Compatibility Issue
	J1939 Basics
	Node Addresses in NI-XNET
	Address Claiming Procedure
	Transmitting Frames
	Transmitting Frames without Granted Node Address
	Mixing J1939 and CAN Messages
	Transport Protocol (TP)
	NI-XNET Sessions
	Not Supported in the Current NI-XNET Version
	Signal Ranges

	NI-XNET API for C Reference
	Functions
	nxBlink
	nxClear
	nxConnectTerminals
	nxConvertFramesToSignalsSinglePoint
	nxConvertSignalsToFramesSinglePoint
	nxCreateSession
	nxCreateSessionByRef
	nxdbAddAlias
	nxdbCloseDatabase
	nxdbCreateObject
	nxdbDeleteObject
	nxdbDeploy
	nxdbFindObject
	nxdbGetDatabaseList
	nxdbGetDatabaseListSizes
	nxdbGetDBCAttribute
	nxdbGetDBCAttributeSize
	nxdbGetProperty
	nxdbGetPropertySize
	nxdbMerge
	nxdbOpenDatabase
	nxdbRemoveAlias
	nxdbSaveDatabase
	nxdbSetProperty
	nxdbUndeploy
	nxDisconnectTerminals
	nxFlush
	nxGetProperty
	nxGetPropertySize
	nxGetSubProperty
	nxGetSubPropertySize
	nxReadFrame
	nxReadSignalSinglePoint
	nxReadSignalWaveform
	nxReadSignalXY
	nxReadState
	nxSetProperty
	nxSetSubProperty
	nxStart
	nxStatusToString
	nxStop
	nxSystemClose
	nxSystemOpen
	nxWait
	nxWriteFrame
	nxWriteSignalSinglePoint
	nxWriteSignalWaveform
	nxWriteSignalXY
	nxWriteState

	Properties
	XNET Cluster Properties
	Baud Rate
	CAN:FD Baud Rate
	CAN:I/O Mode
	Comment
	Configuration Status
	Database
	ECUs
	FlexRay:Action Point Offset
	FlexRay:CAS Rx Low Max
	FlexRay:Channels
	FlexRay:Cluster Drift Damping
	FlexRay:Cold Start Attempts
	FlexRay:Cycle
	FlexRay:Dynamic Segment Start
	FlexRay:Dynamic Slot Idle Phase
	FlexRay:Latest Guaranteed Dynamic Slot
	FlexRay:Latest Usable Dynamic Slot
	FlexRay:Listen Noise
	FlexRay:Macro Per Cycle
	FlexRay:Macrotick
	FlexRay:Max Without Clock Correction Fatal
	FlexRay:Max Without Clock Correction Passive
	FlexRay:Minislot
	FlexRay:Minislot Action Point Offset
	FlexRay:Network Management Vector Length
	FlexRay:NIT
	FlexRay:NIT Start
	FlexRay:Number of Minislots
	FlexRay:Number of Static Slots
	FlexRay:Offset Correction Start
	FlexRay:Payload Length Dynamic Maximum
	FlexRay:Payload Length Maximum
	FlexRay:Payload Length Static
	FlexRay:Static Slot
	FlexRay:Symbol Window
	FlexRay:Symbol Window Start
	FlexRay:Sync Node Max
	FlexRay:TSS Transmitter
	FlexRay:Use Wakeup
	FlexRay:Wakeup Symbol Rx Idle
	FlexRay:Wakeup Symbol Rx Low
	FlexRay:Wakeup Symbol Rx Window
	FlexRay:Wakeup Symbol Tx Idle
	FlexRay:Wakeup Symbol Tx Low
	Frames
	Name (Short)
	PDUs
	PDUs Required?
	Protocol
	Schedules
	Signals
	Tick
	Application Protocol

	XNET Database Properties
	Clusters
	ShowInvalidFromOpen?

	XNET Device Properties
	Form Factor
	Interfaces
	Number of Ports
	Product Name
	Product Number
	Serial Number
	Slot Number

	XNET ECU Properties
	Cluster
	Comment
	Configuration Status
	FlexRay:Coldstart?
	FlexRay:Connected Channels
	FlexRay:Startup Frame
	FlexRay:Wakeup Channels
	FlexRay:Wakeup Pattern
	Frames Received
	Frames Transmitted
	LIN Master
	LIN Version
	LIN:Initial NAD
	LIN:Configured NAD
	LIN:Supplier ID
	LIN:Function ID
	LIN:P2min
	LIN:STmin
	Name (Short)

	XNET Frame Properties
	CAN:Extended Identifier?
	CAN:Timing Type
	CAN:Transmit Time
	Cluster
	Comment
	Configuration Status
	Default Payload
	FlexRay:Base Cycle
	FlexRay:Channel Assignment
	FlexRay:Cycle Repetition
	FlexRay:In Cycle Repetitions:Channel Assignments
	FlexRay:In Cycle Repetitions:Enabled?
	FlexRay:In Cycle Repetitions:Identifiers
	FlexRay:Payload Preamble?
	FlexRay:Startup?
	FlexRay:Sync?
	FlexRay:Timing Type
	Identifier
	LIN:Checksum
	Mux:Data Multiplexer Signal
	Mux:Is Data Multiplexed?
	Mux:Static Signals
	Mux:Subframes
	Name (Short)
	Payload Length
	PDU References
	PDU Start Bits
	PDU Update Bits
	Signals
	Application Protocol

	XNET Interface Properties
	CAN.Termination Capability
	CAN.Transceiver Capability
	Device
	Name
	Number
	Port Number
	Protocol

	XNET LIN Schedule Properties
	Cluster
	Comment
	Configuration Status
	Entries
	Name
	Priority
	Run Mode

	XNET LIN Schedule Entry Properties
	Collision Resolving Schedule
	Delay
	Event Identifier
	Frames
	Name
	Name Unique to Cluster
	Node Configuration:Free Format:Data Bytes
	Schedule
	Type

	XNET PDU Properties
	Cluster
	Comment
	Configuration Status
	Frames
	Mux:Data Multiplexer Signal
	Mux:Is Data Multiplexed?
	Mux:Static Signals
	Mux:Subframes
	Name (Short)
	Payload Length
	Signals

	XNET Session Properties
	Interface Properties
	CAN Interface Properties
	Interface:CAN:External Transceiver Config
	Interface:CAN:FD Baud Rate
	Interface:CAN:I/O Mode
	Interface:CAN:Listen Only?
	Interface:CAN:Pending Transmit Order
	Interface:CAN:Single Shot Transmit?
	Interface:CAN:Termination
	Interface:CAN:Transceiver State
	Interface:CAN:Transceiver Type
	Interface:CAN:Transmit I/O Mode

	FlexRay Interface Properties
	Interface:FlexRay:Accepted Startup Range
	Interface:FlexRay:Allow Halt Due To Clock?
	Interface:FlexRay:Allow Passive to Active
	Interface:FlexRay:AutoAsleepWhenStopped
	Interface:FlexRay:Cluster Drift Damping
	Interface:FlexRay:Coldstart?
	Interface:FlexRay:Connected Channels
	Interface:FlexRay:Decoding Correction
	Interface:FlexRay:Delay Compensation Ch A
	Interface:FlexRay:Delay Compensation Ch B
	Interface:FlexRay:Key Slot Identifier
	Interface:FlexRay:Latest Tx
	Interface:FlexRay:Listen Timeout
	Interface:FlexRay:Macro Initial Offset Ch A
	Interface:FlexRay:Macro Initial Offset Ch B
	Interface:FlexRay:Max Drift
	Interface:FlexRay:Micro Initial Offset Ch A
	Interface:FlexRay:Micro Initial Offset Ch B
	Interface:FlexRay:Microtick
	Interface:FlexRay:Null Frames To Input Stream?
	Interface:FlexRay:Offset Correction
	Interface:FlexRay:Offset Correction Out
	Interface:FlexRay:Rate Correction
	Interface:FlexRay:Rate Correction Out
	Interface:FlexRay:Samples Per Microtick
	Interface:FlexRay:Single Slot Enabled?
	Interface:FlexRay:Sleep
	Interface:FlexRay:Statistics Enabled?
	Interface:FlexRay:Symbol Frames To Input Stream?
	Interface:FlexRay:Sync Frame Status
	Interface:FlexRay:Sync Frames Channel A Even
	Interface:FlexRay:Sync Frames Channel A Odd
	Interface:FlexRay:Sync Frames Channel B Even
	Interface:FlexRay:Sync Frames Channel B Odd
	Interface:FlexRay:Termination
	Interface:FlexRay:Wakeup Channel
	Interface:FlexRay:Wakeup Pattern

	LIN Interface Properties
	Interface:LIN:Break Length
	Interface:LIN:DiagP2min
	Interface:LIN:DiagSTmin
	Interface:LIN:Master?
	Interface:LIN:Output Stream Slave Response List By NAD
	Interface:LIN:Schedule Names
	Interface:LIN:Sleep
	Interface:LIN:Start Allowed without Bus Power?
	Interface:LIN:Termination

	Source Terminal Interface Properties
	Interface:Source Terminal:Start Trigger

	Interface:Baud Rate
	Interface:Echo Transmit?
	Interface:Output Stream List
	Interface:Output Stream List By ID
	Interface:Output Stream Timing
	Interface:Start Trigger Frames to Input Stream?
	Interface:Bus Error Frames to Input Stream?

	Session:Application Protocol
	SAE J1939:ECU
	SAE J1939:ECU Busy
	SAE J1939:Hold Time Th
	SAE J1939:Maximum Repeat CTS
	SAE J1939:Node Address
	SAE J1939:NodeName
	SAE J1939:Number of Packets Received
	SAE J1939:Number of Packets Response
	SAE J1939:Response Time Tr_GD
	SAE J1939:Response Time Tr_SD
	SAE J1939:Timeout T1
	SAE J1939:Timeout T2
	SAE J1939:Timeout T3
	SAE J1939:Timeout T4
	Frame Properties
	CAN Frame Properties
	Frame:CAN:Start Time Offset
	Frame:CAN:Transmit Time

	Frame:LIN:Transmit N Corrupted Checksums
	Frame:Skip N Cyclic Frames

	Auto Start?
	ClusterName
	DatabaseName
	List
	Mode
	Number in List
	Number of Values Pending
	Number of Values Unused
	Payload Length Maximum
	Protocol
	Queue Size
	Resample Rate

	XNET Signal Properties
	Byte Order
	Comment
	Configuration Status
	Data Type
	Default Value
	Frame
	Maximum Value
	Minimum Value
	Mux:Data Multiplexer?
	Mux:Dynamic?
	Mux:Multiplexer Value
	Mux:Subframe
	Name (Short)
	Name Unique to Cluster
	Number of Bits
	PDU
	Scaling Factor
	Scaling Offset
	Start Bit
	Unit

	XNET Subframe Properties
	Dynamic Signals
	Frame
	Multiplexer Value
	Name (Short)
	Name Unique to Cluster
	PDU

	XNET System Properties
	Devices
	Interfaces (All)
	Interfaces (CAN)
	Interfaces (FlexRay)
	Interfaces (LIN)
	Version:Build
	Version:Major
	Version:Minor
	Version:Phase
	Version:Update

	Additional Topics
	Overall
	Cyclic and Event Timing
	Multiplexed Signals
	Raw Frame Format
	Special Frames
	Required Properties
	State Models

	CAN
	NI-CAN
	CAN Timing Type and Session Mode
	CAN Transceiver State Machine

	FlexRay
	FlexRay Timing Type and Session Mode
	Protocol Data Units (PDUs) in NI-XNET
	FlexRay Startup/Wakeup

	LIN
	LIN Frame Timing and Session Mode

	Chapter 6 Troubleshooting and Common Questions
	Appendix A Summary of the CAN Standard
	Appendix B Summary of the FlexRay Standard
	Appendix C Summary of the LIN Standard
	Appendix D Specifications
	Appendix E LabVIEW Project Provider
	Appendix F Bus Monitor
	Appendix G Database Editor
	Appendix H NI Services
	Index
	A-C
	D
	E
	F
	G-I
	J-L
	M
	N
	O
	P
	Q-S
	T
	U-X

