

 PCI-CAN-2

https://www.apexwaves.com/modular-systems/national-instruments/pci-can-interfaces/PCI-CAN-2?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/pci-can-interfaces/PCI-CAN-2?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/pci-can-interfaces/PCI-CAN-2?aw_referrer=pdf

CAN

NI-CAN
™

User Manual

NI-CAN User Manual

May 2001 Edition

Part Number 370290B-01

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,

Canada (Calgary) 403 274 9391, Canada (Montreal) 514 288 5722, Canada (Ottawa) 613 233 5949,

Canada (Québec) 514 694 8521, Canada (Toronto) 905 785 0085, China (Shanghai) 021 6555 7838,

China (ShenZhen) 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24,

Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406,

Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Malaysia 603 9596711,

Mexico 5 280 7625, Netherlands 0348 433466, New Zealand 09 914 0488, Norway 32 27 73 00,

Poland 0 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085,

Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the

documentation, send e-mail to techpubs@ni.com

Copyright © 1996, 2001 National Instruments Corporation. All rights reserved.

Important Information

Warranty
The NI-CAN™ is warranted against defects in materials and workmanship for a period of 90 days from the date of shipment, as evidenced by
receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the
warranty period. This warranty includes parts and labor.

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF

NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR

DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY

THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
CVI™, LabVIEW™, National Instruments™, NI™, NI-CAN™, ni.com™, PXI™, and RTSI™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
The product described in this manual may be protected by one or more U.S. patents: U.S. Patent No. 5,938,754.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWAREMALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Compliance

FCC/Canada Radio Frequency Interference Compliance*

Determining FCC Class
The Federal Communications Commission (FCC) has rules to protect wireless communications from interference. The FCC
places digital electronics into two classes. These classes are known as Class A (for use in industrial-commercial locations only)
or Class B (for use in residential or commercial locations). Depending on where it is operated, this product could be subject to
restrictions in the FCC rules. (In Canada, the Department of Communications (DOC), of Industry Canada, regulates wireless
interference in much the same way.)

Digital electronics emit weak signals during normal operation that can affect radio, television, or other wireless products. By
examining the product you purchased, you can determine the FCC Class and therefore which of the two FCC/DOC Warnings
apply in the following sections. (Some products may not be labeled at all for FCC; if so, the reader should then assume these are
Class A devices.)

FCC Class A products only display a simple warning statement of one paragraph in length regarding interference and undesired
operation. Most of our products are FCC Class A. The FCC rules have restrictions regarding the locations where FCC Class A
products can be operated.

FCC Class B products display either a FCC ID code, starting with the letters EXN,
or the FCC Class B compliance mark that appears as shown here on the right.

Consult the FCC web site http://www.fcc.gov for more information.

FCC/DOC Warnings
This equipment generates and uses radio frequency energy and, if not installed and used in strict accordance with the instructions
in this manual and the CE Mark Declaration of Conformity**, may cause interference to radio and television reception.
Classification requirements are the same for the Federal Communications Commission (FCC) and the Canadian Department
of Communications (DOC).

Changes or modifications not expressly approved by National Instruments could void the user’s authority to operate the
equipment under the FCC Rules.

Class A
Federal Communications Commission
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC
Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated
in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and
used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct
the interference at his own expense.

Canadian Department of Communications
This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

Class B
Federal Communications Commission
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the
FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.
This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the
instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not
occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can
be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of
the following measures:

• Reorient or relocate the receiving antenna.

• Increase the separation between the equipment and receiver.

• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

• Consult the dealer or an experienced radio/TV technician for help.

Canadian Department of Communications
This Class B digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

Cet appareil numérique de la classe B respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

Compliance to EU Directives
Readers in the European Union (EU) must refer to the Manufacturer's Declaration of Conformity (DoC) for information**
pertaining to the CE Mark compliance scheme. The Manufacturer includes a DoC for most every hardware product except for
those bought for OEMs, if also available from an original manufacturer that also markets in the EU, or where compliance is not
required as for electrically benign apparatus or cables.

To obtain the DoC for this product, click Declaration of Conformity at ni.com/hardref.nsf/. This website lists the DoCs
by product family. Select the appropriate product family, followed by your product, and a link to the DoC appears in Adobe
Acrobat format. Click the Acrobat icon to download or read the DoC.

* Certain exemptions may apply in the USA, see FCC Rules §15.103 Exempted devices, and §15.105(c). Also available in
sections of CFR 47.

** The CE Mark Declaration of Conformity will contain important supplementary information and instructions for the user or
installer.

© National Instruments Corporation vii NI-CAN User Manual

Contents

About This Manual
How To Use the Manual Set..xiii

Conventions ...xiii

Related Documentation..xiv

Chapter 1
Introduction

CAN Overview ..1-1

History and Use of CAN ...1-1

CAN Identifiers and Message Priority ..1-2

CAN Frames..1-3

Start of Frame (SOF)...1-3

Arbitration ID..1-4

Remote Transmit Request (RTR) ...1-4

Identifier Extension (IDE) ..1-4

Data Length Code (DLC)..1-4

Data Bytes ...1-4

Cyclic Redundancy Check (CRC) ..1-4

Acknowledgment Bit (ACK) ..1-5

End of Frame...1-5

CAN Error Detection and Confinement ..1-5

Error Detection..1-5

Error Confinement ..1-6

Low-Speed CAN ...1-8

NI-CAN Hardware Overview..1-9

NI-CAN Software Overview ...1-11

Independent Design ...1-11

Object-Oriented Design...1-11

NI-CAN Object Hierarchy ..1-12

NI-CAN Software Components ..1-14

NI-CAN Driver and Utilities...1-14

Firmware Image Files ...1-15

Language Interface Files ...1-15

Application Examples ...1-15

Interaction of Software Components with Your Application1-16

RTSI Bus Overview...1-16

The RTSI Solution...1-16

Synchronizing with NI-DAQ ..1-17

Contents

NI-CAN User Manual viii ni.com

Chapter 2
Developing Your Application

Choosing Your Programming Method .. 2-1

Choosing a Method to Access the NI-CAN Software 2-1

(LabVIEW) Function Library... 2-1

LabVIEW Real-Time (RT)... 2-1

C/C++ Language Interfaces.. 2-2

Direct Entry Access .. 2-3

Choosing Which NI-CAN Objects to Use .. 2-4

Using CAN Network Interface Objects.. 2-4

Using CAN Objects .. 2-5

Programming Model for NI-CAN Applications.. 2-7

Step 1. Configure Objects... 2-9

Step 2. Open Objects .. 2-9

Step 3. Start Communication.. 2-9

Step 4. Communicate Using Objects .. 2-9

Step 5. Close Objects.. 2-10

Checking Status of Function Calls .. 2-10

Checking Status in LabVIEW... 2-11

Checking Status in C or C++ .. 2-12

Chapter 3
NI-CAN Programming Techniques

Using Queues... 3-1

State Transitions.. 3-1

Empty Queues ... 3-2

Full Queues ... 3-2

Disabling Queues .. 3-2

Using the CAN Network Interface Object with CAN Objects...................................... 3-2

Detecting State Changes.. 3-4

Chapter 4
Application Examples

LabVIEW Examples.. 4-1

C/C++ Examples ... 4-1

Other Programming Languages... 4-1

Contents

© National Instruments Corporation ix NI-CAN User Manual

Chapter 5
NI-CAN Configuration and Diagnostic Utilities

Overview..5-1

Starting the NI-CAN Configuration Utility in Windows Me/98/955-1

Starting the NI-CAN Configuration Utility in Windows 2000/NT5-2

Starting the NI-CAN Remote Configuration Utility for LabVIEW RT5-3

Starting the NI-CAN Diagnostic Utility ..5-3

Appendix A
Windows Me/98/95: Troubleshooting and Common Questions

Appendix B
Windows NT: Troubleshooting and Common Questions

Appendix C
Windows 2000: Troubleshooting and Common Questions

Appendix D
Cabling Requirements for High-Speed CAN

Appendix E
Cabling Requirements for Low-Speed CAN

Appendix F
Cabling Requirements for Dual-Speed CAN

Appendix G
RTSI Bus

Appendix H
Specifications

Appendix I
Technical Support Resources

Contents

NI-CAN User Manual x ni.com

Glossary

Index

Figures
Figure 1-1. Example of CAN Arbitration.. 1-3

Figure 1-2. Standard and Extended Frame Formats .. 1-3

Figure 1-3. Simple CAN Device Network Application... 1-12

Figure 1-4. Applying NI-CAN Objects to the Example in Figure 1-3 1-13

Figure 1-5. Interaction of NI-CAN Software Components 1-16

Figure 2-1. General Program Steps Using NI-CAN Functions 2-8

Figure 3-1. Flowchart for CAN Frame Reception... 3-3

Figure 5-1. NI-CAN Diagnostic Utility after Testing ... 5-4

Figure A-1. CAN Interface That Is Not Working Properly...................................... A-2

Figure C-1. CAN Interface That Is Not Working Properly...................................... C-2

Figure C-2. CAN Interface That has Not Been Recognized Properly C-3

Figure D-1. Pinout for 9-Pin D-Sub Connector.. D-1

Figure D-2. Pinout for 5-Pin Combicon-Style Pluggable Screw Terminal D-2

Figure D-3. PCMCIA-CAN Cable ... D-2

Figure D-4. AT-CAN/2 Parts Locator Diagram... D-3

Figure D-5. PCI-CAN/2 Parts Locator Diagram .. D-4

Figure D-6. PXI-8461 Parts Locator Diagram ... D-5

Figure D-7. Power Source Jumpers .. D-6

Figure D-8. Termination Resistor Placement ... D-8

Figure D-9. Cabling Example... D-9

Figure E-1. Pinout for 9-Pin D-Sub Connector.. E-1

Figure E-2. PCMCIA-CAN/LS Cable ... E-2

Figure E-3. PCI-CAN/LS2 Parts Locator Diagram ... E-3

Figure E-4. PXI-8460 Parts Locator Diagram ... E-4

Figure E-5. Power Source Jumpers .. E-5

Figure E-6. Termination Resistor Placement for Low-Speed CAN E-6

Figure E-7. Location of Termination Resistors on PCI-CAN/LS2 Board E-9

Figure E-8. Preparing Lead Wires of Replacement Resistors.................................. E-10

Figure E-9. Location of Termination Resistors on a PXI-8460 E-11

Figure E-10. Preparing Lead Wires of Replacement Resistors.................................. E-11

Contents

© National Instruments Corporation xi NI-CAN User Manual

Figure E-11. Preparing Lead Wires of PCMCIA-CAN/LS

Cable Replacement Resistors..E-12

Figure E-12. Cabling Example ...E-13

Figure G-1. AT-CAN Series RTSI Connector Pinout ..G-1

Figure G-2. PCI-CAN Series RTSI Connector Pinout ...G-2

Tables

Table 2-1. NI-CAN Error Cluster ...2-11

Table 2-2. NI-CAN Status Code...2-12

Table D-1. Power Requirements for the CAN Physical Layer

for Bus-Powered Versions ...D-6

Table D-2. ISO 11898 Specifications for Characteristics of a CAN_H

and CAN_L Pair of Wires...D-7

Table D-3. DeviceNet Cable Length Specifications..D-7

Table E-1. Power Requirements for the Low-Speed CAN

Physical Layer for Bus-Powered Versions..E-5

Table E-2. ISO 11519-2 Specifications for Characteristics of a CAN_H

and CAN_L Pair of Wires...E-6

Table G-1. Pins Used By the PXI-846x Series Boards..G-3

© National Instruments Corporation xiii NI-CAN User Manual

About This Manual

This manual describes the features of the CAN Hardware and NI-CAN

software. It assumes that you are already familiar with the operating system

you are using.

How To Use the Manual Set

Use the Installation Guide, CAN Hardware and the NI-CAN Software for

Windows 2000/NT/Me/9x in the jewel case of your program CD to install

and configure your CAN hardware and the NI-CAN software.

Use this NI-CAN User Manual to learn the basics of CAN and how to

develop an application program.

Use the NI-CAN Programmer Reference Manual for specific information

about each NI-CAN function and object, such as format, description and

and parameters.

Conventions

The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options

to a final action. The sequence File»Page Setup»Options directs you to

pull down the File menu, select the Page Setup item, and select Options

from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click on in the software,

such as menu items and dialog box options. Bold text also denotes

parameter names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction

to a key concept. This font also denotes text that is a placeholder for a word

or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the

keyboard, sections of code, programming examples, and syntax examples.

This font is also used for the proper names of disk drives, paths, directories,

About This Manual

NI-CAN User Manual xiv www.ni.com

programs, subprograms, subroutines, device names, functions, operations,

variables, filenames and extensions, and code excerpts.

Platform Text in this font denotes a specific platform and indicates that the text

following it applies only to that platform.

Related Documentation

The following documents contain information that you may find helpful as

you read this manual:

• ANSI/ISO Standard 11898-1993, Road Vehicles—Interchange of

Digital Information—Controller Area Network (CAN) for High-Speed

Communication

• ANSI/ISO Standard 11519-1, 2 Road Vehicles—Low Speed Serial

Data Communications, Part 1 and 2

• CAN Specification Version 2.0, 1991, Robert Bosch Gmbh.,

Postfach 500, D-7000 Stuttgart 1

• CiA Draft Standard 102, Version 2.0, CAN Physical Layer for

Industrial Applications

• CompactPCI Specification, Revision 2.0, PCI Industrial Computers

Manufacturers Group

• DeviceNet Specification, Version 2.0, Open DeviceNet Vendor

Association

• PXI Specification, Revision 1.0, National Instruments Corporation

• LabVIEW Online Reference

• Measurement and Automation Explorer (MAX) Online Reference

• Microsoft Win32 Software Development Kit (SDK) online help

© National Instruments Corporation 1-1 NI-CAN User Manual

1
Introduction

This chapter gives an overview of CAN and the NI-CAN hardware and

NI-CAN software.

CAN Overview

History and Use of CAN
In the past few decades, the need for improvements in automotive

technology has led to increased use of electronic control systems for

functions such as engine timing, anti-lock brake systems, and

distributorless ignition. With conventional wiring, data is exchanged in

these systems using dedicated signal lines. As the complexity and number

of devices has increased, using dedicated signal lines has become

increasingly difficult and expensive.

To overcome the limitations of conventional automotive wiring, Bosch

developed the Controller Area Network (CAN) in the mid-1980s. Using

CAN, devices (controllers, sensors, and actuators) are connected on a

common serial bus. This network of devices can be thought of as a scaled

down, real-time, low cost version of networks used to connect personal

computers. Any device on a CAN network can communicate with any other

device using a common pair of wires.

As CAN implementations increased in the automotive industry, CAN was

standardized internationally as ISO 11898, and CAN chips were created by

major semiconductor manufacturers such as Intel, Motorola, and Phillips.

With these developments, many manufacturers of industrial automation

equipment began to consider CAN for use in industrial applications.

Comparison of the requirements for automotive and industrial device

networks showed many similarities, including the transition away from

dedicated signal lines, low cost, resistance to harsh environments, and high

real-time capabilities.

Because of these similarities, CAN became widely used in industrial

applications such as textile machinery, packaging machines, and

production line equipment such as photoelectric sensors and motion

Chapter 1 Introduction

NI-CAN User Manual 1-2 ni.com

controllers. By the mid-1990s, CAN was specified as the basis of many

industrial device networking protocols, including DeviceNet, CANopen,

and Smart Distributed System (SDS).

With its growing popularity in automotive and industrial applications, CAN

has been increasingly used in a wide variety of diverse applications. Use in

systems such as agricultural equipment, nautical machinery, medical

apparatus, semiconductor manufacturing equipment, and machine tools

testify to the incredible versatility of CAN.

CAN Identifiers and Message Priority
When a CAN device transmits data onto the network, an identifier that is

unique throughout the network precedes the data. The identifier defines not

only the content of the data, but also the priority. A CAN identifier, along

with its associated data, is often referred to as a CAN Object.

When a device transmits a message onto the CAN network, all other

devices on the network receive that message. Each receiving device

performs an acceptance test on the identifier to determine if the message

is relevant to it. If the received identifier is not relevant to the device (such

as RPM received by an air conditioning controller), the device ignores the

message.

When more than one CAN device transmits a message simultaneously, the

identifier is used as a priority to determine which device gains access to the

network. The lower the numerical value of the identifier, the higher its

priority.

Figure 1-1 shows two CAN devices attempting to transmit messages, one

using identifier 647 hex, and the other using identifier 6FF hex. As each

device transmits the 11 bits of its identifier, it examines the network to

determine if a higher-priority identifier is being transmitted simultaneously.

If an identifier collision is detected, the losing device(s) immediately cease

transmission, and wait for the higher-priority message to complete before

automatically retrying. Because the highest priority identifier continues its

transmission without interruption, this scheme is referred to as

nondestructive bitwise arbitration, and CAN’s identifier is often referred

to as an arbitration ID. This ability to resolve collisions and continue with

high-priority transmissions is one feature that makes CAN ideal for

real-time applications.

Chapter 1 Introduction

© National Instruments Corporation 1-3 NI-CAN User Manual

Figure 1-1. Example of CAN Arbitration

CAN Frames
In a CAN network, the messages transferred across the network are called

frames. The CAN protocol supports two frame formats as defined in the

Bosch version 2.0 specifications, the essential difference being in the

length of the arbitration ID. In the standard frame format (also known as

2.0A), the length of the ID is 11 bits. In the extended frame format (also

known as 2.0B), the length of the ID is 29 bits. The ISO 11898 specification

supports only the standard frame format. Figure 1-2 shows the essential

fields of the standard and extended frame formats, and the following

sections describe each field.

Figure 1-2. Standard and Extended Frame Formats

Start of Frame (SOF)
Start of Frame is a single bit (0) that marks the beginning of a CAN frame.

S

S

Device B Loses Arbitration

Device A Wins Arbitration and Proceeds

Device A
ID = 11001000111 (647 hex)

Device B
ID = 11011111111 (6FF hex)

S= Start Frame Bit

Standard Frame Format

Extended Frame Format

S

O

F

R

T

R

I

D

E

A

C

K

11-Bit
Arbitration ID DLC 0-8 Data bytes 15-Bit CRC End of Frame

S

O

F

I

D

E

R

T

R

High 11 Bits
of Arbitration ID

Low 18 Bits
of Arbitration ID DLC 0-8 Data bytes

A

C

K
15-Bit CRC End of Frame

Chapter 1 Introduction

NI-CAN User Manual 1-4 ni.com

Arbitration ID
The arbitration ID fields contain the identifier for a CAN frame. The

standard format has one 11-bit field, and the extended format has two

fields, which are 11 and 18 bits in length. In both formats, bits of the

arbitration ID are transmitted from high to low order.

Remote Transmit Request (RTR)
The Remote Transmit Request bit is dominant (0) for data frames, and

recessive (1) for remote frames. Data frames are the fundamental means

of data transfer on a CAN network, and are used to transmit data from one

device to one or more receivers. A device transmits a remote frame to

request transmission of a data frame for the given arbitration ID. The

remote frame is used to request data from its source device, rather than

waiting for the data source to transmit the data on its own.

Identifier Extension (IDE)
The Identifier Extension bit differentiates standard frames from extended

frames. Because the IDE bit is dominant (0) for standard frames and

recessive (1) for extended frames, standard frames are always higher

priority than extended frames.

Data Length Code (DLC)
The Data Length Code is a 4-bit field that indicates the number of data

bytes in a data frame. In a remote frame, the Data Length Code indicates

the number of data bytes in the requested data frame. Valid Data Length

Codes range from zero to eight.

Data Bytes
For data frames, this field contains from 0 to 8 data bytes. Remote CAN

frames always contain zero data bytes.

Cyclic Redundancy Check (CRC)
The 15-bit Cyclic Redundancy Check detects bit errors in frames. The

transmitter calculates the CRC based on the preceding bits of the frame,

and all receivers recalculate it for comparison. If the CRC calculated by

a receiver differs from the CRC in the frame, the receiver detects an error.

Chapter 1 Introduction

© National Instruments Corporation 1-5 NI-CAN User Manual

Acknowledgment Bit (ACK)
All receivers use the Acknowledgment Bit to acknowledge successful

reception of the frame. The ACK bit is transmitted recessive (1), and is

overwritten as dominant (0) by all devices that receive the frame

successfully. The receivers acknowledge correct frames regardless of the

acceptance test performed on the arbitration ID. If the transmitter of the

frame detects no acknowledgment, it could mean that the receivers detected

an error (such as a CRC error), the ACK bit was corrupted, or there are no

receivers (for example, only one device on the network). In such cases, the

transmitter automatically retransmits the frame.

End of Frame
Each frame ends with a sequence of recessive bits. After the required

number of recessive bits, the CAN bus is idle, and the next frame

transmission can begin.

CAN Error Detection and Confinement
One of the most important and useful features of CAN is its high reliability,

even in extremely noisy environments. CAN provides a variety of

mechanisms to detect errors in frames. This error detection is used to

retransmit the frame until it is received successfully. CAN also provides

an error confinement mechanism used to remove a malfunctioning device

from the CAN network when a high percentage of its frames result in

errors. This error confinement prevents malfunctioning devices from

disturbing the overall network traffic.

Error Detection
Whenever any CAN device detects an error in a frame, that device

transmits a special sequence of bits called an error flag. This error flag is

normally detected by the device transmitting the invalid frame, which then

retransmits to correct the error. The retransmission starts over from the start

of frame, and thus arbitration with other devices is again possible.

CAN devices detect the following errors, which are described in the

following sections:

• Bit error

• Stuff error

• CRC error

Chapter 1 Introduction

NI-CAN User Manual 1-6 ni.com

• Form error

• Acknowledgment error

Bit Error

During frame transmissions, a CAN device monitors the bus on a bit-by-bit

basis. If the bit level monitored is different from the transmitted bit, a bit

error is detected. This bit error check applies only to the Data Length Code,

Data Bytes, and Cyclic Redundancy Check fields of the transmitted frame.

Stuff Error

Whenever a transmitting device detects five consecutive bits of equal

value, it automatically inserts a complemented bit into the transmitted bit

stream. This stuff bit is automatically removed by all receiving devices.

The bit stuffing scheme is used to guarantee enough edges in the bit stream

to maintain synchronization within a frame.

A stuff error occurs whenever six consecutive bits of equal value are

detected on the bus.

CRC Error

A CRC error is detected by a receiving device whenever the calculated

CRC differs from the actual CRC in the frame.

Form Error

A form error occurs when a violation of the fundamental CAN frame

encoding is detected. For example, if a CAN device begins transmitting

the Start Of Frame bit for a new frame before the End Of Frame sequence

completes for a previous frame (does not wait for bus idle), a form error

is detected.

Acknowledgment Error

An acknowledgment error is detected by a transmitting device whenever it

does not detect a dominant Acknowledgment Bit (ACK).

Error Confinement
To provide for error confinement, each CAN device must implement

a transmit error counter and a receive error counter. The transmit error

counter is incremented when errors are detected for transmitted frames,

and decremented when a frame is transmitted successfully. The receive

error counter is used for received frames in much the same way. The error

Chapter 1 Introduction

© National Instruments Corporation 1-7 NI-CAN User Manual

counters are increased more for errors than they are decreased for

successful reception/transmission. This ensures that the error counters will

generally increase when a certain ratio of frames (roughly 1/8) encounter

errors. By maintaining the error counters in this manner, the CAN protocol

can generally distinguish temporary errors (such as those caused by

external noise) from permanent failures (such as a broken cable). For

complete information on the rules used to increment/decrement the error

counters, refer to the CAN specification (ISO 11898).

With regard to error confinement, each CAN device may be in one of three

states: error active, error passive, and bus off.

Error Active State

When a CAN device is powered on, it begins in the error active state.

A device in error active state can normally take part in communication,

and transmits an active error flag when an error is detected. This active

error flag (sequence of dominant 0 bits) causes the current frame

transmission to abort, resulting in a subsequent retransmission. A CAN

device remains in the error active state as long as the transmit and receive

error counters are both below 128. In a normally functioning network of

CAN devices, all devices are in the error active state.

Error Passive State

If either the transmit error counter or the receive error counter increments

above 127, the CAN device transitions into the error passive state. A device

in error passive state can still take part in communication, but transmits a

passive error flag when an error is detected. This passive error flag

(sequence of recessive 1 bits) generally does not abort frames transmitted

by other devices. Since passive error flags cannot prevail over any activity

on the bus line, they are noticed only when the error passive device is

transmitting a frame. Thus, if an error passive device detects a receive error

on a frame which is received successfully by other devices, the frame is not

retransmitted.

One special rule to keep in mind is that when an error passive device detects

an acknowledgment error, it does not increment its transmit error counter.

Thus, if a CAN network consists of only one device (for example, if you do

not connect a cable to your National Instruments CAN interface), and that

device attempts to transmit a frame, it retransmits continuously but never

goes into bus off state (although it eventually reaches error passive state).

Chapter 1 Introduction

NI-CAN User Manual 1-8 ni.com

Bus Off State

If the transmit error counter increments above 255, the CAN device

transitions into the bus off state. A device in the bus off state does not

transmit or receive any frames, and thus cannot have any influence on the

bus. The bus off state is used to disable a malfunctioning CAN device

which frequently transmits invalid frames, so that the device does not

adversely impact other devices on the network. When a CAN device has

transitioned to bus off, it can be placed back into error active state (with

both counters reset to zero) only by manual intervention. For

sensor/actuator types of devices, this often involves powering the device

off then on. For NI-CAN network interfaces, communication can be started

again using a function such as ncAction.

Low-Speed CAN
Low-speed CAN is commonly used to control “comfort” devices in an

automobile, such as seat adjustment, mirror adjustment, and door locking.

It differs from “high-speed” CAN in that the maximum baud rate is 125K

and it utilizes CAN transceivers that offer fault-tolerant capability. This

enables the CAN bus to keep operating even if one of the wires is cut or

short-circuited because it operates on relative changes in voltage, and thus

provides a much higher level of safety. The fault tolerance feature means

that communications capability is maintained even if any of the ISO 11519

wiring failures occur. The transceiver solves many common and frequent

wiring problems such as poor connectors, and also overcomes short circuits

of either transmission wire to ground or battery voltage, or the other

transmission wire. The transceiver resolves the fault situation without

involvement of external hardware or software. On the detection of a fault,

the transceiver switches to a one wire transmission mode and automatically

switches back to differential mode if the fault is removed.

Special resistors are added to the circuitry for the proper operation of the

fault-tolerant transceiver. The values of the resistors depend on the number

of nodes and the resistance values per node. For guidelines on selecting the

resistor, refer to, Appendix E, Cabling Requirements for Low-Speed CAN,

in this manual.

Because the low-speed transceiver switches to a fault tolerant mode on fault

detection and continues to maintain communications, NI-CAN provides a

special attribute, NC_ATTR_LOG_COMM_ERRS, which when set to NC_TRUE

enables the reporting of such warnings in the Read queue of the Network

interface rather than in the Status returned from a function call. The default

value of this attribute is NC_FALSE, which enables the reporting of

low-speed transceiver warnings in the Status returned from a function call.

Chapter 1 Introduction

© National Instruments Corporation 1-9 NI-CAN User Manual

Refer to the CAN network interface object attributes section in the NI-CAN

Programmer Reference Manual for details on how to use this attribute.

NI-CAN Hardware Overview

The National Instruments CAN hardware covered in this manual includes

the AT-CAN and AT-CAN/2 (Windows Me/9x only), PCI-CAN,

PCI-CAN/2, PCI-CAN/LS (low-speed CAN), PCI-CAN/LS2,

PCI-CAN/DS (dual-speed CAN), PCMCIA-CAN, PCMCIA-CAN/2,

PXI-8460 (low-speed: one or two port), PXI-8461 (high-speed: one or

two port) and PXI-8462 (dual-speed: port one high-speed, port two

low-speed).

The AT-CAN series boards are fully software configurable and compliant

with the Plug and Play ISA standard. With an AT-CAN or AT-CAN/2

board, you can make your PC AT-compatible computer communicate with

and control CAN devices.

The PCI-CAN, PCI-CAN/LS and PCI-CAN/DS series boards are

completely software configurable and compliant with the PCI Local Bus

Specification. With a PCI-CAN, PCI-CAN/LS or PCI-CAN/DS series

board, you can make your PC-compatible computer with PCI Local Bus

slots communicate with and control CAN devices.

The PCMCIA-CAN series cards are Type II PC Cards that are completely

software configurable and compliant with the PCMCIA standards for

16-bit PC Cards. With a PCMCIA-CAN series card, you can make your

PC-compatible notebook with PCMCIA sockets communicate with and

control CAN devices.

The PXI-8460, PXI-8461, and PXI-8462 are software configurable

and compliant with the PXI Specification and CompactPCI Specification.

With a PXI-846x board, you can make your PXI or CompactPCI chassis

communicate with and control CAN devices.

The CAN hardware supports a wide variety of transfer rates up to 1 Mb/s.

CAN interfacing is accomplished using the Intel 82527 CAN controller

chip. The high-speed CAN physical layer fully conforms to the ISO 11898

physical layer specification for CAN and is optically isolated to 500 V. The

low-speed CAN physical layer conforms to the ISO 11519-2 physical layer

specification for CAN and is also optically isolated to 500 V.

AT-CAN, PCI-CAN, and PXI-8461 series boards are available with two

physical connector types: DB-9 D-Sub and Combicon-style pluggable

Chapter 1 Introduction

NI-CAN User Manual 1-10 ni.com

screw terminals. Low-speed PCI-CAN/LS, PCI-CAN/DS, PXI-8460,

and PXI-8462 boards are available with DB-9 D-Sub connectors.

PCMCIA-CAN, PCMCIA-CAN/LS and PCMCIA-CAN/DS cables

include both a DB-9 D-Sub and a pluggable screw terminal.

The CAN physical layer on AT-CAN, PCI-CAN and PXI-846x series cards

can be powered either internally (from the card) or externally (from the bus

cable power). The power source for the CAN physical layer for each port is

configured with a jumper.

There are four types of cables available for the PCMCIA-CAN cards:

1. PCMCIA-CAN bus powered transceiver cables. The CAN physical

layer is powered externally (from the bus cable power).

2. PCMCIA-CAN internally powered transceiver cables. The CAN

physical layer is powered internally (from the card).

3. PCMCIA-CAN/LS cables. The low-speed CAN physical layer and the

V-BAT pin of the low-speed transceiver are powered internally.

This cable also requires that only the V-, CAN_L and CAN_H be

connected to the bus.

4. PCMCIA-CAN/DS cables. The high-speed port (port 1) physical layer

is powered internally. The low-speed port (port 2) physical layer is

identical to the PCMCIA-CAN/LS cable.

The PXI-846x, PCI-CAN and AT-CAN series boards use the Real-Time

System Integration (RTSI) bus to solve the problem of synchronizing

several functions across multiple boards to a common trigger or timing

event. For PCI-CAN and AT-CAN, the RTSI bus consists of the National

Instruments RTSI bus interface and ribbon cable to route timing and trigger

signals between the CAN hardware and National Instruments DAQ, IMAQ,

or additional CAN hardware. For the PXI-846x, the RTSI bus is

implemented by using the National Instruments PXI trigger bus to route

timing and trigger signals between the CAN hardware and National

Instruments DAQ, IMAQ, or additional CAN hardware. Although the

PXI-846x series board with RTSI bus is available in a PXI chassis, there

important issues to consider when using it in a compactPCI chassis. Refer

to Appendix G, RTSI Bus, in this manual for detailed information about the

RTSI interface. Also see the RTSI Bus Overview and The RTSI Solution

sections later in this chapter.

All of the CAN hardware uses the Intel 386EX embedded processor to

implement time-critical features provided by the NI-CAN software. The

CAN hardware communicates with the NI-CAN driver through on-board

shared memory and an interrupt.

Chapter 1 Introduction

© National Instruments Corporation 1-11 NI-CAN User Manual

NI-CAN Software Overview

Independent Design
The NI-CAN Application Programming Interface (API), like most

National Instruments APIs, is largely independent of operating system

and programming language. You can use NI-CAN in a wide variety of

programming environments, including LabVIEW and C programming

environments such as LabWindows/CVI. Applications written for NI-CAN

are also portable across different operating systems, such as Windows

2000/NT and Windows Me/98/95.

In addition to being independent of operating system and programming

language, NI-CAN is designed to be largely independent of a specific

device network protocol. Device network independence means that where

possible, terminology specific to CAN alone is avoided so that the API can

be expanded later to support higher level protocols based on CAN.

Examples of such protocols include DeviceNet, Smart Distributed System

(SDS), and CANopen. Device network independence largely applies to

terminology such as function names, and in no way limits access to the

CAN network. For example, the function provided to read data from a CAN

frame is called ncRead, as opposed to a name specific to CAN, such as

ncReadCanFrame.

Object-Oriented Design
NI-CAN often uses object-oriented terminology and concepts.

Object-oriented terminology provides an excellent model for describing

device networks in terms that are easy to understand.

In object-oriented terminology, the term class describes a classification of

an object, and the term instance refers to a specific instance of that object.

The term object is generally used as a synonym for instance. For example,

NI-CAN defines a class called the CAN Network Interface Object, which

encapsulates any network interface port on a National Instruments CAN

hardware product. Specific instances of the CAN Network Interface Object

are referenced with names like CAN0 and CAN1. Each instance of a

particular class has attributes that define its externally visible qualities, as

well as methods that are used to perform actions. For example, each

instance of the CAN Network Interface Object has an attribute for the baud

rate (bits per second) used for communication, as well as a method used to

transmit CAN frames onto the network.

Chapter 1 Introduction

NI-CAN User Manual 1-12 ni.com

For more information on object-oriented and CAN terminology, refer to the

Glossary.

NI-CAN Object Hierarchy
The basic model of the NI-CAN software architecture is a hierarchical

collection of objects (instances), each of which has attributes and methods.

The hierarchy shows relationships between various objects. In general, a

given object in the hierarchy has an “is used to access” relationship with all

objects above it in the hierarchy.

As an example, consider a CAN device network in which the network

interface of a host computer is physically connected to two devices, a

pushbutton and an LED, as shown in Figure 1-3.

Figure 1-3. Simple CAN Device Network Application

The pushbutton device transmits the state of the button in a CAN data frame

with standard arbitration ID 13. The frame data consists of a single

byte—zero if the button is off, one if the button is on. For an NI-CAN

application to obtain the current state of the pushbutton, it transmits a CAN

remote frame with standard arbitration ID 13. The pushbutton device

responds to this remote transmission request by transmitting the button

state in its CAN data frame.

Network
Interface

User
Application

LED
Device

Pushbutton
Device

Arbitration ID 5
Data Frame

Arbitration ID 13
Data Frame

Arbitration ID 13
Remote Frame

Chapter 1 Introduction

© National Instruments Corporation 1-13 NI-CAN User Manual

The LED device expects to obtain the state of the LED from a CAN data

frame with standard arbitration ID 5. It expects the frame data to consist

of a single byte—zero to turn the light off, one to turn the light on.

Figure 1-4 shows how NI-CAN objects encapsulate access to this CAN

device network. The ovals in Figure 1-4 indicate NI-CAN objects, and

the dotted lines indicate what each object encapsulates.

Figure 1-4. Applying NI-CAN Objects to the Example in Figure 1-3

The CAN Network Interface Object encapsulates the entire CAN network

interface. Its attributes configure settings that apply to the network interface

as a whole. For example, the CAN Network Interface Object contains an

attribute you can use to set the baud rate that the network interface hardware

uses for communication. You can also use the CAN Network Interface

Object to communicate on the CAN device network. For example, you can

use the write function to transmit a CAN remote frame to the pushbutton

device, then use the read function to retrieve the resulting CAN data frame.

Because the CAN Network Interface Object provides direct access to the

Network
Interface

User
Application

LED
Device

Pushbutton
Device

Arbitration ID 5
Data Frame

Arbitration ID 13
Data Frame

Arbitration ID 13
Remote Frame

CAN Network
Interface Object

CAN Object
for Arbitration

ID 5

CAN Object
for Arbitration

ID 13

Chapter 1 Introduction

NI-CAN User Manual 1-14 ni.com

network interface, the write and read functions require all information

about the CAN frame to be specified, including arbitration ID, whether

the frame is a CAN data frame or a CAN remote frame, the number of data

bytes, and the frame data (assuming a CAN data frame).

The CAN Object encapsulates a specific arbitration ID, along with its data.

In addition to providing the ability to transmit and receive frames for a

specific arbitration ID, CAN Objects also provide various forms of

background access. For example, you can configure a CAN Object for

arbitration ID 13 (the pushbutton) to automatically transmit a CAN remote

frame every 500 ms, and to store the data of the resulting CAN data frame

for later retrieval. After the CAN Object is configured in this manner, you

can use the read function to obtain a single data byte that holds the most

recent state of the pushbutton.

NI-CAN Software Components
The following section highlights important components of the NI-CAN

software, and describes the function of each component.

NI-CAN Driver and Utilities

• A documentation file, readme.txt, contains important information

about the NI-CAN software and a description of any new features.

Before you use the software, read this file for the most recent

information.

• A 32-bit, multitasking aware device driver is used to interface with

National Instruments CAN hardware. Under Windows Me/98/95, this

is a dynamically loadable, Plug and Play aware virtual device driver

(VxD). Under Windows 2000/NT, this is a native Windows 2000/NT

kernel driver.

• A Win32 dynamic link library, nican.dll, acts as the interface

between all CAN applications and the NI-CAN device driver.

• The NI-CAN Configuration utility is used to modify the configuration

of the NI-CAN software. Under Windows Me/98/95, this utility

is integrated into the Windows Device Manager. Under

Windows 2000/NT, this utility is a control panel application.

• The NI-CAN Diagnostic utility is used to verify that the CAN

hardware and software have been installed properly.

• The NI-CAN Remote Configuration utility is used to configure and

test NI-CAN software on a remote LabVIEW Real-Time system. This

utility communicates with a LabVIEW Real-Time (RT) System

(PXI chassis) using TCP/IP (Ethernet). The utility is used to configure

Chapter 1 Introduction

© National Instruments Corporation 1-15 NI-CAN User Manual

the NI-CAN software and verify that the CAN hardware and software

have been installed properly. This utility is used only for LabVIEW RT

systems. To configure and diagnose NI-CAN installations on

Windows, use the NI-CAN Configuration utility and NI-CAN

Diagnostic utility.

Firmware Image Files
All National Instruments CAN hardware products contain an on-board

microprocessor. This microprocessor is used so that all time-critical aspects

of the NI-CAN software can be executed separately from your Windows

application. The firmware image which runs on the on-board

microprocessor, nican.nfw, is loaded and executed automatically when

your NI-CAN application starts.

Language Interface Files

• A documentation file, readme.txt, contains information about the

NI-CAN language interface files.

• A 32-bit C language include file, nican.h, contains NI-CAN function

prototypes, host data types, and various predefined constants.

• A 32-bit C language interface file, nicanmsc.lib, is used by

Microsoft C/C++ applications to access the NI-CAN DLL.

• A 32-bit C language interface file, nicanbor.lib, is used by Borland

C/C++ (5.0 or greater) applications to access the NI-CAN DLL.

• A 32-bit C language interface file, nican.lib, is used by

LabWindows/CVI applications to access the NI-CAN DLL. This file

is installed in your LabWindows/CVI environment.

• NI-CAN function panels for LabWindows/CVI (nican.fp) enable

you to develop a CAN application with LabWindows/CVI. These

function panels are installed in your LabWindows/CVI environment.

• A 32-bit LabVIEW function library, nican.llb, is used by LabVIEW

applications to access the NI-CAN DLL. This library and the

associated palettes are installed in your LabVIEW environment.

Application Examples
The NI-CAN software includes several sample applications. For a

description of the sample application files, refer to Chapter 4, Application

Examples.

Chapter 1 Introduction

NI-CAN User Manual 1-16 ni.com

Interaction of Software Components with Your
Application
Figure 1-5 shows the interaction between your application and the NI-CAN

software components.

Figure 1-5. Interaction of NI-CAN Software Components

RTSI Bus Overview

RTSI is an acronym for Real-Time System Integration. It is the National

Instruments timing bus that connects CAN and DAQ boards directly. This

is done via connectors on top of the PCI-CAN and AT-CAN series boards,

and the PXI trigger bus on the PXI-846x series boards, for precise

synchronization of functions.

The RTSI Solution
A common problem with interface boards is that you cannot easily

synchronize several functions across multiple boards to a common trigger

or timing event. CAN boards use the RTSI bus to solve this problem.

For PCI-CAN and AT-CAN series boards, the RTSI bus consists of

connecting the National Instruments RTSI bus interface with RTSI ribbon

cable to route timing and trigger signals between the CAN board and other

nican.dll

User Mode

Kernel Mode

NI-CAN Device Driver

CAN Hardware

nican.nfw

NI-CAN Language Interface

Your Application

Chapter 1 Introduction

© National Instruments Corporation 1-17 NI-CAN User Manual

National Instruments RTSI-equipped hardware. Refer to RTSI Bus,

Appendix G in this manual, for detailed information about the PCI-CAN

and AT-CAN series RTSI interfaces.

For the PXI-846x series CAN boards, the RTSI bus consists of using the

National Instruments PXI trigger bus to route timing and trigger signals

between the PXI-846x series board and other National Instruments

RTSI-equipped PXI boards. Regarding the RTSI interface on your

PXI-846x series board, there are important issues to consider when using

it in a CompactPCI chassis. Refer to RTSI Bus, Appendix G in this manual,

for detailed information about the PXI-846x series RTSI interface.

The RTSI bus allows you to synchronize a CAN board with multiple

National Instruments DAQ, IMAQ, or additional CAN boards in your

computer. The RTSI bus can also synchronize CAN bus events between

multiple CAN boards. The trigger lines on the RTSI bus provide a flexible

interconnection scheme between CAN boards as well as between National

Instruments DAQ, IMAQ, and CAN boards.

Synchronizing with NI-DAQ
Recent advances in test applications, in the automotive industry for

example, have demanded tighter integration of DAQ and CAN

measurements. The physical quantity being measured by DAQ and CAN

devices must be done close together (synchronized in time) to correlate the

data. This synchronization can be done in software, but the latency of the

operating system introduces delays that may not be acceptable for some test

applications. National Instruments CAN DAQ boards are equipped with an

RTSI bus that allows routing of timing/trigger signals between them. In a

system coupled using the RTSI bus, a CAN or DAQ board can be the

Master driving the timing/trigger signals, while other DAQ or CAN boards

are Slaves to this timing signal and base their actions on this signal.

Because the RTSI timing signals are handled in hardware, the host software

running on the PC does not interact in the acquisition or transmission (other

than retrieving the data when it has being acquired or writing new data).

Before using RTSI between CAN and DAQ, you must decide which board

to use as the Master. NI-CAN software allows easy configuration of the

Network Interface or CAN Objects as a Master or Slave. Note that both

configurations can exist on the same board, but not on the same object.

The software attribute that configures the object as a Master or Slave is the

RTSI Mode. The following RTSI Modes are available in NI-CAN:

• Disable RTSI

Chapter 1 Introduction

NI-CAN User Manual 1-18 ni.com

• On RTSI Input—Transmit CAN Frame

• On RTSI Input—Timestamp RTSI event

• RTSI Output on Receiving CAN Frame

• RTSI Output on Transmitting CAN Frame

• RTSI Output on ncAction call

The second and third modes listed above configure the object (Network

Interface or CAN Object) as a Slave that takes an action on the RTSI signal.

The last three modes configure the object (Network Interface or CAN

Object) as a Master.

For more information on these modes, refer to the NI-CAN Programmer

Reference Manual. For information on how to access examples in both

LabVIEW and C/C++ that use RTSI, refer to Chapter 4, Application

Examples.

© National Instruments Corporation 2-1 NI-CAN User Manual

2
Developing Your Application

This chapter explains how to develop an application program using the

NI-CAN functions.

Choosing Your Programming Method

Choosing a Method to Access the NI-CAN Software
Applications can access the NI-CAN dynamic link library (nican.dll)

either by using an NI-CAN language interface or by direct entry access.

(LabVIEW) Function Library
For applications written in LabVIEW (5.1 or later), the NI-CAN function

library for LabVIEW (nican.llb) provides a LabVIEW function to

access each NI-CAN function easily.

For a description of each NI-CAN function for LabVIEW, refer to the

NI-CAN Programmer Reference Manual.

LabVIEW Real-Time (RT)

NI-CAN applications developed with LabVIEW RT (6.0.3 or later) provide

greater determinism than a Windows environment can guarantee.

LabVIEW RT combines the user-friendliness of LabVIEW with the power

of real-time systems, so you can use graphical programming to create

deterministic applications. Using a host PC or PXI system running a

Windows operating system, you can create LabVIEW RT Virtual

Instruments (VIs) by using the same NI-CAN function library

(nican.llb) you use to create NI-CAN VIs in LabVIEW for Windows.

The host PC is used to download applications to an RT Series device, such

as a PXI controller running LabVIEW RT. VIs downloaded to the RT

device run in real time. Refer to the LabVIEW Real-Time Help, available by

selecting Help»LabVIEW Real-Time Help from the LabVIEW RT

development environment for more information.

Chapter 2 Developing Your Application

NI-CAN User Manual 2-2 ni.com

C/C++ Language Interfaces
You can use an NI-CAN C language interface if your application is written

in Microsoft Visual C/C++ (5.0 or later), Borland C/C++ (5.0 or later),

or LabWindows/CVI (4.0 or later) with Microsoft C. For other

programming languages or development environments, you must access

nican.dll directly.

To use a C/C++ language interface, include the nican.h header file in your

code, then link the appropriate NI-CAN language interface file with your

application. You can then call the NI-CAN functions without any extra

effort.

For C applications (files with .c extension), include nican.h by adding

the following line to the beginning of your code:

#include "nican.h"

For C++ applications (files with .cpp extension), include nican.h by

adding the following lines to the beginning of your code:

#define _cplusplus

#include "nican.h"

The _cplusplus define allows nican.h to properly handle the transition

from C++ to the C language NI-CAN functions.

For Microsoft Visual C++ (5.0 or later), link your application with the

NI-CAN language interface for Microsoft C/C++, nicanmsc.lib.

For Borland C/C++ (5.0 or later), link your application with the NI-CAN

language interface for Borland C/C++, nicanbor.lib. For Borland

C/C++ 4.5, you must use direct entry access for NI-CAN.

For LabWindows/CVI, your application is linked with the NI-CAN

language interface for LabWindows/CVI, nican.lib. This library is

installed automatically based on the installed compatible compiler.

For detailed information on how to compile and link your NI-CAN

application, refer to the readme.txt file in the NI-CAN examples

directory.

Chapter 2 Developing Your Application

© National Instruments Corporation 2-3 NI-CAN User Manual

Direct Entry Access
You can directly access nican.dll from any programming environment

that allows you to request addresses of functions that a DLL exports.

To use direct entry access, you must first load nican.dll. The following

C language code fragment illustrates how to call the Win32 LoadLibrary

function and check for an error:

#include <windows.h>

#include "nican.h"

HINSTANCE NicanLib = NULL;

NicanLib=LoadLibrary("nican.dll");

if (NicanLib == NULL) {

 return FALSE;

}

Next, your application must use the Win32 GetProcAddress function to

get the addresses of the NI-CAN functions your application needs to use.

For each NI-CAN function used by your application, you must define a

direct entry prototype. For the prototypes for each function exported by

nican.dll, refer to the NI-CAN Programmer Reference Manual. The

following code fragment illustrates how to get the addresses of the

ncOpenObject, ncCloseObject, and ncRead functions:

static NCTYPE_STATUS (_NCFUNC_ *PncOpenObject)

(NCTYPE_STRING ObjName,

NCTYPE_OBJH_P ObjHandlePtr);

static NCTYPE_STATUS (_NCFUNC_ *PncCloseObject)

(NCTYPE_OBJH ObjHandle);

static NCTYPE_STATUS (_NCFUNC_ *PncRead)

(NCTYPE_OBJH ObjHandle, NCTYPE_UINT32 DataSize,

NCTYPE_ANY_P DataPtr);

PncOpenObject = (NCTYPE_STATUS (_NCFUNC_ *)

(NCTYPE_STRING, NCTYPE_OBJH_P))

GetProcAddress(NicanLib, (LPCSTR)"ncOpenObject");

PncCloseObject = (NCTYPE_STATUS (_NCFUNC_ *)

(NCTYPE_OBJH))

GetProcAddress(NicanLib, (LPCSTR)"ncCloseObject");

PncRead = (NCTYPE_STATUS (_NCFUNC_ *)

(NCTYPE_OBJH, NCTYPE_UINT32, NCTYPE_ANY_P))

GetProcAddress(NicanLib, (LPCSTR)"ncRead");

Chapter 2 Developing Your Application

NI-CAN User Manual 2-4 ni.com

If GetProcAddress fails, it returns a NULL pointer. The following code

fragment illustrates how to verify that none of the calls to

GetProcAddress failed:

if ((PncOpenObject == NULL) ||

(PncCloseObject == NULL) ||

(PncRead == NULL)) {

FreeLibrary(NicanLib);

printf("GetProcAddress failed");

}

Your application needs to de-reference the pointer to access an NI-CAN

function, as illustrated by the following code:

NCTYPE_STATUS status;

NCTYPE_OBJH MyObjh;

status = (*PncOpenObject) ("CAN0", &MyObjh);

if (status < 0) {

 printf("ncOpenObject failed");

}

Before exiting your application, you need to free nican.dll with the

following command:

FreeLibrary(NicanLib);

For more information on direct entry, refer to the Microsoft Win32 SDK

(Software Development Kit) online help.

Choosing Which NI-CAN Objects to Use
An application written for NI-CAN communicates on the network by using

various objects. Which NI-CAN objects to use depends largely on the

needs of your application. The following sections discuss the objects

provided by NI-CAN, and reasons why you might use each class of object.

Using CAN Network Interface Objects
The CAN Network Interface Object encapsulates a physical interface to a

CAN network, usually a CAN port on an AT, PCI, PCMCIA or PXI

interface.

You use the CAN Network Interface Object to read and write complete

CAN frames. As a CAN frame arrives from over the network, it can be

placed into the read queue of the CAN Network Interface Object. You

can retrieve CAN frames from this read queue using the ncRead or

ncReadMult function. For CAN Network Interface Objects, the read

Chapter 2 Developing Your Application

© National Instruments Corporation 2-5 NI-CAN User Manual

functions provide a timestamp of when the frame was received, the

arbitration ID of the frame, the type of frame (data or RTSI event), the data

length, and the data bytes. You can also use the CAN Network Interface

Object to write CAN frames using the ncWrite function.

Some possible uses for the CAN Network Interface Object include the

following:

• You can use the read queue to log all CAN frames transferred across

the network. This log is useful when you need to view preceding CAN

traffic to verify that all CAN devices are functioning properly.

• You can use the write queue to transmit a sequence of CAN frames in

quick succession. This is useful for applications in which you need to

simulate a specific sequence of CAN frames to verify proper device

operation.

• You can read and write CAN frames for access to configuration

settings within a device. Because such settings generally are not

accessed during normal device operation, a dedicated CAN Object

is not appropriate.

• For higher level protocols based on CAN, you can use sequences of

write/read transactions to initialize communication with a device. In

these protocols, specific sequences of CAN frames often need to be

exchanged before you can access the data from a device. In such cases,

you can use the CAN Network Interface Object to set up

communication, then use CAN Objects for actual data transfer with the

device.

In general, you use CAN Network Interface Objects for situations in which

you need to transfer arbitrary CAN frames.

Using CAN Objects
When a network frame is transmitted on a CAN based network, it always

begins with what is called the arbitration ID. This arbitration ID is

primarily used for collision resolution when more than one frame is

transmitted simultaneously, but you can also use it as a simple mechanism

to identify data. The CAN Object encapsulates a specific CAN arbitration

ID and its associated data.

Every CAN Object is always associated with a specific CAN Network

Interface Object, used to identify the physical interface on which the CAN

Object is located. Your application can use multiple CAN Objects in

conjunction with their associated CAN Network Interface Object.

Chapter 2 Developing Your Application

NI-CAN User Manual 2-6 ni.com

The CAN Object provides high level access to a specific arbitration ID. You

can configure each CAN Object for different forms of background access.

For example, you can configure a CAN Object to transmit a data frame

every 100 milliseconds, or to periodically poll for data by transmitting a

remote frame and receiving the data frame response. The arbitration ID,

direction of data transfer, data length, and when data transfer occurs

(periodic or unsolicited) are all preconfigured for the CAN Object. When

you have configured and opened the CAN Object, data transfer is handled

in the background using read and write queues. For example, if the CAN

Object periodically polls for data, the NI-CAN driver automatically

handles the periodic transmission of remote frames, and stores incoming

data in the read queue of the CAN Object for later retrieval by the ncRead

function. For CAN Objects that receive data frames, the ncRead function

provides a timestamp of when the data frame arrived, and the data bytes

of the frame. For CAN Objects that transmit data frames, the ncWrite

function provides the outgoing data bytes.

Some possible uses for CAN Objects include the following:

• You can configure a CAN Object to periodically transmit a data frame

for a specific arbitration ID. The CAN Object transmits the same data

bytes repetitively until different data is provided using ncWrite. This

configuration is useful for simulation of a device that periodically

transmits its data, such as simulation of an automotive sensor. This

configuration is also useful for devices that expect to periodically

receive data for a particular arbitration ID to respond with data using

a different arbitration ID, such as a device containing analog inputs

and outputs.

• You can configure a CAN Object to watch for unsolicited data frames

received for its arbitration ID, then store that data in the CAN Object’s

read queue. A watchdog timeout is provided to ensure that incoming

data is received periodically. This configuration is useful when you

want to apply a timeout to data received for a specific arbitration ID

and store that data in a dedicated queue. If you do not need to apply

a timeout for a given arbitration ID, it is preferable to use the CAN

Network Interface Object to receive that data.

• You can configure a CAN Object to periodically poll for data by

transmitting a remote frame and receiving the data frame response.

This configuration is useful for communication with devices that

require a remote frame to transmit their data.

Chapter 2 Developing Your Application

© National Instruments Corporation 2-7 NI-CAN User Manual

• You can configure a CAN Object to transmit a data frame whenever

it receives a remote frame for its arbitration ID. You can use this

configuration to simulate a device which responds to remote frames.

In general, you use CAN Objects for data transfer for a specific arbitration

ID, especially when that data transfer needs to occur periodically.

Programming Model for NI-CAN Applications

The following steps demonstrate how to use the NI-CAN functions in your

application. The steps are shown in Figure 2-1 in flowchart form.

Chapter 2 Developing Your Application

NI-CAN User Manual 2-8 ni.com

Figure 2-1. General Program Steps Using NI-CAN Functions

START

END

Communicate Using Objects
• Wait for Data Available
 (ncWaitForState,
 ncCreateNotification)
• Read Data (ncRead)
• Write Data (ncwrite)
and so on

Configure Object

Yes

Are All
Objects Configured?

No

Open Object (ncOpenObject)

Yes

Are All
Objects Open?

Start Communication (ncAction)

No

Close Object (ncCloseObject)

Are All
Objects Closed?

No

Yes

Yes

Finished
CAN Programming?

No

Chapter 2 Developing Your Application

© National Instruments Corporation 2-9 NI-CAN User Manual

Step 1. Configure Objects
Prior to opening the objects used in your application, you must configure

the objects with their initial attribute settings. Each object is configured

within your application by calling the ncConfig function. This function

takes the name of the object to configure, along with a list of configuration

attribute settings.

Step 2. Open Objects
You must call the ncOpenObject function to open each object you use

within your application.

The ncOpenObject function returns a handle for use in all subsequent

NI-CAN calls for that object. When you are using the LabVIEW function

library, this handle is passed through the upper left and right terminals of

each NI-CAN function used after the open.

Step 3. Start Communication
You must start communication on the CAN network before you can use

your objects to transfer data.

If you configured your CAN Network Interface Object to start on open, that

object and all of its higher level CAN Objects are started automatically by

the ncOpenObject function, so nothing special is required for this step.

If you disabled the start-on-open attribute, when your application is ready

to start communication, use the CAN Network Interface Object to call the

ncAction function with the Opcode parameter set to NC_OP_START. This

call is often useful when you want to use ncWrite to place outgoing data

in write queues prior to starting communication. This call is also useful in

high bus load situations, because it is more efficient to start communication

after all objects have been opened.

If you want to reset the CAN hardware completely to clear a pending Error

Passive state, you can use the CAN Network Interface Object to call the

ncAction function with the Opcode parameter set to NC_OP_RESET. This

reset must be done prior to starting communication.

Step 4. Communicate Using Objects
After you open your objects and start communication, you are ready to

transfer data on the CAN network. The manner in which data is transferred

depends on the configuration of the objects you are using. For this example,

assume that you are communicating with a CAN device that periodically

Chapter 2 Developing Your Application

NI-CAN User Manual 2-10 ni.com

transmits a data frame. To receive this data, assume that a CAN Object is

configured to watch for data frames received for its arbitration ID and store

that data in its read queue.

Step 4a. Wait for Available Data

To wait for the arrival of a data frame from the device, you can call

ncWaitForState with the DesiredState parameter set to

NC_ST_READ_AVAIL. The NC_ST_READ_AVAIL state tells you that data

for the CAN Object has been received from the network and placed into the

object’s read queue. Another way to wait for the NC_ST_READ_AVAIL state

is to call the ncCreateNotification function so you receive a callback

when the state occurs. For more information on ncWaitForState and

ncCreateNotification, refer to the NI-CAN Programmer Reference

Manual.

When receiving data from the device, if your only requirement is to

obtain the most recent data, you are not required to wait for the

NC_ST_READ_AVAIL state. If this is the case, you can set the read queue

length of the CAN Object to zero during configuration, so that it only holds

the most recent data bytes. Then you can use the ncRead function as

needed to obtain the most recent data bytes received.

Step 4b. Read Data

Read the data bytes using ncRead. For CAN Objects that receive data

frames, ncRead returns a timestamp of when the data was received,

followed by the actual data bytes (the number of which you configured

in step 1).

Steps 4a and 4b should be repeated for each data value you want to read

from the CAN device.

Step 5. Close Objects
When you are finished accessing the CAN devices, close all objects using

the ncCloseObject function before you exit your application.

Checking Status of Function Calls

Each NI-CAN function returns a value that indicates the status of the

function call. Your application should check this status after each NI-CAN

function call. The following sections describe the NI-CAN status, and how

you can check it in your application.

Chapter 2 Developing Your Application

© National Instruments Corporation 2-11 NI-CAN User Manual

Note The NI-CAN status format changed from version 1.4 to version 1.5. If you are

developing a new NI-CAN application, this change will not affect your development. If

you have an existing NI-CAN application that was developed prior to July 2001, you can

either 1.) run a utility to enable backward compatibility for NI-CAN status, or 2.) adapt

code to the current NI-CAN status. For more information, refer to the errors.txt in the

NI-CAN Installation directory.

Checking Status in LabVIEW
For applications written in LabVIEW, status checking is basically handled

automatically. For all NI-CAN functions, the lower left and right terminals

provide status information using LabVIEW Error Clusters. LabVIEW

Error Clusters are designed so that status information flows from one

function to the next, and function execution stops when an error occurs. For

more information, refer to the Error Handling section in the LabVIEW

online help.

The LabVIEW Error Clusters returned by NI-CAN functions use the same

format as other National Instruments products. You can wire Error out

from any NI-CAN function to the standard LabVIEW error functions, such

as Simple Error Handler. The message returned by Simple Error

Handler will describe the error, including possible solutions.

Table 2-1 summarizes NI-CAN’s use of each Error Cluster parameter.

Table 2-1. NI-CAN Error Cluster

Code Status Source Meaning

Negative True Name of function

where error

occurred

Error. Function did

not perform

expected behavior.

Positive False Name of function

where warning

occurred

Warning. Function

performed as

expected, but a

condition arose that

may require your

attention.

Zero False Empty string Success. Function

completed

successfully.

Chapter 2 Developing Your Application

NI-CAN User Manual 2-12 ni.com

Within your LabVIEW Block Diagram, wire the Error in and Error

out terminals of all NI-CAN functions together in succession. When an

error is detected in any NI-CAN function (status parameter true), all

subsequent NI-CAN functions are skipped except for ncClose. The

ncClose function executes regardless of whether the incoming status is

true or false. This ensures that all NI-CAN objects are closed properly when

execution stops due to an error.

When a warning occurs in an NI-CAN function, execution proceeds

normally. To detect suspected warnings in your application, you can write

code in your block diagram to examine the code parameter, or you can use

the Probe Data tool on an Error out terminal during execution.

Checking Status in C or C++
For applications written in C or C++, each NI-CAN function returns a

status code as a signed 32-bit integer. Table 2-2 summarizes NI-CAN’s use

of this status:

Your application code should check the status returned from every NI-CAN

function. If an error is detected, you should close all NI-CAN handles, then

exit the application. If a warning is detected, you can display a message for

debugging purposes, or simply ignore the warning.

To assist with debugging, NI-CAN provides a function you can use to

display a message that describes the error/warning, including possible

solutions. This ncStatusToString function takes a status code as

input, then returns a descriptive string. For more information on

ncStatusToString, refer to the NI-CAN Programmer Reference

Manual.

Table 2-2. NI-CAN Status Code

Status Code Meaning

Negative Error. Function did not perform expected behavior.

Positive Warning. Function performed as expected, but a

condition arose that may require your attention.

Zero Success. Function completed successfully.

Chapter 2 Developing Your Application

© National Instruments Corporation 2-13 NI-CAN User Manual

The following piece of code shows an example of handling NI-CAN status

during application debugging:

status= ncOpenObject (“CAN0”, &MyObjHandle);

PrintStat (status, “ncOpen CAN0”);

where the function PrintStat has been defined at the top of the program

as:

void PrintStat(NCTYPE_STATUS status, char *source)

{

char statusString[512];

if(status != 0)

{

ncStatusToString(status, sizeof(statusString),

StatusString);

printf(“\n%s\nSource = %s\n”, statusString,

source);

if (status < 0)

{
ncCloseObject(MyObjHandle);
exit(1);

}

}

}

In some situations, you may want to check for specific errors in your code.

For example, when ncWaitForState times out, you may want to continue

communication, rather than exit the application. To check for specific

errors, use the constants defined in nican.h. These constants have the

same names as described in the NI-CAN Programmer Reference Manual.

For example, to check for a function timeout:

if (status == CanErrFunctionTimeout)

© National Instruments Corporation 3-1 NI-CAN User Manual

3
NI-CAN Programming
Techniques

This chapter describes techniques for using the NI-CAN functions in your

application.

For more detailed information about each NI-CAN function, refer to the

NI-CAN Programmer Reference Manual.

Using Queues

To maintain an ordered history of data transfers, NI-CAN supports the use

of queues, also known as FIFO (first-in-first-out) buffers. The basic

behavior of such queues is common to all NI-CAN objects.

There are two basic types of NI-CAN queues: the read queue and the write

queue. NI-CAN uses the read queue to store incoming network data items

in the order they arrive. You access the read queue using ncRead to obtain

the data. NI-CAN uses the write queue to transmit network frames one at a

time using the network interface hardware. You access the write queue

using ncWrite to store network data items for transmission.

State Transitions
The NC_ST_READ_AVAIL state transitions from false to true when NI-CAN

places a new data item into an empty read queue, and remains true until you

read the last data item from the queue and the queue is empty.

The NC_ST_READ_MULT state transitions from false to true when the

number of items in a queue exceeds a threshold. The threshold is set using

the NC_ATTR_NOTIFY_MULT_LEN attribute. The NC_ST_READ_MULT state

and ncReadMult function are useful in high-traffic networks in which data

items arrive quickly.

The NC_ST_WRITE_SUCCESS state transitions from false to true when the

write queue is empty and NI-CAN has successfully transmitted the last data

item onto the network. The NC_ST_WRITE_SUCCESS state remains true

until you write another data item into the write queue.

Chapter 3 NI-CAN Programming Techniques

NI-CAN User Manual 3-2 ni.com

Empty Queues
For both read and write queues, the behavior for reading an empty queue is

similar. When you read an empty queue, the previous data item is returned

again. For example, if you call ncReadwhen NC_ST_READ_AVAIL is false,

the data from the previous call to ncRead is returned again, along with the

CanWarnOldData warning. If no data item has yet arrived for the read

queue, a default data item is returned, which consists of all zeros. You

should generally wait for NC_ST_READ_AVAIL prior to the first call to

ncRead.

Full Queues
For both read and write queues, the behavior for writing a full queue

is similar. When you write a full queue, NI-CAN returns the

CanErrOverflowWrite error codes. For example, if you write too many

data items to a write queue, the ncWrite function eventually returns the

overflow error.

Disabling Queues
If you do not need a complete history of all data items, you can disable the

read queue and/or write queue by setting its length to zero. Zero length

queues are typically used only with CAN objects, not the CAN Network

Interface Object. Using zero length queues generally saves memory, and

often results in better performance. When a new data item arrives for a zero

length queue, it overwrites the previous item without indicating an

overflow. The NC_ST_READ_AVAIL and NC_ST_WRITE_SUCCESS states

still behave as usual, but you can ignore them if you want only the most

recent data. For example, when NI-CAN writes a new data item to the read

buffer, the NC_ST_READ_AVAIL state becomes true until the data item is

read. If you only want the most recent data, you can ignore the

NC_ST_READ_AVAIL state, as well as the CanWarnOldData warning

returned by ncRead.

Using the CAN Network Interface Object
with CAN Objects

For many applications, it is desirable to use a CAN Network Interface

Object in conjunction with higher level CAN Objects. For example, you

can use CAN objects to transmit data or remote frames periodically, and

use the CAN Network Interface Object to receive all incoming frames. For

more information on the different uses of NI-CAN objects, refer to the

Chapter 3 NI-CAN Programming Techniques

© National Instruments Corporation 3-3 NI-CAN User Manual

Choosing Which NI-CAN Objects to Use section in Chapter 2, Developing

Your Application.

When one or more CAN Objects are open, the CAN Network Interface

Object cannot receive frames which would normally be handled by the

CAN Objects. The flowchart in Figure 3-1 shows the steps performed

by NI-CAN when a CAN frame is received.

Figure 3-1. Flowchart for CAN Frame Reception

Yes

No

Arbitration ID

Handled by an Open

CAN Object?

No

Yes

Standard Extended

Data
Frame?

Standard or
Extended Frame?

No

Standard

Comparator Disabled

(NC_CAN_ARBID_NONE)?

No

Extended

Comparator Disabled

(NC_CAN_ARBID_NONE)?

Masked

Arbitration ID

Equal to Standard

Comparator

Masked

Arbitration ID

Equal to Extended

Comparator

Yes

Yes

Yes

Frame Received

Place Frame Into Read Queue of
CAN Network Interface Object

CAN Object Uses Frame

CAN Network Interface Object

Frame Ignored

Frame Ignored

Apply Extended MaskApply Standard Mask

NoNo
Frame Ignored

Frame Ignored

Frame Ignored

Chapter 3 NI-CAN Programming Techniques

NI-CAN User Manual 3-4 ni.com

The decisions in Figure 3-1 are generally performed by the on-board CAN

communications controller chip. Nevertheless, if you intend to use CAN

Objects as the sole means of accessing the CAN bus, it is best to disable all

frame reception in the CAN Network Interface Object by setting the

comparator attributes to NC_CAN_ARBID_NONE (hex CFFFFFFF). By

doing this, the CAN communications controller chip is best able to filter out

all incoming frames except those handled by CAN Objects.

Detecting State Changes

You can detect state changes for an object using one of the following

schemes:

• Call ncWaitForState to wait for one or more states to occur.

• Use ncCreateNotification in C/C++ to register a callback for one

or more states.

• Use ncCreateOccurrence in LabVIEW to create an occurrence for

one or more states.

• Call ncGetAttribute to get the NC_ATTR_STATE attribute.

Use the ncWaitForState function when your application must wait for a

specific state before proceeding. For example, if you call ncWrite to write

a frame, and your application cannot proceed until the frame is successfully

transmitted, you can call ncWaitForState to wait for

NC_ST_WRITE_SUCCESS.

Use the ncCreateNotification function in C/C++ when your

application must handle a specific state, but can perform other processing

while waiting for that state to occur. The ncCreateNotification

function registers a callback function, which is invoked when the desired

state occurs. For example, a callback function for NC_ST_READ_AVAIL can

call ncRead and place the resulting data in a buffer. Your application can

then perform any tasks desired, and process the CAN data only as needed.

Use the ncCreateOccurrence function in LabVIEW when your

application must handle a specific state, but can perform other processing

while waiting for that state to occur. The ncCreateOccurrence function

creates a LabVIEW occurrence, which is set when the desired state occurs.

Occurrences are the mechanism used in LabVIEW to provide

multithreaded execution.

Use the ncGetAttribute function when you need to determine the

current state of an object.

© National Instruments Corporation 4-1 NI-CAN User Manual

4
Application Examples

This chapter describes how to explore the sample applications provided

with your NI-CAN software.

LabVIEW Examples

The NI-CAN examples for LabVIEW are located in the

LabVIEW\examples\nican folder.

For LabVIEW 6.0, you can access the NI-CAN example information at

Help»Examples»Other NI Products»Controller Area Network (CAN).

Other versions of LabVIEW include similar help.

The help describes each example and includes a link you can use to open

the VI.

C/C++ Examples

The NI-CAN examples for C/C++ are in the examples folder of your

NI-CAN directory. The default path is C:\Program Files\National

Instruments\NI-CAN\examples. These examples are also in the

CVI\samples\nican folder if you have CVI on your system.

The readme.txt file in the examples folder describes each example,

including the names of the associated files. You can build the examples

using LabWindows/CVI, Microsoft Visual C/C++, or Borland C/C++.

Other Programming Languages

Although the NI-CAN software does not include examples for other

programming languages, you may find assistance on the National

Instruments Web site, ni.com. For more information, see Appendix I,

Technical Support Resources, in this manual.

© National Instruments Corporation 5-1 NI-CAN User Manual

5
NI-CAN Configuration and
Diagnostic Utilities

This chapter describes the NI-CAN Configuration and Diagnostic utilities

you can use to configure and diagnose the objects of the NI-CAN software.

Overview

The Windows Me/98/95 NI-CAN Configuration utility is integrated into

the Windows Device Manager. The Windows 2000/NT NI-CAN

Configuration utility is integrated into the Windows 2000/NT Control

Panel. For each CAN interface in your system, you can use the NI-CAN

Configuration utility to configure each CAN port as a CAN Network

Interface Object. For example, you can configure the two ports of a

PCI-CAN/2 as CAN0 and CAN1.

You can use the NI-CAN Diagnostic utility, installed with your NI-CAN

software, to test the hardware and software installation. The utility verifies

that your hardware and software are functioning properly and that the

configuration of your CAN interfaces does not conflict with anything else

in your system.

Starting the NI-CAN Configuration Utility in
Windows Me/98/95

To start the NI-CAN Configuration utility on Windows Me/98/95, follow

these steps.

1. Double-click on the System icon in the Control Panel, which you can

open from the Settings selection of the Start menu.

2. Select the Device Manager tab in the System Properties dialog box

that appears.

3. Click on the View devices by type button at the top of the Device

Manager tab, and double-click on National Instruments CAN

Interfaces.

Chapter 5 NI-CAN Configuration and Diagnostic Utilities

NI-CAN User Manual 5-2 ni.com

4. In the list of installed interfaces immediately below National

Instruments CAN Interfaces, double-click on the particular interface

type you want to configure. If you have only one National Instruments

CAN interface in your computer, only one interface type appears in

the list. If an exclamation point or an X appears next to the interface,

there is a problem, and you should refer to the Problem Shown in

Device Manager section of Appendix A, Windows Me/98/95:

Troubleshooting and Common Questions, in this manual, to resolve

your problem before you continue. Use the Resources tab to provide

information about the hardware resources assigned to the CAN

interface, and use the Settings tab to assign a name to each CAN port.

Starting the NI-CAN Configuration Utility in
Windows 2000/NT

To start the NI-CAN Configuration utility on Windows 2000/NT, open

your Windows 2000/NT Control Panel and double-click on NI-CAN

Configuration.

Because you can use the NI-CAN Configuration utility to modify the

configuration of the NI-CAN kernel drivers, you must be logged on to

Windows 2000/NT as the Administrator to make any changes. If you

start the NI-CAN Configuration utility without Administrator

privileges, it runs in read-only mode; you can view the settings, but you

cannot make changes.

The main dialog box of the NI-CAN Configuration utility for

Windows 2000/NT contains a list of all National Instruments CAN

interfaces in your computer. For each CAN interface, the Resources button

opens a dialog box you can use to specify hardware resources for the CAN

interface, and the Settings button opens a dialog box you can use to assign

a name to each CAN port. Windows 2000 is fully Plug and Play, so the

resources are read-only. Therefore the Resources button is disabled in

Windows 2000.

After you have finished configuring your CAN interfaces, click on the

OK button to close the dialog box.

Chapter 5 NI-CAN Configuration and Diagnostic Utilities

© National Instruments Corporation 5-3 NI-CAN User Manual

Starting the NI-CAN Remote Configuration Utility for
LabVIEW RT

To start the NI-CAN Remote Configuration Utility, select Start»National

Instruments»NI-CAN»NI-CAN Remote Configuration.

Use the NI-CAN Remote Configuration Utility to configure and diagnose

CAN interfaces in a remote PXI chassis running LabVIEW RT. You run the

utility on your Windows machine, and it communicates over Ethernet to

configure the remote PXI chassis.

When you start the NI-CAN Remote Utility, the first dialog box prompts

you for the IP address (non-DHCP) or machine name (DHCP) of the

remote PXI chassis. If you do not know this information, you can select the

Launch MAX button to start Measurement and Automation Explorer

(MAX). You can use Remote Systems in MAX to find a remote machine’s

IP address and name.

After selecting OK in the initial dialog box, use the main dialog to

configure and diagnose CAN interfaces in a manner similar to the Windows

utilities. Use the Test All and Text One buttons to diagnose proper

installation and operation.

If you want to change the NI-CAN interface name associated with a port,

double-click on the port name. The resulting dialog box provides an

Interface Name drop-down box you can use to select CAN0, CAN1, and

so on. Changing the NI-CAN interface name is normally done only when

you have multiple cards in your system.

After you finish configuring your CAN interfaces, click on the Exit button

to close the utility.

Starting the NI-CAN Diagnostic Utility

To run the utility, select the NI-CAN Diagnostic item under

Start»Programs»National Instruments CAN»NI-CAN.

When you have started the NI-CAN Diagnostic utility, test your CAN

interfaces by clicking on the Test All button. You can also test one CAN

interface by highlighting it and clicking on the Test One button. If the

NI-CAN Diagnostic is successful, it puts a checkmark next to the interface

and changes its status from “Untested” to “Passed.” If the NI-CAN

Diagnostic fails, it puts an X next to the interface, and changes its status

Chapter 5 NI-CAN Configuration and Diagnostic Utilities

NI-CAN User Manual 5-4 ni.com

from “Untested” to “Failed.” Figure 5-1 shows the NI-CAN Diagnostic

utility after it has tested some CAN interfaces.

Figure 5-1. NI-CAN Diagnostic Utility after Testing

You can get details about any tested CAN interface by selecting the

interface and clicking the Details button. For each failed CAN interface,

select it and click the Details button to get a description of the failure.

Use that information and the information in Appendix A, Windows

Me/98/95: Troubleshooting and Common Questions, Appendix B,

Windows NT: Troubleshooting and Common Questions, or Appendix C,

Windows 2000: Troubleshooting and Common Questions, to troubleshoot

the problem. Troubleshooting information is also available in the online

help for the NI-CAN Diagnostic utility, which you can access by clicking

on the Help button.

© National Instruments Corporation A-1 NI-CAN User Manual

A
Windows Me/98/95:
Troubleshooting and
Common Questions

This appendix describes how to troubleshoot problems with the NI-CAN

software for Windows Me/98/95 and answers some common questions.

Troubleshooting Windows Device Manager Problems

The Windows Device Manager contains configuration information for all

of the CAN hardware it is aware of that is installed in your system. To start

the Windows Device Manager, double-click on the System icon under

Start»Settings»Control Panel. In the System Properties box that

appears, select theDeviceManager tab and click theView devices by type

radio button at the top of the tab.

If there is no National Instruments CAN Interfaces item, and you are

certain you have a CAN interface installed, refer to the No National

Instruments CAN Interfaces section of this appendix.

If the National Instruments CAN Interfaces item exists, but the CAN

interface you are looking for is not listed there, refer to the Missing CAN

Interface section of this appendix.

If the CAN interface you are looking for is listed, but has a circled X or

exclamation mark (!) over its icon, refer to the Problem Shown in Device

Manager section of this appendix.

No National Instruments CAN Interfaces
If you are certain you have a Plug and Play CAN interface installed, but

no National Instruments CAN Interfaces item appears in the Device

Manager, the interface is probably incorrectly listed under Other Devices.

Double-click on the Other Devices item in the Device Manager and, one

by one, remove each National Instruments CAN interface listed there by

selecting its name and then clicking the Remove button. After all of the

Appendix A Windows Me/98/95: Troubleshooting and Common Questions

NI-CAN User Manual A-2 ni.com

National Instruments CAN interfaces have been removed from Other

Devices, click the Refresh button. At this point, the system rescans the

installed hardware, and the CAN interface should show up under National

Instruments CAN Interfaces without any problems. If the problem

persists, contact National Instruments.

Missing CAN Interface
If the National Instruments CAN Interfaces item exists, but the CAN

interface you are looking for is not listed there, the CAN interface is not

properly installed. For National Instruments CAN hardware, this problem

indicates that the interface is not physically present in the system.

Problem Shown in Device Manager
If a CAN interface is not working properly, its icon has a circled X or

exclamation mark (!) overlaid on it, as shown in Figure A-1.

Figure A-1. CAN Interface That Is Not Working Properly

This problem can occur for several reasons. If you encounter this problem,

the Device Manager should list an error code that indicates why the

problem occurred. To see the error code for a particular interface, select the

name of the interface and click on the Properties button to go to the

General tab for that CAN interface. The Device Status section of the

General tab shows the error code. Locate the error code in the following

list to find out why your CAN interface is not working properly:

• Code 8—The NI-CAN software was incompletely installed. To solve

this problem, reinstall the NI-CAN software.

• Code 9—Windows Me/98/95 had a problem reading information from

the CAN interface. Contact National Instruments for assistance.

• Code 12—The CAN interface was not assigned a physical memory

range. If your computer does not have 8 KB of available memory,

Windows Me/98/95 might configure your CAN interface without a

physical memory assignment. The NI-CAN software cannot function

without 8 KB of physical memory. Another way to verify this problem

Appendix A Windows Me/98/95: Troubleshooting and Common Questions

© National Instruments Corporation A-3 NI-CAN User Manual

is to look at the Resource settings list on the Resources tab to verify

that the CAN interface was not assigned a Memory Range. To solve

this problem, free up an 8 KB Memory Range (such as D0000 to

D1FFF hex) that is being used by another device in the system.

• Code 15—The CAN interface was not assigned an Interrupt Request

level. If your computer does not have any available Interrupt Request

levels, Windows Me/98/95 might configure your CAN interface

without an Interrupt Request level. The NI-CAN software cannot

function without an Interrupt Request level. Another way to verify this

problem is to look at the Resource settings list on the Resources tab

to verify that the CAN interface was not assigned an Interrupt Request

level. To solve this problem, free up an Interrupt Request level that is

being used by another device in the system.

• Code 22—The CAN interface is disabled. To enable the CAN

interface, check the appropriate configuration checkbox in the Device

Usage section of the General tab.

• Code 24—The CAN interface is not present, or the Device Manager

is unaware that the CAN interface is present. To solve this problem,

select the interface in the Device Manager, and click on the Remove

button. Next, click the Refresh button. At this point, the system

rescans the installed hardware, and the CAN interface should show

up without any problems. If the problem persists, contact National

Instruments.

• Code 27—Windows Me/98/95 was unable to assign the CAN interface

any resources. To solve this problem, free up system resources by

disabling other unnecessary hardware so that enough resources are

available for the CAN interface. The resources required for a single

CAN interface are an Interrupt Request level and an 8 KB physical

Memory Range (such as D0000 to D1FFF hex).

Troubleshooting Diagnostic Utility Failures

The following sections explain common error messages generated by the

NI-CAN Diagnostic utility.

Memory Resource Conflict
This error occurs if the memory resource assigned to a CAN interface

conflicts with the memory resources being used by other devices in the

system. Resource conflicts typically occur when your system contains

legacy boards that use resources that have not been reserved properly with

the Device Manager. If a resource conflict exists, write down the memory

Appendix A Windows Me/98/95: Troubleshooting and Common Questions

NI-CAN User Manual A-4 ni.com

resource that caused the conflict and refer to the Microsoft Windows User’s

Guide for instructions on how to use the Device Manager to reserve

memory resources for legacy boards. After the conflict has been resolved,

run the NI-CAN Diagnostic utility again.

Interrupt Resource Conflict
This error occurs if the interrupt resource assigned to a CAN interface

conflicts with the interrupt resources being used by other devices in the

system. Resource conflicts typically occur when your system contains

legacy boards that use resources that have not been reserved properly with

the Device Manager. If a resource conflict exists, write down the interrupt

resource that caused the conflict and refer to the Microsoft Windows User’s

Guide for instructions on how to use the Device Manager to reserve

interrupt resources for legacy boards. After the conflict has been resolved,

run the NI-CAN Diagnostic utility again.

NI-CAN Software Problem Encountered
This error occurs if the NI-CAN Diagnostic utility detects that it is unable

to communicate correctly with the CAN hardware using the installed

NI-CAN software. If you get this error, shut down your computer, restart it,

and run the NI-CAN Diagnostic utility again. If the problem persists, try

reinstalling the NI-CAN software.

Missing CAN Interface
If a National Instruments CAN interface is physically installed in your

system, but is not listed in the NI-CAN Diagnostic utility, check the

Windows Device Manager to see if Windows Me/98/95 has detected the

hardware. For more information, refer to the Troubleshooting Windows

Device Manager Problems section, earlier in this appendix.

CAN Hardware Problem Encountered
This error occurs if the NI-CAN Diagnostic utility detects a defect in the

CAN hardware. If you get this error, write down the numeric code shown

with the error, and contact National Instruments. Depending on the cause

of the hardware failure, National Instruments may need to upgrade your

CAN interface.

Appendix A Windows Me/98/95: Troubleshooting and Common Questions

© National Instruments Corporation A-5 NI-CAN User Manual

Common Questions

What do I do if my CAN hardware is listed in the Windows Device

Manager with a circled X or exclamation point (!) overlaid on it?

Refer to the Problem Shown in Device Manager section of this appendix

for specific information about what might cause this problem. If you have

already completed the troubleshooting steps, contact National Instruments.

How can I determine which type of CAN hardware I have installed?

Run the NI-CAN Configuration utility. To run the utility, select Start»

Settings»Control Panel»System. Select the Device Manager tab in the

System Properties dialog box. Click on the View devices by type radio

button at the top of the sheet. If any CAN hardware is correctly installed, a

National Instruments CAN Interfaces icon appears in the list of device

types. Double-click this icon to see a list of installed CAN hardware.

How can I determine which version of the NI-CAN software I have

installed?

Run the NI-CAN Diagnostic utility. To run the utility, select NI-CAN

Diagnostics under Start»Programs»National Instruments»NI-CAN.

The NI-CAN Diagnostic utility displays information about the version

of the NI-CAN software currently installed.

What do I do if the NI-CAN Diagnostic utility fails with an error?

Refer to the Troubleshooting Diagnostic Utility Failures section of this

appendix for specific information about what might cause the NI-CAN

Diagnostic utility to fail. If you have already completed the troubleshooting

steps, contact National Instruments.

How many CAN interfaces can I configure for use with my NI-CAN

software for Windows Me/98/95?

The NI-CAN software for Windows Me/98/95 can be configured to

communicate with up to 10 CAN interfaces.

Are interrupts required for the NI-CAN software for

Windows Me/98/95?

Yes, one interrupt per interface is required.

Appendix A Windows Me/98/95: Troubleshooting and Common Questions

NI-CAN User Manual A-6 ni.com

How do I use an NI-CAN language interface?

For information about using NI-CAN language interfaces, refer to

Chapter 2, Developing Your Application.

How do I use NI-CAN from within LabVIEW?

For information about using NI-CAN from within LabVIEW, refer to

Chapter 2, Developing Your Application.

Why does the uninstall program leave some components installed?

The uninstall program removes only items that the installation program

installed. If you add anything to a directory that was created by the

installation program, the uninstall program does not delete that directory,

because the directory is not empty after the uninstallation. You will need

to remove any remaining components yourself.

© National Instruments Corporation B-1 NI-CAN User Manual

B
Windows NT:
Troubleshooting and Common
Questions

This appendix describes how to troubleshoot problems with the NI-CAN

software for Windows NT and answers some common questions.

Missing CAN Interface in the NI-CAN
Configuration Utility

The NI-CAN Configuration utility contains configuration information

for all of the CAN hardware it is aware of that is installed in your system.

To start the NI-CAN Configuration utility, double-click on NI-CAN

Configuration under Start»Settings»Control Panel.

If the CAN interface you are looking for is not listed under National

Instruments CAN Interfaces, the CAN interface is not properly installed.

For National Instruments CAN hardware, this problem indicates that the

interface is not physically present in the system. If the interface is firmly

plugged into its slot and the problem persists, contact National Instruments.

Troubleshooting Diagnostic Utility Failures

The following sections explain common error messages generated by the

NI-CAN Diagnostic utility.

No Resources Assigned
This error occurs if you have not assigned resources to the CAN interface.

Use the Resources button of the NI-CAN Configuration utility to select

valid resources for your CAN interface.

Appendix B Windows NT: Troubleshooting and Common Questions

NI-CAN User Manual B-2 ni.com

Memory Resource Conflict
This error occurs if the memory resource assigned to a CAN interface

conflicts with the memory resources being used by other devices in the

system. Resource conflicts typically occur when your system contains

legacy boards that use the resources you assigned using the NI-CAN

Configuration utility. If a resource conflict exists, use the Resources button

in the NI-CAN Configuration utility to assign a different memory resource

to the CAN interface. After the conflict has been resolved, run the NI-CAN

Diagnostic utility again.

Interrupt Resource Conflict
This error occurs if the interrupt resource assigned to a CAN interface

conflicts with the interrupt resources being used by other devices in the

system. Resource conflicts typically occur when your system contains

legacy boards that use the resources you assigned using the NI-CAN

Configuration utility. If a resource conflict exists, use the Resources button

in the NI-CAN Configuration utility to assign a different interrupt resource

to the CAN interface. After the conflict has been resolved, run the NI-CAN

Diagnostic utility again.

NI-CAN Software Problem Encountered
This error occurs if the NI-CAN Diagnostic utility detects that it is unable

to communicate correctly with the CAN hardware using the installed

NI-CAN software. If you get this error, shut down your computer, restart it,

and run the NI-CAN Diagnostic utility again. If the problem persists, try

reinstalling the NI-CAN software.

Missing CAN Interface
If a National Instruments CAN interface is physically installed in your

system, but is not listed in the NI-CAN Diagnostic utility, check to see

if the NI-CAN Configuration utility has detected the hardware. For more

information, refer to the Missing CAN Interface in the NI-CAN

Configuration Utility section earlier in this appendix.

CAN Hardware Problem Encountered
This error occurs if the NI-CAN Diagnostic utility detects a defect in the

CAN hardware. If you get this error, write down the numeric code shown

with the error and contact National Instruments. Depending on the cause of

the hardware failure, National Instruments may need to upgrade your CAN

interface.

Appendix B Windows NT: Troubleshooting and Common Questions

© National Instruments Corporation B-3 NI-CAN User Manual

Common Questions

How can I determine which type of CAN hardware I have installed?

Run the NI-CAN Configuration utility. To run the utility, select

Start»Settings»Control Panel»NI-CAN Configuration. If any CAN

hardware is correctly installed, it is listed under National Instruments

CAN Interfaces.

How can I determine which version of the NI-CAN software I have

installed?

Run the NI-CAN Diagnostic utility. To run the utility, select NI-CAN

Diagnostics under Start»Programs»National Instruments»NI-CAN.

The NI-CAN Diagnostic utility displays information about the version of

the NI-CAN software currently installed.

What do I do if the NI-CAN Diagnostic utility fails with an error?

Refer to the Troubleshooting Diagnostic Utility Failures section of this

appendix for specific information about what might cause the NI-CAN

Diagnostic utility to fail. If you have already completed the troubleshooting

steps, contact National Instruments.

How many CAN interfaces can I configure for use with my NI-CAN

software for Windows NT?

The NI-CAN software can be configured to communicate with up to

10 CAN interfaces.

Are interrupts required for the NI-CAN software for Windows NT?

Yes, one interrupt per card is required.

How do I use an NI-CAN language interface?

For information about using NI-CAN language interfaces, refer to

Chapter 2, Developing Your Application.

How do I use NI-CAN from within LabVIEW?

For information about using NI-CAN from within LabVIEW, refer to

Chapter 2, Developing Your Application.

Appendix B Windows NT: Troubleshooting and Common Questions

NI-CAN User Manual B-4 ni.com

Why does the uninstall program leave some components installed?

The uninstall program removes only items that the installation program

installed. If you add anything to a directory that was created by the

installation program, the uninstall program does not delete that directory

because the directory is not empty after the uninstallation. You will need

to remove any remaining components yourself.

© National Instruments Corporation C-1 NI-CAN User Manual

C
Windows 2000:
Troubleshooting and
Common Questions

This appendix describes how to troubleshoot problems with the NI-CAN

software for Windows 2000 and answers some common questions.

Troubleshooting Windows Device Manager Problems

The Windows Device Manager contains configuration information for all

of the CAN hardware it is aware of that is installed in your system. To start

the Windows Device Manager, double-click on the System icon under

Start»Settings»Control Panel. In the System Properties box that

appears, select the Hardware tab and click the Device Manager button.

If there is no National Instruments CAN Interfaces item and you are

certain you have a CAN interface installed, refer to the No National

Instruments CAN Interfaces section of this appendix.

If the National Instruments CAN Interfaces item exists, but the CAN

interface you are looking for is not listed there, refer to the Missing CAN

Interface section of this appendix.

If the CAN interface you are looking for is listed, but has a circled X or

exclamation mark (!) over its icon, or if it appears under Other Devices as

a PCI Simple Communication Controller, refer to the Problem Shown in

Device Manager section of this appendix.

No National Instruments CAN Interfaces
If you are certain you have a Plug and Play CAN interface installed, but

no National Instruments CAN Interfaces item appears in the Device

Manager, the interface is probably incorrectly listed under Other Devices.

Double-click on the Other Devices item in the Device Manager and, one

by one, remove each National Instruments CAN interface listed there by

selecting its name and then clicking the Uninstall button. After all of the

Appendix C Windows 2000: Troubleshooting and Common Questions

NI-CAN User Manual C-2 ni.com

National Instruments CAN interfaces have been removed from Other

Devices, click the Scan for Hardware Changes button. At this point, the

system rescans the installed hardware, and the CAN interface should show

up under National Instruments CAN Interfaces without any problems.

If the problem persists, contact National Instruments.

Missing CAN Interface
If the National Instruments CAN Interfaces item exists, but the CAN

interface you are looking for is not listed there, the CAN interface is not

properly installed. For National Instruments CAN hardware, this problem

indicates that the interface is not physically present in the system.

Problem Shown in Device Manager
If a CAN interface is not working properly, its icon has a circled X or

exclamation mark (!) overlaid on it, as shown in Figure C-1.

Figure C-1. CAN Interface That Is Not Working Properly

This problem can occur for several reasons. If you encounter this problem,

theDeviceManager should list troubleshooting information. To launch the

troubleshooter for a particular interface, select the name of the interface and

click on the Properties button to go to the General tab for that CAN

interface. Click on the Troubleshooter... button to diagnose and solve the

problem.

If a CAN interface has not been properly recognized by the NI-CAN driver

software, it will appear in the Device Manager under Other Devices as a

PCI Simple Communication Controller as shown in Figure C-2.

Appendix C Windows 2000: Troubleshooting and Common Questions

© National Instruments Corporation C-3 NI-CAN User Manual

Figure C-2. CAN Interface That has Not Been Recognized Properly

This problem is likely to occur if you upgraded from a previous version of

NI-CAN that did not support Windows 2000 without uninstalling the CAN

hardware. To fix this problem, select the device and click the Uninstall

button, then Scan for Hardware Changes. Windows 2000 should identify

the device as a National Instruments CAN interface.

Troubleshooting Diagnostic Utility Failures

The following sections explain common error messages generated by the

NI-CAN Diagnostic utility.

NI-CAN Software Problem Encountered
This error occurs if the NI-CAN Diagnostic utility detects that it is unable

to communicate correctly with the CAN hardware using the installed

NI-CAN software. If you get this error, shut down your computer, restart it,

and run the NI-CAN Diagnostic utility again. If the problem persists, try

reinstalling the NI-CAN software.

Missing CAN Interface
If a National Instruments CAN interface is physically installed in your

system, but is not listed in the NI-CAN Diagnostic utility, check the

Windows Device Manager to see if Windows 2000 has detected the

hardware. For more information, refer to the Troubleshooting Windows

Device Manager Problems section in this appendix.

CAN Hardware Problem Encountered
This error occurs if the NI-CAN Diagnostic utility detects a defect in the

CAN hardware. If you get this error, write down the numeric code shown

with the error, and contact National Instruments. Depending on the cause

of the hardware failure, National Instruments may need to upgrade your

CAN interface.

Appendix C Windows 2000: Troubleshooting and Common Questions

NI-CAN User Manual C-4 ni.com

Common Questions

What do I do if my CAN hardware is listed in the Windows Device

Manager with a circled X or exclamation point (!) overlaid on it, or

if CAN hardware is listed under Other Devices?

Refer to the Problem Shown in Device Manager section of this appendix

for specific information about what might cause this problem. If you have

already completed the troubleshooting steps, contact National Instruments.

How can I determine which type of CAN hardware I have installed?

Run the NI-CAN Configuration utility. To run the utility, select

Start»Settings»Control Panel»NI-CAN Configuration. If any CAN

hardware is correctly installed, it is listed under National Instruments

CAN Interfaces.

How can I determine which version of the NI-CAN software I have

installed?

Run the NI-CAN Diagnostic utility. To run the utility, select NI-CAN

Diagnostics under Start»Programs»National Instruments»NI-CAN.

The NI-CAN Diagnostic utility displays information about the version

of the NI-CAN software currently installed.

What do I do if the NI-CAN Diagnostic utility fails with an error?

Refer to the Troubleshooting Diagnostic Utility Failures section of this

appendix for specific information about what might cause the NI-CAN

Diagnostic utility to fail. If you have already completed the troubleshooting

steps, contact National Instruments.

How many CAN interfaces can I configure for use with my NI-CAN

software for Windows 2000?

The NI-CAN software can be configured to communicate with up to

10 CAN interfaces.

Are interrupts required for the NI-CAN software for Windows 2000?

Yes, one interrupt per card is required.

How do I use an NI-CAN language interface?

For information about using NI-CAN language interfaces, refer to

Chapter 2, Developing Your Application.

Appendix C Windows 2000: Troubleshooting and Common Questions

© National Instruments Corporation C-5 NI-CAN User Manual

How do I use NI-CAN from within LabVIEW?

For information about using NI-CAN from within LabVIEW, refer to

Chapter 2, Developing Your Application.

Why does the uninstall program leave some components installed?

The uninstall program removes only items that the installation program

installed. If you add anything to a directory that was created by the

installation program, the uninstall program does not delete that directory

because the directory is not empty after the uninstallation. You will need

to remove any remaining components yourself.

© National Instruments Corporation D-1 NI-CAN User Manual

D
Cabling Requirements for
High-Speed CAN

This section describes the cabling requirements for high-speed CAN

hardware.

Cables should be constructed to meet these requirements, as well as the

requirements of the other CAN or DeviceNet devices in the network.

Connector Pinouts

Depending on the type of CAN interface you are installing, the CAN

hardware has DB-9 D-Sub connectors(s), or Combicon-style pluggable

screw terminal connector(s), or both.

The 9-pin D-Sub follows the pinout recommended by CiA DS 102.

Figure D-1 shows the pinout for this connector.

Figure D-1. Pinout for 9-Pin D-Sub Connector

1
2

3
4

5

6
7

8
9

No Connection

CAN_L

V–

No Connection

Optional Ground (V–)

CAN_H

No Connection

V+
Shield

Appendix D Cabling Requirements for High-Speed CAN

NI-CAN User Manual D-2 ni.com

The 5-pin Combicon-style pluggable screw terminal follows the pinout

required by the DeviceNet specification. Figure D-2 shows the pinout

for this connector.

Figure D-2. Pinout for 5-Pin Combicon-Style Pluggable Screw Terminal

CAN_H and CAN_L are signal lines that carry the data on the CAN

network. These signals should be connected using twisted-pair cable.

The V+ and V– pins are used to supply bus power to the CAN physical

layer if external power is required for the CAN physical layer. If internal

power for the CAN physical layer is used, the V- pin serves as the reference

ground for CAN_H and CAN_L. See the next section, Power Supply

Information for the High-Speed CAN Ports, for more information.

Figure D-3 shows the end of a PCMCIA-CAN cable. The arrow points

to pin 1 of the 5-pin screw terminal block. All of the signals on the 5-pin

Combicon-style pluggable screw terminal are connected directly to the

corresponding pins on the 9-pin D-Sub.

Figure D-3. PCMCIA-CAN Cable

C
A

N
_

L

V
–

C
A

N
_

H

V
+

S
h

ie
ld

1 2 3 4 5

J2

J1

CAN
(Internal Pwr), PORT 1

V-

C_L
SH

C_H
V+

Appendix D Cabling Requirements for High-Speed CAN

© National Instruments Corporation D-3 NI-CAN User Manual

Power Supply Information for the High-Speed CAN Ports

For the AT-CAN, PCI-CAN, and PXI-846x series boards, the power source

for the CAN physical layer is configured with a jumper. For the AT-CAN

and port one of the AT-CAN/2, power is configured with jumper J3. For

port two of the AT-CAN/2, power is configured with jumper J4. The

location of these jumpers is shown in Figure D-4.

Figure D-4. AT-CAN/2 Parts Locator Diagram

1 Power Supply Jumper J3
2 Serial Number

3 Assembly Number
4 Power Supply Jumper J4

5 Product Name

3

5 4

21

Appendix D Cabling Requirements for High-Speed CAN

NI-CAN User Manual D-4 ni.com

For the PCI-CAN and port one of the PCI-CAN/2 power is configured with

jumper J6. For port two of the PCI-CAN/2, power is configured with

jumper J5. These jumpers are shown in Figure D-5.

Figure D-5. PCI-CAN/2 Parts Locator Diagram

1 Power Supply Jumper J6
2 Product Name

3 Serial Number
4 Assembly Number

5 Power Supply Jumper J5

3

5 4

1 2

Appendix D Cabling Requirements for High-Speed CAN

© National Instruments Corporation D-5 NI-CAN User Manual

For port one of the PXI-8461, power is configured with jumper J5. For port

two of the PXI-8461, power is configured with jumper J6. The location of

these jumper is shown in Figure D-6.

Figure D-6. PXI-8461 Parts Locator Diagram

Connecting pins 1 and 2 of a jumper configures the CAN physical layer to

be powered externally (from the bus cable power). In this configuration, the

power must be supplied on the V+ and V– pins on the port connector.

Connecting pins 2 and 3 of a jumper configures the CAN physical layer to

be powered internally (from the board). In this configuration, the V– signal

serves as the reference ground for the isolated signals.

1 Power Supply Jumper J6
2 Power Supply Jumper J5

3 Assembly Number
4 Product Name

5 Serial Number

2

1

3 4

5

Appendix D Cabling Requirements for High-Speed CAN

NI-CAN User Manual D-6 ni.com

Figure D-7 shows how to configure your jumpers for internal or external

power supplies.

Figure D-7. Power Source Jumpers

The CAN physical layer is still isolated regardless of the power source

chosen.

The PCMCIA-CAN series cards are available with two types of cable. The

DeviceNet (bus powered) cable requires that the CAN physical layer be

powered from the bus cable power.

The internal-powered cable supplies power to the CAN physical layer from

the host computer. The V+ pin is not connected to any internal signals, but

the corresponding pins on the 9-pin D-Sub and the 5 pin Combicon-style

connectors are still connected. The V– pins serves as the reference ground

for the isolated signals.

The CAN physical layer is isolated from the computer in both types of

cable.

Bus Power Supply Requirements

If the CAN physical layer is powered from a bus power supply, the power

supply should be a DC power supply with an output of 10 to 30 V. The

power requirements for the CAN ports for Bus-Powered configurations are

shown in Table D-1. You should take these requirements into account when

determining requirements of the bus power supply for the system.

Table D-1. Power Requirements for the CAN Physical Layer for

Bus-Powered Versions

Characteristic Specification

Voltage requirement V+ 10-30 VDC

Current requirement 40 mA typical

100 mA maximum

INT EXT

a. Internal Power Mode

INT EXT

b. External Power Mode
(Device Net)

123 123

Appendix D Cabling Requirements for High-Speed CAN

© National Instruments Corporation D-7 NI-CAN User Manual

Cable Specifications

Cables should meet the physical medium requirements specified in

ISO 11898, shown in Table D-2.

Belden cable (3084A) meets all of those requirements, and should be

suitable for most applications.

Cable Lengths

The allowable cable length is affected by the characteristics of the

cabling and the desired bit transmission rates. Detailed cable length

recommendations can be found in the ISO 11898, CiA DS 102, and

DeviceNet specifications.

ISO 11898 specifies 40 m total cable length with a maximum stub length

of 0.3 m for a bit rate of 1 Mb/s. The ISO 11898 specification says that

significantly longer cable lengths may be allowed at lower bit rates, but

each node should be analyzed for signal integrity problems.

Table D-3 lists the DeviceNet cable length specifications.

Table D-2. ISO 11898 Specifications for Characteristics of a CAN_H and

CAN_L Pair of Wires

Characteristic Value

Impedance 108 Ω minimum, 120 Ω nominal,

132 Ω maximum

Length-related resistance 70 mΩ/m nominal

Specific line delay 5 ns/m nominal

Table D-3. DeviceNet Cable Length Specifications

Bit Rate Thick Cable Thin Cable

500 kb/s 100 m 100 m

250 kb/s 200 m 100 m

100 kb/s 500 m 100 m

Appendix D Cabling Requirements for High-Speed CAN

NI-CAN User Manual D-8 ni.com

Number of Devices

The maximum number of devices depends on the electrical characteristics

of the devices on the network. If all of the devices meet the requirements

of ISO 11898, at least 30 devices may be connected to the bus. Higher

numbers of devices may be connected if the electrical characteristics of

the devices do not degrade signal quality below ISO 11898 signal level

specifications. If all of the devices on the network meet the DeviceNet

specifications, 64 devices may be connected to the network.

Cable Termination

The pair of signal wires (CAN_H and CAN_L) constitutes a transmission

line. If the transmission line is not terminated, each signal change on the

line causes reflections that may cause communication failures.

Because communication flows both ways on the CAN bus, CAN requires

that both ends of the cable be terminated. However, this requirement does

not mean that every device should have a termination resistor. If multiple

devices are placed along the cable, only the devices on the ends of the cable

should have termination resistors. See Figure D-8 for an example of where

termination resistors should be placed in a system with more than two

devices.

Figure D-8. Termination Resistor Placement

The termination resistors on a cable should match the nominal impedance

of the cable. ISO 11898 requires a cable with a nominal impedance of

120 Ω; therefore, a 120 Ω resistor should be used at each end of the cable.

Each termination resistor should be capable of dissipating 0.25 W of power.

CAN

Device

CAN

Device

CAN

Device

CAN

Device

CAN_L

CAN_H

Appendix D Cabling Requirements for High-Speed CAN

© National Instruments Corporation D-9 NI-CAN User Manual

Cabling Example

Figure D-9 shows an example of a cable to connect two CAN devices.

For the internal power configuration, no V+ connection is required.

Figure D-9. Cabling Example

9-Pin

D-Sub

9-Pin

D-Sub

CAN_H

CAN_L

V+

V+

V–

V–

5-Pin

Combicon

5-Pin

Combicon

Pin 7Pin 4 Pin 7 Pin 4

Pin 2 Pin 2

Pin 5 Pin 3

Pin 9 Pin 5

Pin 3 Pin 1

Pin 2Pin 2

Pin 5Pin 3

Pin 9Pin 5

Pin 3Pin 1

Power

Connector

120 120

SHIELD

© National Instruments Corporation E-1 NI-CAN User Manual

E
Cabling Requirements for
Low-Speed CAN

This appendix describes the cabling requirements for the low-speed CAN

hardware.

Cables should be constructed to meet these requirements, as well as the

requirements of the other CAN devices in the network.

Connector Pinouts

The low-speed CAN hardware has DB-9 D-Sub connector(s). The 9-pin

D-Sub follows the pinout recommended by CiA DS 102. Figure E-1 shows

the pinout for this connector.

Figure E-1. Pinout for 9-Pin D-Sub Connector

1
2

3
4

5

6
7

8
9

No Connection

CAN_L

V–

No Connection

Optional Ground (V–)

CAN_H

No Connection

V+
Shield

Appendix E Cabling Requirements for Low-Speed CAN

NI-CAN User Manual E-2 ni.com

CAN_H and CAN_L are signal lines that carry the data on the CAN

network. These signals should be connected using twisted-pair cable.

The V+ and V– pins are used to supply bus power to the CAN physical

layer if external power is required for the CAN physical layer. If internal

power for the CAN physical layer is used, the V- pin serves as the reference

ground for CAN_H and CAN_L. See the next section, Power Supply

Information for the Low-Speed CAN Ports, for more information.

Figure E-2 shows the end of a PCMCIA-CAN/LS cable. The arrow points

to pin 1 of the 7-pin screw terminal block. All of the signals on the 7-pin

pluggable screw terminal, except RTL and RTH, are connected directly to

the corresponding pins on the 9-pin D-Sub.

Figure E-2. PCMCIA-CAN/LS Cable

J2

J1

PCMCIA-CAN/LS, Port 1

RTL

C_L
V-

SH
V+

C_H

RTH

Appendix E Cabling Requirements for Low-Speed CAN

© National Instruments Corporation E-3 NI-CAN User Manual

Power Supply Information for the Low-Speed CAN Ports

For the PCI-CAN/LS and port one of the PCI-CAN/LS2, power is

configured with jumper J6. For port two of the PCI-CAN/LS2, power

is configured with jumper J5. These jumpers are shown in Figure E-3.

Figure E-3. PCI-CAN/LS2 Parts Locator Diagram

For port one of the PXI-8460, power is configured with jumper J5. For port

two of the PXI-8460, power is configured with jumper J6. These jumpers

are shown in Figure E-4.

1 Power Supply Jumper J6
2 Product Name

3 Serial Number
4 Assembly Number

5 Power Supply Jumper J5
6 Termination Resistor Sockets

3

5 4

1 2

6

Appendix E Cabling Requirements for Low-Speed CAN

NI-CAN User Manual E-4 ni.com

Figure E-4. PXI-8460 Parts Locator Diagram

Connecting pins 1 and 2 of a jumper configures the CAN physical layer to

be powered externally (from the bus cable power). In this configuration, the

power must be supplied on the V+ and V– pins on the port connector.

Connecting pins 2 and 3 of a jumper configures the CAN physical layer to

be powered internally (from the board). In this configuration, the V– signal

serves as the reference ground for the isolated signals. Even if the CAN

physical layer is powered internally, the fault-tolerant CAN transceiver still

requires bus power to be supplied in order for it to monitor the power supply

(battery) voltage.

1 Power Supply Jumper J6
2 Power Supply Jumper J5

3 Assembly Number
4 Product Name

5 Serial Number
6 Termination Resistor Sockets

2

1

3 4

56

Appendix E Cabling Requirements for Low-Speed CAN

© National Instruments Corporation E-5 NI-CAN User Manual

Figure E-5 shows how to configure your jumpers for internal or external

power supplies.

Figure E-5. Power Source Jumpers

The CAN physical layer is still isolated regardless of the power source

chosen.

Bus Power Supply Requirements

If the CAN physical layer is powered from a bus power supply, the

power supply should be a DC power supply with an output of 8 to 27 V. The

power requirements for the CAN ports for Bus-Powered configurations are

shown in Table E-1. You should take these requirements into account when

determining requirements of the bus power supply for the system.

Cable Specifications

Cables should meet the physical medium requirements specified in

ISO 11519-2, shown in Table E-2.

Table E-1. Power Requirements for the Low-Speed CAN Physical Layer for
Bus-Powered Versions

Characteristic Specification

Voltage requirement V+ 8-27 VDC

Current requirement 40 mA typical

100 mA maximum

INT EXT

a. Internal Power Mode

INT EXT

b. External Power Mode

123 123

Appendix E Cabling Requirements for Low-Speed CAN

NI-CAN User Manual E-6 ni.com

Belden cable (3084A) meets all of those requirements, and should be

suitable for most applications.

Number of Devices

The maximum number of devices depends on the electrical characteristics

of the devices on the network. If all of the devices meet the requirements

of ISO 11519-2, at least 20 devices may be connected to the bus. Higher

numbers of devices may be connected if the electrical characteristics of

the devices do not degrade signal quality below ISO 11519-2 signal level

specifications.

Low-Speed Termination

Every device on the low-speed CAN network requires a termination

resistor for each CAN data line: RRTH for CAN_H and RRTL for CAN_L.

Figure E-6 shows termination resistor placement in a low-speed CAN

network.

Figure E-6. Termination Resistor Placement for Low-Speed CAN

Table E-2. ISO 11519-2 Specifications for Characteristics of a CAN_H

and CAN_L Pair of Wires

Characteristic Value

Length-related resistance 90 mΩ/m nominal

Length-related capacitance:

CAN_L and ground, CAN_H and

ground, CAN_L and CAN_H

30 pF/m nominal

Low-speed

CAN Device

RTL CAN_L RTH CAN_H

Low-speed

CAN Device

RTL CAN_L RTH CAN_H

Low-speed

CAN Device

RTL CAN_L RTH CAN_H

CAN_H

CAN_L

Appendix E Cabling Requirements for Low-Speed CAN

© National Instruments Corporation E-7 NI-CAN User Manual

The following sections explain how to determine the correct resistor

values for your low-speed CAN board, and how to replace those resistors,

if necessary.

Determining the Necessary Termination Resistance for Your Board
Unlike high-speed CAN, low-speed CAN requires termination at the

low-speed CAN transceiver instead of on the cable. The termination

requires one resistor: RTH for CAN_H and RTL for CAN_L. This

configuration allows the Philips fault-tolerant CAN transceiver to detect

any of seven network faults. You can use your PCI-CAN/LS or PXI-8460

to connect to a low-speed CAN network having from two to 32 nodes as

specified by Philips (including the port on the PCI-CAN/LS or PXI-8460

as a node). You can also use the PCI-CAN/LS or PXI-8460 to communicate

with individual low-speed CAN devices. It is important to determine the

overall termination of your existing network, or the termination of your

individual device, before connecting it to a PCI-CAN/LS or PXI-8460 port.

Philips recommends an overall RTH and RTL termination of 100 to 500 Ω
(each) for a properly terminated low-speed network. The overall network

termination may be determined as follows:

Philips also recommends an individual device RTH and RTL termination of

500 to 16 kΩ. The PCI-CAN/LS or PXI-8460 board ships with mounted

RTH and RTL values of 510 Ω ±5% per port. The PCI-CAN/LS or

PXI-8460 kit also includes a pair of 15 kΩ ±5% resistors for each port.

After determining the termination of your existing network or device, you

can use the following formula to indicate which value should be placed on

your PCI-CAN/LS or PXI-8460 board in order to produce the proper

overall RTH and RTL termination of 100 to 500 Ω upon connection of the

board:

*RRTH overall should be between 100 and 500 Ω

**RRTH of low-speed CAN interface= 510 Ω ±5% (mounted) or 15 kΩ ±5% (in kit)

†RRTH = RRTL

1

R
RTH overall†

1

RRTH node 1

1

RRTH node 2

1

RRTH node 3

1

RRTH node n

------------------------+ + +=

R
RTH overall*†

1

1

RRTH of low-speed CAN interface**

1

RRTH of existing network or device

--+ 
 
---=

Appendix E Cabling Requirements for Low-Speed CAN

NI-CAN User Manual E-8 ni.com

As the formula indicates, the 510 Ω ±5% shipped on your board will work

with properly terminated networks having a total RTH and RTL termination

of 125 to 500 Ω, or individual devices having an RTH and RTL termination

of 500 to 16 kΩ. For communication with a network having an overall RTH

and RTL termination of 100 to 125 Ω, you will need to replace the 510 Ω
resistors with the 15 kΩ resistors in the kit. Please refer to the next section,

Replacing the Termination Resistors on Your PCI-CAN/LS Board.

The PCMCIA-CAN/LS cable ships with screw-terminal mounted RTH and

RTL values of 510 Ω ±5% per port. The PCMCIA-CAN/LS cable also

internally mounts a pair of 15.8 KΩ ±1% resistors in parallel with the

external 510 Ω resistors for each port. This produces an effective RTH and

RTL of 494 Ω per port for the PCMCIA-CAN/LS cable. After determining

the termination of your existing network or device, you can use the formula

below to indicate which configuration should be used on your

PCMCIA-CAN/LS cable to produce the proper overall RTH and RTL

termination of 100 to 500 Ω upon connection of the cable:

*RRTH overall should be between 100 and 500 Ω

**RRTH of PCMCIA-CAN/LS = 494 Ω (510 Ω ±5% (external) in parallel with

15.8KΩ ±1% (internal)), or 15.8KΩ ±1% (internal) only

†RRTH = RRTL

As the formula indicates, the 510 Ω ±5% in parallel with 15.8 KΩ ±1%

shipped on your cable will work with properly terminated networks having

a total RTH and RTL termination of 125 to 500 Ω, or individual devices

having an RTH and RTL termination of 500 to 16 ΚΩ. For communication

with a network having an overall RTH and RTL termination of 100 to

125 Ω, you will need to disconnect the 510 Ω resistors from the 7-pin

pluggable screw terminal. This will make the RTH and RTL values of the

PCMCIA-CAN/LS cable equal to the internal resistance of 15.8 KΩ ±1%.

To produce RTH and RTL values between 494 and 15.8 KΩ on the

PCMCIA-CAN/LS cable, use the following formula:

R
RTH overall*†

1

1

RRTH of PCMCIA-CAN/LS**

--
1

RRTH of existing network or device

--+ 
 
---=

R
External RTH of PCMCIA-CAN/LS†

1

1

RDesired RTH of PCMCIA-CAN/LS

--
1

RInternal RTH of PCMCIA-CAN/LS***

--– 
 
---=

Appendix E Cabling Requirements for Low-Speed CAN

© National Instruments Corporation E-9 NI-CAN User Manual

***RInternal RTH of PCMCIA-CAN/LS = 15.8 KΩ ±1%

†RRTH = RRTL

For information on replacing the external RTH and RTL resistors on your

PCMCIA-CAN/LS cable, refer to Replacing the Termination Resistors on

Your PCMCIA-CAN/LS Cable.

Replacing the Termination Resistors on Your PCI-CAN/LS Board
Follow these steps to replace the termination resistors on your

PCI-CAN/LS board, after you have determined the correct value in the

previous section, Determining the Necessary Termination Resistance for

Your Board.

1. Remove the termination resistors on your low-speed CAN board.

Figure E-7 shows the location of the termination resistor sockets on a

PCI-CAN/LS2 board.

Figure E-7. Location of Termination Resistors on PCI-CAN/LS2 Board

1 Port 1 Termination Resistors 2 Port 2 Termination Resistors

1

2

Appendix E Cabling Requirements for Low-Speed CAN

NI-CAN User Manual E-10 ni.com

2. Cut and bend the lead wires of the resistors you want to install. Refer

to Figure E-8.

Figure E-8. Preparing Lead Wires of Replacement Resistors

3. Insert the replacement resistors into the empty sockets.

4. Refer to the Installation Guide, CAN Hardware and the NI-CAN

Software for Windows 2000/NT/Me/9x in the jewel case of your

program CD to complete the hardware installation.

Replacing the Termination Resistors on Your PXI-8460 Board
Follow these steps to replace the termination resistors, after you have

determined the correct value in the previous section, Determining the

Necessary Termination Resistance for Your Board.

1. Remove the termination resistors on your PXI-8460. Figure E-9 shows

the location of the termination resistor sockets on a PXI-8460.

0.5 in
(13 mm)

0.165 in
(4 mm)

Appendix E Cabling Requirements for Low-Speed CAN

© National Instruments Corporation E-11 NI-CAN User Manual

Figure E-9. Location of Termination Resistors on a PXI-8460

2. Cut and bend the lead wires of the resistors you want to install. Refer

to Figure E-10.

Figure E-10. Preparing Lead Wires of Replacement Resistors

3. Insert the replacement resistors into the empty sockets.

4. Refer to the Installation Guide, CAN Hardware and the NI-CAN

Software for Windows 2000/NT/Me/9x in the jewel case of your

program CD to complete the hardware installation.

1 Port 1 Termination Resistors 2 Port 2 Termination Resistors

2

1

0.5 in
(13 mm)

0.165 in
(4 mm)

Appendix E Cabling Requirements for Low-Speed CAN

NI-CAN User Manual E-12 ni.com

Replacing the Termination Resistors on Your PCMCIA-CAN/LS Cable
Follow these steps to replace the termination resistors on your

PCMCIA-CAN/LS cable after you have determined the correct value in the

section Determining the Necessary Termination Resistance for Your

Board.

1. Remove the two termination resistors on your PCMCIA-CAN/LS

cable by loosening the pluggable terminal block mounting screws for

pins 1 and 2 (RTL) and pins 6 and 7 (RTH).

2. Bend and cut the lead wires of the two resistors you want to install,

as shown Figure E-11.

Figure E-11. Preparing LeadWires of PCMCIA-CAN/LS Cable Replacement Resistors

3. Mount RTL by inserting the leads of one resistor into pins 1 and 2

of the pluggable terminal block and tightening the mounting screws.

Mount RTH by inserting the leads of the second resistor into pins

6 and 7 of the pluggable terminal block and tightening the mounting

screws.

4. Refer to the Installation Guide, CAN Hardware and the NI-CAN

Software for Windows 2000/NT/Me/9x in the jewel case of your

program CD to complete the hardware installation.

0.3 in

0.138 in

(7.62 mm)

(3.5 mm)

Appendix E Cabling Requirements for Low-Speed CAN

© National Instruments Corporation E-13 NI-CAN User Manual

Cabling Example

Figure E-12 shows an example of a cable to connect two low-speed CAN

devices. For the PCMCIA-CAN/LS cables, only V-, CAN_L, and CAN _H

are required to be connected to the bus.

Figure E-12. Cabling Example

9-Pin

D-Sub

9-Pin

D-Sub

CAN_H

CAN_L

V+

V+

V–

V–

7-Pin

Combicon

7-Pin

Combicon

Pin 7Pin 6 Pin 7 Pin 6

Pin 2 Pin 2

Pin 5 Pin 4

Pin 9 Pin 5

Pin 3 Pin 3

Pin 2Pin 2

Pin 5Pin 4

Pin 9Pin 5

Pin 3Pin 3

Power

Connector

SHIELD

© National Instruments Corporation F-1 NI-CAN User Manual

F
Cabling Requirements for
Dual-Speed CAN

This section describes the cabling requirements for the dual-speed CAN

hardware.

Port Identification

The PCI-CAN/DS board, PXI-8462 board, and PCMCIA-CAN/DS cable

each provide a high-speed CAN port (port one), and a low-speed CAN port

(port two). Port one of the PCI-CAN/DS is identical to port one of the

PCI-CAN and PCI-CAN/2, and port two is identical to port two of the

PCI-CAN/LS2.

Port one of the PXI-8462 is identical to port one of the PXI-8461 one-port

and PXI-8461 two-port boards. Port two of the PXI-8462 is identical to port

two of the PXI-8460 two-port board.

Port one of the PCMCIA-CAN/DS cable is identical to port one of the

PCMCIA-CAN and PCMCIA-CAN/2 cables, and port two is identical

to port two of the PCMCIA-CAN/LS2 cable. The PCI-CAN/DS board,

PXI-8462 board and PCMCIA-CAN/DS cable allow simultaneous

communication with both a high-speed and low-speed bus, each with

its own specific cabling and termination requirements. For cabling

requirements and port information for the high-speed CAN port, please

refer to Appendix D, Cabling Requirements for High-Speed CAN, in this

manual. For cabling requirements and port information for the low-speed

CAN port, please refer to Appendix E, Cabling Requirements for

Low-Speed CAN, in this manual.

© National Instruments Corporation G-1 NI-CAN User Manual

G
RTSI Bus

This appendix describes the RTSI interface on your CAN board.

RTSI, AT and PCI

Figure G-1 shows the RTSI connector pinout for the AT-CAN series

boards. Figure G-2 shows the RTSI connector pinout for the PCI-CAN

series boards.

Figure G-1. AT-CAN Series RTSI Connector Pinout

AT-CAN Series Trigger AT-CAN Series Pin Number

RTSI Trigger <0>

RTSI Trigger <1>

RTSI Trigger <2>

RTSI Trigger <3>

RTSI Trigger <4>

RTSI Trigger <5>

RTSI Trigger <6>

RTSI Oscillator

GND

15

13

11

9

7

5

3

1

2, 4, 6, 8,

10, 12, 14

PCB

RTSI

Connector

33

34

1

2

Appendix G RTSI Bus

NI-CAN User Manual G-2 ni.com

Figure G-2. PCI-CAN Series RTSI Connector Pinout

Using the National Instruments RTSI bus with your CAN board consists of

connecting it to other RTSI-equipped boards with RTSI ribbon cable, to

route timing and trigger signals between the boards. Using the RTSI bus,

your CAN board can be synchronized with multiple National Instruments

DAQ boards in your computer. The RTSI bus can also be used to

synchronize multiple CAN boards.

The AT-CAN, AT-CAN/2, PCI-CAN and PCI-CAN/2 boards allow for the

connection of four RTSI input signals and four RTSI out put signals. In

order to fully support the fault reporting capabilities of the low-speed

transceivers used on the PCI-CAN/LS, PCI-CAN/LS2, and PCI-CAN/DS,

three RTSI lines on those boards are reserved for low-speed CAN fault

reporting. This allows for the connection of three RTSI input signals and

two RTSI output signals to the boards, providing them the real time

synchronization benefits of RTSI without sacrificing low-speed CAN fault

reporting.

PCI-CAN Series Trigger PCI-CAN Series Pin Number

RTSI Trigger <0>

RTSI Trigger <1>

RTSI Trigger <2>

RTSI Trigger <3>

RTSI Trigger <4>

RTSI Trigger <5>

RTSI Trigger <6>

RTSI Oscillator

GND

20

22

24

26

28

30

32

34

19, 21, 23, 25,

27, 29, 31, 33

1

2

33

34

PCB
RTSI
Connector

Appendix G RTSI Bus

© National Instruments Corporation G-3 NI-CAN User Manual

RTSI, PXI and CompactPCI

Using PXI-compatible products with standard CompactPCI products is an

important feature provided by the PXI Specification, Revision 1.0. If you

use a PXI-compatible plug-in device in a standard CompactPCI chassis,

you will be unable to use PXI-specific functions, but you can still use the

basic plug-in device functions. For example, the RTSI bus on your

PXI-846x series board is available in a PXI chassis, but not in a

CompactPCI chassis. The CompactPCI specification permits vendors to

develop sub-buses that coexist with the basic PCI interface on the

CompactPCI bus. Compatible operation is not guaranteed between

CompactPCI devices with different sub-buses nor between CompactPCI

devices with sub-buses and PXI. The standard implementation for

CompactPCI does not include these sub-buses. Your PXI-846x device will

work in any standard CompactPCI chassis adhering to the PICMG 2.0 R2.1

CompactPCI core specification using the 64-bit definition for J2. PXI

specific features are implemented on the J2 connector of the CompactPCI

bus. Table G-1 lists the J2 pins your PXI-846x series board uses. Your PXI

board is compatible with any CompactPCI chassis with a sub-bus that does

not drive these lines. Even if the sub-bus is capable of driving these lines,

the board is still compatible as long as those pins on the sub-bus are

disabled by default and not ever enabled. Damage may result if these lines

are driven by the sub-bus.

The PXI-8461 one-port and two-port boards allow for the connection of

four RTSI input signals and four RTSI output signals. In order to fully

support the fault reporting capabilities of the low-speed transceivers used

on the PXI-8460 one port, PXI-8460 two port, and PXI-8462, three RTSI

lines on those boards are reserved for low-speed CAN fault reporting. This

allows for the connection of three RTSI input signals and two RTSI output

signals to the boards, providing them the real time synchronization benefits

of RTSI without sacrificing low-speed CAN fault reporting.

Table G-1. Pins Used By the PXI-846x Series Boards

PXI Pin Name PXI J2 Pin Number

PXI Star D17

PXI Trigger <0> B16

PXI Trigger <1> A16

PXI Trigger <2> A17

Appendix G RTSI Bus

NI-CAN User Manual G-4 ni.com

RTSI Cables

National Instruments offers a variety of RTSI bus cables for connecting

your CAN board to other CAN or DAQ hardware. For more specific

information about these cables, you can refer to the National Instruments

catalog, or our Web site ni.com, or call the National Instruments office

nearest you listed in the Worldwide Support section of Appendix I,

Technical Support Resources.

RTSI Programming

For more information on RTSI programming, refer to the

NI-CAN Programmer Reference Manual. Refer to RTSI Bus Overview

in Chapter 1 of this manual for more information on the RTSI bus.

PXI Trigger <3> A18

PXI Trigger <4> B18

PXI Trigger <5> C18

PXI Trigger <7> E16

Table G-1. Pins Used By the PXI-846x Series Boards (Continued)

PXI Pin Name PXI J2 Pin Number

© National Instruments Corporation H-1 NI-CAN User Manual

H
Specifications

This appendix describes the physical characteristics of the CAN hardware,

along with the recommended operating conditions.

AT-CAN Series
Dimensions... 10.67 by 16.51 cm

(4.2 by 6.5 in.)

Power requirement +5 VDC, 500 mA typical

I/O Connector... 9-pin D-Sub for each port

(standard)

or

5-pin Combicon-style pluggable

DeviceNet screw terminal

Operating environment

Component temperature.................. 0 to 55 °C

Relative humidity............................ 10% to 90%, noncondensing

Storage environment

Temperature –20 to 70 °C

Relative humidity............................ 5% to 90%, noncondensing

PCI-CAN Series
Dimensions... 10.67 by 17.46 cm

(4.2 by 6.88 in.)

Power requirement +5 VDC, 775 mA typical

I/O connector.. 9-pin D-Sub for each port

(standard)

or

5-pin Combicon-style pluggable

DeviceNet screw terminal

(high-speed CAN only)

Appendix H Specifications

NI-CAN User Manual H-2 ni.com

Operating environment

Ambient temperature0 to 55 °C

Relative humidity10% to 90%, noncondensing

Storage environment

Temperature.....................................–20 to 70 °C

Relative humidity5% to 90%, noncondensing

PCMCIA-CAN Series
Dimensions ...8.56 by 5.40 by 0.5 cm

(3.4 by 2.1 by 0.4 in.)

Power requirement..................................500 mA typical

I/O connector ..Cable with 9-pin D-Sub and

pluggable screw terminal for each

port

Operating environment

Component temperature0 to 55 °C

Relative humidity10% to 90%, noncondensing

Storage Environment

Temperature.....................................–20 to 70 °C

Relative humidity5% to 90%, noncondensing

High-Speed CAN Port Characteristics
Bus Power...0 to 30 V, 40 mA typical

100mA maximum

CAN-H, CAN-L–8 to +18V, DC or peak, CATI

Low-Speed CAN Port Characteristics
Bus Power...8 to 27 V, 40 mA typical

100 mA maximum

CAN-H, CAN-L–10 to +27V, DC or peak, CATI

© National Instruments Corporation I-1 NI-CAN User Manual

I
Technical Support Resources

Web Support

National Instruments Web support is your first stop for help in solving

installation, configuration, and application problems and questions. Online

problem-solving and diagnostic resources include frequently asked

questions, knowledge bases, product-specific troubleshooting wizards,

manuals, drivers, software updates, and more. Web support is available

through the Technical Support section of ni.com.

NI Developer Zone

The NI Developer Zone at ni.com/zone is the essential resource for

building measurement and automation systems. At the NI Developer Zone,

you can easily access the latest example programs, system configurators,

tutorials, technical news, as well as a community of developers ready to

share their own techniques.

Customer Education

National Instruments provides a number of alternatives to satisfy your

training needs, from self-paced tutorials, videos, and interactive CDs to

instructor-led hands-on courses at locations around the world. Visit the

Customer Education section of ni.com for online course schedules,

syllabi, training centers, and class registration.

System Integration

If you have time constraints, limited in-house technical resources, or other

dilemmas, you may prefer to employ consulting or system integration

services. You can rely on the expertise available through our worldwide

network of Alliance Program members. To find out more about our

Alliance system integration solutions, visit the System Integration section

of ni.com.

Appendix I Technical Support Resources

NI-CAN User Manual I-2 ni.com

Worldwide Support

National Instruments has offices located around the world to help address

your support needs. You can access our branch office Web sites from the

Worldwide Offices section of ni.com. Branch office Web sites provide

up-to-date contact information, support phone numbers, e-mail addresses,

and current events.

If you have searched the technical support resources on our Web site and

still cannot find the answers you need, contact your local office or National

Instruments corporate. Phone numbers for our worldwide offices are listed

at the front of this manual.

© National Instruments Corporation Glossary-1 NI-CAN User Manual

Glossary

Prefix Meaning Value

m- milli- 10–3

k- kilo- 103

Symbols

° degrees

Ω ohms

% percent

A

A amperes

AC alternating current

action See method.

actuator A device that uses electrical, mechanical, or other signals to change the

value of an external, real-world variable. In the context of device networks,

actuators are devices that receive their primary data value from over the

network; examples include valves and motor starters. Also known as final

control element.

ANSI American National Standards Institute

Application

Programming

Interface (API)

A collection of functions used by a user application to access hardware.

Within NI-CAN, you use API functions to make calls into the NI-CAN

driver.

arbitration ID An 11- or 29-bit ID transmitted as the first field of a CAN frame. The

arbitration ID determines the priority of the frame, and is normally used

to identify the data transmitted in the frame.

AT-compatible compatible with the 16-bit Industry Standard Architecture

Glossary

NI-CAN User Manual Glossary-2 ni.com

attribute The externally visible qualities of an object; for example, an instance Mike

of class Human could have the attributes Sex and Age, with the values Male

and 31. Also known as property.

B

b bits

B bytes

bus off A CAN node goes into the bus off state when its transmit error counter

increments above 255. The node does not participate in network traffic,

because it assumes that a defect exists that must be corrected.

C

C Celsius

CAN Controller Area Network

CAN data frame Frame used to transmit the actual data of a CAN Object. The RTR bit is

clear, and the data length indicates the number of data bytes in the frame.

CAN/DS Dual-speed CAN

CAN frame In addition to fields used for error detection/correction, a CAN frame

consists of an arbitration ID, an Identifier Extension, SOF and EOF bits, the

RTR bit, a four-bit Data Length Code, and zero to eight bytes of data.

CAN/LS See Low-speed CAN.

CAN Network

Interface Object

Within NI-CAN, an object that encapsulates a CAN network interface on

the host computer.

CAN Object A CAN identifier, along with its associated data.

CAN remote frame Frame used to request data for a CAN Object from a remote node; the RTR

bit is set, and the data length indicates the amount of data desired (but no

data bytes are included).

CiA CAN in Automation

class A set of objects that share a common structure and a common behavior.

Glossary

© National Instruments Corporation Glossary-3 NI-CAN User Manual

connection An association between two or more nodes on a network that describes

when and how data is transferred.

controller A device that receives data from sensors and sends data to actuators in order

to hold one or more external, real-world variables at a certain level or

condition. A thermostat is a simple example of a controller.

D

DC direct current

device See node.

device network Multi-drop digital communication network for sensors, actuators, and

controllers.

DLL dynamic link library

DMA direct memory access

E

EMI electromagnetic interference

error active A CAN node is in error active state when both the receive and transmit error

counters are below 128.

error counters Every CAN node keeps a count of how many receive and transmit errors

have occurred. The rules for how these counters are incremented and

decremented are defined by the CAN protocol specification.

error passive A CAN node is in error passive state when one or both of its error counters

increment above 127. This state is a warning that a communication problem

exists, but the node is still participating in network traffic.

extended

arbitration ID

A 29-bit arbitration ID. Frames that use extended IDs are often referred

to as CAN 2.0 Part B (the specification that defines them).

Glossary

NI-CAN User Manual Glossary-4 ni.com

F

FCC Federal Communications Commission

frame A unit of information transferred across a network from one node to

another; the protocol defines the meaning of the bit fields within a frame.

Also known as packet.

ft feet

H

hex hexadecimal.

HMI Human Machine Interface

Hz Hertz

I

IEEE Institute of Electrical and Electronic Engineers

in. inches

instance An abstraction of a specific real-world thing; for example, Mike is an

instance of the class Human. Also known as object.

IRQ interrupt request

ISA Industry Standard Architecture

ISO International Standards Organization

K

KB Kilobytes of memory

Glossary

© National Instruments Corporation Glossary-5 NI-CAN User Manual

L

LED Light-emitting Diode

local Within NI-CAN, anything that exists on the same host (personal computer)

as the NI-CAN driver.

Low-speed CAN Implementation of CAN as defined in ISO 11519.

M

m meters

MB Megabytes of memory

method An action performed on an instance to affect its behavior; the externally

visible code of an object. Within NI-CAN, you use NI-CAN functions to

execute methods for objects. Also known as service, operation, and action.

minimum interval For a given connection, the minimum amount of time between subsequent

attempts to transmit frames on the connection. Some protocols use

minimum intervals to guarantee a certain level of overall network

performance.

multi-drop A physical connection in which multiple devices communicate with one

another along a single cable.

N

network interface A node’s physical connection onto a network.

NI-CAN driver Device driver and/or firmware that implement all the specifics of a CAN

network interface. Within NI-CAN, this software implements the CAN

Network Interface Object as well as all objects above it in the object

hierarchy.

node A physical assembly, linked to a communication line (cable), capable of

communicating across the network according to a protocol specification.

Also known as device.

Glossary

NI-CAN User Manual Glossary-6 ni.com

notification Within NI-CAN, an operating system mechanism that the NI-CAN driver

uses to communicate events to your application. You can think of a

notification of as an API function, but in the opposite direction.

O

object See instance.

object-oriented A software design methodology in which classes, instances, attributes, and

methods are used to hide all of the details of a software entity that do not

contribute to its essential characteristics.

P

PC Personal Computer

PCI Peripheral Component Interconnect

PCMCIA Personal Computer Memory Card International Association

peer-to-peer Network connection in which data is transmitted from the source to its

destination(s) without need for an explicit request. Although data transfer

is generally unidirectional, the protocol often uses low level

acknowledgments and error detection to ensure successful delivery.

periodic Connections that transfer data on the network at a specific rate.

PLC Programmable Logic Controller

polled Request/response connection in which a request for data is sent to a device,

and the device sends back a response with the desired value.

protocol A formal set of conventions or rules for the exchange of information among

nodes of a given network.

PXI PCI eXtensions for Instrumentation

R

RAM Random-access Memory

remote Within NI-CAN, anything that exists in another node of the device network

(not on the same host as the NI-CAN driver).

Glossary

© National Instruments Corporation Glossary-7 NI-CAN User Manual

Remote Transmission

Request (RTR) bit

This bit follows the arbitration ID in a frame and indicates whether the

frame is the actual data of the CAN Object (CAN data frame) or whether

the frame is a request for the data (CAN remote frame).

request/response Network connection in which a request is transmitted to one or more

destination nodes, and those nodes send a response back to the requesting

node. In industrial applications, the responding (slave) device is usually a

sensor or actuator, and the requesting (master) device is usually a controller.

Also known as master/slave.

resource Hardware settings used by National Instruments CAN hardware, including

an interrupt request level (IRQ) and an 8 KB physical memory range (such

as D0000 to D1FFF hex).

RTSI bus Real-Time System Integration bus. The National Instruments timing bus

that connects CAN and DAQ boards directly (via connectors on top of the

PCI-CAN and AT-CAN series boards, and the PXI trigger bus on the

PXI-846x series boards) for precise synchronization of functions.

S

s seconds

sensor A device that measures electrical, mechanical, or other signals from an

external, real-world variable; in the context of device networks, sensors are

devices that send their primary data value onto the network; examples

include temperature sensors and presence sensors. Also known as

transmitter.

standard arbitration ID An 11-bit arbitration ID. Frames that use standard IDs are often referred to

as CAN 2.0 Part A; standard IDs are by far the most commonly used.

T

trigger Any event that causes or starts some form of data capture.

U

unsolicited Connections that transmit data on the network sporadically based on an

external event. Also known as nonperiodic, sporadic, and event driven.

Glossary

NI-CAN User Manual Glossary-8 ni.com

V

V volts

VDC volts direct current

W

W Watts

watchdog timeout A timeout associated with a connection that expects to receive network data

at a specific rate. If data is not received before the watchdog timeout

expires, the connection is normally stopped. You can use watchdog

timeouts to verify that the remote node is still operational.

© National Instruments Corporation Index-1 NI-CAN User Manual

Index

Numbers
5-pin Combicon-style pluggable screw terminal

(figure), D-2

9-pin D-sub connector pinout, high-speed

(figure), D-1

9-pin D-sub connector pinout, low-speed

(figure), E-1

A
Acknowledgment Bit (ACK) field, 1-5

acknowledgment error, 1-6

application development. See programming.

application examples, 4-1

C/C++ languages, 4-1

LabVIEW, 4-1

other programming languages, 4-1

arbitration

example of CAN arbitration (figure), 1-3

nondestructive bitwise, 1-2

arbitration ID

definition, 1-2

using CAN Objects, 2-5

Arbitration ID field, 1-4

AT-CAN series board, 1-9

and RTS, 1-10

AT-CAN/2 parts locator diagram

(figure), D-3

power supply information for high-speed

CAN ports, D-3

specifications, H-1

attributes

definition, 1-11

B
bit error, 1-6

bus off state, 1-8

bus power supply requirements

high-speed, D-6

low-speed, E-5

C
C/C++ languages

accessing NI-CAN software, 2-2

application examples, 4-1

status checking, 2-12

cable lengths, D-7

cable lengths, DeviceNet cable-length

specifications (table), D-7

cable specifications, D-7, E-5

ISO 11519-2 specifications for

characteristics of a CAN_H and CAN_L

pair of wires (table), E-6

ISO 11898 specifications for characteristics

of a CAN_H and CAN_L pair of wires

(table), D-7

cable termination

high-speed CAN, D-8

low-speed CAN, E-6

cabling example

high-speed CAN (figure), D-9

low-speed CAN (figure), E-13

cabling requirements

dual-speed CAN, F-1

high-speed CAN, D-1

low-speed CAN, E-1

CAN

See also NI-CAN.

arbitration, 1-2

error confinement, 1-6

Index

NI-CAN User Manual Index-2 ni.com

error detection, 1-5

history and use, 1-1

low speed, 1-8

CAN frame reception flowchart (figure), 3-3

CAN frames

definition, 1-3

fields

Acknowledgment Bit (ACK), 1-5

Arbitration ID, 1-4

Cyclic Redundancy Check

(CRC), 1-4

Data Bytes, 1-4

Data Length Code (DLC), 1-4

End of Frame, 1-5

Identifier Extension (IDE), 1-4

Remote Transmit Request

(RTR), 1-4

Start of Frame (SOF), 1-3

reading and writing, 2-5

standard and extended formats

(figure), 1-3

CAN hardware

determining type installed

Windows 2000, C-4

Windows Me/98/95, A-5

Windows NT, B-3

overview, 1-9

problem encountered in

Windows Me/98/95, A-5

CAN identifiers, 1-2

CAN interface cables

5-pin Combicon-style pluggable screw

terminal (figure), D-2

cable lengths, D-7

cable termination

high-speed CAN, D-8

low-speed CAN, E-6

cabling example

high-speed CAN (figure), D-9

low-speed CAN (figure), E-13

connector pinouts

high-speed, D-1

low-speed, E-1

RTSI, G-1

connector pinouts, RTSI, G-2

DeviceNet cable-length specifications

(table), D-7

dual-speed, F-1

high-speed, D-1

low-speed, E-1

PCMCIA-CAN cable (figure), D-2

PCMCIA-CAN/LS cable

(figure), E-2

termination resistors, E-12

pinout for 9-pin D-sub connector,

high-speed (figure), D-1

specifications, D-7

ISO 11898 specifications for

characteristics of a CAN_H and

CAN_L pair of wires (table), D-7

termination resistor placement

(figure), D-8

low-speed CAN, E-6

CAN interfaces

See also missing CAN interfaces.

number of configurable interfaces

Windows 2000, C-4

Windows Me/98/95, A-5

Windows NT, B-3

CAN Network Interface Objects

communication

starting, 2-9

using objects, 2-9

possible uses, 2-4

using with CAN Objects

flowchart for CAN frame reception

(figure), 3-3

Index

© National Instruments Corporation Index-3 NI-CAN User Manual

CAN Objects

choosing NI-CAN Objects

CAN Network interface Objects, 2-4

CAN Objects, 2-5

closing, 2-10

configuration, methods for, 2-9

definition, 1-2

NI-CAN object hierarchy, 1-12

opening, 2-9

using, 2-5

CAN software. See NI-CAN software.

CANopen protocol, 1-11

checking status of function calls. See status of

function calls, checking.

class, definition, 1-11

closing CAN Objects, 2-10

common questions. See troubleshooting and

common questions.

communicating with CAN network

starting, 2-9

using objects, 2-9

CompactPCI, PXI, and RTSI, G-3

configuring objects

See also NI-CAN Configuration utility.

calling ncConfig function, 2-9

connector pinouts

high-speed, D-1

low-speed, E-1

RTSI, G-1

connector pinouts, RTSI, G-1, G-2

Controller Area Network. See CAN; NI-CAN.

conventions used in manual, xiii

CRC error, 1-6

customer education, I-1

Cyclic Redundancy Check (CRC) field, 1-4

D
Data Bytes field, 1-4

data length code (DLC) field, 1-4

detecting state changes, 3-4

Device Manager problems

Windows 2000, C-1

Windows Me/98/95, A-1

device network independence, of NI-CAN

software, 1-11

DeviceNet cable-length specifications

(table), D-7

DeviceNet protocol, 1-11

direct entry access to NI-CAN software, 2-3

DLC (Data Length Code) field, 1-4

documentation

conventions used in manual, xiii

how to use manual set, xiii

related documentation, xiv

drivers, NI-CAN, 1-14

dual-speed CAN

cabling requirements, F-1

E
embedded processor, 1-10

End of Frame field, 1-5

error cluster (table), 2-11

error confinement

bus off state, 1-8

error active state, 1-7

error passive state, 1-7

error detection

acknowledgement error, 1-6

bit error, 1-6

CRC error, 1-6

form error, 1-6

stuff error, 1-6

F
firmware image files, 1-15

form error, 1-6

frames. See CAN frames.

function calls, checking. See status of function

calls, checking.

Index

NI-CAN User Manual Index-4 ni.com

functions

GetProcAddress, 2-3

ncAction, 2-9

ncConfig, 2-9

ncCreateNotification, 2-10

ncGetAttribute, 3-4

ncOpenObject, 2-9

ncRead, 2-10

ncWaitForState, 2-10

G
GetProcAddress function, 2-3

H
hardware

overview, 1-9

high-speed CAN

cabling requirements, D-1

port characteristics, H-2

how to use manual set, xiii

I
Identifier Extension (IDE) field, 1-4

instance, definition, 1-11

interrupt requirements

Windows 2000, C-4

Windows Me/98/95, A-5

Windows NT, B-3

ISO 11898 standard, 1-1

L
LabVIEW

application examples, 4-1

function library, 2-1

status checking in, 2-11

LabVIEW RT

as a programming method, 2-1

using NI-CAN configuration and

diagnostic utilities, 5-3

language interface files, 1-15, 2-2

low-speed CAN

cabling requirements, E-1

port characteristics for bus-powered

ports, H-2

preparing lead wires of, (figure), E-11

replacing termination resistors, E-10

termination resistors, E-6

termination resistors, location of,

(figure), E-11

M
manual. See documentation.

memory resource conflict

Windows Me/98/95, A-3

Windows NT, B-2

methods, definition, 1-11

missing CAN interfaces

Windows 2000

no National Instruments CAN

Interface, C-1

not listed in NI-CAN Diagnostic

utility, C-3

physically absent interface, C-2

Windows Me/98/95

no National Instruments CAN

Interface, A-1

not listed in NI-CAN Diagnostic

utility, A-4

physically absent interface, A-2

Windows NT

NI-CAN configuration and

diagnostic utilities, B-1

not listed in NI-CAN Diagnostic

utility, B-2

Index

© National Instruments Corporation Index-5 NI-CAN User Manual

N
National Instruments CAN interfaces. See

CAN interfaces; missing CAN interfaces.

National Instruments Web support, I-1

NC_ERR_OLD_DATA status code, 3-2

NC_ERR_OVERFLOW status code, 3-2

NC_ST_READ_AVAIL state, 3-1

NC_ST_READ_MULT state, 3-1

NC_ST_WRITE_SUCCESS state, 3-1

ncAction function, 2-9

ncConfig function, 2-9

ncCreateNotification function, 2-10

ncGetAttribute function, 3-4

ncOpenObject function, 2-9

ncRead function, 2-10

ncWaitForState function, 2-10

NI Developer Zone, I-1

NI-CAN configuration and diagnostic utilities

failures

Windows 2000, C-3

Windows Me/98/95, A-3

Windows NT, B-1

missing CAN interface, in

Windows NT, B-1

overview, 1-14, 5-1

starting

LabVIEW RT, 5-3

Windows 2000/NT, 5-2

Windows Me/98/95, 5-1

NI-CAN Diagnostic utility, 5-1

NI-CAN error cluster (table), 2-11

NI-CAN hardware

AT-CAN series board, 1-9

overview, 1-9

PCI-CAN/DS series board, 1-9

PCMCIA-CAN series card, 1-9

processor

embedded processor, 1-10

PXI-846x series boards, 1-9

NI-CAN object hierarchy, 1-12

applying NI-CAN objects (figure), 1-13

simple CAN device network application

(figure), 1-12

NI-CAN software

See also programming.

C/C++ language interfaces, 2-2

components

driver and utilities, 1-14

firmware image files, 1-15

determining version installed

Windows 2000, C-4

Windows Me/98/95, A-5

Windows NT, B-3

error cluster (table), 2-11

independent design, 1-11

object hierarchy

applying NI-CAN objects

(figure), 1-13

simple CAN device network

application (figure), 1-12

object-oriented design, 1-11

overview, 1-11

problem encountered

See also troubleshooting and

common questions.

Windows 2000, C-4

Windows Me/98/95, A-5

Windows NT, B-3

status code (table), 2-12

uninstalling

some components left installed,

A-6, B-4, C-5

NI-DAQ, synchronizing with RTSI bus, 1-17

no resources assigned error, Windows NT, B-1

nondestructive bitwise arbitration, 1-2

number of devices

high-speed CAN, ISO 11898

requirements, D-8

low-speed CAN, ISO 11519-2

requirements, E-6

Index

NI-CAN User Manual Index-6 ni.com

O
object hierarchy, in NI-CAN software

applying NI-CAN objects (figure), 1-13

simple CAN device network application

(figure), 1-12

object-oriented design, of NI-CAN

software, 1-11

objects

See also CAN Objects.

synonymous with instance, 1-11

opening objects, 2-9

operating system independence, of NI-CAN

software, 1-11

P
PCI-CAN series board

and RTSI, 1-10

PCI-CAN/2 parts locator diagram

(figure), D-4

power supply information for high-speed

CAN ports, D-3

power source jumpers (figure), D-6

specifications, H-1

PCI-CAN/DS series board, 1-9

PCI-CAN/LS series board, 1-9

power supply information for low-speed

CAN ports, E-3

PCI-CAN/LS2 series board, 1-9

parts locator diagram (figure), E-3

power source jumpers, E-5

power supply information for low-speed

CAN ports, E-3

PCMCIA-CAN series card, 1-9

description of cable types, 1-10

PCMCIA-CAN cable (figure), D-2

specifications, H-2

PCMCIA-CAN/LS series card

PCMCIA-CAN/LS cable

(figure), E-2

replacing termination resistors, E-12

pinout for 9-pin D-sub connector

high-speed (figure), D-1

low-speed (figure), E-1

pins used by PXI-846x series boards, G-3

power requirements for the high-speed CAN

physical layer for bus-powered versions

(table), D-6

power requirements for the low-speed CAN

physical layer for bus-powered versions

(table), E-5

power source jumpers (figure), D-6, E-5

power supply

bus power supply requirements

high-speed CAN, D-6

low-speed CAN, E-5

information

high-speed CAN ports, D-3

low-speed CAN ports, E-3

power requirements

high-speed CAN physical layer,

bus-powered versions (table), D-6

low-speed CAN physical layer,

bus-powered versions (table), E-5

power source jumpers (figure), D-6, E-5

problem solving. See troubleshooting and

common questions.

processor

embedded processor, 1-10

programming

accessing NI-CAN software

C/C++ language interfaces, 2-2

direct entry access, 2-3

LabVIEW function library, 2-1

application examples, 4-1

CAN Network Interface Object, using

with CAN Objects, 3-2

checking status of function calls

C and C++, 2-12

LabVIEW, 2-11

Index

© National Instruments Corporation Index-7 NI-CAN User Manual

choosing NI-CAN Objects

CAN Network Interface Objects, 2-4

CAN Objects, 2-5

detecting state changes, 3-4

interaction of NI-CAN software with your

application (figure), 1-16

LabVIEW RT, 2-1

model for NI-CAN applications

closing objects, 2-10

communicating using objects, 2-9

configuring objects, 2-9

general program steps (figure), 2-8

opening objects, 2-9

reading data, 2-10

starting communication, 2-9

waiting for available data, 2-10

queues

disabling queues, 3-2

empty queues, 3-2

full queues, 3-2

read and write queues, 3-1

state transitions, 3-1

synchronizing RTSI bus with

NI-DAQ, 1-17

PXI, CompactPCI, and RTSI, G-3

PXI-8460

fault reporting capabilities, G-3

parts locator diagram (figure), E-4

port characteristics for bus-powered

ports, H-2

replacing termination resistors, E-10

termination resistors

location of, (figure), E-11

preparing lead wires of,

(figure), E-11

PXI-8461

fault reporting capabilities, G-3

parts locator diagram (figure), D-5

port characteristics, H-2

PXI-8462

fault reporting capabilities, G-3

PXI-846x series boards

and RTSI interface, 1-10, G-3

hardware overview, 1-9

pins used by, G-3

Q
questions. See troubleshooting and common

questions.

queues

disabling queues, 3-2

empty queues, 3-2

full queues, 3-2

read and write queues, 3-1

state transitions, 3-1

R
reading data, 2-10

Real-Time System Integration (RTSI). See

RTSI.

related documentation, xiv

Remote Transmit Request (RTR) field, 1-4

resistance, determining termination, E-7

resistor

termination

high-speed CAN (figure), D-8

location on PCI-CAN/LS2 board

(figure), E-9

low-speed CAN (figure), E-6

preparing lead wires of replacement

PCI-CAN/LS2 (figure), E-10

PCMCIA-CAN/LS cable

(figure), E-12

replacing

low-speed CAN, E-10

PCI-CAN/LS board, E-9

PCMCIA-CAN/LS cable, E-12

Index

NI-CAN User Manual Index-8 ni.com

RTSI

AT-CAN series RTSI connector

pinout, G-1

bus definition and overview, 1-16

cable, G-4

definition of, 1-10

interface description, G-1, G-3

low-speed CAN, G-2

PCI-CAN series RTSI connector

pinout, G-2

pins used by PXI-846x series boards

(table), G-3

programming, G-4

synchronization to a common

trigger, 1-10

synchronizing with NI-DAQ, 1-17

S
Smart Distributed System (SDS), 1-11

SOF (Start of Frame) field, 1-3

software

overview, 1-11

specifications

AT-CAN series board, H-1

DeviceNet cable-length specifications

(table), D-7

PCI-CAN series board, H-1

PCMCIA-CAN series card, H-2

standard for CAN, 1-1

Start of Frame (SOF) field, 1-3

state changes, detecting, 3-4

state transitions, queues, 3-1

status of function calls, checking

C and C++, 2-12

LabVIEW, 2-11

status code (table), 2-12

stuff error, 1-6

system integration, by National

Instruments, I-1

T
technical support resources, I-1

termination resistance, determining, E-7

termination resistor

location on PCI-CAN/LS2 board

(figure), E-9

placement (figure), D-8

placement for low-speed CAN

(figure), E-6

preparing lead wires

PCMCIA-CAN/LS cable

replacement (figure), E-12

preparing lead wires of replacement

PCI-CAN/LS (figure), E-10

replacing

PCI-CAN/LS board, E-9

PCMCIA-CAN/LS cable, E-12

termination resistors

location of, low-speed CAN

(figure), E-11

preparing lead wires of, low-speed CAN

(figure), E-11

troubleshooting and common questions

Windows 2000

CAN hardware problem

encountered, C-3

common questions, C-4

missing CAN interface, C-2

NI-CAN Diagnostic utility

failures, C-3

NI-CAN software problem

encountered, C-3

problem shown in Device

Manager, C-2

Windows 2000 Device Manager, C-1

Windows Me/98/95

CAN hardware problem

encountered, A-4

common questions, A-5

interrupt resource conflict, A-4

memory resource conflict, A-3

Index

© National Instruments Corporation Index-9 NI-CAN User Manual

missing CAN interface, A-2

NI-CAN software problem

encountered, A-4

problem shown in Device

Manager, A-2

Windows Me/98/95 Device

Manager, A-1

Windows Me/98/95NI-CAN

configuration and diagnostic utilities

failures, A-3

Windows NT

CAN hardware problem

encountered, B-2

common questions, B-3

interrupt resource conflict, B-2

memory resource conflict, B-2

missing CAN interface, B-2

missing CAN interface in NI-CAN

configuration and diagnostic

utilities, B-1

NI-CAN configuration and

diagnostic utilities failures, B-1

NI-CAN software problem

encountered, B-2

no resources assigned, B-1

U
uninstalling

NI-CAN software

some components left installed, A-6,

B-4, C-5

using this manual set, xiii

utilities. See NI-CAN configuration and

diagnostic Utilities; NI-CAN NI-CAN

configuration and diagnostic utilities.

W
waiting for available data, 2-10

Web support from National Instruments, I-1

Windows 2000

troubleshooting and common questions

CAN hardware problem

encountered, C-3

common questions, C-4

missing CAN interface, C-2, C-3

NI-CAN Diagnostic utility

failures, C-3

problem shown in device

manager, C-2

uninstalling

CAN software, C-5

Windows 2000/NT

NI-CAN driver and utilities, 1-14

starting NI-CAN configuration and

diagnostic utilities, 5-1

Windows Me/98/95

NI-CAN driver and utilities, 1-14

starting NI-CAN configuration and

diagnostic utilities, 5-1

troubleshooting and common questions

CAN hardware problem

encountered, A-4

common questions, A-5

interrupt resource conflict, A-4

memory resource conflict, A-3

missing CAN interface, A-2, A-4

NI-CAN configuration and

diagnostic utilities failures, A-3

problem shown in device

manager, A-2

uninstalling

CAN software, A-6

Windows NT

troubleshooting and common questions

CAN hardware problem

encountered, B-2

common questions, B-3

interrupt resource conflict, B-2

memory resource conflict, B-2

missing CAN interface, B-2

Index

NI-CAN User Manual Index-10 ni.com

missing CAN interface in NI-CAN

Configuration utility, B-1

NI-CAN configuration and

diagnostic utilities failures, B-1

NI-CAN software problem

encountered, B-2

no resources assigned, B-1

uninstalling

CAN software, B-4

worldwide technical support, I-2

	NI-CAN™ User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Compliance
	Contents
	About This Manual
	How To Use the Manual Set
	Conventions
	Related Documentation

	Chapter 1 Introduction
	CAN Overview
	History and Use of CAN
	CAN Identifiers and Message Priority
	CAN Frames
	Start of Frame (SOF)
	Arbitration ID
	Remote Transmit Request (RTR)
	Identifier Extension (IDE)
	Data Length Code (DLC)
	Data Bytes
	Cyclic Redundancy Check (CRC)
	Acknowledgment Bit (ACK)
	End of Frame

	CAN Error Detection and Confinement
	Error Detection
	Error Confinement

	Low-Speed CAN

	NI-CAN Hardware Overview
	NI-CAN Software Overview
	Independent Design
	Object-Oriented Design
	NI-CAN Object Hierarchy
	NI-CAN Software Components
	NI-CAN Driver and Utilities
	Firmware Image Files
	Language Interface Files
	Application Examples
	Interaction of Software Components with Your Application

	RTSI Bus Overview
	The RTSI Solution
	Synchronizing with NI-DAQ

	Chapter 2 Developing Your Application
	Choosing Your Programming Method
	Choosing a Method to Access the NI-CAN Software
	(LabVIEW) Function Library
	LabVIEW Real-Time (RT)
	C/C++ Language Interfaces
	Direct Entry Access

	Choosing Which NI-CAN Objects to Use
	Using CAN Network Interface Objects
	Using CAN Objects

	Programming Model for NI-CAN Applications
	Step 1. Configure Objects
	Step 2. Open Objects
	Step 3. Start Communication
	Step 4. Communicate Using Objects
	Step 5. Close Objects

	Checking Status of Function Calls
	Checking Status in LabVIEW
	Checking Status in C or C++

	Chapter 3 NI-CAN Programming Techniques
	Using Queues
	State Transitions
	Empty Queues
	Full Queues
	Disabling Queues

	Using the CAN Network Interface Object with�CAN�Objects
	Detecting State Changes

	Chapter 4 Application Examples
	LabVIEW Examples
	C/C++ Examples
	Other Programming Languages

	Chapter 5 NI-CAN Configuration and Diagnostic Utilities
	Overview
	Starting the NI-CAN Configuration Utility in Windows�Me/98/95
	Starting the NI-CAN Configuration Utility in Windows�2000/NT
	Starting the NI-CAN Remote Configuration Utility for LabVIEW RT
	Starting the NI-CAN Diagnostic Utility

	Appendix A Windows Me/98/95: Troubleshooting and Common Questions
	Appendix B Windows NT: Troubleshooting and Common Questions
	Appendix C Windows 2000: Troubleshooting and Common Questions
	Appendix D Cabling Requirements for High-Speed CAN
	Appendix E Cabling Requirements for Low-Speed CAN
	Appendix F Cabling Requirements for Dual-Speed CAN
	Appendix G RTSI Bus
	Appendix I Technical Support Resources
	Glossary
	Symbols
	A
	B-C
	D-E
	F-K
	L-N
	O-R
	S-U
	V-W

	Index
	Numbers
	A-C
	D-F
	G-M
	N
	O-P
	Q-R
	S-T
	U-W

	Figures
	Figure 1-1. Example of CAN Arbitration
	Figure 1-2. Standard and Extended Frame Formats
	Figure 1-3. Simple CAN Device Network Application
	Figure 1-4. Applying NI-CAN Objects to the Example in Figure 1-3
	Figure 1-5. Interaction of NI-CAN Software Components
	Figure 2-1. General Program Steps Using NI-CAN Functions
	Figure 3-1. Flowchart for CAN Frame Reception
	Figure 5-1. NI-CAN Diagnostic Utility after Testing
	Figure A-1. CAN Interface That Is Not Working Properly
	Figure C-1. CAN Interface That Is Not Working Properly
	Figure C-2. CAN Interface That has Not Been Recognized Properly
	Figure D-1. Pinout for 9-Pin D-Sub Connector
	Figure D-2. Pinout for 5-Pin Combicon-Style Pluggable Screw Terminal
	Figure D-3. PCMCIA-CAN Cable
	Figure D-4. AT-CAN/2 Parts Locator Diagram
	Figure D-5. PCI-CAN/2 Parts Locator Diagram
	Figure D-6. PXI-8461 Parts Locator Diagram
	Figure D-7. Power Source Jumpers
	Figure D-8. Termination Resistor Placement
	Figure D-9. Cabling Example
	Figure E-1. Pinout for 9-Pin D-Sub Connector
	Figure E-2. PCMCIA-CAN/LS Cable
	Figure E-3. PCI-CAN/LS2 Parts Locator Diagram
	Figure E-4. PXI-8460 Parts Locator Diagram
	Figure E-5. Power Source Jumpers
	Figure E-6. Termination Resistor Placement for Low-Speed CAN
	Figure E-7. Location of Termination Resistors on PCI-CAN/LS2 Board
	Figure E-8. Preparing Lead Wires of Replacement Resistors
	Figure E-9. Location of Termination Resistors on a PXI-8460
	Figure E-10. Preparing Lead Wires of Replacement Resistors
	Figure E-11. Preparing Lead Wires of PCMCIA-CAN/LS Cable Replacement Resistors
	Figure E-12. Cabling Example
	Figure G-1. AT-CAN Series RTSI Connector Pinout
	Figure G-2. PCI-CAN Series RTSI Connector Pinout

	Tables
	Table 2-1. NI-CAN Error Cluster
	Table 2-2. NI-CAN Status Code
	Table D-1. Power Requirements for the CAN Physical Layer for Bus-Powered Versions
	Table D-2. ISO 11898 Specifications for Characteristics of a CAN_H and CAN_L Pair of Wires
	Table D-3. DeviceNet Cable Length Specifications
	Table E-1. Power Requirements for the Low-Speed CAN Physical Layer for Bus-Powered Versions
	Table E-2. ISO 11519-2 Specifications for Characteristics of a CAN_H and CAN_L Pair of Wires
	Table G-1. Pins Used By the PXI-846x Series Boards

