COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs.

Sell For Cash Get Credit Receive a Trade-In Deal

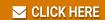
OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

Bridging the gap between the manufacturer and your legacy test system.

0

1-800-915-6216



www.apexwaves.com

sales@apexwaves.com

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote

PCIe-7858

SPECIFICATIONS

NI PCIe-7858

R Series Digital I/O Module for PCI Express, 8 AI, 8 AO, 48 DIO, 1 MS/s AI, 512 MB DRAM, Kintex-7 325T FPGA

The following specifications are typical at 25 °C unless otherwise noted.

Caution Observe all instructions and cautions in the user documentation. Using the model in a manner not specified can damage the model and compromise the built-in safety protection. Return damaged models to NI for repair.

Attention Suivez toutes les instructions et respectez toutes les mises en garde de la documentation utilisateur. L'utilisation d'un modèle de toute autre façon que celle spécifiée risque de l'endommager et de compromettre la protection de sécurité intégrée. Renvoyez les modèles endommagés à NI pour réparation.

Analog Input

Number of channels	8
Input modes (software-selectable; selection applies to all channels)	DIFF, NRSE, RSE
Type of ADC	Successive approximation register (SAR)
Resolution	16 bits
Conversion time	1 μs
Maximum sampling rate (per channel)	1 MS/s
Input impedance	
Powered on	1.25 GΩ 2 pF
Powered off/overload	4 kΩ minimum
Input signal range (software-selectable)	±1 V, ±2 V, ±5 V, ±10 V
Input bias current	±5 nA
Input offset current	±5 nA
Input coupling	DC

Overvoltage protection

Powered on	±42 V maximum
Powered off	±35 V maximum

Table 1. Al Operating Voltage Ranges Over Temperature

	Measurem	ent Voltage,	Al+ to Al-	Maximum Working Voltage
Range (V)	Minimum (V) ¹	Typical (V)	Maximum (V)	(Signal + Common Mode)
±10	±10.37	±10.5	±10.63	±12 V of ground
±5	±5.18	± 5.25	±5.32	±10 V of ground
±2	±2.07	±2.1	±2.13	±8.5 V of ground
±1	±1.03	±1.05	±1.06	±8 V of ground

Al Absolute Accuracy

Absolute accuracy at full scale numbers is valid immediately following internal calibration and assumes the device is operating within $10\,^{\circ}\text{C}$ of the last external calibration. Accuracies listed are valid for up to one year from the device external calibration.

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = $1 \, ^{\circ}$ C
- number of readings = 10,000
- CoverageFactor = 3σ

Table 2. Al Absolute Accuracy (Calibrated)

	Range			
Specifications	±10 V	±5 V	±2 V	±1 V
Residual Gain Error (ppm of Reading)	104.4	105.9	110.6	118.4
Gain Tempco (ppm/°C)	20	20	20	20
Reference Tempco (ppm/°C)	4	4	4	4
Residual Offset Error (ppm of Range)	16.4	16.4	16.4	16.4

¹ The minimum measurement voltage range is the largest voltage the NI PCIe-7858 is guaranteed to accurately measure.

Table 2. Al Absolute Accuracy (Calibrated) (Continued)

	Range			
Specifications	±10 V	±5 V	±2 V	±1 V
Offset Tempco (ppm of Range/°C)	4.18	4.17	4.41	4.63
INL Error (ppm of range)	42.52	46.52	46.52	50.52
Random Noise, $\sigma (\mu V_{rms})$	263	156	90	74
Absolute Accuracy at Full Scale (μV)	2,283	1,170	479	252

Table 3. Al Absolute Accuracy (Uncalibrated)

	Range			
Specifications	±10 V	±5 V	±2 V	±1 V
Residual Gain Error (ppm of Reading)	2,921	3,021	3,021	3,021
Gain Tempco (ppm/°C)	20	20	20	20
Reference Tempco (ppm/°C)	4	4	4	4
Residual Offset Error (ppm of Range)	661	671	700	631
Offset Tempco (ppm of Range/°C)	4.18	4.17	4.41	4.63
INL Error (ppm of range)	42.52	46.52	46.52	50.52
Random Noise, $\sigma (\mu V_{rms})$	263	156	90	74
Absolute Accuracy at Full Scale (µV)	36,895	19,018	7,667	3,769

Calculating Absolute Accuracy

 $AbsoluteAccuracy = Reading \times (GainError) + Range \times (OffsetError)$ + NoiseUncertainty

$$\label{eq:GainError} \begin{split} \textit{GainError} &= \textit{ResidualGainError} + \textit{GainTempco} \times \\ (\textit{TempChangeFromLastInternalCal}) &+ \textit{ReferenceTempco} \times \\ \end{split}$$
(TempChangeFromLastExternalCal)

 $OffsetError = ResidualOffsetError + OffsetTempco \times$ $(TempChangeFromLastInternalCal) + INL_Error$

$$NoiseUncertainty = \frac{RandomNoise \times CoverageFactor}{\sqrt{number_of_readings}}$$

Refer to the following equation for an example of calculating absolute accuracy for a 10 V reading.

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = 1 °C
- number of readings = 10,000
- CoverageFactor = 3σ

$$GainError = 104.4 \text{ ppm} + 20 \text{ ppm} \times 1 + 4 \text{ ppm} \times 10$$

$$GainError = 164.4 ppm$$

$$OffsetError = 16.4 \text{ ppm} + 4.18 \text{ ppm} \times 1 + 42.52 \text{ ppm}$$

$$OffsetError = 63.1 ppm$$

NoiseUncertainty =
$$\frac{263 \text{ } \mu\text{V} \times 3}{\sqrt{10,000}}$$

NoiseUncertainty =
$$7.89 \mu V$$

 $AbsoluteAccuracy = 10 \text{ V} \times (GainError) + 10 \text{ V} \times (OffsetError) + NoiseUncertainty$

AbsoluteAccuracy =
$$2,283 \mu V$$

DC Transfer Characteristics

INL	Refer to the AI Accuracy Table
DNL	±0.4 LSB typical, ±0.9 LSB maximum
No missing codes	16 bits guaranteed
CMRR, DC to 60 Hz	-100 dB

Dynamic Characteristics

Bandwidth		
Small signal	1 MHz	
Large signal	500 kHz	

Table 4. Settling Time

			Accuracy	
Range (V)	Step Size (V)	±16 LSB	±4 LSB	±2 LSB
±10	±20.0	1.50 μs	4.00 μs	7.00 μs
	±2.0	0.50 μs	0.50 μs	1.00 μs
	±0.2	0.50 μs	0.50 μs	0.50 μs
±5	±10	1.50 µs	3.50 µs	7.50 μs
	±1	0.50 μs	0.50 μs	1.00 μs
	±0.1	0.50 μs	0.50 μs	0.50 μs
±2	±4	1.00 μs	3.50 μs	8.00 μs
	±0.4	0.50 μs	0.50 μs	1.00 µs
	±0.04	0.50 μs	0.50 μs	0.50 μs
±1	±2	1.00 μs	3.50 μs	12.00 μs
	±0.2	0.50 μs	0.50 μs	2.00 μs
	±0.02	0.50 μs	0.50 μs	0.50 μs

Crosstalk -80 dB, DC to 100 kHz, at 50 Ω

Analog Output

Output type	Single-ended, voltage output
Number of channels	8
Resolution	16 bits
Update time	1 μs
Maximum update rate	1 MS/s
Type of DAC	Enhanced R-2R

Range	±10 V
Output coupling	DC
Output impedance	0.5 Ω
Current drive	±2.5 mA
Protection	Short circuit to ground
Overvoltage protection	
Powered on	±15 V maximum
Powered off	±10 V maximum
Power-on state	User-configurable
Power-on glitch	-1 V for 2 μs
Power-down glitch	-500 mV for 100 μs

Table 5. AO Operating Voltage Ranges for Over Temperature

	Measurement Voltage, AO+ to AO GND			
Range (V)	Minimum (V) ²	Typical (V)	Maximum (V)	
±10	±10.1	±10.16	±10.22	

AO Absolute Accuracy

Absolute accuracy at full scale numbers is valid immediately following internal calibration and assumes the device is operating within $10\,^{\circ}\text{C}$ of the last external calibration. Accuracies listed are valid for up to one year from the device external calibration.

Absolute accuracy at full scale on the analog output channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = 1 °C

Table 6. AO Absolute Accuracy (Calibrated)

Specifications	±10 V Range
Residual Gain Error (ppm of Reading)	87.3
Gain Tempco (ppm/°C)	12.6
Reference Tempco (ppm/°C)	4

² The minimum measurement voltage range is the largest voltage the NI PCIe-7858 is guaranteed to accurately measure.

Table 6. AO Absolute Accuracy (Calibrated) (Continued)

	<u> </u>
Specifications	±10 V Range
Residual Offset Error (ppm of Range)	41.1
Offset Tempco (ppm of Range/°C)	7.8
INL Error (ppm of range)	61
Absolute Accuracy at Full Scale (μV)	2,498

Table 7. AO Absolute Accuracy (Uncalibrated)

Specifications	±10 V Range		
Residual Gain Error (ppm of Reading)	2,968.6		
Gain Tempco (ppm/°C) 12.6			
Reference Tempco (ppm/°C)	4		
Residual Offset Error (ppm of Range)	1,004.1		
Offset Tempco (ppm of Range/°C)	7.8		
INL Error (ppm of range)	61		
Absolute Accuracy at Full Scale (μV)	40,941		

Calculating Absolute Accuracy

 $AbsoluteAccuracy = OutputValue \times (GainError) + Range \times (OffsetError)$

 $GainError = ResidualGainError + GainTempco \times$ $(TempChangeFromLastInternalCal) + ReferenceTempco \times$ (TempChangeFromLastExternalCal)

 $OffsetError = ResidualOffsetError + AOOffsetTempco \times$ $(TempChangeFromLastInternalCal) + INL_Érror$

Refer to the following equation for an example of calculating absolute accuracy for a 10 V reading.

Absolute accuracy at full scale on the analog output channels is determined using the following assumptions:

- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = 1 °C

$$GainError = 87.3 ppm + 12.6 ppm \times 1 + 4 ppm \times 10$$

$$GainError = 139.9 ppm$$

$$OffsetError = 41.1 ppm + 7.8 ppm \times 1 + 61 ppm$$

$$OffsetError = 109.9 ppm$$

 $AbsoluteAccuracy = 10 V \times (GainError) + 10 V \times (OffsetError)$

AbsoluteAccuracy = $2,498 \mu V$

DC Transfer Characteristics

INL	Refer to the AO Accuracy Table	
DNL	±0.5 LSB typical, ±1 LSB maximum	
Monotonicity	16 bits, guaranteed	

Dynamic Characteristics

Table 8. Settling Time

	Accuracy		
Step Size (V)	±16 LSB	±4 LSB	±2 LSB
±20.0	5.3 μs	6.5 μs	7.8 µs
±2.0	3.2 μs	3.9 μs	4.4 μs
±0.2	1.8 μs	2.8 μs	3.8 μs

Slew rate	$10 \text{ V/}\mu\text{s}$
Noise	$250~\mu V$ RMS, DC to 1 MHz
Glitch energy at midscale transition	± 10 mV for 3 μs

5V Output

Output voltage	4.75 V to 5.1 V
Output current	0.5 A maximum

Overvoltage protection	±30 V
Overcurrent protection	650 mA

Digital I/O

Table 9. Channel Frequency

Connector	Number of Channels	Maximum Frequency
Connector 0	16	10 MHz
Connector 1	32	80 MHz

Compatibility LVTTL, LVCMOS Logic family Software-selectable Default software setting 3.3 V

Table 10. Digital Input Logic Levels

	Input Low Voltage (V _{IL})		Input High	Voltage (V _{IH})
Logic Family	Minimum	Maximum	Minimum	Maximum
1.2 V	-0.3 V	0.40 V	0.84 V	1.5 V
1.5 V	-0.3 V	0.50 V	1.05 V	1.8 V
1.8 V	-0.3 V	0.60 V	1.25 V	2.1 V
2.5 V	-0.3 V	0.70 V	1.70 V	2.8 V
3.3 V	-0.3 V	0.80 V	2.00 V	3.6 V

±15 μA maximum Input leakage current Input impedance $50 \text{ k}\Omega$ typical, pull-down

Table 11. Digital Output Logic Levels

Logic Family	Current	Output Low Voltage (V _{OL}) Maximum	Output High Voltage (V _{OH}) Minimum
1.2 V	100 μΑ	0.20 V	1.00 V
1.5 V	100 μΑ	0.20 V	1.25 V
1.8 V	100 μΑ	0.20 V	1.54 V

Table 11. Digital Output Logic Levels (Continued)

Logic Family	Current	Output Low Voltage (V _{OL}) Maximum	Output High Voltage (V _{OH}) Minimum
2.5 V	100 μΑ	0.20 V	2.22 V
3.3 V	100 μΑ	0.20 V	3.00 V
	4 mA	0.40 V	2.40 V

Maximum DC output current per channel	
Source	4.0 mA
Sink	4.0 mA
Output impedance	50 Ω
Power-on state	Programmable, by line
Protection	±20 V, single line ³
Digital I/O voltage selection	Programmable, per connector, and defined at compilation (not run-time configurable)
Direction control of digital I/O channels	Per channel
Minimum I/O pulse width	6.25 ns
Minimum sampling period	5 ns

External Clock

Direction	Input into device
Maximum input leakage	±15 μA
Characteristic impedance	50 Ω
Power-on state	Tristated
Minimum input	Inherited from programmed digital voltage selection per connector
Maximum input	Inherited from programmed digital voltage selection per connector

NI recommends minimizing long-term over/under-voltage exposure to the Digital I/O. Prolonged DC voltage stresses that violate the maximum and minimum digital input voltage ratings may reduce device longevity. Over/under-voltage stresses are considered prolonged if the cumulative time in the abnormal condition exceeds 1 year.

Logic level	Inherited from programmed digital voltage selection per connector
Maximum input frequency	80 MHz

Reconfigurable FPGA

FPGA type	Kintex-7 325T
Number of flip-flops	407,600
Number of LUTs	203,800
Embedded Block RAM	16,020 kbits
Number of DSP48 slices	840
Timebase	40 MHz, 80 MHz, 120 MHz, 160 MHz, or 200 MHz
Default timebase	40 MHz
Timebase accuracy	±100 ppm, 250 ps peak-to-peak jitter
Data transfers	DMA, interrupts, programmed I/O

Onboard DRAM

Memory size	1 Bank; 512 MB
Maximum theoretical data rate	800 MB/s streaming

Synchronization Resources

Input/output source F	RTSI<07>
-----------------------	----------

Bus Interface

Form factor	x4 PCI Express, specification v1.0 compliant
Slot compatibility	x4, x8, and x16 PCI Express slots
Data transfers	DMA, interrupts, programmed I/O
Number of DMA channels	16

Power Requirements

Power requirements are dependent on the digital output loads and configuration of the LabVIEW FPGA VI used in your application.

+3.3 V	3 A
+12 V	2 A

Physical Characteristics

Weight	165.1 g (5.82 oz)
Printed circuit board dimensions	16.8 cm × 11.1 cm (6.60 in. × 4.38 in.)
Form factor	standard height, half length, single slot
I/O connectors	2 × 68-pin VHDCI

Safety Voltages

Connect only voltages that are below these limits.

Channel-to-earth	±12 V, Measurement Category I
Channel-to-channel	±24 V, Measurement Category I

Caution Do not connect the NI PCIe-7858 to signals or use for measurements within Measurement Categories II, III, or IV.

Attention Ne connectez pas le NI PCIe-7858 à des signaux et ne l'utilisez pas pour effectuer des mesures dans les catégories de mesure II, III ou IV.

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated lowvoltage sources, and electronics.

Note Measurement Categories CAT I and CAT O are equivalent. These test and measurement circuits are for other circuits not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or the Product Certifications and Declarations section.

Electromagnetic Compatibility Standards

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

CE Compliance (€

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)
- 2011/65/EU; Restriction of Hazardous Substances (RoHS)

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit ni.com/ certification, search by model number or product line, and click the appropriate link in the Certification column

Environmental Guidelines

Notice This model is intended for use in indoor applications only.

Operating Environment

Operating temperature, local ⁴	0 °C to 55 °C (IEC 60068-2-1 and IEC 60068-2-2)
Operating humidity	10% RH to 90% RH, noncondensing (IEC 60068-2-78)

Storage Environment

Temperature	
Operating ⁵	0 °C to 55 °C
Storage	-20 °C to 70 °C
Humidity	
Operating	10% RH to 90% RH, noncondensing
Storage	5% RH to 95% RH, noncondensing
Pollution Degree	2
Maximum altitude	2,000 m (at 25 °C ambient temperature)

⁴ For PCI Express adapter cards without integrated air movers, NI defines the local operational ambient environment to be 25 mm (1 in.) upstream of the leading edge of the card with system airflow of at least 0.4 m/s (80 LFM) for half length cards and 0.6 m/s (120 LFM) for three-quarter length cards. For more information about the local operational ambient environment definition for PCI Express adapter cards, visit *ni.com/info* and enter the Info Code pcielocalambient.

⁵ For PCI Express adapter cards without integrated air movers, NI defines the local operational ambient environment to be 25 mm (1 in.) upstream of the leading edge of the card with system airflow of at least 0.4 m/s (80 LFM) for half length cards and 0.6 m/s (120 LFM) for three-quarter length cards. For more information about the local operational ambient environment definition for PCI Express adapter cards, visit *ni.com/info* and enter the Info Code pcielocalambient.

Maximum Altitude and Pollution Degree

Refer to the manual for the chassis you are using for more information about meeting these specifications.

Maximum altitude	2,000 m (at 25 °C ambient temperature)
Pollution degree	2

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the Minimize Our Environmental Impact web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法(中国 RoHS)

🕝 🐠 中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物 质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs china。 (For information about China RoHS compliance, go to ni.com/environment/rohs china.)

Calibration

Recommended warm-up time	15 minutes
Calibration interval	1 year

Onboard calibration reference

DC level ⁶	5.000 V (±2 mV)
Temperature coefficient	±4 ppm/°C maximum
Long-term stability	±25 ppm/1,000 h

Note Refer to Calibration Certifications at *ni.com/calibration* to generate a calibration certificate for the NI PCIe-7858

Worldwide Support and Services

The NI website is your complete resource for technical support. At *ni.com/support*, you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

Visit *ni.com/services* for information about the services NI offers.

Visit *ni.com/register* to register your NI product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

NI corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. NI also has offices located around the world. For support in the United States, create your service request at *ni.com/support* or dial 1 866 ASK MYNI (275 6964). For support outside the United States, visit the *Worldwide Offices* section of *ni.com/niglobal* to access the branch office websites, which provide up-to-date contact information.

Information is subject to change without notice. Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the Export Compliance Information at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.

⁶ Actual value stored in Flash memory