

 PCMCIA-FBUS-2

https://www.apexwaves.com/modular-systems/national-instruments/pcmcia-series/PCMCIA-FBUS-2?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/pcmcia-series/PCMCIA-FBUS-2?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/pcmcia-series/PCMCIA-FBUS-2?aw_referrer=pdf

FOUNDATION
TM

 Fieldbus

NI-FBUS Hardware and Software User Manual

NI-FBUS Hardware and Software User Manual

January 2014

371994H-01

Support

Worldwide Technical Support and Product Information

ni.com

Worldwide Offices

Visit ni.com/niglobal to access the branch office Web sites, which provide up-to-date

contact information, support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the Technical Support and Professional Services

appendix. To comment on National Instruments documentation, refer to the National

Instruments website at ni.com/info and enter the Info Code feedback.

© 2006–2014 National Instruments. All rights reserved.

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions,
he media on which you receive National Instruments software are warranted not to fail to execute programming instructions,
due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other
documentation. National Instruments will, at its option, repair or replace software media that do not execute programming
instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not
warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of
the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of
returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages arising
out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT
OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER.
NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL
OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments
will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National
Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any
delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages,
defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation,
or maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure
or surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the
prior written consent of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected
by copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials
belonging to others, you may use NI software only to reproduce materials that you may reproduce in accordance with the
terms of any applicable license or other legal restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:

� Notices are located in the <National Instruments>_Legal Information and <National Instruments>
directories.

� EULAs are located in the <National Instruments>\Shared\MDF\Legal\license directory.

� Review <National Instruments>_Legal Information.txt for more information on including legal information
in installers built with NI products.

Trademarks
Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for more information on National Instruments
trademarks.

ARM, Keil, and µVision are trademarks or registered of ARM Ltd or its subsidiaries.

LEGO, the LEGO logo, WEDO, and MINDSTORMS are trademarks of the LEGO Group.

TETRIX by Pitsco is a trademark of Pitsco, Inc.

FIELDBUS FOUNDATION™ and FOUNDATION™ are trademarks of the Fieldbus Foundation.

EtherCAT® is a registered trademark of and licensed by Beckhoff Automation GmbH.

CANopen® is a registered Community Trademark of CAN in Automation e.V.

DeviceNet™ and EtherNet/IP™ are trademarks of ODVA.

Go!, SensorDAQ, and Vernier are registered trademarks of Vernier Software & Technology. Vernier Software & Technology
and vernier.com are trademarks or trade dress.

Xilinx is the registered trademark of Xilinx, Inc.

Taptite and Trilobular are registered trademarks of Research Engineering & Manufacturing Inc.

FireWire® is the registered trademark of Apple Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Handle Graphics®, MATLAB®, Real-Time Workshop®, Simulink®, Stateflow®, and xPC TargetBox® are registered
trademarks, and TargetBox™ and Target Language Compiler™ are trademarks of The MathWorks, Inc.

Tektronix®, Tek, and Tektronix, Enabling Technology are registered trademarks of Tektronix, Inc.

The Bluetooth® word mark is a registered trademark owned by the Bluetooth SIG, Inc.

The ExpressCard™ word mark and logos are owned by PCMCIA and any use of such marks by National Instruments is under
license.

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft
Corporation in the United States and other countries.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments
and have no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your
software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

Export Compliance Information
Refer to the Export Compliance Information at ni.com/legal/export-compliance for the National Instruments global
trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A
LEVEL OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS
CRITICAL COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN
REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE
PRODUCTS CAN BE IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS
IN ELECTRICAL POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING
SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO
DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY
PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES,
TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED
USES OR MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE
FACTORS SUCH AS THESE ARE HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY
APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF HARM TO PROPERTY OR PERSONS
(INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY UPON ONE
FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR
DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT
AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS'
TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL
INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED
OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS
ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL
INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A
SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, PROCESS
AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Compliance

Electromagnetic Compatibility Information
This hardware has been tested and found to comply with the applicable regulatory requirements and limits

for electromagnetic compatibility (EMC) as indicated in the hardware’s Declaration of Conformity (DoC)1.
These requirements and limits are designed to provide reasonable protection against harmful interference
when the hardware is operated in the intended electromagnetic environment. In special cases, for example
when either highly sensitive or noisy hardware is being used in close proximity, additional mitigation
measures may have to be employed to minimize the potential for electromagnetic interference.

While this hardware is compliant with the applicable regulatory EMC requirements, there is no guarantee

that interference will not occur in a particular installation. To minimize the potential for the hardware to
cause interference to radio and television reception or to experience unacceptable performance degradation,
install and use this hardware in strict accordance with the instructions in the hardware documentation and

the DoC1.

If this hardware does cause interference with licensed radio communications services or other nearby
electronics, which can be determined by turning the hardware off and on, you are encouraged to try to correct
the interference by one or more of the following measures:

� Reorient the antenna of the receiver (the device suffering interference).

� Relocate the transmitter (the device generating interference) with respect to the receiver.

� Plug the transmitter into a different outlet so that the transmitter and the receiver are on different branch
circuits.

Some hardware may require the use of a metal, shielded enclosure (windowless version) to meet the EMC
requirements for special EMC environments such as, for marine use or in heavy industrial areas. Refer to

the hardware’s user documentation and the DoC1 for product installation requirements.

When the hardware is connected to a test object or to test leads, the system may become more sensitive to
disturbances or may cause interference in the local electromagnetic environment.

Operation of this hardware in a residential area is likely to cause harmful interference. Users are required to
correct the interference at their own expense or cease operation of the hardware.

Changes or modifications not expressly approved by National Instruments could void the user’s right to
operate the hardware under the local regulatory rules.

1 The Declaration of Conformity (DoC) contains important EMC compliance information and instructions
for the user or installer. To obtain the DoC for this product, visit ni.com/certification, search by
model number or product line, and click the appropriate link in the Certification column.

© National Instruments | vii

Contents

About This Manual
Related Documentation .. xi

Chapter 1
Introduction
FF Overview ... 1-1

NI-FBUS Hardware Products ... 1-1

PCI, PCMCIA, and USB .. 1-1

NI-FBUS Software Products .. 1-2

Communications Manager.. 1-2

Configurator.. 1-2

Monitor ... 1-2

Chapter 2
Connector and Cabling
PCI-FBUS/2.. 2-1

Fieldbus Cable Connector Pinout ... 2-1

PCMCIA-FBUS.. 2-2

Pinout Information.. 2-2

USB-8486 ... 2-4

9-Pin D-SUB (DB-9) Cable Information.. 2-4

Chapter 3
NI-FBUS CM Software
NI-FBUS Communications Manager Overview .. 3-1

Installing the OPC NI-FBUS Server .. 3-2

NI-FBUS Functions Overview ... 3-2

Administrative Functions ... 3-2

Example: Using Administrative Functions... 3-2

Core Functions.. 3-3

Example: Using Core Functions... 3-3

Alert and Trend Functions.. 3-3

Device Description Functions .. 3-4

Using the NI-FBUS Communications Manager Process ... 3-5

Developing Your NI-FBUS Communications Manager Application 3-6

Choose Your Level of Communication.. 3-6

Choose to Access by Name or Index.. 3-6

Choose to Write Single-Thread or Multi-Thread Applications................................ 3-6

Single-Thread Applications.. 3-7

Multi-Thread Applications ... 3-7

Access Object Dictionary Entries... 3-7

Contents

viii | ni.com

Access Management Information Base (MIB) Parameters3-8

H1 Device MIB List Parameters...3-8

H1 Device MIB Parameters ..3-8

HSE Device MIB List Parameters ..3-9

HSE Device MIB Parameters ...3-9

Use the NI-FBUS Dialog Utility to Communicate with Devices.............................3-10

Write Your Application ..3-10

Compile, Link, and Run Your Application...3-11

Sample Programs ..3-12

Configuring the Link Active Schedule File ..3-12

Introduction to the Link Active Schedule File..3-12

Format of the Link Active Schedule File..3-12

Chapter 4
Developing The Application
LabVIEW..4-1

Visual C++..4-1

Visual Basic ..4-2

.NET Class Libraries...4-2

OPC Server ...4-3

OPC Data Type Mapping Rule ...4-3

Chapter 5
NI-FBUS Function Reference
Administrative Functions..5-1

List of Administrative Functions ..5-1

Core Fieldbus Functions ...5-26

List of Core Functions ..5-26

Using Interface Macros...5-55

Alert and Trend Functions ..5-56

Appendix A
Specifications
PCI-FBUS/2..A-1

PCMCIA-FBUS..A-4

USB-8486 ...A-7

Appendix B
Troubleshooting and Common Questions
Interface Board—USB, PCI, and PCMCIA ...B-1

NI-FBUS Software ...B-8

NI-FBUS Hardware and Software User Manual

© National Instruments | ix

Appendix C
Technical Support and Professional Services

Glossary

Index

© National Instruments | xi

About This Manual

This manual contains information on how to configure and use National Instruments Fieldbus

hardware and software.

Related Documentation

The following documents contain information that you may find helpful as you read this manual:

� Fieldbus Standard for Use in Industrial Control Systems, Part 2, ISA-S50.02.1992

� NI-FBUS Installation Guide

� Wiring and Installation 31.25 kbit/s, Voltage Mode, Wire Medium Application Guide,

Fieldbus Foundation

© National Instruments | 1-1

1
Introduction

This chapter provides an introduction to the FOUNDATION™ Fieldbus (FF) and the National

Instruments hardware and software products for FF.

FF Overview

FOUNDATION Fieldbus is an all-digital, two-way, multi-drop communication system that brings

the control algorithms into instrumentation. FOUNDATION Fieldbus is a Local Area Network

(LAN) for FOUNDATION Fieldbus devices including process control sensors, actuators, and

control devices. FOUNDATION Fieldbus supports digital encoding of data and many types of

messages. Unlike many traditional system which requires a set of wires for each device, multiple

FOUNDATION Fieldbus devices can be connected to the same set of wires.

FOUNDATION Fieldbus has two communication protocols: H1 and HSE. The first, H1, transmits

at 31.25 Kb/s and is used to connect the field devices. The second protocol, High Speed Ethernet

(HSE), uses 10 or 100 Mbps Ethernet as the physical later and provides a high-speed backbone

for the network.

Please refer to FOUNDATIONTM Fieldbus Overview document for more information about

FOUNDATION Fieldbus technology.

NI-FBUS Hardware Products

PCI, PCMCIA, and USB
National Instruments provides interface devices for the PCI bus (PCI-FBUS), PCMCIA

(PCMCIA-FBUS), and USB (USB-8486). Each National Instruments device connects

FOUNDATION Fieldbus devices to standard desktop, industrial, and notebook personal computers.

PCMCIA-FBUS is available in 1- and 2-port configurations. PCI-FBUS is available in a 2-port

configuration. USB-8486 is available in a 1-port configuration.

The PCI-FBUS/USB-8486 uses a standard DB-9 male D-SUB connector to attach to the

Fieldbus network. The PCMCIA-FBUS connects to the fieldbus by using a cable that provides

two connectors to attach to the fieldbus network DB-9 male D-SUB connector and

Combicon-style pluggable screw terminals.

1-2 | ni.com

Chapter 1 Introduction

NI-FBUS Software Products

Communications Manager
The NI-FBUS Communications Manager implements a high-level Application Program

Interface (API) that lets you communicate with the National Instruments FOUNDATION Fieldbus

communication stack and hardware. It provides a high-level API advanced users can use to

interface with the National Instruments FOUNDATION Fieldbus communication stack and

hardware.

Configurator
Most NI-FBUS users use the NI-FBUS Configurator. In addition to providing the functionality

of the NI-FBUS Communications Manager in a graphical format, it includes additional

functionality to allow you to configure a Fieldbus network. It can automatically generate the

schedule for the network and configure field devices and hosts to transmit and receive alarms

and trends.

Monitor
The NI-FBUS Monitor helps you monitor and debug Fieldbus data traffic. It symbolically

decodes data packets from the Fieldbus, monitors the live list, and performs statistical analysis

of packets. You can use the NI-FBUS Monitor to diagnose the communication of H1 network

or debug the development of device.

You can use FOUNDATION Fieldbus products with National Instruments HMI software packages,

including Lookout and LabVIEW DSC. And you can also use third-party HMI software through

NI-FBUS OPC Server.

© National Instruments | 2-1

2
Connector and Cabling

This chapter provides hardware connector and interface cabling information for PCI-FBUS,

PCMCIA-FBUS, and USB-8486. Install the software and hardware before cabling the hardware.

Refer to the NI-FBUS Installation Guide available in PDF-format in the NI-FBUS Software

media or in printed-format shipped with the media.

PCI-FBUS/2

This section contains information about the pinout of the PCI-FBUS connectors.

Fieldbus Cable Connector Pinout
To make a Fieldbus cable, ensure that pins 6 and 7 are used for the Fieldbus signals as shown in

Figure 2-1. The cable must also follow the technical specifications listed in the document

Fieldbus Standard for Use in Industrial Control Systems, Part 2, ISA-S50.02.1992.

Figure 2-1. Fieldbus Connector Pinout for the PCI-FBUS

1
2

3
4

5

6
7

8
9

No Connection

No Connection

No Connection

No Connection

No Connection

No Connection

No Connection

Data –

Data +

2-2 | ni.com

Chapter 2 Connector and Cabling

PCMCIA-FBUS

This section contains information about the pinout of the PCMCIA-FBUS connectors.

Pinout Information
A PCMCIA-FBUS cable has been included in your kit. The following figures show the pinout

of the PCMCIA-FBUS connectors so you can make your own cable if you need a longer cable

than the one provided in your kit.

Figure 2-2 shows the PCMCIA-FBUS cable. An arrow on the cable points to pin 1 of the screw

terminal block.

Figure 2-2. PCMCIA-FBUS Cable

The PCMCIA-FBUS/2 cable has two Fieldbus connectors that are similar to the one shown in

Figure 2-2. The connector labeled PCMCIA-FBUS, PORT 1 is the connector for Fieldbus port

1 and the connector labeled PCMCIA-FBUS, PORT 2 is the connector for Fieldbus port 2.

Refer to Figure 2-3 and Figure 2-4 for the pinouts of both connectors.

J2

J1

PCMCIA-FBUS, PORT 1

V-
D-

SH
D+

V+

© National Instruments | 2-3

NI-FBUS Hardware and Software User Manual

Figure 2-3 shows J1, the Fieldbus connector pinout.

Figure 2-3. Fieldbus Connector Pinout

Figure 2-4 shows J2, the screw terminal block pinout.

Figure 2-4. Screw Terminal Block Pinout

The pinout of the PCMCIA-FBUS uses pins 6 and 7 of the J1 connector for the Fieldbus signals

as specified in the Fieldbus Standard for Use in Industrial Control Systems, Part 2,

ISA-S50.02.1992. Pins 2 and 4 of the J2 screw terminal block provide an alternate connection to

the Fieldbus. However, the screw terminal block is not an independent link.

All of the signals on the screw terminal block provide a direct connection to the 9-pin D-SUB.

National Instruments provides the Power+ and Power- connections as passive connections from

the D-SUB to the screw terminal. The PCMCIA-FBUS itself does not supply power to, or draw

power from, these pins.

No Connection

No Connection

No Connection

No Connection

No Connection

Power –

Power +

Data –

Data +

1
3

2
5

4

7
6

8
9

1

2

3

4

5

Power –

Data –

Shield

Data +

Power +

2-4 | ni.com

Chapter 2 Connector and Cabling

USB-8486

The USB-8486 hardware has a 9-pin male D-SUB (DB-9) connector for the H1 port.

Figure 2-5 shows the male DB-9 connector pinout.

Figure 2-5. Male DB-9 Connector Pinout for the USB-8486

The pinout of the USB-8486 uses pins 6 and 7 of the connector for the Fieldbus signals as

specified in the Fieldbus Standard for Use in Industrial Control Systems, Part 2,

ISA-S50.02.1992.

9-Pin D-SUB (DB-9) Cable Information
A 2-meter cable has been included in your kit which converts the 9-pin D-SUB connector to

three wire pigtails.

Figure 2-6. DB-9 Cable for the USB-8486

1
2

3
4

5

6
7

8
9

No Connection

No Connection

No Connection

No Connection

No Connection

No Connection

No Connection

Data –

Data +

© National Instruments | 2-5

NI-FBUS Hardware and Software User Manual

Figure 2-7 shows the pinout of the 9-pin D-SUB female connector so you can make your own

cable if you need a longer cable than the one provided in your kit.

Figure 2-7. Pinout for 9-Pin D-SUB Female Connector of the DB-9 Cable

Table 2-1 provides the cable pigtail “pinout.”

All of the signals on the three wire pigtails provide a direct corresponding connection to the 9-pin

D-SUB.

Table 2-1. Information for Cable Pigtails

Signal Color Size

Data + Red 22 AWG

Data - Black 22 AWG

Shield Green 22 AWG

5
4

3
2

1

9
8

7
6

No Connection

No Connection

No Connection

No Connection

No Connection

No Connection

No Connection

Data +

Data –

© National Instruments | 3-1

3
NI-FBUS CM Software

This chapter provides information on the NI-FBUS Communications Manager (CM) software.

It assumes that you are already familiar with your Microsoft operating system.

NI-FBUS Communications Manager Overview

The NI-FBUS Communications Manager implements a high-level Application Program

Interface (API) that facilitates communication with the National Instruments FOUNDATION

Fieldbus communication stack and hardware. The main purpose of the NI-FBUS

Communications Manager is to make the details of the Fieldbus communication protocols

transparent by providing an API that supports TAG.PARAMETER access. You need a general

knowledge of the Fieldbus architecture (outlined in the FOUNDATIONTM Fieldbus Overview

document) to understand and use the NI-FBUS Communications Manager.

The NI-FBUS Communications Manager handles communication between the communication

stack and the user application. It also handles the details of communicating with the Fieldbus

Messaging Specification (FMS) and lower layers of the communications stack. The NI-FBUS

Communications Manager hides the low-level details of Virtual Communication Relationships

(VCRs), connection management, addresses, and Object Dictionary indices, and offers name

access to physical devices, Virtual Field Devices (VFDs), function blocks, transducer blocks,

and parameters.

The NI-FBUS Communications Manager API is independent of the National Instruments

Fieldbus hardware and the operating system. With the NI-FBUS Communications Manager, you

can insert multiple National Instruments Fieldbus interfaces into the same PC and use them

through the NI-FBUS Communications Manager API.

The NI-FBUS Communications Manager is interface-independent because this tool does not

require you to specify which Fieldbus interface to use in NI-FBUS Communications Manager

calls. It determines the interface over which to send certain Fieldbus messages. The NI-FBUS

Communications Manager lets you write applications that are as independent as possible of the

actual configuration of your Fieldbus interfaces.

The NI-FBUS Communications Manager API is useful for developing host applications. Typical

examples are function block tuning software packages and applications for monitoring a

function block, diagnosing a network, and developing interfaces to Human-Machine Interface

(HMI) packages.

3-2 | ni.com

Chapter 3 NI-FBUS CM Software

Installing the OPC NI-FBUS Server

The NI-FBUS installer automatically installs the OPC NI-FBUS server. However, it also can be

installed manually. To do this, open a DOS command prompt and run the following commands

from the target directory:

regsvr32 opccomn_ps.dll

regsvr32 opcproxy.dll

nifb_opcda.exe /regserver

NI-FBUS Functions Overview

The NI-FBUS functions are classified into four categories:

� Administrative functions

� Core functions

� Alert and trend functions

� Device description functions

All NI-FBUS functions are described in detail in the NI-FBUS Communications Manager

Function Reference Manual.

Administrative Functions
You can use the administrative functions to get the list of physical devices in a link, get a list of

virtual field devices in a physical device, and get a list of blocks (resource, function, transducer)

from a virtual field device. The administrative functions include nifGetDeviceList,

nifGetVfdList, and nifGetBlockList. Typically, you must call these before you call a

core, alert, or any other administrative function.

Because you can use the NI-FBUS Communications Manager to communicate with each of the

FOUNDATION Fieldbus entities, such as links, physical devices, virtual field devices, and blocks,

there are nifOpen calls for you to open and get a descriptor to each of these entities.

Example: Using Administrative Functions
Suppose you want to get a descriptor to a block with nifOpenBlock before you read or write

the block parameters. Then you want to open a block using the block’s tag.

To open a block with the tag TI101_Analog_Input, invoke

nifOpenBlock(sessionDesc, "TI101_Analog_Input", &blockDesc), where

sessionDesc is the descriptor of the session that you established with the NI-FBUS

Communications Manager. The NI-FBUS Communications Manager returns the descriptor of

the block that you opened in blockDesc. From then on, you can use this descriptor for calls

associated with this block.

© National Instruments | 3-3

NI-FBUS Hardware and Software User Manual

Core Functions
Core NI-FBUS functions are the functions that deal with processing function block

parameters—primarily the nifReadObject and nifWriteObject functions, which read

and write block parameters. The NI-FBUS Communications Manager encapsulates the device

description services with the core function nifGetObjectAttributes, which gives you the

device description attributes of any parameter.

Function blocks contain view or display objects. As the name implies, these objects are a

collection of parameters in function blocks that are typically displayed in an operator console.

Four view objects are defined for each of the ten standard function blocks in the FOUNDATION

Fieldbus specification.

The following examples are a summary of the NI-FBUS Communications Manager because

they demonstrate that details such as VCRs, indices, and connections are hidden by the

TAG.PARAMETER access provided by the NI-FBUS Communications Manager. However,

to correctly write an application using the NI-FBUS Communications Manager, you must be

familiar with the FOUNDATION Specification: Function Block Application Process, Parts 1 and 2
document—the standard blocks, their parameters, and their syntax—and have an idea of the

architecture of Fieldbus. Refer to the FOUNDATIONTM Fieldbus Overview document for an outline

of Fieldbus architecture.

Example: Using Core Functions
Suppose the object VIEW_1 for a PID function block consists of GAIN, RATE, SP, CAS_IN,

MODE, and ALARM_SUM parameters of the PID function block. You want to get the values of all

these parameters using a single read of the VIEW_1 object. If the tag of a PID function block is

TIC101_PID, you can read the VIEW_1 object by executing the following function call:

nifReadObject(sessionDesc, "TIC101_PID.VIEW_1", buffer, &cnt)

Notice that it is not necessary to have a block descriptor to read the parameters of an object. If

you do have the block descriptor, you can read the object with the following call:

nifReadObject(blockDesc, "VIEW_1", buffer, &cnt)

You can get the block descriptor using nifOpenBlock, which returns blockDesc.

If you wanted to change the setpoint of the preceding PID block, you can do so with the

following call:

nifWriteObject(sessionDesc, "TIC101_PID.SP", buffer, cnt)

Alert and Trend Functions
When a properly configured device detects an alarm condition, the device broadcasts the data.

A host device receives the alarm, then sends a communication acknowledgment and an operator

acknowledgment to the field device. The field device also can collect trends based on a

configured sample type and interval. When the field device collects 16 samples, it broadcasts the

3-4 | ni.com

Chapter 3 NI-FBUS CM Software

trend data on the Fieldbus. Any number of interested hosts can collect this data. For more details,

refer to the Foundation Specification: Function Block Application Process, Part 1 document.

With a program such as the NI-FBUS Configurator, you can configure the FOUNDATION Fieldbus

field devices to broadcast alert and trend data.

The NI-FBUS Communications Manager has functions to receive trends and alerts from

configured devices and to perform operator acknowledgment on alerts. nifWaitAlert and

nifWaitAlert2 lets you wait for an alert from any device in a link, any function block in a

physical device, or a specific function block, depending on the type of descriptor that you pass to

it. When the NI-FBUS Communications Manager receives an alert, it returns a structure

containing information about the alert. The NI-FBUS Communications Manager sends the

communication acknowledgment to the device automatically. The NI-FBUS Communications

Manager provides a separate function, nifAcknowledgeAlarm, to send the operator

acknowledgment.

Similarly, nifWaitTrend lets you wait for a trend from any device in a link, any function

block in a physical device, or a specific function block, depending on the type of descriptor you

pass to it. When the NI-FBUS Communications Manager receives a trend, it returns a structure

containing information about the trend along with the trend data itself.

nifWaitAlert, nifWaitAlert2, and nifWaitTrend wait until an alert or trend is

received before returning, so it might be preferable to have separate threads invoke these

functions.

Device Description Functions
The NI-FBUS Communications Manager gives your applications access to device descriptions,

which are binary files that describe the characteristics of blocks and parameters. Your

application can use the NI-FBUS function nifGetObjectAttributes to decode attributes

of parameters including data type, data size, help strings, and other attributes defined in the

Device Description Language Specification document. In addition, device description symbol

files are used automatically to assist in allowing your applications to access parameters by name.

The NI-FBUS Communications Manager ships with device descriptions for all standard

FOUNDATION Fieldbus function blocks. The NI-FBUS Communications Manager provides

attributes for the parameters of all standard function blocks, even if the device manufacturers

for your devices did not provide device descriptions. However, to get the attributes of parameters

of nonstandard (not FOUNDATION Fieldbus-defined) blocks, the NI-FBUS Communications

Manager requires that the device manufacturer provide the device description.

NI-FBUS supports device description menus and methods. When NI-FBUS attempts to locate a

device description file (.ffo and .sym) for a device, it uses the file with the latest device

description revision for a given MANUFAC_ID, DEV_TYPE, and DEV_REV. For more information

about device descriptions, refer to the FOUNDATIONTM Fieldbus Overview document or your

Getting Started manual.

© National Instruments | 3-5

NI-FBUS Hardware and Software User Manual

Using the NI-FBUS Communications Manager Process
For any of your NI-FBUS Communications Manager applications to run correctly, you must

successfully launch the NIFB process. The NIFB process is the medium by which your

application communicates with the devices on the Fieldbus network. The NIFB process receives

requests from your application and passes them on to the specified Fieldbus device through the

Fieldbus interface connected to your machine. Refer to the Start the NIFB Process chapter in

your Getting Started manual for instructions on how to start the NIFB process.

At startup, the NIFB process downloads the FOUNDATION Fieldbus communication stack file

ffstack.bin or ffstack.usb.bin to the Fieldbus interfaces connected to your machine.

It then downloads the communication stack configuration parameters, such as the Fieldbus

network address for the interface device and so on, to each interface device. You can edit these

parameters using the NI-FBUS Interface Configuration utility by clicking the Advanced button

on the dialog box for the Port information. The advanced parameters affect the operation of the

communication stack and should only be changed if you are aware of the effect of your changes

on the stack.

You must make sure to specify a unique, non-default Fieldbus network address for the NI-FBUS

Communications Manager to work properly. You can use a default address if another entity on

the Fieldbus assigns your interface a non-default address. You can change the address from the

NI-FBUS Interface Configuration utility in the Port dialog box. You must restart the NI-FBUS

Communications Manager for any changes you make to take effect.

The NI-FBUS Communications Manager process features non-volatile storage of all network

parameters, including the last known Link Active Schedule. After network parameters

(including the Link Active Schedule) are stored, the NI-FBUS Communications Manager

automatically reloads them to the interface on startup.

At installation time, the non-volatile copy of the schedule is empty, but you can make the

NI-FBUS Communications Manager store the non-volatile Link Active Schedule by

downloading it to your Fieldbus interface. To download a Link Active Schedule to your Fieldbus

interface, you can use the NI-FBUS Dialog utility. Refer to the Configuring the Link Active

Schedule File section for an example of how to download the Link Active Schedule to your

Fieldbus interface. You also can use the NI-FBUS Configurator to download a Link Active

Schedule to your Fieldbus interface.

3-6 | ni.com

Chapter 3 NI-FBUS CM Software

Developing Your NI-FBUS Communications
Manager Application

This section contains information to help you develop your NI-FBUS Communications Manager

application.

Choose Your Level of Communication
While a few functions require a specific type of descriptor (for example, nifGetDeviceList

requires a link descriptor), many functions (such as the core, alert, and trend functions) let you

communicate using any type of descriptor. With these functions, the descriptor type you choose

depends on what is most convenient for you in designing your application, because there is no

significant difference in performance between the different types.

For example, if it is convenient for your application to use only a session descriptor to keep track

of tags for each block (so that you refer to all parameters in BLOCKTAG.PARAMNAME format),

you should write your application this way. If it is easier for you to keep track of a descriptor

for each block rather than a tag for each block, you should open a block descriptor for each block

you are communicating with, keep track of that descriptor value, and access parameters by

PARAMNAME using the block descriptor.

Choose to Access by Name or Index
The NI-FBUS Communications Manager supports access by name or by index for all block

parameters. National Instruments recommends that you access all variables by name. Although

access by index might be slightly faster in some cases, an application cannot always reliably

determine indices.

The NI-FBUS Communications Manager may convert the parameter name you specify to the

final index that FOUNDATION Fieldbus protocols must use to access the parameter over the

network. The NI-FBUS Communications Manager converts the name to an index using standard

FOUNDATION Fieldbus-specified methods, which include a check to the device at run time to

verify the index. If you hard-code indices, you will have to modify them when the devices they

are accessing become replaced, upgraded, or have new blocks created on them.

Choose to Write Single-Thread or Multi-Thread
Applications
All NI-FBUS functions are synchronous, meaning that the calling function is blocked until the

NI-FBUS call completes. A Fieldbus device usually takes tens of milliseconds to respond to a

block parameter read or write. It takes longer if any communication errors occur. The NI-FBUS

Communications Manager uses the protocol connections to communicate with the devices. If a

connection is lost, the NI-FBUS Communications Manager tries to reestablish the connection.

When a connection is lost, an NI-FBUS read or write call may take several seconds to complete.

© National Instruments | 3-7

NI-FBUS Hardware and Software User Manual

Single-Thread Applications
If potential delays like the ones discussed in the previous paragraph are acceptable for your

application, you can write your application or the Fieldbus access part of your application as a

single thread. Single-threaded applications are easier to develop, debug, and test because you do

not have to consider exclusion between threads. If you are writing an application for testing,

monitoring, or configuring a single device, a single-threaded application might be adequate.

Multi-Thread Applications
If your application monitors or tests several devices at a time, communication delays might

affect the throughput of your application and therefore be unacceptable. If so, you can develop

a multi-threaded application to improve the performance of your application. There are several

ways to multi-thread your application.

If you are accessing information from function blocks or transducer blocks, you might want to

create a thread for each block. Each block’s thread reads and writes information for that block.

If creating a thread for each block is excessive, you might consider an architecture in which you

have a set of threads dedicated to Fieldbus I/O. Your application can then interface with I/O

threads through a shared queue in which threads put their I/O requests. When the I/O completes,

the I/O threads can inform the application by passing a message or some other synchronization

scheme.

If your application performs trending or alarm handling, you might want to have separate

threads that perform these functions. You can make a thread wait for a trend or alarm with the

nifWaitTrend or nifWaitAlert or nifWaitAlert2 function and then process the trend

or alarm when it arrives. If you are monitoring the live list (the current list of devices on the bus),

you may have a dedicated thread that calls nifGetDeviceList because the call will not return

until the live list changes.

Access Object Dictionary Entries
If you want to access object dictionary entries that do not reside in a block, you can access them

with an object dictionary index along with a virtual field device descriptor. You can access trend

and linkage objects by name using a virtual field device descriptor. To access trend objects by

name, either from an application program or from the NI-FBUS Dialog utility, use the name

TREND.X, where X is a number from 1 to the number of trend objects in the virtual field device.

To access linkage objects, use LINKAGE.X, where X is a number from 1 to the number of

linkage objects in the virtual field device. If X exceeds the number of linkage objects or trend

objects in the virtual field device, the NI-FBUS Communications Manager returns the

E_ORDINAL_NUM_OUT_OF_RANGE error code.

3-8 | ni.com

Chapter 3 NI-FBUS CM Software

Access Management Information Base (MIB)
Parameters
To access Management Information Base parameters directly, either from a program or from the

NI-FBUS Dialog utility, open the physical device you want to communicate with and open a

virtual field device on the device with the tag MIB. You can use the resulting virtual field device

descriptor to access the MIB parameters by index or by their names (as described in the

FOUNDATIONTM Fieldbus Specification). For example, to write the macrocycle duration, access

the MIB parameter MACROCYCLE_DURATION, and to read the live list, access the object

named LIVE_LIST_STATUS. This method works both on local interface devices and on remote

devices over the Fieldbus.

Some MIB parameters are elements of a list (such as the list of function block schedule entries

or VCR entries). You can use the name for these items with a .X appended, where X is the

element in the list you want to access. For example, the first function block schedule entry in the

MIB is named FB_START_ENTRY.1, and the first VCR static entry in the MIB is named

VCR_STATIC_ENTRY.1. If X exceeds the number of objects of that type in the MIB, the

NI-FBUS Communications Manager returns the E_ORDINAL_NUM_OUT_OF_RANGE

error code.

Because most of these parameters have to do with network configuration, a network

configurator, such as the NI-FBUS Configurator, can best set these parameters.

Keep in mind that the NI-FBUS Communications Manager manages some MIB objects

internally. For instance, the NI-FBUS Communications Manager builds up internal data

structures for some MIB objects, especially VCRs, and so on. Manually changing the existing

VCRs through an MIB descriptor can lead to problems with using the NI-FBUS

Communications Manager.

H1 Device MIB List Parameters

FB_START_ENTRY

MAX_TOKEN_HOLD_TIME

SCHEDULE_DESCRIPTOR

VCR_STATIC_ENTRY

VFD_REF_ENTRY

H1 Device MIB Parameters

AP_CLOCK_SYNC_INTERVAL

BOOT_OPERAT_FUNCTIONAL_CLASS

CHANNEL_STATES

CONFIGURED_LINK_SETTING

CURRENT_LINK_SETTING

CURRENT_TIME

© National Instruments | 3-9

NI-FBUS Hardware and Software User Manual

DEV_ID

DLME_BASIC_CHARACTERISTICS

DLME_BASIC_INFO

DLME_LINK_MASTER_INFO

LINK_SCHEDULE_ACTIVATION

LINK_SCHEDULE_LIST_CHARACTERISTICS

LIVE_LIST_STATUS

LOCAL_TIME_DIFF

MACROCYCLE_DURATION

OPERATIONAL_POWERUP

PD_TAG

PLME_BASIC_CHARACTERISTICS

PLME_BASIC_INFO

PRIMARY_AP_TIME_PUBLISHER

PRIMARY_LINK_MASTER_FLAG

SM_SUPPORT

STACK_CAPABILITIES

T1

T2

T3

TIME_LAST_RCVD

TIME_PUBLISHER_ADDR

VCR_LIST_CHARACTERISTICS

VERSION_OF_SCHEDULE

HSE Device MIB List Parameters

SCHEDULE_DESCRIPTOR

VFD_REF_ENTRY

CONFIGURED_SESSION_ENTRY

AUTOMATIC_SESSION_ENTRY

HSE_CONFIGURED_VCR_ENTRY

HSE_AUTOMATIC_VCR_ENTRY

HSE Device MIB Parameters

SM_SUPPORT

OPERATIONAL_POWERUP

LIST_OF_VERSION_NUMBERS

OPERATIONAL_IP_ADDRESS

3-10 | ni.com

Chapter 3 NI-FBUS CM Software

LOCAL_IP_ADDRESS_ARRAY

SYNC_AND_SCHEDULING

LAST_SNTP_MESSAGE

SNTP_TIMESTAMPS

DEVICE_IDENTIFICATION

SCHEDULE_ACTIVATION_VARIABLE

SCHEDULE_LIST_CHARACTERISTICS

NM_CHARACTERISTICS

CONFIGURED_SESSION_LIST_HEADER

AUTOMATIC_SESSION_LIST_HEADER

HSE_CONFIGURED_VCR_LIST_HEADER

HSE_AUTOMATIC_VCR_LIST_HEADER

BRIDGE_CHARACTERISTICS

CURRENT_NMA_CONFIGURATION_ACCESS

PREVIOUS_NMA_CONFIGURATION_ACCESS

INTERFACE_ADDRESS_ARRAY

INTERFACE_DESIRED_STATE_ARRAY

INTERFACE_ACTUAL_STATE_ARRAY

Use the NI-FBUS Dialog Utility to Communicate with
Devices
The NI-FBUS Dialog utility helps you perform simple tests of your whole Fieldbus setup,

including the NI-FBUS Communications Manager, your interface board(s), and any devices you

have. The NI-FBUS Dialog utility has dialog boxes that call the NI-FBUS Communications

Manager API, allowing you to specify parameters and make NI-FBUS calls. For example, you

can use the NI-FBUS Dialog utility to get a list of devices on your network, as well as view and

set parameters in each device. For more information on using the NI-FBUS Dialog utility, refer

to the Configuring the Link Active Schedule File section.

Write Your Application
Use the following guidelines to make sure your application uses the NI-FBUS Communications

Manager interface properly.

� Always call nifOpenSession early in your program and check the return value of the

call. This check verifies that the NI-FBUS Communications Manager process is running,

which is a prerequisite for your application to access the Fieldbus network. If this call fails,

your application should inform the user that the Fieldbus is currently inaccessible.

� Always close any descriptors that you open before your program exits, including session

descriptors. The NI-FBUS Communications Manager requires that your application close

all descriptors that it opens.

© National Instruments | 3-11

NI-FBUS Hardware and Software User Manual

� Always check the return values from NI-FBUS calls. The NI-FBUS Communications

Manager is a high-level API and performs many operations that can fail because of

incorrect parameters, incorrect bus configuration, or communication failures. An

application that fails to check return values might use output parameters from NI-FBUS

calls that are NULL or uninitialized, leading to incorrect behavior or a program crash.

� If you plan to call any of the indefinitely-blocking functions including

nifGetDeviceList, nifWaitAlert, nifWaitAlert2, and nifWaitTrend, you

should probably use a separate descriptor for these calls. To terminate these calls early, you

have to close the descriptor. Having a separate descriptor will ensure that terminating these

calls does not affect any other NI-FBUS calls your application has pending.

� If the NI-FBUS Communications Manager stops for any reason, any outstanding calls in

your application complete with the error E_SERVER_CONNECTION_LOST. At this point,

all of the descriptors that you have (including the session) are invalid. If you restart the

NI-FBUS Communications Manager, your application should recover by opening a new

session to the NI-FBUS Communications Manager and opening all new descriptors. After

this recovery procedure, your application should be fully operational.

Compile, Link, and Run Your Application
To compile, link, and execute your application, you must complete the following:

� Add the line #include "nifbus.h" to any of your source files that make NI-FBUS

calls. The nifbus.h file is located in the includes subdirectory of your installation.

Also, make sure that the includes subdirectory is included in your project’s settings.

� Link your application with nifb.lib, which is located in the MS Visual C subdirectory

of your installation.

� Ensure that nifb.dll is present in your Windows directory. nifb.dll is an interface

DLL required to interface to the NIFB process. nifb.dll must be present when your

application runs.

� Ensure that the NI-FBUS Communications Manager (NIFB process) has started and is

entirely initialized before your application makes its first NI-FBUS call.

� Ensure your compiler has the structure padding or alignment parameter set to eight bytes.

This will allow proper communication of data structures.

� The nifbus.h header file and nifb.lib library have been compiled and linked with

Microsoft Visual C/C++ version 6.0 or later.

Note NI-FBUS software supports 64-bit since version 4.0.1. To build a 64-bit

application, you must link your application with nifb64.lib. nifb64.dll

should be automatically installed in your Windows system directory.

3-12 | ni.com

Chapter 3 NI-FBUS CM Software

Sample Programs

The NI-FBUS Communications Manager software includes four sample programs:

nifbtest.c, nifb_mt.c, nifbdd.c, and nifb_list.c. These files provide you with

some examples of NI-FBUS Communications Manager API usage.

Because NI-FBUS uses a device description library from the FOUNDATION Fieldbus, the header

files from the device description library also are part of the NI-FBUS includes directory.

Configuring the Link Active Schedule File

If you want to do scheduling and use publishers and subscribers, you must follow the

instructions in this section. You may ignore this section if there is no schedule, if the schedule

is downloaded over the network to your Fieldbus interface, or if you are using software such as

the NI-FBUS Configurator.

Introduction to the Link Active Schedule File
You must download the Link Active Schedule file to your Fieldbus interface before the board

can have Link Active Scheduler functionality on the Fieldbus network.

Save the Link Active Schedule file as an .ini file. You can download this file to your interface

board using the NI-FBUS Dialog utility.

For detailed information about the parameters in the Link Active Schedule file, refer to the Data

Link Layer section of the Final Specification version of the FOUNDATIONTM Fieldbus Specification

document.

Format of the Link Active Schedule File
Create your Link Active Schedule file with the following format. The names of the sections of

the Link Active Schedule file are:

[Schedule Summary]

...

[Subschedule 1]

...

[Sequence 1-1]

...

[Sequence 1-n]

...

[Subschedule x]

...

[Sequence x-1]

...

© National Instruments | 3-13

NI-FBUS Hardware and Software User Manual

[Sequence x-y]

...

The general line format for all other lines is:

VARIABLE=VALUE

where the valid variable names and values are defined in Tables 3-1 to 3-4.

Table 3-1. Valid Variable Names and Values for the Schedule Summary Section

Variable Name Valid Values

Implied

Units Default

encodingVersionNumber 0–7 none none

versionNumber 0x0–0xffff none none

builderIdentifier 0x100–0xfff none none

numSubSchedules 0–255 none none

maxSchedulingOverhead 0x0–0x3f octets none

macroCycle 0x0–0xffffffff 1/32 ms none

Table 3-2. Valid Variable Names and Values for the Subschedule Section

Variable Name Valid Values Implied Units Default

period 0x0–0xffffffff 1/32 ms none

numSequence 0–255 none none

Table 3-3. Valid Variable Names and Values for the Sequence Section

Variable Name Valid Values Implied Units Default

maxDuration 0x0–0xffff 1/32 ms none

numElement 0–255 none none

3-14 | ni.com

Chapter 3 NI-FBUS CM Software

For the variables in Table 3-4, N is an integer between 1 and numElement. Repeat these

variables within this subschedule section exactly numElement times.

Table 3-4. Valid Variable Names Including the Variable N and

Values for the Sequence Section

Variable Name Valid Values Implied Units Default

priorityN TIMEAVAILABLE

URGENT

NORMAL

none none

addressN Parameter name in

TAG.PARAM format

or DLCEP (Data Link

Connection End Point)

in 0xNNNN format

none none

© National Instruments | 4-1

4
Developing The Application

This chapter explains how to develop your Fieldbus applications using the NI-FBUS APIs and

Libraries.

LabVIEW

Use the Foundation Fieldbus VIs available in LabVIEW to interact with the Foundation Fieldbus

devices. You also can use the NI-FBUS Configurator or the Tag Editor to view links, devices,

blocks, and parameters of the FF network.

Use the FF Set Device Address VI or the FF Set Tag VI in LabVIEW to change the device

address or the block tag. You also can customize the tag names using the NI-FBUS Configurator.

Note The NI-FBUS VIs in LabVIEW do not support downloading the Link Active

Schedule. To download the schedule, use the NI-FBUS Configurator.

Refer to the NI-FBUS VI Help for more information about using these VIs.

Visual C++

The NI-FBUS software supports Microsoft Visual C/C++ version 6 or later.

The header file and library for Visual C/C++ are in the MS Visual C folder of the NI-FBUS

folder. The typical path to this folder is \Program Files\National Instruments\

NI-FBUS\MS Visual C.

To use the NI-FBUS C API, include the nifbus.h header file in the code, and set the folder MS

Visual C\includes as include path, then link with the nifb.lib library file.

Note The NI-FBUS C API supports only the NI-FBUS Communication Manager

on the local computer. The NI-FBUS C API does not support changing the device

address or the block tag.

The reference for each NI-FBUS API function is in Chapter 5, NI-FBUS Function Reference.

You can find examples for the C language in the MS VIsual C\examples subfolder of the

NI-FBUS folder. There are four sample programs: nifbtest.c, nifb_mt.c, nifbdd.c, and

nifb_list.c. These files provide you with some examples of the NI-FBUS Communications

Manager API usage. A description of each example is in comments at the top of the .c file.

4-2 | ni.com

Chapter 4 Developing The Application

Visual Basic

The NI-FBUS software support Microsoft Visual Basic 6.0 version.

To create an application in Visual Basic, add the Declares.bas to your project. The

Declares.bas defines standard API calls to NI-FBUS Communications Manager.

The Declares.bas are located in the MS Visual Basic folder of the NI-FBUS folder. The

typical path to this folder is \Program Files\National Instruments\NI-FBUS\

MS Visual Basic.

Note The NI-FBUS software does not support changing the device address or the

block tag using the Visual Basic applications.

The reference for each NI-FBUS API function is in Chapter 5, NI-FBUS Function Reference.

You can find example for Visual Basic in the example subfolder of MS Visual Basic folder.

The nifbusVBInterface.vbp file is the Visual Basic project of the example.

.NET Class Libraries

This section provides general information about the .NET class libraries included with the

NI-FBUS software, you can use the .NET class libraries to develop complete FOUNDATION

Fieldbus applications in Visual Basic .NET and Visual C#.

Use the NationalInstruments.Fieldbus.dll to create these applications. If you

want to run the application on the 64-bit operating system, choose the .dll file in either the

library32 or library64 folder of the MS.Net folder. If you want to run the application on

the 32-bit operating system, choose the .dll file in the library32 folder of the MS.Net

folder. The typical path to the folder is \Program Files\National Instruments\

NI-FBUS\MS.Net.

NI-FBUS Software includes the following .NET class libraries:

� Alert

� Block

� Device

� FBDate

� FBObject

� FBTime

� HseDevice

� Link

� Mib

� Session

© National Instruments | 4-3

NI-FBUS Hardware and Software User Manual

� TimeOfDay

� Trend

� Vfd

The Visual Basic .NET example can be found in the examples/VBExample subfolder of the

MS .NET folder. The VBExample.vbproj file is the Visual Basic .NET project of the

example.

Note The NI-FBUS software does not support changing the device address or the

block tag using the .NET class libraries.

The Visual C# example can be found in the examples/CsharpExample subfolder of the

MS .NET folder. The CsharpExample.csproj file is the Visual C# project of the example.

Another .NET example can be found in examples/AdvDemo subfolder of the MS .NET folder.

The AdvDemo.csproj file is the Visual C# project of the example.

OPC Server

NI-FBUS software includes a separate OPC Data Access Server, which is compliant with the

OPC Data Access 2.0 and 3.0 Specification.

Any OPC client program can easily access NI-FBUS OPC Server through standard OPC DA

interfaces. The FF data types are mapped to OPC data types as below.

OPC Data Type Mapping Rule
The SIMPLE type and ARRAY type variables are regarded as leaf nodes in the OPC address

space. The RECORD type variables are regarded as branch nodes, you need to access each of

its member variable through this branch node.

4-4 | ni.com

Chapter 4 Developing The Application

Table 4-1 shows the data type-mapping rule.

Table 4-1. OPC Data Type Mapping Rule

Meta Type

FMS Standard

Data Types OPC Data Type

Simple Boolean VT_BOOL

Integer8 VT_I1

Integer16 VT_I2

Integer32 VT_I4

Unsigned8 VT_UI1

Unsigned16 VT_UI2

Unsigned32 VT_UI4

Floating Point VT_R4

Visible String VT_BSTR

Octet String VT_ARRAY | VT_UI1

Date VT_DATE

Time of Day VT_DATE

Time Difference VT_DATE

Bit String VT_ARRAY | VT_UI1

Time Value VT_DATE

Array Boolean VT_ARRAY | VT_BOOL

Integer8 VT_ARRAY | VT_I1

Integer16 VT_ARRAY | VT_I2

Integer32 VT_ARRAY | VT_I4

Unsigned8 VT_ARRAY | VT_UI1

Unsigned16 VT_ARRAY | VT_UI2

Unsigned32 VT_ARRAY | VT_UI4

Floating Point VT_ARRAY | VT_R4

Visible String VT_ARRAY | VT_BSTR

© National Instruments | 4-5

NI-FBUS Hardware and Software User Manual

The NI-FBUS OPC Server has passed OPC Foundation Compliance Test, for more information,

please visit OPC Foundation web site www.opcfoundation.org.

Array (continued) Octet String —

Date VT_ARRAY | VT_DATE

Time of Day VT_ARRAY | VT_DATE

Time Difference VT_ARRAY | VT_DATE

Bit String —

Time Value VT_ARRAY | VT_DATE

Table 4-1. OPC Data Type Mapping Rule (Continued)

Meta Type

FMS Standard

Data Types OPC Data Type

© National Instruments | 5-1

5
NI-FBUS Function Reference

This chapter provides function reference for the NI-FBUS Communications Manager software.

You must have a general knowledge of the Fieldbus architecture to write programs for the

NI-FBUS Communications Manager, and you must understand how your code will work with

your Microsoft operating system.

Administrative Functions

For details on how NI-FBUS functions are classified and how to use them, refer to Chapter 3,

NI-FBUS CM Software.

List of Administrative Functions

Table 5-1. List of Administrative Functions

Function Purpose

nifClose Closes an open descriptor.

nifDownloadDomain Downloads data to the virtual field device (VFD) domain.

nifGetBlockList Returns a list of information for all blocks of the type

specified in the VFD.

nifGetDeviceList Returns the list of information for all active devices on the

network.

nifGetInterfaceList Reads the list of interface names from the NI-FBUS

Communications Manager.

nifGetVFDList Gathers VFD information on a specified physical device.

nifOpenBlock Returns a descriptor representing a block.

nifOpenLink Returns a descriptor representing a Fieldbus link.

nifOpenPhysicalDevice Returns a descriptor representing a physical device.

nifOpenSession Returns a descriptor for an NI-FBUS session.

nifOpenVfd Returns a descriptor representing a VFD.

nifShutdownCM Closes NI-FBUS Communications Manager.

nifStartupCM Starts NI-FBUS Communications Manager.

5-2 | ni.com

Chapter 5 NI-FBUS Function Reference

nifClose

Purpose
Closes an open descriptor.

Format
nifError_t nifClose(

nifDesc_t ud);

Input
ud The descriptor from an nifOpen call.

Output
Not applicable.

Context
Block, VFD, physical device, link, session.

Description
nifClose closes the specified descriptor. The descriptor is invalid after it is closed. Ensure that

your application closes all of the descriptors it opens. Your application should always close a

descriptor if it no longer needs the descriptor.

If you close a descriptor with calls pending on it, the calls complete within the usual time, but

an error code is returned indicating that you closed the descriptor prematurely. If you make more

synchronous wait calls that wait on the closing descriptor, such as nifWaitTrend,

nifWaitAlert, nifWaitAlert2, and nifGetDeviceList, the NI-FBUS
Communications Manager aborts these functions and returns an error code indicating that you

closed the descriptor. Since calls that wait on a closed descriptor return an error message, you

should have a separate descriptor for these synchronous wait calls.

Note A session is a connection between your application and an NI-FBUS entity.

If you close a session, you close the communication channel between your

application and the NI-FBUS entity associated with the session. Ensure that you close

all descriptors opened under this session before closing a session descriptor.

© National Instruments | 5-3

NI-FBUS Hardware and Software User Manual

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The descriptor is invalid.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

5-4 | ni.com

Chapter 5 NI-FBUS Function Reference

nifDownloadDomain

Purpose
Downloads data to the virtual field device (VFD) domain.

Format
nifError_t nifDownloadDomain(

nifDesc_t ud,

uint32 index,

char *fileName);

Input
ud The descriptor of the VFD you are accessing with index.

index The absolute VFD index value of the domain you specified to

download the data.

fileName The name of the file where the download data is stored.

Context
VFD, physical device, link, session.

Description
nifDownloadDomain is used to download the data or parameter values to the specified

VFD domain. The domain is specified by index.

To determine the appropriate index value, consult the documentation of the device to which

you are trying to download the domain. If the device supports the Domain Download feature,

the index for download should be specified in the documentation.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The descriptor specified is not valid.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communication

Manager, under which the descriptor was opened, has been lost or

closed.

E_RESOURCE The NI-FBUS Communications Manager is unable to allocate a

system resource. This is usually a memory problem.

E_DEVICE_CHANGED The device you specified has changed.

E_VFD_CHANGED The VFD you specified has changed.

© National Instruments | 5-5

NI-FBUS Hardware and Software User Manual

nifGetBlockList

Purpose
Returns a list of information for all blocks of the specified type present in the VFD.

Format
nifError_t nifGetBlockList(

nifDesc_t ud,

uint8 whichTypes,

nifBlockInfo_t *info,

uint16 *numBlocks)

Input
ud The descriptor of a VFD.

whichTypes Specifies what types of blocks to return (function, transducer,

or physical).

numBlocks The number of buffers allocated in the info list.

Output
info The list of information associated with each block.

numBlocks The number of blocks actually in the VFD.

Context
VFD.

Description
nifGetBlockList returns information about all the blocks in the specified VFD. A block

can be a resource block, transducer block, or function block residing within a VFD. Only blocks

of the types specified by whichTypes are returned.

To determine how many list items are to be returned, call the function twice. The first time you

call the function, set the numBlocks parameter to 0. The function will return an error stating

that there were not enough buffers configured, and it will return a new number for numBlocks.

Use this new numBlocks parameter to allocate memory for the data. When you call the function

the second time, use this new parameter. By doing so you will allocate only as much memory as

necessary.

nifBlockInfo_t is defined as follows:

typedef struct {

char fbTag[TAG_SIZE + 1];

uint16 startIndex;

uint32 ddName;

uint32 ddItem;

5-6 | ni.com

Chapter 5 NI-FBUS Function Reference

uint16 ddRev;

uint16 profile;

uint16 profileRev;

uint32 executionTime;

uint32 periodExecution;

uint16 numParams;

uint16 nextFb;

uint16 startViewIndex;

uint8 numView3;

uint8 numView4;

uint16 ordNum;

uint8 blockType;

} nifBlockInfo_t;

The blockType field in nifBlockInfo_t can be FUNCTION_BLOCK,

TRANSDUCER_BLOCK, or RESOURCE_BLOCK.

The whichTypes parameter must be a bit combination of FUNCTION_BLOCK,

TRANSDUCER_BLOCK, and RESOURCE_BLOCK.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The descriptor was invalid or of the wrong type.

E_COMM_ERROR The NI-FBUS Communications Manager failed to communicate

with the device.

E_BUF_TOO_SMALL The buffer does not contain enough entries to hold all the

information for the blocks. If you receive this error, buffer entries

that you allocated do not contain valid block information when

the call returns.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifGetBlockList completed.

E_BAD_ARGUMENT The whichtypes value is something other than

FUNCTION_BLOCK, TRANSDUCER_BLOCK,

or RESOURCE_BLOCK.

E_RESOURCES A system resource problem occurred. The resource problem is

usually a memory shortage.

E_BAD_DEVICE_DATA The device returned some inconsistent information.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

© National Instruments | 5-7

NI-FBUS Hardware and Software User Manual

nifGetDeviceList

Purpose
Returns the list of information for all active devices on the network.

Format
nifError_t nifGetDeviceList(nifDesc_t link,

nifDeviceInfo_t *devInfo,

uint16 *numDevices,

uint16 *revision)

Input
link The link descriptor for which to return information.

numDevices The number of allocated list entries.

revision The revision number from the last nifGetDeviceList call,

or zero (refer to the Description section for usage).

Output
devInfo The list of device information.

numDevices The number of devices present in the link.

revision Current revision number of the live list that the NI-FBUS

Communications Manager reads from the Fieldbus interface to

the specified link.

Context
Link.

Description
nifGetDeviceList returns a list of information describing each device on the link. A link is

a group of Fieldbus devices connected across a single wire pair with no intervening bridges.

Before nifGetDeviceList returns the list of information, it waits until the revision argument

passed in differs from the live list revision number the Fieldbus interface keeps for the specified

link. The revision numbers the Fieldbus interface keeps start at one, so if you pass in a zero for

revision, you can force nifGetDeviceList to immediately return the current device list.

To use nifGetDeviceList most effectively, you should pass in the revision parameter

output from the previous call to nifGetDeviceList in subsequent calls to it. Using the

revision parameter output from the previous call forces nifGetDeviceList to wait until the

device list has actually changed before returning the list of information.

If a device on the bus is unresponsive, its entry in the device information list has the tag

and device ID unknown device, but its address field is correct. Also, the flag bit

NIF_DEV_NO_RESPONSE is set.

5-8 | ni.com

Chapter 5 NI-FBUS Function Reference

The device list includes devices in the fixed, temporary, and visitor address ranges.

If there are too few input buffers, nifGetDeviceList returns an error code, but the

numDevices parameter is set to the total number of devices available. In this case, the buffers

you pass in do not contain valid data, but the revision number is set to the correct value.

If a device is an interface device, then the flag bit NIF_DEV_INTERFACE is set. You can abort

a pending nifGetDeviceList call by closing the link descriptor on which the call was made.

To determine how many list items are to be returned in the call, call the function twice. The first

time you call the function, set the numDevices parameter to 0. The function will return an error

stating that there were not enough buffers configured, and it will return a new number for

numDevices. Use this new numDevices parameter to allocate memory for the data. When

you call the function the second time use this new parameter. By doing so you will allocate only

as much memory as necessary.

nifHseDeviceInfo_t is defined as follows.

typedef struct {

uint32 IpAddress;

uint16 deviceIndex;

uint16 maxDeviceIndex;

uint32 hseRepeatTime;

uint8 state;

uint8 type;

uint8 deviceRedundancyState;

uint8 duplicateDetectionState;

uint16 lanRedundancyPort;

uint16 reserved;

uint32 annunciationVersionNumber;

uint32 hseDeviceVersionNumber;

uint32 numH1Ports;

uint32 *h1VersionList;

} nifHseDeviceInfo_t;

nifDeviceInfo_t is defined as follows.

typedef struct {

char deviceID[DEV_ID_SIZE + 1];

char pdTag[TAG_SIZE + 1];

uint8 nodeAddress;

uint32 flags;

nifHseDeviceInfo_t* hseDeviceInfo;

} nifDeviceInfo_t;

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The link descriptor is invalid.

© National Instruments | 5-9

NI-FBUS Hardware and Software User Manual

E_BUF_TOO_SMALL There are not enough buffers allocated. If you receive this error,

your input buffers do not contain valid data.

E_COMM_ERROR The NI-FBUS Communications Manager failed to communicate

with the device.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifGetDeviceList completed.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

5-10 | ni.com

Chapter 5 NI-FBUS Function Reference

nifGetInterfaceList

Purpose
Reads the list of interface names from the NI-FBUS Communications Manager configuration.

Format
nifError_t nifGetInterfaceList(

nifDesc_t ud,

int16 *numIntf,

nifInterfaceInfo_t *info)

Input
ud A valid session descriptor.

numIntf The number of buffers for interface information reserved in info.

Output
numIntf The actual number of names returned.

info An array of structures containing the interface name and device

ID for each interface.

Context
Not applicable.

Description
nifGetInterfaceList returns the interface name and device ID of each Fieldbus interface.

The numIntf parameter is an IN/OUT parameter. On input, it must contain the number of

buffers that info allocates and points to, and on output it contains the total number of interface

information entries available. If enough buffers were not allocated, or if the info buffer is

NULL, the NI-FBUS Communications Manager returns an error and does not copy any data to

the buffers. In this case, the numIntf parameter is still valid.

To determine how many list items are to be returned in the call, call the function twice. The first

time you call the function, set the numIntf parameter to 0. The function will return an error

stating that there were not enough buffers configured, and it will return a new number for

numIntf. Use this new numIntf parameter to allocate memory for the data. When you call the

function the second time, use this new parameter. By doing so, you will allocate only as much

memory as necessary.

The nifInterfaceInfo_t structure is defined as follows:

typedef struct nifInterfaceInfo_t{

char interfaceName[NIF_NAME_LEN];

char deviceID[DEV_ID_SIZE +1];

} nifInterfaceInfo_t;

© National Instruments | 5-11

NI-FBUS Hardware and Software User Manual

Note nifGetInterfaceList is an internal function for the NI-FBUS

Communications Manager and does not cause Fieldbus activity.

Return Values
E_OK The call was successful.

E_BUF_TOO_SMALL The buffer does not contain enough entries to hold all the interface

information.

E_CONFIG_ERROR Some configuration information, such as registry information or

network configuration information, is incorrect.

E_NOT_FOUND Some interfaces are missing in the bus.

5-12 | ni.com

Chapter 5 NI-FBUS Function Reference

nifGetVFDList

Purpose
Gathers VFD information on a specified physical device.

Format
nifError_t nifGetVFDList(

nifDesc_t ud,

nifVFDInfo_t *info,

uint16 *numBuffers)

Input
ud The descriptor of the physical device for which to get the VFD

list.

numBuffers The number of buffers allocated in the info list.

Output
numBuffers The number of VFDs actually in the device.

info The VFD information.

Context
Physical device.

Description
nifGetVFDList gathers function block application VFD information from the specified

physical device.

If there are too few input buffers, or if the input buffer pointer is NULL, an error code is returned,

but the numBuffers parameter is set to the total number of VFDs in the device. In this case, no

buffers contain valid data on output.

To determine how many list items are to be returned in the call, call the function twice. The first

time you call the function, set the numBuffers parameter to 0. The function will return an error

stating that there were not enough buffers configured, and it will return a new number for

numBuffers. Use this new numBuffers parameter to allocate memory for the data. When

you call the function the second time, use this new parameter. By doing so, you will allocate only

as much memory as necessary.

The info parameter has the following format:

typedef struct {

char vfdTag[TAG_SIZE +1];

char vendor[TAG_SIZE +1];

char model[TAG_SIZE +1];

© National Instruments | 5-13

NI-FBUS Hardware and Software User Manual

char revision[TAG_SIZE +1];

int16 ODVersion;

uint16 numTransducerBlocks;

uint16 numFunctionBlocks;

uint16 numActionObjects;

uint16 numLinkObjects;

uint16 numAlertObjects;

uint16 numTrendObjects;

uint16 numDomainObjects;

uint16 totalObjects;

uint32 flags;

} nifVFDInfo_t;

Return Values
E_OK The call was successful.

E_COMM_ERROR The NI-FBUS Communications Manager failed to communicate

with the device.

E_INVALID_DESCRIPTOR

The input descriptor does not correspond to a physical device.

E_BUF_TOO_SMALL There were not enough allocated buffers. Your specified input

buffers do not contain valid data.

E_SM_NOT_OPERATIONAL

The device is present, but cannot respond because it is at a default

address.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifGetVFDList completed.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

E_BAD_DEVICE_DATA The device returned some inconsistent information.

5-14 | ni.com

Chapter 5 NI-FBUS Function Reference

nifOpenBlock

Purpose
Returns a descriptor representing a block.

Format
nifError_t nifOpenBlock (

nifDesc_t ud,

char *blockTag,

nifDesc_t *out_ud)

nifError_t nifOpenBlock (

nifDesc_t ud,

NIFB_ORDINAL(n),

nifDesc_t *out_ud)

Input
ud A valid session, link, physical device, or VFD descriptor.

blockTag The tag of the block. To access a block by ordinal number within

a VFD, use the NIFB_ORDINAL macro in the nifbus.h header

file. You can only access a block by ordinal number for VFD

descriptors.

Output
out_ud A descriptor for the block you request.

Context
VFD, physical device, link, session.

Description
nifOpenBlock returns a descriptor for the block you specify. You must pass a valid session,

link, physical device, or VFD descriptor to this function.

There are two ways to specify the block: by tag and by ordinal number. To open the block by its

tag, you must set blockTag to the current tag of the block. The NI-FBUS Communications

Manager returns an error if it finds more than one block with the same tag. You can obtain the

list of block tags within a specified VFD with a call to nifGetBlockList.

To open the block by its ordinal number, use the NIFB_ORDINAL macro. This macro is valid

only if ud is a VFD descriptor. The first block in a VFD has the ordinal number zero. Notice that

the first block in a VFD is always the resource block.

© National Instruments | 5-15

NI-FBUS Hardware and Software User Manual

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The input descriptor is invalid.

E_MULTIPLE There are identical block tags.

E_ORDINAL_NUM_OUT_OF_RANGE

The ordinal number is out of the device range.

E_COMM_ERROR An error occurred when the NI-FBUS Communications Manager

communicated with the device.

E_NOT_FOUND There is no such block in the device or VFD with the specified tag.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifOpenBlock completed.

E_RESOURCES A system resource problem occurred. The resource problem is

usually a memory shortage.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

E_BAD_DEVICE_DATA The device returned some inconsistent information.

5-16 | ni.com

Chapter 5 NI-FBUS Function Reference

nifOpenLink

Purpose
Returns a descriptor representing a Fieldbus link.

Format
nifError_t nifOpenLink (

nifDesc_t session,

uint8 interfaceOrDevID,

char *name,

uint16 linkID,

nifDesc_t *out_ud)

Input
session A valid session descriptor on which to open the link.

interfaceOrDevID How to specify the link: zero if by interface name, one if by local

device ID.

name The interface name or local device ID.

linkID The link ID.

Output
out_ud A descriptor for the link you request.

Context
Session.

Description
nifOpenLink returns a descriptor for the link you specify. You must pass a valid session

descriptor to this function.

There are two ways you can specify the link. If the interfaceOrDevID parameter is zero, then

name specifies the name of the interface the link is connected to. The list of valid interface

names is contained in a configuration source which the NI-FBUS Communications Manager has

access to, and can be obtained by a call to nifGetInterfaceList. If interfaceOrDevID

is one, then the name specifies the device ID of an interface device to which the NI-FBUS

Communications Manager is attached.

In both cases, linkID is the Fieldbus link ID number for the specified link. For single-link

Fieldbus networks, you can set linkID to zero.

© National Instruments | 5-17

NI-FBUS Hardware and Software User Manual

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The input descriptor is invalid.

E_CONFIG_ERROR Some configuration information, such as registry information or

network configuration information, is incorrect.

E_NOT_FOUND The interface name, device ID, or link ID you specified is not

found.

E_RESOURCES A system resource problem occurred. The resource problem is

usually a memory shortage.

E_BAD_ARGUMENT The interfaceOrDevID value is not valid.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifOpenLink completed.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

5-18 | ni.com

Chapter 5 NI-FBUS Function Reference

nifOpenPhysicalDevice

Purpose
Returns a descriptor representing a physical device.

Format
nifError_t nifOpenPhysicalDevice (

nifDesc_t ud,

uint8 tagOrDevID,

char *name,

nifDesc_t *out_ud)

Input
ud A valid session or link descriptor on which to open the device.

tagOrDevID How to specify the device: zero if by physical device tag, one if

by device ID.

name The tag or device ID.

Output
out_ud A descriptor for the device you request

Context
Link, session.

Description
nifOpenPhysicalDevice returns a descriptor for the physical device you specify. You must

pass a valid session or link descriptor to this function. If you pass a link descriptor, the NI-FBUS

Communications Manager searches only that link for the specified device.

There are two ways you can specify the device. If the tagOrDevID parameter is zero, then the

name specifies the tag of the physical device. If tagOrDevID is one, then name is the device ID

of the device you specify. You can obtain the list of physical device tags and device IDs of

devices on the network with a call to nifGetDeviceList.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The input descriptor is invalid.

E_BAD_ARGUMENT The tagOrDevID value is not valid.

E_NOT_FOUND No attached physical device has the specified device ID or

physical device tag.

© National Instruments | 5-19

NI-FBUS Hardware and Software User Manual

E_MULTIPLE There is more than one device with the same tag or device ID on

the same Fieldbus network.

E_COMM_ERROR An error occurred when the NI-FBUS Communications Manager

communicated with the device.

E_RESOURCES A system resource problem occurred. The resource problem is

usually a memory shortage.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifOpenPhysicalDevice completed.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

5-20 | ni.com

Chapter 5 NI-FBUS Function Reference

nifOpenSession

Purpose
Returns a descriptor for an NI-FBUS Communications Manager session.

Format
nifError_t nifOpenSession (

void *reserved,

nifDesc_t *out_ud)

Input
reserved Reserved for future use. You must set this value to NULL.

Output
out_ud A descriptor for the NI-FBUS Communications Manager

communications entity you request.

Context
Not applicable.

Description
nifOpenSession returns a descriptor for the NI-FBUS Communications Manager session.

When you open a session, the NI-FBUS Communications Manager establishes a communication

channel between your application and the NI-FBUS entity. All subsequent descriptors you open

are associated with this session, and all the NI-FBUS calls on these descriptors communicate

with the NI-FBUS entity through the communication channel established during the

nifOpenSession call.

The reserved argument is reserved for future use. You must set reserved to NULL.

Return Values
E_OK The call was successful.

E_SERVER_NOT_RESPONDING

Either the NI-FBUS Communications Manager server has not

been started or the server, in its current state, cannot respond to the

request.

E_RESOURCES A system resource problem occurred. The resource problem is

usually a memory shortage or a failure of file access functions.

© National Instruments | 5-21

NI-FBUS Hardware and Software User Manual

nifOpenVfd

Purpose
Returns a descriptor representing a Virtual Field Device (VFD).

Format
nifError_t nifOpenVfd (

nifDesc_t ud,

char *vfdTag,

nifDesc_t *out_ud)

nifError_t nifOpenVfd (

nifDesc_t ud,

NIFB_ORDINAL(n),

nifDesc_t *out_ud)

Input
ud A valid physical device descriptor.

vfdTag The tag of the VFD. To access by ordinal number within a

physical device, use the ORDINAL macro in the nifbus.h

header file.

Output
out_ud A descriptor for the VFD you request.

Context
Physical device.

Description
nifOpenVfd returns a descriptor for the VFD you specify. More than one VFD can reside

within a physical device. You must pass a valid physical device descriptor to this function.

There are two ways to specify the VFD: by tag and by ordinal number. To open the VFD by its

tag, you must set the vfdTag parameter to the current tag of the VFD. The NI-FBUS

Communications Manager returns an error if it finds more than one VFD with the same tag. You

can obtain the list of VFD tags within a specified physical device with a call to

nifGetVFDList.

To open the VFD by its ordinal number, use the NIFB_ORDINAL macro. The first VFD of your

application in a physical device has the ordinal number zero. Notice that the Management VFDs

are not included in the ordinal numbering scheme.

5-22 | ni.com

Chapter 5 NI-FBUS Function Reference

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The input descriptor is invalid.

E_MULTIPLE There are identical VFD tags.

E_ORDINAL_NUM_OUT_OF_RANGE

The ordinal number is out of the device range.

E_COMM_ERROR An error occurred when the NI-FBUS Communications Manager

communicated with the device.

E_NOT_FOUND No VFD in the device has the specified VFD tag.

E_RESOURCES A system resource problem occurred. The resource problem is

usually a memory shortage.

E_SM_NOT_OPERATIONAL

The device is present, but cannot respond because it is at a default

address.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifOpenVfd completed.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

E_BAD_DEVICE_DATA The device returned some inconsistent information.

© National Instruments | 5-23

NI-FBUS Hardware and Software User Manual

nifShutdownCM

Purpose
Closes the NI-FBUS Communications Manager.

Format
nifError_t nifShutdownCM (

uint32 interval);

Input
interval The maximum waiting time in milliseconds for closing the

NI-FBUS Communications Manager process. If interval is set

to 0, the default timeout value of 2000 milliseconds is used. If

interval is set to NIFB_TIMEOUT_INFINITE, the function

will return only when the NI-FBUS Communications Manager

has been cleanly closed. If the interval time is exceeded, the

NI-FBUS Communications Manager process will be forcefully

closed.

Output
None.

Context
Not applicable.

Description
nifShutdownCM closes the NI-FBUS Communications Manager. The return value indicates

whether the NI-FBUS Communications Manager has been forcibly closed. If the

NI-FBUS Communications Manager cannot be closed normally within the interval time, it

will be closed forcefully. The normal close can ensure all the system resources are cleaned up.

The forceful close can’t ensure that.

Return Values
E_OK The NI-FBUS Communications Manager has been closed

normally. The call was successful.

E_SHUTDOWN_FORCE The NI-FBUS Communications Manager has been forcefully

closed.

5-24 | ni.com

Chapter 5 NI-FBUS Function Reference

nifStartupCM

Purpose
Starts the NI-FBUS Communications Manager.

Format
nifError_t nifStartupCM (

uint32 windowStyle,

uint32 interval);

Input
windowStyle Specifies the style of how the NI-FBUS Communications

Manager main window is displayed. This parameter may be one

of the following:

NIFB_WND_STYLE_NORMALActivate and display the main window of the NI-FBUS

Communications Manager.

NIFB_WND_STYLE_MINIMIZEMinimize the main window of the NI-FBUS Communications

Manager.

interval The maximum waiting time in milliseconds for the NI-FBUS

Communications Manager to complete the initialization. If

interval is set to 0, this function will immediately return after

the NI-FBUS Communications Manager process is created. If

interval is set to NIFB_TIMEOUT_INFINITE, the function

will return only when the NI-FBUS Communications Manager

has completed initialization or an error has occurred. The total

time of completing initialization depends on the number and the

type of the FBUS interface cards.

Output
None.

Context
Not applicable.

Description
nifStartupCM launches the NI-FBUS Communications Manager. Depending on the

windowStyle parameter, The NI-FBUS Communications Manager will be launched in normal

style or minimized style.

Note nifStartupCM reads the NI-FBUS installation information from the

registry to find the path of the NI-FBUS Communications Manager. If the specific

© National Instruments | 5-25

NI-FBUS Hardware and Software User Manual

NI-FBUS system registry information cannot be found or is corrupt, this function will

return an error code.

Return Values
E_OK The NI-FBUS Communications Manager has launched

successfully.

E_FILE_NOT_FOUND The NI-FBUS Communications Manager binary cannot be found

or is corrupt.

E_REGKEY_NOT_FOUND The NI-FBUS system registry information cannot be found or is

corrupt.

E_TIMEOUT The NI-FBUS Communications Manager has started but the

initialization procedure has not completed within the timeout

period.

E_SERVER_CONNECTION_LOST

The NI-FBUS Communications Manager has encountered an

error during initialization.

5-26 | ni.com

Chapter 5 NI-FBUS Function Reference

Core Fieldbus Functions

You can use the NI-FBUS core functions to access Fieldbus block parameters using any type of

descriptor. Because there are several ways to identify the Fieldbus block parameters, the

NI-FBUS core functions accept special interface macros for the name argument, as well as the

standard TAG.PARAM identifier format. Refer to the Using Interface Macros section for tips on

using the interface macros.

List of Core Functions

Table 5-2. List of Core Functions

Function Purpose

nifFreeObjectAttributes Frees an nifAttributes_t structure allocated

during a previous call to

nifGetObjectAttributes.

nifFreeObjectType Frees an nifObjTypeLinst_t structure

allocated during a previous call to

nifGetObjectType.

nifGetObjectAttributes Reads a single set of object attributes from the

Device Description (DD).

nifGetObjectName Returns the Object Dictionary symbol name of

the specified object.

nifGetObjectSize Returns the size in bytes of an object’s value.

nifGetObjectType Returns the Object Dictionary type of the

specified object.

nifReadObject Reads an object’s value from a device.

nifReadObjectList Reads the values of several objects from a device

or several devices.

nifWriteObject Writes a parameter value to a device.

© National Instruments | 5-27

NI-FBUS Hardware and Software User Manual

nifFreeObjectAttributes

Purpose
Frees an nifAttributes_t structure allocated during a previous call to

nifGetObjectAttributes.

Format
nifError_t nifFreeObjectAttributes(

nifAttributes_t *attr)

Input
attr Object attribute values your application reads using

nifGetObjectAttributes.

Output
Not applicable.

Context
Session, block, VFD, physical device, link.

Description
nifFreeObjectAttributes frees up the memory associated with the nifAttributes_t

structure specified by attr. attr must have been filled in by a successful call to

nifGetObjectAttributes. Once this function has been called, the contents of attr are no

longer valid.

If your application does not call this function after calling nifGetObjectAttributes,

your application will not free up memory properly.

Return Values
E_OK The call was successful.

E_BAD_ARGUMENT attr was not a valid nifAttributes_t structure.

5-28 | ni.com

Chapter 5 NI-FBUS Function Reference

nifFreeObjectType

Purpose
Frees the nifObjTypeList_t structure allocated during a previous call to

nifGetObjectType.

Format
nifError_t nifFreeObjectType(

nifObjTypeList_t *typeData)

Input
typeData Object Type values to be freed. These values were previously read

with the nifGetObjectType function call.

Output
Not applicable.

Context
Session, block, VFD, physical device, link.

Description
nifFreeObjectType frees up the memory associated with the nifObjTypeList_t

structure specified by typeData. typeData must have been filled in by a successful call to

nifGetObjectType. Once this function has been called, the contents of typeData are no

longer valid.

If your application does not call this function after calling nifGetObjectType, your

application will not free up memory properly.

Refer to nifGetObjectType to get more details about the nifObjTypeList_t structure.

Return Values
E_OK The call was successful.

E_BAD_ARGUMENT typeData was not a valid nifObjTypeList_t structure.

© National Instruments | 5-29

NI-FBUS Hardware and Software User Manual

nifGetObjectAttributes

Purpose
Reads a single set of object attributes from the Device Description (DD).

Format
nifError_t nifGetObjectAttributes(

nifDesc_t ud,

char *name,

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_INDEX(uint32 idx),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint32 idx, uint32

subidx),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,

NIFB_ITEM(uint32 item),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint32

subidx),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_BLOCK_ITEM(char *blocktag, uint32 item),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag,

uint32 item,

uint32 subidx),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_BLOCK_INDEX(char *blocktag, uint32 idx),

nifAttributes_t *attr)

5-30 | ni.com

Chapter 5 NI-FBUS Function Reference

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag,

uint32 idx,

uint32 subidx),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint32 subidx),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(

nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char

*name,

uint32 subidx), nifAttributes_t *attr)

Input
ud The descriptor (of any type if by name; VFD or block if by index).

name Name of the object you need the device description attributes of,

in BLOCKTAG.PARAM form. To specify a structure element by

name, specify the name in BLOCKTAG.STRUCT.ELEMENT

format. Refer to Table 5-5 for an explanation of how to use

macros to specify the object.

Output
attr Object attribute values read from the DDOD (Device Description

Object Dictionary). The type nifAttributes_t consists of a

data structure including a type code which selects from a list of

structures, one for each type of object. Other information,

including whether individual attributes were successfully

evaluated and whether individual attributes are dynamic (meaning

they could change) also is provided. The structure is too long to

be included in this chapter. You can find it in the NI-FBUS

Communications Manager header files.

Context
Session, block, VFD, physical device, link.

Description
The NI-FBUS Communications Manager reads the device description object attributes

identified in the call from the DDOD associated with ud and returned in attr. Notice that the

object attributes describe certain characteristics of the object, but do not contain the object value.

The device description object attributes also differ in content from the FMS Object Description

of the object.

© National Instruments | 5-31

NI-FBUS Hardware and Software User Manual

For block, VFD, physical device, or link descriptors, the object name may refer to a variable or

a variable list. You normally would use nifGetObjectAttributes to read the type

description of a certain data type.

Refer to Table 5-5 for an explanation of how to use macros to specify the object.

For more detailed information concerning the nifAttributes_t structure, refer to Chapter 3,

Using ddi_get_item, of the Fieldbus Foundation Device Description Services User Guide.

Note After a successful call to nifGetObjectAttributes, your application

must call nifFreeObjectAttributes when it is done using the attr structure.

Your application will not free up memory correctly if it does not perform this

operation.

Return Values
E_OK The call was successful.

E_CONFIG_ERROR Some configuration information, such as registry information or

network configuration information, is incorrect.

E_INVALID_DESCRIPTOR

The device descriptor does not correspond to a VFD or block.

E_SYMBOL_FILE_NOT_FOUND

The NI-FBUS Communications Manager could not find the

symbol file.

E_SM_NOT_OPERATIONAL

The device is present, but cannot respond because it is at a default

address.

E_NOT_FOUND The referred object does not exist, or it does not have object

attributes.

E_MULTIPLE The NI-FBUS Communications Manager found more than

one identical tag; the function failed.

E_ORDINAL_NUM_OUT_OF_RANGE

The ordinal number is out of the device range.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifGetObjectAttributes completed.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

5-32 | ni.com

Chapter 5 NI-FBUS Function Reference

nifGetObjectName

Purpose
Returns the Object Dictionary symbol name of the specified object.

Format
nifError_t nifGetObjectName(

nifDesc_t ud,

char *inName,

char *outName)

nifError_t nifGetObjectName(

nifDesc_t ud,

NIFB_INDEX(uint32 idx),

char *outName)

nifError_t nifGetObjectName(

nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint32 idx, uint32

subidx),

char *outName)

nifError_t nifGetObjectName(

nifDesc_t ud,

NIFB_ITEM(uint32 item),

char *outName)

nifError_t nifGetObjectName(

nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint32

subidx),

char *outName)

nifError_t nifGetObjectName(

nifDesc_t ud,

NIFB_BLOCK_INDEX(char *blocktag, uint32 idx),

char *outName)

nifError_t nifGetObjectName(

nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag,

uint32 idx, uint32 subidx),

char *outName)

nifError_t nifGetObjectName(

nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint32 subidx),

char *outName)

© National Instruments | 5-33

NI-FBUS Hardware and Software User Manual

nifError_t nifGetObjectName(

nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX (char *blocktag, char

*name, uint32 subidx),

char *outName)

Input
ud The descriptor of the session, link, physical device, VFD or block

if you are accessing by name. If you are accessing by index,

ud must be a VFD or block.

inName The name of the parameter you want to read the OD symbol name

in BLOCKTAG.PARAM form. Refer to Table 5-5 for an explanation

of how to use macros to specify the parameter. To specify a named

structure element, supply name in

BLOCKTAG.STRUCT.ELEMENT format.

Output
outName The Object symbol name read from the Object Dictionary in

the device.

Context
Session, block, VFD, DDOD, physical device, link.

Description
nifGetObjectName is used to read the Object Dictionary symbol names of objects such as

block, VFD, MIB objects, or communication objects from devices.

� If ud is the descriptor of a link, then inName must be in BLOCKTAG.PARAM_NAME format.

� If ud is a session descriptor, then all links are searched for the given

BLOCKTAG.PARAM_NAME. The call fails if identical BLOCKTAG.PARAM_NAME tags are

found on the bus. Index access is not allowed for session descriptors.

� If ud is the descriptor of a general function block application VFD, and you use the

NIFB_INDEX macro, the index specified is the index of the object in the VFD.

� If ud is the descriptor of a function block, name must be in PARAM_NAME format.

� If ud is the descriptor of a function block, and you use the NIFB_INDEX or

NIFB_INDEX_SUBINDEX macro, the index specified is the relative index of the parameter

within the block. Relative indices start at one for the first parameter. Index zero retrieves

the object dictionary symbol name of the block itself.

� In all cases, you can expand PARAM_NAME to STRUCT.ELEMENT format to represent a

named element of a named structure.

Refer to Table 5-5 for an explanation of how to use macros to specify the parameter.

5-34 | ni.com

Chapter 5 NI-FBUS Function Reference

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The descriptor you specified is not valid.

E_NOT_FOUND The NI-FBUS Communication Manager could not find the

specified object.

E_SYMBOL_FILE_NOT_FOUND

The NI-FBUS Communication Manager could not find the

symbol file.

E_BAD_ARGUMENT The object specified by index was that of a simple data type,

which must already be known to you.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communication

Manager, under which the descriptor was opened, has been lost or

closed.

E_DEVICE_CHANGED The device you specified is changed.

E_VFD_CHANGED The VFD you specified is changed.

E_COMM_ERROR An error occurred when the NI-FBUS Communication Manager

tried to communicate with the device.

E_RESOURCE The NI-FBUS Communications Manager is unable to allocate

some system resource; this is usually a memory problem.

E_OBSOLETE_BLOCK The block you specified is no longer valid.

© National Instruments | 5-35

NI-FBUS Hardware and Software User Manual

nifGetObjectSize

Purpose
Returns the size (in bytes) of an object’s value.

Format
nifError_t nifGetObjectSize(

nifDesc_t ud,

char *name,

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_INDEX(uint32 idx),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint32 idx, uint32

subidx),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_ITEM(uint32 item),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint32

subidx),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_BLOCK_ITEM(char *blocktag, uint32 item),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag,

uint32 item,

uint32 subidx),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_BLOCK_INDEX(char *blocktag, uint32 idx),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag,

5-36 | ni.com

Chapter 5 NI-FBUS Function Reference

uint32 idx, uint32 subidx),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(

nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint32 subidx),

int16 *size_in_bytes)

nifError_t ni1fGetObjectSize(

nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char

*name, uint32 subidx),

int16 *size_in_bytes)

Input
ud The descriptor of a block.

name Character string name of the object you need the size of, in

BLOCKTAG.PARAM form. To specify a structure element by

name, specify the name in BLOCKTAG.STRUCT.ELEMENT

format. Refer to Table 5-5 for an explanation of how to use

macros to specify the character string name.

Output
size_in_bytes The size of the object.

Context
Session, block, VFD, physical device, link.

Description
This function returns the size of the specified Object Value. You have to pass a buffer of the

returned size to nifReadObject to hold the value of the object.

Refer to Table 5-5 for an explanation of how to use macros to specify the character string name.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The specified descriptor is invalid.

E_SYMBOL_FILE_NOT_FOUND

The NI-FBUS Communications Manager could not find the

symbol file.

E_NOT_FOUND The named object does not exist.

E_MULTIPLE Multiple identical tags were found; the function failed.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifGetObjectSize completed.

© National Instruments | 5-37

NI-FBUS Hardware and Software User Manual

E_ORDINAL_NUM_OUT_OF_RANGE

The ordinal number is out of the device range.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

5-38 | ni.com

Chapter 5 NI-FBUS Function Reference

nifGetObjectType

Purpose
Returns the Object Dictionary type of the specified object.

Format
nifError_t nifGetObjectType(

nifDesc_t ud,

char *objName,

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_INDEX(uint32 idx),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint32 idx, uint32

subidx),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_ITEM(uint32 item),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint32

subidx),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_BLOCK_ITEM(char *blocktag, uint32 item),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag,

uint32 item, uint32 subidx),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_BLOCK_INDEX(char *blocktag, uint32 idx),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag,

uint32 idx, uint32 subidx),

nifObjTypeList_t *typeData)

© National Instruments | 5-39

NI-FBUS Hardware and Software User Manual

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint32 subidx),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(

nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char

*name, uint32 subidx),

nifObjTypeList_t *typeData)

Input
ud The descriptor of the session, link, physical device, VFD, or block

if you are accessing by name. If you are accessing by index,

ud must be a VFD or block.

objName The name of the parameter you want to read the OD type of, in

BLOCKTAG.PARAM form. Refer to Table 5-5 for an explanation

of how to use macros to specify the parameter. To specify a named

structure element, supply name in

BLOCKTAG.STRUCT.ELEMENT format. To specify a type index

returned by a previous call to nifGetObjectType, use the

NIFB_TYPE_INDEX macro.

Output
typeData Object Type value read from the object dictionary in the device.

The nifObjTypeList_t data structure is a record consisting of

an object type code, the number of elements, the blocktag to

which this object belongs (if applicable), and a pointer to a list of

elements of type nifObjElem_t. The nifObjElem_t type is a

structure which consists of two elements: the OD typeIndex of

the element and the OD length of the element.

Context
Session, block, VFD, DDOD, physical device, link.

Description
nifGetObjectType is used to read the Object Dictionary type values of objects such as block

parameters, MIB objects, or communication parameters from devices.

� If ud is the descriptor of a link, then objName must be in BLOCKTAG.PARAM_NAME

format.

� If ud is a session descriptor, then all links are searched for the given

BLOCKTAG.PARAM_NAME. The call fails if identical BLOCKTAG.PARAM_NAME tags are

found on the bus. Index access is not allowed for session descriptors.

5-40 | ni.com

Chapter 5 NI-FBUS Function Reference

� If ud is the descriptor of a general function block application VFD, and you use the

NIFB_INDEX macro, the index specified is the index of the object in the VFD.

� If ud is the descriptor of a function block, name must be in PARAM_NAME format.

� If ud is the descriptor of a function block, and you use the NIFB_INDEX or

NIFB_INDEX_SUBINDEX macro, the index specified is the relative index of the parameter

within the block. Relative indices start at one for the first parameter. Index zero retrieves

the OD type of the block itself.

� In all cases, you can expand PARAM_NAME to STRUCT.ELEMENT format to represent a

named element of a named structure.

Refer to Table 5-5 for an explanation of how to use macros to specify the parameter.

The nifObjTypeList_t data structure is defined as follows:

typedef struct {

uint8 objectCode;

uint16 numElems;

char blockTag[TAG_SIZE + 1];

nifObjElem_t *allElems;

} nifObjTypeList_t;

The nifObjElem_t data type is defined as follows:

typedef struct {

uint16 objTypeIndex;

uint16 objSize;

} nifObjElem_t;

The objectCode returned in the data structure nifObjTypeList_t is as specified in the

FMS Specifications section of the Fieldbus Foundation Specifications document and is listed in

Table 5-3, for your convenience.

Table 5-3. Object Codes for the nifObjTypeList_t Data Structure

Object Object Code in fbtypes.h

Domain ODT_DOMAIN

Program Invocation ODT_PI

Event ODT_EVENT

Data Type ODT_SIMPLETYPE

Data Type Structure Description ODT_STRUCTTYPE

Simple Variable ODT_SIMPLEVAR

Array ODT_ARRAY

© National Instruments | 5-41

NI-FBUS Hardware and Software User Manual

For object codes ODT_STRUCTTYPE, ODT_SIMPLEVAR, ODT_ARRAY, and ODT_RECORD, the

list of elements in allElements contains the typeIndex and the size of each component

element. For example, the following fragment of pseudocode gets the type information for a

structured object and does something with the type information for each element:

nifObjTypeList_t typeInfo;

nifDesc_t aiBlock;

int loop;

...

nifGetObjectType(aiBlock, "OUT", &typeInfo);

for (loop=0; loop < typeInfo.numElems; loop++)

{

doSomethingWithElement(typeInfo.allElems[loop]);

}

For variable list objects (type ODT_VARLIST), you must call nifGetObjectType for each

element in the list of elements with the typeIndex of the element returned in the list with the

first nifGetObjectType call. The typeIndex of the element returned in the list in this case

is the relative index of the element within the block, whose name is returned by blockTag.

These subsequent calls to nifGetObjectType should use the NIFB_INDEX macro to specify

the typeIndex returned by the first call.

For example, the following fragment of pseudocode gets the type information for a variable list

object and does something with the type information for each variable:

nifObjTypeList_t typeInfo, varTypeInfo;

nifDesc_t aiBlock;

int loop;

...

nifGetObjectType(aiBlock, "VIEW_1", &typeInfo);

if (typeinfo.objectCode == ODT_VARLIST)

{

for (loop=0; loop < typeInfo.numElems; loop++)

{

nifGetObjectType(aiBlock,

NIFB_INDEX(typeInfo.allElems[loop].objTypeIndex),

&varTypeInfo);

doSomethingWithVariable(varTypeInfo);

}

}

Record ODT_RECORD

Variable List ODT_VARLIST

Table 5-3. Object Codes for the nifObjTypeList_t Data Structure (Continued)

Object Object Code in fbtypes.h

5-42 | ni.com

Chapter 5 NI-FBUS Function Reference

For all successful calls to nifGetObjectType, you must call nifFreeObjectType to clean

up memory allocated within these structures.

For objects with the object codes ODT_DOMAIN, ODT_PI, ODT_EVENT, and

ODT_SIMPLETYPE, only the object type is returned, and the list of elements allElems in the

structure nifObjTypeList_t is empty. The list of standard data types for an object which has

the object code ODT_SIMPLETYPE also is as specified in the FMS Specifications section of the

Fieldbus Foundation Specifications document.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The descriptor you specified is not valid.

E_TIMEOUT The device containing the object is present but did not respond

within the timeout period.

E_MULTIPLE More than one identical tag was found. The function failed.

Table 5-4. Object Codes for the nifObjTypeList_t Data Structure

Data Type

objTypeIndex

in fbtypes.h

Number of

Octets (Size)

Boolean FF_BOOLEAN 1

Integer8 FF_INTEGER8 1

Integer16 FF_INTEGER16 2

Integer32 FF_INTEGER32 4

Unsigned8 FF_UNSIGNED8 1

Unsigned16 FF_UNSIGNED16 2

Unsigned32 FF_UNSIGNED32 4

Floating Point FF_FLOAT 4

Visible String FF_VISIBLE_STRING 1, 2, 3, ...

Octet String FF_OCTET_STRING 1, 2, 3, ...

Date FF_DATE 7

Time of Day FF_TIMEOFDAY 4 or 6

Time Difference FF_TIME_DIFF 4 or 6

Bit String FF_BIT_STRING 1, 2, 3, ...

Time Value FF_TIME_VALUE 8

© National Instruments | 5-43

NI-FBUS Hardware and Software User Manual

E_NOT_FOUND The NI-FBUS Communications Manager could not find the

specified object.

E_BAD_ARGUMENT The object specified by index was that of a simple data type,

which must already be known to you.

E_RESOURCES The NI-FBUS Communications Manager is unable to allocate

some system resource. This is usually a memory problem.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager, under which the descriptor was opened, has been lost or

closed.

5-44 | ni.com

Chapter 5 NI-FBUS Function Reference

nifReadObject

Purpose
Reads an object’s value from a device.

Format
nifError_t nifReadObject(

nifDesc_t ud,

char *name,

void *buffer,

uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_INDEX(uint32 idx),

void *buffer, uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint32 idx, uint32

subidx),

void *buffer, uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_ITEM(uint32 item),

void *buffer,

uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint32

subidx),

void *buffer,

uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_BLOCK_ITEM(char *blocktag, uint32 item),

void *buffer, uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag,

uint32 item, uint32 subidx),

void *buffer,

uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_BLOCK_INDEX(char *blocktag, uint32 idx),

void *buffer,

uint8 *length)

© National Instruments | 5-45

NI-FBUS Hardware and Software User Manual

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag,

uint32 idx,

uint32 subidx),

void *buffer,

uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint32 subidx),

void *buffer,

uint8 *length)

nifError_t nifReadObject(

nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char

*name, uint32 subidx),

void *buffer,

uint8 *length)

Input
ud The descriptor of the session, link, physical device, VFD or block

if reading by name. If reading by index, ud must be a VFD

or block.

name Name of the parameter your application reads, in

BLOCKTAG.PARAM format. To specify a structure element by

name, specify the name in BLOCKTAG.STRUCT.ELEMENT

format. Refer to Table 5-5 for an explanation of how to use

macros to specify the parameter.

length The size of the buffer to hold the result, in bytes.

Output
buffer The value that the NI-FBUS Communications Manager reads.

length The actual size of the resulting data, in bytes.

Context
Session, block, VFD, physical device, link.

Description
nifReadObject reads the values of objects such as block parameters or communications

parameters from devices.

� If ud is the descriptor of a link, then name must be in the format

BLOCKTAG.PARAM_NAME.

5-46 | ni.com

Chapter 5 NI-FBUS Function Reference

� If ud is a session descriptor, then all links are searched for the given

BLOCKTAG.PARAM_NAME. The call fails if multiple identical BLOCKTAG.PARAM_NAME

tags are located on the bus. Index access is not allowed for session descriptors.

� If ud is the descriptor of a general function block application VFD, then name must be in

the format BLOCKTAG.PARAM_NAME.

� If ud is the descriptor of a function block, name must be in the format PARAM_NAME.

� If ud is the descriptor of a function block, and the NIFB_INDEX or

NIFB_INDEX_SUBINDEX macro is used, the index specified is the relative index of the

parameter within the block. Relative indices start at 1 for the first parameter.

� In all descriptor cases, you can expand PARAM_NAME itself to STRUCT.ELEMENT format

to represent a named element of a named structure.

In each case, name can represent either a variable or a variable list object. You should determine

the size of the object beforehand, possibly with a call to nifGetObjectSize. If the object is

larger than the buffer size specified in length, the NI-FBUS Communications Manager returns

an error, and none of the data in the buffer is valid.

Refer to Table 5-5 for an explanation of how to use macros to specify the parameter.

The data nifReadObject returns is in Fieldbus Foundation FMS Application format. You

must accomplish conversion of the data to the internal format of your processor and compiler.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The descriptor does not correspond to a VFD or function block.

This descriptor is no longer valid.

E_NOT_FOUND The referred object does not exist.

E_OBJECT_ACCESS_DENIED

The NI-FBUS Communications Manager interface does not have

the required privileges. The access group you belong to is not

allowed to acknowledge the event, or the password you used is

wrong.

E_MULTIPLE The NI-FBUS Communications Manager found more than

one identical tag. The function failed.

E_BUF_TOO_SMALL The object is larger than your buffer.

E_SM_NOT_OPERATIONAL

The device is present, but cannot respond because it is at a default

address.

E_SYMBOL_FILE_NOT_FOUND

The NI-FBUS Communications Manager could not find the

symbol file.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifReadObject completed.

© National Instruments | 5-47

NI-FBUS Hardware and Software User Manual

E_COMM_ERROR The NI-FBUS Communications Manager failed to communicate

with the device.

E_PARAMETER_CHECK The device reported a violation of parameter-specific checks.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

5-48 | ni.com

Chapter 5 NI-FBUS Function Reference

nifReadObjectList

Purpose
Reads the values of several objects from a device or several devices.

Format
nifError_t nifReadObjectList (

nifDesc_t ud,

char **blkParamList,

uint16 numObjects,

void *buffer,

uint16 *length,

nifError_t *errArray)

Input
ud The descriptor of the session, link, physical device, VFD,

or block.

blkParamList The list of parameter names your application reads in the form

of BLOCKTAG.PARAM. To specify any parameter by index use

the NIFB_INDEX macro. To specify any parameter that is an

array or structure element by index and subindex, use the

NIFB_INDEX_SUBINDEX macro. To specify a named structure

element, supply the parameter name in the form of

BLOCKTAG.STRUCT.ELEMENT.

numObjects The number of parameter names specified in blkParamList.

(The maximum number of objects that can be specified in

blkParamList is given by the constant MAX_LIST_ELEMS.)

length The size of the buffer to hold the result of all the parameter reads,

in bytes.

Output
buffer The values of all the parameters read, stored as a continuous string

of bytes.

length The cumulative size of the actual resulting data in bytes.

errArray The error codes resulting from each parameter read. The error

codes have a one-to-one correspondence with the order in which

the parameters are specified in blkParamList.

Context
Session, link, device, VFD, block.

© National Instruments | 5-49

NI-FBUS Hardware and Software User Manual

Description
nifReadObjectList reads the values of objects specified in the list, which may include block

parameters or communication parameters from devices.

� If ud is the descriptor of a link, each name in blkParamList must be in the format

BLOCKTAG.PARAM_NAME.

� If ud is a session descriptor, then all links are searched for any given name specified by the

blocktag.param format in blkParamList. The read of this particular object fails if

identical BLOCKTAG.PARAM_NAME tags are located on the bus. Index access is not allowed

for session descriptors.

� If ud is the descriptor of a general function block application VFD, any name in

blkParamList must be in the format blocktag.param_name.

� If ud is the descriptor of a function block, any name in blkParamList must be in the

format PARAM_NAME.

� If ud is the descriptor of a function block and the NIFB_INDEX or

NIFB_INDEX_SUBINDEX macro is used to specify a name in blkParamList, the index

specified is the relative index of the parameter within the block. Relative indices start at 1

for the first block parameter.

� In all descriptor cases, any PARAM_NAME specified in blkParamList can be expanded to

STRUCT.ELEMENT format to represent a named element of a named structure.

For each name specified in blkParamList, the name can either represent a variable or a

variable list object. You should determine the size of each object specified in blkParamList

beforehand, possibly with a call to nifGetObjectSize. If the cumulative size of all the

objects specified in the list is larger than the buffer size specified in length, the NI-FBUS

Communications Manager returns an error. The data in the buffer is valid for however many

objects were successfully read. The success or failure of the read for every object specified

in blkParamList is indicated in errArray, the array in which error codes are returned.

The error code in the first element of errArray is the error code indicating success or failure

upon read of the first object specified in blkParamList, and so on.

Refer to Table 5-5 for an explanation of how to use macros to specify the parameters in

blkParamList.

The data nifReadObjectList returns is in Fieldbus Foundation FMS Application format.

You must accomplish conversion of the data to the internal format of your processor and

compiler.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The descriptor is no longer valid.

E_BUF_TOO_SMALL The size of the data resulting from the read of all objects specified

in the list is larger than your buffer.

5-50 | ni.com

Chapter 5 NI-FBUS Function Reference

E_RESOURCES A system resource problem occurred. The resource problem is

usually a memory shortage.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

© National Instruments | 5-51

NI-FBUS Hardware and Software User Manual

nifWriteObject

Purpose
Writes a parameter value to a device.

Format
nifError_t nifWriteObject(

nifDesc_t ud,

char *name,

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_INDEX(uint32 idx),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint32 idx, uint32

subidx),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_ITEM(uint32 item),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint32

subidx),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_BLOCK_ITEM(char *blocktag, uint32 item),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag,

uint32 item, uint32 subidx),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

5-52 | ni.com

Chapter 5 NI-FBUS Function Reference

NIFB_BLOCK_INDEX(char *blocktag, uint32 idx),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag,

uint32 idx,

uint32 subidx),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint32 subidx),

void *buffer,

uint8 length)

nifError_t nifWriteObject(

nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char

*name, uint32 subidx),

void *buffer,

uint8 length)

Input
ud The descriptor of the session, link, physical device, VFD, or

block, if writing by name. If writing by index, ud must be a VFD

or block.

name Name of the parameter you want the NI-FBUS Communications

Manager to write, in BLOCKTAG.PARAM form. To specify a

structure element by name, specify the name in

BLOCKTAG.STRUCT.ELEMENT format. Refer to Table 5-5 for an

explanation of how to use macros to specify the parameter.

buffer The value you want the NI-FBUS Communications Manager

to write.

length The size of the data buffer, in bytes.

Output
Not applicable.

Context
Block, VFD, physical device, link, session.

© National Instruments | 5-53

NI-FBUS Hardware and Software User Manual

Description
nifWriteObject writes the values of a function block parameter to a device.

� If ud is the descriptor of a session or link, then name must be in the format

BLOCKTAG.PARAM_NAME.

� If ud is a session descriptor, then all links are searched for the given

BLOCKTAG.PARAM_NAME. The function fails if more than one identical

BLOCKTAG.PARAM_NAME match is found.

� If ud is a physical device descriptor, a parameter is written by BLOCKTAG.PARAM_NAME.

� If ud is the descriptor of a general Virtual Field Device, then name must be in the format

BLOCKTAG.PARAM_NAME.

� If ud is the descriptor of a function block, name must be in the format PARAM_NAME.

� If ud is the descriptor of a function block, and you use the NIFB_INDEX or

NIFB_INDEX_SUBINDEX macro, the index specified is the relative index of the parameter

within the block. Relative indices start at one for the first parameter.

� In all descriptor cases, you can expand PARAM_NAME itself to STRUCT.ELEMENT format

to represent a named element of a named structure.

Refer to Table 5-5 for an explanation of how to use macros to specify the parameter.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The device descriptor does not correspond to a VFD.

E_SYMBOL_FILE_NOT_FOUND

The NI-FBUS Communications Manager could not find the

symbol file.

E_ORDINAL_NUM_OUT_OF_RANGE

The parameter is out of the device range.

E_OBJECT_ACCESS_UNSUPPORTED

The device does not support write access to this object.

E_MULTIPLE The NI-FBUS Communications Manager found more than

one identical tag. The function failed.

E_SM_NOT_OPERATIONAL

The device is present, but cannot respond because it is at a default

address.

E_COMM_ERROR The NI-FBUS Communications Manager failed to communicate

with the device.

E_PARAMETER_CHECK The device reported a violation of parameter-specific checks.

E_EXCEED_LIMIT The device reported that the value exceeds the limit.

E_WRONG_MODE_FOR_REQUEST

The device reported that the current function block mode does not

allow you to write to the parameter.

5-54 | ni.com

Chapter 5 NI-FBUS Function Reference

E_WRITE_IS_PROHIBITED

The device reported that the WRITE_LOCK parameter value is set.

The WRITE_LOCK parameter prohibits writing to the name

parameter.

E_DATA_NEVER_WRITABLE

The specified object is read-only.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

© National Instruments | 5-55

NI-FBUS Hardware and Software User Manual

Using Interface Macros

This section contains tips for using the NI-FBUS Communications Manager interface macros.

These macros are defined in the header file nifbus.h.

As shown in Table 5-5, you can specify the parameter your application reads in the name

parameter in the following ways:

� To specify an object by index, use the NIFB_INDEX macro in the nifbus.h header file.

� To specify an array or structure element by index and subindex, use the

NIFB_INDEX_SUBINDEX macro.

� If you already have a block descriptor, you can specify an object by its item ID with

the NIFB_ITEM macro, or you can specify a subelement by its item ID with the

NIFB_ITEM_SUBINDEX macro.

Table 5-5. Core Function Macros

Descriptor Type

You Have

Parameter Information

You Have Macro to Use

Block Descriptor Name Normal Access by Name

Name and Subindex NIFB_NAME_SUBINDEX

Relative Index within

the Block

NIFB_INDEX

Relative Index and

Subindex

NIFB_INDEX_SUBINDEX

Device Description Item ID NIFB_ITEM

Device Description Item ID

and Subindex

NIFB_ITEM_SUBINDEX

Non-Block

Descriptor

Name Normal Access Using

BLOCKTAG.PARAM Format

Name and Subindex NIFB_BLOCK_NAME_SUBINDEX

Relative Index within

the Block

NIFB_BLOCK_INDEX

Relative Index and

Subindex

NIFB_BLOCK_INDEX_SUBINDEX

Device Description Item ID NIFB_BLOCK_ITEM

Device Description Item ID

and Subindex

NIFB_BLOCK_ITEM_SUBINDEX

5-56 | ni.com

Chapter 5 NI-FBUS Function Reference

� If you do not have a block descriptor, you have the following choices:

– You can use the NIFB_BLOCK_ITEM macro to specify an item.

– You can use the NIFB_BLOCK_ITEM_SUBINDEX macro to specify a subelement.

– You can use the NIFB_BLOCK_INDEX macro specify an object by index.

– You can use the NIFB_BLOCK_INDEX_SUBINDEX macro to specify a subindex.

You can find all these macros in the nifbus.h header file.

Alert and Trend Functions

The following tables list the alert and trend functions.

Table 5-6. Alert Functions

Function Purpose

nifAcknowledgeAlarm Acknowledges an alarm received

nifWaitAlert Waits for an alert (an event or an alarm) from a

specific device or from any device

nifWaitAlert2 Waits for an alert (an event or an alarm) from a

specific device or from any device. This function

supports Standard Diagnostic Alert.

Table 5-7. Trend Function

Function Purpose

nifWaitTrend Waits for a trend from a specific device or from

any device

© National Instruments | 5-57

NI-FBUS Hardware and Software User Manual

nifAcknowledgeAlarm

Purpose
Acknowledges an alarm received.

Format
nifError_t nifAcknowledgeAlarm(

nifDesc_t ud,

char *alarmName)

Input
ud A session, link, physical device, VFD, or block descriptor for

the alarm.

alarmName The name of the alarm object that you want the NI-FBUS

Communications Manager to acknowledge. If ud is a block

descriptor, alarmName should be the parameter name, otherwise

alarmName should be in BLOCKTAG.PARAMNAME format.

Context
Block, VFD, physical device, link, session.

Description
nifAcknowledgeAlarm acknowledges an alarm notification from a device. The NI-FBUS

Communications Manager clears the unacknowledged field associated with the alarm object

alarmName.

If ud is a block descriptor, the alarmName is the same as the alarmOrEventName field of the

alert data you get in the nifWaitAlert or nifWaitAlert2 call. If ud is a session, link, VFD,

or physical device descriptor, then alarmName is in BLOCKTAG.PARAMNAME format, where

blockTag is the same as the blockTag field of the alert data in the nifWaitAlert or

nifWaitAlert2 function.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The device descriptor is not a valid descriptor.

E_OBJECT_ACCESS_DENIED

The NI-FBUS Communications Manager interface does not have

the required privileges. The access group you belong to is not

allowed to acknowledge the event, or the password you used is

wrong.

5-58 | ni.com

Chapter 5 NI-FBUS Function Reference

E_COMM_ERROR An error occurred when the NI-FBUS Communications Manager

tried to communicate with the device.

E_ALARM_ACKNOWLEDGED

The alarm has already been acknowledged.

E_MULTIPLE There are identical block tags.

E_NOT_FOUND There is no such block in the device or VFD with the specified tag.

E_SYMBOL_FILE_NOT_FOUND

The NI-FBUS Communications Manager could not find the

symbol file.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

© National Instruments | 5-59

NI-FBUS Hardware and Software User Manual

nifWaitAlert

Purpose
Waits for an alert (an event or an alarm) from a specific device or from any device.

Format
nifError_t nifWaitAlert(

nifDesc_t ud,

nifAlertData_t *aldata,

uint8 alertPriority)

Input
ud The descriptor of the session, link, physical device, VFD, block,

or link the alert comes from.

alertPriority Lowest priority of the alert coming in that you want to wait on.

Output
aldata The information about the specific alert.

Context
Block, VFD, physical device, link, session.

Description
nifWaitAlert only supports normal alert types and does not support Standard Diagnostics

Alert. It is recommended to use nifWaitAlert2 instead.

ud represents a descriptor of a session, link, a physical device, a VFD, or a block. If ud is a VFD

descriptor, then the NI-FBUS Communications Manager waits for an alert from any block in the

Virtual Field Device. If ud is a block, the NI-FBUS Communications Manager waits for an

alarm or event from the block ud refers to. If ud represents a link, nifWaitAlert completes

when an event is received from any device connected to that link. If the descriptor is a session

descriptor, the function waits on any event from any attached link.

nifWaitAlert waits indefinitely until the NI-FBUS Communications Manager receives an

alert with a priority greater than or equal to the input alert priority. Your application can have a

dedicated thread which does nifWaitAlert only.

When the NI-FBUS Communications Manager interface receives an alert, the aldata

parameter is filled in with the information about the aldata. The form of

aldata->alertData depends on the value of aldata->alertType.

aldata->alarmOrEventName is the name of the alarm parameter or event parameter that

caused the alert. aldata->deviceTag and aldata->blockTag are the tags of the device

and the block of the alarm, respectively.

5-60 | ni.com

Chapter 5 NI-FBUS Function Reference

nifWaitAlert sends a confirmation to the device, informing the alerting device that the alert

was received. Note that this is a separate step from alert acknowledgment, which must be carried

out for alarms using nifAcknowledgeAlarm.

If you have multiple threads waiting to receive the same alert, the NI-FBUS Communications

Manager sends a copy of the alert to all the waiting threads. Your application must ensure that

only one thread acknowledges any one alarm with a call to nifAcknowledgeAlarm. You can

abort a pending nifWaitAlert call by closing the descriptor on which the call was made.

The alertType parameter can be ALERT_ANALOG, ALERT_DISCRETE, or ALERT_UPDATE.

nifAlertData_t is defined as follows:

typedef struct nifAlertData_t{

uint8 alertType;

char deviceTag[TAG_SIZE + 1];

char blockTag[TAG_SIZE + 1];

char alarmOrEventName [TAG_SIZE + 1];

uint8 alertKey;

uint8 standardType;

uint8 mfrType;

uint8 messageType;

uint8 priority;

nifTime_t timeStamp;

uint16 subCode;

uint16 unitIndex;

union {

float floatAlarmData;

uint8 discreteAlarmData;

uint16 staticRevision;

} alertData;

} nifAlertData_t;

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The descriptor you gave is invalid.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifWaitAlert completed.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

© National Instruments | 5-61

NI-FBUS Hardware and Software User Manual

nifWaitAlert2

Purpose
Waits for an alert (an event or an alarm) from a specific device or from any device.

nifWaitAlert2 supports Standard Diagnostics Alert.

Format
nifError_t nifWaitAlert2(

nifDesc_t ud,

nifAlertData2_t *aldata,

uint8 alertPriority)

Input
ud The descriptor of the session, link, physical device, VFD, block,

or link the alert comes from.

alertPriority Lowest priority of the alert coming in that you want to wait on.

Output
aldata The information about the specific alert (supports Standard

Diagnostics Alert).

Context
Block, VFD, physical device, link, session.

Description
nifWaitAlert2 is compatible with all of the alert types of nifWaitAlert, and

nifWaitAlert2 is able to support Standard Diagnostics Alert. It is recommended that you use

nifWaitAlert2 instead of nifWaitAlert.

ud represents a descriptor of a session, link, a physical device, a VFD, or a block. If ud is a VFD

descriptor, then the NI-FBUS Communications Manager waits for an alert from any block in the

Virtual Field Device. If ud is a block, the NI-FBUS Communications Manager waits for an

alarm or event from the block ud refers to. If ud represents a link, nifWaitAlert2 completes

when an event is received from any device connected to that link. If the descriptor is a session

descriptor, the function waits on any event from any attached link.

nifWaitAlert2 waits indefinitely until the NI-FBUS Communications Manager receives an

alert with a priority greater than or equal to the input alert priority. Your application can have a

dedicated thread which does nifWaitAlert2 only.

5-62 | ni.com

Chapter 5 NI-FBUS Function Reference

When the NI-FBUS Communications Manager interface receives an alert, the aldata

parameter is filled in with the information about the aldata. The form of

aldata->alertData depends on the value of aldata->alertType.

aldata->alarmOrEventName is the name of the alarm parameter or event parameter that

caused the alert. aldata->deviceTag and aldata->blockTag are the tags of the device

and the block of the alarm, respectively.

nifWaitAlert2 sends a confirmation to the device, informing the alerting device that the alert

was received. Note that this is a separate step from alert acknowledgment, which must be carried

out for alarms using nifAcknowledgeAlarm.

If you have multiple threads waiting to receive the same alert, the NI-FBUS Communications

Manager sends a copy of the alert to all the waiting threads. Your application must ensure that

only one thread acknowledges any one alarm with a call to nifAcknowledgeAlarm. You can

abort a pending nifWaitAlert2 call by closing the descriptor on which the call was made.

The alertType parameter can be ALERT_ANALOG, ALERT_DISCRETE, ALERT_UPDATE, or

or ALERT_STANDARD_DIAGNOSTICS.

nifAlertData2_t is defined as follows:

typedef struct nifAlertData2_t{

uint8 alertType;

char deviceTag[TAG_SIZE + 1];

char blockTag[TAG_SIZE + 1];

char alarmOrEventName [TAG_SIZE + 1];

uint8 alertKey;

uint8 standardType;

uint8 mfrType;

uint8 messageType;

uint8 priority;

uint8 reserved[3];

nifTime_t timeStamp;

union {

nifAlertAnalogData_t analog;

nifAlertDiscreteData_t discrete;

nifAlertUpdateData_t update;

nifAlertStandardDiagnosticsData_t stdDiag;

} alertData;

} nifAlertData2_t;

typedef struct nifAlertAnalogData_t {

uint16 subCode;

float value;

uint32 relativeIndex;

uint16 unitIndex;

} nifAlertAnalogData_t;

© National Instruments | 5-63

NI-FBUS Hardware and Software User Manual

typedef struct nifAlertDiscreteData_t {

uint16 subCode;

uint8 value;

uint32 relativeIndex;

uint16 unitIndex;

} nifAlertDiscreteData_t;

typedef struct nifAlertUpdateData_t {

uint16 staticRevision;

uint32 relativeIndex;

} nifAlertUpdateData_t;

typedef struct nifAlertStandardDiagnosticsData_t {

uint32 subCode;

uint8 value;

uint32 relativeIndex;

uint16 sourceBlockIndex;

} nifAlertStandardDiagnosticsData_t;

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The descriptor you gave is invalid.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed before

nifWaitAlert2 completed.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

5-64 | ni.com

Chapter 5 NI-FBUS Function Reference

nifWaitTrend

Purpose
Waits for a trend from a specific device or from any device.

Format
nifError_t nifWaitTrend(

nifDesc_t ud,

nifTrendData_t *trend)

Input
ud The descriptor of the session, physical device, VFD, block,

or link that the trend comes from.

Output
trend The information about the specific trend.

Context
Block, VFD, physical device, link, session.

Description
ud represents a descriptor of a session, link, physical device, VFD, or block. If ud is a VFD

descriptor, then the NI-FBUS Communications Manager waits for a trend from any block in the

Virtual Field Device. If ud is a block, the NI-FBUS Communications Manager waits for a trend

from the block ud identifies. If ud represents a link, the call completes when a trend is received

from any device connected to that link. If the descriptor is a session descriptor, nifWaitTrend

waits on any trend from any attached link.

nifWaitTrend waits indefinitely until the NI-FBUS Communications Manager interface

receives a trend. Your application can have a dedicated thread which does nifWaitTrend only.

When a trend comes in, the trend parameter is filled in with the information about the trend.

The form of trend->trendData depends on the value of trend->trendType. There are

three trend types: TREND_FLOAT, TREND_DISCRETE, and TREND_BITSTRING. If the trend

type is TREND_FLOAT, the trend->trendData is a 16-element array of floating point

numbers. If the trend type is TREND_DISCRETE, the trend->trendData is a 16-element

array of 1-byte integers. If the trend type is TREND_BITSTRING, the trend->trendData is

a 16-element array of 2-byte bit strings, which is equivalent to a 32-element array of 1-byte

integers. deviceTag and blockTag are the device and block tags of the parameter that has the

trend; paramName is the name of the parameter.

© National Instruments | 5-65

NI-FBUS Hardware and Software User Manual

If you have multiple threads waiting to receive the same trend, the NI-FBUS Communications

Manager sends a copy of the trend to all the waiting threads. You can abort a pending

nifWaitTrend call by closing the descriptor on which the call was made.

The trend type can be TREND_FLOAT, TREND_DISCRETE, or TREND_BITSTRING.

The sample type can be SAMPLE_INSTANT or SAMPLE_AVERAGE.

nifTrendData_t is defined as follows:

typedef struct nifTrendData_t {

uint8 trendType;

char deviceTag[TAG_SIZE + 1];

char blockTag[TAG_SIZE + 1];

char paramName[TAG_SIZE + 1];

uint8 sampleType;

uint32 sampleInterval;

nifTime_t lastUpdate;

uint8 status[16];

union {

float f[16];

uint8 d[16];

uint8 bs[32];

} trendData;

} nifTrendData_t;

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR

The descriptor you gave is not valid.

E_SERVER_CONNECTION_LOST

The session established with the NI-FBUS Communications

Manager for this descriptor has been closed or lost.

© National Instruments | A-1

A
Specifications

This appendix lists the hardware specifications and interface cabling information for the

PCI-FBUS, PCMCIA-FBUS, and USB-8486.

PCI-FBUS/2

Power Requirement
PCI-FBUS/2.. 820 mA Typical

Physical
Dimensions ... 10.67 × 17.46 cm (4.2 × 6.88 in.)

I/O connector .. 9-pin male D-SUB (1 per Fieldbus link)

Altitude ... 2,000 m

Pollution Degree ... 2

Indoor use only.

Environment

Operating Environment
Ambient temperature .. 0 to 55 °C

Relative humidity ... 10 to 90%, noncondensing

Storage Environment
Ambient temperature .. -20 to 70 °C

Relative humidity ... 5 to 95%, noncondensing

Safety
This product meets the requirements of the following standards of safety for electrical equipment

for measurement, control, and laboratory use:

� IEC 60950-1, EN 60950-1

� UL 60950-1, CSA 60950-1

Note For UL and other safety certifications, refer to the product label or the Online

Product Certification section.

A-2 | ni.com

Appendix A Specifications

Electromagnetic Compatibility
This product meets the requirements of the following EMC standards for electrical equipment

for measurement, control, and laboratory use:

� EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity

� EN 55011 (CISPR 11): Group 1, Class A emissions

� AS/NZS CISPR 11: Group 1, Class A emissions

� FCC 47 CFR Part 15B: Class A emissions

� ICES-001: Class A emissions

Note For EMC declarations and certifications, refer to the Online Product

Certification section.

Note For EMC compliance, operate this device with shielded cables and

accessories.

CE Compliance
This product meets the essential requirements of applicable European Directives as follows:

� 2006/95/EC; Low-Voltage Directive (safety)

� 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification
To obtain product certifications and the Declaration of Conformity (DoC) for this product, visit

ni.com/certification, search by model number or product line, and click the appropriate

link in the Certification column.

Environmental Management
NI is committed to designing and manufacturing products in an environmentally responsible

manner. NI recognizes that eliminating certain hazardous substances from our products is

beneficial to the environment and to NI customers.

For additional environmental information, refer to the Minimize Our Environmental Impact web

page at ni.com/environment. This page contains the environmental regulations and

directives with which NI complies, as well as other environmental information not included in

this document.

© National Instruments | A-3

NI-FBUS Hardware and Software User Manual

Waste Electrical and Electronic Equipment (WEEE)
EU Customers At the end of the product life cycle, all products must be sent to

a WEEE recycling center. For more information about WEEE recycling centers,

National Instruments WEEE initiatives, and compliance with WEEE Directive

2002/96/EC on Waste and Electronic Equipment, visit ni.com/environment/

weee.

RoHS
National Instruments

(RoHS) National Instruments RoHS ni.com/

environment/rohs_china (For information about China RoHS compliance,
go to ni.com/environment/rohs_china.)

A-4 | ni.com

Appendix A Specifications

PCMCIA-FBUS

Note The PCMCIA-FBUS here stands for PCMCIA-FBUS Series 2 card, and the

PCMCIA-FBUS/2 below stands for PCMCIA-FBUS/2 Series 2 card.

Power Requirement
+5 VDC (±5%)

PCMCIA-FBUS..350 mA typical; active

PCMCIA-FBUS/2...350 mA typical; active

Physical
Dimensions ...8.56 × 5.40 × 0.5 cm (3.4 × 2.1 × 0.2 in.)

I/O connector ..PCMCIA-FBUS cable with 9-pin male D-SUB

and pluggable screw terminal for each port

Altitude ...2,000 m

Pollution Degree ...2

Indoor use only.

Environment

Operating Environment
Ambient temperature ..0 to 55 °C

Relative humidity..10 to 90%, noncondensing

(tested in accordance with IEC-60068-2-1,

IEC-60068-2-2, EC-60068-2-56)

Storage Environment
Ambient temperature ..-20 to 70 °C

Relative humidity..5 to 95%, noncondensing

(tested in accordance with IEC-60068-2-1,

IEC-60068-2-2, EC-60068-2-56)

Safety
This product meets the requirements of the following standards of safety for electrical equipment

for measurement, control, and laboratory use:

� IEC 60950-1, EN 60950-1

� UL 60950-1, CSA 60950-1

Note For UL and other safety certifications, refer to the product label or the Online

Product Certification section.

© National Instruments | A-5

NI-FBUS Hardware and Software User Manual

Electromagnetic Compatibility
This product meets the requirements of the following EMC standards for electrical equipment

for measurement, control, and laboratory use:

� EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity

� EN 55011 (CISPR 11): Group 1, Class A emissions

� AS/NZS CISPR 11: Group 1, Class A emissions

� FCC 47 CFR Part 15B: Class A emissions

� ICES-001: Class A emissions

Note For EMC declarations and certifications, refer to the Online Product

Certification section.

Note For EMC compliance, operate this device with shielded cables and

accessories.

CE Compliance
This product meets the essential requirements of applicable European Directives as follows:

� 2006/95/EC; Low-Voltage Directive (safety)

� 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification
To obtain product certifications and the Declaration of Conformity (DoC) for this product, visit

ni.com/certification, search by model number or product line, and click the appropriate

link in the Certification column.

Environmental Management
NI is committed to designing and manufacturing products in an environmentally responsible

manner. NI recognizes that eliminating certain hazardous substances from our products is

beneficial to the environment and to NI customers.

For additional environmental information, refer to the Minimize Our Environmental Impact web

page at ni.com/environment. This page contains the environmental regulations and

directives with which NI complies, as well as other environmental information not included in

this document.

A-6 | ni.com

Appendix A Specifications

Waste Electrical and Electronic Equipment (WEEE)
EU Customers At the end of the product life cycle, all products must be sent to

a WEEE recycling center. For more information about WEEE recycling centers,

National Instruments WEEE initiatives, and compliance with WEEE Directive

2002/96/EC on Waste and Electronic Equipment, visit ni.com/environment/

weee.

RoHS
National Instruments

(RoHS) National Instruments RoHS ni.com/

environment/rohs_china (For information about China RoHS compliance,
go to ni.com/environment/rohs_china.)

© National Instruments | A-7

NI-FBUS Hardware and Software User Manual

USB-8486

This section lists specifications for the USB-8486 hardware.

Bus Interface
USB .. USB 2.0 High-Speed or Full-Speed1

FOUNDATION Fieldbus .. Standard H1 interface2

Power Requirement
USB High-power Bus-powered Device

Working Mode Current..................................... 300 mA maximum (full temperature range)

180 mA typical (at 25 °C)

Suspend Current ... 2.5 mA maximum(full temperature range)

Physical

USB-8486 without Screw Retention and Mounting Options
Dimensions ... 7.87 × 6.35 × 2.54 cm (3.1 × 2.5 × 1.0 in.)

Weight... 165 g (5.82 oz)

Captive USB cable length................................. 2 m

I/O connector

USB .. Standard series A plug

FOUNDATION Fieldbus

H1 Interface .. 9-pin male D-SUB

Altitude ... 2,000 m

Pollution Degree ... 2

Indoor use only.

USB-8486 with Screw Retention and Mounting Options
Dimensions ... 8.61 × 6.35 × 2.98 cm (3.39 × 2.5 × 1.18 in.)

Weight... 175 g (6.17 oz)

Captive USB cable length................................. 1 m

I/O connector

USB .. Standard series A plug with retention

thumbscrew

FOUNDATION Fieldbus

H1 Interface .. 9-pin male D-SUB

1 Using the USB-8486 in full-speed mode reduces device performance.

2 Galvanically isolated.

A-8 | ni.com

Appendix A Specifications

Altitude ...2,000 m

Pollution Degree ...2

Indoor use only.

Environment

Operating Environment
Ambient temperature ..0 to 55 °C

Relative humidity..10 to 90%, noncondensing

(tested in accordance with IEC-60068-2-1,

IEC-60068-2-2, EC-60068-2-56)

Storage Environment
Ambient temperature ..-20 to 70 °C

Relative humidity..5 to 95%, noncondensing

(tested in accordance with IEC-60068-2-1,

IEC-60068-2-2, EC-60068-2-56)

Safety
This product meets the requirements of the following standards of safety for electrical equipment

for measurement, control, and laboratory use:

� IEC 60950-1, EN 60950-1

� UL 60950-1, CSA 60950-1

Note For UL and other safety certifications, refer to the product label or the Online

Product Certification section.

Electromagnetic Compatibility
This product meets the requirements of the following EMC standards for electrical equipment

for measurement, control, and laboratory use:

� EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity

� EN 55011 (CISPR 11): Group 1, Class A emissions

� AS/NZS CISPR 11: Group 1, Class A emissions

� FCC 47 CFR Part 15B: Class A emissions

� ICES-001: Class A emissions

Note For EMC declarations and certifications, refer to the Online Product

Certification section.

© National Instruments | A-9

NI-FBUS Hardware and Software User Manual

Note For EMC compliance, operate this device with shielded cables and

accessories.

CE Compliance
This product meets the essential requirements of applicable European Directives as follows:

� 2006/95/EC; Low-Voltage Directive (safety)

� 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification
To obtain product certifications and the Declaration of Conformity (DoC) for this product, visit

ni.com/certification, search by model number or product line, and click the appropriate

link in the Certification column.

Environmental Management
NI is committed to designing and manufacturing products in an environmentally responsible

manner. NI recognizes that eliminating certain hazardous substances from our products is

beneficial to the environment and to NI customers.

For additional environmental information, refer to the Minimize Our Environmental Impact web

page at ni.com/environment. This page contains the environmental regulations and

directives with which NI complies, as well as other environmental information not included in

this document.

Waste Electrical and Electronic Equipment (WEEE)
EU Customers At the end of the product life cycle, all products must be sent to

a WEEE recycling center. For more information about WEEE recycling centers,

National Instruments WEEE initiatives, and compliance with WEEE Directive

2002/96/EC on Waste and Electronic Equipment, visit ni.com/environment/

weee.

RoHS
National Instruments

(RoHS) National Instruments RoHS ni.com/

environment/rohs_china (For information about China RoHS compliance,
go to ni.com/environment/rohs_china.)

© National Instruments | B-1

B
Troubleshooting and
Common Questions

This appendix describes how to troubleshoot common problems that occur while getting started

with Fieldbus hardware and software products.

Interface Board—USB, PCI, and PCMCIA

Error Messages
Utility could not access or locate the registry. Make sure you are logged in to Windows with

administrator privileges.

Your registry entries for NI-FBUS may have been deleted or corrupted. Uninstall the NI-FBUS

software, then reinstall the software.

Board cannot be found.

� Launch the Interface Configuration Utility and ensure that your board appears under the list

of interfaces.

� Ensure the NIFB driver is started by verifying the settings in the Windows Device

Manager. Select Start»Control Panel»System»Hardware»Device Manager to launch

the Device Manager. Select National Instruments FieldBus Interfaces»USB-8486 or

PCI-FBUS/2 or PCMCIA-FBUS. Right-click the interface and select Properties. Ensure

no conflicts appear.

When using a USB-8486, Nifb returns an error message stating that the configured board

does not exist.

Ensure that the USB-8486 has not been unplugged.

If you want to use the USB-8486 again, complete the following steps.

1. Connect the USB-8486 to an available USB port on the system.

2. Launch the Interface Configuration Utility

3. Right-click the USB-8486 to enable it.

If you want to use other interfaces in the system without this USB-8486, complete the following

steps.

1. Launch the Interface Configuration Utility.

2. Right-click the USB-8486 to delete it.

B-2 | ni.com

Appendix B Troubleshooting and Common Questions

VCR_FULL_ERROR.

Delete the board from the Interface Configuration Utility, then reinstall.

Interface Configuration Problems
When using the NI-FBUS Interface Configuration Utility, the error message utility

could not access or locate the registry appears.

� Ensure that you are logged in to Windows with administrator privileges.

� Your registry entries for NI-FBUS may have been deleted or corrupted. Uninstall the

NI-FBUS software, then reinstall the software.

In the Interface Configuration Utility, I see more boards than what physically exist in the

machine.

Select Edit for the extra board. In the next window, select Delete.

Caution You should not attempt to make unguided changes in the Windows

registry. Doing so can cause many problems with your system.

NIFB Problems
When a Fieldbus device is connected to the bus, the NIFB process often hangs when the

title bar reads Waiting for Startup Completion. If I disconnect the cables, it starts fine.

This is probably due to a device address conflict. In the NI-FBUS Interface Configuration

Utility, ensure that the interface is not at the same address as anything else on the link. You also

can temporarily give the interface a visitor address to troubleshoot this problem.

The NIFB process hangs, does not start up, or never shows that it is running.

� The Fieldbus network address is not unique. Remove the cable from the board. Restart the

NIFB process. If it runs successfully, there is probably a Fieldbus network address conflict.

You can try to change the board address. In the Interface Configuration Utility, select the

port and click Edit. Ensure that the port does not have an address that conflicts with another

device on the bus. You also can set the interface to a visitor address. In this case, the board

will find and take an unused address. If this corrects the problem, find and change the

address of one of the conflicting devices. Return the board to a fixed address.

� Check for multiple copies of nifb.dll on the machine. If multiple copies are found,

NI-FBUS was incorrectly reinstalled. Uninstall NI-FBUS, search for any remaining copies

of nifb.dll, delete them, then reinstall the software.

� Check to see how many boards are showing up in the Interface Configuration Utility.

Ensure that this matches the number of boards in the system. Also check that the number

of ports match the physical hardware (one port versus two port boards).

© National Instruments | B-3

NI-FBUS Hardware and Software User Manual

� Link masters do not always work well together (if you have another link master on the link).

Try setting the board to be a basic device in the Interface Configuration Utility.

If a board interface is configured as a basic device, another link master device must be

present on this link before the NI-FBUS process will start up. For more about Basic and

Link Master devices, refer to the FOUNDATIONTM Fieldbus Overview document.

1. Launch the Interface Configuration Utility.

2. In the Interface Configuration window, select the icon of the board you want to change

and click the Edit button. If you are adding a board, click the Add Interface button.

Problems Using Manufacturer-Defined Features
NI-FBUS uses identifying information in the actual device to locate the device description for

the device. The identifying information includes four resource block parameters: MANUFAC_ID,

DEV_TYPE, DEV_REV, and DD_REV. If the identifying information is incorrect, NI-FBUS will

not be able to locate the device description for the device. When it has located the device

description, NI-FBUS matches the block types in the device description with the actual blocks

in the device by using the Item ID of the block characteristics record.

If the blocks in the device do not match the blocks in the description, or if there is no appropriate

device description for the manufacturer, device type, device revision, and device description

revision being returned by the device, then there is a device description mismatch. In either case,

NI-FBUS uses only the standard dictionary (nifb.dct) and you will be unable to use any

manufacturer-supplied functionality.

These parameters can be read from the device resource block. The following procedure will help

you troubleshoot a DD_SIZE_MISMATCH_ERROR by finding out if there is a device description

available on your computer that matches what your device expects.

Complete the following steps to use the NI-FBUS Dialog utility to check device description

files.

1. Start the NIFB process. Wait until the process has finished initializing.

2. Select the Dialog utility.

3. Right-click Open Descriptors and select Expand All.

4. After the expansion is complete, click Cancel to close the Expand All window.

5. Right-click the resource block for your device (it should be under Open Descriptors»

Session»Interface Name»Device Name»VFD Name»Resource Block Name). Select

Read Object.

6. Select the Read by Name radio button and enter MANUFAC_ID as the name. Click the

Read button. Write down the hexidecimal number found in parenthesis (0xnumber) in the

name column of Table B-1.

7. Repeat step 6 for the name DEV_TYPE.

8. Repeat step 6 for the name DEV_REV.

9. Repeat step 6 for the name DD_REV.

B-4 | ni.com

Appendix B Troubleshooting and Common Questions

10. Repeat steps 5 through 9 for each device, then close the NI-FBUS Dialog utility.

11. In the Interface Configuration Utility, click the DD Info button. Write down the base

directory specified for device descriptions. Close the Interface Configuration Utility.

12. Use Windows Explorer to view the contents of the base directory specified in the Interface

Configuration Utility. The Fieldbus specification defines the directory hierarchy for storing

device descriptions. There is a different subdirectory for each device manufacturer. Under

the base directory, you should see a directory with the number from step 6 for the first

device.

13. Under the appropriate manufacturer directory, there is a directory for each device type that

you have from that manufacturer. Check to make sure that you see a directory with the

number from step 7.

14. Under the appropriate device type directory, there are the individual device descriptions.

The device description file name is a combination of the device revision (the number from

step 8) and the device description revision (the number from step 9). The device revision is

the first two digits, and the device description revision is the second two digits. For

example, if your number from step 8 was 2 and from step 9 was 1, you should see files

called 0201.ffo and 0201.sym. Device descriptions are backward-compatible. This

means that instead of seeing 0201, you might see 0202. This is allowed by the Fieldbus

specification. Also, having additional files in this directory is not a problem. The NI-FBUS

Configurator will use the most recent device description revision for a given device

revision. If you do not have the appropriate .ffo and .sym files, you must obtain them

from the device manufacturer. Be sure to properly import them by clicking DD Info and

using the Import DD button in the Interface Configuration Utility.

15. Repeat steps 12 through 14 for each device.

The second cause for this problem is when the contents of the file do not accurately describe the

device characteristics, even if the device identification information matches the file

identification information. This problem is caused when a device manufacturer makes a change

to the firmware of the device without incrementing the device revision, in violation of the

FOUNDATION Fieldbus recommendation. If this is the case, you must contact your device

manufacturer for a resolution.

Table B-1. Device Names

Resource Block Parameter Name

MANUFAC_ID

DEV_TYPE

DEV_REV

DD_REV

© National Instruments | B-5

NI-FBUS Hardware and Software User Manual

USB-8486 Troubleshooting
The H1 Fieldbus LED flashes red.

The USB-8486 encountered an error during the Power-On Self-Test (P.O.S.T.). Complete the

following steps to correct the issue.

1. Remove the USB-8486 from the computer and close NI-FBUS Communications Manager.

2. Connect the USB-8486 to another USB port in the system.

3. Start the NI-FBUS Communication Manager.

If the H1 Fieldbus LED still flashes red, contact National Instruments through the information

provided in Appendix C, Technical Support and Professional Services.

The H1 Fieldbus LED is solid red.

The USB-8486 H1 Fieldbus port encountered a fatal network error. Complete the following

steps to correct the issue.

1. Remove the USB-8486 from the computer and close NI-FBUS Communications Manager

2. Re-connect the USB-8486 to the USB port of the system again.

3. Restart the NI-FBUS Communication Manager and check the H1 Fieldbus LED state.

Configuring Advanced Parameters

Caution Do not modify the Advanced parameters without good reason. If you

must modify parameters for certain devices, the device manufacturer will

recommend settings. Modifying these parameters can have an adverse affect on data

throughput rates. If settings are incorrectly modified, some devices might disappear

off the bus.

B-6 | ni.com

Appendix B Troubleshooting and Common Questions

In the NI-FBUS Interface Configuration Utility, click the Advanced button on the dialog box

for the port you want to configure. The Advanced Stack Configuration dialog box is shown in

Figure B-1.

Figure B-1. Advanced Stack Configuration Dialog Box

The parameters involved in setting addresses are T1 and T3. These parameters represent delay

time values that your board uses to compensate for the delays inherent in the device and in the

set address protocol itself. T1 describes the expected response delay of the device at a given

address. T3 describes the expected time for the device to respond at its new address.

Uninstalling the Software
If you are only using the Communications Manager, uninstall the NI-FBUS Communications

Manager. If you are using the NI-FBUS Configurator, uninstall the NI-FBUS Configurator.

The uninstall utility does not remove the NI-FBUS directory itself or any files in the \Data\

Nvm directory. To completely uninstall the software, manually remove the files in the \Data\

Nvm directory and the NI-FBUS directory structure.

© National Instruments | B-7

NI-FBUS Hardware and Software User Manual

USB-8486 LED Indicators
The USB-8486 has two LED indicators on the front panel, as shown in Figure B-2.

Figure B-2. LEDs on the USB-8486

The USB LED is located on the front of the USB-8486, as shown in Figure B-2. It indicates

whether the USB-8486 is powered, configured, and operating properly. Table B-2 shows how to

interpret the USB LED states.

1 H1 Fieldbus Port Status 2 USB Status

Table B-2. Interpretation of USB-8486 USB STATUS LED

LED State Meaning

Off There is no power on the USB port , the USB-8486 is disabled, or an

error has occurred.

Solid green The USB-8486 is working in USB 2.0 full speed mode.

Solid amber The USB-8486 is working in USB 2.0 high speed mode.

1

2

NI USB-8486

 NATIONAL

INSTRUMENTS

B-8 | ni.com

Appendix B Troubleshooting and Common Questions

The H1 Fieldbus port on the USB-8486 has an LED to indicate the functional states of the port.

Table B-3 describes each state.

For more information about error handling, refer to the USB-8486 Troubleshooting section of

this appendix.

NI-FBUS Software

This section contains information about how to identify and solve problems with the NI-FBUS

Communications Manager software.

Startup Problems
If the NIFB process is unable to find the information it needs to start up, error messages will

appear. You may ignore these messages and continue; however, this will result in your

application not being able to communicate with the interface devices for which the error

messages appeared. These messages tell you the information that the NIFB process is looking

for but cannot find.

If NI-FBUS is unable to connect to and initialize an interface device, and you decide to continue

NI-FBUS startup, NI-FBUS will not try to reconnect to that interface again. This is true of all

interface types supported by this software.

If a USB-8486, PCMCIA-FBUS, or PCI-FBUS interface is configured as a basic device, a link

master device must be present on this link before NI-FBUS will start up.

Table B-3. Interpretation of USB-8486 H1 Fieldbus Status LED

LED State Meaning

Off The USB-8486 has not been initialized.

Solid green The Fieldbus port is disconnected from the network or receiving

nothing.

Slow flashing green The Fieldbus port is only receiving/transmitting network

maintenance packets.

Fast flashing green The Fieldbus port is receiving/ transmitting payload traffic

packets.

Flashing red The USB-8486 encountered an error during the P.O.S.T.

Solid red The Fieldbus port encountered a fatal network error.

© National Instruments | B-9

NI-FBUS Hardware and Software User Manual

Call to Open Session Fails
If the call fails, ensure that your NI-FBUS Communications Manager process is running and that

it has not displayed any error message boxes during startup. You can check this by maximizing

and looking at the nifb.exe console window. If the title bar does not end in “(Running),”

NI-FBUS did not start up correctly.

Set Address Problems
If you are having trouble setting the address of your device, you may need to change some of the

System Management Info parameters in the Advanced settings of your interface port in the

NI-FBUS Interface Configuration utility. The parameters involved in setting addresses are

T1 and T3. These parameters represent delay time values that your interface card uses to

compensate for the delays inherent in the device and in the set address protocol itself.

T1 is a parameter that describes the expected response delay of the device at a given address.

Normally, you will not need to increase this parameter; however, if it appears that your interface

card is not seeing the device responses related to setting addresses, you can increase this value.

The correct value for this parameter can be dependent on the number of devices on the link. For

example, if you are using a bus monitor, you might see a WHO_HAS_PD_TAG request going to

the device to start the Set Address sequence, and an IDENTIFY response coming back, but with

the host never continuing on to the next step of the protocol (the SET_ADDRESS packet). This

probably means that your T1 value is too small and should be increased.

T3 is a parameter that describes the expected time for the device to respond at its new address.

This parameter is highly dependent on the number of devices on the link, and the number of

addresses being polled. Refer to the Setting Number of Polled Addresses section for instructions

on how to set the number of polled addresses. If you are using a bus monitor, you may be able

to see the host identify a device (with the IDENTIFY packet) at the new address, before the

devices has sent its probe response (PR) packet to the host. This is an error that is indicative of

a T3 value that is too small; if this occurs, increase your T3 value until the IDENTIFY to the new

address occurs after the PR.

All of the System Management Info timers are in units of 1/32 of a millisecond; for instance,

T3 = 32000 units means that T3 = 1 second.

Setting Number of Polled Addresses
The Fieldbus specification describes how a Link Active Scheduler device (LAS device) probes

a list of addresses to allow devices to come online during normal operation. The LAS sends a

Probe Node (PN on the bus monitor) packet to each address in its list of addresses during

operation, and the length of time between Probe Nodes depends on the number of devices on the

link and the setting of the Link Maintenance Token Hold Time parameter.

The Fieldbus specification describes how to tell the LAS to skip probing certain addresses in the

range to speed up how long it takes to detect new devices on the bus (or devices that are having

their addresses changed). The two parameters involved in maintaining the list are called

B-10 | ni.com

Appendix B Troubleshooting and Common Questions

FirstUnpolledNode and NumOfUnpolledNodes, and they can be found in the NI-FBUS

Interface Configuration utility advanced settings for a port, in the DLME Master Info section.

The following diagram shows how the LAS determines the list.

In other words, FirstUnpolledNode tells the LAS the beginning of a region of addresses

to not probe, and NumOfUnpolledNodes tells the LAS the length of that region. So if

FirstUnpolledNode were 0x25, and NumOfUnpolledNodes were 0xba, then no addresses

from 0x25 to 0xdf would be probed. That means that if a device with an address of 0x25 were

placed on this bus, the LAS would not probe it, and it would never be able to send or receive

packets on the bus.

The reason to have a NumOfUnpolledNodes whose value is nonzero is as follows. The

LAS probes every address in the list, then starts over again at the beginning. Because a device

cannot come on the bus until its address is probed, if the LAS is probing all 255 - 16 + 1 = 240

possible addresses and each probe node request goes out every T milliseconds, it might take

240T milliseconds for a device to get on the bus. If, however, the LAS probed only the first

16 addresses and the last 16 addresses, it might take 32T milliseconds for the device to get on

the bus. This results in the new device being recognized almost eight times faster.

These parameters also affect the Set Address protocol, because recognizing a device at a new

address is really the same as recognizing a completely new device, as the new address must be

probed for the device to come online. In this way, the NumOfUnpolledNodes parameter can

affect the value of the Set Address protocol parameter T3, which is described in the Set Address

Problems section. For example, increasing the NumOfUnpolledNodes parameter might fix a

SetAddress T3 problem because it takes the device less time to be recognized at the new address.

Using Fieldbus with OPC
Starting with version 3.1, NI-FBUS has a separate OPC Data Access Server, which is compliant

with the OPC Data Access 2.0 Specification. This OPC server supports VIEW-oriented I/O

operations, and has better performance.

An OPC client utility is provided with the NI-FBUS software to let you browse Fieldbus OPC

tags. Follow the instructions listed in the Visual Basic section of Chapter 4, Developing The

Application, to make the OPC server operational.

NumOfUnpolledNodes

FirstUnpolledNode

Addresses

0x01 0xff

Address Polled for New Devices

© National Instruments | B-11

NI-FBUS Hardware and Software User Manual

OPC Data Type Mapping Rule
The SIMPLE type and ARRAY type variables are regarded as leaf nodes in the OPC address

space. The RECORD type variables are regarded as branch nodes, you need to access each of

its member variable through this branch node.

Table B-4 shows the data type-mapping rule.

Table B-4. OPC Data Type Mapping Rule

Meta Type

FMS Standard

Data Types OPC Data Type

Simple Boolean VT_BOOL

Integer8 VT_I1

Integer16 VT_I2

Integer32 VT_I4

Unsigned8 VT_UI1

Unsigned16 VT_UI2

Unsigned32 VT_UI4

Floating Point VT_R4

Visible String VT_BSTR

Octet String VT_ARRAY | VT_UI1

Date VT_DATE

Time of Day VT_DATE

Time Difference VT_DATE

Bit String VT_ARRAY | VT_UI1

Time Value VT_DATE

B-12 | ni.com

Appendix B Troubleshooting and Common Questions

Lookout

1. Create one or more OPCClient objects in your Lookout process.

2. Select the NIFB_OPCDA.3 server from the drop-down list of OPC servers.

3. Set the Activate member of the OPC client object to FALSE using one of the following

methods:

� Edit the connections for the OPCClient object and set the Activate member to

FALSE.

� Create a switch object on the Control Panel with the position source set to Remote.

Then, set the Remote source to the Activate member of the OPCClient object. Leave

edit mode, then set the switch to the off (FALSE) position.

Array Boolean VT_ARRAY | VT_BOOL

Integer8 VT_ARRAY | VT_I1

Integer16 VT_ARRAY | VT_I2

Integer32 VT_ARRAY | VT_I4

Unsigned8 VT_ARRAY | VT_UI1

Unsigned16 VT_ARRAY | VT_UI2

Unsigned32 VT_ARRAY | VT_UI4

Floating Point VT_ARRAY | VT_R4

Visible String VT_ARRAY | VT_BSTR

Octet String —

Date VT_ARRAY | VT_DATE

Time of Day VT_ARRAY | VT_DATE

Time Difference VT_ARRAY | VT_DATE

Bit String —

Time Value VT_ARRAY | VT_DATE

Table B-4. OPC Data Type Mapping Rule (Continued)

Meta Type

FMS Standard

Data Types OPC Data Type

© National Instruments | B-13

NI-FBUS Hardware and Software User Manual

4. Add all the items you are interested in to the OPCClient object(s).

5. Set the Activate member of the OPC client object to TRUE using one of the following

methods:

� Edit the connections for the OPCClient object and set the Activate member to

TRUE.

� Set the switch to the on (TRUE) position.

A similar deactivation/activation procedure will have to be followed while opening a previously

saved .lkp process file. The Lookout process will always go live immediately when it is loaded.

The OPC client object Activate member is always set to TRUE at startup, even though the switch

position may indicate off/FALSE.

Server Explorer

1. Launch the Server Explorer.

2. Create an inactive OPC client group.

a. Right-click NIFB_OPCDA.3 and select Add/Edit Groups.

b. Create a group with the appropriate parameters. Ensure there is no checkmark in the

Active box.

3. Add all items.

4. Select File»OPC»Save to save the file.

5. Activate the group by right-clicking the group and selecting Activate Group.

6. When you open the saved file and want to go live, right-click NIFB_OPCDA.3 and select

Connect to Server. After Server Explorer has connected to the server, activate the group

as described in step 5.

LabVIEW DSC
Stop (but do not quit) the LabVIEW DSC engine before you add any items to your current

configuration. Allow the engine two to five minutes to shut down, especially if your tag

configuration file has a large number of items. When you are done adding items, restart the

engine.

Problems Using Fieldbus with Lookout

Fieldbus Objects Do Not Appear in Lookout
If you want to use the native Fieldbus objects in Lookout, you have to delete the lookout.dat

file in the Lookout directory. This file is an index file that tells Lookout what objects it has

available. Fieldbus objects are not available by default. Lookout will regenerate the

lookout.dat file the next time it is started. When it regenerates the file, it will see that

Fieldbus software has been installed and will make the Fieldbus objects available.

B-14 | ni.com

Appendix B Troubleshooting and Common Questions

Fieldbus Alarms in Lookout
In Lookout, there is a separate alarms window for Fieldbus alarms. Under the Options menu,

select Fieldbus to show this window. The window also can be shown using traditional Lookout

datamember ShowAlarms. Refer to the entry for National Instruments Fieldbus in the Lookout

Object Reference Manual (also available from the Help menu within Lookout).

If you want alarms to appear in the main alarm window (rather than the Fieldbus alarms

window), you need to create Lookout alarm objects.

© National Instruments | C-1

C
Technical Support and
Professional Services

Log in to your National Instruments ni.com User Profile to get personalized access to your

services. Visit the following sections of ni.com for technical support and professional services:

� Support—Technical support at ni.com/support includes the following resources:

– Self-Help Technical Resources—For answers and solutions, visit ni.com/

support for software drivers and updates, a searchable KnowledgeBase, product

manuals, step-by-step troubleshooting wizards, thousands of example programs,

tutorials, application notes, instrument drivers, and so on. Registered users also

receive access to the NI Discussion Forums at ni.com/forums. NI Applications

Engineers make sure every question submitted online receives an answer.

– Standard Service Program Membership—This program entitles members to direct

access to NI Applications Engineers via phone and email for one-to-one technical

support, as well as exclusive access to self-paced online training modules at ni.com/

self-paced-training. All customers automatically receive a one-year

membership in the Standard Service Program (SSP) with the purchase of most

software products and bundles including NI Developer Suite. NI also offers flexible

extended contract options that guarantee your SSP benefits are available without

interruption for as long as you need them. Visit ni.com/ssp for more information.

For information about other technical support options in your area, visit ni.com/

services, or contact your local office at ni.com/contact.

� Training and Certification—Visit ni.com/training for training and certification

program information. You can also register for instructor-led, hands-on courses at locations

around the world.

� System Integration—If you have time constraints, limited in-house technical resources, or

other project challenges, National Instruments Alliance Partner members can help. To learn

more, call your local NI office or visit ni.com/alliance.

� Declaration of Conformity (DoC)—A DoC is our claim of compliance with the Council

of the European Communities using the manufacturer’s declaration of conformity. This

system affords the user protection for electromagnetic compatibility (EMC) and product

safety. You can obtain the DoC for your product by visiting ni.com/certification.

� Calibration Certificate—If your product supports calibration, you can obtain the

calibration certificate for your product at ni.com/calibration.

http://www.ni.com
http://www.ni.com
http://www.ni.com/support
http://www.ni.com/support
http://www.ni.com/support
http://www.ni.com/forums
http://www.ni.com/self-paced-training
http://www.ni.com/self-paced-training
http://www.ni.com/ssp
http://www.ni.com/services
http://www.ni.com/services
http://www.ni.com/contact
http://www.ni.com/training
http://www.ni.com/alliance
http://www.ni.com/certification
http://www.ni.com/calibration

C-2 | ni.com

Appendix C Technical Support and Professional Services

You also can visit the Worldwide Offices section of ni.com/niglobal to access the branch

office Web sites, which provide up-to-date contact information, support phone numbers, email

addresses, and current events.

http://www.ni.com/niglobal

© National Instruments | G-1

Glossary

Symbol Prefix Value

p pico 10-12

n nano 10-9

μ micro 10 - 6

m milli 10-3

k kilo 103

M mega 106

G giga 109

T tera 1012

Numbers

4 to 20 mA system Traditional control system in which a computer or control unit

provides control for a network of devices controlled by 4 to

20 mA signals.

A

Address Character code that identifies a specific location (or series of

locations) in memory.

Administrative Function An NI-FBUS function that deals with administrative tasks, such

as returning descriptors and closing descriptors.

Alarm A notification the NI-FBUS Communications Manager software

sends when it detects that a block leaves or returns to a particular

state.

Alarm condition A notification that a Fieldbus device sends to another Fieldbus

device or interface when it leaves or returns to a particular state.

Alert An alarm or event.

Alert function A function that receives or acknowledges an alert.

Glossary

G-2 | ni.com

Analog A description of a continuously variable signal or a circuit or

device designed to handle such signals.

API See Application Programmer Interface.

Application Function blocks.

Application Programmer

Interface

A message format that an application uses to communicate with

another entity that provides services to it.

Array Ordered, indexed list of data elements of the same type.

Attribute Properties of parameters.

B

Basic device A device that can communicate on the Fieldbus, but cannot

become the LAS.

Bitstring A data type in the object description.

Block A logical software unit that makes up one named copy of a block

and the associated parameters its block type specifies. The values

of the parameters persist from one invocation of the block to the

next. It can be a resource block, transducer block, or function

block residing within a virtual field device.

Block tag A character string name that uniquely identifies a block on a

Fieldbus network.

Buffer Temporary storage for acquired or generated data.

Bus The group of conductors that interconnect individual circuitry in

a computer. Typically, a bus is the expansion vehicle to which I/O

or other devices are connected. Examples of PC buses are the ISA

and PCI buses.

C

Cable A number of wires and shield in a single sheath.

Channel A pin or wire lead to which you apply or from which you read the

analog or digital signal.

NI-FBUS Hardware and Software User Manual

© National Instruments | G-3

Client A device that sends a request for communication on the bus.

Communication stack Performs the services required to interface the user application to

the physical layer.

Connection Management The service the NI-FBUS Communications Manager provides by

handling Virtual Communication Relationships.

Control loop A set of connections between blocks used to perform a control

algorithm.

Controller An intelligent device (usually involving a CPU) that is capable of

controlling other devices.

ControlNet A 5 Mbit/s communications protocol based on

Producer/Consumer technology.

Core Function The basic functions that the NI-FBUS Communications Manager

software performs, such as reading and writing block parameters.

D

Data Link Layer The second-lowest layer in the ISO seven-layer model (layer

two). The Data Link Layer splits data into frames to send

on the physical layer, receives acknowledgment frames, and

re-transmits frames if they are not received correctly. It also

performs error checking to maintain a sound virtual channel to the

next layer.

DD See Device Description.

Descriptor A number returned to the application by the NI-FBUS

Communications Manager, used to specify a target for future

NI-FBUS calls.

Device A sensor, actuator, or control equipment attached to the Fieldbus.

Device Description A machine-readable description of all the blocks and block

parameters of a device.

Device Description

Language

A formal programming language that defines the parameters

of the blocks. It also defines attributes of parameters and blocks

like help strings in different languages, ranges of values for

parameters, and so on.

Glossary

G-4 | ni.com

Device Description

Service

A set of functions that applications use to access Device

Descriptions.

Device tag A name you assign to a Fieldbus device.

Directory A structure for organizing files into convenient groups. A

directory is like an address showing where files are located. A

directory can contain files or subdirectories of files.

DLL See Dynamic Link Library.

Driver Device driver software installed within the operating system.

Dynamic Link Library A library of functions and subroutines that links to an application

at run time.

E

EMI Electromagnetic interference.

Event An occurrence on a device that causes a Fieldbus entity to send

the Fieldbus event message.

F

FB Function Block.

Field device A Fieldbus device connected directly to a Fieldbus.

Fieldbus An all-digital, two-way communication system that connects

control systems to instrumentation. A process control local area

network defined by ISA standard S50.02.

Fieldbus cable Shielded, twisted pair cable made specifically for Fieldbus that

has characteristics important for good signal transmission and are

within the requirements of the Fieldbus standard.

Fieldbus Foundation An organization that developed a Fieldbus network specifically

based upon the work and principles of the ISA/IEC standards

committees.

NI-FBUS Hardware and Software User Manual

© National Instruments | G-5

Fieldbus Messaging

Specification

The layer of the communication stack that defines a model for

applications to interact over the Fieldbus. The services FMS

provides allow you to read and write information about the OD,

read and write the data variables described in the OD, and

perform other activities such as uploading/downloading data and

invoking programs inside a device.

Fieldbus Network Address Location of a board or device on the Fieldbus; the Fieldbus node

address.

FMS See Fieldbus Messaging Specification.

FOUNDATION Fieldbus

Specification

The communications network specification that the Fieldbus

Foundation created.

Function block A named block consisting of one or more input, output, and

contained parameters. The block performs some control function

as its algorithm. Function blocks are the core components you

control a system with. The Fieldbus Foundation defines standard

sets of function blocks. There are ten function blocks for the most

basic control and I/O functions. Manufacturers can define their

own function blocks.

Function Block

Application

The block diagram that represents your control strategy.

H

H1 The 31.25 kbit/second type of Fieldbus.

Hard code To permanently establish something that should be variable in a

program.

Header file A C-language source file containing important definitions and

function prototypes.

HMI Human-Machine Interface. A graphical user interface for the

process with supervisory control and data acquisition capability.

Host device A computer or controller on a Fieldbus network.

Hz Hertz.

Glossary

G-6 | ni.com

I

I/O Input/output.

IEC International Electrotechnical Commission. A technical

standards committee which is at the same level as the ISO.

in. Inches.

Index An integer that the Fieldbus specification assigns to a Fieldbus

object or a device that you can use to refer to the object. A value

in the object dictionary used to refer to a single object.

ISA Industry Standard Architecture.

K

Kbits Kilobits.

Kernel The set of programs in an operating system that implements basic

system functions.

Kernel mode The mode in which device drivers run on Windows.

L

LabVIEW DSC The LabVIEW Datalogging and Supervisory Control (DSC)

Module builds on the power of LabVIEW for high channel count

and distributed applications. It adds easy networking, channel and

I/O management, alarm and event management, historical

datalogging, real-time trending, and OPC integration to the

LabVIEW environment.

LAS See Link Active Schedule.

Link A FOUNDATION Fieldbus network is made up of devices connected

by a serial bus. This serial bus is called a link (also known as a

segment).

Link Active Schedule A schedule of times in the macrocycle when devices must publish

their output values on the Fieldbus.

NI-FBUS Hardware and Software User Manual

© National Instruments | G-7

Link Active Scheduler The Fieldbus device that is currently controlling access to the

Fieldbus. A device that is responsible for keeping a link

operational. The LAS executes the link schedule, circulates

tokens, distributes time, and probes for new devices.

Link master device A device that is capable of becoming the LAS.

Linkage A connection between function blocks.

Linkage object An object resident in a device that defines connections between

function block input and output across the network. Linkage

objects also specify trending connections.

Live list The list of all devices that are properly responding to the Pass

Token.

LM Link Master.

Lookout National Instruments Lookout is a full-featured object-based

automation software system that delivers unparalleled power and

ease of use in demanding industrial measurement and automation

applications.

M

Macrocycle The least common multiple of all the loop times on a given link,

or one iteration of a the process control loop.

Manufacturer’s

identification

An identifier used to correlate the device type and revision with

its device description and device description revision.

Menu An area accessible from the command bar that displays a subset

of the possible command choices. In the NI-FBUS Configurator,

refers to menus defined by the manufacturer for a given block.

Method Methods describe operating procedures to guide a user through a

sequence of actions.

Mode Type of communication.

Glossary

G-8 | ni.com

N

Network address The Fieldbus network address of a device.

Network Management A layer of the FOUNDATION Fieldbus communication stack that

contains objects that other layers of the communication stack use,

such as Data Link, FAS, and FMS. You can read and write SM

and NM objects over the Fieldbus using FMS Read and FMS

Write services.

NI-FBUS API The function calls provided by NI-FBUS Communication

Manager.

NI-FBUS Communications

Manager

Software shipped with National Instruments Fieldbus interfaces

that lets you read and write values. It does not include

configuration capabilities.

NI-FBUS Configurator National Instruments Fieldbus configuration software. With it,

you can set device addresses, clear devices, change modes, and

read and write to the devices.

NI-FBUS Fieldbus

Configuration System

See NI-FBUS Configurator.

NI-FBUS process Process that must be running in the background for you to use the

NI-FBUS interface boards (USB-8486, PCMCIA-FBUS, or

PCI-FBUS) to communicate between the application and

Fieldbus.

Nifb.exe The NIFB process that must be running in the background for you

to use your USB-8486, PCMCIA-FBUS, or PCI-FBUS interface

to communicate between the board and the Fieldbus.

Node Junction or branch point in a circuit.

O

Object An element of an object dictionary.

Object Dictionary A structure in a device that describes data that can be

communicated on the Fieldbus. The object dictionary is a lookup

table that gives information such as data type and units about a

value that can be read from or written to a device.

NI-FBUS Hardware and Software User Manual

© National Instruments | G-9

Octet A single 8-bit value.

OD See Object Dictionary.

OPC OLE for Process Control.

Output parameter A block parameter that sends data to another block.

P

Parameter One of a set of network-visible values that makes up a function

block.

PC Personal Computer.

PCMCIA Personal Computer Memory Card International Association.

PD Proportional Derivative.

Physical device A single device residing at a unique address on the Fieldbus.

PID Proportional/Integral/Derivative. A common control function

block algorithm that uses proportions, integrals, and derivatives

in calculation.

PN Probe Node.

Poll To repeatedly inspect a variable or function block to acquire data.

Port A communications connection on a computer or remote

controller.

PR Probe Response.

Program A set of instructions the computer can follow, usually in a binary

file format, such as a .exe file.

Publisher A device that has at least one function block with its output value

connected to the input of another device.

Glossary

G-10 | ni.com

R

Repeater Boost the signals to and from the further link.

Resource block A special block containing parameters that describe the operation

of the device and general characteristics of a device, such as

manufacturer and device name. Only one resource block per

device is allowed.

Roundcard A hardware interface for developing FOUNDATION

Fieldbus-compliant devices.

S

s Seconds.

Sample type Specifies how trends are sampled on a device, whether by

averaging data or by instantaneous sampling.

Segment See Link.

Sensor A device that responds to a physical stimulus (heat, light, sound,

pressure, motion, flow, and so on), and produces a corresponding

electrical signal.

Server Device that receives a message request.

Service Services allow user applications to send messages to each other

across the Fieldbus using a standard set of message formats.

Session A communication path between an application and the NI-FBUS

Communications Manager.

Shield Metal grounded cover used to protect a wire, component or piece

of equipment from stray magnetic and/or electric fields.

Signal An extension of the IEEE 488.2 standard that defines a standard

programming command set and syntax for device-specific

operations.

Spur A secondary route having a junction to the primary route in a

network.

NI-FBUS Hardware and Software User Manual

© National Instruments | G-11

Stack A set of hardware registers or a reserved amount of memory used

for calculations or to keep track of internal operations.

Static library A library of functions/subroutines that you must link to your

application as one of the final steps of compilation, as opposed

to a Dynamic Link Library, which links to your application at

run time.

Stub See Spur.

Subscriber A device that has at least one function block with its input value

connected to the output of another device.

Surge Large, unwanted voltage or current on wires. Generally caused by

lightning or nearby heavy electrical power use.

Surge suppressor A device used to discharge surges to ground.

Symbol file A Fieldbus Foundation or device manufacturer-supplied file that

contains the ASCII names for all the objects in a device.

System Management A layer of the FOUNDATION Fieldbus communication stack that

assigns addresses and physical device tags, maintains the

function block schedule for the function blocks in that device, and

distributes application time. You also can locate a device or a

function block tag through SM.

T

Tag A name you can define for a block, virtual field device, or device.

Thread An operating system object that consists of a flow of control

within a process. In some operating systems, a single process can

have multiple threads, each of which can access the same data

space within the process. However, each thread has its own stack

and all threads can execute concurrently with one another (either

on multiple processors, or by time-sharing a single processor).

Glossary

G-12 | ni.com

Transducer block A block that is an interface to the physical, sensing hardware in

the device. It also performs the digitizing, filtering, and scaling

conversions needed to present input data to function blocks, and

converts output data from function blocks. Transducer blocks

decouple the function blocks from the hardware details of a given

device, allowing generic indication of function block input and

output. Manufacturers can define their own transducer blocks.

Trend A Fieldbus object that allows a device to sample a process

variable periodically, then transmit a history of the values on the

network.

Trend function An NI-FBUS call related to trends.

U

USB Universal Serial Bus.

USB-8486 NI USB-8486 FOUNDATION Fieldbus interface.

V

VCR See Virtual Communication Relationship.

VFD See Virtual Field Device.

View objects Predefined groupings of parameter sets that HMI applications

use.

Virtual Communication

Relationship

Preconfigured or negotiated connections between virtual field

devices on a network.

NI-FBUS Hardware and Software User Manual

© National Instruments | G-13

Virtual Field Device The virtual field device is a model for remotely viewing data

described in the object dictionary. The services provided by the

Fieldbus Messaging Specification allow you to read and write

information about the object dictionary, read and write the data

variables described in the object dictionary, and perform other

activities such as uploading/downloading data and invoking

programs inside a device. A model for remotely viewing data

described in the object dictionary.

W

Waveform Multiple voltage readings taken at a specific sampling rate.

© National Instruments | I-1

Index

A
address setting troubleshooting, B-9

administrative functions, 3-2

list of functions (table), 5-1

nifClose, 5-2

nifDownloadDomain, 5-4

nifGetBlockList, 5-5

nifGetDeviceList, 5-7

nifGetInterfaceList, 5-10

nifGetVFDList, 5-12

nifOpenBlock, 5-14

nifOpenLink, 5-16

nifOpenPhysicalDevice, 5-18

nifOpenSession, 5-20

nifOpenVfd, 5-21

nifShutdownCM, 5-23

nifStartupCM, 5-24

advanced parameters, configuring, B-5

advanced stack configuration dialog box

(figure), B-6

alert and trend functions, 3-3

list of functions (table), 5-56

nifAcknowledgeAlarm, 5-57

nifWaitAlert, 5-59

nifWaitAlert2, 5-61

nifWaitTrend, 5-64

applications development

administrative functions, 3-2

alert and trend functions, 3-3

C++, 4-1

choosing level of communication, 3-6

compiling, linking and running, 3-11

core functions, 3-3

developing your NI-FBUS

Communications Manager

application, 3-6

device description functions, 3-4

LabVIEW, 4-1

name or index access, 3-6

.NET class libraries, 4-2

NI-FBUS Dialog Utility, 3-10

single-thread versus multi-thread

applications

multi-thread, 3-7

single-thread, 3-7

using the NI-FBUS Communications

Manager process, 3-5

Visual Basic, 4-2

writing, 3-10

C
cable connector

pinout for PCI-FBUS cable, 2-1

pinout for PCMCIA-FBUS cable, 2-2

figure, 2-2

calibration certificate (NI resources), C-1

call to open session fails, B-9

common questions, B-1

communication level, choosing for

applications, 3-6

configuration

advanced parameters, B-5

Link Active Schedule file, 3-12

troubleshooting interface problems, B-2

connector, Fieldbus (figure), 2-4

core functions, 3-3

list of functions (table), 5-26

nifFreeObjectAttributes, 5-27

nifFreeObjectType, 5-28

nifGetObjectAttributes, 5-29

nifGetObjectName, 5-32

nifGetObjectSize, 5-35

nifGetObjectType, 5-38

nifReadObject, 5-44

nifReadObjectList, 5-48

nifWriteObject, 5-51

using NI-FBUS interface macros, 5-55

D
Declaration of Conformity (NI

resources), C-1

developing applications. See applications

development

Index

I-2 | ni.com

device description

functions, 3-4

device names, B-4

diagnostic tools (NI resources), C-1

documentation

NI resources, C-1

related documentation, xi

drivers (NI resources), C-1

E
error messages, B-1

examples (NI resources), C-1

F
Fieldbus

connector (figure), 2-3

network USB-8486 status LEDs, B-7

functions. See NI-FBUS functions

H
H1 Device

MIB list parameters, 3-8

MIB parameters, 3-8

hardware

LEDs

USB status LEDs (table), B-7

USB-8486 H1 Fieldbus status

LEDs (table), B-8

USB-8486 LEDs (figure), B-7

help, technical support, C-1

HSE Device

MIB list parameters, 3-9

MIB parameters, 3-9

I
index-based access, 3-6

installation of OPC NI-FBUS Server, 3-2

instrument drivers (NI resources), C-1

interface macros, NI-FBUS, 5-55

K
KnowledgeBase, C-1

L
LabVIEW DSC, troubleshooting, B-13

LEDs

USB status LEDs (table), B-7

USB-8486 H1 Fieldbus status LEDs

(table), B-8

Link Active Schedule file

configuring, 3-12

format, 3-12

names of sections, 3-12

overview, 3-12

setting number of polled addresses, B-9

variable names and values (table)

sequence section (table), 3-13

subschedule section (table), 3-13

variable N and values for sequences

section (table), 3-14

linking applications, 3-11

Lookout troubleshooting

Fieldbus alarms in Lookout, B-14

Fieldbus objects do not appear in

Lookout, B-13

OPC NI-FBUS server problems, B-12

M
Management Information Base (MIB)

parameters

access to, 3-8

H1 Device MIB list parameters, 3-8

H1 Device MIB parameters, 3-8

HSE Device MIB list parameters, 3-9

HSE Device MIB parameters, 3-9

multi-thread applications, 3-7

N
name-based access, 3-6

National Instruments support and

services, C-1

nifAcknowledgeAlarm function, 5-57

NIFB troubleshooting, B-2

NI-FBUS Communications Manager

developing your application, 3-6

introduction, 3-1

NIFB process, using, 3-5

NI-FBUS Hardware and Software User Manual

© National Instruments | I-3

overview, 1-1, 1-2, 3-1

process, purpose and use, 3-5

NI-FBUS Dialog Utility applications

development, 3-10

NI-FBUS functions

administrative functions, 3-2

alert and trend functions, 3-3

core functions, 3-3

device description functions, 3-4

overview, 3-2

nifClose function, 5-2

nifDownloadDomain function, 5-4

nifFreeObjectAttributes function, 5-27

nifFreeObjectType function, 5-28

nifGetBlockList function, 5-5

nifGetDeviceList function, 3-6, 3-7, 3-11, 5-7

nifGetInterfaceList function, 5-10

nifGetObjectAttributes function, 3-4, 5-29

nifGetObjectName function, 5-32

nifGetObjectSize function, 5-35

nifGetObjectType function, 5-38

object codes for the

nifObjTypeList_t data structure

(table), 5-40, 5-42

nifGetVFDList function, 5-12

nifOpenBlock function, 5-14

nifOpenLink function, 5-16

nifOpenPhysicalDevice function, 5-18

nifOpenSession function, 3-10, 5-20

nifOpenVfd function, 5-21

nifReadObject function, 5-44

nifReadObjectList function, 5-48

nifShutdownCM function, 5-23

nifStartupCM function, 5-24

nifWaitAlert function, 3-7, 3-11, 5-59

nifWaitAlert2 function, 3-7, 3-11, 5-61

nifWaitTrend function, 3-7, 3-11, 5-64

nifWriteObject function, 5-51

O
object dictionary entries, access to, 3-7

OPC NI-FBUS server

installing, 3-2

troubleshooting, using Fieldbus with

OPC, B-10

LabVIEW DSC, B-13

Lookout, B-12

Server Explorer, B-13

open session calls, failure of, B-9

P
PCI-FBUS

cable connector pinout, 2-1

cabling and connectors, 2-1

Fieldbus connector pinout (figure), 2-1

specifications, A-1

PCMCIA-FBUS

cable (figure), 2-2

cable connector pinout, 2-2

cabling and connectors, 2-2

specifications, A-4

pinout

DB-9 cable connector pinout

(figure), 2-5

Fieldbus connector (figure), 2-3

Fieldbus connector pinout (figure), 2-1,

2-4

PCI-FBUS cable connector, 2-1

PCMCIA-FBUS cable (figure), 2-2

PCMCIA-FBUS cable connector, 2-2

screw terminal block (figure), 2-3

polled addresses, setting number of, B-9

programming examples (NI resources), C-1

R
related documentation, xi

running applications, 3-11

S
sample programs, 3-12

screw terminal block pinout (figure), 2-3

Server Explorer, and OPC NI-FBUS server

troubleshooting, B-13

set address troubleshooting, B-9

single-thread applications, 3-7

software

developing applications, 3-2

alert and trend functions, 3-3

Index

I-4 | ni.com

compile, link and running

applications, 3-10, 3-11

core functions, 3-3

developing your NI-FBUS

Communications Manager

application, 3-6

device description functions, 3-4

using the NI-FBUS

Communications Manager

process, 3-5

write your application, 3-10

LabVIEW DSC, troubleshooting, B-13

Lookout, troubleshooting, B-12

NI resources, C-1

NI-FBUS Communications Manager

developing your applications, 3-6

NIFB process, using, 3-5

overview of, 1-1, 1-2, 3-1

sample programs, 3-12

Server Explorer, B-13

uninstalling, B-6

specifications, A-1

PCI-FBUS/2, A-1

PCMCIA-FBUS, A-4

USB-8486, A-7

startup problems, B-8

support, technical, C-1

T
technical support, C-1

training and certification (NI resources), C-1

troubleshooting, B-1

call to open session fails, B-9

LabVIEW DSC, B-13

Lookout, B-12

Fieldbus alarms in Lookout, B-14

Fieldbus objects do not appear in

Lookout, B-13

Server Explorer, B-13

set address, B-9

number of polled addresses, B-9

startup problems, B-8

USB-8486, B-5

using Fieldbus with OPC, B-10

using manufacturer-defined

features, B-3

troubleshooting (NI resources), C-1

U
uninstalling the software, B-6

USB-8486

cabling and connectors, 2-4

DB-9 cable connector pinout

(figure), 2-5

Fieldbus connector (figure), 2-4

Fieldbus connector pinout (figure), 2-4

H1 Fieldbus status LEDs (table), B-8

LEDs (figure), B-7

specifications, A-7

status LEDs, B-7

troubleshooting, B-5

USB status LEDs (table), B-7

W
Web resources, C-1

write your application

See also applications development

blocking functions, 3-10

	NI-FBUS Hardware and Software User Manual
	Support
	Worldwide Technical Support and Product Information
	Worldwide Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	End-User License Agreements and Third-Party Legal Notices
	Trademarks
	Patents
	Export Compliance Information
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Compliance
	Contents
	About This Manual
	Related Documentation

	Chapter 1Introduction
	FF Overview
	NI-FBUS Hardware Products
	PCI, PCMCIA, and USB

	NI-FBUS Software Products
	Communications Manager
	Configurator
	Monitor

	Chapter 2Connector and Cabling
	PCI-FBUS/2
	Fieldbus Cable Connector Pinout
	Figure 2-1. Fieldbus Connector Pinout for the PCI-FBUS

	PCMCIA-FBUS
	Pinout Information
	Figure 2-2. PCMCIA-FBUS Cable
	Figure 2-3. Fieldbus Connector Pinout
	Figure 2-4. Screw Terminal Block Pinout

	USB-8486
	Figure 2-5. Male DB-9 Connector Pinout for the USB-8486
	9-Pin D-SUB (DB-9) Cable Information
	Figure 2-6. DB-9 Cable for the USB-8486
	Figure 2-7. Pinout for 9-Pin D-SUB Female Connector of the DB-9 Cable
	Table 2-1. Information for Cable Pigtails

	Chapter 3NI-FBUS CM Software
	NI-FBUS Communications Manager Overview
	Installing the OPC NI-FBUS Server
	NI-FBUS Functions Overview
	Administrative Functions
	Example: Using Administrative Functions

	Core Functions
	Example: Using Core Functions

	Alert and Trend Functions
	Device Description Functions
	Using the NI-FBUS Communications Manager Process

	Developing Your NI-FBUS Communications Manager Application
	Choose Your Level of Communication
	Choose to Access by Name or Index
	Choose to Write Single-Thread or Multi-Thread Applications
	Single-Thread Applications
	Multi-Thread Applications

	Access Object Dictionary Entries
	Access Management Information Base (MIB) Parameters
	H1 Device MIB List Parameters
	H1 Device MIB Parameters
	HSE Device MIB List Parameters
	HSE Device MIB Parameters

	Use the NI-FBUS Dialog Utility to Communicate with Devices
	Write Your Application
	Compile, Link, and Run Your Application

	Sample Programs
	Configuring the Link Active Schedule File
	Introduction to the Link Active Schedule File
	Format of the Link Active Schedule File
	Table 3-1. Valid Variable Names and Values for the Schedule Summary Section
	Table 3-2. Valid Variable Names and Values for the Subschedule Section
	Table 3-3. Valid Variable Names and Values for the Sequence Section
	Table 3-4. Valid Variable Names Including the Variable N and Values for the Sequence Section

	Chapter 4Developing The Application
	LabVIEW
	Visual C++
	Visual Basic
	.NET Class Libraries
	OPC Server
	OPC Data Type Mapping Rule
	Table 4-1. OPC Data Type Mapping Rule

	Chapter 5NI-FBUS Function Reference
	Administrative Functions
	List of Administrative Functions
	Table 5-1. List of Administrative Functions

	nifClose
	nifDownloadDomain
	nifGetBlockList
	nifGetDeviceList
	nifGetInterfaceList
	nifGetVFDList
	nifOpenBlock
	nifOpenLink
	nifOpenPhysicalDevice
	nifOpenSession
	nifOpenVfd
	nifShutdownCM
	nifStartupCM
	Core Fieldbus Functions
	List of Core Functions
	Table 5-2. List of Core Functions

	nifFreeObjectAttributes
	nifFreeObjectType
	nifGetObjectAttributes
	nifGetObjectName
	nifGetObjectSize
	nifGetObjectType
	Table 5-3. Object Codes for the nifObjTypeList_t Data Structure
	Table 5-4. Object Codes for the nifObjTypeList_t Data Structure

	nifReadObject
	nifReadObjectList
	nifWriteObject
	Using Interface Macros
	Table 5-5. Core Function Macros

	Alert and Trend Functions
	Table 5-6. Alert Functions
	Table 5-7. Trend Function

	nifAcknowledgeAlarm
	nifWaitAlert
	nifWaitAlert2
	nifWaitTrend

	Appendix ASpecifications
	Appendix BTroubleshooting and Common Questions
	Table B-1. Device Names
	Figure B-1. Advanced Stack Configuration Dialog Box
	Figure B-2. LEDs on the USB-8486
	Table B-2. Interpretation of USB-8486 USB STATUS LED
	Table B-3. Interpretation of USB-8486 H1 Fieldbus Status LED
	Table B-4. OPC Data Type Mapping Rule

	Appendix CTechnical Support and Professional Services
	Glossary
	Numbers
	A
	B-C
	D
	E-F
	H
	I-L
	M
	N-O
	P
	R-S
	T
	U-V
	W

	Index
	A-D
	E-N
	O-S
	T-W

