

 PXI-6052E

https://www.apexwaves.com/modular-systems/national-instruments/e-series/PXI-6052E?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/e-series/PXI-6052E?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/e-series/PXI-6052E?aw_referrer=pdf

DAQ
Traditional NI-DAQ

TM

 User Manual
Version 7.0

Data Acquisition Software for the PC

Traditional NI-DAQ User Manual

April 2003 Edition

Part Number 370696A-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 61 2 9672 8846, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,

Canada (Calgary) 403 274 9391, Canada (Montreal) 514 288 5722, Canada (Ottawa) 613 233 5949,

Canada (Québec) 514 694 8521, Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530,

China 86 21 6555 7838, Czech Republic 42 02 2423 5774, Denmark 45 45 76 26 00,

Finland 385 0 9 725 725 11, France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427,

Hong Kong 2645 3186, India 91 80 4190000, Israel 972 0 3 6393737, Italy 39 02 413091,

Japan 81 3 5472 2970, Korea 82 02 3451 3400, Malaysia 603 9059 6711, Mexico 001 800 010 0793,

Netherlands 31 0 348 433 466, New Zealand 64 09 914 0488, Norway 47 0 32 27 73 00,

Poland 48 0 22 3390 150, Portugal 351 210 311 210, Russia 7 095 238 7139, Singapore 65 6 226 5886,

Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 0 8 587 895 00,

Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment

on the documentation, send email to techpubs@ni.com.

© 1991–2003 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
CVI™, DAQCard™, DAQPad™, LabVIEW™, National Instruments™, NI™, ni.com™, NI-DAQ™, RTSI™, and SCXI™ are trademarks of
National Instruments Corporation.

FireWire is a trademark of Apple Computer, Inc. Other product and company names mentioned herein are trademarks or trade names of their
respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v Traditional NI-DAQ User Manual

Contents

About This Manual
How to Use the Traditional NI-DAQ Documentation Set... ix

Conventions Used in This Manual...ix

MIO and AI Device Terminology ...x

Chapter 1
Introduction to Traditional NI-DAQ

About the Traditional NI-DAQ Software ..1-1

How to Set Up Your DAQ System..1-2

Traditional NI-DAQ Overview..1-2

Device Configuration...1-2

Using Measurement & Automation Explorer..1-2

Chapter 2
Fundamentals of Building Windows Applications

The Traditional NI-DAQ Libraries..2-1

Creating a Windows Application Using Microsoft Visual C++....................................2-2

Developing a Traditional NI-DAQ Application..2-2

Example Programs...2-2

Special Considerations ..2-3

Buffer Allocation ..2-3

String Passing..2-3

Parameter Passing ...2-3

Creating a Windows Application Using Microsoft Visual Basic2-3

Developing a Traditional NI-DAQ Application..2-4

Example Programs...2-4

Special Considerations ..2-5

Buffer Allocation ..2-5

String Passing..2-6

Parameter Passing ...2-6

Passing Unsigned 16-Bit and 32-Bit Integer Parameters..................2-6

Traditional NI-DAQ Examples..2-8

Contents

Traditional NI-DAQ User Manual vi ni.com

Chapter 3
Software Overview

Initialization and General-Configuration Functions.. 3-2

Software-Calibration and Device-Specific Functions ... 3-3

Event Message Functions .. 3-5

Event Messaging Application Tips ... 3-5

Traditional NI-DAQ Events in Visual Basic .. 3-6

ActiveX Controls for Visual Basic ... 3-6

General DAQ Event.. 3-7

Analog Trigger Event ... 3-9

Analog Alarm Event ... 3-11

Analog Input Function Group ... 3-15

One-Shot Analog Input Functions .. 3-16

Single-Channel Analog Input Functions .. 3-16

Data Acquisition Functions... 3-20

High-Level Data Acquisition Functions... 3-20

Low-Level Data Acquisition Functions ... 3-22

Low-Level Double-Buffered Data Acquisition Functions 3-24

Data Acquisition Application Tips ... 3-25

Multirate Scanning ... 3-32

Analog Output Function Group... 3-35

One-Shot Analog Output Functions.. 3-35

Analog Output Application Tips .. 3-36

Waveform Generation Functions .. 3-39

High-Level Waveform Generation Functions 3-39

Low-Level Waveform Generation Functions................................... 3-39

Waveform Generation Application Tips .. 3-41

Digital I/O Function Group ... 3-53

DIO-24, 6025E, AT-MIO-16DE-10, and DIO-96 Device Groups 3-55

653X Device Groups ... 3-55

PCI-6115, PCI-6120, and 673X Device Groups ... 3-56

Digital I/O Functions .. 3-57

Group Digital I/O Functions ... 3-58

Double-Buffered Digital I/O Functions .. 3-59

Digital Change Notification Functions ... 3-60

Digital Filtering Function.. 3-60

Digital Change Notification Applications with 652X Devices......... 3-60

Digital Change Detection Applications with 653X Devices 3-61

Digital I/O Application Tips ... 3-62

Handshaking Versus No-Handshaking Digital I/O 3-63

Digital Port I/O Applications.. 3-63

Digital Line I/O Applications ... 3-65

Digital Group I/O Applications... 3-67

Contents

© National Instruments Corporation vii Traditional NI-DAQ User Manual

Digital Group Block I/O Applications ..3-68

Pattern Generation I/O with 653X, PCI-6115, PCI-6120,

and 673X Devices ...3-72

Double-Buffered I/O ...3-73

Counter/Timer Function Group ...3-74

Counter/Timer Operation for the GPCTR Functions3-74

General-Purpose Counter/Timer Functions...3-76

General-Purpose Counter/Timer Application Tips ...3-76

Clocks or Time Counters...3-78

Sample Use Cases..3-78

Use Case #1...3-78

Use Case #2...3-78

RTSI Bus Trigger Functions ...3-79

RTSI Bus ...3-80

E Series, DSA, 660X, 671X, and 673X RTSI Connections3-81

653X RTSI Connections ..3-81

RTSI Bus Application Tips ...3-83

SCXI Functions..3-84

SCXI Application Tips ..3-89

Building Analog Input Applications in Multiplexed Mode3-90

Building Analog Input Applications in Parallel Mode3-96

SCXI Data Acquisition Rates ...3-100

Analog Output Applications..3-102

Digital Applications...3-102

Chapter 4
Traditional NI-DAQ Double Buffering

Overview..4-1

Single-Buffered versus Double-Buffered Data..4-1

Double-Buffered Input Operations ..4-2

Potential Setbacks..4-4

Double-Buffered Output Operations ...4-6

Potential Setbacks..4-7

Double-Buffered Functions ...4-9

Double Buffer Configuration Functions..4-9

Double Buffer Transfer Functions...4-10

Double Buffer HalfReady Functions...4-11

Conclusion ...4-12

Contents

Traditional NI-DAQ User Manual viii ni.com

Chapter 5
Transducer Conversion Functions

Function Descriptions.. 5-2

RTD_Convert and RTD_Buf_Convert ... 5-2

Parameter Discussion ... 5-2

Using This Function ... 5-3

Strain_Convert and Strain_Buf_Convert .. 5-4

Parameter Discussion ... 5-4

Using This Function ... 5-5

Thermistor_Convert and Thermistor_Buf_Convert.. 5-7

Parameter Discussion ... 5-7

Using This Function ... 5-7

Thermocouple_Convert and Thermocouple_Buf_Convert 5-9

Parameter Discussion ... 5-9

Using This Function ... 5-10

Appendix A
Technical Support and Professional Services

Glossary

Index

© National Instruments Corporation ix Traditional NI-DAQ User Manual

About This Manual

The Traditional NI-DAQ User Manual is for users of the Traditional

NI-DAQ application programming interface (API) of the NI-DAQ

software, version 7.0. NI-DAQ is a powerful API between your data

acquisition (DAQ) application and the National Instruments DAQ devices.

This manual includes source code for several example applications.

How to Use the Traditional NI-DAQ Documentation Set

Begin by reading the NI-DAQ 7.0 readme file and the DAQ Quick Start

Guide for NI-DAQ 7.0 for information on how to set up your DAQ system

using Traditional NI-DAQ.

Read this manual to learn about programming with Traditional NI-DAQ.

When you are familiar with the material in this manual, you can begin to

use the Traditional NI-DAQ reference help files for more information on

functions and VIs. Other documentation includes Measurement &

Automation Explorer Help for Traditional NI-DAQ, a help file installed

with Measurement & Automation Explorer (MAX).

For detailed hardware information, refer to the user manual included with

each device.

Conventions Used in This Manual

The following conventions are used in this manual.

» The » symbol leads you through nested menu items and dialog box options

to a final action. The sequence File»Page Setup»Options directs you to

pull down the File menu, select the Page Setup item, and select Options

from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such

as menu items and dialog box options. Bold text also denotes parameter

names and function prototypes.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction

to a key concept. This font also denotes text that is a placeholder for a word

or value that you must supply.

About This Manual

Traditional NI-DAQ User Manual x ni.com

monospace Text in this font denotes text or characters that you should enter from the

keyboard, sections of code, programming examples, and syntax examples.

This font is also used for the proper names of disk drives, paths, directories,

programs, subprograms, subroutines, device names, functions, operations,

properties, methods, variables, filenames and extensions, and code

excerpts.

monospace bold Bold text in this font denotes the messages and responses that the computer

automatically prints to the screen. This font also emphasizes lines of code

that are different from the other examples.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value

that you must supply.

MIO and AI Device Terminology
This manual uses generic terms to describe groups of devices whenever

possible. The generic terms for the multifunction I/O (MIO) and analog

input (AI) devices are based on the number of bits, the platform, and the

functionality. The following table lists each MIO and AI device and the

technical details for each.

Table 1. MIO and AI Device Technical Details

Device

Number of

Single-Ended

(SE) Channels Bit Type Functionality

AT-AI-16XE-10 16 16-bit AT AI

AT-MIO-16DE-10 16 12-bit AT MIO

AT-MIO-16E-1 16 12-bit AT MIO

AT-MIO-16E-2 16 12-bit AT MIO

AT-MIO-16E-10 16 12-bit AT MIO

AT-MIO-16XE-10 16 16-bit AT MIO

AT-MIO-16XE-50 16 16-bit AT MIO

AT-MIO-64E-3 64 12-bit AT MIO

DAQCard-6023E 16 12-bit PCMCIA AI

DAQCard-6024E 16 12-bit PCMCIA MIO

DAQCard-6062E 16 12-bit PCMCIA MIO

DAQPad-6020E 16 12-bit USB MIO

About This Manual

© National Instruments Corporation xi Traditional NI-DAQ User Manual

DAQPad-6052E for

FireWire

16 16-bit FireWire MIO

DAQPad-6070E for

FireWire

16 12-bit FireWire MIO

PCI-6013 16 16-bit PCI MIO

PCI-6014 16 16-bit PCI MIO

PCI-6023E 16 12-bit PCI AI

PCI-6024E 16 12-bit PCI MIO

PCI-6025E 16 12-bit PCI MIO

PCI-6031E (MIO-64XE-10) 64 16-bit PCI MIO

PCI-6032E (AI-16XE-10) 16 16-bit PCI AI

PCI-6033E (AI-64XE-10) 64 16-bit PCI AI

PCI-6034E 16 16-bit PCI AI

PCI-6035E 16 16-bit AI, 12-bit AO PCI MIO

PCI-6040E

(PCI-MIO-16E-4)

16 12-bit PCI MIO

PCI-6052E 16 16-bit PCI MIO

PCI-6070E

(PCI-MIO-16E-1)

16 12-bit PCI MIO

PCI-6071E (MIO-64E-1) 64 12-bit PCI MIO

PCI-6110 4, DIFF only 12-bit AI, 16-bit AO PCI MIO

PCI-6111 2, DIFF only 12-bit AI, 16-bit AO PCI MIO

PCI-6115 4, DIFF only 12-bit PCI MIO

PCI-6120 4, DIFF only 16-bit PCI MIO

PCI-MIO-16XE-10 16 16-bit PCI MIO

PCI-MIO-16XE-50 16 16-bit PCI MIO

PXI-6025E 16 12-bit PXI MIO

PXI-6030E 16 16-bit PXI MIO

PXI-6031E 64 16-bit PXI MIO

Table 1. MIO and AI Device Technical Details (Continued)

Device

Number of

Single-Ended

(SE) Channels Bit Type Functionality

About This Manual

Traditional NI-DAQ User Manual xii ni.com

PXI-6040E 16 12-bit PXI MIO

PXI-6052E 16 16-bit PXI MIO

PXI-6070E 16 12-bit PXI MIO

PXI-6115 4, DIFF only 12-bit PXI MIO

PXI-6120 4, DIFF only 16-bit PXI MIO

Table 1. MIO and AI Device Technical Details (Continued)

Device

Number of

Single-Ended

(SE) Channels Bit Type Functionality

© National Instruments Corporation 1-1 Traditional NI-DAQ User Manual

1
Introduction to
Traditional NI-DAQ

This chapter presents an overview of Traditional NI-DAQ.

About the Traditional NI-DAQ Software

Thank you for buying a National Instruments DAQ device, which includes

Traditional NI-DAQ software. Traditional NI-DAQ is a set of functions

that control all of the National Instruments plug-in DAQ devices for

analog I/O, digital I/O, timing I/O, SCXI signal conditioning, and RTSI

multiboard synchronization.

Traditional NI-DAQ has both high-level DAQ I/O functions for maximum

ease of use, and low-level DAQ I/O functions for maximum flexibility and

performance. Examples of high-level functions are streaming data to

disk or acquiring a certain number of data points. Examples of low-level

functions are writing directly to the DAQ device registers or calibrating

the analog inputs. Traditional NI-DAQ does not sacrifice the performance

of National Instruments DAQ devices, because it lets multiple devices

operate at their peak performance.

Traditional NI-DAQ includes a Buffer and Data Manager that uses

sophisticated techniques for handling and managing data acquisition

buffers, so you can acquire and process data simultaneously. Traditional

NI-DAQ can transfer data using DMA, interrupts, or software polling.

Traditional NI-DAQ can use DMA to transfer data into memory above

16 MB, even on ISA bus computers.

With the Resource Manager, you can use several functions and several

devices simultaneously. The Resource Manager prevents multiboard

contention over DMA channels, interrupt levels, and RTSI channels.

Chapter 1 Introduction to Traditional NI-DAQ

Traditional NI-DAQ User Manual 1-2 ni.com

Traditional NI-DAQ can send event-driven messages to Windows or

Windows NT applications each time a user-specified event occurs. Thus,

polling is eliminated and you can develop event-driven DAQ applications.

Some examples of Traditional NI-DAQ user events are:

• When a specified number of analog samples has been acquired

• When the analog level and slope of a signal match specified levels

• When the signal is inside or outside a voltage band

• When a specified digital I/O pattern is matched

• When a rising or falling edge occurred on a timing I/O line

How to Set Up Your DAQ System

Refer to the DAQ Quick Start Guide for NI-DAQ 7.0 for more information

on installing and configuring your hardware and software.

Traditional NI-DAQ Overview

Traditional NI-DAQ is a library of routines that work with National

Instruments DAQ devices. Traditional NI-DAQ helps you perform tasks

ranging from simple device initialization to advanced high-speed data

logging. The number of tasks you need for your applications depends on

the types of DAQ devices you have and the complexity of your

applications.

Device Configuration

Before you begin your Traditional NI-DAQ application development,

you must configure your National Instruments DAQ devices. Traditional

NI-DAQ needs the device configuration information to program your

hardware correctly.

Using Measurement & Automation Explorer
Measurement & Automation Explorer (MAX) is a Windows-based

application that you use to configure and view National Instruments DAQ

device settings under Windows 2000/NT/XP/Me/98.

Note To use MAX, quit any applications that are performing DAQ operations.

Chapter 1 Introduction to Traditional NI-DAQ

© National Instruments Corporation 1-3 Traditional NI-DAQ User Manual

Double-click the Measurement & Automation icon on your desktop to

run MAX. Refer to the Measurement & Automation Explorer Help for

Traditional NI-DAQ for more information and detailed instructions on

configuring your devices and accessories.

© National Instruments Corporation 2-1 Traditional NI-DAQ User Manual

2
Fundamentals of Building
Windows Applications

This chapter describes the fundamentals of creating Traditional NI-DAQ

applications in Windows 2000/NT/XP/Me/98.

The following section contains general information about building

Traditional NI-DAQ applications, describes the nature of the Traditional

NI-DAQ files used in building Traditional NI-DAQ applications, and

explains the basics of making applications using the following tools:

• Microsoft Visual C++

• Microsoft Visual Basic

If you are not using the tools listed, refer to your development tool

reference manual for details on creating applications that call DLLs.

The Traditional NI-DAQ Libraries

The Traditional NI-DAQ function libraries are DLLs, which means that

Traditional NI-DAQ routines are not linked into the executable files of

applications. Only the information about the Traditional NI-DAQ routines

in the Traditional NI-DAQ import libraries is stored in the executable files.

Note Use the 32-bit nidaq32.dll. If you are programming in C or C++, link in the

appropriate import library. Refer to the following sections for language-specific details.

Using function prototypes is a good programming practice. That is why

Traditional NI-DAQ is packaged with function prototype files for different

Windows development tools. The installation utility copies the appropriate

prototype files for the development tools you choose. If you are not using

any of the development tools that Traditional NI-DAQ works with, you

must create your own function prototype file.

Chapter 2 Fundamentals of Building Windows Applications

Traditional NI-DAQ User Manual 2-2 ni.com

Creating a Windows Application Using
Microsoft Visual C++

This section assumes that you will be using the Microsoft Visual C++ IDE

to manage your code development, and that you are familiar with the IDE.

Developing a Traditional NI-DAQ Application
To develop a Traditional NI-DAQ application, follow these general steps:

1. Open an existing or new Visual C++ project to manage your

application code.

2. Create files of type .c (C source code) or .cpp (C++ source code)

and add them to the project. Make sure you include the Traditional

NI-DAQ header file, nidaq.h, as such in your source code files:

#include "nidaq.h"

You also might want to include nidaqcns.h and nidaqerr.h. You

also can include other files (for example, .rc, .def) that you have

created for graphical user interface (GUI) applications.

3. Specify the directory which contains the Traditional NI-DAQ header

files under the preprocessor»include directory settings in your

compiler. (For Visual C++ 4.x, this is under Build»Settings»C/C++.

For Visual C++ 5.0/6.0, this is under Project»Settings»C/C++.)

The Traditional NI-DAQ header files are located in the .\Include

directory under your NI-DAQ directory.

4. Add the Traditional NI-DAQ import library nidaq32.lib to the

project. The Traditional NI-DAQ import library files are located in the

.\Lib directory under your NI-DAQ directory.

5. Build your application.

Example Programs
You can find example programs and project files in .\Examples\

VisualC directory under your NI-DAQ directory.

To load an example program, use one of the generic makefiles with

the.mak extension.

To load an example project with Visual C++ 4.x or later, select the menu

option File»Open Project Workspace, and select List Files of Type to be

Makefiles. Then select the.mak file of your choice.

Chapter 2 Fundamentals of Building Windows Applications

© National Instruments Corporation 2-3 Traditional NI-DAQ User Manual

Special Considerations
When developing an application using Visual C++, consider the following

special considerations.

Buffer Allocation
To allocate memory, you can use the Windows API function

GlobalAlloc(). After allocation, lock memory with GlobalLock()

to use a buffer of memory. You can use the memory handle returned by

GlobalLock()in place of the buffer parameter in Traditional NI-DAQ

API functions that accept buffers (Align_DMA_Buffer,

DAQ_DB_Transfer, DAQ_Monitor, DAQ_Op, DAQ_Start,

DIG_Block_In, DIG_Block_Out, DIG_DB_Transfer,

GPCTR_Config_Buffer, GPCTR_Read_Buffer, Lab_ISCAN_Op,

Lab_ISCAN_Start, SCAN_Op, SCAN_Start, SCAN_Sequence_Demux,

WFM_DB_Transfer, WFM_Load, WFM_Op). After using the memory,

unlock memory with GlobalUnlock() and free it with GlobalFree().

Note If you allocate memory from GlobalAlloc(), you must call GlobalLock() on

the memory object before passing it to Traditional NI-DAQ.

String Passing
To pass strings, pass a pointer to the first element of the character array.

Be sure that the string is null-terminated.

Parameter Passing
By default, C passes parameters by value. Remember to pass pointers to

variables when you need to pass by address.

Creating a Windows Application Using Microsoft
Visual Basic

This section assumes that you will be using the Microsoft Visual Basic

IDE to manage your code development, and that you are familiar with

the IDE.

Chapter 2 Fundamentals of Building Windows Applications

Traditional NI-DAQ User Manual 2-4 ni.com

Developing a Traditional NI-DAQ Application
To develop a Traditional NI-DAQ application, follow these general steps:

1. Open an existing or new Visual Basic project to manage your

application code.

2. Create files of type.frm (form definition and event handling code),

.bas (Visual Basic generic code module), or .cls (Visual Basic class

module) and add them to the project.

3. Include the Traditional NI-DAQ include file for Visual Basic,

nidaq32.bas, into your project. You also might want to include

nidaqcns.inc and nidaqerr.inc. The Traditional NI-DAQ

include files for Visual Basic are located in the .\Include directory

under your NI-DAQ directory. For Visual Basic 5.0/6.0, you can select

the Project»Add Module menu option, click the Existing tab, and

select the module of your choice.

Alternatively, you can add a reference to the National Instruments Data

Acquisition Type Library, which is part of the Traditional NI-DAQ

DLL. In Visual Basic 5.0/6.0, select the Project»References menu

option, and check National Instruments Data Acquisition Library.

If you do not see it listed there, click the Browse button and locate

nidaq32.dll in your \Windows\system or \Windows\system32

directory.

4. Run your application by clicking the Run button.

Note In Visual Basic, function declarations have scope globally throughout the project.

In other words, you can define your prototypes in any module. The functions will be

recognized even in other modules.

For information on using the NI-DAQ Visual Basic Custom Controls, refer to the

Traditional NI-DAQ Events in Visual Basic section of Chapter 3, Software Overview.

Refer to the Traditional NI-DAQ reference help files for more information on using the

Traditional NI-DAQ functions in Visual Basic for Windows.

Example Programs
You can find example programs and project files in the .\Examples\

VBasic directory under your Traditional NI-DAQ directory.

To load an example program, use one of the Visual Basic project files with

the.vbp extension. These are Visual Basic 4.0 projects, which you can

open only with Visual Basic version 4.0 or later.

Chapter 2 Fundamentals of Building Windows Applications

© National Instruments Corporation 2-5 Traditional NI-DAQ User Manual

To load an example project with Visual Basic 4.0 or later versions, select

the menu option File»Open Project, then select the.vbp file of your

choice.

Special Considerations
When developing an application using Visual Basic, consider the following

special considerations.

Buffer Allocation
Visual Basic 4.0 is restrictive when allocating memory. You

allocate memory by declaring an array of the data type with which you

want to work. Visual Basic uses dynamic memory allocation so you can

redimension an array to a variable size during run time. However, arrays

are restricted to being less than 64 KB in total size (this translates to about

32,767 (16-bit) integers, 16,384 (32-bit) long integers, or 8,191 doubles).

To break the 64 KB buffer size barrier, you can use the Windows API

functions GlobalAlloc() to allocate buffers larger than 64 KB. After

allocation, you must lock memory with GlobalLock()to use a buffer of

memory. You can use the memory handle returned by GlobalLock() in

place of the buffer parameter in Traditional NI-DAQ API functions that

accept buffers (Align_DMA_Buffer, DAQ_DB_Transfer,

DAQ_Monitor, DAQ_Op, DAQ_Start, DIG_Block_In, DIG_Block_Out,

DIG_DB_Transfer, GPCTR_Config_Buffer, GPCTR_Read_Buffer,

Lab_ISCAN_Op, Lab_ISCAN_Start, SCAN_Op, SCAN_Start,

SCAN_Sequence_Demux, WFM_DB_Transfer, WFM_Load, WFM_Op). The

Traditional NI-DAQ header file declares the buffer parameter “As Any.”

After using the memory, you must unlock memory with

GlobalUnlock()and free it with GlobalFree().

Note If you allocate memory from GlobalAlloc(), you must call GlobalLock on the

memory object before passing it to Traditional NI-DAQ.

The following paragraph illustrates declarations of functions.

For Visual Basic 4.0 or later, 32-bit:

Declare Function GlobalAlloc Lib "kernel32" Alias

"GlobalAlloc" (ByVal wFlags As Long, ByVal dwBytes As

Long) As Long

Declare Function GlobalFree Lib "kernel32" Alias

"GlobalFree" (ByVal hMem As Long) As Long

Chapter 2 Fundamentals of Building Windows Applications

Traditional NI-DAQ User Manual 2-6 ni.com

Declare Function GlobalLock Lib "kernel32" Alias

"GlobalLock" (ByVal hMem As Long) As Long

Declare Function GlobalReAlloc Lib "kernel32" Alias

"GlobalReAlloc" (ByVal hMem As Long, ByVal dwBytes As

Long, ByVal wFlags As Long) As Long

Declare Function GlobalUnlock Lib "kernel32" Alias

"GlobalUnlock" (ByVal hMem As Long) As Long

String Passing
In Visual Basic, variables of data type String need no special

modifications to be passed to Traditional NI-DAQ functions. Visual Basic

automatically appends a null character to the end of a string before passing

it (by reference, because strings cannot be passed by value in Visual Basic)

to a procedure or function.

Parameter Passing
By default, Visual Basic passes parameters by reference. Prepend the

ByVal keyword if you need to pass by value.

Passing Unsigned 16-Bit and 32-Bit Integer
Parameters
The Visual Basic INTEGER type is a signed value. Visual Basic considers

any value greater than 32,767 a negative number. To pass unsigned 16-bit

parameters, refer to the following examples:

• If the function is supposed to return an unsigned 16-bit integer, and you

are reading back a negative number, add 65,536 to the negative

number.

Dim myUnsignedCnt As Long

Dim retCnt As Integer

‘retCnt is the value returned from the called

‘function.

‘You can call a DAQ function that returns an unsigned

‘16-bit value and store the value in retCnt.

if retCnt < 0 then

myUnsignedCnt = CInt(retCnt) + 65536

else

myUnsignedCnt = retCnt

end if

Chapter 2 Fundamentals of Building Windows Applications

© National Instruments Corporation 2-7 Traditional NI-DAQ User Manual

• To pass an unsigned 16-bit value to a function with an unsigned 16-bit

type parameter, you must first compute the value to pass to the

function.

Dim myUnsignedCnt As Long

Dim ToPassVal As Integer

‘You compute the value that you want to pass to the

‘function and store it in myUnsignedCnt.

if myUnsignedCnt > 32767 then

ToPassVal = CInt(myUnsignedCnt - 65536)

else

ToPassVal = CInt(myUnsignedCnt)

end if

The Visual Basic LONG integer type is a signed 32-bit type. Visual Basic

considers any value greater than 2,147,483,647 a negative number. To pass

unsigned 16-bit parameters, refer to the following examples:

• If the function is supposed to return an unsigned 32-bit integer, and you

are reading back a negative number, then add 4,294,967,296 to the

negative number.

Dim myUnsignedCnt As Double

Dim retCnt As Long

‘retCnt is the value returned from the called

‘function

‘You can call a DAQ function that returns an unsigned

‘16-bit value and stores it in retCnt.

if retCnt < 0 then

myUnsignedCnt = CInt(retCnt) + 4294967296

else

myUnsignedCnt = retCnt

end if

• To pass an unsigned 32-bit value to a function with an unsigned 32-bit

type parameter, you must first compute the value to pass to the

function.

Dim myUnsignedCnt As Double

Dim ToPassVal As Long

‘You compute the value that you want to pass to the

‘function and store it in myUnsignedCnt.

Chapter 2 Fundamentals of Building Windows Applications

Traditional NI-DAQ User Manual 2-8 ni.com

if myUnsignedCnt > 2147483647 then

ToPassVal = CLng(myUnsignedCnt - 4294967296)

else

ToPassVal = CLng(myUnsignedCnt)

end if

Traditional NI-DAQ Examples

The Traditional NI-DAQ installer installs a suite of concisely written

examples in the following application development environments:

• LabWindows™/CVI™ 5.0.x

• Microsoft Visual C++ 2.x (32-bit) or later

• Microsoft Visual Basic 4.0 (32-bit) or later

These examples illustrate how to use Traditional NI-DAQ functions to

perform a single task. All examples are devoid of any code to extract values

from GUI objects so that you can focus on how the code flow is formed. In

addition, most parameters are hardcoded at the top of the routine so that if

you decide to change them, you can simply change the assignment.

The examples correspond to the function flowcharts that you will see in

Chapter 3, Software Overview. If a task and a flowchart in the following

chapter suits your data acquisition needs, you should find a corresponding

example to get you started.

Each example consists of the following files:

• An appropriate project file for the programming language

• A single source code file to illustrate the task at hand

• A library of Traditional NI-DAQ example utility functions (for buffer

creation, waveform plotting, error checking, and implementing a

delay)

Note None of the examples are installed in their executable (.exe) format. To run them,

you first must build them or load them into the IDE for the appropriate programming

language.

The examples are stored in the hierarchy shown below for each language:

.\AI Analog Input examples

.\AO Analog Output examples

Chapter 2 Fundamentals of Building Windows Applications

© National Instruments Corporation 2-9 Traditional NI-DAQ User Manual

.\DI Digital Input examples

.\DO Digital Output examples

.\CTR Counter/timer examples

.\SCXI SCXI examples

.\CALIB Calibration examples

The project files have the same file name (not including extension) as the

source code files. The following types are installed:

• LabWindows/CVI:

.prj (project file), .c (source file)

• Visual C++:

.mak (generic make file), .c (source file)

• Visual Basic:

.vbp (project file, for Visual Basic 4.0 [32-bit] or later),

.frm (form module)

© National Instruments Corporation 3-1 Traditional NI-DAQ User Manual

3
Software Overview

This chapter describes the function classes in Traditional NI-DAQ and

briefly describes each function.

Traditional NI-DAQ functions are grouped according to the following

classes:

• Initialization and general-configuration

• Software-calibration and device-specific

• Event Message

• Analog input function group

– One-shot analog input

• Single-channel analog input

– Data acquisition

• High-level data acquisition

• Low-level data acquisition

• Low-level double-buffered data acquisition

• Analog output function group

– One-shot analog output

– Waveform generation

• High-level waveform generation

• Low-level waveform generation

• Digital I/O function group

– Digital I/O

– Group digital I/O

• Double-buffered digital I/O

– Change Notification

– Filtering

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-2 ni.com

• Counter/Timer function group

– Counter/timer

– Interval counter/timer

– General-purpose counter/timer

• RTSI bus trigger

• SCXI

• Transducer conversion

Initialization and General-Configuration Functions

Use these general functions for initializing and configuring your hardware

and software.

Refer to the Traditional NI-DAQ C Reference Help to determine which

functions your device supports.

Align_DMA_Buffer Aligns the data in a DMA buffer to avoid

crossing a physical page boundary. This

function is for use with DMA waveform

generation and digital I/O pattern

generation.

Get_DAQ_Device_Info Retrieves parameters pertaining to the

device operation.

Get_NI_DAQ_Version Returns the version number of the

Traditional NI-DAQ library.

Init_DA_Brds Initializes the hardware and software

states of a National Instruments

DAQ device to its default state and then

returns a numeric device code that

corresponds to the type of device

initialized. Any operation that the device

is performing is halted. Traditional

NI-DAQ automatically calls this

function; your application does not have

to call it explicitly. This function is useful

for reinitializing the device hardware, for

reinitializing the Traditional NI-DAQ

software, and for determining which

Chapter 3 Software Overview

© National Instruments Corporation 3-3 Traditional NI-DAQ User Manual

device has been assigned to a particular

slot number.

Set_DAQ_Device_Info Selects parameters pertaining to the

device operation.

Timeout_Config Establishes a timeout limit that is used by

the synchronous functions to ensure that

these functions eventually return control

to your application. Examples of

synchronous functions are DAQ_Op,

DAQ_DB_Transfer, and

WFM_from_Disk.

Software-Calibration and Device-Specific Functions

Each of these software-calibration and configuration functions is specific

to only one type of device or class of devices.

Refer to the Traditional NI-DAQ C Reference Help to determine which

functions your device supports.

AO_Calibrate Loads a set of calibration constants into

the calibration DACs or copies a set of

calibration constants from one of four

EEPROM areas to EEPROM area 1. You

can load an existing set of calibration

constants into the calibration DACs from

a storage area in the onboard EEPROM.

You can copy EEPROM storage areas

2 through 5 (EEPROM area 5 contains

the factory-calibration constants) to

storage area 1. NI-DAQ automatically

loads the calibration constants stored

in EEPROM area 1 the first time a

function pertaining to the AT-AO-6/10 is

called.

Calibrate_1200 Calibrates the gain and offset values for

the 1200/AI devices ADCs and DACs.

You can perform a new calibration or use

an existing set of calibration constants by

copying the constants from their storage

location in the onboard EEPROM. You

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-4 ni.com

can store up to six sets of calibration

constants. Traditional NI-DAQ

automatically loads the calibration

constants stored in EEPROM user area 5

the first time you call a function

pertaining to the device.

Calibrate_TIO Use the function to calibrate the crystal

oscillator on your timing I/O 660X

device.

Calibrate_DSA Use this function to calibrate your

DSA device.

Calibrate_E_Series Use this function to calibrate your

E Series, 671X, or 673X device and to

select a set of calibration constants for

Traditional NI-DAQ to use.

Configure_HW_Analog_Trigger

Configures the hardware analog trigger

available on your E Series device.

LPM16_Calibrate Calibrates the LPM device converter.

The function calculates the correct offset

voltage for the voltage comparator,

adjusts positive linearity and full-scale

errors to less than ±0.5 each, and adjusts

zero error to less than ±1 LSB.

MIO_Config Turns dithering on and off. For the

MIO-64, this function also lets you

specify whether to use AMUX-64T

channels or onboard channels.

SCXI_Calibrate Performs a self-calibration (or internal

calibration) for certain SCXI modules.

Select_Signal Selects the source and polarity of certain

signals used by the E Series and DSA

devices. You typically need to use this

function to externally control timing, to

use the RTSI bus, or to configure one of

the I/O connector PFI pins.

Chapter 3 Software Overview

© National Instruments Corporation 3-5 Traditional NI-DAQ User Manual

Event Message Functions

Traditional NI-DAQ Event Message functions are an efficient way to

monitor your background data acquisition processes, without dedicating

your foreground process for status checking.

The Event Message dispatcher notifies your application when a

user-specified DAQ event occurs. Using event messaging eliminates

continuous polling of data acquisition processes.

Config_Alarm_Deadband Specify alarm on/off condition for data

acquisition event messaging.

Config_ATrig_Event_Message

Specify analog input trigger level and

slope for data acquisition event

messaging.

Config_DAQ_Event_Message

Specify analog input, analog output,

digital input, or digital output trigger

condition for event messaging.

Event Messaging Application Tips
To receive notification from the Traditional NI-DAQ data acquisition

process in case of special events, you can call Config_Alarm_Deadband,

Config_ATrig_Event_Message, or Config_DAQ_Event_Message

to specify an event in which you are interested. If you are interested in more

than one event, you can call any of those three functions again for each

event.

After you have configured all event messages, you can begin your data

acquisition by calling SCAN_Start, DIG_Block_In, and so on.

When any of the events you specified occur, Traditional NI-DAQ notifies

your application.

Event notification can be done through user-defined callbacks and/or the

Windows Message queue. When a user-specified event occurs, Traditional

NI-DAQ calls the user-defined callback (if defined) and/or puts a message

into the Windows Message queue, if you specified a window handle. Your

application receives the message when it calls the Windows

GetMessage API.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-6 ni.com

After your application receives an event message, it can carry out the

appropriate task, such as updating the screen or saving data to disk.

To restart your data acquisition process after it completes, you do not need

to call the message configuration calls again. They remain defined as long

as your application does not explicitly remove them or call

Init_DA_Brds.

To add or remove a message, first clear your data acquisition process.

Then, call one of the three event message configuration functions.

Traditional NI-DAQ Events in Visual Basic

ActiveX Controls for Visual Basic
Unlike standard control-flow programming languages, event occurrences

drive Visual Basic code. You interact with outside events through the

properties and procedures of a control. For any given control, there is a

set of procedures called event procedures that affect that control.

For example, a command button named Run has a procedure called

Run_Click() that is called when you click the Run button. If you

want something to run when you click the Run button, enter code in the

Run_Click() procedure. When a program starts executing, Visual Basic

looks for events related to controls and calls control procedures as

necessary. You do not write an event loop.

There are three Traditional NI-DAQ ActiveX controls for Visual Basic

applications:

• General Data Acquisition Event (daqevent.ocx)

• Analog Trigger Event (atrigev.ocx)

• Analog Alarm Event (alarmev.ocx)

Chapter 3 Software Overview

© National Instruments Corporation 3-7 Traditional NI-DAQ User Manual

The Traditional NI-DAQ installer places all of these ActiveX controls in the

NIDAQ subdirectory of your Windows 2000/NT/XP/Me/98 directory under

the file names shown.

These three ActiveX controls actually call the Traditional NI-DAQ

Config_DAQ_Event_Message, Config_ATrig_Event_Message, and

Config_Alarm_Deadband functions. Visual Basic applications cannot

receive Windows messages, but if you use Traditional NI-DAQ ActiveX

controls shown previously in this section, your Visual Basic application can

receive Traditional NI-DAQ messages.

Note You can use the OCXs in Visual Basic, version 4.0 (32-bit) or later.

General DAQ Event
You use the General DAQ Event control to configure and enable a single

data acquisition event. Refer to the Event Message Functions section for a

complete description of Traditional NI-DAQ events. Table 3-1 lists the

properties for the General DAQ Event control.

Note An n represents a generic number and is not the same value in every occurrence.

Table 3-1. General DAQ Event Control Properties

Property Allowed Property Values

Name GeneralDAQEventn (default)

Board 1 – n (default)

ChanStr Refer to Config_DAQ_Event_Message in

the Traditional NI-DAQ C Reference Help.

DAQEvent 0—Acquired or generated n scans

1—Every n scans

2—Completed operation or stopped by error

3—Voltage out of bounds

4—Voltage within bounds

5—Analog positive slope triggering

6—Analog negative slope triggering

7—Digital pattern not matched

8—Digital pattern matched

9—Counter pulse event

DAQTrigVal0 Long

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-8 ni.com

Some General DAQ Events can be implemented only by a select group

of National Instruments DAQ devices. Also, some General DAQ Events

require that you set the asynchronous data acquisition or generation

operation to use interrupts. For more information on the different

types of General DAQ Events, refer to the description for the

Config_DAQ_Event_Message function in the Traditional NI-DAQ C

Reference Help.

Set each of these properties as follows:

GeneralDAQEventn.property name = property value

For example, to set the ChanStr property to Analog Input channel 0 for

GeneralDAQEvent 1:

GeneralDAQEvent1.ChanStr = "AI0"

Set up your program flow like this:

1. Set the properties of the General DAQ Event control. Then, configure

the acquisition or generation operations using the appropriate

Traditional NI-DAQ functions.

2. Set the Enabled property of the General DAQ Event control

to 1 (True).

3. Invoke the GeneralDAQEventn.Refresh method to set the

DAQ Event in the Traditional NI-DAQ driver. Each subsequent use of

GeneralDAQEventn.Refresh deletes the old DAQ Event and

sets a new one with the current set of properties.

4. Start an asynchronous data acquisition or generation operation.

DAQTrigVal1 Long

TrigSkipCount Long

PreTrigScans Long

PostTrigScans Long

Index N/A

Tag N/A

Enabled 0—False (default)

1—True

Table 3-1. General DAQ Event Control Properties (Continued)

Property Allowed Property Values

Chapter 3 Software Overview

© National Instruments Corporation 3-9 Traditional NI-DAQ User Manual

5. When the selected event occurs, the GeneralDAQEventn_Fire

procedure is called. You can perform the necessary event processing

within this procedure, such as updating a global count variable, or

toggling digital I/O lines.

The GeneralDAQEventn_Fire procedure is prototyped as follows:

Sub GeneralDAQEventn_Fire (DoneFlag As Integer, Scans As Long)

The parameter DoneFlag equals 1 if the acquisition was over when the

DAQ Event fired. Otherwise, it is 0. Scans equals the number of the scan

that caused the DAQ Event to fire.

For a detailed example of how to use the General DAQ Event control in a

Visual Basic program, refer to the General DAQ Event example at the end

of the Traditional NI-DAQ Events in Visual Basic section.

Analog Trigger Event
Use the Analog Trigger Event control to configure and enable an analog

trigger. Refer to the Event Message Functions section earlier in this chapter

for a definition of the analog trigger.

Table 3-2 lists the properties for the Analog Trigger Event control.

Table 3-2. Analog Trigger Event Control Properties

Property Allowed Property Values

Name GeneralDAQEventn (default)

Board 1 – n (default)

ChanStr Refer to Config_DAQ_Event_Message in

the Traditional NI-DAQ C Reference Help

Level Single (voltage)

WindowSize Single (voltage)

Slope 0—Positive (default)

1—Negative

TrigSkipCount Long

PreTrigScans Long

PostTrigScans Long

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-10 ni.com

The Analog Trigger Event requires that you set the asynchronous

data acquisition operation to use interrupts. For more information

on Analog Trigger Events, refer to the descriptions for the

Config_ATrig_Event_Message function in the Traditional NI-DAQ

C Reference Help.

Each of these properties should be set as follows:

AnalogTriggerEventn.property name = property value

For example, to set the ChanStr property to Analog Input channel 0 for

Analog Trigger Event 1:

AnalogTriggerEvent1.ChanStr = "AI0"

Set up your program flow like this:

1. Set the properties of the Analog Trigger Event control. Next, configure

the acquisition or generation operations using the appropriate

Traditional NI-DAQ functions.

2. Set the Enabled property of the Analog Trigger Event control to

1 (True).

3. Invoke the AnalogTriggerEventn. Refresh method to actually set

the Analog Trigger Event in the Traditional NI-DAQ driver. Each

subsequent invocation of AnalogTriggerEventn. Refresh deletes

the old Analog Trigger Event and sets a new one with the current set

of properties.

4. Start an asynchronous data acquisition operation.

5. When the Analog Trigger conditions are met, the

AnalogTriggerEventn_Fire procedure is called. You can perform

the necessary event processing within this procedure, such as updating

a global count variable, or toggling digital I/O lines.

Index N/A

Tag N/A

Enabled 0—False (default)

1—True

Table 3-2. Analog Trigger Event Control Properties (Continued)

Property Allowed Property Values

Chapter 3 Software Overview

© National Instruments Corporation 3-11 Traditional NI-DAQ User Manual

The AnalogTriggerEventn_Fire procedure is prototyped as follows:

Sub AnalogTriggerEventn_Fire (DoneFlag As Integer,

Scans As Long)

The parameter DoneFlag equals 1 if the acquisition was over when the

Analog Trigger Event fired. Otherwise, it is 0. Scans equals the number of

the scan that caused the Analog Trigger Event to fire.

Analog Alarm Event
Use the Analog Alarm Event control to configure and enable an analog

trigger. Refer to the Event Message Functions section earlier in this chapter

for a definition of the analog trigger.

Table 3-3 lists the properties for the Analog Alarm Event control.

The Analog Alarm Event requires that you set the asynchronous

data acquisition operation to use interrupts. For more information

on Analog Alarm Events, refer to the description for the

Config_Alarm_Deadband function in the Traditional NI-DAQ C

Reference Help.

Table 3-3. Analog Alarm Event Control Properties

Property Allowed Property Values

Name GeneralDAQEventn (default)

Board 1 – n (default)

ChanStr Refer to Config_DAQ_Event_Message in

the Traditional NI-DAQ C Reference Help

HighAlarmLevel Single (voltage)

LowAlarmLevel Single (voltage)

HighDeadbandWidth Single (voltage)

LowDeadbandWidth Single (voltage)

Index N/A

Tag N/A

Enabled 0—False (default)

1—True

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-12 ni.com

Each of these properties should be set as follows:

AnalogAlarmEventn.property name = property value

For instance, to set the ChanStr property to Analog Input channel 0 for

Analog Alarm Event 1:

AnalogAlarmEvent1.ChanStr = "AI0"

Set up your program flow like this:

1. Set the properties of the Analog Alarm Event control. Next, configure

the acquisition or generation operations using the appropriate

Traditional NI-DAQ functions.

2. Set the Enabled property of the Analog Alarm Event control to

1 (True).

3. Invoke the AnalogAlarmEventn.Refresh method to set the Analog

Alarm Event in the Traditional NI-DAQ driver. Each subsequent

invocation of AnalogAlarmEventn.Refresh deletes the old Analog

Alarm Event and sets a new one with the current set of properties.

4. Start an asynchronous data acquisition operation.

5. Call any one of the four following procedures:

• AnalogAlarm_HighAlarmOn

• AnalogAlarm_HighAlarmOff

• AnalogAlarm_LowAlarmOn

• AnalogAlarm_LowAlarmOff

You can perform necessary event processing within this procedure,

such as updating a global count variable or toggling digital I/O lines.

The four Analog Alarm procedures are prototyped as follows:

Sub AnalogAlarmn_HighAlarmOn (DoneFlag As Integer,

Scans As Long)

Sub AnalogAlarmn_HighAlarmOff (DoneFlag As Integer,

Scans As Long)

Sub AnalogAlarmn_LowAlarmOn (DoneFlag As Integer,

Scans As Long)

Sub AnalogAlarmn_LowAlarmOff (DoneFlag As Integer,

Scans As Long)

Chapter 3 Software Overview

© National Instruments Corporation 3-13 Traditional NI-DAQ User Manual

The parameter DoneFlag equals 1 if the acquisition was over when the

Analog Alarm Event fired. Otherwise, it is 0. Scans equals the number of

the scan that caused the Analog Alarm Event to fire.

Using Multiple Controls

In general, a program might contain any number of General DAQ Event,

Analog Trigger Event, and Analog Alarm Event controls. Just like regular

Visual Basic controls, there are two ways you can place multiple controls

on a Visual Basic form:

• You can create control arrays by copying and pasting a control that

already exists on the form. Each individual element in the control array

is then distinguished by the Index property, and the event procedures

is an extra parameter Index as Integer. The first element has

Index = 0, the second element has Index = 1, and so on. You have

only one procedure for each type of event custom control; however,

you can determine which control array element caused the event to

occur by examining the Index property.

• You can place multiple controls from the Visual Basic Tool Box onto

the form. Each individual custom control of the same type is then

distinguished by the number after the name of the custom control,

such as GeneralDAQEvent1, GeneralDAQEvent2, and so on.

Consequently, you can have separate procedures for each custom

control, such as GeneralDAQEvent1_Fire,

GeneralDAQEvent2_Fire, and so on.

General DAQ Event Example

The following steps provide an outline of how to use the General DAQ

Event control in a Visual Basic program. A working knowledge of Visual

Basic is assumed; otherwise, this example is complete, except for error

checking:

1. To use the GeneralDAQEvent control, you must first include the proper

control into your project.

• If you are using Visual Basic 4.0 (32-bit), select the Tools»

Custom Controls option, and select the National Instruments

GeneralDAQEvent custom control.

• If you are using Visual Basic 5.0, select the Project»

Components option, and select the National Instruments

GeneralDAQEvent custom control. In either version, if you do

not find the custom control listed, click the Browse button and

find the custom control in the NI-DAQ subdirectory under your

Windows directory.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-14 ni.com

2. To place the GeneralDAQEvent control into your form, go to the tool

box window and select the GeneralDAQEvent tool, labelled DAQ

EVENT.

3. Click somewhere on the form, and while holding down the mouse

button, drag the mouse to place the control onto the form. You will see

a small icon, which does not appear in run time.

4. To set up a DAQ Event that notifies you after every n scans

(DAQ Event #1), unless you decide to make n very large, you can use

the Set_DAQ_Device_Info function to set the device analog

inputs to use interrupts. The constants used in this function

come from NIDAQCNS.INC. Refer to the function description for

Set_DAQ_Device_Info in the Traditional NI-DAQ C Reference

Help for more information. You also must configure some parameters

so that the GeneralDAQEvent can occur when it needs to. In the

Form_Load event routine, add the following to the existing code:

er% = Set_DAQ_Device_Info(1, ND_DATA_XFER_MODE_AI,

ND_INTERRUPTS) set AI to use INTR

GeneralDAQEvent1.Board = 1 ‘assume Device 1

GeneralDAQEvent1.DAQEvent = 1 ‘event every N scans

GeneralDAQEvent1.DAQTrigVal0 = 1000 ‘set N=1000

scans

GeneralDAQEvent1.Enabled = True

5. Next, start an asynchronous operation. Use the Traditional NI-DAQ

function DAQ_Start. Set up your program so it does a DAQ_Start on

channel 0 when you click a button you have placed on your form. To

do so, add the following code in the Command1_Click() subroutine

as follows:

Redim buffer%(10000)

GeneralDAQEvent1.ChanStr = "AI0"

GeneralDAQEvent1.Refresh ‘refresh to set params

er% = DAQ_Start(1, 0, 1, buffer%(0), 10000, 3, 10)

6. Next, define what to do when the DAQ Event occurs. In this

example, we can easily update a text box upon every 1,000 scans

and also when the whole acquisition is complete. Place a text box

on your form. It is automatically named Text 1.

7. Go to the code window, pull down on the Object combo box, and

select GeneralDAQEvent1. The only Proc for this control object is

Fire. Within the subroutine, enter the following code:

If (DoneFlag% <> 1) Then

Chapter 3 Software Overview

© National Instruments Corporation 3-15 Traditional NI-DAQ User Manual

Text1.Text = Str$(Scans&)+"scans have been

acquired."

Else

Text1.Text = "Acquisition is complete!"

er% = DAQ_Clear(1)

End If

8. Make sure that you stop any ongoing acquisition when you stop the

program. To do so, call the DAQ_Clear function before the End

statement in the subroutine Command2_Click(_). Place another

button on your form and label it Exit. The subroutine should have

code as follows:

er% = DAQ_Clear(1)

End

9. Run the program. Because you are not going to display the data onto a

graph, it does not matter what the data is; however, when you click the

Click Me! button, the text box should update its contents every second.

After all the scans are acquired, you should see the text box display a

completion message. If you run into errors, refer to the Traditional

NI-DAQ C Reference Help for guidance.

10. Click the Exit button to stop the program.

Analog Input Function Group

The analog input function group contains two sets of functions—the

one-shot analog input functions, which perform single A/D conversions,

and the data acquisition functions, which perform multiple clocked,

buffered A/D functions. Within the analog input functions, single-channel

analog input (AI) functions perform single A/D conversions on one

channel. Within the data acquisition functions, there are high-level,

low-level, and low-level double buffered functions.

If you are using SCXI analog input modules, you must use the SCXI

functions first to program the SCXI hardware. Then you can use these

functions to acquire the data using your DAQ device.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-16 ni.com

One-Shot Analog Input Functions

Single-Channel Analog Input Functions
Use the single-channel analog input functions on the MIO and AI devices.

Refer to the Traditional NI-DAQ C Reference Help to determine which

functions your device supports.

AI_Check Returns the status of the analog input

circuitry and an analog input reading if

one is available. AI_Check is intended

for use when A/D conversions are

initiated by external pulses applied at the

appropriate pin; refer to DAQ_Config in

the Traditional NI-DAQ C Reference

Help for information on enabling external

conversions.

AI_Clear Clears the analog input circuitry and

empties the FIFO memory.

AI_Change_Parameter Selects a specific parameter setting for

the analog input section or analog input

channel. Use this to set the coupling for

AI channels.

AI_Configure Informs Traditional NI-DAQ of the input

mode (single-ended or differential), input

range, and input polarity selected for the

device. Use this function if you change

the jumpers affecting the analog input

configuration from their factory settings.

For the E Series devices which have no

jumpers for analog input configuration,

this function programs the device for the

settings you want. For the E Series

devices you can configure the input mode

and polarity on a per channel basis. Also

use AI_Configure to specify whether to

drive AISENSE to onboard ground.

AI_Mux_Config Configures the number of multiplexer

(AMUX-64T) devices connected to

an MIO and AI device and informs

Chapter 3 Software Overview

© National Instruments Corporation 3-17 Traditional NI-DAQ User Manual

Traditional NI-DAQ if any AMUX-64T

devices are attached to the system. This

function applies only to the MIO and

AI devices.

AI_Read Reads an analog input channel (initiates

an A/D conversion on an analog input

channel) and returns the unscaled result.

AI_Read_Scan Returns readings for all analog input

channels selected by Scan_Setup.

AI_Read_VScan Returns readings in volts for analog input

channels selected by Scan_Setup.

AI_Setup Selects the specified analog input channel

and gain setting for externally pulsed

conversion operations.

AI_VRead Reads an analog input channel (initiates

an A/D conversion on an analog input

channel) and returns the result scaled

to a voltage in units of volts.

AI_VScale Converts the binary result from an

AI_Read call to the actual input voltage.

Single-Channel Analog Input Application Tips

All of the Traditional NI-DAQ functions described in this section are for

nonbuffered single-point analog input readings. For buffered data

acquisition, refer to the Data Acquisition Functions section.

Two of the AI functions are related to device configuration. If you

have changed the device jumper settings from the factory-default settings

or want to reprogram the E Series devices, call AI_Configure at the

beginning of your application to inform Traditional NI-DAQ about the

changes. Furthermore, if you have connected multiplexer devices

(AMUX-64T) to your MIO and AI devices, call AI_Mux_Config once at

the beginning of your application to inform Traditional NI-DAQ about the

multiplexer devices.

For most purposes, AI_VRead is the only function required to perform

single-point analog input readings. Use AI_Read when unscaled data is

sufficient or when extra time taken by AI_VRead to scale the data is

detrimental to your applications. Use AI_VScale to convert the binary

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-18 ni.com

values to voltages at a later time if you want. Refer to Figure 3-1 for the

function flow typical of single-point data acquisition. Also, refer to the

NI-DAQ Examples Online Help (nidaqex.hlp) to find a related example.

When using SCXI as a front end for analog input to the MIO and AI

devices, it is not advisable to use the AI_VRead function because that

function does not take into account the gain of the SCXI module when

scaling the data. Use the AI_Read function to obtain the unscaled data,

then call the SCXI_Scale function using both the SCXI module gain and

the DAQ device gain.

Chapter 3 Software Overview

© National Instruments Corporation 3-19 Traditional NI-DAQ User Manual

Figure 3-1. Single-Point Analog Reading with Onboard Conversion Timing

When accurate sample timing is important, you can use external conversion

pulses with AI_Clear, AI_Setup, and AI_Check to sample your signal

on the analog input channels. Refer to Figure 3-2 for the function flow

typical of single-point data acquisition using external conversion pulses.

However, this method works only if your computer is faster than the rate of

conversion pulses. Refer to the Data Acquisition Functions section to learn

more about interrupt and DMA-driven data acquisition by using high-speed

data acquisition.

When you are using SCXI analog input modules, use the SCXI functions

to set up the SCXI chassis and modules before using the AI functions

described in Figures 3-1 and 3-2.

No

Yes

Yes

No

Add AMUX-64T
configuration.

Change analog input
default configuration.

AI_Configure

AI_Mux_Config

AI_Read AI_VRead

Another reading?

Binary reading?

Retrieve an analog
reading in terms of a
binary value.

Retrieve an analog
reading in terms of
voltage.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-20 ni.com

Figure 3-2. Single-Point Analog Reading with External Conversion Timing

Data Acquisition Functions

High-Level Data Acquisition Functions
These high-level data acquisition functions are synchronous calls that

acquire data and return when data acquisition is complete.

Refer to the Traditional NI-DAQ C Reference Help to determine which

functions your device supports.

DAQ_Op Performs a synchronous, single-channel

data acquisition operation. DAQ_Op does

Yes

No

Another reading?

Add AMUX-64T
configuration.

Change analog input
default configuration.

AI_Configure

AI_Mux_Config

Clean up onboard FIFO
memory for new conversion.

AI_Clear

Select an analog
input channel.

AI_Setup

Check for new data in
FIFO memory.

AI_Check

Chapter 3 Software Overview

© National Instruments Corporation 3-21 Traditional NI-DAQ User Manual

not return until Traditional NI-DAQ has

acquired all the data or an acquisition

error has occurred.

DAQ_to_Disk Performs a synchronous, single-channel

data acquisition operation and saves the

acquired data in a disk file.

DAQ_to_Disk does not return until

Traditional NI-DAQ has acquired and

saved all the data or an acquisition error

has occurred.

Lab_ISCAN_Op Performs a synchronous,

multiple-channel scanned data

acquisition operation. Lab_ISCAN_Op

does not return until Traditional NI-DAQ

has acquired all the data or an acquisition

error has occurred.

Lab_ISCAN_to_Disk Performs a synchronous,

multiple-channel scanned data

acquisition operation and simultaneously

saves the acquired data in a disk file.

Lab_ISCAN_to_Disk does not return

until Traditional NI-DAQ has acquired all

the data and saved all the data or an

acquisition error has occurred.

SCAN_Op Performs a synchronous,

multiple-channel scanned data

acquisition operation. SCAN_Op does not

return until Traditional NI-DAQ has

acquired all the data or an acquisition

error has occurred.

SCAN_to_Disk Performs a synchronous,

multiple-channel scanned data

acquisition operation and simultaneously

saves the acquired data in a disk file.

SCAN_to_Disk does not return until

Traditional NI-DAQ has acquired all the

data and saved it or until an acquisition

error has occurred.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-22 ni.com

Low-Level Data Acquisition Functions
These functions are low-level primitives used for setting up, starting, and

monitoring asynchronous data acquisition operations.

Refer to the Traditional NI-DAQ C Reference Help to determine which

functions your device supports.

DAQ_Check Checks if the current data acquisition

operation is complete and returns the

status and the number of samples

acquired to that point.

DAQ_Clear Cancels the current data acquisition

operation (both single-channel and

multiple-channel scanned) and

reinitializes the data acquisition circuitry.

DAQ_Config Stores configuration information for

subsequent data acquisition operations.

DAQ_Monitor Returns data from an asynchronous

data acquisition in progress. During a

multiple-channel acquisition, you can call

DAQ_Monitor to retrieve data from a

single channel or from all channels being

scanned. Using the oldest/newest mode,

you can specify whether DAQ_Monitor

returns sequential (oldest) blocks of data,

or the most recently acquired (newest)

blocks of data.

DAQ_Rate Converts a data acquisition rate into the

timebase and sample-interval values

needed to produce the rate you want.

DAQ_Set_Clock Sets the scan rate for a group of channels.

DAQ_Start Initiates an asynchronous, single-channel

data acquisition operation and stores its

input in an array.

DAQ_StopTrigger_Config Enables the pretrigger mode of data

acquisition and indicates the number of

data points to acquire after you apply the

Chapter 3 Software Overview

© National Instruments Corporation 3-23 Traditional NI-DAQ User Manual

stop trigger pulse at the appropriate

PFI pin.

DAQ_VScale Converts the values of an array of

acquired binary data and the gain setting

for that data to actual input voltages

measured.

Lab_ISCAN_Check Checks if the current scan data

acquisition operation begun by the

Lab_ISCAN_Start function is complete

and returns the status, the number of

samples acquired to that point, and the

scanning order of the channels in the data

array.

Lab_ISCAN_Start Initiates a multiple-channel scanned data

acquisition operation and stores its input

in an array.

SCAN_Demux Rearranges, or demultiplexes, data

acquired by a SCAN operation into

row-major order (that is, each row of the

array holding the data corresponds to a

scanned channel) for easier access by

C applications. SCAN_Demux does not

need to be called by BASIC applications

to rearrange two-dimensional arrays

because these arrays are accessed in

column-major order.

SCAN_Sequence_Demux Rearranges the data produced by a

multirate acquisition so that all the data

from each channel is stored in adjacent

elements of your buffer.

SCAN_Sequence_Retrieve Returns the scan sequence created by

Traditional NI-DAQ as a result of a

previous call to

SCAN_Sequence_Setup.

SCAN_Sequence_Setup Initializes the device for a multirate

scanned data acquisition operation.

Initialization includes selecting the

channels to be scanned, assigning gains to

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-24 ni.com

these channels, and assigning different

sampling rates to each channel by

dividing down the base scan rate.

SCAN_Setup Initializes circuitry for a scanned data

acquisition operation. Initialization

includes storing a table of the channel

sequence and gain setting for each

channel to be digitized.

SCAN_Start Initiates a multiple-channel scanned data

acquisition operation, with or without

interval scanning, and stores its input in

an array.

Low-Level Double-Buffered Data Acquisition
Functions
These functions are low-level primitives used for setting up and monitoring

asynchronous double-buffered data acquisition operations.

Refer to the Traditional NI-DAQ C Reference Help to determine which

functions your device supports.

DAQ_DB_Config Enables or disables double-buffered data

acquisition operations.

DAQ_DB_HalfReady Checks if the next half buffer of data is

available during a double-buffered data

acquisition.

DAQ_DB_Transfer Transfers half of the data from the buffer

being used for double-buffered data

acquisition to another buffer, which is

passed to the function. This function

waits until the data to be transferred is

available before returning. You can

execute DAQ_DB_Transfer repeatedly

to return sequential half buffers of the

data.

Chapter 3 Software Overview

© National Instruments Corporation 3-25 Traditional NI-DAQ User Manual

Data Acquisition Application Tips

LPM Device Counter/Timer Signals

For these devices, counter 0 produces the sample interval for data

acquisition timing. If data acquisition is not in progress, you can call the

ICTR functions to use counter 0 as a general-purpose counter. Because the

CLOCK0 input is connected to a 1 MHz oscillator, the timebase for

counter 0 is fixed.

External Multiplexer Support (AMUX-64T)

You can expand the number of analog input signals measurable by the

MIO and AI devices with an external multiplexer device (AMUX-64T).

Refer to the AMUX-64T User Manual for more information on the external

multiplexer device.

Basic Building Blocks

Most of the buffered data acquisition applications are made up of four

building blocks, as shown in Figure 3-3. However, depending on the

specific devices and applications you have, the Traditional NI-DAQ

functions comprising each building block vary. Typical applications can

include the Traditional NI-DAQ functions in each of their four building

blocks.

Figure 3-3. Buffered Data Acquisition Basic Building Blocks

When using SCXI analog input modules, use the SCXI functions to set up

the SCXI chassis and modules before using the AI, DAQ, SCAN, and

Lab_ISCAN functions shown in the following flowcharts.

Configuration

Start

Checking

Cleaning up

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-26 ni.com

Building Block 1: Configuration

Five configuration functions are available for creating the first building

block, as shown in Figure 3-4. However, you do not have to call all five

functions every time you start a data acquisition.

Figure 3-4. Buffered Data Acquisition Application Building Block 1, Configuration

Traditional NI-DAQ records the device configurations and the default

configurations. Refer to the Init_DA_Brds description in the Traditional

NI-DAQ C Reference Help for device default configurations. Therefore, if

you are satisfied with the default or the current configurations of your

devices, your configuration building block will be empty, and you can go

on to the next building block, Start.

Building Block 2: Start

Traditional NI-DAQ has high-level and low-level start functions. The

high-level start functions are as follows:

• DAQ_Op

• SCAN_Op (MIO, AI, and DSA devices only)

Alter double-buffered mode.

Alter pretrigger mode.

Alter start trigger, external conversion,
and external scan clock modes.

Add AMUX-64T
Configuration.

Alter low-level board
configuration such as
analog input mode.

AI_Configure

AI_Mux_Config

DAQ_Config

DAQ_StopTrigger_Config

DAQ_DB_Config

Chapter 3 Software Overview

© National Instruments Corporation 3-27 Traditional NI-DAQ User Manual

• Lab_ISCAN_Op (LPM devices only)

• DAQ_to_Disk

• SCAN_to_Disk (MIO, AI, and DSA devices only)

• Lab_ISCAN_to_Disk (LPM devices only)

A high-level start call initiates data acquisition but does not return to the

function caller until the data acquisition is complete. For that reason, you

do not need the next building block, Checking, when you use high-level

start functions.

Figure 3-5. Buffered Data Acquisition Application Building Block 2, Start

The major advantage of the high-level start functions is that they are simple.

A single call can produce a buffer full or a disk full of data. However, if

your application is acquiring data at a very slow rate or is acquiring a lot

of data, the high-level start functions might tie up the computer for a

significant amount of time. Therefore, Traditional NI-DAQ has some

low-level (or asynchronous) start functions that initiate data acquisition and

return to the calling program function caller immediately.

No YesStreaming
to disk?

Scan Multiple
Channels?

DAQ_Op

Lab_ISCAN_Op

No

No

Yes

Yes

Scan Multiple
Channels?

No

No

Yes

YesMIO, AI or
DSA Device?

MIO, AI or
DSA Device?

SCAN_Op

DAQ_to_Disk

Lab_ISCAN_to_Disk SCAN_to_Disk

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-28 ni.com

Asynchronous start functions include DAQ_Start, SCAN_Start, and

Lab_ISCAN_Start. Figures 3-6 and 3-7 show how the start calls make

up building block 2 for different devices.

Figure 3-6. Buffered Data Acquisition Application Building Block 2, Start,
for the MIO, AI, and DSA Devices

For DSA devices, substitute DAQ_Set_Clock for DAQ_Rate in Figure 3-6.

DAQ_Rate will not produce the correct clock settings for DSA devices.

If your device works with multirate scanning, you can use

SCAN_Sequence_Setup instead of SCAN_Setup in building block 2.

DAQ_Rate

Convert sampling rate to
sample timebase and
sample interval.

SCAN_Setup Initiate single-channel
data acquisition.

No

SCAN_Start

DAQ_Start

Initiate multiple-channel
data acquisition.

Yes Sample multiple
channels?

Select channels and their gain for
multiple-channel scanning.

Chapter 3 Software Overview

© National Instruments Corporation 3-29 Traditional NI-DAQ User Manual

Figure 3-7. Buffered Data Acquisition Application Building Block 2, Start,
for the LPM Devices

When you have the asynchronous start calls in your building block 2,

the next building block, Checking, is very useful for determining the

status of the ongoing data acquisition process.

Convert sampling rate to
sample timebase and
sample interval.

DAQ_Rate

Initiate single-channel
data acquisition.

Sample multiple
channels?

NoYes

Initiate multiple-channel
data acquisition.

Lab_ISCAN_Start DAQ_Start

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-30 ni.com

Building Block 3: Checking

DAQ_Check and Lab_ISCAN_Check, shown in Figures 3-8 and 3-9, are

simple and quick ways to check the ongoing data acquisition process. This

call is often put in a while loop so that the application can periodically

monitor the data acquisition process.

Figure 3-8. Buffered Data Acquisition Application Building Block 3, Checking,

for the MIO, AI, and DSA Devices

Figure 3-9. Buffered Data Acquisition Application Building Block 3, Checking,
for the LPM Devices

However, if the information provided by DAQ_Check is not sufficient,

DAQ_Monitor or the double-buffered functions might be a better choice.

With DAQ_Monitor, not only can you monitor the data acquisition

Check ongoing single or
multiple-channel
data acquisition status.

Data Acquisition
complete?

No

Yes

DAQ_Check

Sample multiple
channels?

NoYes

Check ongoing multiple-
channel data acquisition
status

Lab_ISCAN_Check DAQ_Check

Check ongoing single-
channel data acquisition
status

Chapter 3 Software Overview

© National Instruments Corporation 3-31 Traditional NI-DAQ User Manual

process, but you can also retrieve a portion of the acquired data. With the

double-buffered functions, you can retrieve half of the data buffer at a time.

Double-buffered functions are very useful when your application has a

real-time strip chart displaying the incoming data.

Building Block 4: Cleaning up

The purpose of this building block is to stop the data acquisition and

free any system resources (such as DMA channels) used for the data

acquisition. DAQ_Clear is the only function needed for this building block

and is automatically called by the check functions described in the previous

building block when the data acquisition is complete. Therefore, you can

eliminate this last building block if your application continuously calls the

previously described check functions until the data acquisition is complete.

Note DAQ_Clear does not alter the device configurations made by building block 1.

Double-Buffered Data Acquisition

The double-buffered (DAQ_DB) data acquisition functions return data from

an ongoing data acquisition without interrupting the acquisition. These

functions use a double or circular buffering scheme that permits half

buffers of data to be retrieved and processed as the data becomes available.

By using a circular buffer, you can collect an unlimited amount of data

without needing an unlimited amount of memory. Double-buffered data

acquisition is useful for applications such as streaming data to disk and

real-time data display.

Initiating double-buffered data acquisition requires some simple changes

to the first and third basic building blocks, Configuration and Checking,

respectively.

In building block 1, turn on double-buffered mode data acquisition through

the DAQ_DB_Config call. After the double-buffered mode is enabled, all

subsequent data acquisitions are in double-buffered mode.

In building block 3, different checking functions are needed. Figure 3-10

shows a simple way to monitor the data acquisition in progress and to

retrieve data when they are available.

For further details on double-buffered data acquisition, refer to Chapter 4,

Traditional NI-DAQ Double Buffering.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-32 ni.com

Figure 3-10. Double-Buffered Data Acquisition Application
Building Block 3, Checking

Multirate Scanning
Use multirate scanning to scan multiple channels at different scan rates

and acquire the minimum amount of data necessary for your application.

This is particularly useful if you are scanning very fast and want to write

your data to disk, or if you are acquiring large amounts of data and want to

keep your buffer size to a minimum.

Multirate scanning works by scanning each channel at a rate that is a

fraction of the specified scan rate. For example, if you want to scan four

channels at 6,000, 4,000, 3,000, and 1,000 scans per second, specify a scan

rate of 12,000 scans per second and a scan rate divisor vector of 2, 3, 4,

and 12.

No

No

Yes

Retrieve half of the data in
the data acquisition buffer.

DAQ_DB_Transfer

Data acquisition
complete?

Next half buffer
ready for transfer?

Yes

DAQ_DB_HalfReady

Check for next half
buffer availability.

Chapter 3 Software Overview

© National Instruments Corporation 3-33 Traditional NI-DAQ User Manual

NI-DAQ includes three functions for multirate scanning:

• SCAN_Sequence_Setup

• SCAN_Sequence_Retrieve

• SCAN_Sequence_Demux

Use SCAN_Sequence_Setup to identify the channels to scan, their

gains, and their scan rate divisors. After the data is acquired, use

SCAN_Sequence_Retrieve and SCAN_Sequence_Demux to arrange

the data into a more convenient format.

Figure 3-11 shows how to use the multirate scanning functions in

conjunction with other Traditional NI-DAQ functions.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-34 ni.com

Figure 3-11. Multirate Scanning

Yes

No
Data acquisition

complete?

DAQ_Rate

SCAN_Start

SCAN_Sequence_Retrieve

DAQ_Check

Add AMUX-64T
configuration.

SCAN_Sequence_Demux

Allocate your buffer using the values
returned by SCAN_Sequence_Setup in

the scansPerSequence and
samplesPerSequence output variables.

Rearrange the data in your data acquisition buffer
so that all data from each channel is stored
in adjacent elements of your buffer.

Check ongoing data acquisition status.

Initiate multiple-channel data acquisition.

Retrieve the scan sequence vector
for use in the SCAN_Sequence_Demux function.

SCAN_Sequence_Setup

Select channels and their gains
and scan rate divisors.

Convert sampling rate to sample
timebase and sample interval; convert scan
rate to scan timebase and scan interval.

Chapter 3 Software Overview

© National Instruments Corporation 3-35 Traditional NI-DAQ User Manual

Analog Output Function Group

The Analog Output function group contains two sets of functions—the

Analog Output (AO) functions, which perform single D/A conversions, and

the Waveform (WFM) functions, which perform buffered D/A conversions.

Note Use the SCXI functions described later in this chapter for the SCXI-1124 analog

output module.

One-Shot Analog Output Functions
Use the Analog Output functions to perform single D/A conversions with

analog output devices.

Refer to the Traditional NI-DAQ C Reference Help to determine which

functions your device supports.

AO_Change_Parameter Selects a specific parameter setting

for the analog output section or analog

output channel. These parameters might

be data transfer conditions, filter settings,

or similar device settings.

AO_Configure Records the output range and polarity

selected for each analog output channel

by the jumper settings on the device and

indicates the update mode of the DACs.

Use this function if you have changed the

jumper settings affecting analog output

range and polarity from their factory

settings. Also use this function to change

the analog output settings on devices

without jumpers.

AO_Update Updates analog output channels on the

specified device to new voltage values

when the later internal update mode is

enabled by a previous call to

AO_Configure.

AO_VScale Scales a voltage to a binary value that,

when written to one of the analog output

channels, produces the specified voltage.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-36 ni.com

AO_VWrite Accepts a floating-point voltage value,

scales it to the proper binary number, and

writes that number to an analog output

channel to change the output voltage.

AO_Write Writes a binary value to one of the analog

output channels, changing the voltage

produced at the channel.

Analog Output Application Tips
This section contains a basic explanation of how to construct an application

using the analog output functions. The flowcharts are a quick reference for

constructing potential applications from the Traditional NI-DAQ function

calls.

For most purposes, AO_VWrite is the only function required to generate

single analog voltages. It converts the floating-point voltage to binary and

writes the value to the device. AO_VWrite is the equivalent of a call to

AO_VScale followed by a call to AO_Write. Figure 3-12 illustrates the

equivalency.

Figure 3-12. Equivalent Analog Output Calls

The following applications are shown using AO_VWrite. However,

substituting the equivalent AO_VScale and AO_Write calls will not

change the results.

AO_VScale

AO_Write

Output binary voltage to board.

Scale floating-point voltage to
binary value.

AO_VWrite

Scale floating-point voltage
to binary value and output
binary voltage to board.

Chapter 3 Software Overview

© National Instruments Corporation 3-37 Traditional NI-DAQ User Manual

Simple Analog Output Application

Figure 3-13 illustrates the basic series of calls for a simple analog output

application.

Figure 3-13. Simple Analog Output Application

The call to AO_Configure in Figure 3-13 must be made only if you have

changed the jumper settings of an MIO or AT-AO-6/10 device. You also

might call AO_Configure to enable external updating of the voltage.

When you select external update mode, voltages written to the device are

not output until you apply a pulse to pin 48 (EXTUPDATE*) on the

AT-AO-6/10 or to the selected pin on an E Series, 671X, or 673X device.

You can simultaneously change the voltages at all the analog output

channels. The final steps in Figure 3-13 form a simple loop. New voltages

are output until the data ends.

Analog Output with Software Update Application

Another application option is to enable later software updates. Like the

external update mode, voltages written to the device are not immediately

output. Instead, the device does not output the voltages until you call

AO_Update. In later software update mode, the device changes voltages

simultaneously at all the channels. Figure 3-14 illustrates a modified

version of the flowchart in Figure 3-13.

Yes

No
Done outputting

data?

AO_Configure

AO_VWrite

Account for any changes in the
jumper settings. Enable
external update pulses?

Output voltage to board.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-38 ni.com

Figure 3-14. Analog Output with Software Updates

The first modification you make is to enable later internal updates

when you call AO_Configure. The next change, which follows the

AO_VWrite step, is the decision to wait or to output the voltage. If you

want the voltage to be output, your application must call AO_Update to

write out the voltage. The rest of the flowchart is identical to Figure 3-13.

Note Implement buffered analog output using the Waveform Generation (WFM) functions.

No

Yes

AO_Update

Done outputting
data?

Update?

Yes

AO_VWrite

No

Wait until you are ready
to output voltage.

Output voltage from board.

AO_Configure

Output voltage to board.

Account for changes in the
jumper settings. Enable
software voltage update.

Chapter 3 Software Overview

© National Instruments Corporation 3-39 Traditional NI-DAQ User Manual

Waveform Generation Functions
Use the Waveform Generation (WFM) functions to perform buffered analog

output operations with the MIO devices, 671X devices, 673X devices, and

AT-AO-6/10 devices.

Refer to the Traditional NI-DAQ C Reference Help to determine which

functions your device supports.

High-Level Waveform Generation Functions
The following high-level Waveform Generation functions accomplish with

a single call tasks that require several low-level calls to accomplish:

WFM_from_Disk Assigns a disk file to one or more analog

output channels, selects the rate and the

number of times the data in the file is to

be generated, and starts the generation.

WFM_from_Disk always waits for

completion before returning, unless you

call Timeout_Config.

WFM_Op Assigns a waveform buffer to one or more

analog output channels, selects the rate

and the number of times the data in the

buffer is to be generated, and starts the

generation. If the number of buffer

generations is finite, WFM_Op waits for

completion before returning, unless you

call Timeout_Config.

Low-Level Waveform Generation Functions
Low-level Waveform Generation functions are for setting up, starting, and

controlling synchronous waveform generation operations:

WFM_Chan_Control Temporarily halts or restarts waveform

generation for a single analog output

channel.

WFM_Check Returns status information concerning a

waveform generation operation.

WFM_ClockRate Sets an update rate and a delay rate for a

group of analog output channels.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-40 ni.com

WFM_DB_Config Enables and disables the double-buffered

mode of waveform generation.

WFM_DB_HalfReady Checks if the next half buffer for one or

more channels is available for new data

during a double-buffered waveform

generation operation. You can use

WFM_DB_HalfReady to avoid the

waiting period possible with the

double-buffered transfer functions.

WFM_DB_Transfer Transfers new data into one or more

waveform buffers (selected in

WFM_Load) as waveform generation is in

progress. WFM_DB_Transfer waits until

Traditional NI-DAQ can transfer the data

from the buffer to the waveform buffer.

WFM_Group_Control Controls waveform generation for a

group of analog output channels.

WFM_Group_Setup Assigns one or more analog output

channels to a waveform generation group.

By default, all analog output channels

for 671X, 673X, and MIO devices are in

group 1.

WFM_Load Assigns a waveform buffer to one or more

analog output channels and indicates the

number of waveform cycles to generate.

For the 671X devices, 673X devices, and

E Series devices, this function also

enables or disables FIFO mode waveform

generation.

WFM_Rate Converts a waveform generation update

rate into the timebase and update-interval

values needed to produce the rate you

want.

WFM_Scale Translates an array of floating-point

values that represent voltages into an

array of binary values that produce those

voltages. The function uses the current

Chapter 3 Software Overview

© National Instruments Corporation 3-41 Traditional NI-DAQ User Manual

analog output configuration settings to

perform the conversions.

WFM_Set_Clock Sets an update rate for a group of

channels.

Waveform Generation Application Tips
This section outlines a basic explanation of constructing an application

with the Waveform Generation functions. The flowcharts are a quick

reference for constructing potential applications from the Traditional

NI-DAQ function calls.

Basic Waveform Generation Applications

A basic waveform application outputs a series of voltages to an analog

output channel. Figure 3-15 illustrates the ordinary series of calls for a

basic waveform application.

The first step of Figure 3-15 calls WFM_Scale. The WFM_Scale function

converts floating-point voltages to integer values, thus producing the

voltages (DAC values) you want.

You have two options available for starting a waveform generation.

The first option is to call the high-level function WFM_Op. The WFM_Op

function immediately begins the waveform generation after you call it.

If the number of iterations is nonzero, WFM_Op does not return until the

waveform generation is done and all cleanup work is complete. Setting

the iterations equal to 0 signals Traditional NI-DAQ to place the waveform

generation in continuous double-buffered mode. In continuous

double-buffered mode, waveform generation occurs in the background, and

the WFM_Op function returns immediately to your application. Refer to the

Double-Buffered Waveform Generation Applications section for more

information.

The second option to start a waveform generation is to call the following

sequence of functions:

1. WFM_Group_Setup to assign one or more analog output channels to a

group.

2. WFM_Load to assign a waveform buffer to one or more analog output

channels.

3. WFM_Rate to convert a data output rate to a timebase and an update

interval that generates the rate you want. WFM_Rate only supports

some devices. Because it does not have a device number parameter,

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-42 ni.com

it cannot return an error if you use it with a non-supported device.

Refer to the Traditional NI-DAQ C Reference Help for supported

devices.

4. WFM_ClockRate or WFM_Set_Clock to set the update rate. Refer to

the Traditional NI-DAQ C Reference Help to find out which function

supports your device.

5. WFM_Group_Control (with operation = START) to start the

waveform generation in the background and return to your application

after the waveform generation has begun.

The next step in Figure 3-15 shows how the call to WFM_Check.

WFM_Check retrieves the current status of the waveform generation. Your

application uses this information to determine if the generation is complete

or should be stopped.

The final step is to call WFM_Group_Control (operation = CLEAR).

The CLEAR operation performs all of the necessary cleanup work after a

waveform generation. Additionally, CLEAR halts any ongoing waveform

generation.

Chapter 3 Software Overview

© National Instruments Corporation 3-43 Traditional NI-DAQ User Manual

Figure 3-15. Basic Waveform Generation Application

WFM_Load

WFM_Group_Setup

WFM_Group_Control

(operation = CLEAR)

WFM_Scale

Iterations > 0

WFM_Op

WFM_Rate

WFM_Group_Control

(operation = START)

Convert floating-point voltages to binary values.

Load waveform buffer, specify
iterations, and start waveform.

If iterations > 0, the
waveform generation
is complete.

Yes

No

No

Yes

Clear waveform.

Start background waveform generation.

Set the update rate.

Convert output rate to
timebase and interval.

Load waveform buffer
and specify iterations.

Assign channels to the
waveform generation group.

WFM_ClockRate or
WFM_Set_Clock

WFM_Check

Any more data
to output?

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-44 ni.com

Basic Waveform Generation with Pauses

The application skeleton described in this section is nearly identical to

the basic waveform generation application skeleton. The difference is that

the description in this section includes the pause and resume operations.

Figure 3-16 illustrates the ordinary series of calls for a basic waveform

application with pauses.

The first step of Figure 3-16 calls WFM_Group_Setup. The

WFM_Group_Setup function assigns one or more analog output channels

to a group.

The second step is to assign a buffer to the analog output channels using the

calls WFM_Scale and WFM_Load. The WFM_Scale function converts

floating-point voltages to integer values that produce the voltages you want.

The WFM_Load function assigns a waveform buffer to one or more analog

output channels.

The next step is to assign an update rate to the group of channels using the

calls WFM_Rate and WFM_ClockRate. The WFM_Rate function converts a

data output rate to a timebase and an update interval that generates the rate

you want. The WFM_ClockRate function assigns a timebase, update

interval, and delay interval to a group of analog output channels.

Notice that there are restrictions for using the WFM_ClockRate function to

specify delay rate. Refer to the WFM_ClockRate function description in the

Traditional NI-DAQ C Reference Help for further details.

Your application is now ready to start a waveform generation. Call

WFM_Group_Control (operation = START) to start the waveform

generation in the background. WFM_Group_Control will return to your

application after the waveform generation begins.

The next step in Figure 3-16 is an application decision to pause the

waveform generation. The application uses a number of conditions for

making this decision, including status information returned by

WFM_Check.

Pause the waveform generation by calling WFM_Group_Control

(operation = PAUSE). PAUSE stops the waveform generation and maintains

the current waveform voltage at the channel output.

Chapter 3 Software Overview

© National Instruments Corporation 3-45 Traditional NI-DAQ User Manual

Resume the waveform generation by calling WFM_Group_Control

(operation = RESUME). RESUME restarts the waveform generation at the

data point where it was paused. The output rate and the data buffer are

unchanged.

The final step is to call WFM_Group_Control (operation = CLEAR).

CLEAR performs all the necessary cleanup work after a waveform

generation. Additionally, CLEAR halts any ongoing waveform generation.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-46 ni.com

Figure 3-16. Waveform Generation with Pauses

Pause wave?

WFM_Group_Control

(operation = RESUME)

WFM_Group_Control

(operation = RESUME)

WFM_ClockRate

WFM_Rate

WFM_Load

WFM_Scale

WFM_Group_Setup

Assign channels to waveform generation group.

Convert floating-point voltages to binary values.

Load waveform buffer and specify iterations.

Convert output rate to timebase and interval.

Set the update and delay rates.

Start background waveform generation.

Should you pause waveform generation?

Yes

WFM_Group_Control

(operation = PAUSE)

Resume wave?

WFM_Group_Control

(operation = CLEAR)

No Start waveform
generation

where it was
paused.

Pause the
waveform generator.

Resume waveform generation?

Clear waveform.

Yes

No

Chapter 3 Software Overview

© National Instruments Corporation 3-47 Traditional NI-DAQ User Manual

Double-Buffered Waveform Generation Applications

You also can configure waveform generation as a double-buffered

operation. Double-buffered operations can perform continuous waveform

generation with a limited amount of memory. For an explanation of double

buffering, refer to Chapter 4, Traditional NI-DAQ Double Buffering.

Figure 3-17 outlines the basic steps for double-buffered waveform

applications.

First, enable double buffering by calling WFM_DB_Config as shown in the

first step of Figure 3-17.

Although every step is not in the diagram, you might also call WFM_Rate

and/or WFM_Scale as described in the basic waveform application outline.

There are two ways in which your application can start waveform

generation. The first way is to call the high-level function WFM_Op.

The second way is to call the following sequence of functions—

WFM_Group_Setup (only required on the AT-AO-6/10), WFM_Load,

WFM_ClockRate, or WFM_Set_Clock, WFM_Group_Control

(operation = START). The WFM_Group_Setup function assigns one

or more analog output channels to a group. The WFM_Load function

assigns a waveform buffer to one or more analog output channels.

This buffer is called a circular buffer. The WFM_ClockRate and

WFM_Set_Clock functions assign an update rate to a group of analog

output channels. Refer to the Traditional NI-DAQ C Reference Help for the

function that supports your device. Calling WFM_Group_Control

(operation = START) starts the background waveform generation.

WFM_Group_Control returns to your application after the waveform

generation begins.

After the operation begins, you can perform unlimited transfers to the

circular waveform buffer. To transfer data to the circular buffer, call the

WFM_DB_Transfer function. After you call the function, Traditional

NI-DAQ waits until it is able to transfer the data before returning

to the application. To avoid the waiting period, you can call

WFM_DB_HalfReady to determine if the transfer can be made

immediately. If WFM_DB_HalfReady indicates Traditional NI-DAQ is not

ready for a transfer, your application is free to do other processing and

check the status later.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-48 ni.com

After the final transfer, you can call WFM_Check to get the current transfer

progress. Remember, Traditional NI-DAQ requires some time after the

final transfer to actually output the data.

The final step is to call WFM_Group_Control (operation = CLEAR).

The CLEAR operation performs all of the necessary cleanup work after

a waveform generation. Additionally, CLEAR halts any ongoing

waveform generation.

Chapter 3 Software Overview

© National Instruments Corporation 3-49 Traditional NI-DAQ User Manual

Figure 3-17. Double-Buffered Waveform Generation

WFM_Load

WFM_Group_Control

(operation = START)

WFM_Group_Setup

WFM_DB_Config

WFM_DB_Transfer

WFM_DB_HalfReady

WFM_Group_Control

(operation = CLEAR)

Enable double buffering.

Assign channels to waveform generation group.

Load waveform buffer and specify iterations.

Start background waveform generation.

Check if the next half buffer is ready for data.

Transfer the next half of the data to
the waveform data buffer.

Do you want to transfer
more data to the waveform buffer?

Clear the waveform.

Any more data to output?

Set the update rate.

Yes

Yes

No

No

Yes

No

Transfer?

WFM_Check

FM_ClockRate or
WFM_Set_Clock

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-50 ni.com

Reference Voltages for Analog Output Devices

Table 3-4 shows the output voltages produced when you select unipolar

output polarity.

Table 3-5 shows the output voltages produced when you select bipolar

output polarity.

Table 3-4. Output Voltages with Unipolar Output Polarity

Device

Value in Waveform Buffer

0 4,095 65,535

AT-MIO-16XE-10, PCI-MIO-16XE-10,

PCI-MIO-16XE-50, PCI-6031E

(MIO-64XE-10), 6052E devices

0 V — Reference voltage

All other MIO devices 0 V Reference voltage —

Table 3-5. Output Voltages with Bipolar Output Polarity

Device

Value in Waveform Buffer

–2,048 2,047 –32,768 32,767

AT-MIO-16XE-10,

PCI-MIO-16XE-10,

PCI-MIO-16XE-50,

PCI-6031E

(MIO-64XE-10), PCI-6110,

PCI-6111, 6052E devices

— — Negative of

the reference

voltage

Reference

voltage

All other MIO devices,

671X devices

Negative of

the reference

voltage

Reference

voltage

— —

AT-AO-6/10 Negative of

the reference

voltage

(–10 V in

default case)

Reference

voltage

(+10 V in

default case)

— —

673X devices — — Negative of

the reference

voltage

Reference

voltage

Chapter 3 Software Overview

© National Instruments Corporation 3-51 Traditional NI-DAQ User Manual

Note NI PCI-4451and NI PCI-4551 devices use signed, 18-bit binary data left-justified in

a 32-bit word. Their output voltage range is ±10 V.

Minimum Update Intervals

The rate at which a device can output analog data is limited by the

performance of the host computer. For waveform generation, the limitation

is in terms of minimum update intervals. The update interval is the period

of time between outputting new voltages. Therefore, the minimum update

interval specifies the smallest possible time delay between outputting new

data points. In other words, the minimum update interval specifies the

fastest rate at which a device can output data. Refer to Chapter 4,

Traditional NI-DAQ Double Buffering, for more information on the

minimum update intervals.

Counter Usage

NI PCI-4451 and NI PCI-4551 devices use the same counter for both

waveform generation and analog input data acquisition. Refer to the

WFM_Set_Clock function in the Traditional NI-DAQ C Reference Help

for an explanation of the restrictions this causes. This counter is separate

from the general-purpose counters.

The MIO, 671X, 673X, and E Series devices use dedicated counters from

the DAQ-STC chip for waveform-generation control and timing.

On the AT-AO-6/10, counter 0 produces the total update interval for

group 1 waveform generation, and counter 1 produces the total update

interval for group 2 waveform generation. However, if the total update

interval is greater than 65,535 µs for either group 1 or 2, counter 2 is used

by counter 0 (group 1) or counter 1 (group 2) to produce the total update

interval. If either group is using counter 2 to produce the sample timebase,

counter 2 is available to the other group only if the timebase is the same

as the timebase required by the Waveform Generation functions to produce

the total update interval. In this case, counter 2 produces the same timebase

for both waveform generation groups.

FIFO Lag Effect on the MIO, E Series, NI 4451 for PCI,
NI 4551 for PCI, 671X, and 673X Devices

Group 1 analog output channels use an onboard FIFO to output data values

to the DACs. Traditional NI-DAQ continuously writes values to the FIFO

as long as the FIFO is not full. Traditional NI-DAQ transfers data values

from the FIFO to the DACs at regular intervals using an onboard or external

clock. You see a lag effect for group 1 channels because of the FIFO

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-52 ni.com

buffering. That is, a value written to the FIFO is not output to the DAC until

all of the data values currently in the FIFO have been output to the DACs.

This time lag is dependent upon the update rate (specified in

WFM_ClockRate). Refer to your device user manual for a more detailed

discussion of the onboard FIFO.

Three functions are affected by the FIFO lag effect—WFM_Chan_Control,

WFM_Check, and double-buffered waveform generation.

• WFM_Chan_Control—When you execute operation = PAUSE for a

group 1 channel, the effective pause does not occur until the FIFO has

finished writing all of the data remaining in the FIFO for the specified

channel. The same is true for the RESUME operation on a group 1

channel; Traditional NI-DAQ cannot place data for the specified

channel into the FIFO until the FIFO is empty.

• WFM_Check—The values returned in pointsDone and itersDone

indicate the number of points that Traditional NI-DAQ has written to

the FIFO for the specified channel. A time lag occurs from the point

when Traditional NI-DAQ writes the data to the FIFO when

Traditional NI-DAQ outputs the data to the DAC.

• When you use double-buffered waveform generation with group 1,

make sure the total number of points for all of the group 1 channels

(specified in the count parameter in WFM_Load) is at least twice the

size of the FIFO. Refer to your device user manual for information on

the analog output FIFO size.

• For 61XX devices with onboard memory, data is transferred

to the memory in blocks of 32 bytes. Therefore, when you use

double-buffered waveform generation that does not end in a 32-byte

sample boundary, the last few points will not be output.

With PCI E Series, 671X devices, and 673X devices in NI-DAQ 5.1 and

later, you can reduce or even eliminate the FIFO lag effect by specifying the

FIFO condition Traditional NI-DAQ uses to determine when to put more

data into the FIFO. Refer to the AO_Change_Parameter function in

Traditional NI-DAQ C Reference Help for details.

Externally Triggering Your Waveform Generation Operation

You can initiate a waveform generation operation from an external

trigger signal in much the same manner as for analog input. Refer to the

Select_Signal function in the Traditional NI-DAQ C Reference Help.

Chapter 3 Software Overview

© National Instruments Corporation 3-53 Traditional NI-DAQ User Manual

Digital I/O Function Group

The Digital I/O function group contains three sets of functions—the Digital

I/O (DIG) functions, the Group Digital I/O (DIG_Block, DIG_Grp, and

DIG_SCAN) functions, and the double-buffered Digital I/O (DIG_DB)

functions. Refer to the NI-DAQ Functions Listed by Hardware Product

section of the Traditional NI-DAQ C Reference Help to find out

which digital functions your device supports. The SCXI functions control

the SCXI digital and relay modules.

These devices contain a number of digital I/O ports of up to eight digital

lines in width. The name port refers to a set of digital lines. Digital lines

are also referred to as bits in this text. In many instances, you control the

set of digital lines as a group for both reading and writing purposes and for

configuration purposes. For example, you can configure the port as an input

port or as an output port, which means that the set of digital lines making

up the port consist of either all input lines or all output lines.

In NI-DAQ, you refer to ports by number. Many digital I/O devices label

ports by letter. For these devices, use port number 0 for port A, port

number 1 for port B, and so on. For example, the DIO-24 contains three

ports of eight digital lines each. Ports 0, 1, and 2 are labeled PA, PB, and

PC on the DIO-24 I/O connector. The eight digital lines making up port 0,

lines 0 through 7, are labeled PA0 through PA7.

In some cases, you can combine digital I/O ports into a larger entity

called a group. On the 653X devices, for example, you can assign any of

the ports DIOA through DIOD to one of two groups. On the PCI-6115,

PCI-6120, and 673X devices, you also can create groups smaller than the

port size. For example, both the PCI-6115 and the PCI-6120 have one

digital port of eight lines, but you can configure five lines as an input group

and three lines as an output group. A group of ports are handshaked or

clocked as a unit.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-54 ni.com

The digital I/O functions can write to and read from both an entire port

and single digital lines within the port. To write to an entire port,

Traditional NI-DAQ writes a byte of data to the port in a specified digital

output pattern. To read from a port, Traditional NI-DAQ returns a byte of

data in a specified digital output pattern. The byte mapping to the digital I/O

lines is as follows.

In the cases where a digital I/O port has fewer than eight lines, the most

significant bits in the byte format are ignored.

You can configure most of the digital I/O ports as either input ports

or output ports. On the 653X, DSA, 671X, 673X, and E Series devices

(except for ports 2, 3, and 4 on the AT-MIO-16DE-10), you can program

lines on the same port independently as input or output lines. Some digital

I/O ports are permanently fixed as either input ports or output ports. If you

configure a port as an input port, reading that port returns the value of the

digital lines. In this case, external devices connected to and driving those

lines determine the state of the digital lines.

If no external device is driving the lines, the lines float to some

indeterminate state, and you can read them in either state 0 (digital logic

low) or state 1 (digital logic high). If you configure a port as an output port,

writing to the port sets each digital line in the port to a digital logic high or

low, depending on the data written. In this case, these digital lines can drive

an external device. Many of the digital I/O ports have read-back capability;

if you configure the port as an output port, reading the port returns the

output state of that port.

Table 3-6. Byte Mapping to Digital I/O Lines

Bit Number Digital I/O Line Number

7 7 Most significant bit (MSB)

6 6

5 5

4 4

3 3

2 2

1 1

0 0 Least significant bit (LSB)

Chapter 3 Software Overview

© National Instruments Corporation 3-55 Traditional NI-DAQ User Manual

You can use digital I/O ports on the DIO-24, 6025E devices, DIO-96, 653X,

DIO-32F, 673X, PCI-6115, and PCI-6120 devices for handshaking and

no-handshaking modes. These two modes have the following

characteristics:

• No-handshaking mode—This mode changes the digital value at an

output port when written to and returns a digital value from a digital

input port when read from. No handshaking signals are generated.

• Handshaking mode—This mode is for digital I/O handshaking; that is,

a digital input port latches the data present at the input when the port

receives a handshake signal and generates a handshake pulse when the

computer writes to a digital output port. In this mode, you can read the

status of a port or a group of ports to determine whether an external

device has accepted data written to an output port or has latched data

into an input port. The handshaking mode for the PCI 6115, PCI-6120,

and 673X devices is slightly different and is more appropriately called

a clocking mode. In the clocking mode, no two-way handshaking

signals are generated. Instead, data is latched in or latched out when a

pulse from a clock signal is detected.

Note On the 653X, PCI-6115, PCI-6120, and 673X devices, you must assign ports to a

group before you can use handshaking mode.

Process control applications, such as controlling or monitoring relays,

often use the no-handshaking mode. Communications applications, such as

transferring data between two computers, often use the handshaking mode.

DIO-24, 6025E, AT-MIO-16DE-10, and DIO-96 Device Groups
You can group together any combination of ports 0, 1, 3, 4, 6, 7, 9, and 10

on the DIO-96, ports 0 and 1 on the DIO-24, and ports 2 and 3 on the 6025E

devices and AT-MIO-16DE-10 to make up larger ports. For example,

with the DIO-96 you can program ports 0, 3, 9, and 10 to make up a 32-bit

handshaking port, or program all eight ports to make up a 64-bit

handshaking port. Refer to Digital I/O Application Tips section and the

DIG_SCAN_Setup function description of the Traditional NI-DAQ C

Reference Help for more details.

653X Device Groups
On the 653X devices, you can assign ports 0 through 3 (referring to ports

DIOA through DIOD) to one of two groups for handshaking. These groups

are referred to as group 1 and group 2. Group 1 uses handshake lines REQ1

and ACK1. Group 2 uses handshake lines REQ2 and ACK2. The group

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-56 ni.com

senses the REQ line. An active REQ signal is an indication that the group

must perform a read or write. The group drives the ACK line. After the

group has performed a read or write, it drives the ACK line to its active

state. Refer to your device user manual for more information on the

handshaking signals.

A group can be 8, 16, or 32 bits wide. An 8-bit group can be port 0, 1, 2,

or 3. A 16-bit group can be ports 0 and 1 or ports 2 and 3. A 32-bit group

is all four ports.

After you have assigned ports to a group, the group acts as a single entity

controlling 8, 16, or 32 digital lines simultaneously. The group controls

handshaking of that port. These ports are then read from or written to

simultaneously by writing or reading 8 or 16 bits at one time from the

group.

You can configure the groups for various handshake configurations. The

configuration choices include a handshaking protocol, inverted or

non-inverted ACK and REQ lines, and a programmed transfer settling time.

Note Implement buffered digital I/O via the DIG_Block functions described in detail in

the Traditional NI-DAQ C Reference Help.

PCI-6115, PCI-6120, and 673X Device Groups
On the PCI-6115, PCI-6120, and 673X devices, port 0 can be broken into

two smaller groups. These groups are referred to as group 1 and group 2.

One group is configured as an input group and the other is configured as an

output group.

Because these devices only have one digital port, a group can consist of any

combination of digital lines 0–7. For example, group 1 can be configured

as an input group containing lines 0–4 and group 2 as an output group

containing lines 5–7. Alternatively, group 1 can be configured as an output

group containing lines 1, 3, 5, and 7, and group 2 as an input group

containing lines 0, 2, 4, and 6. A portion of the eight available lines can also

be configured for group operations, with the remaining unused lines

configured for immediate digital operations. However, both groups cannot

be configured for input or output at the same time.

Although a group can consist of non-contiguous lines, there is no logical

grouping of the lines, and an 8-bit value is still passed from the input

function or returned from the output function. For example, if a group is

configured for output with lines 0, 1, 2, and 4, and the group is to be written

with all ones, the hex value of 0x17 is passed to the function instead of 0xF.

Chapter 3 Software Overview

© National Instruments Corporation 3-57 Traditional NI-DAQ User Manual

Group operations are buffered operations only, which means immediate

digital operations are not possible with these devices using handshaking.

Because all group operations are buffered, there is no support for a status

operation indicating when an input operation has been latched to or an

output operation latched from the digital lines. Instead, group operations

are done from a buffer. In the case of digital output operations, values are

written to a buffer and latched onto the digital lines when the appropriate

edge from a clock signal is detected. For digital input operations, values are

latched from the digital lines to the buffer when the appropriate edge of the

clock signal is detected. Either a rising edge or a falling edge of the clock

signal can be specified for latching the values. The clock source can be a

timing signal used internally or generated external to the board, and it must

be routed to one of the RTSI lines.

Digital I/O Functions
The digital I/O (DIG) functions perform nonhandshaked digital line and

port I/O.

Refer to the Traditional NI-DAQ C Reference Help to determine which

functions your device supports.

DIG_In_Line Returns the digital logic state of the

specified digital input line in the

specified port.

DIG_In_Prt Returns digital input data from the

specified digital I/O port.

DIG_Line_Config Configures the specified line on a

specified port for direction (input

or output).

DIG_Out_Line Sets or clears the specified digital output

line in the specified digital port.

DIG_Out_Prt Writes digital output data to the specified

digital port.

DIG_Prt_Config Configures the specified port for direction

(input or output).

DIG_Prt_Status Returns a status word indicating

the handshake status of the specified port.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-58 ni.com

Group Digital I/O Functions
The Group Digital I/O (DIG_Block, DIG_Grp, and DIG_SCAN) functions

perform handshaked I/O on groups of ports.

Refer to the Traditional NI-DAQ C Reference Help to determine which

functions your device supports.

DIG_Block_Check Returns the number of items remaining to

be transferred after a DIG_Block_In or

DIG_Block_Out call.

DIG_Block_Clear Halts any ongoing asynchronous transfer,

allowing another transfer to be initiated.

DIG_Block_In Initiates an asynchronous data transfer

from the specified group to memory.

DIG_Block_Out Initiates an asynchronous data transfer

from memory to the specified group.

DIG_Block_PG_Config Enables or disables the pattern generation

mode of buffered digital I/O.

DIG_Grp_Config Configures the specified group for port

assignment, direction (input or output),

and size.

DIG_Grp_Mode Configures the specified group for

handshake signal modes.

DIG_Grp_Status Returns a status word indicating the

handshake status of the specified group.

DIG_In_Grp Reads digital input data from the

specified digital group.

DIG_Out_Grp Writes digital output data to the specified

digital group.

DIG_SCAN_Setup Configures the specified group for port

assignment, direction (input or output),

and size.

Chapter 3 Software Overview

© National Instruments Corporation 3-59 Traditional NI-DAQ User Manual

DIG_Trigger_Config Enables or disables the trigger mode of

buffered digital I/O to indicate when to

start and stop the data acquisition.

Double-Buffered Digital I/O Functions
The double-buffered digital I/O (DIG_DB) functions perform

double-buffered operations during Group Digital I/O operations.

Refer to the Traditional NI-DAQ C Reference Help to determine which

functions your device supports.

DIG_DB_Config Enables or disables double-buffered

digital transfer operations and sets the

double-buffered options.

DIG_DB_HalfReady Checks whether the next half buffer of

data is available during a double-buffered

digital block operation. You can use

DIG_DB_HalfReady to avoid the

possible waiting period that can occur

because DIG_DB_Transfer waits until

the data can be transferred before

returning.

DIG_DB_Transfer For an input operation,

DIG_DB_Transfer waits until

Traditional NI-DAQ can transfer half the

data from the buffer being used for

double-buffered digital block input to

another buffer, which is passed to the

function. For an output operation,

DIG_DB_Transfer waits

until Traditional NI-DAQ can transfer the

data from the buffer passed to the

function to the buffer being used for

double-buffered digital block output. You

can execute DIG_DB_Transfer

repeatedly to read or write sequential half

buffers of data.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-60 ni.com

Digital Change Notification Functions
The Digital Change Notification functions provide messaging for lines

and ports on the 652X devices. For other boards such as the DIO-24,

the Config_DAQ_Event_Message function handles event messaging.

DIG_Change_Message_Config

Configures 652X devices to detect rising

or falling edges on input lines and to

notify you by generating a message.

DIG_Change_Message_Control

Controls the change notification

operation of the digital input lines on

652X devices.

Digital Filtering Function
The Digital Filtering function provides signal conditioning to filter the

inputs of 652X devices.

DIG_Filter_Config Configures filtering for the input lines on

652X devices.

Digital Change Notification Applications with
652X Devices
Digital change notification applications automatically detect changes on

input lines and notify you or your software by message. These applications

may use digital filtering to eliminate signals that may trigger unwanted

change notification. Digital filtering can be used alone to condition and

debounce input data.

Figure 3-18 illustrates the series of calls needed for change notification on

the input data. Figure 3-19 illustrates the series of calls needed for filtering

the input data without change notification. Only 652X devices can execute

change notification and filtering applications using these functions.

Chapter 3 Software Overview

© National Instruments Corporation 3-61 Traditional NI-DAQ User Manual

Digital Change Detection Applications
with 653X Devices
For change detection on the 653X, refer to the DIG_Block_PG_Config

function in the function reference. For message generation on the 653X and

many other devices, refer to the Config_DAQ_Event_Message function

in the function reference.

Figure 3-18. Basic Digital Change Notification

To configure change notification, call DIG_Change_Message_Config.

With DIG_Change_Message_Config, you can configure individual

digital lines for rising, falling, or rising and falling edge detection. Call

DIG_Filter_Config to enable filtering on some or all of the lines.

The next step is to start change detection messaging by calling the

DIG_Change_Message_Control function with the start control code.

To stop change notification, call DIG_Change_Message_Control with

the stop control code. These steps form the basis of a basic digital change

notification application.

DIG_Filter_Config

DIG_Change_Message_Config

DIG_Change_Message_Control

Stop?

DIG_Change_Message_Control

No

Yes

Enable filtering?

Configure Change Notification

Stop Change Notification

Start Change Notification

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-62 ni.com

Figure 3-19. Basic Digital Filtering of Input Data Application

The first step is to call DIG_Filter_Config, which enables filtering

on the specified lines. Next, you can configure either the ports or the lines.

For the 652X devices, configuring the ports by calling DIG_Prt_Config

is optional, because the ports have fixed directions. DIG_Line_Config

is also optional because the lines within the ports have fixed directions.

The next step is to call DIG_In_Port to read data from an input port.

Call DIG_In_Line to read a bit from a line. The final step is to loop back

if more data is to be read.

Digital I/O Application Tips
This section gives a basic explanation of how to construct an application

using the digital input and output functions. The flowcharts are a quick

reference for constructing potential applications from the Traditional

NI-DAQ function calls.

No

Enable filtering?

DIG_Line_Config DIG_Prt_Config

DIG_Filter_Config

(Optional on 652X Devices)

Configure lines for input Configure ports for input

DIG_In_Line DIG_In_Prt

Yes

Done?

Chapter 3 Software Overview

© National Instruments Corporation 3-63 Traditional NI-DAQ User Manual

Handshaking Versus No-Handshaking Digital I/O
Digital ports can output or input digital data in two ways. The first is to

immediately read or write data to or from the port. This type of digital I/O

is called no-handshaking mode. The second method is to coordinate digital

data transfers with another digital port. The second method is called digital

I/O with handshaking. With handshaking, you use dedicated transmission

lines to ensure that data on the receiving end is not overwritten with new

data before it is read from the input port.

Traditional NI-DAQ supports both handshaking and no-handshaking

modes. The application outlines within this section explain the use of both

modes where they apply.

Digital Port I/O Applications
Digital port I/O applications use individual digital ports to input or output

digital data. In addition, the applications input or output data points on

an individual basis.

You can configure individual port transfers for handshaking or

no-handshaking. All AT devices with digital I/O ports can

use no-handshaking digital port I/O. DIO-24, 6025E devices,

AT-MIO-16DE-10, and DIO-96 devices can also execute handshaking

digital I/O for using the port I/O functions.

Figure 3-20 illustrates the series of calls for digital port I/O applications

with handshaking. Figure 3-21 illustrates the series of calls for digital port

I/O applications without handshaking.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-64 ni.com

Figure 3-20. Basic Port Input or Output Application with Handshaking

No

Yes

DIG_Prt_Config

DIG_In_Prt DIG_Out_Prt

Input data from port. Output data to port.

Done?

Ready

Check for port ready if
handshaking is enabled.

Configure ports for input or output.
Enable optional handshaking?

Not Ready
DIG_Prt_Status

Chapter 3 Software Overview

© National Instruments Corporation 3-65 Traditional NI-DAQ User Manual

Figure 3-21. Basic Port Input or Output Application without Handshaking

The first step is to call DIG_Prt_Config, with which you configure

the individual digital ports for input or output and enable handshaking.

If handshaking is disabled, do not check the port status. If handshaking is

enabled, call DIG_PRT_Status to determine if an output port is ready to

output a new data point, or if an input port has latched new data.

The third step is to input or output the data point. Call DIG_In_Prt to read

data from an input port. Call DIG_Out_Prt to write data to an output port.

The final step is to loop back if more data is to be input or output. These

four steps form the basis of a simple digital port I/O application.

Digital Line I/O Applications
Digital line I/O applications are similar to digital port I/O applications,

except that digital line I/O applications input or output data on a bit-by-bit

basis rather than by port. The digital line I/O can only transfer data in

no-handshaking mode.

Done?
No

Yes

DIG_Prt_Config

DIG_In_Prt DIG_Out_Prt

Input data from port. Output data to port.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-66 ni.com

Figure 3-22 is a flowchart outlining the basic line I/O application.

Figure 3-22. Basic Line Input or Output Application

First, configure the digital lines for input or output. You can program

653X devices, PCI-6703, PCI-6704, PXI-6703, PXI-6704, 671X, 673X,

and E Series devices on an individual line basis. To do this,

call DIG_Line_Config. You must configure all other devices on

a port-by-port basis. As a result, you must configure all lines within a port

for the same direction. Call DIG_Prt_Config to configure a port for input

or output. For the 652X devices it is not necessary to configure a port or

line since the line direction is preconfigured.

The next step is to call DIG_In_Line or DIG_Out_Line to output or input

a bit from or to the line. The final step is to loop back until NI-DAQ has

transferred all of the data.

No

DIG_Line_Config DIG_Prt_Config

Configure lines for input Configure ports for input

DIG_In_Line DIG_In_Prt

Yes

Done?

TIO, DSA,

62XX, 652X,

PCI/PXI-6703/6704,

DIO 6533 (DIO-32HS),

or E Series device?

NoYes

Chapter 3 Software Overview

© National Instruments Corporation 3-67 Traditional NI-DAQ User Manual

Digital Group I/O Applications
Digital group I/O applications use one or more digital ports as a single

group to input or output digital information, except for the PCI-6115,

PCI-6120, and 673X devices, which can create groups smaller than the port

size for digital operations.

Figure 3-23 is a flowchart for group digital applications that handshake one

point at a time. Only the 653X devices can execute group input or output

one point at a time.

Figure 3-23. Simple Digital Group Input or Output Application

At the start of your application, call DIG_Grp_Config to configure

the individual digital ports as a group. After the ports are grouped, call

DIG_Grp_Mode (second step of Figure 3-23) to alter the handshaking

No

Yes

DIG_Grp_Mode

DIG_In_Grp DIG_Out_Grp

Input data from group. Output data to group.

Done?

Ready

Check if group is ready for transfer.

After handshaking mode?

Not Ready
DIG_Grp_Status

DIG_Grp_Config

Configure groups for input or output.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-68 ni.com

mode of the 653X devices. The various handshaking modes and the default

settings are explained in the DIG_Grp_Mode function description.

The next step in your application is to check if the port is ready for a transfer

(third step of Figure 3-23). To do this, call DIG_Grp_Status. If the group

status indicates it is ready, call DIG_Out_Grp or DIG_In_Grp to transfer

the data to or from the group.

The final step of the flowchart is to loop back until all of the data has been

input or output.

Digital Group Block I/O Applications
Traditional NI-DAQ also contains group digital I/O functions, which

operate on blocks of data. Figure 3-24 outlines the basic steps for

applications that use block I/O.

Chapter 3 Software Overview

© National Instruments Corporation 3-69 Traditional NI-DAQ User Manual

Figure 3-24. Digital Block Input or Output Application

Note The 653X, DIO-24, 6025E devices, AT-MIO-16DE-10, and DIO-96 all can perform

group block operations. However, the DIO-24, 6025E devices, AT-MIO-16DE-10, and

DIO-96 have special wiring requirements for groups larger than one port. The wiring for

both the input and output cases for these devices is explained in the DIG_SCAN_Setup

function description. No additional wiring is necessary for the 653X devices.

DIG_Grp_Config

DIG_Grp_Mode

(DIO-32F and DIO 6533

DIG_Block_In DIG_Block_Out

DIG_Block_Check

DIG_Block_Clear

DIG_Scan_Setup

Configure DIO-32F, DIO 6533 (DIO-32HS),
PCI-6115, PCI-6120, and 673X device
groups for input and output.

Alter handshaking mode?

Enable or disable pattern generation?

Enable or disable start and stop triggers?

Start block output.

Any more data to input or output?

Clear block operation if
DIG_Block_Check did not.

No

Yes

Start block input.

Configure DIO-24, 6025E
devices, AT-MIO-16DE-10,
or DIO-96 for input or output.

DIG_Trigger_Config

(DIO 6533 only)

DIG_Block_PG_Config

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-70 ni.com

The first step for a group block I/O application is to call DIG_Grp_Config

or DIG_SCAN_Setup to configure individual ports as a group. Call

DIG_Grp_Config if you have a 653X, PCI-6115, PCI-6120, or 673X

device. Call DIG_SCAN_Setup for all other devices. The DIO-32F is

restricted to group sizes of two and four ports for block I/O.

If you are using a 653X device, you can alter the handshaking mode of the

group by calling DIG_Grp_Mode. For the 653X, PCI-6115, PCI-6120, and

673X, you can perform digital pattern generation by calling

DIG_Block_PG_Config, as shown in Figure 3-24. Pattern generation is

simply reading in or writing out digital data at a fixed rate. This is the digital

equivalent of analog waveform generation. To enable pattern generation,

call DIG_Block_PG_Config as shown in Figure 3-24. You cannot

handshake with pattern generation, so do not connect any handshaking

lines. Refer to the explanation of pattern generation in the Pattern

Generation I/O with 653X, PCI-6115, PCI-6120, and 673X Devices

section for more information.

The next step for your application, as illustrated in Figure 3-25, is to call

DIG_Block_In or DIG_Block_Out to start the data transfer.

After you start the operation, you can call DIG_Block_Check to get the

current progress of the transfer. If the block operation completes prior to

a DIG_Block_Check call, DIG_Block_Check automatically calls

DIG_Block_Clear, which performs cleanup work.

The final step of a digital block operation is to call DIG_Block_Clear.

DIG_Block_Clear performs the necessary cleanup work after a

digital block operation. You must call this function explicitly if

DIG_Block_Check did not already call DIG_Block_Clear.

Note DIG_Block_Clear halts any ongoing block operation. Therefore, call

DIG_Block_Clear only if you are certain the block operation has completed or

you want to stop the current operation.

Chapter 3 Software Overview

© National Instruments Corporation 3-71 Traditional NI-DAQ User Manual

Figure 3-25. Double-Buffered Block Operation

No

No

Yes

DAQ_DB_Transfer

Transfer?

Yes

DIG_DB_HalfReady

No

Yes
DIG_Block_Check

DIG_Block_Clear

DIG_Block_In DIG_Block_Out

DIG_Grp_Config

DIG_DB_Config

Any more data to output?
(Output operations only).

Clear block operation if

DIG_Block_Check did not.

Is Traditional NI-DAQ ready to
transfer?

Transfer next half of the data to or
from the digital data buffer.

Do you wish to transfer more
data to or from the digital buffer?

Configure groups for input or output.

Enable double buffering.

Start block input. Start block output.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-72 ni.com

The first step for an application is to call DIG_Grp_Config to configure

individual ports as a group. Although the steps have been left out of the

diagram, you can alter the handshaking mode and enable pattern generation

as shown in Figure 3-24, and explained in the Digital Group Block I/O

Applications section. Next, enable double buffering by calling

DIG_DB_Config (second step of Figure 3-25). To start the digital block

input or output, call DIG_Block_In or DIG_Block_Out.

After the operation has started, you can perform unlimited transfers to or

from the circular buffer. Input operations transfer new data from the digital

buffer for storage or processing. Output operations transfer new data to the

digital buffer for output.

To transfer to or from the circular buffer, call the DIG_DB_Transfer

function. After you call the function, Traditional NI-DAQ waits until it can

transfer the data before returning to the application. To avoid the waiting

period, call DIG_DB_HalfReady to determine if Traditional NI-DAQ can

make the transfer immediately. If DIG_DB_HalfReady indicates that

Traditional NI-DAQ is not ready for a transfer, your application can do

other processing and check the status later.

After the final transfer, you can call DIG_Block_Check to get the current

progress of the transfer. For example, if you are using double-buffered

output, Traditional NI-DAQ requires some time after the final transfer to

actually output the data. In addition, if Traditional NI-DAQ completes the

block operation prior to a DIG_Block_Check call, DIG_Block_Check

automatically calls DIG_Block_Clear to perform cleanup work.

The final step of a double-buffered block operation is to call

DIG_Block_Clear, which performs the necessary cleanup work after

a digital block operation. You must explicitly call this function if

DIG_Block_Check did not already call it.

Note DIG_Block_Clear halts any ongoing block operation. Therefore,

call DIG_Block_Clear only if you are certain the block operation is complete or if

you want to stop the current operation.

Pattern Generation I/O with 653X, PCI-6115, PCI-6120,
and 673X Devices

Use pattern generation for clocked digital I/O when you have a group

that is written to or read from based on the output of a counter. The

DIG_Block_PG_Config function enables the pattern generation

mode of digital I/O. When pattern generation is enabled, a subsequent

Chapter 3 Software Overview

© National Instruments Corporation 3-73 Traditional NI-DAQ User Manual

DIG_Block_In or DIG_Block_Out call automatically uses this mode.

Each group for the 653X devices has its own onboard counter so that each

can simultaneously run in this mode at different rates. Use an external

counter by connecting its output to the appropriate REQ pin at the I/O

connector. For an input group, pattern generation is analogous to a

data acquisition operation, but instead of reading analog input channels,

Traditional NI-DAQ reads the digital ports. For an output group, pattern

generation is analogous to waveform generation, but instead of writing

voltages to the analog output channels, Traditional NI-DAQ writes digital

patterns to the digital ports.

The 653X, PCI-6115, PCI-6120, and 673X, use DMA to service pattern

generation. However, certain buffers require Traditional NI-DAQ to

reprogram the DMA controller during the pattern generation. The extra

time needed to reprogram increases the minimum request interval (thus

decreasing the maximum rate unless you use dual DMA). Refer to

Chapter 4, Traditional NI-DAQ Double Buffering, for more information.

Double-Buffered I/O
With the double-buffered (DIG_DB) digital I/O functions, you can input

or output unlimited digital data without requiring unlimited memory.

Double-buffered digital I/O is useful for applications such as streaming

data to disk and sending long data streams as output to external devices.

For an explanation of double-buffering, refer to Chapter 4, Traditional

NI-DAQ Double Buffering.

Digital double-buffered output operations have two options. The first

option is to stop the digital block operation if old data is ever encountered.

This occurs if the DIG_DB_Transfer function calls are not keeping pace

with the data input or output rate; that is, new data is not transferred to

or from the circular buffer quickly enough. For digital input, this option

prevents the loss of incoming data. For digital output, this option prevents

erroneous data from being transferred to an external device. If the group is

configured for handshaking, an old data stop is only a pause and a call to

one of the transfer functions resumes the digital operation. If the group is

configured for pattern generation, an old data stop forces you to clear and

restart the block operation.

The second option, available only to output groups, is the ability to transfer

data that is less than half the circular buffer size to the circular buffer. This

option is useful when long digital data streams are being output, but the size

of the data stream is not evenly divisible by the size of half of the circular

buffer. This option imposes the restriction that the double-buffered digital

block output is halted when a partial block of data has been output. This

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-74 ni.com

means that the data from the first call to DIG_DB_Transfer with a count

less than half the circular buffer size is the last data output by the device.

Notice, however, that enabling either of the double-buffered digital output

options causes an artificial split in the digital block buffer, requiring DMA

reprogramming at the end of each half buffer. For a group that is configured

for handshaking, such a split means that a pause in data transfer can occur

while Traditional NI-DAQ reprograms the DMA. For a group configured

for pattern generation, this split can cause glitches in the digital input or

output pattern (time lapses greater than the programmed period) during

DMA reprogramming. Therefore, you should enable these options only if

necessary. Both options can be enabled or disabled by the DIG_DB_Config

function.

Note EISA chaining is disabled if partial transfers of half buffers are enabled.

Counter/Timer Function Group

The Counter/Timer function group contains the General Purpose

Counter/Timer (GPCTR) functions. These functions perform a variety of

timing I/O and counter operations such as event counting, period and

frequency measurement, and single-pulse and pulse-train generation. Refer

to your hardware user manual to find out which operations are supported

by your device.

Counter/Timer Operation for the GPCTR Functions
Figure 3-26 shows the 16-bit counters available on DSA devices supported

by GPCTR functions.

Figure 3-26. 16-bit Counter Block Diagram

GATE

SOURCE

Counter OUT

Chapter 3 Software Overview

© National Instruments Corporation 3-75 Traditional NI-DAQ User Manual

Each counter has a SOURCE input, a GATE input, and an output

labeled OUT. 24-bit and 32-bit counters also have an AUX/UP_DOWN

input, as shown in Figure 3-27.

Figure 3-27. 24-bit and 32-bit Counter Block Diagram

When using a 24-bit or 32-bit counter for event counting, the input signals

perform the following functions:

• SOURCE increments or decrements the counter.

• GATE is used to indicate when to start or stop counting intervals or

when to save the counter contents in the save register.

• AUX/UP_DOWN controls the direction of the counting. When

configured for hardware control of counting direction, the counter

counts up when AUX/UP_DOWN is high, and it counts down when

AUX/UP_DOWN is low.

When using a counter for pulse generation, the input signals perform the

following functions:

• The counter uses SOURCE as a timebase to generate the pulse.

• The user specifies the pulse parameters in terms of periods of the

SOURCE input.

• GATE can serve as a trigger signal to generate a pulse after the first

active gate edge, or after each active gate edge.

The GATE input can operate in either buffered or non-buffered mode.

Buffered measurements are similar to their single measurement

counterparts. However, multiple successive measurements are made. The

result of each measurement is saved in the Hardware Save Register on each

active edge of GATE. A buffered measurement generates a data stream.

This data stream is transferred to your computer via DMA or interrupts.

The maximum transfer rates for these buffered measurements are system

dependent. Non-buffered measurements do not use a buffer. Unbuffered

data appears on the OUT output on each active edge of GATE.

AUX/UP_DOWN

GATE

SOURCE

Counter OUT

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-76 ni.com

General-Purpose Counter/Timer Functions
Use the General-Purpose Counter/Timer (GPCTR) functions with the

E Series, 660X, 671X, 673X, and DSA devices. Refer to the GPCTR

functions in the Traditional NI-DAQ C Reference Help for a detailed

description of how to use the GPCTR functions for a variety of applications.

GPCTR_Change_Parameter Customizes the counter operation to fit

the requirements of your application by

selecting a specific parameter setting.

GPCTR_Config_Buffer Assigns the buffer that Traditional

NI-DAQ uses for a buffered counter

operation.

GPCTR_Control Controls the operation of the

General-Purpose Counter/Timer.

GPCTR_Read_Buffer Transfers data from the previously

assigned buffer during an asynchronous

counter operation.

GPCTR_Set_Application Selects the application for which you use

the General-Purpose Counter/Timer. The

function description in the Traditional

NI-DAQ C Reference Help contains many

application tips.

GPCTR_Watch Monitors the state of the General-Purpose

Counter/Timer and its operation.

General-Purpose Counter/Timer Application Tips
The General-Purpose Counter/Timer (GPCTR) functions perform a variety

of event counting, time measurement, and pulse and pulse-train generation

operations, including buffered operations. When using the GPCTR

functions, follow the generic program flow as shown in Figure 3-28.

Chapter 3 Software Overview

© National Instruments Corporation 3-77 Traditional NI-DAQ User Manual

Figure 3-28. Generic Program Flow for All GPCTR Applications

To select the type of application you want to use, (for example simple event

counting, buffered event counting, period measurement, and so on) call the

GPCTR_Set_Application function with the appropriate application

parameter. If the application is buffered, configure a buffer for use during

the acquisition using the GPCTR_Config_Buffer function. Next, change

some of the counter attributes, depending on your type of application by

calling GPCTR_Change_Parameter. For example, set the counter source

to the internal 100 kHz timebase, set the initial value of the counter to 0,

or set the output mode of the counter to pulse mode. Arm the counter with

the settings you made by calling GPCTR_Control.

If you configure the counter to use a start trigger, the counter will not start

counting until it receives the start trigger signal. Otherwise, the counter

immediately begins counting. Check the status of the counters by using the

GPCTR_Watch function. If you are doing a continuous buffered operation,

read the buffer by calling GPCTR_Read_Buffer. When the operation has

completed or you want to abort the operation, reset the counter by calling

GPCTR_Control with appropriate control code.

For more about GPCTR functions, refer to the GPCTR_Set_Application

function description in the Traditional NI-DAQ C Reference Help.

Select Counter Application

Configure Buffer (if needed)

Change Counter Attributes

Program Counter (Arm)

Read Attributes or Buffer

Done?

Reset Counter

No

Yes

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-78 ni.com

Clocks or Time Counters
NI-TIO based devices have built-in clocks, which are specialized time

counters that retrieve current time and timestamp one or more digital

triggers. The number of clocks available depends on the number of NI-TIO

chips on your device. Most devices have one clock per NI-TIO chip.

Like counters, clocks have gate signals that latch their current value,

or time. They can latch a single time or multiple times in a buffer using

interrupts or DMA. Unlike counters, clocks have additional hardware that

eliminates drift by synchronizing the clocks to a PPS or IRIG-B stream.

Sample Use Cases
The following cases are examples of applications that can use clocks.

Use Case #1
The user records the time of n events with software timing precision.

A user wants to record the time of an external event—for example,

when a key is pressed on a keyboard, when a data packet is received by

a CAN controller, or when a temperature is read from an AI channel.

The software program flow is as follows:

1. Initialize the clock for this application.

• Specify the synchronization signal type (none).

• Specify the initial DHMS value (the default value of DHMS is

undefined).

2. Read the clock value (days, hours, minutes, seconds) when the external

event happens to determine the time of the event.

3. At the end of the operation, free up any hardware and software

resources. After powering up, the clock will run until the power to

the TIO ASIC is turned off.

Use Case #2
The user records the time of a single event on two physically distributed

data acquisition systems with hardware timing precision.

A user wants to record how a lightning strike at a power grid in city A

travels to a grid station in city B. The lightning sensors in both cities

produce a TTL pulse upon receiving the lightning bolt in city A.

Chapter 3 Software Overview

© National Instruments Corporation 3-79 Traditional NI-DAQ User Manual

Another user wants to correlate buffered analog input measurements across

distributed data acquisition systems. He connects a GPS receiver to an

NI-TIO device on each system and connects the scan clock to the gate input

of the clock. The first active edge on the scan clock on each system will

record the global time that sample was taken. The user can use the sample

rate on each system to calculate the absolute time each sample was taken,

assuming sample rates remain constant throughout the experiment.

The software program flow is as follows:

1. Initialize the clock for this application.

• Specify the synchronization signal source (PFI line, RTSI line).

• Specify the synchronization method.

– If source is PPS, read the current time from the GPS receiver

via a serial port and set it as the initial DHMS value of the

clock, or choose any arbitrary value. Initialization will take

about 2 seconds.

– If source is IRIG-B, simply wait for 2 seconds after

programming the hardware. The clock will automatically

synchronize to the GPS signal.

• Specify gate signal source and polarity.

• Clock value automatically latches upon receiving the first pulse

on its gate input.

2. Poll the armed attribute of the clock until it is disarmed (when the

external event happens). The clock is always armed in hardware, but

the software abstraction of the clock will be unarmed after it latches

the first point.

3. Read the clock value (days, hours, minutes, seconds) to determine the

time of the external event.

4. At the end of the operation, free up any hardware and software

resources. After powering up, the clock will run until the power to

the TIO ASIC is turned off.

RTSI Bus Trigger Functions
The Real-Time System Integration (RTSI) Bus Trigger functions connect

and disconnect signals over the RTSI bus trigger lines.

Refer to the Traditional NI-DAQ C Reference Help to determine which

functions your device supports.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-80 ni.com

RTSI_Clear Disconnects all RTSI bus trigger lines

from signals on the specified device.

RTSI_Clock Connects or disconnects the system clock

from the RTSI bus.

RTSI_Conn Connects a device signal to the specified

RTSI bus trigger line.

RTSI_DisConn Disconnects a device signal from the

specified RTSI bus trigger line.

Select_Signal Connects or disconnects a device signal

to a RTSI bus trigger line.

Refer to the Traditional NI-DAQ C Reference Help to determine if your

device supports RTSI.

RTSI Bus
The RTSI bus is implemented via a 34-pin ribbon cable connector on

the AT, PCI E Series, PCI-DSA, 671X, and 673X devices. On PXI DAQ

and DSA devices, the RTSI bus is implemented using PXI trigger bus lines.

On E Series DAQ devices for FireWire, the RTSI bus is implemented with

a 15-pin mini-DSUB connector. The RTSI bus has a 7-wire trigger bus.

Each device that works with a RTSI bus interface contains a number of

useful signals that can be driven onto, or received from, the trigger lines.

Each device is equipped with a switch with which an onboard signal is

connected to any one of the RTSI bus trigger lines through software

control. By programming one device to drive a particular trigger line and

another device to receive from the same trigger line, you can hardware

connect the two devices. Use the RTSI Bus Trigger functions described in

this chapter for this type of programmable signal interconnection between

devices.

Through the RTSI bus, you can trigger one device from another device,

share clocks and signals between devices, and synchronize devices to the

same signals. The RTSI bus also can connect signals on a single device.

To specify the signals on each device that you can connect to the RTSI bus

trigger lines, each device signal is assigned a signal code number. Make all

references to that signal by using the signal code number in the RTSI bus

trigger function calls. The signal codes for each device that can use the

RTSI bus trigger lines are outlined later in this section.

Chapter 3 Software Overview

© National Instruments Corporation 3-81 Traditional NI-DAQ User Manual

Each signal listed in this chapter also has a signal direction. If a signal is

listed with a source direction, that signal can drive the trigger lines. If a

signal is listed with a receiver direction, that signal must be received from

the trigger lines. A bidirectional signal direction means that the signal can

act as either a source or a receiver, depending on the application.

E Series, DSA, 660X, 671X, and 673X RTSI Connections
For information regarding signals on the E Series, DSA, 660X, 671X, and

673X devices that you can connect to the RTSI bus, refer to the

Select_Signal function description in the Traditional NI-DAQ C

Reference Help.

Note If you have a PXI-DSA board in slot 2 (star trigger controller slot), do not drive any

signals on RTSI 6 from other modules in the chassis. You can use other RTSI lines.

The signals EXTUPDATE* and EXTUPD* externally update selected

DACs. The EXTUPDATE* signal is shared with the I/O connector. For

more information about the AT-AO-6/10 signals, refer to your device user

manual.

653X RTSI Connections
The 653X devices (except for the DAQCard-653X) contain eight signals

that you can connect to the RTSI bus trigger lines. Table 3-7 shows these

signals.

The direction of each signal depends on the function you are performing.

Some signals have a different direction when you enable pattern generation

using DIG_Block_PG_Config than when you leave pattern generation

disabled. Make sure that you do not configure a signal as a RTSI receiver

when you use that signal as a device output. For example, do not configure

the 653X device to receive the REQ1 line from the RTSI bus if you are

using internal requests, or if you have made an external connection that

drives the REQ1 pin on the I/O connector.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-82 ni.com

REQ1 and REQ2 are request signals generated internally or received from

the I/O connector. ACK1 and ACK2 are acknowledge signals used for

handshaking mode; in pattern-generation mode, they can carry start trigger

signals instead. PCLK1 and PCLK2 are the peripheral clock lines for burst

mode. STOPTRIG1 and STOPTRIG2 are used for data acquisition timing.

For more information about the 653X signals, refer to the DIO 653X User

Manual. Find additional explanations of the ACK1, ACK2, STOPTRIG1,

and STOPTRIG2 signals in the DIG_Trigger_Config function in the

Traditional NI-DAQ C Reference Help.

Table 3-7. 653X RTSI Bus Signals

Signal Name

Signal Direction

(Pattern Direction)

Signal Direction

(Handshaking,

No Pattern Generation)

Signal Direction

(No Handshaking) Signal Code

REQ1 Receiver (external

requests) or source

(internal requests)

Receiver Receiver 0

REQ2 Receiver (external

requests) or source

(internal requests)

Receiver Receiver 1

ACK1 Receiver

(STARTTRIG1)

Source Source 2

ACK2 Receiver

(STARTTRIG2)

Source Source 3

STOPTRIG1 Receiver Unused Receiver 4

STOPTRIG2 Receiver Unused Receiver 5

PCLK1 Unused Source (internal clock) or

receiver (external clock)

Source 6

PCLK2 Unused Source (internal clock) or

receiver (external clock)

Source 7

Chapter 3 Software Overview

© National Instruments Corporation 3-83 Traditional NI-DAQ User Manual

RTSI Bus Application Tips
This section gives a basic explanation of how to construct an application

that uses RTSI bus Traditional NI-DAQ functions. Use the flowcharts as a

quick reference for constructing potential applications from the Traditional

NI-DAQ function calls.

An application that uses the RTSI bus has three basic steps:

1. Connect the signals from the device to the RTSI bus.

2. Execute the work of the application.

3. Disconnect the signals from the RTSI bus. Figure 3-29 illustrates

the normal order of RTSI function calls.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-84 ni.com

Figure 3-29. Basic RTSI Application Calls

Call RTSI_Clock/RTSI_Conn to connect the signals. Each completed

signal path requires RTSI_Conn calls. The first call specifies the device

signal to transmit onto a RTSI bus trigger line. The second call specifies

the device signal that receives a RTSI bus trigger line. After the signals

are connected, you are ready to do the actual work of your application.

After you finish with the RTSI bus, disconnect the device from the bus.

To do this, call RTSI_DisConn/RTSI_Clock for each connection made.

Alternatively, call RTSI_Clear to sever all connections from your device

to the RTSI bus.

SCXI Functions

Refer to the Traditional NI-DAQ C Reference Help to determine which

functions your device supports.

SCXI_AO_Write Sets the DAC channel on the SCXI-1124

module to the specified voltage or current

output value. You also can use this

RTSI_Clock

RTSI_DisConn

RTSI_Clock

RTSI_Clear

RTSI_Conn

Connect clock signals on RTSI bus?

Disconnect all device
and clock signals
from RTSI bus.

Disconnect device signal
from RTSI bus.

Disconnect clock signal
from RTSI bus.

Connect each device signal to a specified
RTSI bus trigger line. A completed signal path
requires two RTSI_Conn calls.

Chapter 3 Software Overview

© National Instruments Corporation 3-85 Traditional NI-DAQ User Manual

function to write a binary value directly to

the DAC channel, or to translate a voltage

or current value to the corresponding

binary value.

SCXI_Cal_Constants Calculates calibration constants for the

particular channel and range or gain using

measured voltage/binary pairs. You can

use this function with any SCXI analog

input or analog output module. The

constants can be stored and retrieved

from Traditional NI-DAQ memory or the

module EEPROM (if your module has an

EEPROM). The driver uses the

calibration constants to scale analog input

data more accurately when you use the

SCXI_Scale function and output data

when you use SCXI_AO_Write.

SCXI_Calibrate Provides a single call calibration for the

SCXI-1112, SCXI-1125, SCXI-1520,

and SCXI-1540 modules. With the

SCXI-1112 and SCXI-1125, calling this

function calibrates individual channels.

However, with the SCXI-1540, calling

this function calibrates every channel.

You also use this function to update the

actual onboard reference voltage value on

the SCXI-1125 EEPROM and to copy

calibration constants to the module’s

default EEPROM load area from another

EEPROM area or from Traditional

NI-DAQ memory.

SCXI_Calibrate_Setup Grounds the amplifier inputs of an

SCXI-1100, SCXI-1101, SCXI-1122, or

SCXI-1141, SCXI-1142, or SCXI-1143

so that you can determine the amplifier

offset. You also can use this function

to switch a shunt resistor across your

bridge circuit to test the circuit. This

function supports shunt calibration for the

SCXI-1122 module or the SCXI-1121

module with the SCXI-1321 terminal

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-86 ni.com

block. It also supports shunt calibration

for the SCXI-1520 module with the

SCXI-1314 terminal block.

SCXI_Change_Chan Selects a new channel of a multiplexed

module that has previously been set up for

a single-channel operation using the

SCXI_Single_Chan_Setup function.

SCXI_Configure_Connection Sets the connection type parameter to

a specified type on a given channel or all

channels on the SCXI-1520 and

SCXI-1540 modules. This function also

allows programmatic control of external

synchronization.

SCXI_Configure_Filter Sets the specified channel to the assigned

filter setting on any SCXI module with

programmable filter settings.

SCXI_Get_Chassis_Info Returns chassis configuration

information.

SCXI_Get_Module_Info Returns configuration information for the

assigned SCXI chassis slot number.

SCXI_Get_State Gets the state of a single channel or an

entire port on any digital or relay module.

SCXI_Get_Status Reads the data in the status register on the

specified module. You can use

this function with the SCXI-1160 or

SCXI-1122 to determine if the relays

have finished switching, with the

SCXI-1124 to determine if the DACs

have settled, with the SCXI-1126 to

determine if the module has settled after

changing any of its programmable

functions (ranges, filter settings,

threshold, or hysteresis), or with the

SCXI-1102/B/C to determine if the

module has settled after changing gains.

SCXI_Load_Config Loads the SCXI chassis configuration

information that you established in MAX.

Chapter 3 Software Overview

© National Instruments Corporation 3-87 Traditional NI-DAQ User Manual

Sets the software states of the chassis and

modules present to their default states. No

changes are made to the hardware states

of the SCXI chassis or modules.

SCXI_ModuleID_Read Reads the Module ID register of

the SCXI module in a given slot.

The principal difference

between this function and

SCXI_Get_Module_Info is

that SCXI_ModuleID_Read does

a hardware read of the module. You

can use this function to verify that

your SCXI system is configured

and communicating properly.

SCXI_MuxCtr_Setup Enables or disables a DAQ device counter

to be used as a multiplexer counter during

SCXI channel scanning to synchronize

the scan list with the module scan list that

Traditional NI-DAQ has downloaded to

Slot 0 of the SCXI chassis.

SCXI_Reset Resets the specified module to its default

state. You also can use SCXI_Reset to

reset the Slot 0 scanning circuitry or to

reset the entire chassis.

SCXI_Scale Scales an array of binary data acquired

from an SCXI channel to voltage.

SCXI_SCAN_Setup Sets up the SCXI chassis for a

multiplexed scanning data acquisition

operation that the assigned DAQ device

will perform. The function downloads

a module scan list to Slot 0 that

determines the sequence of scanned

modules and how many channels on each

module are scanned. This function can

program each module with its given start

channel, as well as resolve any contention

on the SCXIbus.

SCXI_Set_Config Changes the configuration of the

SCXI chassis that you established in

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-88 ni.com

MAX. Sets the software states of the

chassis and modules specified to their

default states. Does not change the SCXI

chassis or module hardware states.

SCXI_Set_Excitation Sets a specified excitation parameter to a

supplied value on a given channel or all

channels on the SCXI-1520, SCXI-1530,

SCXI-1531, and SCXI-1540 modules.

SCXI_Set_Gain Sets the specified channel to the given

gain or range setting on any SCXI module

that works with programmable gain or

range settings.

SCXI_Set_Input_Mode Configures the SCXI-1122 for

differential mode or 4-wire mode.

SCXI_Set_State Sets the state of a single channel or

an entire port on any digital or relay

module.

SCXI_Set_Threshold Used to set the high and low threshold

values for the SCXI-1126

frequency-to-voltage module.

SCXI_Single_Chan_Setup Sets up a multiplexed module for a

single-channel analog-input operation to

be performed by the given DAQ device.

Sets the module channel, enables the

module output, and routes the module

output on the SCXIbus, if necessary.

Resolves any contention on the SCXIbus

by disabling the output of any module that

was previously driving the SCXIbus. You

also can use this function to set up to read

the temperature sensor on a terminal

block connected to the front connector of

the module.

SCXI_Strain_Null Nulls the offset in the specified strain

gage on an SCXI-1520 strain gage

module by adjusting the internal

potentiometers.

Chapter 3 Software Overview

© National Instruments Corporation 3-89 Traditional NI-DAQ User Manual

SCXI_Track_Hold_Control Controls the track-and-hold modules

track/hold state that you set up for a

single-channel operation.

SCXI_Track_Hold_Setup Establishes the track/hold behavior of a

track-and-hold module and sets up the

module for either a single-channel or

an interval-scanning operation.

SCXI Application Tips
There are three categories of SCXI applications—analog input

applications, analog output applications, and digital applications.

Figure 3-30 shows the basic structure of an SCXI application.

Figure 3-30. General SCXIbus Application

The figures in the following sections show the detailed call sequences

for different types of SCXI operations. In effect, each of the remaining

SCXI_Load_Config

Analog Input Operations Digital Operations

SCXI_Reset

Load SCXI configuration that was entered in the
MAX and initialize software defaults.

Reset the chassis and modules to
their default hardware settings.

Analog Output Operations

Yes

No

SCXI_Reset

Reset the chassis and modules to
their default hardware settings.

Done?

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-90 ni.com

flowcharts in this section is an enlargement of the Analog Input Operations,

the Analog Output Operations, or the Digital Operations node in

Figure 3-30. Refer to the function descriptions in the Traditional NI-DAQ

C Reference Help for detailed information about each function used in the

flowcharts.

You can divide the SCXI analog input applications further into two

categories—single-channel applications and channel-scanning

applications. The distinction between the two categories is simple—

single-channel applications do not involve automatic channel switching

by the hardware during an analog input process; channel-scanning

applications do.

After you have set up the SCXI system, single-channel applications use

the AI or the DAQ class of functions described earlier in this chapter to

acquire the input data. To acquire data from more than one channel, you

need multiple AI or DAQ function calls, and you might need explicit SCXI

function calls to change the selected SCXI channel. This specific type of

single-channel application is called software scanning.

After you have set up the SCXI system, channel-scanning applications use

the SCAN and Lab_ISCAN classes of functions described earlier in this

chapter to acquire the input data.

Building Analog Input Applications in
Multiplexed Mode
Multiplexed applications require the use of SCXI functions to select

the multiplexed channels, select the programmable module features,

route signals on the SCXIbus, and program Slot 0. After you have set

up the SCXI chassis and modules, you can use the AI, DAQ, SCAN, and

Lab_ISCAN functions to acquire the data either with a plug-in DAQ device.

The channel parameter that is passed to each of these functions is almost

always 0 because the multiplexed output of a module is connected by

default to analog input channel 0 of the DAQ device. If you are using a

PXI DAQ device with an internal connection to the PXI-1010 or PXI-1011

SCXIbus, then ND_PXI_SC is the channel parameter. When you use

multiple chassis, the modules in each chassis are multiplexed to a separate

analog input channel. In that case, the channel parameters of the AI, DAQ,

SCAN, and Lab_ISCAN functions should be the DAQ device channel that

corresponds to the chassis you want for the operation.

Chapter 3 Software Overview

© National Instruments Corporation 3-91 Traditional NI-DAQ User Manual

Figure 3-31 shows the function call sequence of a single-channel or

software-scanning application using an SCXI-1100, SCXI-1101,

SCXI-1102/B/C, SCXI-1104/C, SCXI-1112, SCXI-1120/D, SCXI-1121,

SCXI-1122, SCXI-1125, SCXI-1126, SCXI-1141, SCXI-1142,

SCXI-1143, SCXI-1520, SCXI-1530, SCXI-1531, or SCXI-1540 module

operating in multiplexed mode.

Figure 3-31. Single-Channel or Software-Scanning Operation in Multiplexed Mode

The SCXI_Single_Chan_Setup function selects the given channel

to appear at the module output. If the given module is not directly cabled to

the DAQ device, the function sends the module output on the SCXIbus, and

then configures the module that is cabled to the DAQ device to send the

signal present on the SCXIbus to the DAQ device.

SCXI_Single_Chan_Setup

Single Analog Input Single-Channel Data Acquisition

SCXI_Set_Gain

Yes

No

SCXI_Change_Chan

Done?

Have you acquired all the data you
need from this module?

If desired,change the selected
channel on the module.

Acquire data from the
desired channel on the
module using the AI
functions or the DAQ

functions.

If the desired module has programmable
gain and the current module gain setting is
not desirable, change to the desired gain.

Set up the chassis for a single-channel
analog input operation on a specified
channel on a specified module.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-92 ni.com

The SCXI_Set_Gain function changes the gain or range of the

SCXI-1100, SCXI-1102/B/C, SCXI-1122, SCXI-1125, SCXI-1126,

SCXI-1141, SCXI-1142, SCXI-1143, SCXI-1520, SCXI-1530,

SCXI-1531, or SCXI-1540 module. The module maintains this gain or

range setting until you call the function again to change it. You also can

do any other module-specific programming at this point, such as

SCXI_Configure_Filter or SCXI_Set_Input_Mode.

To achieve software scanning, select a different channel on the module

using the SCXI_Change_Chan function after acquiring data from the

channel you want with the AI or DAQ functions. If you want a channel on

a different module, call the SCXI_Single_Chan_Setup function again

to enable the appropriate module outputs and manage the SCXIbus signal

routing.

Figure 3-32 shows the function call sequence of a single channel or

software-scanning application using a Simultaneous Sample and Hold

(SSH) module in multiplexed mode.

Chapter 3 Software Overview

© National Instruments Corporation 3-93 Traditional NI-DAQ User Manual

Figure 3-32. Single-Channel or Software-Scanning Operation Using
a Simultaneous Sample and Hold Module in Multiplexed Mode

SCXI_Single_Chan_Setup

Yes

No

SCXI_Change_Chan

Single Analog Input

SCXI_Track_Hold_Setup

SCXI_Track_Hold_Setup

SCXI_Change_Chan

Maintain
Hold mode?

No

Have you acquired all the data
you need from this module?

Acquire data from the desired channel on

the module using the AI functions.

Do you wish
to take more
data while the
module is in
Hold mode?

Put the module back into Track mode
to sense the new input values.

If desired, change the
selected channel on
the module.

Configure the desired module
for a single-channel operation.

Set up the chassis for a single-channel
analog input operation on a specified channel
on a specified module.

Latch the analog inputs by
putting the module into Hold mode.

If desired, change the
selected channel on

the module.

Done?

Yes

SCXI_Track_Hold_Control

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-94 ni.com

Notice the similarities between Figure 3-32 and Figure 3-33,

which shows the corresponding application in parallel mode. The

SCXI_Track_Hold_Setup calls and the SCXI_Track_Hold_Control

calls are the same. In multiplexed mode, however, an

SCXI_Single_Chan_Setup call is required to select the

multiplexed channel and appropriately route the output to the DAQ device.

The SCXI_Change_Chan call can change the channel on the module either

while the module is in hold mode or after the module has been returned to

track mode.

Figure 3-33 shows the function call sequence of a channel-scanning

application in multiplexed mode. Remember that only the MIO and

AI devices work with channel scanning in multiplexed mode. You can use

any combination of module types in a scanning operation. If any

track-and-hold modules are to be scanned, use interval scanning; if you are

using a plug-in DAQ device, the module directly connected to the DAQ

device must be one of the SSH modules.

Chapter 3 Software Overview

© National Instruments Corporation 3-95 Traditional NI-DAQ User Manual

Figure 3-33. Channel-Scanning Operation Using Modules in Multiplexed Mode

If any of the modules to be scanned are SSH modules, you must establish

the Track/Hold setup of each one. To synchronize multiple SSH modules,

you can configure the module that is receiving the Track/Hold control

SCXI_SCAN_Setup

No

SCXI_MuxCtr_Setup

SCXI_Track_Hold_Setup

SCXI_Track_Hold_Setup

Done?

SCXI_Set_Gain and/or
SCXI-Configure_Filter

Yes

Configure each SSH Module in the
module scan list for interval scanning.

Specify the module scan list, the start channel of each module,
and the number of channels to scan on each module.

Set the gain and/or filter settings of each SCXI-1100, SCXI-1102/B/C,
SCXI-1122, SCXI-1125, SCXI-1141, SCXI-1142, SCXI-1143, or
SCXI-1540 module in the module scan list.

Set up the Mux Counter on the DAQ device so that the total number
of samples to be taken in one scan on the DAQ device is equal to
the total number of channels in one scan of the module scan list.

Acquire the data using the SCAN or Lab_ISCAN functions.
Remember, if there are any SSH modules to be scanned,
you must use interval scanning.

Have you acquired all the data you need?

Disable the Track/Hold setup of the SSH modules
to free the counter resource on the DAQ device.

Scanned Data Acquisition

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-96 ni.com

signal to send the Track/Hold signal on the SCXIbus so that any other SSH

module can use it. The Track/Hold signal can be from either the DAQ

device counter or an external source.

The SCXI_SCAN_Setup call establishes the module scan list, which

Traditional NI-DAQ downloads to Slot 0. Each module is programmed for

automatic scanning starting at its given start channel. If you need the

SCXIbus during the scan to route the outputs of multiple modules, this

function resolves any contention.

In many of the data acquisition function descriptions in the Traditional

NI-DAQ C Reference Help, the count parameter descriptions specify that

count must be an integer multiple of the total number of channels scanned.

In channel-scanning acquisitions in multiplexed mode, the total number of

channels scanned is the sum of all the elements in the numChans array in

the SCXI_SCAN_Setup function call.

If any of the modules in the module scan list are SCXI-1100,

SCXI-1102/B/C, SCXI-1122, SCXI-1125, SCXI-1126, SCXI-1141,

SCXI-1142, SCXI-1143, SCXI-1520, SCXI-1530, SCXI-1531, or

SCXI-1540 modules, you can use SCXI_Set_Gain to change the gain or

range setting on each module. You also can use the

SCXI_Configure_Filter function for the SCXI-1122, SCXI-1125,

SCXI-1126, SCXI-1141, SCXI-1142, SCXI-1143, SCXI-1530, and

SCXI-1531, and the SCXI_Set_Input_Mode function for the SCXI-1122.

The SCXI_MuxCtr_Setup call synchronizes the module scan list with the

DAQ device scan list. In most cases (especially when using interval

scanning), it is best to ensure that the number of samples Traditional

NI-DAQ takes in one pass through the module scan list is the same as the

number of samples Traditional NI-DAQ takes in one pass through the

DAQ device scan list. Refer to the SCXI_MuxCtr_Setup function

description in the Traditional NI-DAQ C Reference Help.

After you have set up the SCXI chassis and modules, you can perform more

than one channel-scanning operation using the SCAN or Lab_ISCAN

functions without reconfiguring the SCXI chassis or modules.

Building Analog Input Applications in Parallel Mode
When you operate the SCXI-1120/D, SCXI-1121, SCXI-1125,

SCXI-1126, SCXI-1141, SCXI-1142, and SCXI-1143 modules in parallel

mode, you need no further SCXI function calls beyond those shown in

Figure 3-34 to set up the modules for analog input operations. After you

have initialized and reset the SCXI chassis and modules, you can use the

Chapter 3 Software Overview

© National Instruments Corporation 3-97 Traditional NI-DAQ User Manual

AI, DAQ, SCAN, or Lab_ISCAN functions with the DAQ device. Remember

that the channel and gain parameters of the AI, DAQ, SCAN, and

Lab_ISCAN functions refer to the DAQ device channels and gains.

For example, to acquire a single reading from channel 0 on the module,

call the AI_Read function with the channel parameter set to 0. The

gain parameter refers to the DAQ device gain. You then can use the

SCXI_Scale function to convert the binary reading to a voltage. The

AI_VRead function call is not generally useful in SCXI applications

because it does not take into account the gain applied at the SCXI module

when scaling the binary reading.

To build a channel-scanning application using the SCXI-1120/D,

SCXI-1121, SCXI-1125, SCXI-1126, SCXI-1141, SCXI-1142, or

SCXI-1143 in parallel mode, use the SCAN and Lab_ISCAN functions to

scan the channels on the DAQ device that correspond to channels on the

module you want. For example, to scan channels 0, 1, and 3 on the module

using an MIO-16 device, call the SCAN_Op function with the channel

vector set to {0, 1, 3}. The gain vector should contain the MIO and

AI device channel gains. After the data is acquired, you can demultiplex

it and send the data for each channel to the DAQ_VScale function.

Remember to pass the total gain to the DAQ_VScale function to obtain

the voltage read at the module input.

In many of the data acquisition function descriptions in the Traditional

NI-DAQ C Reference Help, the count parameter descriptions specify that

count must be an integer multiple of the total number of channels scanned.

In channel-scanning acquisitions in parallel mode, the total number of

channels scanned is the numChans parameter in the SCAN_Setup,

SCAN_Op, SCAN_to_Disk, Lab_ISCAN_Start, Lab_ISCAN_Op, or

Lab_ISCAN_to_Disk function calls.

The SCXI-1100, SCXI-1101, SCXI-1102/B/C, SCXI-1104/C, SCXI-1112,

SCXI-1122, and SCXI-1540 operate in multiplexed mode only.

The SCXI-1140, SCXI-1520, SCXI-1530, and SCXI-1531 modules

require the use of SCXI functions to configure and control the Track/Hold

state of the module before you can use the AI, DAQ, SCAN, and Lab_ISCAN

functions to acquire the data. Figure 3-34 shows the function call sequence

of a single-channel (or software-scanning) operation using these modules

in parallel mode.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-98 ni.com

Figure 3-34. Single-Channel or Software-Scanning Operation Using an SSH Module
in Parallel Mode

The initial SCXI_Track_Hold_Setup call signals the driver that the

module is used in a single-channel application, and puts the module into

track mode. The first SCXI_Track_Hold_Control call latches, or

samples, all the module inputs; subsequent AI calls read the sampled

SCXI_Track_Hold_Control

No

Single Analog Input

SCXI_Track_Hold_Setup

SCXI_Track_Hold_Setup

Done?

Yes

SCXI_Track_Hold_Control

Maintain
Hold mode?

Have you acquired all the data
you need from this module?

Acquire data from the desired channel on

the module using the AI functions.

Do you wish to take more data while
the module is in Hold mode?

Put the module back into Track mode
to sense the new input values.

Configure the desired module
for a single-channel operation.

Latch the analog inputs by
putting the module into Hold mode.

Disable the Track/Hold setup of the module to free
the counter resource on the data acquisition device.

No

Yes

Chapter 3 Software Overview

© National Instruments Corporation 3-99 Traditional NI-DAQ User Manual

voltages. It is important to realize that all AI operations that occur between

the first SCXI_Track_Hold_Control call, which puts the module into

hold mode, and the second control call, which puts the module into track

mode, acquire data that was sampled at the time of the first control call.

One or more channels can be read while the module is in hold mode.

After you put the module back into track mode, you can repeat the

process to acquire new data.

Remember that the channel and gain parameters of the AI function

calls refer to the DAQ device channels and gains. Use the data acquisition

channels that correspond to the module channels you want, as described

earlier in this section.

Figure 3-35 shows the function call sequence of a channel-scanning

application using an SSH module in parallel mode.

Figure 3-35. Channel-Scanning Operation Using an SSH Module in Parallel Mode

The call sequence is much simpler because the scan interval timer

automatically controls the Track/Hold state of the module during the

SCXI_Track_Hold_Setup

Done?
No

Yes

Acquire data from the desired channels using interval

scanning with the SCAN and Lab_ISCAN functions.

Have you acquired all the data you need?

Configure the desired module for
interval scanning.

Disable the Track/Hold setup of the module to free the
counter resource on the data acquisition board.

Scanned Data Acquisition

SCXI_Track_Hold_Setup

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-100 ni.com

interval-scanning operation. Remember that only the MIO and AI devices

work with channel-scanning using an SSH module.

SCXI Data Acquisition Rates
The settling time of the SCXI modules can affect the maximum data

acquisition rates that your DAQ device can achieve. The settling times of

the different SCXI modules at each gain setting are listed in Table 3-8 for

three different DAQ devices.

The maximum data acquisition rate you can use will be the inverse of the

settling time for your SCXI module and DAQ device. For example, if the

settling time is listed as 7 µs, your maximum data acquisition rate will be

If you are using a DAQ device with a maximum acquisition rate faster

than the AT-MIO-16E-2 (such as the PCI-MIO-16E-1), you should use the

settling times and corresponding maximum acquisition rates listed for the

AT-MIO-16E-2.

If you are using a DAQ device with a maximum acquisition rate slower than

200 kS/s (such as the PCI-6032E), you should add 1 µs to the settling time

of your DAQ device. The maximum acquisition rate for the PCI-6032E

would be

If you are using a DAQ device faster than 200 kS/s but slower than the

AT-MIO-16E-2 (such as an AT-MIO-64E-3), you can interpolate between

the settling times listed for these devices to calculate an appropriate settling

time and corresponding maximum data acquisition rate.

1

7 µs
----------- 143 kS/s=

1

10 µs 1 µs+()
------------------------------------ 90.9 kS/s=

Chapter 3 Software Overview

© National Instruments Corporation 3-101 Traditional NI-DAQ User Manual

The filter setting on the SCXI-1100 and the SCXI-1122 dramatically

affects settling time. Refer to the Specifications appendix in your SCXI

module user manual for details.

Table 3-8. Maximum SCXI Module Settling Times

SCXI Module Gain

Settling Time

Using up to

12-bit, 200 kS/s 1

Device

Settling Time

Using

AT-MIO-16E-22

Settling Time

Using

AT-MIO-16XE-10

(±0.006%

Accuracy)3

Settling Time

Using

AT-MIO-16XE-10

 (±0.0015%

Accuracy) 3

SCXI-1100

(no filter)

1 to 100 7 µs 4 µs 10 µs 32 µs

200 10 µs 5.5 µs 10 µs 33 µs

500 16 µs 12 µs 25 µs 40 µs

1,000 50 µs 20 µs 30 µs 76 µs

2,000 50 µs 25 µs 30 µs 195 µs

SCXI-1102/B/C,

SCXI-1104/C,

SCXI-1112

all gains 7 µs 3 µs 10 µs —

SCXI-1120,

SCXI-1120D,

SCXI-1125

all gains 7 µs 3 µs 10 µs 20 µs

SCXI-1121 all gains 7 µs 3 µs 10 µs 20 µs

SCXI-1122 all gains 10 ms 10 ms 10 ms 10 ms

SCXI-1126 all gains

or ranges

7 µs 3 µs 10 µs 20 µs

SCXI-1140 all gains 7 µs 3 µs 10 µs 20 µs

SCXI-1141,

SCXI-1142,

SCXI-1143,

SCXI-1520,

SCXI-1540

all gains 7 µs 3 µs 10 µs 20 µs

1 Includes effects of a 12-bit, 200 kS/s device with 1 m SCXI cable assembly.

2 Includes effects of AT-MIO-16E-2 with 1 or 2 m SCXI cable assembly.

3 Includes effects of AT-MIO-16XE-10 with 1 or 2 m SCXI cable assembly.

Note: If you are using remote SCXI, the maximum data acquisition rate also depends on the serial baud rate used.

For more information, refer to your SCXI user manual.

Chapter 3 Software Overview

Traditional NI-DAQ User Manual 3-102 ni.com

Note The SCXI-1122 uses relays to switch the input channels. The module requires 10 ms

to settle when the relays switch, so the sampling rate in a channel scanning operation

cannot exceed 100 Hz. If you want to take many readings from each channel and average

them to reduce noise, you should use the single-channel or software-scanning method

shown in Figure 3-34 instead of the channel-scanning method shown in Figure 3-35.

This means you select one channel on the module, acquire many samples on that channel

using the DAQ functions, select the next channel, and so on. This increases the lifetime of

your module relays. When you have selected a particular channel, you can use the fastest

sample rate your DAQ device supports with the DAQ functions.

Analog Output Applications
Using the SCXI-1124 analog output module with the Traditional NI-DAQ

functions is simple. Call the SCXI_AO_Write function to write the

voltages you want to the module DAC channels. You can use the

SCXI_Get_Status function to determine when the DAC channels have

settled to their final analog output voltages.

To calculate new calibration constants for SCXI_AO_Write to use for the

voltage to binary conversion instead of the factory calibration constants that

are shipped in the module EEPROM, refer to the SCXI_Cal_Constants

function description.

Digital Applications
If you configured your digital or relay modules for multiplexed mode,

use the SCXI_Set_State and SCXI_Get_State functions to access

your digital or relay channels.

If you are using the SCXI-1160 module, you might want to use the

SCXI_Get_Status function after calling the SCXI_Set_State function.

SCXI_Get_Status tells you when the SCXI-1160 relays have finished

switching.

If you are using the SCXI-1162/HV module, SCXI_Get_State reads

the module input channels. For the other digital and relay modules,

SCXI_Get_State returns a software copy of the current state that

Traditional NI-DAQ maintains. However, if you are using the

SCXI-1163/R in parallel mode, SCXI_Get_State reads the hardware

states.

Chapter 3 Software Overview

© National Instruments Corporation 3-103 Traditional NI-DAQ User Manual

If you are using the SCXI-1162/HV or SCXI-1163/R in parallel mode,

you can use the SCXI functions as described above, or you can call the

DIG_In_Prt and DIG_Out_Prt functions using the correct DAQ device

port numbers that correspond to the SCXI module channels. The MIO and

AI devices cannot use the SCXI-1162/HV or the SCXI-1163/R in parallel

mode.

© National Instruments Corporation 4-1 Traditional NI-DAQ User Manual

4
Traditional NI-DAQ Double
Buffering

This chapter describes using double-buffered data acquisitions with

Traditional NI-DAQ. This chapter applies to counter operations; however,

you can read samples of any size.

Overview

Conventional data acquisition software techniques, such as single-buffered

data acquisition, work well for most applications. However, more

sophisticated applications involving larger amounts of data at higher

rates require more advanced techniques for managing the data. One such

technique is double buffering. National Instruments uses double-buffering

techniques in its driver software for continuous, uninterrupted input or

output of large amounts of data.

This chapter discusses the fundamentals of double buffering, including

specific information on how the Traditional NI-DAQ double-buffered

functions work.

Note Input and output refer to both digital and analog operations in this chapter.

Single-Buffered versus Double-Buffered Data

The most common method of data buffering found in conventional driver

software is single buffering. In single-buffered input operations, a fixed

number of samples are acquired at a specified rate and transferred into

computer memory. After the memory buffer stores the data, the computer

can analyze, display, or store the data to the hard disk for later processing.

Single-buffered output operations output a fixed number of samples from

computer memory at a specified rate. After outputting data, the buffer

can be updated with new or freed data.

Single-buffered operations are relatively simple to implement, can usually

take advantage of the full hardware speed of the DAQ device, and are very

Chapter 4 Traditional NI-DAQ Double Buffering

Traditional NI-DAQ User Manual 4-2 ni.com

useful for many applications. The major disadvantage of single-buffered

operations is that the amount of data that can be input or output is limited

to the amount of free memory available in the computer.

In double-buffered input operations, the data buffer is configured as a

circular buffer. For input operations, the DAQ device fills the circular

buffer with data. When the end of the buffer is reached, the device returns

to the beginning of the buffer and fills it with data again. This process

continues indefinitely until it is interrupted by a hardware error or cleared

by a function call.

Double-buffered output operations also use a circular buffer. In this case,

however, the DAQ device retrieves data from the circular buffer for output.

When the end of the buffer is reached, the device begins retrieving data

from the beginning of the buffer again.

Unlike single-buffered operations, double-buffered operations reuse

the same buffer and are therefore able to input or output an infinite number

of data points without requiring an infinite amount of memory. However,

for double buffering to be useful, there must be a means by which to access

the data for updating, storing, and processing. The next two sections

explain how to access the data for double-buffered input and output

operations.

Double-Buffered Input Operations

The data buffer for double-buffered input operations is configured as

a circular buffer. In addition, Traditional NI-DAQ logically divides the

buffer into two equal halves (no actual division exists in the buffer). By

dividing the buffer into two halves, Traditional NI-DAQ can coordinate

user access to the data buffer with the DAQ device. The coordination

scheme is simple—Traditional NI-DAQ copies data from the circular

buffer in sequential halves to a transfer buffer you create. You can process

or store the data in the transfer buffer however you choose.

Chapter 4 Traditional NI-DAQ Double Buffering

© National Instruments Corporation 4-3 Traditional NI-DAQ User Manual

Figure 4-1 illustrates a series of sequential data transfers.

Figure 4-1. Double-Buffered Input with Sequential Data Transfers

The double-buffered input operation begins when the DAQ device starts

writing data into the first half of the circular buffer (Figure 4-1a). After the

device begins writing to the second half of the circular buffer, Traditional

NI-DAQ can copy the data from the first half into the transfer buffer

(Figure 4-1b). You then can store the data in the transfer block to disk or

process it according to your application needs. After the input device has

filled the second half of the circular buffer, the device returns to the first

half of the buffer and overwrites the old data. Traditional NI-DAQ can now

copy the second half of the circular buffer to the transfer buffer

(Figure 4-1c). The data in the transfer buffer is again available for use by

your application. The process can be repeated endlessly to produce a

continuous stream of data to your application. Notice that Figure 4-1d is

equivalent to the step in Figure 4-1b and is the start of a two-step cycle.

Incoming
Device Data

Circular Buffer

Transfer Buffer

Empty Buffer Untransferred Data Transferred Data

a. b.

c. d.

Chapter 4 Traditional NI-DAQ Double Buffering

Traditional NI-DAQ User Manual 4-4 ni.com

Potential Setbacks
The double-buffered coordination scheme is not flawless. An application

might experience two possible problems with double-buffered input. The

first is the possibility of the DAQ device overwriting data before

Traditional NI-DAQ has copied it to the transfer buffer. This situation is

illustrated by Figure 4-2.

Figure 4-2. Double-Buffered Input with an Overwrite Before Copy

Notice that in Figure 4-2b, Traditional NI-DAQ has missed the opportunity

to copy data from the first half of the circular buffer to the transfer buffer

while the DAQ device is writing data to the second half. As a result, the

DAQ device begins overwriting the data in the first half of the circular

buffer before Traditional NI-DAQ has copied it to the transfer buffer

(Figure 4-2c). To guarantee uncorrupted data, Traditional NI-DAQ must

wait until the device finishes overwriting data in the first half before

copying the data into the transfer buffer. After the device has begun to write

to the second half, Traditional NI-DAQ copies the data from the first half

of the circular buffer to the transfer buffer (Figure 4-2d).

Incoming
Device Data

Overwrite Before
Copy

Circular Buffer

Transfer Buffer

Empty Buffer Untransferred Data Transferred Data

a. b.

c. d.

Chapter 4 Traditional NI-DAQ Double Buffering

© National Instruments Corporation 4-5 Traditional NI-DAQ User Manual

For the previously described situation, Traditional NI-DAQ returns an

overwrite before copy warning (overWriteError). This warning indicates

that the data in the transfer buffer is valid, but some earlier input data has

been lost. Subsequent transfers will not return the warning as long as they

keep pace with the DAQ device as in Figure 4-1.

The second potential problem occurs when an input device overwrites data

that Traditional NI-DAQ is simultaneously copying to the transfer buffer.

Traditional NI-DAQ returns an overwrite error (overWriteError) when

this occurs. The situation is presented in Figure 4-3.

Figure 4-3. Double-Buffered Input with an Overwrite

In Figure 4-3b, Traditional NI-DAQ has started to copy data from the first

half of the circular buffer into the transfer buffer. However, Traditional

NI-DAQ is unable to copy the entire half before the DAQ device begins

overwriting data in the first half buffer (Figure 4-3c). Consequently, data

copied into the transfer buffer might be corrupted; that is, it might contain

both old and new data points. Future transfers will execute normally as long

as neither of the problem conditions re-occur.

Incoming
Device Data

Circular Buffer

Transfer Buffer

Empty
Buffer

Untransferred
Data

Transferred
Data

Corrupted
Data

a. b.

c.

Overwrite Error

Chapter 4 Traditional NI-DAQ Double Buffering

Traditional NI-DAQ User Manual 4-6 ni.com

Double-Buffered Output Operations

Double-buffered output operations are similar to input operations. The

circular buffer is again logically divided into two halves. By dividing the

buffer into two halves, Traditional NI-DAQ can coordinate user access to

the data buffer with the DAQ device. The coordination scheme is

simple—Traditional NI-DAQ copies data from a transfer buffer you create

to the circular buffer in sequential halves. The data in the transfer buffer can

be updated between transfers.

Figure 4-4 illustrates a series of sequential data transfers.

Figure 4-4. Double-Buffered Output with Sequential Data Transfers

The double-buffered output operation begins when the output device begins

outputting data from the first half of the circular buffer (Figure 4-4a). After

the device begins retrieving data from the second half of the circular buffer,

Traditional NI-DAQ can copy the prepared data from the transfer buffer to

the first half of the circular buffer (Figure 4-4b). Your application then can

update the data in the transfer buffer. After the output device is finished

Outgoing
Device Data

Circular Buffer

Transfer Buffer

Empty Buffer
Data Ready
for Output

Successfully
Output Data

a.

c. d.

b.

Chapter 4 Traditional NI-DAQ Double Buffering

© National Instruments Corporation 4-7 Traditional NI-DAQ User Manual

with the second half of the circular buffer, the device returns to the first half

buffer and begins outputting updated data from the first half. Traditional

NI-DAQ can now copy the transfer buffer to the second half of the circular

buffer (Figure 4-4c). The data in the transfer buffer is again available for

update by your application. The process can be repeated endlessly to

produce a continuous stream of output data from your application. Notice

that Figure 4-4d is equivalent to the step in Figure 4-4b and is the start of a

two-step cycle.

Potential Setbacks
Like double-buffered input, double-buffered output has two potential

problems. The first is the possibility of the output device retrieving and

outputting the same data before Traditional NI-DAQ has updated the

circular buffer with new data from the transfer buffer. This situation is

illustrated by Figure 4-5.

Notice that in Figure 4-5b, Traditional NI-DAQ has missed the opportunity

to copy data from the transfer buffer to the first half of the circular buffer

while the output device is retrieving data from the second half. As a result,

the device begins to output the original data in the first half of the circular

buffer before Traditional NI-DAQ has updated it with data from the transfer

buffer (Figure 4-5c). To guarantee uncorrupted output data, Traditional

NI-DAQ is forced to wait until the device finishes retrieving data from the

first half before copying the data from the transfer buffer. After the device

has begun to output the second half, Traditional NI-DAQ copies the data

from the transfer buffer to the first half of the circular buffer (Figure 4-5d).

Chapter 4 Traditional NI-DAQ Double Buffering

Traditional NI-DAQ User Manual 4-8 ni.com

Figure 4-5. Double-Buffered Output with an Overwrite before Copy

For this situation, Traditional NI-DAQ returns an overwrite before a copy

warning (overWriteError). This warning indicates that the device has

output old data but the data was uncorrupted during output. Subsequent

transfers will not return the warning as long as they keep pace with

the output device as in Figure 4-4.

The second potential problem is when an output device retrieves data that

Traditional NI-DAQ is simultaneously overwriting with data from the

transfer buffer. Traditional NI-DAQ returns an overwrite error

(overWriteError) when this occurs. The situation is presented in

Figure 4-6.

Outgoing
Device Data

Circular Buffer

Transfer Buffer

Empty Buffer Untransferred Data Transferred Data

a.

c. d.

b.

Overwrite Before
Copy

Chapter 4 Traditional NI-DAQ Double Buffering

© National Instruments Corporation 4-9 Traditional NI-DAQ User Manual

Figure 4-6. Double-Buffered Output with an Overwrite

In Figure 4-6b, Traditional NI-DAQ has started to copy data from the

transfer buffer to the first half of the circular buffer. However, Traditional

NI-DAQ is unable to copy all of the data before the output device begins

retrieving data from the first half (Figure 4-6c). Consequently, device data

output might be corrupted; it might contain both old and new data points.

Future transfers will execute normally as long as neither of these problem

conditions occur again.

Double-Buffered Functions

Double-buffered functions exist for analog input (DAQ), analog output

(WFM), digital input/output (DIG), and general-purpose counter (GPCTR)

operations. This section explains what each of the functions do and the

order in which you should call them.

Double Buffer Configuration Functions
The Double Buffer Configuration functions enable and disable double

buffering for input and output operations, and you can select

double-buffering options if any are available.

Outgoing
Device Data

Circular Buffer

Transfer Buffer

Empty
Buffer

Data Ready
for Output

Successfully
Output Data

Corrupted
Output

a. b.

c.

Overwrite Error

Chapter 4 Traditional NI-DAQ Double Buffering

Traditional NI-DAQ User Manual 4-10 ni.com

The configuration functions are as follows:

• DAQ_DB_Config

• WFM_DB_Config

• DIG_DB_Config

• GPCTR_Change_Parameter

For analog input operations, call DAQ_DB_Config prior to calling

DAQ_Start, or a SCAN_Start to enable or disable double buffering.

For waveform operations, call WFM_DB_Config prior to calling WFM_Load

to enable or disable double buffering.

For digital block input and output operations, call DIG_DB_Config prior

to calling DIG_Block_In, or DIG_Block_Out to enable or disable double

buffering.

For counter operations, before calling GPCTR_Control to start your

counter, call GPCTR_Change_Parameter to enable or disable continuous

buffering (with ND_Double). Counters transfer their data continuously,

not in half buffers.

Double Buffer Transfer Functions
After a double-buffered operation begins, the Double Buffer Transfer

functions transfer data to or from a circular buffer. The direction of the

transfer depends on the direction of the double-buffered operations. Along

with copying data, the Double Buffer Transfer functions also check for

possible errors during the transfer.

For input operations, DB_Transfer copies data from alternating halves

of the circular input buffer to the transfer buffer. For output operations,

DB_Transfer copies data from the buffer passed to the function to

alternating halves of the circular output buffer. The function might

return an overwrite before a copy warning or an overwrite error

(overWriteError) if a problem occurs during the transfer.

Note Waveform transfer functions do not detect overwrite before copy or overwrite errors.

The DB_Transfer functions for DAQ, WFM, DIG, and GPCTR are

synchronous for both input and output operations. In other words, when

your application calls these functions, Traditional NI-DAQ does not return

control to your application until the transfer is complete. As a result, your

application might crash if Traditional NI-DAQ cannot complete the

Chapter 4 Traditional NI-DAQ Double Buffering

© National Instruments Corporation 4-11 Traditional NI-DAQ User Manual

transfer. To avoid this situation, call the Timeout_Config function for

DAQ, WFM, DIG, and GPCTR prior to starting a double-buffered operation.

The timeout configuration function sets the maximum time allocated to

complete a synchronous function call for a device. For counter operations,

the transfer function takes timeout as one of the parameters, so you do need

to call Timeout_Config prior to calling the transfer function.

The transfer functions are as follows:

• DAQ_DB_Transfer

• WFM_DB_Transfer

• DIG_DB_Transfer

• GPCTR_Read_Buffer

For analog input operations, call DAQ_DB_Transfer after starting a

double-buffered analog acquisition to perform a double-buffered transfer.

For waveform operations, call WFM_DB_Transfer after starting a

double-buffered waveform generation to perform a double-buffered

transfer.

For digital block input and output operations, call DIG_DB_Transfer after

starting a double-buffered digital operation to perform a double-buffered

transfer.

For counter operations call GPCTR_Read_Buffer after starting the

operation to transfer a specified portion of the double buffer.

Double Buffer HalfReady Functions
With the Double Buffer HalfReady functions, applications can avoid the

delay possible when calling the double buffer transfer function. When you

call either of the transfer functions, Traditional NI-DAQ waits until the

transfer to or from the circular buffer can be made; that is, the DAQ device

is operating on the opposite half of the circular buffer.

The Double Buffer HalfReady functions check if a double buffer transfer

can be completed immediately. If the call to Double Buffer HalfReady

indicates a transfer cannot be made, your application can do other work

and try again later.

The HalfReady functions are as follows:

• DAQ_DB_HalfReady

• WFM_DB_HalfReady

Chapter 4 Traditional NI-DAQ Double Buffering

Traditional NI-DAQ User Manual 4-12 ni.com

• DIG_DB_HalfReady

• GPCTR_Read_Buffer

For analog input operations, call DAQ_DB_HalfReady, after

starting a double-buffered analog acquisition but prior to calling

DAQ_DB_Transfer, to check the transfer status of the operation.

For analog output problems, call WFM_DB_HalfReady, after

starting a double-buffered waveform generation but prior to calling

WFM_DB_Transfer, to check the transfer status of the operation.

For digital block input and output operations, call DIG_DB_HalfReady

after starting a double-buffered digital operation but prior to calling

DIG_DB_Transfer, to check the transfer status of the operation.

For counter operations, call GPCTR_Read_Buffer after calling

GPCTR_Control with a timeOut of 0, to check the transfer status of the

operation. Counters actually transfer their data in a continuous manner,

not a double-buffered manner.

Conclusion

Double buffering is a data acquisition software technique for continuously

inputting or outputting large amounts of data with limited available system

memory. However, double buffering might not be practical for high-speed

input or output applications. The throughput of a double-buffered

operation is typically limited by the ability of the CPU to process the data

within a given period of time. Specifically, data must be processed by the

application at least as fast as the rate at which the device is writing or

reading data. For many applications, this requirement depends on the

speed and efficiency of the computer system and programming language.

© National Instruments Corporation 5-1 Traditional NI-DAQ User Manual

5
Transducer Conversion
Functions

This chapter describes the Traditional NI-DAQ Transducer Conversion

functions. Traditional NI-DAQ includes source code for these functions.

The Transducer Conversion functions convert analog input voltages read

from thermocouples, RTDs, thermistors, and strain gages into temperature

or strain units:

RTD_Convert Supplied single-voltage and

voltage-buffer routines convert voltages

read from an RTD into resistance and

then into temperature in units for Celsius,

Fahrenheit, Kelvin, or Rankine.

Strain_Convert Supplied single-voltage and

voltage-buffer routines convert voltages

read from a strain gage into measured

strain using the appropriate formula for

the strain gage bridge configuration used.

Thermistor_Convert Supplied single-voltage and

voltage-buffer routines convert voltages

read from thermistors into temperature.

Thermocouple_Convert Supplied single-voltage and

voltage-buffer routines convert voltages

read from B-, E-, J-, K-, N-, R-, S-, or

T-type thermocouples into temperature in

Celsius, Fahrenheit, Kelvin, or Rankine.

Traditional NI-DAQ installs the source files for these functions in the same

directories as the example programs. You can cut and paste, include,

or merge these conversion routines into your application source files in

order to call the routines in your application.

The conversion routines are included in Traditional NI-DAQ as source files

rather than driver function calls so that you have complete access to the

Chapter 5 Transducer Conversion Functions

Traditional NI-DAQ User Manual 5-2 ni.com

conversion formulas. You can edit the conversion formulas or replace them

with your own to meet your application’s specific accuracy requirements.

Comments in the conversion source code simplify the process of making

only necessary changes.

A header file for each language (convert.h for C/C++, convert.bas

for Visual Basic) contains the constant definitions used in the conversion

routines. Include or merge this header file into your application program.

The transducer conversion routine descriptions apply to all languages.

Function Descriptions

RTD_Convert and RTD_Buf_Convert
These functions convert a voltage or voltage buffer that Traditional

NI-DAQ reads from an RTD into temperature.

Parameter Discussion
The convType integer indicates whether to use the given conversion

formula, or to use a user-defined formula that you have put into the routine.

0: The given conversion formula.

–1: Use a user-defined formula that has been added to the routine.

Iex is the excitation current in amps that was used with the RTD. If a 0 is

passed in Iex, a default excitation current of 150 × 10–6A (150 mA) is

assumed.

Ro is the RTD resistance in ohms at 0 °C.

A and B are the coefficients of the Callendar Van-Düsen equation that fit

your RTD.

The TempScale integer indicates which temperature units you want your

return values to be. Constant definitions for each temperature scale are

given in the conversion header file.

1: Celsius

2: Fahrenheit

3: Kelvin

4: Rankine

Chapter 5 Transducer Conversion Functions

© National Instruments Corporation 5-3 Traditional NI-DAQ User Manual

The RTD_Convert routine has two remaining parameters—RTDVolts is

the voltage that Traditional NI-DAQ reads from the RTD, and RTDTemp

is the return temperature value.

The RTD_Buf_Convert routine has three remaining parameters—numPts

is the number of voltage points to convert, RTDVoltBuf is the array that

contains the voltages that Traditional NI-DAQ read from the RTD, and

RTDTempBuf is the return array that contains the temperatures.

Using This Function
The conversion routines first find the RTD resistance by dividing

RTDVolts (or each element of RTDVoltBuf) by Iex. The function

converts that resistance to a temperature using a solution to the Callendar

Van-Düsen equation for RTDs:

Rt = R0[1 + At + Bt2 + C(t – 100)t3]

For temperatures above 0 °C, the C coefficient is 0 and the equation reduces

to a quadratic equation for which we have found the appropriate root. Thus,

these conversion routines are accurate only for temperatures above 0 °C.

Your RTD documentation should give you R0 and the A and B coefficients

for the Callendar Van-Düsen equation. The most common RTDs are 100 Ω

platinum RTDs that either follow the European temperature curve (also

known as the DIN EN 60751 standard) or the American curve. The values

for A and B are as follows:

• European Curve (DIN EN 60751):

A = 3.90802 × 10–3

B = –5.80195 × 10–7

(α = 3.85 × 10–3; ∂ = 1.492)

• American Curve:

A = 3.9784 × 10–3

B = –5.8408 × 10–7

(α = 3.92 × 10–3; ∂ = 1.492)

Some RTD documentation contains values for α and ∂, from which you can

calculate A and B using the following equations:

A α 1 ∂ 100⁄+()=

B α∂ 10 000 100
2

, ,()⁄–=

Chapter 5 Transducer Conversion Functions

Traditional NI-DAQ User Manual 5-4 ni.com

where α is the temperature coefficient at T = 0 °C.

C = –α ß/1,000,000

where ß is a characteristic of your RTD similar to the α and ∂ equation

coefficients.

Strain_Convert and Strain_Buf_Convert
These functions convert a voltage or voltage buffer that Traditional

NI-DAQ read from a strain gage to units of strain.

Parameter Discussion
The bridgeConfig integer indicates in what type of bridge configuration

the strain gage is mounted. Figure 5-1 shows all the different bridge

configurations and the corresponding values that you should pass in

bridgeConfig.

Vex is the excitation voltage (in volts) that you used. If the value of Vex

is 0, a default excitation voltage of 3.333 V is assumed. The SCXI-1121

module provides excitation voltages of 10 V and 3.333 V. The SCXI-1122

module provides an excitation voltage of 3.333 V.

GF is the gage factor of the strain gage.

v is Poisson’s Ratio (needed only in certain bridge configurations).

Rg is the strain gage nominal value in ohms.

RL is the lead resistance in ohms. In many cases, the lead resistance is

negligible and you can pass a value of 0 for RL to the routine. Otherwise,

you can measure RL to be more accurate.

Vinit is the unstrained voltage of the strain gage in volts after it is mounted

in its bridge configuration. Read this voltage at the beginning of your

application and save it to pass to the strain gage conversion routines.

The Strain_Convert routine has two remaining parameters—

strainVolts is the voltage that Traditional NI-DAQ read from the strain

gage, and strainVal is the return strain value.

The Strain_Buf_Convert routine has three remaining

parameters—numPts is the number of voltage points to convert,

strainVoltBuf is the array that contains the voltages that Traditional

Chapter 5 Transducer Conversion Functions

© National Instruments Corporation 5-5 Traditional NI-DAQ User Manual

NI-DAQ read from the strain gage, and strainValBuf is the return array

that contains the strain values.

Using This Function
The conversion formula used is based solely on the bridge configuration.

Figure 5-1 shows the seven bridge configurations supported and the

corresponding formulas. For all bridge configurations, Traditional

NI-DAQ uses the following formula to obtain Vr:

In the circuit diagrams shown in Figure 5-1, Vout is the voltage you measure

and pass to the Strain_Convert function as the strainVolts parameter.

In the quarter-bridge and half-bridge configurations, R1 and R2 are dummy

resistors that are not directly incorporated into the conversion formula.

The SCXI-1121 and SCXI-1122 modules provide R1 and R2 for a

bridge-completion network, if needed. Refer to the Getting Started

with SCXI user manual for more information on bridge-completion

networks and voltage excitation.

Vr

strainVolts V
init

–

Vex
--=

Chapter 5 Transducer Conversion Functions

Traditional NI-DAQ User Manual 5-6 ni.com

Figure 5-1. Strain Gage Bridge Configuration

bridgeConfig = 7 (FULL_BRIDGE_III)

strain () =
–2Vr

GF [(v + 1) – Vr (v – 1)]

bridgeConfig = 3 (HALF_BRIDGE_I)

–4Vr

GF [(1 + v) – 2Vr (v – 1)]
strain () = • ()1 +

RL
R1

Vex
–

+

R1 (+)

R2 (–v)

RL

RL

RL

bridgeConfig = 4 (HALF_BRIDGE_II)

strain () =
–2Vr

 GF
• ()1 +

RL
R1

Vex

R1 (+)

R2 (–)

RL

RL

RL

bridgeConfig = 5 (FULL_BRIDGE_I)

strain () =
–Vr

 GF

Vex

R3

R2

R1

R4

–

+

Vex
–

+

bridgeConfig = 6 (FULL_BRIDGE_II)

strain () =
–2Vr

GF (v + 1)

Vex
–

+

RL

Vex VOUT
– +

–

+

R2
RL

RL

strain () = • ()1 +
RL
R1

–4Vr

GF (1 + 2Vr)

bridgeConfig = 1 (QTR_BRIDGE_I)

RL

Vex

R1 ()

R2 (dummy)

RL

RL

strain () = • ()1 +
RL
R1

–4Vr

GF (1 + 2Vr)

bridgeConfig = 2 (QTR_BRIDGE_II)

VOUT
– +

VOUT
– +

VOUT
– +

VOUT
– +

R3

R2

R1

R4

VOUT
– +

R3

R2

R1

R4

VOUT
– +

–

+

–

+

Chapter 5 Transducer Conversion Functions

© National Instruments Corporation 5-7 Traditional NI-DAQ User Manual

Thermistor_Convert and Thermistor_Buf_Convert
These functions convert a voltage or voltage buffer read from a thermistor

into temperature. Some SCXI terminal blocks have onboard thermistors

that you can use to do cold-junction compensation.

Parameter Discussion
Vref is the voltage reference you apply across the thermistor circuit in volts.

Refer to Figure 5-2. The thermistor on the SCXI terminal blocks has a Vref

of 2.5 V.

R1 is the value of the resistor in series with your thermistor in ohms. Refer

to Figure 5-2. The thermistor on the SCXI terminal blocks has an R1 value

of 5,000 Ω.

The TempScale integer indicates in which temperature unit you want

your return values to be. Constant definitions for each temperature scale

are assigned in the conversion header file.

1: Celsius

2: Fahrenheit

3: Kelvin

4: Rankine

The Thermistor_Convert function has two remaining

parameters—Volts is the voltage that you read from the thermistor,

and Temperature is the return temperature value assigned in units

determined by TempScale.

The Thermistor_Buf_Convert function has three remaining

parameters—numPts is the number of voltage points to convert, VoltBuf

is the array of voltages that you read from the thermistor, and TempBuf is

the return array of temperature values assigned in units determined by

TempScale.

Using This Function
The following equation expresses the relationship between Volts and Rt,

the thermistor resistance. Refer to Figure 5-2.

Volts V
ref

R
t

R
1
R
t

+()

 =

Chapter 5 Transducer Conversion Functions

Traditional NI-DAQ User Manual 5-8 ni.com

Solving the previous equation for Rt, we have:

After this function calculates Rt, the function uses the following equation

to convert Rt, the thermistor resistance, to temperature in Kelvin. The

function then converts the temperature to the temperature scale you want,

if necessary.

The values used for a, b, and c are given below. If you are using a thermistor

with different values for a, b, and c (refer to your thermistor data sheet),

you can edit the thermistor conversion routine to use your own a, b, and

c values.

a = 1.295361E–3

The following equation expresses the relationship between Volts and Rt,

the thermistor resistance. Refer to Figure 5-2.

Solving the previous equation for Rt, you have:

When you calculate Rt, you use the following equation to convert Rt,

the thermistor resistance, to temperature in Kelvin. Then convert the

temperature to the temperature scale you want, if necessary.

R
t

R
1

Volts

V
ref

Volts–()

 =

T
1

a b 1nR
t

() c 1nR
t

()^3+()+
--=

Volts V
ref

R
t

R
1
R
t

+()

 =

R
t

R
1

Volts

V
ref

Volts–()

 =

T
1

a b 1nR
t

() c 1nR
t

()^3+()+
--=

Chapter 5 Transducer Conversion Functions

© National Instruments Corporation 5-9 Traditional NI-DAQ User Manual

The values used for a, b, and c are shown below. These values are correct

for the thermistors provided on the SCXI terminal blocks. If you are using

a thermistor with different values for a, b, and c (refer to you thermistor

data sheet), you can edit the thermistor conversion routine to use your own

a, b, and c values.

a = 1.295361E–3

b = 2.343159E–4

c = 1.018703E–7

Figure 5-2. Circuit Diagram of a Thermistor in a Voltage Divider

Thermocouple_Convert and Thermocouple_Buf_Convert
These functions convert a voltage or voltage buffer that Traditional

NI-DAQ read from a thermocouple into temperature.

Parameter Discussion
The TCType integer indicates what type of thermocouple Traditional

NI-DAQ used to read the temperature. Constant definitions for each

thermocouple type are shown in the conversion header file. You can use

the constants that have been defined, or you can pass integer values to the

routine.

1: E

2: J

3: K

4: R

5: S

6: T

Rt

R1

Vref

Volts

Chapter 5 Transducer Conversion Functions

Traditional NI-DAQ User Manual 5-10 ni.com

7: B

8: N

CJCTemp is the temperature in Celsius that Traditional NI-DAQ uses for

cold-junction compensation of the thermocouple temperature. If you are

using SCXI, most likely this is the temperature that Traditional NI-DAQ

read from the temperature sensor on the SCXI terminal block. The

AMUX-64T also has a temperature sensor that you can use for this purpose.

The TempScale integer indicates in which temperature unit you want your

return values to be. Constant definitions for each temperature scale are

shown in the conversion header file.

1: Celsius

2: Fahrenheit

3: Kelvin

4: Rankine

The Thermocouple_Convert routine has two remaining

parameters—TCVolts is the voltage that Traditional NI-DAQ read from

the thermocouple, and TCTemp is the return temperature value.

The Thermocouple_Buf_Convert routine has three remaining

parameters—numPts is the number of voltage points to convert,

TCVoltBuf is the array that contains the voltages that Traditional NI-DAQ

read from the thermocouple, and TCTempBuf is the return array that

contains the temperatures.

Using This Function
These routines convert TCVolts (or each element of TCVoltBuf) into a

corresponding temperature after performing the necessary cold-junction

compensation. Cold-junction compensation is done by converting

CJCTemp into an equivalent thermocouple voltage and adding it to

TCVolts. The actual temperature-to-voltage conversion is done by

choosing the appropriate reference equation that characterizes the correct

temperature subrange for the specific TCType. The valid temperature

range for a given TCType is divided into several subranges with each

subrange characterized by a reference equation. The computed voltage

is then added to TCVolts to perform the cold-junction correction. The

conversion of TCVolts into a corresponding temperature is done by using

inverse equations that are specified for a given TCType for different

subranges. These inverse equations have an error tolerance as shown in

Chapter 5 Transducer Conversion Functions

© National Instruments Corporation 5-11 Traditional NI-DAQ User Manual

Table 5-1. All the reference equations and inverse equations used in

these routines are from NIST Monograph 175.

Table 5-1 shows the valid temperature ranges and accuracies for the inverse

equations used for each thermocouple type. The errors listed in the table

refer to the equations only; they do not take into consideration the accuracy

of the thermocouple itself, the SCXI modules, or the DAQ device that is

used to take the voltage reading.

Table 5-1. Temperature Error for Thermocouple Inverse Equations

Thermocouple

Type Temperature Range Error

B 250 to 700 °C

700 to 1,820 °C

–0.02 to +0.03 °C

–0.01 to +0.02 °C

E –200 to 0 °C

0 to 1,000 °C

–0.01 to +0.03 °C

±0.02 °C

J –210 to 0 °C

0 to 760 °C

760 to 1,200 °C

–0.05 to +0.03 °C

±0.04 °C

–0.04 to +0.03 °C

K –200 to 0 °C

0 to 500 °C

500 to 1,372 °C

–0.02 to +0.04 °C

–0.05 to +0.04 °C

–0.05 to +0.06 °C

N –200 to 0 °C

0 to 600 °C

600 to 1,300 °C

–0.02 to +0.03 °C

–0.02 to +0.03 °C

–0.04 to +0.02 °C

R –50 to 250 °C

250 to 1,200 °C

1,200 to 1,664.5 °C

1,664.5 to 1,768.1 °C

±0.02 °C

±0.005 °C

–0.0005 to +0.001 °C

–0.001 to +0.002 °C

S –50 to 250 °C

250 to 1,200 °C

1,200 to 1,664.5 °C

1,664.5 to 1,768.1 °C

±0.02 °C

±0.01 °C

±0.0002 °C

±0.002 °C

T –200 to 0 °C

0 to 400 °C

–0.02 to +0.04 °C

±0.03 °C

© National Instruments Corporation A-1 Traditional NI-DAQ User Manual

A
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at

ni.com for technical support and professional services:

• Support—Online technical support resources include the following:

– Self-Help Resources—For immediate answers and solutions,

visit our extensive library of technical support resources available

in English, Japanese, and Spanish at ni.com/support. These

resources are available for most products at no cost to registered

users and include software drivers and updates, a KnowledgeBase,

product manuals, step-by-step troubleshooting wizards, hardware

schematics and conformity documentation, example code,

tutorials and application notes, instrument drivers, discussion

forums, a measurement glossary, and so on.

– Assisted Support Options—Contact NI engineers and other

measurement and automation professionals by visiting ni.com/

ask. Our online system helps you define your question and

connects you to the experts by phone, discussion forum, or email.

• Training—Visit ni.com/custed for self-paced tutorials, videos, and

interactive CDs. You also can register for instructor-led, hands-on

courses at locations around the world.

• System Integration—If you have time constraints, limited in-house

technical resources, or other project challenges, NI Alliance Program

members can help. To learn more, call your local NI office or visit

ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact

your local office or NI corporate headquarters. Phone numbers for our

worldwide offices are listed at the front of this manual. You also can visit

the Worldwide Offices section of ni.com/niglobal to access the branch

office Web sites, which provide up-to-date contact information, support

phone numbers, email addresses, and current events.

© National Instruments Corporation G-1 Traditional NI-DAQ User Manual

Glossary

Prefix Meaning Value

µ- micro- 10–6

m- milli- 10–3

k- kilo- 103

M- mega- 106

Symbols/Numbers

ß coefficient

∂ coefficient

° degree

– minus

Ω ohm

% percent

+ plus

± plus or minus

ε strain

α temperature coefficient at T = 0 °C

1102/B/C modules refers to the SCXI-1102, SCXI-1102B, and SCXI-1102C modules

44XX device refers to the PCI-4451, PCI-4452, PCI-4454, PCI-4472, PXI-4472, and

PCI-4474

45XX device refers to the PCI-4551 and PCI-4552

6025E device refers to the PCI-6025E and PXI-6025E

Glossary

Traditional NI-DAQ User Manual G-2 ni.com

6052E device refers to the PCI-6052E, PXI-6052E, and DAQPad-6052E for FireWire

61XX device refers to the PCI-6110, PCI-6111, PCI-6115, PXI-6115, PCI-6120, and

PXI-6120

652X device refers to the PCI-6527 and PXI-6527

653X device refers to the AT-DIO-32HS, PCI-DIO-32HS, DAQCard-6533, PXI-6533,

PCI-6534, and PXI-6534

660X device refers to the DAQCard-6601, PCI-6601, PCI-6602, PXI-6602, PCI-6608,

and PXI-6608

6602 device refers to the PCI-6602 and PXI-6602

671X device refers to the DAQCard-6715, PCI-6711, PXI-6711, PCI-6713, and

PXI-6713

673X devices refers to the PCI-6731, PXI-6731, PCI-6733, and PXI-6733

A

A/D analog-to-digital

AC alternating current

ACK acknowledge

ActiveX a programming system and user interface that lets you work with

interactive objects. Formerly called OLE.

ActiveX control a standard software tool that adds additional functionality to any

compatible ActiveX container

ADC A/D converter—an electronic device, often an integrated circuit, that

converts an analog voltage to a digital number

ADC resolution the resolution of the ADC, which is measured in bits. An ADC with 16 bits

has a higher resolution, and thus a higher degree of accuracy, than a

12-bit ADC.

AI analog input

AMD Advanced Micro Devices

Glossary

© National Instruments Corporation G-3 Traditional NI-DAQ User Manual

analog trigger a trigger that occurs at a user-selected point on an incoming analog signal.

Triggering can be set to occur at a specific level on either an increasing

or a decreasing signal (positive or negative slope). Analog triggering can

be implemented either in software or in hardware. When implemented

in software (LabVIEW), all data is collected, transferred into system

memory, and analyzed for the trigger condition. When analog triggering

is implemented in hardware, no data is transferred to system memory

until the trigger condition has occurred.

API application programming interface

ARB pertaining to arbitrary waveform generation (NI 54XX devices only)

asynchronous (1) hardware—a property of an event that occurs at an arbitrary time,

without synchronization to a reference clock;

(2) software—an action or event that occurs at an unpredictable time

with respect to the execution of a program

B

background acquisition data is acquired by a DAQ system while another program or processing

routine is running without apparent interruption

bandwidth the range of frequencies present in a signal, or the range of frequencies to

which a measuring device can respond

base address a memory address that serves as the starting address for programmable

registers. All other addresses are located by adding to the base address.

BCD binary-coded decimal

BIOS basic input/output system

bipolar a signal range that includes both positive and negative values (for example,

–5 V to +5 V)

bit one binary digit, either 0 or 1

block-mode a high-speed data transfer in which the address of the data is sent followed

by a specified number of back-to-back data words

bus the group of conductors that interconnect individual circuitry in a computer.

Typically, a bus is the expansion vehicle to which I/O or other devices are

connected. Examples of PC buses are the PCI bus, AT bus, and EISA bus.

Glossary

Traditional NI-DAQ User Manual G-4 ni.com

byte eight related bits of data, an 8-bit binary number. Also used to denote the

amount of memory required to store one byte of data.

C

C Celsius

CI computing index

cold-junction

compensation

a method of compensating for inaccuracies in thermocouple circuits

compiler a software utility that converts a source program in a high-level

programming language, such as C/C++, Visual Basic (version 5.0),

or Borland Delphi, into an object or compiled program in machine

language. Compiled programs run 10 to 1,000 times faster than

interpreted programs.

conversion time the time required, in an analog input or output system, from the moment a

channel is interrogated (such as with a read instruction) to the moment that

accurate data is available

counter/timer a circuit that counts external pulses or clock pulses (timing)

coupling the manner in which a signal is connected from one location to another

CPU central processing unit

D

D/A digital-to-analog

DAC D/A converter—an electronic device, often an integrated circuit, that

converts a digital number into a corresponding analog voltage or current

DAQ (1) data acquisition—collecting and measuring electrical signals from

sensors, transducers, and test probes or fixtures and inputting them to a

computer for processing;

(2) data acquisition—collecting and measuring the same kinds of electrical

signals with A/D and/or DIO devices plugged into a computer, and possibly

generating control signals with D/A and/or DIO devices in the same

computer

Glossary

© National Instruments Corporation G-5 Traditional NI-DAQ User Manual

DC direct current

DDS Direct Digital Synthesis

device a plug-in DAQ board, card, or pad that can contain multiple channels and

conversion devices. Plug-in boards and PCMCIA cards are all examples of

DAQ devices. SCXI modules are distinct from devices.

differential input an analog input consisting of two terminals, both of which are isolated from

computer ground, whose difference is measured

digital port See port.

DIN Deutsche Industrie Norme (German Industrial Standard)

DIO digital I/O

DIO device refers to any DIO-24, DIO-32, DIO-6533, or DIO-96

DIO-24 refers to the PC-DIO-24, PC-DIO-24PnP, DAQCard-DIO-24, PCI-6503

DIO-32F refers to the AT-DIO-32F

DIO-96 refers to the PC-DIO-96, PC-DIO-96PnP, PCI-DIO-96, DAQPad-6507,

DAQPad-6508, and PXI-6508

dithering the addition of Gaussian noise to the analog input signal

DLL dynamic-link library—a software module in Microsoft Windows

containing executable code and data that can be called or used by Windows

applications or other DLLs. Functions and data in a DLL are loaded and

linked at run time when they are referenced by a Windows application or

other DLLs.

DMA direct memory access—a method by which data can be transferred to/from

computer memory from/to a device or memory on the bus while the

processor does something else. DMA is the fastest method of transferring

data to/from computer memory.

driver software that controls a specific hardware device such as a DAQ board or

a GPIB interface board

DSA dynamic signal acquisition

Glossary

Traditional NI-DAQ User Manual G-6 ni.com

DSA device refers to the PCI-4451, PCI-4452, PCI 4454, PCI-4472, PCI-4551,

PCI-4552, PXI-4472, and PCI-4474 dynamic signal acquisition devices

DSP digital signal processing

DSUB D-subminiature connector

E

EEPROM electronically erasable programmable read-only memory—ROM that can

be erased with an electrical signal and reprogrammed

EGA Enhanced Graphics Adapter

EISA Extended Industry Standard Architecture

E Series device refers to MIO and AI devices

event-driven message a message sent by an event-driven program, a program with a loop that

waits for events to occur

external trigger a voltage pulse from an external source that triggers an event such as

A/D conversion

F

FIFO a first-in first-out memory buffer; the first data stored is the first data sent

to the acceptor. FIFOs are often used on DAQ devices to temporarily store

incoming or outgoing data until that data can be retrieved or output. For

example, an analog input FIFO stores the results of A/D conversions until

the data can be retrieved into system memory, a process that requires the

servicing of interrupts and often the programming of the DMA controller.

This process can take several milliseconds in some cases. During this

time, data accumulates in the FIFO for future retrieval. With a larger FIFO,

longer latencies can be tolerated. In the case of analog output, a FIFO

permits faster update rates, because the waveform data can be stored

on the FIFO ahead of time. This again reduces the effect of latencies

associated with getting the data from system memory to the DAQ device.

FireWire refers to a high-speed external bus that implements the IEEE 1394 serial

bus protocol

Glossary

© National Instruments Corporation G-7 Traditional NI-DAQ User Manual

G

gain the factor by which a signal is amplified, sometimes expressed in decibels

group a collection of digital ports, combined to form a larger entity for digital

input and/or output

GPS Global Positioning System—a satellite-based system created and

maintained by the U.S. Department of Defense that allows its users

to determine their position, velocity, and time.

GPS receiver an instrument that receives signals from GPS satellites

GUI graphical user interface

H

Hz hertz

I

I/O input/output

ID identification

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

import library a file that contains information the linker needs to resolve external

references to exported dynamic link library (DLL) functions, so the system

can locate the specified DLL and exported DLL functions at run time

interrupt a computer signal indicating that the CPU should suspend its current task

to service a designated activity

interrupt latency the delay between the time hardware asserts an interrupt and when the

interrupt service routine is activated

IRIG Inter Range Instrumentation Group—a pulse-modulated signal normally

produced by a GPS receiver.

IRQ interrupt request

Glossary

Traditional NI-DAQ User Manual G-8 ni.com

ISA Industry Standard Architecture

iterations repetitions of the buffer

J

Julian a measurement of time based on the Julian calendar, a commonly used

calendar that divides each year into 12 months with 365 days

K

kS 1,000 samples

Kword 1,024 words of memory

L

linker a software utility that combines object modules (created by a compiler)

and libraries, which are collections of object modules, into an executable

program

LSB least significant bit

M

master/slave type of network connection in which a request is transmitted to one or more

destination nodes, and those nodes send a response back to the requesting

node. In industrial applications, the responding (slave) device is usually a

sensor or actuator, and the requesting (master) device is usually a

controller.

MAX Measurement & Automation Explorer

MB megabytes of memory

MIO multifunction I/O

MIO device refers to multifunction I/O devices

MIO-16XE-50 device refers to the AT-MIO-16XE-50 and PCI-6070E (PCI-MIO-16XE-50)

Glossary

© National Instruments Corporation G-9 Traditional NI-DAQ User Manual

MIO-64 refers to the AT-MIO-64E-3, PCI-6031E, and PCI-6071E

MS million samples

MSB most significant bit

multirate scanning scanning different channels at different rates

mux multiplexer—a switching device with multiple inputs that sequentially

connects each of its inputs to its output, typically at high speeds, in order

to measure several signals with a single analog input channel

N

NC normally closed

NI National Instruments

NI-DAQ refers to the NI-DAQ software, unless otherwise noted

NI-TIO based device refers to the NI 4551, NI 4552, DAQCard-6601, PCI-6601, PCI-6602,

PXI-6602, PCI-6608, PXI-6608

NO normally open

O

OCX OLE Control eXtension—another name for OLE or ActiveX controls,

reflected by the .OCX file extension of ActiveX control files.

output settling time the amount of time required for the analog output voltage to reach its final

value within specified limits

P

paging a technique used for extending the address range of a device to point into

a larger address space

PC (1) personal computer;

(2) Refers to the IBM PC/XT, IBM PC AT, and compatible computers.

PCI Peripheral Component Interconnect

Glossary

Traditional NI-DAQ User Manual G-10 ni.com

PCI Series refers to the National Instruments products that use the high-performance

expansion bus architecture originally developed by Intel

port a digital port, consisting of four or eight lines of digital input and/or output

posttriggering the technique used on a DAQ board to acquire a programmed number of

samples after trigger conditions are met

PPS pulse per second. A signal normally produced by a GPS receiver.

pretriggering the technique used on a DAQ board to keep a continuous buffer filled with

data, so that when the trigger conditions are met, the sample includes the

data leading up to the trigger condition

programmed I/O the standard method a CPU uses to access an I/O device—each byte of data

is read or written by the CPU

pts points

PXI PCI eXtensions for Instrumentation. PXI is an open specification that

builds off the CompactPCI specification by adding

instrumentation-specific features.

R

RAM random-access memory

REQ request

resolution The smallest signal increment that can be detected by a measurement

system. Resolution can be expressed in bits, in proportions, or in percent

of full scale. For example, a system has 12-bit resolution, one part in

4,096 resolution, and 0.0244% of full scale.

ROM read-only memory

RTC real time clock—a clock capable of recording the exact time of events that

counts time in days, hours, minutes, seconds, and fractions of seconds.

RTD Resistive Temperature Detector—a metallic probe that measures

temperature based upon its coefficient of resistivity

Glossary

© National Instruments Corporation G-11 Traditional NI-DAQ User Manual

RTSI Real-Time System Integration (bus)—the National Instruments timing bus

that connects DAQ devices directly, by means of connectors on top of the

boards, for precise synchronization of functions

S

S/s samples per second—used to express the rate at which a DAQ device

samples an analog signal

s seconds

S samples

Sample-and-Hold

(S/H)

a circuit that acquires and stores an analog voltage on a capacitor for a

short period of time

SCXI Signal Conditioning eXtensions for Instrumentation—the National

Instruments product line for conditioning low-level signals within an

external chassis near sensors

SCXI-1102/B/C refers to the SCXI-1102, SCXI-1102B, and SCXI-1102C

SCXI-1120/D refers to the SCXI-1120 and SCXI-1120D

SCXI-1104/C refers to the SCXI-1104 and SCXI-1104C

SCXI analog input

module

refers to the SCXI-1100, SCXI-1101, SCXI-1102,

SCXI-1104,SCXI-1104C, SCXI-1112, SCXI-1120, SCXI-1120D,

SCXI-1121, SCXI-1122, SCXI-1125, SCXI-1140, SCXI-1141,

SCXI-1142, SCXI-1143, and SCXI-1520

SCXI analog output

module

refers to the SCXI-1124 module

SCXI chassis refers to the SCXI-1000, SCXI-1000DC, and SCXI-1001

SCXI digital module refers to the SCXI-1160, SCXI-1161, SCXI-1162, SCXI-1162HV,

SCXI-1163, and SCXI-1163R

SCXI switch module refers to the SCXI-1127, SCXI-1128, SCXI-1129, SCXI-1160,

SCXI-1161, SCXI-1163R, SCXI-1190, SCXI-1191, and SCXI-1192

SDK Software Development Kit

Glossary

Traditional NI-DAQ User Manual G-12 ni.com

self-calibrating a property of a DAQ device that has an extremely stable onboard reference

and calibrates its own A/D and D/A circuits without manual adjustments

by the user

simultaneous sampling

module

refers to the PCI-6110, PCI-6111, PCI-6115, PXI-6115, PCI-6120,

PXI-6120, PCI-4451, PCI-4452, PCI-4454, PCI-4551, PCI-4552,

PCI-4472, PXI-4472, and PCI-4474

Single-Ended (SE)

Inputs

an analog input that is measured with respect to a common ground

slave See master/slave.

software trigger a programmed event that triggers an event such as data acquisition

stage (NI 54XX boards only) an entry in a sequence list

STC System Timing Controller

synchronous (1) hardware—a property of an event that is synchronized to a reference

clock;

(2) software—a property of a function that begins an operation and returns

only when the operation is complete

T

TC terminal count

throughput rate the data, measured in bytes/s, for a given continuous operation, calculated

to include software overhead

track-and-hold module refers to the SCXI-1140, SCXI-1520, SCXI-1530, and SCXI-1531

Traditional NI-DAQ refers to the Traditional NI-DAQ software, unless otherwise noted

transfer rate the rate, measured in bytes/s, at which data is moved from source to

destination after software initialization and set up operations; the maximum

rate at which the hardware can operate

TSR Terminate-and-Stay Resident

Glossary

© National Instruments Corporation G-13 Traditional NI-DAQ User Manual

U

unipolar a signal range that is always positive (for example, 0 to +10 V)

USB universal serial bus

V

V volt

VDC volts direct current

VPICD Virtual Programmable Interrupt Controller Device

© National Instruments Corporation I-1 Traditional NI-DAQ User Manual

Index

Numerics
4451 and 4551 devices

counter usage, 3-51

FIFO lag effect, 3-51

6025E groups of ports, 3-55

6115 and 6120 devices. See PCI-6115 and 6120

devices

652X devices

digital change notification

applications, 3-60

653X devices

digital change detection applications, 3-61

groups of ports, 3-55

pattern generation, 3-72

RTSI connections, 3-81

660X devices, RTSI connections, 3-81

671X devices

counter usage, 3-51

FIFO lag effect, 3-51

RTSI connections, 3-81

673X devices

counter usage, 3-51

FIFO lag effect, 3-51

RTSI connections, 3-81

A
ACK1 signal

653X RTSI connections (table), 3-82

ACK2 signal

653X RTSI connections (table), 3-82

ActiveX controls for Visual Basic, 3-6

AI device terminology (table), x

AI_Change_Parameter function, 3-16

AI_Check function, 3-16

AI_Clear function, 3-16

AI_Configure function, 3-16

AI_Mux_Config function, 3-16

AI_Read function, 3-17

AI_Read_Scan function, 3-17

AI_Read_VScan function, 3-17

AI_Setup function, 3-17

AI_VRead function, 3-17

AI_VScale function, 3-17

Align_DMA_Buffer function, 3-2

AMUX-64T external multiplexer support, 3-25

Analog Alarm Event control

properties (table), 3-11

setting program flow, 3-12

setting properties, 3-12

analog input application tips. See data

acquisition application tips

analog input functions. See data acquisition

functions; one-shot analog input functions

analog output application tips

equivalent analog output calls (figure), 3-36

SCXI applications, 3-102

simple application, 3-37

software update application, 3-37

analog output devices, reference voltages for

(tables), 3-50

analog output functions

See also waveform generation functions

AO_Change_Parameter, 3-35

AO_Configure, 3-35

AO_Update, 3-35

AO_VScale, 3-35

AO_VWrite, 3-36

AO_Write, 3-36

Analog Trigger Event control

properties (table), 3-9

setting properties, 3-9

AO_Calibrate function, 3-3

AO_Change_Parameter function, 3-35

Index

Traditional NI-DAQ User Manual I-2 ni.com

AO_Configure function, 3-35

AO_Update function, 3-35

AO_VScale function, 3-35

AO_VWrite function, 3-36

AO_Write function, 3-36

applications for Windows. See building

Windows applications

AT-AO-6/10

counter usage in waveform

generation, 3-51

reference voltages for waveform

generation (tables), 3-50

AT-MIO-16DE-10, groups of ports, 3-55

B
buffer allocation in Windows applications

Microsoft Visual Basic, 2-5

Microsoft Visual C++, 2-3

building Windows applications

Microsoft Visual Basic, 2-3

Microsoft Visual C++, 2-2

NI-DAQ examples, 2-8

NI-DAQ libraries, 2-1

C
Calibrate_1200 function, 3-3

Calibrate_DSA function, 3-4

Calibrate_E_Series function, 3-4

Calibrate_TIO function, 3-4

calibration functions. See software-calibration

and device-specific functions

clocks or time counters for NI-TIO devices

sample use cases, 3-78

synchronization

IRIG-B stream, 3-79

PPS stream, 3-79

Config_Alarm_Deadband function, 3-5

Config_ATrig_Event_Message function, 3-5

Config_DAQ_Event_Message function, 3-5

configuration

NI-DAQ, 1-2

using Measurement & Automation

Explorer, 1-2

configuration functions

See also initialization and

general-configuration functions

AI_Change_Parameter, 3-16

AI_Configure, 3-16

AI_Mux_Config, 3-16

AI_Setup, 3-17

AO_Configure, 3-35

Config_Alarm_Deadband, 3-5

Config_ATrig_Event_Message, 3-5

Config_DAQ_Event_Message, 3-5

Configure_HW_Analog_Trigger, 3-4

DAQ_Config, 3-22

DAQ_DB_Config, 3-24, 4-10

DAQ_StopTrigger_Config, 3-22

DIG_Block_PG_Config, 3-58

DIG_Change_Message_Config, 3-60

DIG_DB_Config, 3-59, 4-10

DIG_Filter_Config, 3-60

DIG_Grp_Config, 3-58

DIG_Line_Config, 3-57

DIG_Prt_Config, 3-57

DIG_SCAN_Setup, 3-58

DIG_Trigger_Config, 3-59

GPCTR_Change_Parameter, 3-76, 4-10

GPCTR_Config_Buffer, 3-76

MIO_Config, 3-4

SCXI_Configure_Connection, 3-86

SCXI_Configure_Filter, 3-86

SCXI_Load_Config, 3-86

SCXI_MuxCtr_Setup, 3-87

SCXI_SCAN_Setup, 3-87

SCXI_Set_Config, 3-87

SCXI_Set_Excitation, 3-88

SCXI_Set_Gain, 3-88

SCXI_Set_Input_Mode, 3-88

SCXI_Set_State, 3-88

Index

© National Instruments Corporation I-3 Traditional NI-DAQ User Manual

SCXI_Set_Threshold, 3-88

SCXI_Single_Chan_Setup, 3-88

SCXI_Track_Hold_Setup, 3-89

Timeout_Config, 3-3

WFM_DB_Config, 3-40, 4-10

WFM_Group_Setup, 3-40

Configure_HW_Analog_Trigger function, 3-4

contacting National Instruments, A-1

conventions used in manual, ix

counter usage, in waveform generation, 3-51

counter/timer application tips

See also counter/timer functions;

counter/timer operation

event counting, 3-74

general-purpose counter/timer

functions, 3-76

counter/timer functions

See also counter/timer application tips;

counter/timer operation

general-purpose counter/timer functions

application tips, 3-76

GPCTR_Change_Parameter,

3-76, 4-10

GPCTR_Config_Buffer, 3-76

GPCTR_Control, 3-76

GPCTR_Read_Buffer, 3-76,

4-11, 4-12

GPCTR_Set_Application, 3-76

GPCTR_Watch, 3-76

counter/timer operation

clocks or time counters

clock synchronization, 3-78

IRIG-B, 3-79

PPS, 3-79

sample use cases, 3-78

data acquisition function application

tips, 3-25

customer

education, A-1

professional services, A-1

technical support, A-1

D
DAQ system, setting up, 1-2

DAQ_Check function, 3-22

DAQ_Clear function, 3-22

DAQ_Config function, 3-22

DAQ_DB_Config function, 3-24, 4-10

DAQ_DB_HalfReady function, 3-24, 4-11

DAQ_DB_Transfer function, 3-24, 4-11

DAQ_Monitor function, 3-22

DAQ_Op function, 3-20

DAQ_Rate function, 3-22

DAQ_Set_Clock function, 3-22

DAQ_Start function, 3-22

DAQ_StopTrigger_Config function, 3-22

DAQ_to_Disk function, 3-21

DAQ_VScale function, 3-23

data acquisition application tips

basic building blocks, 3-25

building block 1: configuration

functions, 3-26

building block 2: start functions, 3-26

building block 3: check functions, 3-30

building block 4: cleaning up, 3-31

double-buffered data acquisition, 3-31

external multiplexer support

(AMUX-64T), 3-25

LPM device counter/timer signals, 3-25

data acquisition functions

high-level data acquisition functions

DAQ_Op, 3-20

DAQ_to_Disk, 3-21

Lab_ISCAN_Op, 3-21

Lab_ISCAN_to_Disk, 3-21

SCAN_Op, 3-21

SCAN_to_Disk, 3-21

low-level data acquisition functions

DAQ_Check, 3-22

DAQ_Clear, 3-22

DAQ_Config, 3-22

DAQ_Monitor, 3-22

Index

Traditional NI-DAQ User Manual I-4 ni.com

DAQ_Rate, 3-22

DAQ_Set_Clock, 3-22

DAQ_Start, 3-22

DAQ_StopTrigger_Config, 3-22

DAQ_VScale, 3-23

Lab_ISCAN_Check, 3-23

Lab_ISCAN_Start, 3-23

SCAN_Demux, 3-23

SCAN_Sequence_Demux,

3-23, 3-33

SCAN_Sequence_Retrieve,

3-23, 3-33

SCAN_Sequence_Setup, 3-23, 3-33

SCAN_Setup, 3-24

SCAN_Start, 3-24

low-level double-buffered data

acquisition functions

DAQ_DB_Config, 3-24, 4-10

DAQ_DB_HalfReady, 3-24, 4-11

DAQ_DB_Transfer, 3-24, 4-11

multirate scanning, 3-32

data acquisition rates, SCXI modules, 3-100

device configuration

NI-DAQ, 1-2

using Measurement & Automation

Explorer, 1-2

devices

See also specific device, e.g.,

AT-AO-6/10

MIO and AI device terminology, x

reference voltages for analog output

devices (tables), 3-50

diagnostic resources, A-1

DIG_Block_Check functions, 3-58

DIG_Block_Clear functions, 3-58

DIG_Block_In functions, 3-58

DIG_Block_Out functions, 3-58

DIG_Block_PG_Config functions, 3-58

DIG_Change_Message_Config function, 3-60

DIG_Change_Message_Control

function, 3-60

DIG_DB_Config function, 3-59, 4-10

DIG_DB_HalfReady function, 3-59, 4-12

DIG_DB_Transfer function, 3-59, 4-11

DIG_Filter_Config function, 3-60

DIG_Grp_Config function, 3-58

DIG_Grp_Mode function, 3-58

DIG_Grp_Status function, 3-58

DIG_In_Grp function, 3-58

DIG_In_Line function, 3-57

DIG_In_Prt function, 3-57

DIG_Line_Config function, 3-57

DIG_Out_Grp function, 3-58

DIG_Out_Line function, 3-57

DIG_Out_Prt function, 3-57

DIG_Prt_Config function, 3-57

DIG_Prt_Status function, 3-57

DIG_SCAN_Setup function, 3-58

DIG_Trigger_Config function, 3-59

digital I/O application tips

digital change detection

with 652X devices, 3-60

with 653X devices, 3-61

digital change notification with 652X

devices, 3-60

digital group block I/O, 3-68

digital group I/O, 3-67

digital line I/O, 3-65

digital port I/O applications, 3-63

double-buffered I/O, 3-73

handshaking versus no-handshaking

digital I/O, 3-63

SCXI applications, 3-89

digital I/O functions

byte mapping to digital I/O lines

(table), 3-54

DIG_In_Line, 3-57

DIG_In_Prt, 3-57

DIG_Line_Config, 3-57

DIG_Out_Line, 3-57

DIG_Out_Prt, 3-57

DIG_Prt_Config, 3-57

Index

© National Instruments Corporation I-5 Traditional NI-DAQ User Manual

DIG_Prt_Status, 3-57

digital change notification functions, 3-60

digital filtering function, 3-60

double-buffered digital I/O functions

DIG_DB_Config, 4-10

DIG_DB_HalfReady, 3-59, 4-12

DIG_DB_Transfer, 3-59, 4-11

group digital I/O functions

DIG_Block_Check, 3-58

DIG_Block_Clear, 3-58

DIG_Block_In, 3-58

DIG_Block_Out, 3-58

DIG_Block_PG_Config, 3-58

DIG_Grp_Config, 3-58

DIG_Grp_Mode, 3-58

DIG_Grp_Status, 3-58

DIG_In_Grp, 3-58

DIG_Out_Grp, 3-58

DIG_SCAN_Setup, 3-58

DIG_Trigger_Config, 3-59

groups of ports

653X, 3-55

DIO-24, 6025E, AT-MIO-16DE-10,

and DIO-96, 3-55

PCI-6115, PCI-6120, and 673X, 3-56

overview, 3-53

DIO-96 groups of ports, 3-55

documentation

conventions used in manual, ix

how to use NI-DAQ manual set, ix

online library, A-1

double-buffered data acquisition

application tips, 3-31

input operations, 4-2

potential setbacks, 4-4

output operations, 4-6

potential setbacks, 4-7

overview, 4-1

single-buffered versus double-buffered

data, 4-1

double-buffered functions

configuration functions

DAQ_DB_Config, 3-24, 4-10

DIG_DB_Config, 3-59, 4-10

GPCTR_Change_Parameter,

3-76, 4-10

WFM_DB_Config, 4-10

digital I/O functions

applications

double-buffered I/O, 3-73

group block I/O

applications, 3-68

DIG_DB_Config, 4-10

DIG_DB_HalfReady, 3-24,

3-59, 4-12

DIG_DB_Transfer, 3-59, 4-11

HalfReady functions

DAQ_DB_HalfReady, 3-24, 4-11

DIG_DB_HalfReady, 3-59, 4-12

GPCTR_Read_Buffer, 4-12

WFM_DB_HalfReady, 4-11

low-level double-buffered data

acquisition functions

application tips, 3-31

DAQ_DB_Config, 3-24, 4-10

DAQ_DB_HalfReady, 3-24, 4-11

DAQ_DB_Transfer, 3-24, 4-11

transfer functions

DAQ_DB_Transfer, 3-24, 4-11

DIG_DB_Transfer, 3-59, 4-11

GPCTR_Read_Buffer, 4-11

WFM_DB_Transfer, 4-11

double-buffered waveform generation

applications, 3-47

drivers

instrument, A-1

software, A-1

Index

Traditional NI-DAQ User Manual I-6 ni.com

E
E Series devices

Calibrate_E_Series function, 3-4

counter usage, 3-51

FIFO lag effect, 3-51

RTSI bus connections, 3-81

event counting, 3-74

event message functions

See also NI-DAQ events in Visual Basic

for Windows

application tips, 3-5

Config_Alarm_Deadband, 3-5

Config_ATrig_Event_Message, 3-5

Config_DAQ_Event_Message, 3-5

event procedures, 3-6

example code, A-1

external multiplexer support

(AMUX-64T), 3-25

external triggering of waveform

generation, 3-52

EXTUPD* signal, 3-81

EXTUPDATE* signal, 3-81

F
FIFO lag effect, 3-51

frequency measurement, 3-74

frequently asked questions, A-1

functions

analog input functions

one-shot analog input functions, 3-16

single-channel analog input

application tips, 3-17

single-channel analog input

functions, 3-16

analog output functions

application tips, 3-36

list of functions, 3-35

counter/timer functions

application tips, 3-76

counter/timer operation, 3-74

general-purpose counter/timer

functions, 3-76

list of functions, 3-76

data acquisition functions

application tips, 3-25

double-buffered data acquisition

application tips, 3-31

high-level data acquisition

functions, 3-20

low-level data acquisition

functions, 3-22

low-level double-buffered data

acquisition functions, 3-24

digital I/O function group

653X device groups, 3-55

application tips, 3-62

byte mapping to digital I/O lines

(table), 3-54

digital I/O functions, 3-57

digital line I/O applications, 3-65

DIO-24, 6025E, AT-MIO-16DE-10,

and DIO-96 device groups, 3-55

double-buffered digital I/O

functions, 3-59

group digital I/O functions, 3-58

overview, 3-53

PCI-6115, PCI-6120, and 673X

device groups, 3-56

event message functions

application tips, 3-5

list of functions, 3-5

NI-DAQ events in Visual Basic for

Windows, 3-6

initialization and general-configuration

functions, 3-2

list of function groups, 3-1

RTSI bus trigger functions

653X RTSI connections, 3-81

application tips, 3-83

E series, DSA, 660X, and 671X RTSI

connections, 3-81

Index

© National Instruments Corporation I-7 Traditional NI-DAQ User Manual

list of functions, 3-79

SCXI functions

application tips, 3-89

list of functions, 3-84

software-calibration and device-specific

functions, 3-3

transducer conversion functions

function descriptions, 5-2

list of functions, 5-1

overview, 5-1

waveform generation functions

application tips, 3-41

high-level waveform generation

functions, 3-39

low-level waveform generation

functions, 3-39

G
General DAQ Event controls

examples, 3-8

properties (table), 3-7

setting properties, 3-8

general-purpose counter/timer functions

application tips, 3-76

GPCTR_Change_Parameter, 3-76, 4-10

GPCTR_Config_Buffer, 3-76

GPCTR_Control, 3-76

GPCTR_Read_Buffer, 3-76

GPCTR_Set_Application, 3-76

GPCTR_Watch, 3-76

Get_DAQ_Device_Info function, 3-2

Get_NI_DAQ_Version function, 3-2

GPCTR_Change_Parameter function,

3-76, 4-10

GPCTR_Config_Buffer function, 3-76

GPCTR_Control function, 3-76

GPCTR_Read_Buffer function, 3-76,

4-11, 4-12

GPCTR_Set_Application function, 3-76

GPCTR_Watch function, 3-76

group digital I/O functions

DIG_Block_Check, 3-58

DIG_Block_Clear, 3-58

DIG_Block_In, 3-58

DIG_Block_Out, 3-58

DIG_Block_PG_Config, 3-58

DIG_Grp_Config, 3-58

DIG_Grp_Mode, 3-58

DIG_Grp_Status, 3-58

DIG_In_Grp, 3-58

DIG_Out_Grp, 3-58

DIG_SCAN_Setup, 3-58

DIG_Trigger_Config, 3-59

group digitial I/O applications

digital double-buffered group block

I/O, 3-59

digital group block I/O, 3-68

digital group I/O, 3-67

groups of ports

653X group, 3-55

DIO-24, 6025E, AT-MIO-16DE-10, and

DIO-96, 3-55

PCI-6115, 6120, and 673X groups, 3-56

H
handshaking mode, 3-55

handshaking versus no-handshaking digital

I/O, 3-63

help

professional services, A-1

technical support, A-1

high-level data acquisition functions

See also data acquisition application tips

DAQ_Op, 3-20

DAQ_to_Disk, 3-21

Lab_ISCAN_Op, 3-21

Lab_ISCAN_to_Disk, 3-21

SCAN_Op, 3-21

SCAN_to_Disk, 3-21

Index

Traditional NI-DAQ User Manual I-8 ni.com

high-level waveform generation functions

WFM_from_Disk, 3-39

WFM_Op, 3-39

I
Init_DA_Brds function, 3-2

initialization and general-configuration

functions

Align_DMA_Buffer, 3-2

Get_DAQ_Device_Info, 3-2

Get_NI_DAQ_Version, 3-2

Init_DA_Brds, 3-2

Set_DAQ_Device_Info, 3-3

Timeout_Config, 3-3

installation

See also device configuration

setting up your DAQ system, 1-2

instrument drivers, A-1

K
KnowledgeBase, A-1

L
Lab_ISCAN_Check function, 3-23

Lab_ISCAN_Op function, 3-21

Lab_ISCAN_Start function, 3-23

Lab_ISCAN_to_Disk function, 3-21

libraries, NI-DAQ, 2-1

low-level data acquisition functions

application tips. See data acquisition

application tips

DAQ_Check, 3-22

DAQ_Clear, 3-22

DAQ_Config, 3-22

DAQ_Monitor, 3-22

DAQ_Rate, 3-22

DAQ_Set_Clock, 3-22

DAQ_Start, 3-22

DAQ_StopTrigger_Config, 3-22

DAQ_VScale, 3-23

Lab_ISCAN_Check, 3-23

Lab_ISCAN_Start, 3-23

SCAN_Demux, 3-23

SCAN_Sequence_Demux, 3-23, 3-33

SCAN_Sequence_Retrieve, 3-23, 3-33

SCAN_Sequence_Setup, 3-23, 3-33

SCAN_Setup, 3-24

SCAN_Start, 3-24

low-level double-buffered data acquisition

functions, 3-24

application tips. See data acquisition

application tips

DAQ_DB_Config, 4-10

DAQ_DB_HalfReady, 3-24, 4-11

DAQ_DB_Transfer, 3-24, 4-11

low-level waveform generation functions

WFM_Chan_Control, 3-39, 3-52

WFM_Check, 3-52

WFM_ClockRate, 3-39

WFM_DB_HalfReady, 3-40

WFM_DB_Transfer, 3-40

WFM_Group_Control, 3-40

WFM_Group_Setup, 3-40

WFM_Load, 3-40

WFM_Rate, 3-40

WFM_Scale, 3-40

WFM_Set_Clock, 3-41

LPM devices. See PC-LPM-16

LPM16_Calibrate function, 3-4

M
manual. See documentation

Measurement & Automation Explorer

application, 1-2

Microsoft Visual Basic for Windows

building Windows applications

buffer allocation, 2-5

example programs, 2-4

Index

© National Instruments Corporation I-9 Traditional NI-DAQ User Manual

parameter passing, 2-6

procedure, 2-4

string passing, 2-6

NI-DAQ events

ActiveX controls, 3-6

Analog Alarm Event control, 3-11

Analog Trigger Event control, 3-9

General DAQ Event controls, 3-7

General DAQ Event example, 3-8

using multiple controls, 3-13

special considerations, 2-5

Microsoft Visual C++

building Windows applications, 2-2

example programs, 2-2

special considerations, 2-3

MIO devices

counter usage in waveform

generation, 3-51

FIFO lag effect, 3-51

MIO and AI device terminology (table), x

reference voltages for waveform

generation (table), 3-50

MIO_Config function, 3-4

MIO-E series devices. See E series devices

Multiplexed mode applications, SCXI, 3-90

multiplexer device (AMUX-64T), 3-25

multirate scanning

flow chart for, 3-34

functions for, 3-33

purpose and use, 3-32

N
National Instruments

customer education, A-1

professional services, A-1

system integration services, A-1

technical support, A-1

worldwide offices, A-1

NI 4551 devices

counter usage, 3-51

FIFO lag effect, 3-51

NI-DAQ events in Visual Basic for Windows

ActiveX controls, 3-6

Analog Alarm Event control, 3-11

Analog Trigger Event control, 3-9

General DAQ Event controls, 3-7

General DAQ Event example, 3-8

using multiple controls, 3-13

NI-DAQ installation. See installation

NI-DAQ libraries for Windows, 2-1

NI-DAQ software

features, 1-1

overview, 1-2

nidaq32.dll (note), 2-1

NI-TIO based devices. See clocks or time

counters for NI-TIO devices

no-handshaking mode, 3-55

O
one-shot analog input functions

AI_Change_Parameter, 3-16

AI_Check, 3-16

AI_Clear, 3-16

AI_Configure, 3-16

AI_Mux_Config, 3-16

AI_Read, 3-17

AI_Read_Scan, 3-17

AI_Read_VScan, 3-17

AI_Setup, 3-17

AI_VRead, 3-17

AI_VScale, 3-17

application tips, 3-17

one-shot analog output functions

AO_Change_Parameter, 3-35

AO_Configure, 3-35

AO_Update, 3-35

AO_VScale, 3-35

AO_VWrite, 3-36

Index

Traditional NI-DAQ User Manual I-10 ni.com

AO_Write, 3-36

application tips, 3-36

online technical support, A-1

P
Parallel mode applications, SCXI

modules, 3-96

parameter passing in Windows applications

Microsoft Visual Basic, 2-6

Microsoft Visual C++, 2-3

pattern generation I/O with 653X, PCI-6115,

PCI-6120, and 673X devices, 3-72

PC-DIO-24 groups of ports, 3-53

PCI-4451 devices

counter usage, 3-51

FIFO lag effect, 3-51

PCI-6115 and PCI-6120 devices

groups of ports, 3-56

pattern generation, 3-72

PCLK1 signal (table), 3-82

PCLK2 signal (table), 3-82

PC-LPM-16

counter/timer signals, 3-25

LPM16_Calibrate function, 3-4

phone technical support, A-1

professional services, A-1

programming examples, A-1

R
reference voltages for analog output devices

bipolar output polarity (table), 3-50

unipolar output polarity (table), 3-50

REQ1 signal

653X RTSI connections (table), 3-82

REQ2 signal

653X RTSI connections (table), 3-82

RTD_Buf_Convert function, 5-2

RTD_Convert function

definition, 5-1

purpose and use, 5-2

RTSI bus

application tips, 3-83

description, 3-80

RTSI bus connections

653X, 3-81

E series, DSA, 660X, 671X, and

673X, 3-81

RTSI bus trigger functions

RTSI_Clear, 3-80

RTSI_Clock, 3-80

RTSI_Conn, 3-80

RTSI_DisConn, 3-80

Select_Signal, 3-80

S
SCAN_Demux function, 3-23

SCAN_Op function, 3-21

SCAN_Sequence_Demux function,

3-23, 3-33

SCAN_Sequence_Retrieve function,

3-23, 3-33

SCAN_Sequence_Setup function, 3-23, 3-33

SCAN_Setup function, 3-24

SCAN_Start function, 3-24

SCAN_to_Disk function, 3-21

SCXI application tips

analog output applications, 3-102

data acquisition rates, 3-100

digital applications, 3-102

general SCXIbus application

flowchart, 3-89

Multiplexed mode, 3-90

Parallel mode, 3-96

settling times (table), 3-101

SCXI functions

SCXI_AO_Write, 3-84

SCXI_Cal_Constants, 3-85

SCXI_Calibrate, 3-85

SCXI_Calibrate_Setup, 3-85

Index

© National Instruments Corporation I-11 Traditional NI-DAQ User Manual

SCXI_Change_Chan, 3-86

SCXI_Configure_Connection, 3-86

SCXI_Configure_Filter, 3-86

SCXI_Get_Chassis_Info, 3-86

SCXI_Get_Module_Info, 3-86

SCXI_Get_State, 3-86

SCXI_Get_Status, 3-86

SCXI_Load_Config, 3-86

SCXI_ModuleID_Read, 3-87

SCXI_MuxCtr_Setup, 3-87

SCXI_Reset, 3-87

SCXI_Scale, 3-87

SCXI_SCAN_Setup, 3-87

SCXI_Set_Config, 3-87

SCXI_Set_Excitation, 3-88

SCXI_Set_Gain, 3-88

SCXI_Set_Input_Mode, 3-88

SCXI_Set_State, 3-88

SCXI_Set_Threshold, 3-88

SCXI_Single_Chan_Setup, 3-88

SCXI_Strain_Null, 3-88

SCXI_Track_Hold_Control, 3-89

SCXI_Track_Hold_Setup, 3-89

SCXI_Calibrate function, 3-4

Select_Signal function, 3-4, 3-80

Set_DAQ_Device_Info function, 3-3

setting up DAQ systems. See device

configuration; installation

single-buffered versus double-buffered

data, 4-1

single-channel analog input functions

AI_Change_Parameter, 3-16

AI_Check, 3-16

AI_Clear, 3-16

AI_Configure, 3-16

AI_Mux_Config, 3-16

AI_Read, 3-17

AI_Read_Scan, 3-17

AI_Read_VScan, 3-17

AI_Setup, 3-17

AI_VRead, 3-17

AI_VScale, 3-17

application tips, 3-17

software drivers, A-1

software-calibration and device-specific

functions

AO_Calibrate, 3-3

Calibrate_1200, 3-3

Calibrate_DSA, 3-4

Calibrate_E_Series, 3-4

Calibrate_TIO, 3-4

Configure_HW_Analog_Trigger, 3-4

LPM16_Calibrate, 3-4

MIO_Config, 3-4

SCXI_Cal_Constants, 3-85

SCXI_Calibrate, 3-4, 3-85

SCXI_Calibrate_Setup, 3-85

Select_Signal, 3-4

STOPTRIG1 signal (table), 3-82

STOPTRIG2 signal (table), 3-82

Strain_Buf_Convert function, 5-4

Strain_Convert function

definition, 5-1

purpose and use, 5-4

string passing in Windows applications

Microsoft Visual Basic, 2-6

Microsoft Visual C++, 2-3

support

technical, A-1

synchronization of clocks. See clocks or time

counters for NI-TIO devices

system integration services, A-1

T
technical support, A-1

telephone technical support, A-1

Thermistor_Buf_Convert function, 5-7

Thermistor_Convert function

definition, 5-1

purpose and use, 5-7

Thermocouple_Buf_Convert function, 5-9

Index

Traditional NI-DAQ User Manual I-12 ni.com

Thermocouple_Convert function

definition, 5-1

purpose and use, 5-9

time counters. See clocks or time counters for

NI-TIO devices

Timeout_Config function, 3-3

training

customer, A-1

transducer conversion functions

overview, 5-1

RTD_Buf_Convert, 5-2

RTD_Convert, 5-1, 5-2

Strain_Buf_Convert, 5-4

Strain_Convert, 5-1, 5-4

Thermistor_Buf_Convert, 5-7

Thermistor_Convert, 5-1, 5-7

Thermocouple_Buf_Convert, 5-9

Thermocouple_Convert, 5-1, 5-9

troubleshooting resources, A-1

V
Visual Basic. See Microsoft Visual Basic for

Windows

W
waveform generation application tips

basic applications, 3-41

basic waveform generation with

pauses, 3-44

counter usage, 3-51

double-buffered applications, 3-47

external triggering, 3-52

FIFO lag effect, 3-51

minimum update intervals, 3-51

reference voltages for analog output

devices

bipolar output polarity (table), 3-50

unipolar output polarity (table), 3-50

waveform generation functions

high-level waveform generation functions

WFM_from_Disk, 3-39

WFM_Op, 3-39

low-level waveform generation functions

WFM_Chan_Control, 3-39

WFM_Check, 3-39

WFM_ClockRate, 3-39

WFM_DB_Config, 3-40, 4-10

WFM_DB_HalfReady, 3-40, 4-11

WFM_DB_Transfer, 3-40, 4-11

WFM_Group_Control, 3-40

WFM_Group_Setup, 3-40

WFM_Load, 3-40

WFM_Rate, 3-40

WFM_Scale, 3-40

WFM_Set_Clock, 3-41

Web

professional services, A-1

technical support, A-1

WFM_Chan_Control function, 3-39, 3-52

WFM_Check function, 3-39, 3-52

WFM_ClockRate function, 3-39

WFM_DB_Config function, 3-40, 4-10

WFM_DB_HalfReady function, 3-40, 4-11

WFM_DB_Transfer function, 3-40, 4-11

WFM_from_Disk function, 3-39

WFM_Group_Control function, 3-40

WFM_Group_Setup function, 3-40

WFM_Load function, 3-40

WFM_Op function, 3-39

WFM_Rate function, 3-40

WFM_Scale function, 3-40

	Traditional NI-DAQ User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	How to Use the Traditional NI-DAQ Documentation Set
	Conventions Used in This Manual
	MIO and AI Device Terminology
	Table 1. MIO and AI Device Technical Details

	Chapter 1 Introduction to Traditional NI-DAQ
	About the Traditional NI-DAQ Software
	How to Set Up Your DAQ System
	Traditional NI-DAQ Overview
	Device Configuration
	Using Measurement & Automation Explorer

	Chapter 2 Fundamentals of Building Windows Applications
	The Traditional NI-DAQ Libraries
	Creating a Windows Application Using Microsoft Visual C++
	Developing a Traditional NI-DAQ Application
	Example Programs
	Special Considerations
	Buffer Allocation
	String Passing
	Parameter Passing

	Creating a Windows Application Using Microsoft Visual Basic
	Developing a Traditional NI-DAQ Application
	Example Programs
	Special Considerations
	Buffer Allocation
	String Passing
	Parameter Passing
	Passing Unsigned 16-Bit and 32-Bit Integer Parameters

	Traditional NI-DAQ Examples

	Chapter 3 Software Overview
	Initialization and General-Configuration Functions
	Software-Calibration and Device-Specific Functions
	Event Message Functions
	Event Messaging Application Tips
	Traditional NI-DAQ Events in Visual Basic
	ActiveX Controls for Visual Basic
	General DAQ Event
	Table 3-1. General DAQ Event Control Properties
	Analog Trigger Event
	Table 3-2. Analog Trigger Event Control Properties
	Analog Alarm Event
	Table 3-3. Analog Alarm Event Control Properties

	Analog Input Function Group
	One-Shot Analog Input Functions
	Single-Channel Analog Input Functions
	Figure 3-1. Single-Point Analog Reading with Onboard Conversion Timing
	Figure 3-2. Single-Point Analog Reading with External Conversion Timing

	Data Acquisition Functions
	High-Level Data Acquisition Functions
	Low-Level Data Acquisition Functions
	Low-Level Double-Buffered Data Acquisition Functions
	Data Acquisition Application Tips
	Figure 3-3. Buffered Data Acquisition Basic Building Blocks
	Figure 3-4. Buffered Data Acquisition Application Building Block 1, Configuration
	Figure 3-5. Buffered Data Acquisition Application Building Block 2, Start
	Figure 3-6. Buffered Data Acquisition Application Building Block 2, Start, for the MIO, AI, and DSA Devices
	Figure 3-7. Buffered Data Acquisition Application Building Block 2, Start, for the LPM Devices
	Figure 3-8. Buffered Data Acquisition Application Building Block 3, Checking, for the MIO, AI, and DSA Devices
	Figure 3-9. Buffered Data Acquisition Application Building Block 3, Checking, for the LPM Devices
	Figure 3-10. Double-Buffered Data Acquisition Application Building Block 3, Checking
	Multirate Scanning
	Figure 3-11. Multirate Scanning

	Analog Output Function Group
	One-Shot Analog Output Functions
	Analog Output Application Tips
	Figure 3-12. Equivalent Analog Output Calls
	Figure 3-13. Simple Analog Output Application
	Figure 3-14. Analog Output with Software Updates

	Waveform Generation Functions
	High-Level Waveform Generation Functions
	Low-Level Waveform Generation Functions
	Waveform Generation Application Tips
	Figure 3-15. Basic Waveform Generation Application
	Figure 3-16. Waveform Generation with Pauses
	Figure 3-17. Double-Buffered Waveform Generation
	Table 3-4. Output Voltages with Unipolar Output Polarity
	Table 3-5. Output Voltages with Bipolar Output Polarity

	Digital I/O Function Group
	Table 3-6. Byte Mapping to Digital I/O Lines
	DIO-24, 6025E, AT-MIO-16DE-10, and DIO-96 Device Groups
	653X Device Groups
	PCI-6115, PCI-6120, and 673X Device Groups
	Digital I/O Functions
	Group Digital I/O Functions
	Double-Buffered Digital I/O Functions
	Digital Change Notification Functions
	Digital Filtering Function
	Digital Change Notification Applications with 652X Devices
	Digital Change Detection Applications with 653X Devices
	Figure 3-18. Basic Digital Change Notification
	Figure 3-19. Basic Digital Filtering of Input Data Application

	Digital I/O Application Tips
	Handshaking Versus No-Handshaking Digital I/O
	Digital Port I/O Applications
	Figure 3-20. Basic Port Input or Output Application with Handshaking
	Figure 3-21. Basic Port Input or Output Application without Handshaking

	Digital Line I/O Applications
	Figure 3-22. Basic Line Input or Output Application

	Digital Group I/O Applications
	Figure 3-23. Simple Digital Group Input or Output Application

	Digital Group Block I/O Applications
	Figure 3-24. Digital Block Input or Output Application
	Figure 3-25. Double-Buffered Block Operation

	Pattern Generation I/O with 653X, PCI-6115, PCI-6120, and 673X Devices
	Double-Buffered I/O

	Counter/Timer Function Group
	Counter/Timer Operation for the GPCTR Functions
	Figure 3-26. 16-bit Counter Block Diagram
	Figure 3-27. 24-bit and 32-bit Counter Block Diagram

	General-Purpose Counter/Timer Functions
	General-Purpose Counter/Timer Application Tips
	Figure 3-28. Generic Program Flow for All GPCTR Applications

	Clocks or Time Counters
	Sample Use Cases
	Use Case #1
	Use Case #2

	RTSI Bus Trigger Functions
	RTSI Bus
	E Series, DSA, 660X, 671X, and 673X RTSI Connections
	653X RTSI Connections
	Table 3-7. 653X RTSI Bus Signals

	RTSI Bus Application Tips
	Figure 3-29. Basic RTSI Application Calls

	SCXI Functions
	SCXI Application Tips
	Figure 3-30. General SCXIbus Application
	Building Analog Input Applications in Multiplexed Mode
	Figure 3-31. Single-Channel or Software-Scanning Operation in Multiplexed Mode
	Figure 3-32. Single-Channel or Software-Scanning Operation Using a Simultaneous Sample and Hold Module in Multiplexed Mode
	Figure 3-33. Channel-Scanning Operation Using Modules in Multiplexed Mode
	Building Analog Input Applications in Parallel Mode
	Figure 3-34. Single-Channel or Software-Scanning Operation Using an SSH Module in Parallel Mode
	Figure 3-35. Channel-Scanning Operation Using an SSH Module in Parallel Mode
	SCXI Data Acquisition Rates
	Table 3-8. Maximum SCXI Module Settling Times

	Analog Output Applications
	Digital Applications

	Chapter 4 Traditional NI-DAQ Double Buffering
	Overview
	Single-Buffered versus Double-Buffered Data
	Double-Buffered Input Operations
	Figure 4-1. Double-Buffered Input with Sequential Data Transfers
	Potential Setbacks
	Figure 4-2. Double-Buffered Input with an Overwrite Before Copy
	Figure 4-3. Double-Buffered Input with an Overwrite

	Double-Buffered Output Operations
	Figure 4-4. Double-Buffered Output with Sequential Data Transfers
	Potential Setbacks
	Figure 4-5. Double-Buffered Output with an Overwrite before Copy
	Figure 4-6. Double-Buffered Output with an Overwrite

	Double-Buffered Functions
	Double Buffer Configuration Functions
	Double Buffer Transfer Functions
	Double Buffer HalfReady Functions

	Conclusion

	Chapter 5 Transducer Conversion Functions
	Function Descriptions
	RTD_Convert and RTD_Buf_Convert
	Parameter Discussion
	Using This Function

	Strain_Convert and Strain_Buf_Convert
	Parameter Discussion
	Using This Function
	Figure 5-1. Strain Gage Bridge Configuration

	Thermistor_Convert and Thermistor_Buf_Convert
	Parameter Discussion
	Using This Function
	Figure 5-2. Circuit Diagram of a Thermistor in a Voltage Divider

	Thermocouple_Convert and Thermocouple_Buf_Convert
	Parameter Discussion
	Using This Function
	Table 5-1. Temperature Error for Thermocouple Inverse Equations

	Appendix A Technical Support and Professional Services
	Glossary
	Symbols/Numbers
	A
	B
	C-D
	E-F
	G-I
	J-M
	N-P
	R
	S
	T
	U-V

	Index
	Numerics
	A
	B-C
	D
	E-F
	G-H
	I-M
	N-O
	P-S
	T
	V-W

