COMPREHENSIVE SERVICES APEX WAVES

We offer competitive repair and calibration services, as well as easily
accessible documentation and free downloadable resources.

Bridging the gap between the
SELL YOUR SURPLUS manufacturer and your legacy

v) test system.
We buy new, used, decommissioned, and surplus parts from every NI series.

We work out the best solution to suit your individual needs.

Sell For Cash Get Credit Receive a Trade-In Deal
O 1-800-915-6216

@ www.apexwaves.com

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

9 sales@apexwaves.com

Alltrademarks, brands, and brand names are the property of their respective owners.

Request a Quote =cuckie PX]-8512

https://www.apexwaves.com/modular-systems/national-instruments/pxi-can-interface-series/PXI-8512?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/pxi-can-interface-series/PXI-8512?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/pxi-can-interface-series/PXI-8512?aw_referrer=pdf

XNET

NI-XNET Hardware and Software Manual

March 2016 7 NAT'ONA'.
372840L-01)‘INSTRUMENTS’”

Worldwide Technical Support and Product Information

ni.com

Worldwide Offices

Visitni.com/niglobal to access the branch office websites, which provide up-to-date contact information,
support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the NI Services appendix. To comment on National Instruments
documentation, refer to the National Instruments website at ni . com/info and enter the Info Code feedback.

© 2009-2016 National Instruments. All rights reserved.

Legal Information

Limited Warranty

This document is provided ‘as is’ and is subject to being changed, without notice, in future editions. For the latest version, refer to
ni.com/manuals. NI reviews this document carefully for technical accuracy; however, NIl MAKES NO EXPRESS OR IMPLIED
WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY
ERRORS.

NI warrants that its hardware products will be free of defects in materials and workmanship that cause the product to fail to substantially conform to
the applicable NI published specifications for one (1) year from the date of invoice.

For a period of ninety (90) days from the date of invoice, NI warrants that (i) its software products will perform substantially in accordance with the
applicable documentation provided with the software and (ii) the software media will be free from defects in materials and workmanship.

If NI receives notice of a defect or non-conformance during the applicable warranty period, NI will, in its discretion: (i) repair or replace the affected
product, or (ii) refund the fees paid for the affected product. Repaired or replaced Hardware will be warranted for the remainder of the original warranty
period or ninety (90) days, whichever is longer. If NI elects to repair or replace the product, NI may use new or refurbished parts or products that are
equivalent to new in performance and reliability and are at least functionally equivalent to the original part or product.

You must obtain an RMA number from NI before returning any product to NI. NI reserves the right to charge a fee for examining and testing Hardware
not covered by the Limited Warranty.

This Limited Warranty does not apply if the defect of the product resulted from improper or inadequate maintenance, installation, repair, or calibration
(performed by a party other than NI); unauthorized modification; improper environment; use of an improper hardware or software key; improper use
or operation outside of the specification for the product; improper voltages; accident, abuse, or neglect; or a hazard such as lightning, flood, or other
act of nature.

THE REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND THE CUSTOMER’S SOLE REMEDIES, AND SHALL APPLY EVEN IF
SUCH REMEDIES FAIL OF THEIR ESSENTIAL PURPOSE.

EXCEPT AS EXPRESSLY SET FORTH HEREIN, PRODUCTS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND AND NI
DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO THE PRODUCTS, INCLUDING ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, AND ANY
WARRANTIES THAT MAY ARISE FROM USAGE OF TRADE OR COURSE OF DEALING. NI DOES NOT WARRANT, GUARANTEE, OR
MAKE ANY REPRESENTATIONS REGARDING THE USE OF OR THE RESULTS OF THE USE OF THE PRODUCTS IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NI DOES NOT WARRANT THAT THE OPERATION OF THE
PRODUCTS WILL BE UNINTERRUPTED OR ERROR FREE.

In the event that you and NI have a separate signed written agreement with warranty terms covering the products, then the warranty terms in the
separate agreement shall control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright
and other intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may
use NI software only to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal
restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:

* Notices are located in the <National Instruments>\ Legal Information and <National Instruments> directories.
* EULAs are located in the <National Instruments>\Shared\MDF\Legal\license directory.

* Review <National Instruments>_Legal Information.txt forinformation on including legal information in installers built with NI
products.

U.S. Government Restricted Rights

If you are an agency, department, or other entity of the United States Government (“Government”), the use, duplication, reproduction, release,
modification, disclosure or transfer of the technical data included in this manual is governed by the Restricted Rights provisions under Federal
Acquisition Regulation 52.227-14 for civilian agencies and Defense Federal Acquisition Regulation Supplement Section 252.227-7014 and
252.227-7015 for military agencies.

Trademarks
Refer to the NI Trademarks and Logo Guidelines at ni . com/trademarks for more information on National Instruments trademarks.

ARM, Keil, and pVision are trademarks or registered of ARM Ltd or its subsidiaries.

LEGO, the LEGO logo, WEDO, and MINDSTORMS are trademarks of the LEGO Group.
TETRIX by Pitsco is a trademark of Pitsco, Inc.

FIELDBUS FOUNDATION™ and FOUNDATION™ are trademarks of the Fieldbus Foundation.
EtherCAT® is a registered trademark of and licensed by Beckhoff Automation GmbH.
CANopen® is a registered Community Trademark of CAN in Automation e.V.

DeviceNet™ and EtherNet/IP™ are trademarks of ODVA.

Go!, SensorDAQ, and Vernier are registered trademarks of Vernier Software & Technology. Vernier Software & Technology and vernier.com are
trademarks or trade dress.

Xilinx is the registered trademark of Xilinx, Inc.
Taptite and Trilobular are registered trademarks of Research Engineering & Manufacturing Inc.

FireWire® is the registered trademark of Apple Inc.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Handle Graphics®, MATLAB®, Simulink®, Stateflow®, and xPC TargetBox® are registered trademarks, and Simulink Coder™, TargetBox™, and
Target Language Compiler™ are trademarks of The MathWorks, Inc.

Tektronix®, Tek, and Tektronix, Enabling Technology are registered trademarks of Tektronix, Inc.
The Bluetooth® word mark is a registered trademark owned by the Bluetooth SIG, Inc.
The ExpressCard™ word mark and logos are owned by PCMCIA and any use of such marks by National Instruments is under license.

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United
States and other countries.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from NI and have no agency, partnership, or
joint-venture relationship with NI.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software, the patents. txt
file on your media, or the National Instruments Patent Notice at ni.com/patents.

Export Compliance Information
Refer to the Export Compliance Information at ni .com/legal/export-compliance for the NI global trade compliance policy and how to
obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

YOU ARE ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY AND RELIABILITY OF THE
PRODUCTS WHENEVER THE PRODUCTS ARE INCORPORATED IN YOUR SYSTEM OR APPLICATION, INCLUDING THE
APPROPRIATE DESIGN, PROCESS, AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

PRODUCTS ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS
ENVIRONMENTS OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING IN THE OPERATION OF
NUCLEAR FACILITIES; AIRCRAFT NAVIGATION; AIR TRAFFIC CONTROL SYSTEMS; LIFE SAVING OR LIFE SUSTAINING
SYSTEMS OR SUCH OTHER MEDICAL DEVICES; OR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR
SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM
(COLLECTIVELY, “HIGH-RISK USES”). FURTHER, PRUDENT STEPS MUST BE TAKEN TO PROTECT AGAINST FAILURES,
INCLUDING PROVIDING BACK-UP AND SHUT-DOWN MECHANISMS. NI EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES.

Compliance

Electromagnetic Compatibility Information

This hardware has been tested and found to comply with the applicable regulatory requirements and limits for electromagnetic
compatibility (EMC) as indicated in the hardware’s Declaration of Conformity (DoC)!. These requirements and limits are
designed to provide reasonable protection against harmful interference when the hardware is operated in the intended
electromagnetic environment. In special cases, for example when either highly sensitive or noisy hardware is being used in close
proximity, additional mitigation measures may have to be employed to minimize the potential for electromagnetic interference.

While this hardware is compliant with the applicable regulatory EMC requirements, there is no guarantee that interference will
not occur in a particular installation. To minimize the potential for the hardware to cause interference to radio and television
reception or to experience unacceptable performance degradation, install and use this hardware in strict accordance with the
instructions in the hardware documentation and the DoC!.

If this hardware does cause interference with licensed radio communications services or other nearby electronics, which can be
determined by turning the hardware off and on, you are encouraged to try to correct the interference by one or more of the
following measures:

¢ Reorient the antenna of the receiver (the device suffering interference).

¢ Relocate the transmitter (the device generating interference) with respect to the receiver.

¢ Plug the transmitter into a different outlet so that the transmitter and the receiver are on different branch circuits.

Some hardware may require the use of a metal, shielded enclosure (windowless version) to meet the EMC requirements for
special EMC environments such as, for marine use or in heavy industrial areas. Refer to the hardware’s user documentation and
the DoC! for product installation requirements.

When the hardware is connected to a test object or to test leads, the system may become more sensitive to disturbances or may
cause interference in the local electromagnetic environment.

Operation of this hardware in a residential area is likely to cause harmful interference. Users are required to correct the
interference at their own expense or cease operation of the hardware.

Changes or modifications not expressly approved by National Instruments could void the user’s right to operate the hardware
under the local regulatory rules.

' The Declaration of Conformity (DoC) contains important EMC compliance information and instructions for the user or
installer. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and
click the appropriate link in the Certification column.

Contents

About This Manual

Related DOCUMENTATION.coiiiiriieeieiiieie e et e ettt e eeaeeeeeeesaareeeeeesaaeeeeeesaaaeeeeeens Xxxiii

Chapter 1
Introduction

Chapter 2
Installation and Configuration

Safety INfOrmationc..cocoviiiiiiiiiiiiee e 2-1
Measurement & Automation Explorer (MAX)cccovueeviiniiinieniieniienieeieesieese e 2-3
Verifying NI-XNET Hardware Installationcccocveeveiniiinieeneeniiiieeeeneeeieeeee e 2-4
XNET Device Firmware Updatec..coccecuerieiiinieiiinieiiiieeecceenecreeeeese e 2-4
Configuring NI-XNET INterfaces..........cccccoeevieriirieninieiinienicecceeeeeeeeseeee e 2-6
LabVIEW Real-Time (RT) Configurationccoceeveerieriiienienieenieeieeniee e 2-6
Getting Started with CompactRIO.........cc.cciiiiiiiiiiiiiicecc e 2-7
TOOLS ettt ettt 2-11
System Configuration APL..........cccooiiiiiiiiiiiiiiiee ettt 2-12

Chapter 3
NI-XNET Hardware Overview

OVEIVIEW ..ttt bbbttt b e s s ee 3-1
NI-XNET FlexRay Hardwarec..cocevieieniniiniiienienieeeteieeiteeeeenee et 3-1
FlexRay Physical Layer.........cccoceevieriiriiniiiiiniiiieneeesieeeeeeseee e 3-1
TTANSCRIVET ..ttt sttt ettt e saesne e 3-1

Bus Power Requirements...........ccocueeveeriirieenicnieeneenieeeeneeeeeee 3-1

Cabling Requirements for FlexRay...........ccovoevieiinieninienieceeee, 3-1

Cable Lengths and Number of Devicesccecuereeeienenienencenenen. 3-2

TErMINAtION ..c..evitirenieieteieeeeetee ettt ettt sre e e 3-2

PINOUL. ..ottt ettt et s 3-2
NI-XNET CAN Hardwarecccocoiiiiiiiiiiiiii e 3-3
NI-XNET Transceiver Cablesccccoviiviniiiiiiiiiiiiiciiceeseceee e 3-3

XS Software Selectable Physical Layerccccoeeevieoeneeienieeeeeeeeee 3-3
High-Speed Physical Layerccoccoeviiriiiiiinieiiieniceeeceeeese e 3-4
TTANSCEIVETcuiiiiiiiiiieie e e 3-4

Bus Power Requirements...........ccocueeveeniiiieenienieeneeeiceeeseeeeeee 3-4

Cabling Requirements for High-Speed CAN.........ccccooviviniiierennen. 3-5

© National Instruments vii NI-XNET Hardware and Software Manual

Contents

Cable Lengthsccoveeiieiiiiiieeeeeeeee ettt 3-5
NUMDBET Of DEVICES ..ccuvveriiieiieeiiieiieeie ettt 3-5
Cable TermMinationcceevveecieerierrieeneesteeieeste st e sre e esreeeaeeaees 3-5
Cabling EXamplec.cooeeriieiiiiiiiietecieeeeee e 3-7
Low-Speed/Fault-Tolerant Physical Layercccccceevvrniinieeneenieenieenieenne, 3-7
TTANSCEIVET cuvvieiieeiiieiie st eiee ettt etteete et e siteete et e sabeesaaesebeebeesaneenees 3-7
Bus Power ReqUIr€ments...........covcveeveerierieeneenieeieenee e 3-8
Cabling Requirements for Low-Speed/ Fault-Tolerant CAN........... 3-8
NUMDBET Of DEVICES ..couvveiiiiiiieniiiiiie ettt 3-9
TErMINALION ...veereieeiiieiieeieeree ettt ete et et sae et e ebeesaeesebeesbeesaneenes 3-9
Determining the Necessary Termination Resistance for the Board.. 3-10
Single Wire CAN Physical Layerccccoecveriercieenienieeiesieeieenee e 3-11
TTANSCEIVET c.uuvieiieeiiieiie st eiee ettt etteeite et esiteeaeebeesabe e saesnseebeenaseenses 3-11
Bus Power ReqUITEMEents.c.covveeieerierieenienieeiiesee e 3-12
Cabling Requirements for Single Wire CANcccoocvevivirrieneennnen. 3-12
Cable Length......cccuoviieieiiieeeteeteeee e 3-12
NUMDBET Of DEVICES ..couvveiiiieiieeiiiiiie ettt 3-12
Termination (Bus Loading)cceceevveerieriieenieniieieenee e 3-12
External CAN TranSCeIVETccueeruierieeiiieniieeieenieesieeieesreesteessresbeessnessseensns 3-12
PANOULS ...ttt ettt st ettt et et beeaaeeenas 3-13
PXI1-8511/8512/8513 and PCI-8511/8512/8513.......ccovvveererererenns 3-13
C Series NI 9861/9862ccceevvieeerieeeieeieeieeieesteereeveseesseseeesesnnens 3-14
NI-XNET CAN HS/FD Transceiver Cable.........cccoceeeveeriienvenneenne. 3-15
NI-XNET LIN HardWAreccccverieeiiieniieeiieniiesieesieesteesieesteeieesieesseenseessseesseesssesnnes 3-15
LIN PhySical LaYeT ...cccveeiieriieeieeiiieeieeiee sttt site et site st esite e eniaesebeesanesnee 3-15
TTANSCEIVET c.uvvieuieeiieiiestieiee ettt etteseteeteesibeeaeesseesabeessaessseesaessseenses 3-15
Bus Power ReqUirements.cceeeevverieeienerienenienenieneseeiennens 3-16
Cabling Requirements for LINcccccoverieiiniieninininieneneciceens 3-16
Cable Lengthsccooveiririiniiienenieenteeeeeeteeeee e 3-16
NUMDET Of DEVICES ..couvveeiiiiiieeiiieiie ettt 3-16
TErMINALION ..veeviieniieiieeiieree et ereeete et e sbeesaeeseeebeeseaessbeesssessseenees 3-17
PINOULS ...ttt ettt et e et e st e et sat e et e e tae s b e enaeenrs 3-17
PXI-8516 and PCI-8516ccucoueieieieiiiiesieiee e 3-17
C Series NI 9866 and NI-XNET LIN Transceiver Cable................. 3-18
) E10) 1803 1 USSP 3-18
LEDIS .ttt h et b e bbbttt et a bt e e nt e bt neeae bt b e 3-19
SYNCRIONIZATIONceuteiieiiiiieieciteee ettt st sttt e e 3-21
PXI, PXI Express, and PCI NI-XNETccccocoviiiiininiininieienceneeeeeeeee 3-21
C Series NI-XINET ...c.viiiieiiieieeie ettt ettt sre e ebe e e sebeesaeennse s 3-21

NI-XNET Hardware and Software Manual viii ni.com

Contents

Chapter 4
NI-XNET API for LabVIEW

Getting StArtedcoeeiiiiieiiiieieeee et e e 4-1
LabVIEW PIOJECTeiiiiiiiiiiiieieeitc ettt ettt 4-1
EXAMPLES ..ottt st 4-1
PalEtteS. .. uei et et e e e e e b e e e enraeeearaeans 4-2

Basic Programming MOdelccccooeiiiriiiiiniiiinieiceeeceeeecee e e 4-3

TEETTACES ..ttt ettt st st 4-4
What Is an INterface?.........cooeerieiiiiniiiieiieeteeee et 4-4
How Do I View Available Interfaces?cocccevveeriiinieniienienieineenieeeeee, 4-5

Measurement and Automation Explorer (MAX)cocceeveeriennueennee. 4-5
T/O NAME ..ot s 4-6
LabVIEW Project.....cc.cccieieiiriiiniiienieieneeteecieeeee e e 4-6
SYSEM NOAE ..c.veeiniiiiiiiiiierie ettt 4-6

Databasescc.eorveeuieriiiieiiee ettt et et 4-7
What Is @ Database?cccccoievieririinirieneeieeeeeeeeeere st 4-7
What Is an ALAST......coiiiiiiiiiiiec et 4-8
Database Programmingcccccevciierieniieiniienienicenie ettt 4-9

Already Have FIle?cocovviiiiiiiiiiiiciceecceeeee e 4-9

Can Use File AS IS7..ccuiiiiiiiieieeieeteeeeteeecte e 4-9

Select From File........ccoooiiiiiiniiiiiiiieiecieeeeetee e 4-10
Edit and Selectcoeeiiriiiiiniiieneeiceneceeceee e 4-11
Want to Use a File?......ccooiiiiiiiiiiiciiieececieecccecceeee e 4-12
Create New File Using the Database Editorccocceeveeviiiieeneennee. 4-12
Create i MEMOTYccc.eeviiiiierieeieeneeeie ettt ettt 4-12
Multiple Databases Simultaneouslycceecveeveenieeneenieeniieeneennne. 4-13

SESSIONS ..ttt sttt ettt ettt et ea e est e sae e bt sae et b e st ettt b et sae et saeennesaees 4-13
What IS @ SeSSIONT....couiiiiiiiiiieiiiieieeerceceeeee et 4-13
SESSION MOES ..ottt st 4-14

Frame Input Queued Modecccoevieviiiiiienieniieieeeeee e 4-15
Frame Input Single-Point Mode.........ccccoeviiiriiniiiinieiienieeeeeeee, 4-18
Frame Input Stream Modecoccoeviiiiiiiniiniiiieiecteeeeeeee e 4-19
Frame Output Queued Mode..........cooouveiiiniinieiiienieeeenee e 4-22
Frame Output Single-Point Mode..........ccoccvevieriiiiniiennieeneenieeieeee. 4-24
Frame Output Stream Mode..........cceeveeviiriienieniieienieeeesee e 4-27
Signal Input Single-Point Mode...........ccoecuerriierieriiienienieeiieeieeene 4-29
Signal Input Waveform Mode...........ccoceevieriinneeniinieenienieeieeeene 4-32
Signal Input XY MOde.....cccueevveriieiienieiiienieeieesite e 4-35
Signal Output Single-Point Mode..........ccccueeveenieniinneenienieeneeneenn 4-37
Signal Output Waveform Mode.........cccceevueenienienieenienieeieenee e 4-38
Signal Output XY MOdEoovieviiiiienieeiienieeieeniteee et 4-41
Conversion MOdE......c..coveieriieniineeniinienienteneneee ettt 4-45

© National Instruments ix NI-XNET Hardware and Software Manual

Contents

How Do I Create a SeSSI0NT ...c..cocverieriiriiriinieeienieeieneereteeresie e enees 4-47
LabVIEW PIrOJECtcoviiiiiirieeiienieeieesite ettt s 4-48

XNET Create SeSSI0N.Vi...cooireerienierreniierenienieneeeeenieseeniesieesnenaeens 4-48

USINZ CAN L.ttt ettt ettt ettt et e st e s bt e st e e bt e sabeesbeesabeenbeesstesnseenseesases 4-48
CAN FD, ISO Versus NON-ISOcoouiiiiiiiiiiiiiieieieeiceieeeeeeeeeeeeeeeeee e 4-48
Understanding CAN Frame Timing........cccoceeveeniirieenieniiienienie e 4-49
Configuring Frame I/O Stream SeSSionscccceevvieeriercieenienieeneesieeieeanenn 4-49

USING FIEXRAY ..coviiiiiiieiieciteeee ettt ettt ettt sttt esaeesaaeenbes 4-50
Starting COMMUNICATION ...euvieruieriieeiienieeiiesteeteertee e eteesteebeesaeesareeseenaees 4-50
Understanding FlexRay Frame Timing.........cocceveviereenieniiienienieeieenieeieene 4-52
Protocol Data Unit (PDU)c...oiiiiiiiiiieeieeeee et 4-52

USING LIN .ottt ettt et ettt e sate st e e bt e ssaeasaeesabeenseesabeessaesnseenses 4-52
Changing the LIN Schedule.........c.ccocuereiiiiiiniiiniienieeieceeceeeeee e 4-52
Understanding LIN Frame Timingccccoeceeveeniiiniieenienieenieneeeieeseeeve e 4-53

LIN DIQZNOSHICS 1.veeuvreeieeiieniieeiieiieeitenieesteesiteeteeteessseesseesaseenseesssesnsaesssesnses 4-53

Special Considerations for Using Stream Output Mode with LIN 4-53

Using LabVIEW Real-Time.....ccccevcuiiriiiriieiiieniecitesteeie ettt eve e st esanesae e 4-53
High Priority LOOPS ..cccviiciieriieiieiiieeieesite sttt sttt et sbeesane e 4-53

XNET I/O NAMES......ceuveieereiieiteniteienieetesiteneesieetesite e sitetessse st eaeeseesaeesaeenees 4-54
Deploying Databases........c.eevveerieiriierieeiiienie et erieesteerreeseesteeseesreessaesaseenees 4-55
Memory Use fOr Databases.........ccoveerveerieiiienieenieeieecieeieesre e e see e 4-55
FlexRay Timing SOUICEcccceoueriiriiriiiinieneeiteniertenieeeeteeiee et 4-55
Creating a Built Real-Time Applicationc..cccceeeevvinienieneencneeneneeieniens 4-56

J1O939 SESSIONS ...cvtinieriieniiritenteetete ettt ettt ettt sttt ettt bt e et eae e et be et 4-56
Compatibility ISSUEcc.eeiiriiiiiiieiireiieee et 4-56

J1O939 BaSICS .eeuviieeieiiieieeiteieet ettt ettt s s s 4-57

Node Addresses in NI-XNETc...cocoiiiiiniiniiiinnieeeteeeeieeeeseeeee e 4-59

Address Claiming Procedurecoccovereeiieniiiinieiiinienicncencneene e 4-59
TransSmitting Framescoceveriiriinienieiinienccteneteeeeeee et 4-60
Transmitting Frames without Granted Node Addresscc.cceceeceerereenuennen. 4-60

Mixing J1939 and CAN MeSSAZES....cc.eevuerieruerienierienienieienrenieeeeneesieenaesaees 4-60
Transport Protocol (TP)coeeiiniiiiniiiiiiceeeeeeeee e 4-60
NI-XNET SESSIONS. ..ccutitiiieniieitiniieienieeteniteniesteetesbtestesitetessee st seeeseesaeenaesaees 4-61

Not Supported in the Current NI-XNET Versioncccceeveveeveneenieneeneenne. 4-61

Signal RANGES ..c..coviriiiiiiiiiiiiieeciceteeeeee e 4-61

NI-XNET API for LabVIEW Reference.........ccceveevereeniinienenieniiniieieseeeeseeeeseenes 4-62
XNET SeSSi0N CONSIANL......ccuvitirieieeiiitieienieeitenieetesieetenbeeiee st eeesteeneeseeenees 4-62

XNET Create SESSIOMN. VI .ecveeuierierienieeiienieeienieeiteniesitesieetenteeite st eeesteeaeesaeenees 4-63

XNET Create Session (CONVErsion).Vi........cc.cceeeeeecueeeeeneeeesueeeeennenn 4-64

XNET Create Session (Frame Input Queued).vi......ccccovereeienennnene 4-65

XNET Create Session (Frame Input Single-Point).vicc.cccc..... 4-66

XNET Create Session (Frame Input Stream).vi.......cccceeeveeeenennnens 4-67

XNET Create Session (PDU Input Queued).vicocceverienieneenennces 4-69

XNET Create Session (PDU Input Single Point).vi.........cceceruennee. 4-69

NI-XNET Hardware and Software Manual X ni.com

Contents

XNET Create Session (Frame Output Queued).Vi.......cccecvveruvennennee. 4-70
XNET Create Session (Frame Output Single-Point).vi 4-71
XNET Create Session (Frame Output Stream).Vi.........cceceeeeveeeennee. 4-72
XNET Create Session (PDU Output Queued).Vi......cooceevveerueenenennee. 4-74
XNET Create Session (PDU Output Single-Point).vicc......... 4-74
XNET Create Session (GeNeriC).Vi.......ccooevveeeeeeriivreeeeeniveeeeeesiveeees 4-75
XNET Create Session (Signal Input Single-Point).vi..........c.cc..c...... 4-77
XNET Create Session (Signal Input Waveform).vi......c..cceccoeeneenen. 4-78
XNET Create Session (Signal Input XY). Vi .ecceeveverveeniencieeneeneennne. 4-79
XNET Create Session (Signal Output Single-Point).vi 4-80
XNET Create Session (Signal Output Waveform).vice........ 4-81
XNET Create Session (Signal Output XY).Vi cccecveeveeriercieeneennennne. 4-82
XNET Session Property NOAe........cooveeiieriiiiiienienieeneeeeeeiee et esiee e 4-83
Interface PrOpertiescocvevieeriienieeiieeieeieeseeete et 4-84
CAN Interface Propertiesccccceevveeeeveenieenieeneesieeneennes 4-84
Interface:CAN:64bit FD Baud Rate..................... 4-85
Interface:CAN:Disable Protocol Exception
Handlingcccoocveevieniiienieniienieeeeeee e 4-88
Interface:CAN:Enable Edge Filter....................... 4-89
Interface:CAN:External Transceiver Config 4-90
Interface:CAN:FD ISO Mode........cccceeerveennnen. 4-93
Interface:CAN:I/O Modecoovevverneeneeeieennen. 4-94
Interface:CAN:Listen Only?.......ccccceevverveeueennen. 4-95
Interface:CAN:Pending Transmit Order 4-96
Interface:CAN:Single Shot Transmit? 4-98
Interface:CAN:Terminationccceeeeerveenenennee. 4-99
Interface:CAN:Transceiver Stateceeueenee. 4-101
Interface:CAN:Transceiver Type.....ccccceevveeueenne. 4-104
Interface:CAN:Transmit I/O Mode...................... 4-106
Interface:CAN:Transmit Pausec..cccccveeueeneee. 4-107
FlexRay Interface Propertiesccoccevveenieeneenieeinieennennns 4-108

Interface:FlexRay:Allow Passive to Active......... 4-110
Interface:FlexRay:Auto Asleep When Stopped...4-111
Interface:FlexRay:Cluster Drift Damping............ 4-112
Interface:FlexRay:Coldstart?cccccceevveeueennen. 4-113
Interface:FlexRay:Connected Channels............... 4-114
Interface:FlexRay:Decoding Correction 4-115

Interface:FlexRay:Delay Compensation Ch B.....4-117

Interface:FlexRay:Key Slot Identifier.................. 4-118
Interface:FlexRay:Latest TX....c..ccocevereevennenenne 4-120
Interface:FlexRay:Listen Timeoutc..c...... 4-121

© National Instruments Xi NI-XNET Hardware and Software Manual

Contents

NI-XNET Hardware and Software Manual

Interface:FlexRay:Macro Initial Offset Ch A 4-122
Interface:FlexRay:Macro Initial Offset Ch B 4-123
Interface:FlexRay:Max Driftcccccoeevvvniennnnnne. 4-124
Interface:FlexRay:Micro Initial Offset Ch A....... 4-125
Interface:FlexRay:Micro Initial Offset Ch B....... 4-126

Interface:FlexRay:MicroticK........cccccevverrueennennee. 4-127
Interface:FlexRay:Null Frames To Input Stream?4-128
Interface:FlexRay:Offset Correction 4-129
Interface:FlexRay:Offset Correction Out 4-130
Interface:FlexRay:Rate Correction...................... 4-131
Interface:FlexRay:Rate Correction Out............... 4-132
Interface:FlexRay:Samples Per Microtick........... 4-133
Interface:FlexRay:Single Slot Enabled?.............. 4-134
Interface:FlexRay:Sleep......cccccevvveereerieeneennennne. 4-135
Interface:FlexRay:Statistics Enabled? 4-137
Interface:FlexRay:Symbol Frames To Input
Stream?.....ooeevireenerieneeeeeee e 4-138

Interface:FlexRay:Sync Frames Channel A Even4-139
Interface:FlexRay:Sync Frames Channel A Odd. 4-140
Interface:FlexRay:Sync Frames Channel B Even 4-141
Interface:FlexRay:Sync Frames Channel B Odd. 4-142

Interface:FlexRay:Sync Frame Status 4-143
Interface:FlexRay:Termination...........cc.cceeveenee. 4-144
Interface:FlexRay:Wakeup Channel.................... 4-145
Interface:FlexRay:Wakeup Pattern...................... 4-146
LIN Interface Properties......cccceevuerveeeneesieeneenieenieneeennes 4-147
Interface:LIN:Break Lengthcccccevvveiiennnnne. 4-147
Interface:LIN:DiagP2minccccceeveevveeniennennne. 4-148
Interface:LIN:DiagSTmin.......ccoceevverveeneennenne. 4-149
Interface:LIN:Master?ccccevvveereenieeneennenne 4-150
Interface:LIN:Output Stream Slave Response
List By NAD ...cociiiiiinieeeeeeeee 4-151
Interface:LIN:Schedulesccocceeveeviieniieneennee. 4-152
Interface:LIN:SIEepcccoevevvvievieeieniieieeiene 4-153
Interface:LIN:Start Allowed without Bus Power?4-156
Interface:LIN:Termination...........ceeceevveenneennennne. 4-157
Source Terminal Interface Properties...........cccceevveeneeennnen. 4-158
Interface:Source Terminal:Start Trigger.............. 4-158
Interface:64bit Baud Rate..........ccceevvieviiiiieniiiiieieeiene, 4-159
Interface:Echo Transmit?cceceevieerererieeneeniienienneene 4-163
Interface:I/O NamMe.........coovvevviriiienieeeeie et 4-164
Interface:Output Stream LiSt.......ccocvevveerciieniieenieenieeieennen. 4-165
Interface:Output Stream List By ID ...c...ooovvvieviiiniennenne. 4-166
Interface:Output Stream Timingocceeevveereerciienvennennne 4-167
Xii ni.com

Contents

Interface:Start Trigger Frames to Input Stream?................ 4-171
Interface:Bus Error Frames to Input Stream?..................... 4-171

Session: Application Protocolcccceevvevvieenieneeenieennnen. 4-172

SAE J1939:ECUccvioiieieitceeeeeeeeeeete et 4-173

SAE J1939:ECU BUSY ..ccveoiieiieiieiieeeie et 4-174

SAE J1939:Hold Time Th........ccceeivierierieieieieeeereeene 4-175

SAE J1939:Maximum Repeat CTS.........cccoeeevierireneennnnne 4-176

SAE J1939:Node AdAresscocveevveereenveeneeneesieereenenenn 4-177

SAE J1939:NodeName........cccceveveerreerieerieerieeieenieesveeeeens 4-178

SAE J1939:Number of Packets Receivedccccceeueenee. 4-179

SAE J1939:Number of Packets Response.........cccccevueennen. 4-180

SAE J1939:Response Time Tr_GD.......cccceecvvevevenverveencnne 4-181

SAE J1939:Response Time Tr_SDccocevveenieniienieennnnne 4-182

SAE J1939:Timeout T1cccoecveveiiiniinieeiienieeieeee e 4-183

SAE J1939:Timeout T2cocveveiiirienieeiienieeieeiee e 4-184

SAE J1939:Timeout T3ccooveeiiiirienieeieerieeieeee e 4-185

SAE J1939:Timeout T4cccevcvierienieeiienieeieeriee e 4-186

Frame Propertiesccuevveiiierieniiiieeeieeiee st 4-187
CAN Frame Propertiescccevveevieenieenieenieeneesreeneennnes 4-187
Frame:CAN:Start Time Offset........cccecevevveenennee. 4-187
Frame:CAN:Transmit Timeccceceevveervennenne. 4-188

Frame:ACHVEoovvieriieiieiecieete ettt 4-189
Frame:LIN:Transmit N Corrupted Checksums.................. 4-190
Frame:Skip N Cyclic Framescccceeevveeneneecicneninenenne 4-191

AULO STATE? weeiiieiie ettt ettt e sebe et e e iteebeenaeesebeenseesnnes 4-192
(11T} 1< SRR 4-193
DaAtabASEveeeieeiieeiieeie ettt et ebees 4-194
LiSt Of FIamescoovieeiieiiieiieeie ettt 4-195
List of SIgNAlS c..oouveniiiiiiiiiiieicee e 4-196
IMOAE ..ttt ettt ettt ettt et st ae e et e baennbeenbees 4-197
NUMDET 11 LISt .uviiiiieiieeie ettt 4-197
Number of Values Pendingccoceveevieneenenennencnnencniencneenene 4-198
Number of Values Unused..........ccocveevieeniiiiiienienieenieeie e 4-199
Payload Length Maximum.........ccccccceveenenienenienenieniencenc e 4-200
PrOtOCOL ..ottt et aee e 4-201
QUEUE SIZE ..ottt et et e et e e etee e ereeeens 4-202
Resample Rate.......cc.ooveiiiiiiiiiiiiiiiciicecceeee e 4-208
XINET REAA.VI .ttt st 4-209
XNET Read (Frame CAN).VI ..cuoiieiiiiieiieeeieeeeee e e 4-211
XNET Read (Frame FIexRay).viccccevvereenenieiieniiniinceic e 4-215
XNET Read (Frame LIN).Vi.....ccooooiiiiiiiieeiiieeeee e 4-220
XNET Read (Frame Raw).Viccccuiiiiiiiieiiiiieiec e 4-225
XNET Read (Signal Single-Point).vi......ccccoooeeverenieneenenennieneeeene 4-228
XNET Read (Signal Waveform).vi......cc.coceevenierieneenencnnenceneennen. 4-229

© National Instruments Xiii NI-XNET Hardware and Software Manual

Contents

XNET Read (Signal XY).Viu.eeccioreeieeniieiieeieeneeeieenee e 4-231
XNET Read (State CAN COMM). VI veeceoviirriiieeiiireeeeeeeireeeeeeeiveeeeens 4-234
XNET Read (State FlexRay Comm). Vicceecverrrieniennieenienrenieene 4-238
XNET Read (State LIN COmMM).Vi..uooiieerviniieeeiieieeeeeeiieeeeeeereeeeenn 4-242
XNET Read (State SAE J1939 Comm).Vi......ccoovvvveeeeevneeeeeienreeeeenn. 4-247
XNET Read (State FlexRay Cycle Macrotick).viccceeveeveenennne. 4-249
XNET Read (State FlexRay StatiStics).Vi....coeceerieriersieenienienieenne 4-251
XNET Read (State Time COmm). Vicoovveeeeeeeiveeeeeeeireeeeeceireeeeens 4-253
XNET Read (State Time Current).Vi......cccveeeeeeeveeeeeeiiineeeeeeiineeeeeenns 4-254
XNET Read (State Time Start). Vi.....cccocoeevvveeeeeieieeeeeeenreeeeeceeveeeeeens 4-255
XNET Read (State Session Info).Vi.......ooovvveeeeieiieeiiiiiinieieeieiieeeee, 4-257
XINET WL Vi .ectiiiiiiieieitii ettt ettt et 4-258
XNET Write (Signal Single-Point).vicceeeeveveiieeneenieenieenieenne 4-260
XNET Write (Signal Waveform).viccoocceeviercieenienieenieenienieenne 4-261
XNET Write (Signal XY).Vieeoeeoeerierieiieereeeeeeieesee e 4-263
XNET Write (Frame CAN).Vi..cc.ooooviiiiiiieeeiie et 4-265
XNET Write (Frame FIEXRaY).Vi...ccccoeevieniieniiiiieniieeenieeiceeee 4-269
XNET Write (Frame LIN).Vi.....cocooviiiiiiiiieeiieceeeecee e 4-273
XNET Write (Frame Raw).Vic.cooovviiiiiieeiiie e 4-277
XNET Write (State FlexRay Symbol).vi.....cccccoevievieeiinnienienienne, 4-280
XNET Write (State LIN Schedule Change).vi.....cc.cceeeeeviverveenenne. 4-281
XNET Write (State LIN Diagnostic Schedule Change).vi............... 4-284
Database SUDPAIEHEcc.eevieeiieiieeieeee ettt 4-287
XNET Database Property NOde..........ccocveeveenieniiienienieeieenreeieene 4-287
CIUSEETS ettt ettt ettt sttt 4-288
ShowInvalidFromOpen?cccceevveevierieenieenieeeenieeenn 4-289

XNET Database Constant..........cceeeevvereeienerieeneeeenenseeneseenennens 4-290
XNET Cluster Property Node.......c..ccoceeeeviinieienenniinenieneeieniennens 4-290
FlexRay Propertiescocceevererierienieneneeneneeeneeieniens 4-291
FlexRay:Action Point Offsetc...ccccecveveneenene 4-291

FlexRay:CAS Rx Low MaX.....c..ccocevervuenenucnnene 4-292
FlexRay:Channels........ccccceoeevineencncincnennicnens 4-293

FlexRay:Cluster Drift Damping.........cc.cccccevuennee. 4-294

FlexRay:Cold Start Attempts.......c.ccoceevereeruennnene 4-295

FIexRay:CyCleccccoveriieiiniiiinieicnceienecienine 4-296
FlexRay:Dynamic Segment Start...........c..coueueee. 4-297
FlexRay:Dynamic Slot Idle Phase............c..c...... 4-298

FlexRay:Latest Guaranteed Dynamic Slot 4-299

FlexRay:Latest Usable Dynamic Slot.................. 4-300

FlexRay:Listen NOIS€ccceveveerereeneneeniennnns 4-301

FlexRay:Macro Per Cycle........cccceoereenenennicnnnne 4-302
FlexRay:Macrotickcc.cocuevemiencniencneenennne 4-303

FlexRay:Max Without Clock Correction Fatal.... 4-304
FlexRay:Max Without Clock Correction Passive 4-305

NI-XNET Hardware and Software Manual Xiv ni.com

© National Instruments

Contents

FlexRay:Minislot Action Point Offset 4-306
FlexRay:Minislot.........cooeeveeriiniieenienieeneeneeene 4-307
FlexRay:Network Management Vector Length ...4-308
FlexRay:NIT Start......ccccceevveeveenieeneeniesieeieeane. 4-309
FlexRay:NIT......cccceriiiiiienieeiieieeieeee e 4-310
FlexRay:Number of Minislots..........cccceerverrueennen. 4-311
FlexRay:Number of Static SIots........cccceevuveruenee. 4-312
FlexRay:Offset Correction Start...........ccocveeuennee. 4-313
FlexRay:Payload Length Dynamic Maximum.....4-314
FlexRay:Payload Length Maximumc..c...... 4-315
FlexRay:Payload Length Static.........c.cccccueeueennee. 4-316
FlexRay:Static SIOt........cccevveeriiinienieniieieneeene 4-317
FlexRay:Symbol Window Startc..ccecveeueenne. 4-318
FlexRay:Symbol Windowccceeceevvirnieeneennne. 4-319
FlexRay:Sync Node MaXcccocceeveenveenieeneenne. 4-320
FlexRay:TSS TranSmitter.........c.ccevvverveerreeneennne. 4-321
FlexRay:Use Wakeup........ccoeevveviverciencieeneeniennnenn 4-322
FlexRay:Wakeup Symbol Rx Idle........................ 4-323
FlexRay:Wakeup Symbol RX Lowc.ceueee. 4-324
FlexRay:Wakeup Symbol Rx Window 4-325
FlexRay:Wakeup Symbol Tx Idle.............cc......... 4-326
FlexRay:Wakeup Symbol Tx Low..........c.ceeuenee. 4-327

64bit Baud Rateccoeeviriiriiiiieieeeecee e 4-328
Application Protocol..........ccceeevievineeninennenenicnienieiene 4-329
CAN:64bit FD Baud Rate.........cccoveveiiincnieninicicnieiee 4-330
CAN:FD ISO Mode.......cocieiinieiiniinieniecieneeeneereieeiene 4-331
CANT/O MOdE ..ot 4-332
COMIMENL ...eviiiiiiieiieiteie ettt ettt 4-333
Configuration Statuscccceveerierernienerienenienenreeeeene 4-333
Database........coeeierieiiiniieieee e 4-334
BCUS ettt 4-334
Framesooeevieriiiiniiienccce et 4-335
LIN:Schedulescooceveiieniniiniiiiinienceeenceeeneeeeee 4-336
LINITICK covveiieiieiteiciteete ettt 4-337
Name (SHOTL)vviieiiiicieeeee e 4-338
PDUS ..ttt 4-340
PDUS Required?coceeeieneeiininieneeieniceienceienieeeniene 4-341
Protocol.....co.eoiiiiiiiiiiiecee e 4-343
SIGNALS vt 4-343
XNET CIuster CONSTANTcc.eevvereereiriierienienieniteniestenieeneenieeeeseeenees 4-344
XNET ECU Property NOde........cocceouererieniinienieieneeeeceie e 4-344
CIUSET ..ottt ettt ettt b 4-345
FlexRay:ColdStart?cccoeeevierieneneeieneeieneevenieeenieene 4-345
FlexRay:Connected Channels..........ccccooceveenenenienenienene 4-346

XV NI-XNET Hardware and Software Manual

Contents

FlexRay:Startup Frameccccccoveevieniiiinienieniienieneee 4-346
FlexRay:Wakeup Channels.........cccoeceevvievienieniiieniennennne 4-347
FlexRay:Wakeup Pattern.........cccocceeveereiienieniieiiienieeieee 4-347
COMIMENL ...ttt ettt ettt seee e 4-349
Configuration StatusS.........ceereeerveeriieniienieenieeiee e eeeeieens 4-349
Frames Receivedcccocvevieiiininiinininiiciicicnicicee 4-350
Frames Transmitted........c.cccoeveevienieneneenineencneceneenens 4-350
LIN:MASEEI? ..eeoniiiiiiiiiieieneetceteeteeieete et 4-351
LIN:Protocol Version........cccceceevuerieeeenieneeneneeneneennennens 4-351
LIN:Initial NAD ...ccooiiiiiiiiieeeeeeceeee 4-352
LIN:Configured NADccccevviiiiiiiienieeeeeee et 4-352
LIN:Supplier IDcoociiviiiiiiiiicieeeee e 4-353
LIN:Function ID......c.ccocceviniininieniinieineeicneeeneevenieene 4-353
LIN:P2MiN...coovcoiiiiiiiiicicneeceeetceeetc et 4-354
LIN:STIMIN oottt 4-354
NaAME (SHOTL) c..vviiiiiieiiie et e 4-355
XNET ECU CONSANLcouvereeeiiniieiinieerenieeienieentenieeeenieeniesieeenenieens 4-357
XNET Frame Property NOde........ccceoveviiirieenieniieienee et 4-357
CAN:Extended Identifier?..........ccoeeveeneneeneneecicncnnncncnns 4-357
CAN:I/O MOde....c.einienienieiiiieineseseereeteee e 4-358
CAN:TIMING TYPE covvveeerieiieeieeieerieeteerite e 4-359
CAN:Transmit TIMecccevveevuerveenireeneneerieneeieeeeeseeaee 4-361
Application Protocolcccecveviiriieenieniieieenie e 4-362
CIUSLET vttt ettt s 4-363
COMIMENL ...ttt ettt ettt s 4-363
Configuration Status........ccocceeerereenerienenieeneneeeseenee e 4-364
Default Payload.........cccoovevvieeniiniieiieieceeee e 4-365
FlexRay:Base CyClecccveeriirieiinieniineeieneeeneeienieae 4-367
FlexRay:Channel Assignment.............coccecuevervuenenvenennens 4-369
FlexRay:Cycle Repetitioncccceeecveveeeinennienenicnennens 4-370
FlexRay:Payload Preamble?c..ccccoceeviinenncncnncnennn, 4-372
FIexRay:Startup?.....c.ccooveverienenienienieniceeenicneeee st 4-373
FIEXRAY:SYNCT coiiiiiiiiiiiiiiteiceeceteec et 4-374
FlexRay:Timing TYPeccccevververienieniiniineeienienenieeieneens 4-375
FlexRay:In Cycle Repetitions:Channel Assignments 4-376
FlexRay:In Cycle Repetitions:Enabled?c..ccccceuennen. 4-377
FlexRay:In Cycle Repetitions:Identifiers..........c..ccccceuuennen. 4-378
TAENtIET ..o 4-379
LIN:CheCKSUM «...eoueiiiiiieieniieienieeieeitec et 4-381
Mux:Data Multiplexer Signal..........ccccoocerveeneniienenicnennns 4-382
Mux:Is Data Multiplexed?ccccoceeveneevinennenenienenens 4-382
Mux:Static SIZNAlScovvervirrieriiiieiieieeteeee e 4-383
MUux:SUDfTAMES ...c..eeveiieiiiniieieneeie et 4-383
NAME (SHOTL) c..veiiiiieeiie e e 4-384
NI-XNET Hardware and Software Manual Xvi ni.com

Contents

Payload Lengthcccccovciiriiiniiniiiiecieceeieeee e 4-386
PDU_MapPIng....coceeveeriieiienieeitesteeieenie et 4-387
SIZNALS ©envieiitieiierie ettt ettt sttt 4-388
XNET Frame CONStant..........ceecveerieeriueeiieeneeeiieenieesieeseesreenseeseesnnes 4-389
XNET PDU Property NOdE........coceerieriieriieieeniieeieeneeseeeiee e 4-389
CIUSELT ..ottt ettt nie e 4-390
COMIMENL ..c.eiiiiieiieiieieteete ettt 4-390
Configuration StatUSc.eeeeveereeerieerienieeieenee e eae s 4-391
Framescocooeiiiiiiniiiiiicceee e 4-392
Mux:Data Multiplexer Signal........ccccoecviriienieniiienieneennne. 4-392
Mux:Is Data Multiplexed?.........ccoceveieeriieniiencieenienieeieen 4-393
Mux:Static SigNalS.....c.ccocverviieriieniieiierieeieeteeee e 4-393
Mux:Subframescc..coeeeeerirrieninienenieeneneseeeseeiene 4-394
NAME (SNOT) woeeiiieiiiiieeeeeeee e 4-395
Payload Length........ccccoviiviiiiniiniiiiieiecceeeee e 4-396
SIZNALS wevvieiiieieeiie ettt ettt et e st e e e e sabeebeensae e 4-397
XNET PDU CONSANT...cccuvietieiieriieniieeieeieesveeieenieeeieenieesereenseesenes 4-397
XNET Subframe Property NOdecocceevieeieenienieenienie e, 4-398
Dynamic Signals........ccceceerieriienienieeieenie e 4-399
Frameocooieviiiiiiiceec e 4-399
Multiplexer Value.......ccoceevieeciienienieeieenieeieenee e 4-400
NAME (SROTL) .evvieiiiieeiie e e 4-401
PDU et e 4-403
XNET Signal Property NOdecocceverienernieniniienieiencnieneeeenene 4-404
BYte Orderoooviiiiiiieeiieeeeeeetese et 4-405
COMIMENL ...ttt 4-407
Configuration Statusccceveevererneenerrienenienenreieeeenne 4-408
Data TYPE .eovveieeieiieieieetceeteeeeetsee e 4-409
Default Value.......cccocveririininiininienciteeneeeseeeseiee 4-410
Mux:Dynamic?coceevierieninieninieneieeienteesieeesieeie e 4-411
Framec.cooieviniiiiiicee e 4-412
Maximum ValUecoeevieriniininiinieiienienieneeeeeeveniene 4-412
Minimum ValUe......c..ccouevieriinieniinienieneeieneeieneereeeeeene 4-413
Mux:Multiplexer Valuecccoceevireeninennenenienenieene 4-413
Mux:Data MultipleXer?ccceeevvenereenenennenenienieneene 4-414
NamMeE (SROTL) ..vveeieiiieeiiie e e 4-415
NUumber of Bitsc..coveriiriiniiiiiniinieneeteereeeeeeeeiee 4-417
PDU ettt e 4-418
Scaling Factor........coccoveiiiniiiiniiiiiencceec e 4-419
Scaling OffSetcouereeririeiiieneeteeeeeeee e 4-419
SEATt Bl c.eeeeeeieieceeeeeese e 4-420
MuUx:SUbfTameoveiuveiiriiiieieeeeeteeeee e 4-422
UL ettt ettt s 4-422

© National Instruments XVii NI-XNET Hardware and Software Manual

Contents

XNET Signal CONStantceveeeveerieeieeriienieenieenieeeieeseeseeesseesanesnees 4-423
XNET Database OPEN.Vi ...ccceeecveerierierriierieenieenieeieeneeseeeenieesne e 4-423
XNET Database ClOSE.Vi.....cceecveereieerieenieriieeniienteenieeneesreesieesaneennes 4-424
XNET Database Close (CIUSter).Vi......ccoevvveeeeeeirveeeeeeennnen. 4-425
XNET Database Close (Database).Vi.......c.cccccoevvveeeeeeennnee.. 4-426
XNET Database Close (ECU).Vi......oooeevvveeeeeevvreeeeeeennnenn. 4-427
XNET Database Close (Frame).vicccocveeeevvivveeeeenennnne.. 4-428
XNET Database Close (PDU).Vi......cccoovvvveeeeevvneeeeeeennnen. 4-429
XNET Database Close (Signal).Vicccceevvercveeniienvencneene 4-430
XNET Database Close (Subframe).vi...........ccoeevveeeeeennnen.. 4-431
XNET Database Close (LIN Schedule).vicccccveeeeeennnees 4-432
XNET Database Close (LIN Schedule Entry).vi 4-433
XNET Database Create ObJeCt. Vi......cceeeveereereersiiereenieeieenresaeennes 4-434
XNET Database Create (Cluster).Vi........cccceeevveeereveeennnenn. 4-435
XNET Database Create (Dynamic Signal).vicc........ 4-437
XNET Database Create (ECU).Viccccveevvveeecriieeireeenneen. 4-439
XNET Database Create (Frame).vi.........cccceeeeeuvreecrreennnennn. 4-440
XNET Database Create (PDU).Viccccveeeeuieeeciiieeiieeenneen. 4-441
XNET Database Create (Signal).Vi.......cccecveeveeeriverueeneenne 4-442
XNET Database Create (Subframe).vi.......c.cccccveeeeuveeennnenn. 4-443
XNET Database Create (LIN Schedule).vi..........ccueeeneee. 4-445
XNET Database Create (LIN Schedule Entry).vi.............. 4-446
XNET Database Delete ObJeCt. Vi.....cccevveereereersiienvenreeieenresaeennes 4-448
XNET Database Delete (Cluster).Vi.........cccveeeeveeecereeennnenn. 4-449
XNET Database Delete (ECU).Viccouveevrieeeiieeeiieeeneen. 4-450
XNET Database Delete (Frame).vi........cccccveeeeuveeeneeennnennn. 4-451
XNET Database Delete (PDU).Viccoveeeeiveeeiiieeiieeenee. 4-452
XNET Database Delete (Signal).vi....c..ccocereeevenencvenennene 4-453
XNET Database Delete (Subframe).vi.........ccccoveeeeuveeennenn. 4-454
XNET Database Delete (LIN Schedule).vi..........c.e........ 4-455
XNET Database Delete (LIN Schedule Entry).vi.............. 4-456
XNET Database Merge.vic.ccecuerueevienieeieneniienieeeeneneenieseesiennens 4-457
XNET Database Merge (Frame).vi.......ccccevevveereriencnnens 4-458
XNET Database Merge (PDU).Vi «..cccccoeviininiencnicicnnes 4-460
XNET Database Merge (ECU).Vi ...ccccoeveenenienenicnicnnns 4-462
XNET Database Merge (LIN Schedule).vi.......c.ccccevuenneee. 4-464
XNET Database Merge (CIuster).Vi.......cocceeceeveenerienennnens 4-466
XNET Database SAVE. Vicccveeevierieeieeniierieenieenireeieeseesereesseessesnnes 4-468
XNET Database EXPOrt.Vi.....ccccecveriererrienienineenieneenieneenieseenienieens 4-469
File Management Subpalettec.ccoceevuerieiieneeniinenieneeienenieene 4-470
XNET Database Add Alias.Vi.....ccceeeerveerreeneesieenieennennnes 4-470
XNET Database Remove Alias.Vi......cocceeevereveeniiennennenne 4-472
XNET Database Get LiSt.Vi ...cc.eeveerveeciienieeieeiienieeveene 4-473

NI-XNET Hardware and Software Manual

XViii ni.com

Contents

XNET Database Deploy.Vi......cccocveveeniiriieenienieeieeneeeene. 4-475

XNET Database Undeploy.Vi.......cccceeveerieeniieneenreenieennnn. 4-477

XNET LIN Schedule Property NOdecccoevevveeniienieeniieenieniennenn 4-478
CIUSTET .ttt ettt ettt et ettt naee e 4-478
COMMENL ..eeniiieiiieiieeieerte ettt et et e sebeesbeesaeeeees 4-479
Configuration StatUScc.eeevveereerieeniiente et see e 4-480

ENUTIES oot 4-481

NAME (SNOT) woveiiiiiiiiiieeeeeeee e 4-482

PrIOTIEY weeeeiieieeeie et 4-483

RUN MOAE ...t 4-484

XNET LIN Schedule Entry Property Nodeccocceevvenierieeneeenen. 4-485
Collision Resolving Schedule...........ccecvvvvieenieniiinnieeneennne. 4-486

DIAY ..ttt 4-487

Event Identifier........coccovvieriieriiieniieiceiceieeeese e 4-487

Framescoocueeiioniieiieiceecet e 4-488

NAME (SNOTI) wovviiiiiiiieeeeeeeeee e e 4-489

Node Configuration:Free Format:Data Bytes..................... 4-490
SChEULE. ..ot 4-491

TYPC ettt et 4-492

XNET Database Get DBC AtribDULe. Vi.....ocveevveervierieenienieeieeneeeene 4-493
INOLIEY SUDPALELLE......evieiieiiiiiieieeeie ettt ettt s e s 4-495
XNET WaIt.VI .ottt 4-495
XNET Wait (Transmit Complete).Vi......cocceevvenrrereeneennee. 4-496

XNET Wait (Interface Communicating).vi.......cccceceeevenueeee 4-497

XNET Wait (CAN Remote Wakeup).Vi.....cceceeeevverreennnennne. 4-499

XNET Wait (LIN Remote Wakeup).Vi......ccceeverevrereennennne. 4-500

XNET Create Timing SOUICE. Vi....ccccreeruerernienienieneeieneeieneeneennens 4-501
XNET Create Timing Source (FlexRay Cycle).vi.............. 4-501
Advanced SUDPALELLEcc.eoieiiiriiiiieicreecte e 4-510
XINET SEATT. VI ceveveiiieieieieeeeeet ettt sttt ebe s s 4-510
XINET StOP.Vieueeiieiiriieiinieeiinieeie sttt sttt sate e 4-513
XINET CIEAT VI c.vvveeevieiieeiieeiienieeieeseeeteesieesveesteeseeesseenseessseenseesnnes 4-515
XNET FIUSR. VI ettt 4-516
XNET Connect TerminalS. Viocveecveeeieenieerieenienieenieenreeieeneesenes 4-517
XNET Disconnect Terminals. Vi........cceeevevveerieeneeiiieeneeneeerieeneeeenes 4-524
XNET Terminal CONStant......cccueecveerveeiueerieenieerieenieesieeneesveesseennnes 4-525
XNET System Property NOde.......c..cooevienenienienieniiieneneeneneeens 4-525
DEVICES .eoviieiieiie ettt ettt ettt 4-526
Interfaces (FIEXRAY) ..cccueveeviiriininiiniiiieieneeceeeeeeiee 4-526
Interfaces (All).....cceiieciiieeiieceee e 4-527
Interfaces (CAN) ..vvieeoieieeee e 4-527
Interfaces (LIN) ..ocvviieiiiieiie e e 4-528
Version:Build........ccoooveeiiiiniieiieieeecece e 4-529
Version:Major......cc.eeveriieieniieiiniieienieeteneee et 4-530

© National Instruments

Xix NI-XNET Hardware and Software Manual

Contents

VErSION:MINOTcoueeviiiiiiieniieeieeiie ettt 4-531
Version:Phase........ccoocuviierieiniiiiecccecceee e 4-532
Version:Update.......cooeeviienienieeniienieeiee e 4-533

XNET Device Property NOde.........ccceeriierieenieniieiienie st 4-534
FOrm Factor.......ooviiiiiiiieeieceeee e 4-534
TNEETTACES ..ot 4-535

Number Of POTtScooviiiiirieiiieieeiceecceeeee e 4-536

Product Name......cccceviiriierieiieenieeeeiee e 4-536

Product NUMDETcccuviviiiiiiiiiirieeieeie e 4-537

Serial NUMDETooviiriiiiieieeieeieceeee et 4-537

SIOt NUMDETeeiivieiieeiiieiteie ettt st 4-538

XNET Interface Property NOde........cccovvevieenieniieieenieeieenieenie e 4-538
CAN.Termination Capabilityc.ccceeveervveerveniernieeneennnenn 4-539
CAN.Transceiver Capabilitycccccevvverveeriencrieneeneennnenn 4-540

DEVICE...eieiieiieiie ettt s 4-541

INAINE ..ottt ettt ettt st e e saees 4-541

NUIMDET ...ttt s 4-542

POrt NUMDETeviiiiiiiiiiietece et 4-543
ProOtOCOLeiiiieiiieeeeeete et 4-544

XNET Interface CONStantc.eevcveerveeriersieeneenreenieeneesreeseesveenes 4-545
XNET BINK.Vietitiiiiiiieiiiieiesieeiestieeereeeesseseessesreesseseesesseessessenns 4-545
XNET System ClOSE.Vi....eereeeiieriieeieeniienieenieeneeeieeneesereesseesnesnnes 4-547
XNET String to IO Name.Vi..cccveveveerieerieiieenienieeieesee e sivesie e 4-548
XNET CONVETT.Vitetiiruieiiierieeiienieeieesieesieesseeseeeseesseessseesseessesnnes 4-549
XNET Convert (Frame CAN to Signal).Vi......cccceeveevennee. 4-550

XNET Convert (Frame FlexRay to Signal).vic..ccc...... 4-553

XNET Convert (Frame LIN to Signal).vic.cccoeveruennen. 4-556

XNET Convert (Frame Raw to Signal).Vi......c..ccoceveruenen. 4-558

XNET Convert (Signal to Frame CAN).Vi....c..cocceveevenene 4-560

XNET Convert (Signal to Frame FlexRay).vic..cccc..... 4-563

XNET Convert (Signal to Frame LIN).Vi ..c..c.cccoevieiennn. 4-566

XNET Convert (Signal to Frame Raw).Vi.....c..ccoccecvenenne. 4-568
CONLIOIS PaAlBLE ...evveeeeiieiieiie ettt ettt e s e e e seteeaeeaae s 4-570
XNET Session COntrolc.eecveerveerieeniensieenienieenieeseeeveeseesveeens 4-570
Database CONLIOLS.....ccveeruierieeiierieeieerite et ese et eieeeaeesbeesereeaee e 4-570
SYStem CONLIOLS.....c..eeiiiieiirieiierieeiereeteseet ettt 4-571
AddItioNal TOPICS .euveuvieuiiniiiiiniieiene ettt ettt ettt et st sbe e sbeens 4-572
(0175 ¢ 1 | SO STUPRRUSP 4-572
Creating a Built Application.........ccccoeeeenierienienieenenienenieneneeiee 4-572
Cyclic and Event Timingc.ccocceveveenienieiienienieneeieneeie e 4-573
Error Handlingcocceviiiiniiiiiiiiiicieeeeceeetee e 4-574
Fault Handlingccocceveniiniiniiieiceeeeteceeeestee e 4-575
Multiplexed SigNals........coccereeieririenienienieeiene ettt 4-577
Raw Frame FOrmatccoceeeiiinieeieeniieiieeiecee e 4-579

NI-XNET Hardware and Software Manual XX ni.com

Contents

Special Framesoooeeviiriiiniienieeieeeecieetese ettt 4-584

Required Properties.......ooveiieerieriieieeierie ettt 4-589

StAte MOAEIS.....oeiieeiiieciiie ettt ettt e taeeeaaeeea 4-591

TDMS ..ttt e e e b e ra e e eraaaens 4-599

CAN et e et e e e e e e etb e e e st e e e e baeesbaeeetbeeesaresenasaeeeasaaaans 4-604

INTECAN ettt e e e e be e e be e e eabaeesraee e 4-604

CAN Timing Type and Session Mode.........cccceevuveriernieeneenveenieennen. 4-606

CAN Transceiver State Machineccccceeveeeeiieiiieeeiiieeiiee e 4-610

FIEXRAY ...eeettettete ettt ettt ettt st ettt ebae et e ebeesateebaesanas 4-612

FlexRay Timing Type and Session Mode..........cccocvevcvercieenieneennnen. 4-612

Protocol Data Units (PDUS) in NI-XNETccoovvviiiiiiiiieeeeenneen. 4-615

FlexRay Startup/Wakeupcccceeviernierniieniieieeniienieeneenee e 4-618

LIIN oot ettt e e et e e b e e e st e e e e ta e e etae e e abeeenabeeenaaeeebaaaans 4-621

LIN Frame Timing and Session Mode.........c.ccoecveriieriierneenieenieennen. 4-621

XNET I/O NAMES ...c.vviieiviieeiiieeiiieeeiiee et eeteeeeveeeetreeetaeseseveeesavesesasseessseeenns 4-625

I/0 NAMeE ClaSSES....uvviieuriieiiieeiiiieeireeeeteeeeieeeeireeeveeeestreeeaveseereeas 4-626

XNET Cluster I/O Name.........ccovieeeuiieeiiieeieeeeiee et 4-627

XNET Database I/O NAMEc.cccccvvieiiiieeiiieeiiee e 4-630

XNET Device I/O NamE.......cccooviieeiiieiiieeeiieeeiee e 4-633

XNET ECU I/O NAMEoooovievieereeieeeteeeteeetee ettt eeveeeaes 4-633

XNET Frame I/O Name.........cccovvieeiiieciieeeiie et 4-636

XNET Interface I/O NamMEcc.eeeeeiiiiiiiieeiieeies et 4-639

XNET Session I/O NAmMe........cccveieiiieiiieeeiieeeeee et e 4-640

XNET Signal I/O Name........coecveeriierieeiieiieeieeieenieesieenieesveeneee e 4-642

XNET Subframe I/O Name...........ccoovieiiuieeeciiieeiec e 4-645

XNET Terminal I/O NAMEc.cooeeviiiiiiieiiieeeiee e 4-646

XNET LIN Schedule I/O Name..........cccceeeeeiiieeciiiecieeeiieeeieee e 4-647

XNET LIN Schedule Entry I/O Name........cccccoceeeveveenencnncnenneennen. 4-649

XNET PDU I/O NAMEcoviiiiiiieeiiee ettt 4-650

Chapter 5
NI-XNET API for C

Getting STATtedc..ooueiiiiiieiiiieeeeee e e e 5-1
LabWiIndows/C VLouiiiiee e 5-1
EXAMPIES ..ottt 5-1
VISUAL CH ettt e e et e e e e ara e e e e eearaaaeeeenes 5-2
EXAMPIES ..ot 5-3
INEEITACES .. vvieeiiieeeee e ettt e e e et e e e e arr e e e e e earaaeaeeaans 5-3
What Is an Interface?.........cooouvviiiieiiiiiei e 5-3
How Do I View Available Interfaces?ccooevvvvieeieiiiiieee e 5-4
Measurement and Automation Explorer (MAX)cccceeveerierneeennee. 5-4
DALADASES ..eeeueviieiieieeiiieeie et e et e et e e e e e e et e e be e e s ba e e e tbaeenbeeesbaeennraeeansaaeeraeaans 5-4
What IS @ Database?ceccvieieiiieiiiieeiieereeesteeeereeeeaee e eeereeeseseeeseseeens 5-4

© National Instruments XXi NI-XNET Hardware and Software Manual

Contents

WHhat Is an ALIAS? ..c..cooiiiiiiiiieieeeeecc ettt 5-5
Database Programmingceccveevveerieeiieenieniieenieesieerieesteeiee e sveesinesne e 5-6
Already Have FIle?.......cooiiiiiiiiiiiieieceteeecte e 5-6
Can I Use File aS IS? ...cc.coiiriiniiiieiineciececeneccecceeee e 5-6
Select From File......ccc.ooieiiniiniiiiiiniiienicicneeccecceee e 5-7
Edit and Select......c.ccoceevieriiiinieiinieicneetcec et 5-7
Want to Use a File?cocoooiniiiiiiniiniiciniccecceencceceee 5-7
Create New File Using the Database Editor........c.ccoeceevevriieeneennen. 5-7
Create iN MEIMOTY ...coouiiviieiieie ettt ettt esaee e s 5-7
SESSIONS .ttt ettt st ettt st et e eb et be et ettt e ae e et bttt saee bt sbeebeeanent 5-8
WHhat Is @ SESSIONT ...c.eeiiiiiiiiiiiiniieieeecreec ettt 5-8
SESSION MOAES......eneieniiiieiieiieit ettt ettt ettt sve b st nesanens 5-9
Frame Input Queued Mode..........coevieriienieeiieiieeieeie e 5-10
Frame Input Single-Point Modeccccevieeviieniiinieenienieeeeeiene, 5-12
Frame Input Stream Mode.........coovvviiriiieniinieiieeieeeeeeeee e 5-13
Frame Output Queued MOdecooeeviiiiiiniieiienieeieeie e 5-16
Frame Output Single-Point Mode...........ccccevvveiiiinienneiniiiieeienee, 5-18
Frame Output Stream Modecceevervieriieiiieniienieeneenie e 5-21
Signal Input Single-Point Modecccecvevierciinnienieeeenieeieeenn 5-24
Signal Input Waveform Modec.cocceeviirreenieniieenienieeieeseeeeen 5-26
Signal Input XY MOdecccuveeiieiiiieeieeiieeiecieeseeeieeee e 5-28
Signal Output Single-Point Mode..........ccccceeveerieiniienienieeneenieenenn 5-30
Signal Output Waveform Modecccevvieveenieniieenienieeieeneeeneen 5-31
Signal Output XY MOde.......coouereeriererieniieiiniieieneeieneerie e 5-34
Conversion MOdec..cocuereriiniriiniieeneeteiert et 5-38
J1O939 SESSIONS ...ttt ettt sttt sttt sttt et ettt et eae e et st 5-41
Compatibility ISSUEcc.eeiiriiiirieiiieetectecee ettt 5-41
J1O939 BaSICS .ceuviitenieiieieniteteettet ettt sttt st 5-42
Node Addresses in NI-XNETc...cocooiiiiniiniiiinnieneeteieeeceeesieeee e 5-43
Address Claiming Procedurec.ccoverieoienieniinieniinienicneereneeneseeieninns 5-44
TransSmitting Framescoeeverierieniiniiniinienceteeetese ettt 5-45
Transmitting Frames without Granted Node Addresscc.cceceeceeveneencnnen. 5-45
Mixing J1939 and CAN MeSSAZES....cc.eerveriererierierienieniieienieenieeeeneesieeneesaees 5-45
Transport Protocol (TP)co.eeiiiiiiiniiiiiiieeceeeeceeeeeee e 5-45
NI-XINET SESSIONS. ..ccutitiiieniieiiiniieienieeteniteniesieetesite e st etesbeetesbeeneesaeenaesaees 5-46
Not Supported in the Current NI-XNET Versioncccceeeveeveneenienceneenne. 5-46
Signal RANGES ..c..eouviviiiiiiiiieiieecteecteeeeeet e 5-46
CAN FD, ISO Versus NON-ISO ...ttt e e eaee e e e e e e e e 5-46
NI-XNET API for C Reference.........cocuevuerienirieniiiienieniteniceteseeteieeite et 5-48
FUNCHIONS ...ttt 5-48
NXBINK .t 5-48
NXCIRAT..c..eiiiiiiiieieee ettt st s 5-50
nXConnectTerminals..........ccoceeeerierieninieniriee e 5-51
nxConvertFramesToSignalsSinglePoint............ccccoocevieneniincnnenen. 5-58

NI-XNET Hardware and Software Manual XXii ni.com

Contents

nxConvertSignalsToFramesSinglePointc.cccoovevveininiennnnnen. 5-60
NXCIEALESESSION ...ttt ettt 5-62
nxCreateSessionBYRef..........coociiiiiiiiiiii e 5-67
NXADAAAAILIAS ...ttt 5-69
NXADAAAAIIASOS ..ottt 5-71
NXADCIOSEDAtADASEcvveveenriiieienieeieniiee ettt 5-73
NXADCTEAEODJECT.eeeiiiiieiieeieeite ettt 5-74
NXADDEIEtEODJECE. ... eeuiieiieiieeieeiieeeeee e 5-76
NXADDEPIOY ...eeeiiieiieeiieiee ettt 5-77
NXADFINAODIECT....couvieiieiiieriieeie ettt 5-79
NXdbGetDatabaseListcccuevuerierieiinirieneeicieereeeee e 5-81
nxdbGetDatabaseLiStSIZes.cccecvevuerierernienenienienieneeiee e 5-83
NXADGEtDBCAIIDULEceeeniiiiiiieiiiieiiencccieeecececee e 5-85
NXAbGetDBCAIDUIESIZEcovveveeneiiiiienieeieiecicceccee e 5-87
NXADGEIPTOPETLY ...vveeniieiiiieiieeie ettt s 5-88
NXADGEPTOPETLYSIZE ...coovvveiieeiiieiieeieeieee ettt 5-89
NXADMETZE ...ttt et st seaes 5-90
NXAbOPENDAtADASEeovviiiieiiiiieriecieeee et 5-93
NXADREMOVEALIASevvveniiiiiiieiieiceiciceeseeeeeeseeee e e 5-94
NXdbSaveDatabasec..coceevuiriiniiiiniiie e 5-95
NXADSEIPTOPEILY ..covvieiieeiiieieeeie ettt et 5-97
NXADUNAEPIOY ...vvviviieiieeiie ettt 5-98
nxDisconnectTerminalscccccoeeveererrenennieninieneeeneee e 5-99
NXFIUSR ..ot 5-101
NXGEPTOPEITY ...ttt 5-102
NXGEPTOPEITYSIZE ...covveniieiiiiieiereetereee sttt 5-104
NXGESUDPIOPEITY ...evveiiiitiiieiieiceteeete et 5-105
NXGEtSUDPIOPEITYSIZE ...ttt 5-106
NXREAAFTamMec.oouviiiiiiiiiiiiec e 5-107
nxReadSignalSinglePoint...........coccocveveriininiienenieninencnieeeeene 5-110
nxReadSignalWaveformc..coccoveenenieninicninieniceneeeee 5-112
NXREAdSIZNAIXY .oouiiiiiiiiiiiiiiee e 5-114
NXREAASLALE ..ottt 5-116
NXSEPIOPEILY ...ttt e 5-129
NXSELSUDPIOPEITY ..c..eeiiiiiiiiiiieieeteeeteeee e 5-130
IIXSTATT ¢ttt ettt ettt sttt s et et e bt et esbeeatesbeeaenbeas 5-131
NXStAtUSTOSIING ..cnveiieiieiiiiiee e 5-133
IIXSTOP tnveitettentent ettt ettt ettt sttt sb et b et sbt et b e bt et e st st e b e nbeas 5-134
NXSYSIEMOCLOSEeviiiieiiieiieieeitee ettt e 5-136
NXSYSIEMOPEI ..cueeieniieiierieeiieeieete sttt sttt et et s saeas 5-137
IXWALE ¢ttt et s 5-138
NXWIIEFTAME ..ottt e 5-140
nXWriteSignalSinglePoint..........coceeveriineniinenieinceecee e 5-143
NXWriteSignalWaveformcocceveneiieniinenineneeceeeee e 5-144

© National Instruments XXiii NI-XNET Hardware and Software Manual

Contents

NXWTIESIZNAIXY .oeiiiiiiiieieceece ettt 5-146
NXWIIESTALE ..ottt ettt et 5-148
PIOPEILIES ...eeenviiiieiiieeiteee ettt sttt sttt e st st e saae st s 5-151
XNET ClIusSter Propertiescecvvervieereenierieenienieenieeseeeieesieesve e 5-151
64bit Baud Rate.........coevveieiriniiineneneeececee 5-151
Application Protocolccccovvvevvieniiniienienieciieneeeieee 5-152
CAN:64bit FD Baud Rateccccoceeveeneriencnieicneciee 5-153
CAN:FD ISOMOdEoovimiiiiiiiiinecieieeeeseece e 5-154
CAN:I/O MOde....c.einienieieiieiieeneseeeeeeteeeeeeee e 5-155
COMIMENT ...ttt ettt s 5-156
Configuration StatusS........occeereeercieeriieniieeieenieeee e eeeeeeens 5-156
Databasecoccevuireeniiiieiiniee e 5-157
ECUS ettt 5-157
FlexRay:Action Point Offset.........ccccceviervieeneencieeniienennnne 5-158
FlexRay:CAS RXx Low MaXccocuvvviienieniieieniieieeee e 5-159
FlexRay:Channelsccccoecveeviiniiienienieeieesiecicenieeee e 5-160
FlexRay:Cluster Drift Damping........ccccccevvvercveeriienvennennne. 5-161
FlexRay:Cold Start Atemptscceecvercveerreerceeerieenrenaeennes 5-162
FIeXRAY:CYCIE...veeiiiiiiiiieeieeeeceeeee et 5-163
FlexRay:Dynamic Segment Start..........cccovveeeeeerienvennennne. 5-164
FlexRay:Dynamic Slot Idle Phase..........cccccoeeveeriierrennennne. 5-165
FlexRay:Latest Guaranteed Dynamic Slot...........c.cceuuee... 5-166
FlexRay:Latest Usable Dynamic SIOtcccceevverveenennne. 5-167
FlexRay:Listen NOISE.......cccceervirrieenieriieienieeiiesvesiee e 5-168
FlexRay:Macro Per Cycle........ccoovevieniiiiienieeiieieeeieene 5-169
FlexRay:MacroticK.........cceevueeriiriiienieniieienie e 5-170
FlexRay:Max Without Clock Correction Fatal 5-171
FlexRay:Max Without Clock Correction Passive.............. 5-172
FlexRay:Minislot........coceverieninieniiniiniinecienieneseeienens 5-173
FlexRay:Minislot Action Point Offsetcccceevvvenunnee. 5-174
FlexRay:Network Management Vector Length................. 5-175
FIexRay:NIT.....cccoooiiniiiiiiiniiinecieetc et 5-176
FlexRay:NIT Start......ccccocevveererienienienineenieneene e 5-177
FlexRay:Number of Minislots.........cccccecevveenervieneniencnnnne 5-178
FlexRay:Number of Static SIots.......ccccoceevverervenenienennens 5-179
FlexRay:Offset Correction Start.........cccceveeveererueneneennenne 5-180
FlexRay:Payload Length Dynamic Maximum................... 5-181
FlexRay:Payload Length Maximumccccceceverieuennnnne 5-182
FlexRay:Payload Length Static........cccceceevueneriencnicncnnns 5-183
FlexRay:Static SIOt......ccccoevvieririeniinieniineeicnieeseeieneee 5-184
FlexRay:Symbol Windowcccccceecvevireeneniienenienennens 5-185
FlexRay:Symbol Window Startccccecevervenenienennns 5-186
FlexRay:Sync Node Maxc..cocevuerienineenenienenienienens 5-187
FlexRay:TSS TranSmitter.........ccceveeienireeneneenenieieneens 5-188

NI-XNET Hardware and Software Manual

XXiv ni.com

© National Instruments

Contents

FlexRay:Use Wakeupcoceeceieriieniinieenieeieenee e 5-189
FlexRay:Wakeup Symbol Rx Idle.........cccceeveerciieniennennen. 5-190
FlexRay:Wakeup Symbol RX LOW.....cccccecuvrviienerrieeiennen. 5-191
FlexRay:Wakeup Symbol Rx Windowccccevveeuennen. 5-192
FlexRay:Wakeup Symbol Tx Idleccocvevieniirieennnnnen. 5-193
FlexRay:Wakeup Symbol TX LOWcccccevverviienerrienieennen. 5-194
Framescocceoeiiiiiniiiiiccccece e 5-195
NAME (SNOT) woveiieiiiiiiieeeceee et 5-196
PDUS .ttt 5-197
PDUs Required?ccceeviienieniiiiieeieeieeeieeitesee e 5-198
Protocol.....cc.eoiiiiiiniiiiiiirieee e 5-200
SChedUlescovevveeiiriiiiiieeccece e 5-200
SIZNALS 1euvieiiiieiieniie ettt ettt ettt e sbe et eesiaeeaeebeesabeebeens 5-201
THCK cneeeee et 5-202
XNET Database Propertiesccccueevveeveerieenieenienieeneeneeeieenne e 5-203
CIUSLELS .ttt ettt sttt saeenenne 5-203
ShowInvalidFromOpen?..........cccceevvevveeniieniieeneenieeeeeens 5-204
XNET Device PrOPErtiescccvereervieenieerieeieeniiesieenieeseeeieeseeesenes 5-205
FOrm Factorc..coovvieiiiiiieiecicee e 5-205
INEEITACES ..ovveenieiieiiciiccec e 5-206
NUMDET Of POITS.....viiiiiiiieiieeiecieseeeeeee e 5-206
Product Namecooceeiiirnieniieieeieeieenee e 5-207
Product NUMDeT.......ccccovviieriieiieiieeieeeenie e 5-207
Serial NUMDETcoovieriiiiiiienieeeeie e 5-208
S10t NUMDETc.eeniiiiiiiiiieiiitenectceeecceeeeeeee e 5-208
XNET ECU Properties.........cceecveerieerieesieenieeieenieesieeseesseesseessesnnes 5-209
CIUSET .ttt sttt 5-209
COMIMENL ..c.eiiiiieiieiieiieie ettt 5-209
Configuration Statuscccceeeevererreenennienenienenreieeeeene 5-210
FlexRay:Coldstart?coceeeeeierieneneenienenieneerenienieniene 5-211
FlexRay:Connected Channels..........ccccceceveenenericnenienene 5-211
FlexRay:Startup Frame.........cccccoceevinveininnncncnicninieene 5-212
FlexRay:Wakeup Channelscccccoceevenernenenieneninenenns 5-212
FlexRay:Wakeup Pattern..........cccceeeveeviencnncnenicnenieniene 5-213
Frames Received........cooovieviniiiininiiiineniccncceeeiee 5-213
Frames Transmittedccoceeoieririeninienenienenicieneeiee 5-214
LIN MASEET ..onveiuieiieiieieeitenieeiteieeiee ettt 5-214
LIN VEISION ..cueeieieiiiiniieienieeiteieetesie ettt 5-215
LIN:Initial NAD ..ooocioiiiiiiiiniiieeeneeteereeseeeeieie e 5-215
LIN:Configured NAD.....ccccociviininiiniiiinereeneeeseiee 5-216
LIN:Supplier ID......cccccoiiviriiiiniiieneeteneneneeeeeseiee 5-216
LIN:Function IDccccoooeiiniiiiininiineiieneneeneeeeieeiee 5-217
LIN:P2MIN .ottt 5-217
XXV NI-XNET Hardware and Software Manual

Contents

LIN:STMIN .ottt 5-218
NaAmME (SHOIL) .oeiiiiiiiiiiiieeceee e e 5-219
XNET Frame Propertiescccvevveerieenierieeneeneeeieeneesieenieesae e 5-220
CAN:Extended Identifier?..........ccoceeveenerveeneneecicncrnencnn 5-220
CAN:I/O MOde....c.eouieniiiiiiiieineseeeeeteeeeeeee e 5-221
CAN:TIMING TYPE covveveevieiieeiieeiienieeeeite et 5-222
CAN:Transmit TIMecceeveeriireeninieneneeieneereneeeeneeenes 5-224
CIUSLET vttt ettt sttt s 5-225
COMIMENT ...ttt ettt ettt seee e 5-225
Configuration Status.........cceereerieeriierieeniieenreeee e eeeeaeens 5-226
Default Payload.........cccoooeeviiiniiniiiiieieceeeeceeieeee e 5-227
FlexRay:Base Cyclecccovvieviiniieiiiieiieeeeeieeieeee e 5-229
FlexRay:Channel Assignment..........cccecueerueereeeriieneenueenne 5-231
FlexRay:Cycle Repetitionccccceeeevveeniencieeniienienieene 5-232
FlexRay:In Cycle Repetitions:Channel Assignments 5-234
FlexRay:In Cycle Repetitions:Enabled?cccccuveuennne 5-235
FlexRay:In Cycle Repetitions:Identifiers..........c..ccccceuunne. 5-236
FlexRay:Payload Preamble?cccccovvevierviienienienieenn, 5-237
FlexRay:Startup?......cccevveeeieeniiiieerienieeeenee e 5-238
FIEXRAYISYNCT? ottt 5-239
FlexRay:Timing TYPecceveeviiriieenienieeiiesie et 5-240
TAENtIET ..ot 5-241
LIN:CheCKSUM «...eoueeiiiiiiienieiieieeieeieetceieeeesieeie st 5-243
Mux:Data Multiplexer Signal.........cccccoeeveenenniencnienennns 5-244
Mux:Is Data Multiplexed?ccccevvverniienieniieeniienieeieene 5-244
Mux:Static SIZNAlS ..c..ceoverierieniriiniirieeeeeeeeee e 5-245
Mux:SUDfTAMES ...c..eovveriieiiiieieneeieeetc e 5-245
NAME (SHOTL) c..veiiiiiiciiie et 5-246
Payload Length.......ccccoeeiiiniiiiniiiiiiicciceecncecee 5-247
PDU Referencesccoeevvereerieneeiineenieneeienieeienieeveniens 5-248
PDU Start Bits.....cocceviiieienieiinieienieeseeeescee e 5-249
PDU Update BitS.....ccccoeeciereeiiiniiiinieiicnieeieneniesiceeeniene 5-250
SIGNALS weniiieiieieee e 5-251
Application Protocolccoccevevirvieninnienenienicnceenene 5-252
XNET Interface Propertiesccccoeeveevereeniereeneneerienenienieseeiene 5-253
CAN.Termination Capabilitycccccvverveerenienieneenenenn 5-253
CAN.Transceiver Capability.......c.ccocceververenieneneeneneenn 5-254
DEVICE. ..ottt 5-255
INQINC ..ttt sttt 5-255
INUIMDLT ...ttt 5-256
POrt NUMDET ...cveeiiiiiiiiiiciieiccteeeece e 5-257
ProtoCOlcouviiieiiiiiiectc e 5-258
NI-XNET Hardware and Software Manual XXvi ni.com

© National Instruments

Contents

XNET LIN Schedule Propertiescccceveerieerieenieenieeneesieenieennnes 5-259
CIUSEET ..ottt ettt ettt et eae 5-259
COMIMENL ..ottt sttt saeene e 5-259
Configuration StatUSceeeveereeriienienie et eee e 5-260
BN ottt 5-261
INAMEC.....eenriiieieitet ettt sttt sttt 5-261
PrIOTIEY .eeeeiieiieeiie et 5-262
RUNMOAE ...ttt 5-263

XNET LIN Schedule Entry Properties.........ccccevevervieeneenveenieeneennne. 5-264
Collision Resolving Schedule...........ccoocvevveenienciiiniieneenen. 5-264
DIAY ..ttt e 5-264
Event Identifier........coccoevieriiiiiienieeiceiceeeeee e 5-265
Framescocooiiiiiiniiiiicccceecccceee e 5-266
INAMEC....eeeiieiteieee ettt sttt 5-267
Name Unique tO CIUSLET ...ccvevvveerieriieeiienieenieenee e 5-268
Node Configuration:Free Format:Data Bytes..................... 5-269
Schedule.......ooeiiiiiiiniiiec e 5-270
TYPC ettt 5-271

XNET PDU Properties........cceecveereersieesueenieenieeneesieeseesseeseessesnnes 5-272
CIUSERT ..ttt ettt sttt 5-272
COMIMENL ...ttt ettt sttt eene e 5-272
Configuration Statuscccceeeervenerneeneerienenienenreneeeeenne 5-273
Framescoceeveniiiiniiiictcc e 5-274
Mux:Data Multiplexer Signal.........ccccoecerveeneneenenennenens 5-274
Mux:Is Data Multiplexed?.........ccccoceevinieneneninenncneennens 5-275
Mux:Static SigNalS......coceevverieriirieniineeiereee et 5-275
Mux:SUbfTamescc..coeeiereriininienentenerteeseeeseeiene 5-276
NAME (SROTL) .evviiiiiieeiiee et e 5-276
Payload Lengthccccociiiiiininniiniiiencicieceeeee 5-277
SIGNALS .ot 5-278

XNET Session Properties..........ceeeeeererernieneenieneenieneeneneeneseeneens 5-279
Interface Properties........cocceveveenireeneiienenieneneeiesieniene 5-279

CAN Interface Properties........c.ccoceevereevieneenenne 5-279
Interface:CAN:64bit FD Baud Rate 5-280
Interface: CAN:Disable Protocol

Exception Handling............ccccveeueenee. 5-283
Interface:CAN:Enable Edge Filter......... 5-284
Interface:CAN:External Transceiver

(010)01 i 1~ SRR 5-284
Interface:CAN:FD ISO Mode................ 5-287
Interface:CAN:I/O Mode..........c.coueeee. 5-288
Interface:CAN:Listen Only?.................. 5-289

Interface:CAN:Pending Transmit Order 5-290
Interface:CAN:Single Shot Transmit?...5-292

XXVii NI-XNET Hardware and Software Manual

Contents

NI-XNET Hardware and Software Manual

Interface:CAN:Termination 5-293
Interface:CAN:Transceiver State 5-295
Interface:CAN:Transceiver Type.......... 5-298
Interface:CAN:Transmit I/O Mode........ 5-300
Interface:CAN:Transmit Pause 5-301
FlexRay Interface Propertiescc.cccecveerueernennee. 5-302
Interface:FlexRay:Accepted Startup
Range......cocvevieviiiniiiieceeeeeeee 5-302
Interface:FlexRay:Allow Halt Due To
CLOCK?. .ttt 5-303
Interface:FlexRay:Allow Passive to
ACHVE.c.onieieieiieiteeceses e 5-304
Interface:FlexRay:
AutoAsleepWhenStopped.................. 5-305
Interface:FlexRay:Cluster Drift Damping5-306
Interface:FlexRay:Coldstart?................. 5-307

XXVili

Interface:FlexRay:Connected Channels 5-308
Interface:FlexRay:Decoding Correction 5-309
Interface:FlexRay:Delay Compensation

Ch Ao 5-310
Interface:FlexRay:Delay Compensation

Ch B, 5-311
Interface:FlexRay:Key SlotIdentifier ... 5-312
Interface:FlexRay:Latest Tx.................. 5-314
Interface:FlexRay:Listen Timeout 5-315
Interface:FlexRay:Macro Initial Offset

Ch Ao 5-316

Interface:FlexRay:Macro Initial Offset Ch B
5-317

Interface:FlexRay:Max Drift................. 5-318
Interface:FlexRay:Micro Initial Offset
Ch A e 5-319
Interface:FlexRay:Micro Initial Offset Ch B
ChB..oooice e 5-320
Interface:FlexRay:Microtick 5-321
Interface:FlexRay:Null Frames To Input
Stream?co.ooveveeiienenieneeceeee 5-322

Interface:FlexRay:Offset Correction..... 5-323
Interface:FlexRay:Offset Correction Out5-324
Interface:FlexRay:Rate Correction........ 5-325
Interface:FlexRay:Rate Correction Out. 5-326
Interface:FlexRay:Samples Per

MICIoticK.voveieiiiiiciiiiiicciccce 5-327
Interface:FlexRay:Single Slot Enabled?.. 5-328

ni.com

© National Instruments

Contents

Interface:FlexRay:Sleep.........cccceeueenee. 5-329
Interface:FlexRay:Statistics Enabled?...5-331
Interface:FlexRay:Symbol Frames To Input
Stream?ooeecvenerieneniee e 5-332
Interface:FlexRay:Sync Frame Status ...5-333
Interface:FlexRay:Sync Frames Channel A

EVen ..oooviviiiiiiiiincccc 5-334
Interface:FlexRay:Sync Frames Channel A
Odd..c.ooeiiiieeeeeee 5-335
Interface:FlexRay:Sync Frames Channel B
EVen ..oocviniiiiiiiiinccccc 5-336
Interface:FlexRay:Sync Frames Channel B
Odd...ooeiiiieeee e 5-337
Interface:FlexRay:Termination.............. 5-338
Interface:FlexRay:Wakeup Channel......5-339
Interface:FlexRay:Wakeup Pattern........ 5-340
LIN Interface Properties.......cccooveeveereerveenenennn. 5-341
Interface:LIN:Break Length 5-341
Interface:LIN:DiagP2min....................... 5-342
Interface:LIN:DiagSTmin............c......... 5-343
Interface:LIN:Master?ccccceeeeennne. 5-344
Interface:LIN:Output Stream Slave Response
List By NAD ..ccooiviieieieenenceeee 5-345
Interface:LIN:Schedule Names.............. 5-346
Interface:LIN:Sleepccccevvevvenencenncnne. 5-347
Interface:LIN:Start Allowed without Bus
POWET?...cieiiiiiiiiieeiecee 5-350
Interface:LIN:Termination..................... 5-351
Source Terminal Interface Properties................... 5-352
Interface:Source Terminal:Start Trigger 5-352
Interface:64bit Baud Rate........cc.ccoceveriencnnenens 5-353
Interface:Echo Transmit?........cccccoceevervencnnenene 5-357
Interface:Output Stream List.......ccccooverieninienenne 5-358
Interface:Output Stream List By IDc....c..c... 5-359
Interface:Output Stream Timingccccceeveenene 5-360
Interface:Start Trigger Frames to Input Stream?..5-364
Interface:Bus Error Frames to Input Stream? 5-365
Session: Application Protocolc..cccceveeviininciencneenenne. 5-365
SAE J1939:ECU ...ttt 5-366
SAE J1939:ECU BUSY ...veiveieieieieeeiceie et 5-367
SAE J1939:Hold Time Thcccccoooiiiniiniieieecceceeen 5-368
SAE J1939:Maximum Repeat CTSc.ccccevivcienineennnne. 5-369
SAE J1939:Node Addresscocevereeneneenienienienieeieniene 5-370
SAE J1939:NodeName........c.cccoerierenienienieieneeneeseeeeenaes 5-371

XXiX NI-XNET Hardware and Software Manual

Contents

SAE J1939:Number of Packets Received............cccoeueenee. 5-372
SAE J1939:Number of Packets Response..........c.cccevueennee. 5-373
SAE J1939:Response Time Tr_GDccccoevvevivienneennen. 5-374
SAE J1939:Response Time Tr_SD....cccccocvevvverveeneeneennnen. 5-375
SAE J1939:Timeout T1.....cccoovvvieniiieieseeieceeiee e 5-376
SAE J1939:Timeout T2......cccocvveviienienieenieeieeiee e eieeee 5-377
SAE J1939:Timeout T3.....ccccovivieriirieieseeeesieeeee e 5-378
SAE J1939:Timeout T4.......c.cooveeevirieieiieieeieevee e 5-379
Frame Propertiescccceevveevieenieenieeniesieenee e 5-380
CAN Frame Properties..........cccevueevveereervueeneennnenn 5-380
Frame:CAN:Start Time Offset 5-380
Frame:CAN:Transmit Time 5-381
Frame:LIN:Transmit N Corrupted Checksums ... 5-382
Frame:Skip N Cyclic Frames..........ccccccevvveenennee. 5-383
AULO STATE?.coiiiiiieiecieecte et 5-384
CIUSEETINAIME.......eouvieiieiiieieeiie ettt eiee e v e s 5-385
DatabaseNaMEe.cocveriierieiiierieeieeee et 5-385
| 5] OO TSRO PRRR 5-386
IMOAC....ciiiiiiiieiie ettt sttt ettt 5-386
NUMDBET iN LSt .vieiiiiiiiiiieieeieeie e 5-387
Number of Values Pendingccccceeveeeviieneeniienieennennne. 5-387
Number of Values Unusedcceveevverieeneeniienieeneeenne 5-389
Payload Length Maximumc..coccecveveeiinennienenienennns 5-390
ProtOCOLeieiiiieiieeece et 5-390
QUEUE SIZC.....eviieeeiiiieiiee ettt e e 5-392
Resample Rate........cooovieieriiiiiniiiiiiicneccneecniceeee 5-398
XNET Signal Propertiescoceevvereevienierieneriieneneenieneenieseenennens 5-399
Byte Order.......cooeveeniinieiinieiiniieieeeceeeeetee e 5-399
COMMENL ...etiiiieiiieieeeite et eite et eiee s e ebeesereebeesaaesnseeaee s 5-401
Configuration Status........ccocceeerereererienenienieeeee e 5-402
Data TYPE .couveveeiiiieieiieteeteeee et 5-403
Default Valuecccoecvieiiiiiiiiieieceeee e 5-404
Frame......ccooocviiiiiiieeieceesee e s 5-405
Maximum ValUe........ccoeceeeieiriienieeiienie et 5-405
Minimum ValUuecccueeieenieiniienieeieeee e 5-406
Mux:Data MultipleXer?ccoeevuereeieneerienenienenienennens 5-407
Mux:Dynamic?.......ccoceveeieneeniineeiineeie et 5-408
Mux:Multiplexer Value.........cccceoevevienineninienenieienes 5-409
MUX:SUDITAME.cveiriiiiieeieeieecie e 5-409
NAME (SHOTL) ..veiieiieeieiie e et 5-410
Name Unique to CIUSTErccouevieriirieniirieienieneniieienieens 5-411
NUmMDber Of BitS....cccceecviiiiieieiieiieeeeee e 5-412
PDU ettt e 5-413
Scaling Factor.........ccceieviiiininieniiieeseeeeeee e 5-413
NI-XNET Hardware and Software Manual XXX ni.com

Contents

Scaling OffSetcc.uieviierieiiieieeieeeeree e 5-414

SHArt Bil.o..eoveeeieieeeceeeeses e 5-415

UNIE ¢ttt sttt 5-417

XNET Subframe Propertiescccceeeveevueereeniieeneenieenieeneesieeniee e 5-417
Dynamic Signals........cceceerieriinniienieeieenie e 5-417

Framecccoooieviiiiiiicicc et 5-418

Multiplexer Value........occeevieeiienienieeiienieeeeeee e 5-419

NAME (SNOT) woveiieiiiiiiieeeceee et 5-420

Name Unique tO CIUSLET ...ccvevveerierieeiienieeieenee e 5-421

PDU ettt e 5-421

XNET System Properti€sccceecveerverierneenieeieenieesieeneesveesiee e 5-422

DIEVICES vttt 5-422

Interfaces (Alcooveeiiieiiieeieeeeeeee e 5-423

Interfaces (CAN) ..oeeieiiiieeeee e 5-423

Interfaces (FIEXRAY) ...covvveriiiniiniieieceeieeiceee e, 5-424

Interfaces (LIN) ..ocveiieiiiieiie e e 5-424
Version:Build.......cocoieiiiriininiiiincieeeeeceeeee 5-425
Version:MajOr.....cccueerieiiieiieeieeiie ettt 5-426

Version:MINOTcc.covevierieniinieniinienieneenentene st 5-427

Version:Phasecocveoieviiiiniininiinciicinececeeee 5-428

Version:UPdatecocveeiierienieeiienieeieenieeieeneesreeniee s 5-429

AdAIHONAL TOPICS weeeuvreeiieiieiieerieertt ettt ettt ste et e sae et e steebeesaaessbeessaesnseensaessseenses 5-430
OVETALL ...ttt sttt s 5-430
Cyclic and Event Timingcccoecvereveeiieenieeieenieenieenieeneesveeseeesenes 5-430
Multiplexed SigNalsc..coceverierieriininieneeieieeeseete e 5-431

Raw Frame FOrmat..........cccooevviiniiiininiininieicnieceeencneee e 5-433

Special Framescoccevereinenieniinieeneeieecene et 5-441
Required Properties.........coeevvereenereeieninienieieneeicseeneseesie e 5-444

State MOAEIS.....ooueeiirieeiiiieieite ettt 5-446

CAN ettt b e b bt e et et bbbttt be b et e b et enean 5-453
INIFCAN ettt ettt st b e s st 5-453

CAN Timing Type and Session Mode........ccccccevverirveencnseenenneennen. 5-455

CAN Transceiver State Machinecccccoceevvenercieninnenicnncncnneennen. 5-459
FIBXRAY ...ccutetiiieiitetet ettt et st 5-461
FlexRay Timing Type and Session Mode..........cccceceveenencnncncnnnene 5-461
Protocol Data Units (PDUSs) in NI-XNETc.ccccooeieiiieeiecn. 5-464
FlexRay Startup/Wakeupcccceceevireeneniinenieieneeeesceie e 5-467

LIIN ettt bttt ettt et b e h e bbb bbb e b et enean 5-469
LIN Frame Timing and Session Mode...........cccceeceevireencnieneneennen. 5-469

Chapter 6

Troubleshooting and Common Questions

© National Instruments

XXXi NI-XNET Hardware and Software Manual

Contents

Appendix A
Summary of the CAN Standard

Appendix B
Summary of the FlexRay Standard

Appendix C
Summary of the LIN Standard

Appendix D
Specifications

Appendix E
LabVIEW Project Provider

Appendix F
Bus Monitor

Appendix G
Database Editor

Appendix H
NI Services

Index

NI-XNET Hardware and Software Manual XXXii

ni.com

About This Manual

This manual describes how to install and configure the NI-XNET hardware
and software and summarizes the CAN, FlexRay, and LIN standards. It also
includes the NI-XNET LabVIEW and C API reference.

Related Documentation

The following documents contain information that you may find helpful as
you read this manual:

* NI-XNET Hardware and Software Help
e NI-XNET Tools and Utilities Help
* NI-XNET Hardware and Software Installation Guide

© National Instruments XXXifi NI-XNET Hardware and Software Manual

Introduction

© National Instruments

Welcome to NI-XNET, the National Instruments software for CAN,
FlexRay, and LIN products.

NI-XNET is designed to meet the following goals:

* Ease of use: NI-XNET features provide fundamental concepts so that
you can get started with programming.

* Consistency: NI-XNET uses common industry concepts for
embedded networks such as CAN. These concepts help to abstract the
differences between protocols, so you can focus on your application.

* Completeness: NI-XNET provides a broad spectrum of features, from
easy-to-use signal I/O, down to more advanced streaming of raw
frames. You can use these features simultaneously on the same
interface: input along with output and signal I/O along with frame I/O.

* Performance: Read and Write functions are designed to
execute quickly, without loss of data. Performance for LabVIEW
Real-Time (RT) applications is a key focus of NI-XNET software and
hardware architecture.

If you are new to the CAN protocol, refer to Appendix A, Summary of the
CAN Standard, for an introduction. If you are new to the FlexRay protocol,
refer to Appendix B, Summary of the FlexRay Standard, for an
introduction. If you are new to the LIN protocol, refer to Appendix C,
Summary of the LIN Standard, for an introduction.

Chapter 3, NI-XNET Hardware Overview, summarizes the features of
National Instruments hardware for CAN, FlexRay, and LIN.

If you use LabVIEW for programming, refer to Getting Started in
Chapter 4, NI-XNET API for LabVIEW, for a description of NI-XNET
software concepts and programming models.

If you use C, C++, or another language for programming, refer to Getting
Started in Chapter 5, NI-XNET API for C, for a description of NI-XNET
software concepts and programming models.

1-1 NI-XNET Hardware and Software Manual

Installation and Configuration

This chapter explains how to install and configure NI-XNET hardware.

Safety Information

© National Instruments

The following section contains important safety information that you must
follow when installing and using the module.

Do not operate the module in a manner not specified in this document.
Misuse of the module can result in a hazard. You can compromise the safety
protection built into the module if the module is damaged in any way. If the
module is damaged, return it to National Instruments (NI) for repair.

Do not substitute parts or modify the module except as described in this
document. Use the module only with the chassis, modules, accessories, and
cables specified in the installation instructions. You must have all covers
and filler panels installed during operation of the module.

Do not operate the module in an explosive atmosphere or where there may
be flammable gases or fumes. If you must operate the module in such an
environment, it must be in a suitably rated enclosure.

If you need to clean the module, use a soft, nonmetallic brush. Make sure
that the module is completely dry and free from contaminants before
returning it to service.

Operate the module only at or below Pollution Degree 2. Pollution is
foreign matter in a solid, liquid, or gaseous state that can reduce dielectric
strength or surface resistivity. The following is a description of pollution
degrees:

* Pollution Degree 1 means no pollution or only dry, nonconductive
pollution occurs. The pollution has no influence.

e Pollution Degree 2 means that only nonconductive pollution occurs in
most cases. Occasionally, however, a temporary conductivity caused
by condensation must be expected.

2-1 NI-XNET Hardware and Software Manual

Chapter 2 Installation and Configuration

e Pollution Degree 3 means that conductive pollution occurs, or dry,
nonconductive pollution occurs that becomes conductive due to
condensation.

You must insulate signal connections for the maximum voltage for which
the module is rated. Do not exceed the maximum ratings for the module.
Do not install wiring while the module is live with electrical signals.

Do not remove or add connector blocks when power is connected to the
system. Avoid contact between your body and the connector block signal
when hot swapping modules. Remove power from signal lines before
connecting them to or disconnecting them from the module.

Operate the module at or below the installation category' marked on the
hardware label. Measurement circuits are subjected to working voltages?
and transient stresses (overvoltage) from the circuit to which they are
connected during measurement or test. Installation categories establish
standard impulse withstand voltage levels that commonly occur in
electrical distribution systems. The following is a description of installation
categories:

* Installation Category I is for measurements performed on circuits not
directly connected to the electrical distribution system referred to as
MAINSS3 voltage. This category is for measurements of voltages from
specially protected secondary circuits. Such voltage measurements
include signal levels, special equipment, limited-energy parts of
equipment, circuits powered by regulated low-voltage sources, and
electronics.

* Installation Category II is for measurements performed on circuits
directly connected to the electrical distribution system. This category
refers to local-level electrical distribution, such as that provided by a
standard wall outlet (for example, 115 AC voltage for U.S. or 230 AC
voltage for Europe). Examples of Installation Category II are
measurements performed on household appliances, portable tools, and
similar modules.

! Installation categories, also referred to as measurement categories, are defined in electrical safety standard IEC 61010-1.
2 Working voltage is the highest rms value of an AC or DC voltage that can occur across any particular insulation.

3 MAINS is defined as a hazardous live electrical supply system that powers equipment. Suitably rated measuring circuits may
be connected to the MAINS for measuring purposes.

NI-XNET Hardware and Software Manual 2-2 ni.com

Chapter 2 Installation and Configuration

* Installation Category III is for measurements performed in the building
installation at the distribution level. This category refers to
measurements on hard-wired equipment such as equipment in fixed
installations, distribution boards, and circuit breakers. Other examples
are wiring, including cables, bus bars, junction boxes, switches, socket
outlets in the fixed installation, and stationary motors with permanent
connections to fixed installations.

* Installation Category IV is for measurements performed at the primary
electrical supply installation (<1,000 V). Examples include electricity
meters and measurements on primary overcurrent protection devices
and on ripple control units.

Measurement & Automation Explorer (MAX)

© National Instruments

You can use Measurement & Automation Explorer (MAX) to access all
National Instruments products. Like other National Instruments hardware
products, NI-XNET uses MAX as the centralized location for XNET
device configuration.

To launch MAX, click the Measurement & Automation shortcut on the
desktop or select Start»Programs»National Instruments»Measurement
& Automation.

For information about the NI-XNET software in MAX, consult the online
help at Help»Help Topics»NI-XNET.

You can view help for MAX Configuration tree items using the built-in

MAX help pane. If this help pane does not appear on the right side of the
MAX window, click the Show Help button in the upper right corner.

2-3 NI-XNET Hardware and Software Manual

Chapter 2 Installation and Configuration

Verifying NI-XNET Hardware Installation

The MAX Configuration tree Devices and Interfaces branch lists
NI-XNET hardware (along with other local computer system hardware),
as shown in Figure 2-1.

w Devices and Interfaces - Measurement & Automation Explorer B “
File Ed# View Tools Help
B3 My System £ Create New... <

a [Dievioes and Interfaces |
4 Ll MIPXIe-1071 “Chassic 1° .
* “m; 1M peszen mnse- || D@Vices and Interfaces
B0 3: 1 Ple-B310 "CAMLUNY" || e and Intetaces sts installed and detecte CAN, DAQ. FildPeint Serial Contiallérs
e ASELTaINGTR TC0RT" GPIB, I¥1, Mation, Sedal, VIS4, Vision, and V20 hardware,
= ASELICHNSTR “LETT
o6 NI PCI-8512 "CANE CANGY
B NI PChe-B3ET MK
4 Metwork Deices
&1 Software
B8 Remete Systems

It you do not 5ee Yyour devices. ..

tion trae
g and Play compalitle

What de you want to do?

B Configurs an existing davice

S Add a non-Fiug and

For moge mfcemation a0out wsing vour M product in Ma, refer 1o your proguck-spacific help,
lecated on the HelpeHelp Topics manu #em. You can also aceess NI product hatp fram
wilhiry WAX hlp, vtvich yois Gan [aunch foa Se Help mens of by pressing <F 1=

v— Submil feedback on his fpc

)

(&) _

— 1 Wil ni comisuppo faf lechnical suppoit
4 Help

Figure 2-1. NI-XNET Hardware Listed in MAX

If the NI-XNET hardware is not listed here, MAX is not configured to
search for new devices on startup. To search for the new hardware,
press <F5>.

To verify installation of the NI-XNET hardware, right-click the NI-XNET
device and select Self-Test. If the self-test passes, the card icon shows a
checkmark. If the self-test fails, the card icon shows an X mark, and the
Test Status in the right pane describes the problem. Refer to Chapter 6,
Troubleshooting and Common Questions, for information about resolving
hardware installation problems.

XNET Device Firmware Update

For PXI Express devices and C Series modules, the firmware is not updated
automatically when you open an XNET session. The right pane in MAX
displays the firmware status.

NI-XNET Hardware and Software Manual 2-4 ni.com

Chapter 2 Installation and Configuration

If the firmware on the XNET device does not match the version the XNET
software expects, a yellow warning is displayed on the device icon, and a
message is displayed in the right pane, as shown in Figure 2-2. In this case,
you can use the Update Firmware button to apply the proper firmware
version to the device.

3 3: NI BXIe-8510 “CANT,LINI* - Measurement & Automation Explorer - oiEN
File Edit View Tools Help
2 B My Systen H £ Pefresh | [5 SefTest &

B Devices and Intefaces
4 [l MI PXle-1071 *Chassis 1°
iz 1: MI FXle-2360 "FX115lc81™ Settings
LIMT®|

di The fiemwarae versson of your NI-XMET hardware i not in syne with your software. Use

A5R11=0 5
= ASRLI=INETR “CO the 'Update Firnware’ button ta resslve this ssue,

=z ASRL10:INSTR "LPT1"
i MIPC-BSIZ "CANZ.CANT Harme TN LMY
B M PCle-B351 AN

4 Metwork Desices Wendar aticnal irstruments
& Software Mads=l NI PXle-8510

A Remote Systems Sarial Number 129456
Firmsare Yersion 16010611
Hardweare Revision B
Sk Mumber 3
PCl Bus w
POl Device o
Satus Present

T Sertangs

Figure 2-2. XNET Firmware Mismatch

© National Instruments 2-5 NI-XNET Hardware and Software Manual

Chapter 2 Installation and Configuration

Configuring NI-XNET Interfaces

The NI-XNET hardware interfaces are listed under the device name. To
change the interface name, select a new one from the Name box in the right
pane, as shown in Figure 2-3.

w 1: MI-XNET Interface "CAM1* - Measurement & Automation Explorer - o il
File Edit View Tools Help
B3 My System W oo £¥Refresh | B BusManior i Port Blink <

4 &g Devices and Interfaces
a pufl MIPRle-1071 *Chassiz 1°
Leg 1: NI File-2360 "FXI15lca 1™
o [B 3 NIPRIe-3310 "CANTLIN

W 1= NEXMET bnterface "CART| hame CAN1
¥ 2 M-KMET Interface "LINT'
& ASRLI-INGTR "COMIT Transcener Cable Type Figh Speed CAN
= ASRLIG:IMSTR “LPT1™ Transceier Cable Firmware 2
NI PC1-B512 “CAMI CARS® Version
B4, I FOle-8361 “hAKIT Port Murnber
e Mtk Devices AR
Arotocol CAN
51 Software i

ES Remote Systems

=1 Settings

Figure 2-3. Renaming an Interface

LabVIEW Real-Time (RT) Configuration

LabVIEW Real-Time (RT) combines easy-to-use LabVIEW programming
with the power of real-time systems. When you use a National Instruments
PXI controller, you can install a PXI-XNET card and use the NI-XNET
API to develop real-time applications. For example, you can simulate the
behavior of a control algorithm within a XNET device, using data from
received CAN or FlexRay messages to generate outgoing CAN or FlexRay
messages with deterministic response times.

When you install the NI-XNET software, the installer copies components
for LabVIEW RT to the Windows system. As with any other NI product for
LabVIEW RT, you then download the NI-XNET software to the LabVIEW
RT system using the Remote Systems branch in MAX. For more
information, refer to the LabVIEW RT documentation.

NI-XNET Hardware and Software Manual 2-6 ni.com

Chapter 2 Installation and Configuration

After you install the NI-XNET hardware and download the NI-XNET
software to the LabVIEW RT system, you can verify the installation. Find
your RT target under Remote Systems and open the Devices and
Interfaces item. Perform a self test for all installed NI-XNET devices.

Getting Started with CompactRIO

© National Instruments

When you use a C Series NI-XNET module in a CompactRIO chassis, the
NI-XNET features on LabVIEW RT are the same as on other LabVIEW
RT targets, such as PXI. Nevertheless, the communication between the
NI-XNET RT driver and module does not exist in the default FPGA VI that
ships with CompactRIO. Prior to using NI-XNET features, you must use
LabVIEW FPGA to compile and run an FPGA VI that contains the required
communication logic.

The following steps describe how to use a C Series NI-XNET module in a
CompactRIO chassis from its out-of-box configuration.

1. Install the required software to the host computer.
a. LabVIEW (Including RT and FPGA)

Install LabVIEW, LabVIEW Real-Time, LabVIEW FPGA, and
NI-RIO.

For supported versions of the software mentioned above, refer to
the Supported Platforms section in the NI-XNET readme file.
b. NI-XNET
Install NI-XNET after the required LabVIEW components.
2. Install NI-XNET to the CompactRIO RT controller.

Use MAX to find your CompactRIO controller under Remote
Systems, then right-click Software and select Change/Remove
Software. There are two ways to install the required components:

¢ NI-RIO with NI Scan Engine Support

If this selection is dimmed, refer to the explanation on the right to
resolve the problem, or use custom installation. After selecting
this item, the next page displays a list of add-ons. Scroll down to
the bottom of the add-on list to check NI-XNET.

¢ Custom Software Installation

Custom installation can be useful on controllers with small
amounts of memory because you can use it to avoid installing
unused components. Select the NI-XNET item, which in turn
selects the required dependencies (for example, NI-RIO IO Scan).

2-7 NI-XNET Hardware and Software Manual

Chapter 2 Installation and Configuration

3. Add modules to the LabVIEW project.

To compile an FPGA VI with the required communication logic, you
must add NI-XNET modules in a LabVIEW project.

a. Add the controller.

Assuming your controller is online, you can right-click the project
item and select New»Targets and Devices»Existing target or
device, then select your controller under Real-Time
CompactRIO. If your controller is offline, you can add it by
selecting New target or device.

b. Select the chassis programming mode.

When you add the controller, a dialog asks you to select the
programming mode for the chassis. Although NI-XNET uses scan
engine components, you must select LabVIEW FPGA Interface
as the chassis mode. This configures the chassis to support
compiling an FPGA VL.

If aDiscover C Series Modules? dialog appears, click the Do Not
Discover button and proceed to step d.

c. Ignore errors for discovered NI-XNET modules.

LabVIEW 2010 may report an error for NI-XNET modules,
stating that LabVIEW FPGA is not supported. LabVIEW 2011 or
later does not report this error. Do not change the chassis to Scan
Interface mode. Ignore this error message and click Continue.

d. Add NI-XNET modules.

Right-click the chassis item under the controller (not FPGA) and
select New»C Series Modules»Existing target or device. Select
the plus sign to discover and then hold <Shift> to select all
NI-XNET modules in the list. Click OK to add the modules to the
project.

You also can add NI-XNET modules offline by selecting New
target or device, then C Series Module, and in the next dialog
select the appropriate Module Type (for example, NI 9862).
When you use an NI-XNET module in a project, you do not
necessarily need to have that module installed physically. For
NI-XNET, the module in the project is simply a signal to the
FPGA VI that NI-XNET communication is required for that slot.

4. Compile and run the FPGA VI.

If you are new to CompactRIO, you can use an empty FPGA VI to get
started quickly with NI-XNET tools and examples. Select the FPGA
target in the LabVIEW project, and then select New»VI. When the
front panel opens, click the LabVIEW run button (the arrow) to

NI-XNET Hardware and Software Manual 2-8 ni.com

Chapter 2 Installation and Configuration

compile and run the VI. Although the VI is empty, it loads the required
NI-XNET support. When compilation completes, and the VI runs the
first time, you can close the front panel and proceed to the next step.

If you have an existing FPGA VI in your project, you must recompile
the FPGA VI to incorporate NI-XNET support for the configured slots.
When the FPGA VI is recompiled, you run it using the same methods
you used previously. This typically is done using Open FPGA VI
Reference from a host VI.

The following tables provide a detailed list of actions that cause
NI-XNET to load and unload. NI-XNET must be loaded for its
hardware to be detected. Within the tables, the term XNET-enabled
FPGA VI refers to an FPGA VI compiled with a project that contains
at least one NI-XNET module. The term XNET-disabled FPGA VI
refers to an FPGA VI compiled with no NI-XNET modules.

Table 2-1. Actions That Cause NI-XNET to Load

Action Comment
Invoke Open FPGA VI NI-XNET loads regardless of
Reference with an XNET-enabled | whether Run the FPGA VI is
FPGA VL checked in the configuration
dialog.

Run the XNET-enabled FPGA VI —
using Interactive Front Panel
Communication.

@ Note NI-XNET does not load when the CompactRIO system powers up. Even if you
configure an XNET-enabled FPGA VI to load automatically on power on, you must
perform an action from Table 2-1 prior to using NI-XNET.

© National Instruments 2-9 NI-XNET Hardware and Software Manual

Chapter 2 Installation and Configuration

Table 2-2. Actions That Cause NI-XNET to Unload

Action Comment
Invoke Close FPGA VI If the reference is not the last to
Reference with the shortcut close, NI-XNET remains loaded.
option Close and Reset if Last The shortcut options Close and
Reference (default). Close and Abort without

Reference Counting do not
unload NI-XNET.

Power down CompactRIO. —

Run XNET-disabled FPGA VI. This applies to Open FPGA VI
Reference or Interactive Front
Panel Communication.

Invoke Reset using the Invoke Reset of an open FPGA reference
Method node of the FPGA causes NI-XNET to unload, and
interface. then immediately load again. If

you are using NI-XNET sessions
during the reset, the sessions are
invalidated. Other methods such
as Abort do not unload NI-XNET.

Run a different XNET-enabled When you change FPGA VIs, the
FPGA VI from the XNET-enabled | effect is the same as the reset
FPGA VI currently loaded. method. NI-XNET unloads and
then immediately loads again.

@ Note When using FPGA Interactive Front Panel Communication, stopping the FPGA VI
does not unload NI-XNET. This applies to stopping the VI normally (for example, from the
front panel button), or using the LabVIEW abort button (the stop sign).

5. Wait for interfaces to be detected.

After the FPGA runs with NI-XNET support, it may take a few
seconds for the new FPGA features to be detected, appropriate RT
drivers to load, and NI-XNET modules to be detected. This delay
occurs only after you perform the action from Table 2-1.

NI-XNET Hardware and Software Manual 2-10 ni.com

Tools

Chapter 2 Installation and Configuration

There are several options for detecting NI-XNET interface hardware:

* MAX Devices & Interfaces—You can detect the interfaces
visually by opening the Devices & Interfaces tree under the
RT controller in MAX. Once the hardware is detected, you can
perform a self test to confirm that all hardware and software is
ready to use.

* LabVIEW Interface I/O Name—When you drop an XNET
interface I/O name control on the front panel of an RT VI, the
control uses features similar to MAX to display available
interfaces. For interface detection to operate, you must right-click
the RT controller in the LabVIEW project and select Connect
(or Deploy). Once connected, you can use the interface I/O name
to select an interface prior to running the RT VL.

e System API—If you need to detect interfaces programmatically
within a running RT VI, National Instruments provides APIs for
this purpose. The NI System Configuration API can detect any
NI hardware product, including NI-XNET interfaces. NI-XNET
also provides a System API with properties specific to NI-XNET
hardware.

If you run your RT VI as a startup VI (for example, after power
on), you must perform an action from Table 2-1, then use a
System API to wait for the required interfaces prior to calling
XNET Create Session. If you create an 1/O session prior to
detecting the specified interface, an interface-not-found error can
occur.

Use NI-XNET.

Once the interfaces are detected, you are ready to use them. Within
your RT VI, NI-XNET sessions are used to read and write I/O data. For
more information, refer to Sessions in Chapter 4, NI-XNET API for
LabVIEW.

© National Instruments

NI-XNET includes two tools you can launch from MAX:

Bus Monitor—Displays statistics for CAN, FlexRay, or LIN frames.
This is a basic tool for analyzing CAN, FlexRay, or LIN network
traffic. Launch this tool by right-clicking an NI-XNET interface and
selecting Bus Monitor from the context menu.

NI I/O Trace—Monitors function calls to the NI-XNET APIs. This
tool helps in debugging application programming problems. To launch

2-11 NI-XNET Hardware and Software Manual

Chapter 2 Installation and Configuration

this tool, open the Software branch of the MAX Configuration tree,
right-click NI I/0 Trace, and select Launch NI I/O Trace.

System Configuration API

NI-XNET supports the National Instruments System Configuration API,
which provides programmatic access to many operations in MAX. This
enables you to perform these operations within your application.

The System Configuration API gathers information using various product
experts. You can create a filter to gather information for one type of
product, such as filtering for NI-XNET devices only. The NI-XNET expert
programmatic name is xnet.

NI-XNET Hardware and Software Manual 2-12 ni.com

NI-XNET Hardware Overview

Overview

NI-XNET is a suite of products that provide connectivity to CAN, FlexRay,
and LIN networks.

NI-XNET FlexRay Hardware

FlexRay Physical Layer

© National Instruments

The FlexRay physical layer circuitry interfaces the FlexRay protocol
controller to the physical bus wires.

Transceiver

NI-XNET FlexRay hardware uses a pair of NXP TJA1080 FlexRay
transceivers per port. The TJA1080 is fully compatible with the FlexRay
standard and supports baud rates up to 10 Mbps. This device also supports
advanced power management through a low-power sleep mode. Refer to
the NI-XNET Session Interface:FlexRay:Sleep property for more
information. For detailed TJA1080 specifications, refer to the NXP
TJA1080 data sheet.

Bus Power Requirements

The FlexRay physical layer on PXI and PCI NI-XNET interfaces is
internally powered. As such, there is no need to supply bus power. The
COM pin serves as the reference ground for the bus signals. Refer to Pinout
for the PXI and PCI NI-XNET FlexRay interface pinout.

Cabling Requirements for FlexRay

Cables may be shielded or unshielded and should meet the physical
medium requirements described in Table 3-1.

3-1 NI-XNET Hardware and Software Manual

Chapter 3

Pinout

NI-XNET Hardware Overview

Table 3-1. FlexRay Cable Characteristics

Characteristic Value
Differential mode impedance @ 10 MHz 80-110 Q
Specific line delay 10 ns/m
Cable attenuation @ 5 MHz (sine wave) 82 dB/km

Cable Lengths and Number of Devices

The cabling characteristics, cabling topology, and desired bit transmission
rates affect the allowable cable length. Detailed recommendations for cable
length and number of devices are in the FlexRay Electrical Physical Layer
Specification available from the FlexRay Consortium. In general, the
maximum electrical length for a passive bus topology is 24 m, with the
number of devices limited to 22.

Termination

The simplest way to terminate FlexRay networks is with a single
termination resistor between the bus wires Bus Plus and Bus Minus. The
specific network topology determines the optimal termination values.

For all XNET devices, the termination is software selectable. XNET
provides the option of 80 Q2 between Bus Plus and Bus Minus or no
termination. You cannot set termination for channel A and channel B
independently. Refer to the Termination attribute in the XNET API for
more details. To determine the appropriate termination for your network,
refer to the FlexRay Electrical Physical Layer Specification for more
information.

Refer to the NI-XNET Session Interface:FlexRay:Termination property for
more information.

Table 3-2 describes the FlexRay DB9 pinout.

Table 3-2. FlexRay DB9 Pinout

Pin Signal Signal
1 NC No connection
2 FlexRayA BM FlexRay channel A bus minus

NI-XNET Hardware and Software Manual 3-2 ni.com

Chapter 3 NI-XNET Hardware Overview

Table 3-2. FlexRay DB9 Pinout (Continued)

Pin Signal Signal
3 COM FlexRay reference ground
4 FlexRay B BM FlexRay channel B bus minus
5 SHLD FlexRay shield
6 (COM) Optional FlexRay reference ground
7 FlexRay A BP FlexRay channel A bus plus
8 FlexRay B BP FlexRay channel B bus plus
9 (Ext_VBat) Optional external bus voltage

NI-XNET CAN Hardware

NI-XNET Transceiver Cahles

Hardware supporting NI-XNET Transceiver Cables allows you to select
each port individually by plugging in the appropriate Transceiver Cable.
Each Transceiver Cable implements the interface physical layer of the
interface.

NI-XNET Transceiver Cables are designed to interface to NI-XNET host
ports.

XS Software Selectable Physical Layer

© National Instruments

XNET CAN XS hardware allows you to select each port individually in the
physical layer for one of the following transceivers:

* High-Speed

* Low-Speed/Fault-Tolerant

* Single Wire

e External Transceiver

When an XS port is selected as High-Speed, it behaves exactly as a
dedicated High-Speed interface. When an XS port is selected as
Low-Speed/Fault-Tolerant, it behaves exactly as a dedicated
Low-Speed/Fault-Tolerant interface. When an XS port is selected as Single
Wire, it behaves exactly as a dedicated Single Wire interface. The bus
power requirements depend on the mode selected. Refer to the appropriate
High-Speed, Low-Speed/ Fault-Tolerant, or Single Wire physical layer

3-3 NI-XNET Hardware and Software Manual

Chapter 3

NI-XNET Hardware Overview

section to determine the behavior for the mode selected. For example, the
bus power requirements for an XS port configured for Single Wire mode
are identical to those of a dedicated Single Wire node. This feature is
provided as the Interface:CAN:Transceiver Type property.

When an XS port is selected as External, all onboard transceivers are
bypassed, and the CAN controller signals are routed directly to the 9-pin
D-SUB connector. External mode is intended for interfacing custom
physical layer circuits to NI XNET CAN hardware. Refer to External CAN
Transceiver for more details.

High-Speed Physical Layer

The High-Speed CAN physical layer circuitry interfaces the CAN protocol
controller to the physical bus wires.

Transceiver

NI-XNET CAN High-Speed hardware uses either the NXP TIA1041 or
NXP TJA 1043 High-Speed CAN transceiver.

The NI-XNET CAN HS/FD Transceiver Cable uses the TJA1043
transceiver. All other PXI and PCI NI-XNET High-Speed CAN interfaces
use the TJA1041.

Both the TJA1041 and TJA 1043 are fully compatible with the ISO 11898
standard and support baud rates of 40 kbps to 1 Mbps. These devices also
support advanced power management through a low-power sleep mode.
Refer to the NI-XNET Session Interface:CAN:Transceiver State property
for more information. For detailed transceiver specifications, refer to the
TJA1041 or TJA 1043 data sheet.

Bus Power Requirements

The High-Speed physical layer on PXI, PCI, and Transceiver Cable
NI-XNET interfaces is internally powered. As such, there is no need to
supply bus power. The COM pin serves as the reference ground for the bus
signals. Refer to Pinouts for the PXI and PCI NI-XNET CAN interface
pinout.

The High-Speed physical layer on C Series NI 9862 requires external
power supply of +9 to +30 V to operate. Connect the external power supply
to the Vsup pin on the module. The COM pins are for reference ground.
Refer to Pinouts for the C Series NI-XNET CAN module pinout.

NI-XNET Hardware and Software Manual 3-4 ni.com

© National Instruments

Chapter 3 NI-XNET Hardware Overview

Cabling Requirements for High-Speed CAN

Cables should meet the physical medium requirements specified in
ISO 11898, shown in Table 3-3.

Belden cable (3084A) meets all these requirements and should be suitable
for most applications.

Table 3-3. SO 11898 Specifications for Characteristics of a CAN_H and
CAN_L Pair of Wires

Characteristic Value

Impedance 108 Q minimum, 120 2 nominal,
132 Q maximum

Length-related resistance 70 mQ /m nominal

Specific line delay 5 ns/m nominal

Cable Lengths

The cabling characteristics and desired bit transmission rate affect the
allowable cable length. Detailed cable length recommendations are in the
ISO 11898 and CiA DS 102 specifications. ISO 11898 specifies 40 m total
cable length with a maximum stub length of 0.3 m for a bit rate of 1 Mbps.
The ISO 11898 specification says that significantly longer cable lengths
may be allowed at lower bit rates, but each node should be analyzed for
signal integrity problems.

Number of Devices

The maximum number of devices depends on the electrical characteristics
of the devices on the network. If all devices meet the requirements of
ISO 11898, you can connect at least 30 devices to the bus. You can connect
higher numbers of devices if the device electrical characteristics do not
degrade signal quality below ISO 11898 signal level specifications. The
NI-XNET CAN hardware electrical characteristics allow at least 110 CAN
ports on the network.

Cable Termination

The pair of signal wires (CAN_H and CAN_L) constitutes a transmission
line. If the transmission line is not terminated, each signal change on the
line causes reflections that may cause communication failures.

3-5 NI-XNET Hardware and Software Manual

Chapter 3

NI-XNET Hardware Overview

Because communication flows both ways on the CAN bus, CAN requires
that both ends of the cable be terminated. However, this requirement does
not mean that every device should have a termination resistor. If multiple
devices are placed along the cable, only the devices on the ends of the cable
should have termination resistors. Refer to Figure 3-1 for an example of
where termination resistors should be placed in a system with more than
two devices.

CAN CAN CAN
Device Device Device

T CAN_H [!
CAN
Device 21209 CAN_L g) %209.

Figure 3-1. Termination Resistor Placement

The termination resistors on a cable should match the nominal impedance
of the cable. ISO 11898 requires a cable with a nominal impedance of
120 €3, so you should use a 120 Q resistor at each end of the cable. Each
termination resistor should be capable of dissipating 0.25 W of power.

NI-XNET devices feature software selectable bus termination for
High-Speed CAN transceivers. On the PXI-8512, PCI-8512, PCI-8513
(in high-speed mode), or PXI-8513 (in high-speed mode), you can enable
120 Q) termination resistors between CAN_H and CAN_L through an
API call.

Refer to the NI-XNET Session Interface:CAN:Termination property for
more information.

NI-XNET Hardware and Software Manual 3-6 ni.com

Chapter 3 NI-XNET Hardware Overview

Cabling Example

Figure 3-2 shows an example of a cable to connect two CAN devices. For
the internal power configuration, no V+ connection is required.

9-Pin 9-Pin
D-Sub D-Sub
CAN_H
Pin 7 Pin7
120 Q 120 Q
% CAN_L %
Pin 2 Pin 2
HIELD
Pin 5 S Pin 5
Pin 9 Ve Pin 9
Pin 3 V= Pin 3
Power
Connector
Ve >——
V- —————

Figure 3-2. Cable Connecting Two CAN Devices

Low-Speed/Fault-Tolerant Physical Layer

© National Instruments

The Low-Speed/Fault-Tolerant CAN physical layer circuitry interfaces the
CAN protocol controller to the physical bus wires.

Transceiver

NI-XNET CAN Low-Speed/Fault-Tolerant hardware uses either the
NXP TJA1054A or NXP TJA1055T Low-Speed/Fault-Tolerant
transceiver.

NI PXI and PCI XNET interfaces revision E and higher use the TJA1055T
transceiver, while revision D and lower use the TJA1054A transceiver.

To identify your PCI/PXI NI-XNET hardware revision, refer to the
19xxxx<rev>—4xL text on the green label in the top left corner on the
secondary side of the board; <rev> indicates the hardware revision.

3-7 NI-XNET Hardware and Software Manual

Chapter 3 NI-XNET Hardware Overview

Both the TIA1054 A and TJA 1055T support baud rates up to 125 kbps. The
transceiver can detect and automatically recover from the following CAN
bus failures:

e CAN_H wire interrupted

e CAN_L wire interrupted

e CAN_H short-circuited to battery

e CAN_L short-circuited to battery

¢ CAN_H short-circuited to VCC

e CAN_L short-circuited to VCC

e CAN_H short-circuited to ground

e CAN_L short-circuited to ground

e CAN_H and CAN_L mutually short-circuited

The TJA1054A and TJA 1055T support advanced power management
through a low-power sleep mode. Refer to the NI-XNET Session
Interface:CAN:Transceiver State property for more information. For
detailed specifications for the transceivers, refer to the TJA1054 and
TJA 1055T data sheet.

Bus Power Requirements

The Low-Speed/Fault-Tolerant physical layer on PXI, PCI, and
Transceiver Cable NI-XNET interfaces is internally powered. As such,
there is no need to supply bus power. The COM pin serves as the reference
ground for the bus signals. Refer to Pinouts for the PXI and PCI NI-XNET
CAN interface pinout.

The Low-Speed/Fault-Tolerant physical layer on the C Series NI 9861
requires external power supply of +9 to +30 V to operate. Connect the
external power supply to the Vsup pin on the module. The COM pins are
for reference ground. Refer to Pinouts for the C Series NI-XNET CAN
module pinout.

Cabling Requirements for Low-Speed/
Fault-Tolerant CAN

Cables should meet the physical medium requirements shown in Table 3-4.
Belden cable (3084A) meets all of those requirements and should be
suitable for most applications.

NI-XNET Hardware and Software Manual 3-8 ni.com

Chapter 3 NI-XNET Hardware Overview

Table 3-4. Specifications for Characteristics of a CAN_H and CAN_L Pair of Wires

Characteristic Value

Length-related resistance 90 mQ2/m nominal

Length-related capacitance: CAN_L and
ground, CAN_H and ground, CAN_L and
CAN_H

30 pF/m nominal

Number of Devices

The maximum number of devices depends on the electrical characteristics
of the devices on the network. If all devices meet the requirements of
typical Low-Speed/Fault-Tolerant CAN, you can connect up to 32 devices
to the bus. You can connect higher numbers of devices if the electrical
characteristics of the devices do not degrade signal quality below
Low-Speed/Fault-Tolerant signal level specifications.

Termination

Every device on the Low-Speed CAN network requires a termination
resistor for each CAN data line: RRTH for CAN_H and RRTL for CAN_L.

Figure 3-3 shows termination resistor placement in a Low-Speed CAN
network.

Low-speed Low-speed Low-speed
CAN Device CAN Device CAN Device
RTL CAN_L RTH CAN_H RTL CAN_L RTH CAN_H RTL CAN_L RTH CAN_H

CAN_H

CAN_L

% |

© National Instruments

Figure 3-3. Termination Resistor Placement for Low-Speed CAN

The Determining the Necessary Termination Resistance for the Board
section explains how to determine the correct termination resistor values
for the Low-Speed CAN transceiver.

Refer to the NI-XNET Session Interface: CAN:Termination property for
more information.

NI-XNET Hardware and Software Manual

Chapter 3

NI-XNET Hardware Overview

Determining the Necessary Termination Resistance

for the Board

Unlike High-Speed CAN, Low-Speed CAN requires termination at the
Low-Speed CAN transceiver instead of on the cable. The termination
requires two resistors: RTH for CAN_H and RTL for CAN_L. This
configuration allows the NXP fault-tolerant CAN transceiver to detect and
recover from bus faults. You can use NI-XNET Low-Speed/Fault-Tolerant
CAN hardware to connect to a Low-Speed CAN network having from two
to 32 nodes as specified by NXP (including the port on the CAN
Low-Speed/ Fault-Tolerant interface). You also can use the
Low-Speed/Fault-Tolerant interface to communicate with individual
Low-Speed CAN devices. It is important to determine the overall
termination of the existing network, or the individual device termination,
before connecting it to a Low-Speed/ Fault-Tolerant port.

NXP recommends an overall RTH and RTL termination of 100-500 Q
(each) for a properly terminated low-speed network. You can determine the
overall network termination as follows:

1 _ 1 + 1 + 1 + 1

RRTHoverall RRTHnodel RRTHnodeZ RRTHnode3 RRTHnoden

NXP also recommends an individual device RTH and RTL termination
of 500 Q—-16 KQ. After determining the existing network or device
termination, you can use the following formula to indicate which nearest
value the termination property needs to be set to produce the proper overall
RTH and RTL termination of 100-500 Q upon connection of the card:

Low-speed Low-speed Low-speed
CAN Device CAN Device CAN Device
RTH CAN_H RTL CAN_L RTH CAN_H RTL CAN_L RTH CAN_H
CAN_H

.

where Rgry overall should be 100-500 Q.

NI-XNET Hardware and Software Manual 3-10 ni.com

Chapter 3 NI-XNET Hardware Overview

NI-XNET Low-Speed/Fault-Tolerant CAN hardware features software
selectable bus termination resistors, allowing you to adjust the overall
network termination through an API call. In general, if the existing network
has an overall network termination of 125 Q or less, you should select the
5 KQ option for your NI-XNET device. For existing overall network
termination above 125 Q, you should select the 1 KQ termination option
for your NI-XNET device.

Single Wire CAN Physical Layer

The Single Wire CAN physical layer circuitry interfaces the CAN protocol
controller to the physical bus wires.

Transceiver

NI-XNET Single Wire hardware uses either the NXP AU5790 or
ON Semiconductor NCV7356 Single Wire CAN transceiver.

NI PCI-8513 and NI PCI-8513/2 software-selectable NI-XNET PCI CAN
interfaces (revision D and higher) use the ON Semiconductor NCV7356
Single Wire transceiver, while revision C (and lower) uses the

NXP AU5790 Single Wire transceiver.

NI PXI-8513 and NI PXI-8513/2 software-selectable NI-XNET PXI CAN
interfaces (revision E and higher) use the ON Semiconductor NCV7356
Single Wire transceiver, while revision D (and lower) uses the

NXP AU5790 Single Wire transceiver.

To identify the your PCI/PXI NI-XNET hardware revision, refer to the
19xxxx<rev>—4xL text on the green label in the top left corner on the
secondary side of the board; <rev> indicates the hardware revision.

The NI-XNET Single Wire hardware supports baud rates up to 33.3 kbps
in normal transmission mode and 83.3 kbps in High-Speed transmission
mode. The achievable baud rate is primarily a function of the network
characteristics (termination and number of nodes on the bus), and assumes
bus loading as per SAE J2411. Each Single Wire CAN port has a local bus
load resistance of 9.09 k(2 between the CAN_H and RTH pins of the
transceiver to provide protection against the loss of ground. NI-XNET
Single Wire hardware also supports advanced power management through
low-power sleep and wake up modes. Refer to the NI-XNET Session
Interface:CAN:Transceiver State property for more information.

For detailed transceiver specifications, refer to their respective data sheets.

© National Instruments 3-11 NI-XNET Hardware and Software Manual

Chapter 3 NI-XNET Hardware Overview

Bus Power Requirements

The Single Wire physical layer on PXI and PCI NI-XNET interfaces
requires external power supply of +8 to +18 V (+12 V recommended) to
operate. Connect the external power supply to the Ext_Vbat pin on the
module. The COM pins are used for reference ground. Refer to Pinouts
for the PXTI and PCI NI-XNET CAN module pinout.

Cabling Requirements for Single Wire CAN

The number of nodes on the network, total system cable length, bus loading
of each node, and clock tolerance are all interrelated. It is therefore the

system designer’s responsibility to factor in all the above parameters when
designing a Single Wire CAN network. The SAE J2411 standard includes
some recommended specifications that can help in making these decisions.

Cable Length

There can be no more than 60 m between any two ECU nodes.

Number of Devices

As stated previously, the maximum number of Single Wire CAN nodes
allowed on the network depends on the device and cable electrical
characteristics. If all devices and cables meet the requirements of J2411,
between 2 and 32 devices may be networked together.

Termination (Bus Loading)

All NI Single Wire CAN hardware includes a built-in 9.09 kQ load resistor,
as specified by J2411.

External CAN Transceiver

The external CAN transceiver mode on the PXI-8513 and PCI-8513 XS
software selectable interfaces allows you to connect custom CAN
transceivers to the NI-XNET CAN hardware. The DB-9 connector on the
PXI-8513 and PCI-8513 interfaces includes five different pins to connect
with the custom transceiver. Refer to Pinouts for the DB-9 pinout for
external CAN transceiver. Refer to Interface:CAN:External Transceiver
Config for more information about configuring the NI-XNET hardware to
communicate with the custom transceiver.

NI-XNET Hardware and Software Manual 3-12 ni.com

Chapter 3 NI-XNET Hardware Overview

Pinouts
PX1-8511/8512/8513 and PCI-8511/8512/8513

Table 3-5 describes the CAN DB-9 pinout on PXI and PCI NI-XNET CAN

interfaces.
Table 3-5. PXIand PCI NI-XNET CAN DB-9 Pinout
D-SUB Pin Signal Description
1 NC No connection
2 CAN_L CAN_L bus line
3 COM CAN reference ground
4 NC No connection
5 (SHLD) Optional CAN shield
6 (COM) Optional CAN reference ground
7 CAN_H CAN_H bus line
8 NC No connection
9 (Ext_Vbat) Optional CAN power supply if bus
power/external VBAT is required
(single wire CAN on XS hardware
only)

Table 3-6 describes the CAN DB-9 pinout on PXI and PCI NI-XNET
External CAN transceivers.

Table 3-6. PXI and PCI NI-XNET External CAN Transceiver DB-9 Pinout

D-SUB Pin Signal Description

1 Outputl Generic output used to configure the
transceiver mode

2 Ext RX Data received from the CAN Bus
3 COM CAN reference ground
4 OutputO Generic output used to configure the

transceiver mode

5 (SHLD) Optional CAN shield

© National Instruments 3-13 NI-XNET Hardware and Software Manual

Chapter 3 NI-XNET Hardware Overview

Table 3-6. PXI and PCI NI-XNET External CAN Transceiver DB-9 Pinout

D-SUB Pin Signal Description
6 COM CAN reference ground
7 Ext TX Data to transmit on the CAN Bus
8 NERR Input to connect to the NERR pin of

your transceiver to route status back
from the transceiver to the hardware

9 NC No connection
C Series NI 9861/9862
Table 3-7 describes the CAN DB-9 pinout on C Series NI- XNET CAN
interfaces.

Table 3-7. C Series NI-XNET CAN DB-9 Pinout

D-SUB Pin Signal Description

1 NC No connection

2 CAN_L CAN_L bus line

3 COM CAN reference ground

4 NC No connection

5 (SHLD) Optional CAN shield

6 (COM) Optional CAN reference ground

7 CAN_H CAN_H bus line

8 NC No connection

9 VSUP External power supply (49 V to
+30 V) required

NI-XNET Hardware and Software Manual 3-14 ni.com

Chapter 3 NI-XNET Hardware Overview

NI-XNET CAN HS/FD Transceiver Cable

Table 3-8 describes the CAN DB-9 pinout on NI-XNET HS/FD
Transceiver Cables.

Table 3-8. NI-XNET HS/FD Transceiver Cable DB-9 Pinout

D-SUB Pin Signal Description
1 NC No connection

2 CAN_L CAN_L bus line

3 COM CAN reference ground

4 NC No connection

5 NC No connection

6 COM CAN reference ground

7 CAN_H CAN_H bus line

8 NC No connection

9 NC No connection

NI-XNET LIN Hardware

LIN Physical Layer

© National Instruments

The NI-XNET LIN physical layer circuitry interfaces the LIN protocol
controller to the physical bus wires. NI-XNET LIN interfaces are fully
compliant with the LIN 1.3/2.0/2.1/2.2 specification.

Transceiver

NI-XNET LIN hardware uses the Atmel ATA6620 or ATA6625 LIN
transceiver for PCI-XNET and PXI-XNET LIN Interfaces, and the NXP
TJA1028 transceiver for C Series and Transceiver Cable XNET LIN
interfaces.

NI PXI-8516 and PCI-8516 XNET interfaces revision F and higher use the
ATA6625 LIN transceiver, while revision E and lower use the ATA6620
LIN transceiver.

3-15 NI-XNET Hardware and Software Manual

Chapter 3 NI-XNET Hardware Overview

To identify your PCI/PXI NI-XNET hardware revision, refer to the
19xxxx<rev>—4xL text on the green label in the top left corner on the
secondary side of the board; <rev> indicates the hardware revision.

These transceivers are fully compatible with the ISO-9141 standard and
support baud rates up to 20 kbps. For detailed specifications, refer to their
respective data sheets.

Bus Power Requirements

The LIN physical layer on NI-XNET interfaces requires an external power
supply of +8 to +18 V, as the following table specifies. Connect the
external power supply to the VBat/Vsup pin on the interface. The COM
pins are for reference ground. Refer to Pinouts for the PXI and PCI
NI-XNET LIN interface pinout.

Table 3-9. NI-XNET LIN Hardware Bus Power Requirements

Characteristic Specification
Voltage +8 to +18 VDC on VBat connector pin
(referenced to COM)
Current 55 mA maximum

Cabling Requirements for LIN

LIN cables should meet the physical medium requirement of a bus RC time
constant of 5 ps. For detailed formulas for calculating this value, refer to
the Line Characteristics section of the LIN specification. Belden cable
(3084 A) and other unterminated CAN/Serial quality cables meet these
requirements and should be suitable for most applications.

Cable Lengths

The maximum allowable cable length is 40 m, per the LIN specification.

Number of Devices

The maximum number of devices on a LIN bus is 16, per the LIN
specification.

NI-XNET Hardware and Software Manual 3-16 ni.com

Pinouts

© National Instruments

Chapter 3 NI-XNET Hardware Overview

Termination

LIN cables require no termination, as nodes are terminated at the
transceiver. Slave nodes typically are pulled up from the LIN bus to VBat
with a 30 kQ resistance and a serial diode. This termination usually is
integrated into the transceiver package. The master node requires a 1 kQQ
resistor and serial diode between the LIN bus and VBat. On NI-XNET LIN
products, master termination is software selectable; you can enable it in the
API with the NI-XNET Session Interface:LIN:Termination property.

PXI-8516 and PCI-8516

Table 3-10 describes the LIN DB-9 pinout on PXI and PCI NI-XNET LIN
interfaces.

Table 3-10. PXI and PCI NI-XNET LIN DB-9 Pinout

Pin Signal Description

1 NC No connection

2 NC No connection

3 COM LIN reference ground

4 NC No connection

5 SHLD Optional LIN shield. Connecting the
optional LIN shield may improve signal
integrity in a noisy environment.

6 (COM) Optional LIN reference ground

7 LIN LIN data line

8 NC No connection

9 VBat Supplies bus power to the LIN physical
layer, as the LIN specification requires. All
NI-XNET LIN interfaces require bus power
of +8 to +18 VDC.

3-17 NI-XNET Hardware and Software Manual

Chapter 3 NI-XNET Hardware Overview

C Series NI 9866 and NI-XNET LIN Transceiver Cable

Table 3-11 describes the LIN DB-9 pinout on C Series and NI-XNET
Transceiver Cable NI-XNET LIN interfaces.

Table 3-11. C Series NI-XNET LIN DB-9 Pinout

D-SUB Pin Signal Description

1 NC No connection

2 NC No connection

3 COM LIN reference ground

4 NC No connection

5 (SHLD) Optional LIN shield

6 (COM) Optional LIN reference ground

7 LIN LIN data line

8 NC No connection

9 VSUP External power supply (+8 to +18 V)
required

Isolation

All NI-XNET products protect your equipment from being damaged by
high-voltage spikes on the target bus. Bus ports on PXI and PCI NI-XNET
products support channel-to-channel and channel-to-bus isolation, and are
galvanically isolated up to 60 VDC. This isolation on PXI and PCI
NI-XNET products is intended to prevent ground loops.

Bus ports on C Series NI-XNET products support channel-to-bus isolation,
and are galvanically isolated up to 500 Vrms (5 s max withstand).

Bus ports on NI-XNET Transceiver Cable products support channel-to-bus
isolation, and are galvanically isolated up to 1000 Vrms (5 s max
withstand).

NI-XNET Hardware and Software Manual 3-18 ni.com

LEDs

Chapter 3

NI-XNET Hardware Overview

NI-XNET one and two-port boards and Transceiver Cables include two
LEDs per port to help you monitor hardware and bus status. LED 1
primarily indicates whether the hardware is currently in use. LED 2
primarily indicates the activity information of the connected bus. Each
LED can display two colors (red or green), which display in the following

four patterns:

Pattern Meaning
Off No LED illumination
Solid LED fully illuminated
Blink Blinks at a constant rate of several times per second
Activity Blinks in a pseudo-random pattern

The following LED indications are protocol independent:

Condition/State

LED1

LED 2

Port identification

Blinks green

Blinks green

missing power

NI-XNET catastrophic error Blinks red Blinks red
No open session on hardware Off Off

Open session on hardware, port is Solid green Off
properly powered, and hardware is

not communicating

Open session on hardware, port is Solid red Off

© National Instruments 3-19

NI-XNET Hardware and Software Manual

NI-XNET Hardware Overview

The following LED conditions are specific to CAN:

controller transitioned to
bus off

Condition/State LED 1 LED 2
Hardware is Solid green Activity green (returns to
communicating, and idle/off one second after
controller is in Error last TX or RX)

Active state

Hardware is Solid green Activity red (returns to
communicating, and idle/off one second after
controller is in Error last TX or RX)

Passive state

Hardware is running, and | Solid green Solid red

The following LED conditions are specific to FlexRay:

with a FlexRay cluster
and transitioned to Halt
state

Condition/State LED 1 LED 2
Hardware is integrated Solid green Activity green (continues
with a FlexRay cluster, while integrated)
and controller is in
Normal Active state
Hardware is integrated Solid green Activity red (continues
with a FlexRay cluster, while integrated)
and controller is in
Normal Passive state
Hardware was integrated | Solid green Solid red

The following LED conditions are specific to LIN:

Condition/State

LED1

LED 2

Hardware is
communicating

Solid green

Activity green (returns to
idle/off one second after
last TX or RX)

NI-XNET Hardware and Software Manual 3-20

ni.com

Chapter 3 NI-XNET Hardware Overview

Synchronization

PXI, PXI Express, and PCI NI-XNET

C Series NI-XNET

© National Instruments

The PXI and PXI Express chassis features a dedicated synchronization bus
integrated into the backplane. NI-XNET products support use of this bus to
synchronize with other National Instruments hardware products such as
DAQ, IMAQ, and motion. The PXI synchronization bus consists of a
flexible interconnect scheme for sharing timing and triggering signals in a
system.

For PCI hardware, the RTSI bus interface is a connector at the top of the
card. You can synchronize multiple National Instruments PCI cards by
connecting a RTSI ribbon cable between the cards that need to share timing
and triggering signals.

CAN/XS and FlexRay XNET products also feature two configurable
timing and triggering ports on the device front panel. These ports are
TTL-tolerant user-configurable for inputting and outputting timebases and
triggers. These signals are not electrically isolated from the backplane.
Refer to the XNET Connect Terminals function documentation for more
details.

All NI-XNET ports on a particular C Series chassis share a common
timebase, allowing a better correlation of data on the ports. NI-XNET
products support use of this timebase to synchronize with other National
Instruments hardware products such as DAQ modules.

Moreover, on a CompactRIO system, the module’s timebase is corrected
for drift with respect to the RT controller’s timebase, allowing the
capability to correlate data with other modules in the chassis.

On a CompactDAQ system, you can route the Start Trigger between
multiple DAQmx and XNET modules. For information about performing
this routing in LabVIEW, refer to the Interface:Source Terminal:Start
Trigger property in Chapter 4, NI-XNET API for LabVIEW. For
information about performing this routing in C/C++, refer to the
Interface:Source Terminal:Start Trigger property in Chapter 5, NI-XNET
API for C.

3-21 NI-XNET Hardware and Software Manual

NI-XNET API for LabVIEW

This chapter explains how to use the NI-XNET API for LabVIEW and describes the
NI-XNET LabVIEW VIs and properties.

Getting Started

This section helps you get started using NI-XNET for LabVIEW. It includes information
about using NI-XNET within a LabVIEW project, NI-XNET examples, and using the
NI-XNET palettes to create your own VI.

LabVIEW Project

Within a LabVIEW project, you can create NI-XNET sessions used within a VI to read or
write network data.

Using LabVIEW project sessions is best suited for static applications, in that the network data
does not change from one execution to the next. Even if your application is more dynamic,
a LabVIEW project is an excellent introduction to NI-XNET concepts.

To get started, open a new LabVIEW project, right-click My Computer, and select
New»NI-XNET Session. In the resulting dialog, the window on the left provides an
introduction to the NI-XNET session in the LabVIEW project. The introduction links to help
topics that describe how to create a session in the project, including a description of the
session modes.

Examples

NI-XNET includes LabVIEW examples that demonstrate a wide variety of use cases. The
examples build on the basic concepts to demonstrate more in-depth use cases. Most of the
examples create a session at run time rather than a LabVIEW project.

To view the NI-XNET examples, select Find Examples... from the LabVIEW Help menu.
When you browse examples by task, NI-XNET examples are under Hardware Input and
Output. The examples are grouped by protocol in CAN, FlexRay, and LIN folders. Although
you can write NI-XNET applications for either protocol, and each folder contains shared
examples, this organization helps you to find examples for your specific hardware product.

© National Instruments 4-1 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Getting Started

A few examples are suggested to get started with NI-XNET.

For CAN (at Hardware Input and Output»> CAN»NI-XNET»Intro to Sessions»Signal
Sessions):

¢ CAN Signal Input Single Point.vi with CAN Signal Output Single Point.vi.
¢ CAN Signal Input Waveform.vi with CAN Signal Output Waveform.vi.

¢ CAN Frame Input Stream.vi (at Hardware Input and
Output»CAN»NI-XNET»Intro to Sessions»Frame Sessions) with any output
example.

For FlexRay (at Hardware Input and Output»FlexRay»Intro to Sessions»Signal
Sessions):

* FlexRay Signal Input Single Point.vi with FlexRay Signal Output Single Point.vi.
* FlexRay Signal Input Waveform.vi with FlexRay Signal Output Waveform.vi.

¢ FlexRay Frame Input Stream.vi (at Hardware Input and Output»FlexRay»Intro to
Sessions»Frame Sessions)with any output example.

For LIN (at Hardware Input and Output»LIN»NI-XNET»Intro to Sessions»Signal
Sessions):

e LIN Signal Input Single Point.vi with LIN Signal Output Single Point.vi.
e LIN Signal Input Waveform.vi with LIN Signal Output Waveform.vi.

¢ LIN Frame Input Stream.vi (at Hardware Input and Output»LIN»NI-XNET»Intro
to Sessions»Frame Sessions) with any output example.

Open an example VI by double-clicking its name.

To run the example, select values using the front panel controls, then read the instructions on
the front panel to run the examples.

Palettes

After learning the fundamentals of NI-XNET with a LabVIEW project and the examples, you
can begin to write your own application.

The NI-XNET functions palette includes nodes that you drag to your VI block diagram. When
your VI block diagram is open, this palette is in the Measurement I/O»XNET functions
palette.

To view help for each node in the NI-XNET functions palette, open the context help window
by selecting Show Context Help from the LabVIEW Help menu (or pressing <Ctrl-H>). As
you hover over each node or subpalette, a brief summary appears. To open the complete help,
click the Detailed help link in the summary.

NI-XNET Hardware and Software Manual 4-2 ni.com

Chapter 4 NI-XNET API for LabVIEW—RBasic Programming Model

The NI-XNET controls palette includes I/O name controls that you drag to the your VI front
panel. These controls enable the VI end user to select NI-XNET objects from the front panel.
You view help for these controls in the same manner as on the functions palette.

Basic Programming Model

The LabVIEW block diagram in the following figure shows the basic NI- XNET
programming model.

¥MET Session
[% MyInputSession ||

MI-HHET

&’

|Signal Single-point "’"

Figure 4-1. Basic Programming Model for NI-XNET for LabVIEW

Complete the following steps to create this block diagram:

1. Create an NI-XNET session in a LabVIEW project. The session name is
MylInputSession, and the mode is Signal Input Single-Point.

3 Project Explorer - Unt... El@

File Edit View Project Operate Too
B IEEEREL

Items | Files

=&l Project: Untitled Project 1
= B My Computer
i MylnputSession
.. 22 Dependencies
+% Build Specifications

2. Create a new VI in the project and open the block diagram.

© National Instruments 4-3 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interfaces

3. Dragawhile loop to the block diagram. Right-click the loop condition (the stop sign) and
create a control (stop button).

4. Drag the NI-XNET session from a LabVIEW project to the while loop. This creates the
XNET session wired to the corresponding XNET Read.vi.

Right-click the data output from XNET Read.vi and create an indicator.

6. Run the VI. View the received signal values. Stop the VI when you are done.

When you complete the preceding steps, you have created a fully functional NI-XNET
application.

You can create sessions for other input or output modes using the same technique. When you
drag an output session to the diagram, NI-XNET creates a constant for data and wires that
constant to XNET Write.vi. You can enter constant values to write, or to change the data at
run time, right-click the constant and select Change to Control.

NI-XNET enables you to create sessions for multiple hardware interfaces. For each interface,
you can use multiple input sessions and multiple output sessions simultaneously. The sessions
can use different modes. For example, you can use a Signal Input Single-Point Mode session
at the same time you use a Frame Input Stream Mode session.

The NI-XNET functions palette includes nodes that extend this programming model to
perform tasks such as:

e Creating a session at run time (instead of a LabVIEW project).

e Controlling the configuration and state of a session.

* Browsing and selecting a hardware interface.

e Managing and browsing database files.

* Creating frames or signals at run time (instead of using a database file).

The following sections describe the fundamental concepts used within NI-XNET. Each
section explains how to perform extended programming tasks.

Interfaces

What Is an Interface?

The interface represents a single CAN, FlexRay, or LIN connector on an NI hardware device.
Within NI-XNET, the interface is the object used to communicate with external hardware
described in the database.

Each interface name uses the following syntax:

<protocol><n>

NI-XNET Hardware and Software Manual 4-4 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interfaces

The <protocol> is either CAN for a CAN interface, FlexRay for a FlexRay interface, or LIN
for a LIN interface.

The number <n> identifies the specific interface within the <protocol> scope. The
numbering starts at 1. For example, if you have a two-port CAN device, a two-port FlexRay
device, and a two-port LIN device in your system, the interface names are CANI, CAN2,
FlexRayl, FlexRay2, LINI1, and LIN2, respectively. Devices that use a transceiver cable
receive an interface name only when a transceiver cable is connected and identified.

Although you can change the interface number <n> within Measurement & Automation
Explorer (MAX), the typical practice is to allow NI-XNET to select the number
automatically. NI-XNET always starts at 1 and increments for each new interface found. If
you do not change the number in MAX, and your system always uses a single two-port CAN
device, you can write all your applications to assume CAN1 and CAN?2. For as long as that
CAN card exists in your system, NI-XNET uses the same interface numbers for that device,
even if you add new CAN cards.

NI-XNET also uses the term port to refer to the connector on an NI hardware device. This
physical connector includes the transceiver cable if applicable. The difference between the
terms is that port refers to the hardware object (physical), and interface refers to the software
object (logical). The benefit of this separation is that you can use the interface name as an alias
to any port, so that your application does not need to change when your hardware
configuration changes. For example, if you have a PXI chassis with a single CAN PXI device
in slot 3, the CAN port labeled Port [is assigned as interface CANI. Later on, if you remove
the CAN PXI card and connect a USB device for CAN, the CAN port on the USB device is
assigned as interface CANI. Although the physical port is in a different place, VIs written to
use CANI work with either hardware configuration without change.

How Do | View Available Interfaces?
Measurement and Automation Explorer (MAX)

Use MAX to view your available NI-XNET hardware, including all devices and interfaces.

To view hardware in your local Windows system, select Devices and Interfaces under
My System. Each NI-XNET device is listed with the hardware product name, such as
NI PCI-8517 “FlexRayl, FlexRay2”.

Select each NI-XNET device to view its physical ports. Each port is listed with the current
interface name assignment, such as FlexRayl.

In the selected port’s window on the right, you can change one property: the interface name.
Therefore, you can assign a different interface name than the default. For example, you can
change the interface for physical port 2 of a PCI-8517 to FlexRay!1 instead of FlexRay?2. The
blinking LED test panel assists in identifying a specific port when your system contains

© National Instruments 4-5 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Interfaces

multiple instances of the same hardware product (for example, a chassis with five CAN
devices).

To view hardware in a remote LabVIEW Real-Time system, find the desired system under
Remote Systems and select Devices and Interfaces under that system. The features of
NI-XNET devices and interfaces are the same as the local system.

1/0 Name

When you create a session at run time, you pass the desired interface to XNET Create
Session.vi. The interface uses the XNET Interface /O Name type.

The XNET Interface I/O name has a drop-down list of all available NI-XNET interfaces. This
list matches the list of interfaces shown in MAX. You select a specific interface from the list
for use with XNET Create Session.vi.

By right-clicking the XNET Create Session.vi interface input, you can create a constant or
control for the XNET Interface I/O name. The constant is placed on your block diagram. You
typically use a constant when you have only a single NI-XNET device, to use fixed names
such as CAN1 and CAN2. The control is placed on your front panel. You typically use a
control when you have a large number of NI-XNET devices and want the VI end user to select
from available interfaces.

LabVIEW Project

When you create a session in a LabVIEW project, you enter the interface in the session dialog.
This dialog has a list of available interfaces, in a manner similar to the XNET Interface
I/O name.

If you are creating a session in a LabVIEW project and do not yet have NI-XNET hardware
in your system, you can type an interface name such as CANI in the dialog. This enables you
to create sessions and program VIs prior to installing the hardware.

System Node

In some cases, you may need to provide features similar to MAX within your own application.
For example, if you distribute your LabVIEW application to end users who are not familiar
with MAX, you may need to display a similar view within the application itself.

Within the NI-XNET functions palette Advanced subpalette, NI-XNET provides property
nodes to query for available hardware.

NI-XNET Hardware and Software Manual 4-6 ni.com

Chapter 4 NI-XNET API for LabVIEW—Databases

N
N
Tree Tree error out
= KMET Syste 1 B ¥NET Device B] 1] —— 1] {2 E——]
}-’! e A e Eui Tree liome fid L g b b T Ierto® =T | it Tree Tems, b Ten] W
evices G | Froduciame Lo/ e /
Parent Tag Parent Tag
Intfs Y Chid Position b Chid Position
Left Cell Siring . Left Cell String
Tree b Child Text . Child Text
b Child Tag . Child Tag
Child Only? b Child Only?
@ P
0 P

Figure 4-2. Advanced System Example Using Property Nodes

The block diagram in the figure above shows how to populate a LabVIEW tree control with
NI-XNET devices and interfaces, in a manner similar to MAX. First, you get the list of
devices from the XNET System node. For each XNET Device, you get its name and add
that name to the tree. For each XNET interface (port) in the device, you get its name and
add that name to the tree (with the device as the parent).

If you use this tree control to select an interface for session creation, you can pass the interface
name from the tree directly to XNET Create Session.vi. Although XNET Create Session.vi
uses the XNET Interface I/O name as an input, LabVIEW can cast a string to that /O name
automatically.

Databases

What Is a Database?

For the NI-XNET interface to communicate with hardware products on the external network,
NI-XNET must understand the communication in the actual embedded system, such as the
vehicle. This embedded communication is described within a standardized file, such as
CANdD (. dbc) for CAN, FIBEX (.xm1) for FlexRay, or LIN Description File (.1daf) for
LIN. Within NI-XNET, this file is referred to as a database. The database contains many
object classes, each of which describes a distinct entity in the embedded system.

* Database: Each database is represented as a distinct instance in NI-XNET. Although the
database typically is a file, you also can create the database at run time (in memory).

* Cluster: Each database contains one or more clusters, where the cluster represents a
collection of hardware products connected over a shared cabling harness. In other words,
each cluster represents a single CAN, FlexRay, or LIN network. For example, the
database may describe a single vehicle, where the vehicle contains one CAN cluster
Body, another CAN cluster Powertrain, one FlexRay cluster Chassis, and a LIN cluster
PowerSeat.

© National Instruments 4-7 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET AP for LabVIEW—Databases

e ECU: Each Electronic Control Unit (ECU) represents a single hardware product in the
embedded system. The cluster contains one or more ECUs connected over a CAN,
FlexRay, or LIN cable. It is possible for a single ECU to be contained in multiple clusters,
in which case it behaves as a gateway between the clusters.

* Frame: Each frame represents a unique unit of data transfer over the cluster cable. The
frame bits contain payload data and an identifier that specifies the data (signal) content.
Only one ECU in the cluster transmits (sends) each frame, and one or more ECUs receive
each frame.

* Signal: Each frame contains zero or more values, each of which is called a signal. Within
the database, each signal specifies its name, position, length of the raw bits in the frame,
and a scaling formula to convert raw bits to/from a physical unit. The physical unit uses
a LabVIEW double-precision floating-point numeric type.

Other object classes include the PDU, Subframe, LIN Schedule, and LIN Schedule Entry.

What Is an Alias?

When using a database file with NI-XNET, you can specify the file path or an alias to the file.
The alias provides a shorter, easier-to-read name for use within your application.

For example, for the file path

C:\Documents and Settings\All Users\Documents\Vehicle5\
MyDatabase.DBC

you can add an alias named MyDatabase.

In addition to improving readability, the alias concept isolates your LabVIEW application
from the specific file path. For example, if your application uses the alias MyDatabase and
you change its file path to

C:\Embedded\Vehicle5\MyDatabase.DBC
your LabVIEW application continues to run without change.

The alias concept is used in most NI-XNET features for the database classes. The XNET I/0
Names for database classes include features for adding a new alias, viewing existing aliases,
deleting an alias, and so on. You also can perform these tasks at run time, using the VIs
available in the NI-XNET functions palette Database»File Mgt subpalette.

After you create an alias, it exists until you explicitly delete it. If you exit and relaunch
LabVIEW, the aliases from the previous use remain. If you uninstall NI-XNET, the aliases are
deleted; however, if you reinstall (upgrade) NI-XNET, the aliases from the previous
installation remain. Deleting an alias does not delete the database file itself, but merely the
association within NI-XNET.

NI-XNET Hardware and Software Manual 4-8 ni.com

Chapter 4 NI-XNET API for LabVIEW—Databases

An alias is required for deploying databases to LabVIEW Real-Time (RT) targets. When you
deploy to a LabVIEW RT target, the large text file is compressed to an optimized binary
format, and that binary file is transferred to the target. For more information about databases
with LabVIEW RT, refer to Using LabVIEW Real-Time.

Database Programming

The NI-XNET software provides various methods for creating your application database
configuration. The following figure shows a process for deciding the database source.
A description of each step in the process follows the flowchart.

Already
Have File?

\ 4 Y
Yes Can | use No Yes Want to No
\ 4 \ 4 \ 4 \ 4
Select From Edit and Crgate New Create in
File Select File Using Memory
Editor

Figure 4-3. Decision Process for Choosing Database Source

Already Have File?

If you are testing an ECU used within a vehicle, the vehicle maker (or the maker’s supplier)
already may have provided a database file. This file likely would be in CANdb, FIBEX, or
LDF format. When you have this file, using NI-XNET is relatively straightforward.

Can Use File As Is?
Is the file up to date with respect to your ECU(s)?

© National Instruments 4-9 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET AP for LabVIEW—Databases

If you do not know the answer to this question, the best choice is to assume Yes and begin
using NI-XNET with the file. If you encounter problems, you can use the techniques
discussed in Edit and Select to update your application without significant redesign.

Select From File

There are three options for selecting the database objects to use for NI-XNET sessions: a
LabVIEW project, I/O names, and property nodes.

LabVIEW Project

The NI-XNET session in a LabVIEW project assumes that you have a database file. The
configuration dialog includes controls to browse to your database file, select a cluster to use,
and select a list of frames or signals. For example, if you create a Signal Input Single-Point
session, you enter the database and cluster to use, then select one or more signals to read.

1/0 Names

If you create sessions at run time, you need to wire objects from the database file to XNET
Create Session.vi. The easiest way to do this is to use I/O names for the objects that you need.

For example, assume that you want to create a Signal Input Single-Point session and want the
VI end user to select signals from the front panel. First, drag XNET Create Session.vi from
the NI-XNET functions palette. Change the VI selector to Signal Input Single-Point.
Right-click the signal list input and select Create»Control. This creates an array of XNET
Signal I/O names on your front panel.

Right-click the signal list control and select Browse for Database File to find the database
file. For a CANdD file, you can click the drop-down list for each array element to select from
available signals in the file. For a FIBEX or LDF file, right-click signal list and Select
Database to select a specific cluster within the file, then click the drop-down list to select
signals. After you browse to the file and select a cluster, that information is saved with the VI,
so you need to select only signal names from that point onward.

Most NI-XNET examples use I/O names to select objects (frames or signals). As a default,
the NI-XNET example VIs use an example database file installed with NI-XNET. You can
change this file to a different file using the previous steps.

Property Nodes

If you create a session at run time, you may want to implement your own front panel controls
to select objects from the database, rather than use I/O names. Although the programming is
more advanced than I/O names, you can do this using property nodes for the database classes.
These property nodes are found in the NI-XNET functions palette Database subpalette.

NI-XNET Hardware and Software Manual 4-10 ni.com

NI-XNET API for LabVIEW—Databases

For example, assume you want a tree control on the VI front panel. The tree shows the frames
and signals within a selected cluster. The VI user selects signals from this tree control. The

tree control block diagram uses a programming model similar to the Advanced System

Example Using Property Nodes.

¥NET Cluster
(T

Tree

[B =e0ET Cluster §]

B = XNET Frame §l....

| Frames Phooad

fpoeed

Name (Short) W

Sandls ¥

Tree

T E—1
Edit Tree Ttems. Add Ttem +

Parent Tag

Tree

T —1
Edit Tree Ttems. Add Ttem ¢

Child Position

Parent Tag

Left Cell String

Child Position

Child Text

Left Cell String

Child Tag

Child Text

Child Only?

Child Tag

Child Only?

error out

Figure 4-4. Advanced Database Example Using Property Nodes

The block diagram in the figure above shows how to populate a LabVIEW tree control with
the frames and signals for a specific cluster. Because a cluster represents a single network
connected to your NI-XNET interface, you do not need to show multiple clusters. First, you
get the list of frames from the XNET Cluster node. For each XNET Frame, you get its name
and add that name to the tree. For each XNET Signal in the frame, you get its name and add
that name to the tree (with the frame as the parent).

If you use this tree control to select signals for session creation, you can use names from the
tree to form the signal names that you wire to XNET Create Session.vi. For information
about signal name syntax, refer to XNET Signal I/0 Name.

Edit and Select

There are two options for editing the database objects for the NI-XNET session: edit in
memory and edit the file.

Edit in Memory

First, you select the frames or signals for the NI-XNET session using one of the options
described in Select From File.

Next, you wire the selected objects to the corresponding property node and set properties

to change the value. When you edit the object using its property node, this changes the
representation in memory, but does not save the change to the file. When you pass the object
into XNET Create Session.vi, the changes in memory (not the original file) are used.

© National Instruments 4-11 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET AP for LabVIEW—Databases

Edit the File

The NI-XNET Database Editor is a tool for editing database files for use with NI-XNET.
Using this tool, you open an existing file, edit the objects, and save those changes. You can
save the changes to the existing file or a new file.

When you have a file with the changes you need, you select objects in your application as
described in Select From File.

Want to Use a File?

If you do not have a usable database file, you can choose to create a file or avoid files
altogether for a self-contained application.

Create New File Using the Database Editor

You can use the NI-XNET Database Editor to create a new database file. Once you have a file,
you select objects in your application as described in Select From File.

As a general rule, for FlexRay applications, using a FIBEX file is recommended. FlexRay
communication configuration requires a large number of complex properties, and storage in
a file makes this easier to manage. The NI-XNET Database Editor has features that facilitate
this configuration.

Create in Memory

You can use XNET Database Create Object.vi to create new database objects in memory.
Using this technique, you can avoid files entirely and make your application self contained.

You configure each object you create using the property node. Each class of database object
contains required properties that you must set (refer to Required Properties).

Because CAN is a more straightforward protocol, it is easier to create a self-contained
application. For example, you can create a session to transmit a CAN frame with only
two objects.

NI-XNET Hardware and Software Manual 4-12 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

[smemory: [+]
ML D =0 XMET Cluster § L Lo D=t MNETFrame |-
U =l P Baud Rate 1 U =] Cydic Data ¥-* CAN:Timing Type

Cluster ~ 200000 Frame *

]

Payload Length
E Identifier
¢~ PCAN:Extended Identifier?

Figure 4-5. Create Cluster and Frame for CAN

Figure 4-5 shows a sample diagram that creates a cluster and frame in memory. The database
name is :memory:. This special database name specifies a database that does not originate
from a file. The cluster name is myCluster. For CAN, the only property required for the cluster
is Baud Rate. The cluster is wired to create a frame object named myFrame. The frame has
several required properties. The XNET Frame CAN:Timing Type property specifies how to
transmit the frame, with Cyclic Data meaning to transmit every CAN:Transmit Time
seconds (0.01, or 10 ms). The remaining properties configure the frame to use 8 bytes of
payload data and CAN standard ID 5. If the subsequent diagram passed the frame to XNET
Create Session (Frame Output Queued).vi, this would create a session you can use to write
data for transmit.

For additional information on in-memory configurations for CAN, refer to Using CAN.

After you create and configure objects in memory, you can use XNET Database Save.vi to
save the objects to a file. This enables you to implement a database editor within your
application.

Multiple Databases Simultaneously

NI-XNET allows opening up to seven distinct databases at the same time. You can open any
database from a database file or in memory. To open multiple in-memory databases, use the
name :memory[<digit>]:; for example, :memory:, :memoryl:, :memory2:.

Sessions

What Is a Session?

The NI-XNET session represents a connection between your National Instruments
CAN/FlexRay/LIN hardware and hardware products on the external network. As discussed in
Basic Programming Model, your application uses sessions to read and write I/O data.

Each session configuration includes:

© National Instruments 4-13 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Sessions

* Interface: This specifies the National Instruments hardware to use.
¢ Database objects: These describe how external hardware communicates.

* Mode: This specifies the direction and representation of I/O data.

In addition to read/write of I/O data, you can use the session to interact with the network

in other ways. For example, XNET Read.vi includes selections to read the state of
communication, such as whether communication has stopped due to error detection defined
by the protocol standard.

You can use sessions for multiple hardware interfaces. For each interface, you can use
multiple input sessions and multiple output sessions simultaneously. The sessions can use
different modes. For example, you can use a Signal Input Single-Point session at the same
time you use a Frame Input Stream session.

The limitations on sessions relate primarily to a specific frame or its signals. For example,
if you create a Frame Output Queued session for frameA, then create a Signal Output
Single-Point session for frameA.signalB (a signal in frameA), NI-XNET returns an error. This
combination of sessions is not allowed, because writing data for the same frame with

two sessions would result in inconsistent sequences of data on the network.

Session Modes

The session mode specifies the data type (signals or frames), direction (input or output), and
how data is transferred between your application and the network.

The mode is an enumeration of the following:

* Signal Input Single-Point Mode: Reads the most recent value received for each signal.
This mode typically is used for control or simulation applications, such as Hardware In
the Loop (HIL).

* Signal Input Waveform Mode: Using the time when the signal frame is received,
resamples the signal data to a waveform with a fixed sample rate. This mode typically is
used for synchronizing XNET data with DAQmzx analog/digital input channels.

* Signal Input XY Mode: For each frame received, provides its signals as a value/
timestamp pair. This is the recommended mode for reading a sequence of all signal
values.

¢ Signal Output Single-Point Mode: Writes signal values for the next frame transmit.
This mode typically is used for control or simulation applications, such as Hardware In
the Loop (HIL).

e Signal Output Waveform Mode: Using the time when the signal frame is transmitted
according to the database, resamples the signal data from a waveform with a fixed sample
rate. This mode typically is used for synchronizing XNET data with DAQmx
analog/digital output channels.

NI-XNET Hardware and Software Manual 4-14 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

* Signal Output XY Mode: Provides a sequence of signal values for transmit using each
frame’s timing as the database specifies. This is the recommended mode for writing a
sequence of all signal values.

* Frame Input Stream Mode: Reads all frames received from the network using a single
stream. This mode typically is used for analyzing and/or logging all frame traffic in the
network.

* Frame Input Queued Mode: Reads data from a dedicated queue per frame. This mode
enables your application to read a sequence of data specific to a frame (for example, CAN
identifier).

* Frame Input Single-Point Mode: Reads the most recent value received for each frame.
This mode typically is used for control or simulation applications that require lower level
access to frames (not signals).

* Frame Output Stream Mode: Transmits an arbitrary sequence of frame values using a
single stream. The values are not limited to a single frame in the database, but can
transmit any frame.

* Frame Output Queued Mode: Provides a sequence of values for a single frame, for
transmit using that frame’s timing as the database specifies.

* Frame Output Single-Point Mode: Writes frame values for the next transmit. This
mode typically is used for control or simulation applications that require lower level
access to frames (not signals).

* Conversion Mode: This mode does not use any hardware. It is used to convert data
between the signal representation and frame representation.

Frame Input Queued Mode

This mode reads data from a dedicated queue per frame. It enables your application to read a
sequence of data specific to a frame (for example, a CAN identifier).

You specify only one frame for the session, and XNET Read.vi returns values for that frame
only. If you need sequential data for multiple frames, create multiple sessions, one per frame.

The input data is returned as an array of frame values. These values represent all values
received for the frame since the previous call to XNET Read.vi.

If the session uses a CAN interface, XNET Read (Frame CAN).vi is the recommended way
to read data for this mode. This VI returns an array of frames, where each frame is a LabVIEW
cluster specific to the CAN protocol. If the session uses a FlexRay or LIN interface, the read
selection for that protocol is recommended. For more advanced applications, use XNET

Read (Frame Raw).vi, which returns frames in an optimized, protocol-independent format.

© National Instruments 4-15 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Sessions

Example

In this example network, frame C is a cyclic frame that transmits on the network once every
2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven
frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

This example uses CAN. The following figure shows a timeline of a frame transfer on the
CAN network, followed by two calls to XNET Read (Frame CAN).vi (one for C and

one for E).
Read | Read
C E
C1,2 C3,4 C3,4 C5,6
E7,8|E5,6 E1,2
Time >
I I I I I I I I I
0ms 1ms 2ms 3ms 4 ms 5ms 6 ms 7ms 8 ms
NI-XNET Hardware and Software Manual 4-16 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

The following figure shows the data returned from the two calls to XNET Read (Frame
CAN).vi (two different sessions).

The first call to XNET Read (Frame CAN).vi returned an array of values for frame C, and
the second call to XNET Read (Frame CAN).vi returns an array for frame E. Each frame is
a LabVIEW cluster with CAN-specific elements. The example uses hexadecimal C and E
as the identifier of each frame. The first two payload bytes contain the signal data. The
timestamp represents the absolute time when the XNET interface received the frame (end of
frame), accurate to microseconds.

Compared to the example for the Frame Input Stream Mode, this mode effectively sorts
received frames so you can process them on an individual basis.

© National Instruments 4-17 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Sessions

Frame Input Single-Point Mode

This mode reads the most recent value received for each frame. It typically is used for control
or simulation applications that require lower level access to frames (not signals).

This mode does not use queues to store each received frame. If the interface receives
two frames prior to calling XNET Read.vi, that read returns signals for the second frame.

The input data is returned as an array of frames, one for each frame specified for the session.

If the session uses a CAN interface, XNET Read (Frame CAN).vi is the recommended way
to read data for this mode. This instance returns an array of frames, where each frame is a
LabVIEW cluster specific to the CAN protocol. If the session uses a FlexRay or LIN
interface, the read selection for that protocol is recommended. For more advanced
applications, you can use XNET Read (Frame Raw).vi, which returns frames in an
optimized, protocol-independent format.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every
2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven
frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the
CAN network, followed by a single call to XNET Read (Frame CAN).vi. Each frame
contains its name (C or E), followed by the value of its two signals.

1st 2nd 3rd
Read Read Read

C1,2 C3,4 C5,6

E7,8|E5,6 E1,2

Time |

0ms 1ms 2ms 3ms 4 ms 5ms 6 ms 7ms 8ms

NI-XNET Hardware and Software Manual 4-18 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

The following figure shows the data returned from each of the three calls to XNET Read
(Frame CAN).vi. The session contains frame data for two frames: C and E.

 IstRead _ 2ndRead _ 3dRead
Ulu_ identifier extended? tmestamp alu_ identifier extended? tmestamp alu_ identifier extended? tmestamp
Pc -] 1:00:00.002506 PM Fc [|1:un:nn‘nuzsme PM Fic [1:00:00.006503 PM
12{31/2010 12/31/2010 12/31/2010
payload length type payload length type payload length type
Hz_ CAN Data Hg_ ICAN Data Hg_ ICAN Data
. payload : payload : payload
Ulﬂ_lis_ﬂr o Fo Fo Fo Ulﬂ_li:}_F v o o Fo Ulﬂ_lis_ﬂe_ v o o Fo
identifier extended? timestamp identifier extended? timestamp identifier extended? timestamp
LE] Sﬁ;ﬁ]ﬂoooo PM LE [I iﬁgﬁgﬁoﬂmz PM 3 [};‘}gﬁgﬁ%ﬁ" 11PM
payload length type payload length type payload length type
4 CAN Data P ICAN Data F ICAN Data
: payload : payload : payload
Ulu_ Io Io Iu Hu o fo Ulu_ Hs Hs '0 Io o o Ulu_ HL Hz '0 Io o o

In the data returned from the first call to XNET Read (Frame CAN).vi, frame C contains
values 3 and 4 in its payload. The first reception of frame C values (1 and 2) were lost, because
this mode returns the most recent values.

In the frame timeline, Time of 0 ms indicates the time at which the session started to receive
frames. For frame E, no frame is received prior to the first call to XNET Read (Frame
CAN).vi, so the timestamp is invalid, and the payload is the Default Payload. For this example
we assume that the Default Payload is all O.

In the data returned from the second call to XNET Read (Frame CAN).vi, payload values
3 and 4 are returned again for frame C, because no new frame has been received since the
previous call to XNET Read (Frame CAN).vi. The timestamp for frame C is the same as the
first call to XNET Read (Frame CAN).vi

In the data returned from the third call to XNET Read (Frame CAN).vi, both frame C and
frame E are received, so both elements return new values.

Frame Input Stream Mode

This mode reads all frames received from the network using a single stream. It typically is
used for analyzing and/or logging all frame traffic in the network.

The input data is returned as an array of frames. Because all frames are returned, your
application must evaluate identification in each frame (such as a CAN identifier or FlexRay
slot/cycle/channel) to interpret the frame payload data.

If the session uses a CAN interface, XNET Read (Frame CAN).vi is the recommended way
to read data for this mode. This instance returns an array of frames, where each frame is a
LabVIEW cluster specific to the CAN protocol. If the session uses a FlexRay or LIN
interface, the read selection for that protocol is recommended. For more advanced

© National Instruments 4-19 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Sessions

applications, you can use XNET Read (Frame Raw).vi, which returns frames in an
optimized, protocol-independent format.

Previously, you could use only one Frame Input Stream session for a given interface. Now,
multiple Frame Input Stream sessions can be open at the same time on CAN and LIN
interfaces.

While using one or more Frame Input Stream sessions, you can use other sessions with
different input modes. Received frames are copied to Frame Input Stream sessions in addition
to any other applicable input session. For example, if you create a Frame Input Single-Point
session for FrameA, then create a Frame Input Stream session, when FrameA is received, its
data is returned from the call to XNET Read.vi of both sessions. This duplication of
incoming frames enables you to analyze overall traffic while running a higher level
application that uses specific frame or signal data.

When used with a FlexRay interface, frames from both channels are returned. For example,
if a frame is received in a static slot on both channel A and channel B, two frames are returned
from XNET Read.vi.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every
2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven
frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.
The example uses CAN. The following figure shows a timeline of a frame transfer on the
CAN network, followed by a single call to XNET Read (Frame CAN).vi. Each frame
contains its name (C or E), followed by the value of its two signals.

Time

0ms 1ms 2ms 3ms 4 ms 5ms 6 ms 7ms 8 ms

Read

C1,2 C3,4 C3,4 C5,6

E7,8|E5,6 E1,2

NI-XNET Hardware and Software Manual 4-20 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

The following figure shows the data returned from XNET Read (Frame CAN).vi.

Frame C and frame E are returned in a single array of frames. Each frame is a LabVIEW
cluster with CAN-specific elements. This example uses hexadecimal C and E as the identifier
of each frame. The signal data is contained in the first two payload bytes. The timestamp
represents the absolute time when the XNET interface received the frame (end of frame),
accurate to microseconds.

© National Instruments 4-21 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Sessions

Frame Output Queued Mode

This mode provides a sequence of values for a single frame, for transmit using that frame’s
timing as specified in the database.

The output data is provided as an array of frame values, to be transmitted sequentially for the
frame specified in the session.

This mode allows you to specify only one frame for the session. To transmit sequential values
for multiple frames, use a different Frame Output Queued session for each frame or use the
Frame Output Stream Mode.

If the session uses a CAN interface, XNET Write (Frame CAN).vi is the recommended
way to write data for this mode. This instance provides an array of frame values, where each
value is a LabVIEW cluster specific to the CAN protocol. If the session uses a FlexRay or
LIN interface, the write selection for that protocol is recommended. For more advanced
applications, you can use XNET Write (Frame Raw).vi, which provides frame values

in an optimized, protocol-independent format.

The frame values for this mode are stored in a queue, such that every value provided is
transmitted.

For this mode, NI-XNET transmits each frame according to its properties in the database.
Therefore, when you call XNET Write.vi, the number of payload bytes in each frame value
must match that frame’s Payload Length property. The other frame value elements are
ignored, so you can leave them uninitialized. For CAN interfaces, if the number of payload
bytes you write is smaller than the Payload Length configured in the database, the requested
number of bytes transmits. If the number of payload bytes is larger than the Payload Length
configured in the database, the queue is flushed and no frames transmit. For other interfaces,
transmitting a number of payload bytes different than the frame’s payload may cause
unexpected results on the bus.

Examples

In this example network, frame C is a cyclic frame that transmits on the network once every
2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval) of
2.5 ms. For information about cyclic and event-driven frames, refer to Cyclic and Event
Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the
CAN network. Each frame contains its name (C or E), followed by the value of its two signals.
The timeline begins with two calls to XNET Write (Frame CAN).vi, one for frame C,
followed immediately by another call for frame E.

NI-XNET Hardware and Software Manual 4-22 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

C1,2 C3,4 C5,6 C5,6

E7,8 E5,8

Time »
I I I I I I I I [~

0ms 1ms 2ms 3ms 4 ms 5ms 6 ms 7 ms 8 ms

The following figure shows the data provided to each call to XNET Write (Frame CAN).vi.
The first array shows data for the session with frame C. The second array shows data for the
session with frame E.

f—_; :00:00,000000
{MM/DD Y

,[-_; :00:00.000000
' DDA

,f-_; :00:00,000000
{MM/DD Y

,f-_; :00:00,000000
{MM/DD Y

,[-_; :00:00.000000
' DDA

© National Instruments 4-23 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Sessions

Assuming the Auto Start? property uses the default of true, each session starts within the call
to XNET Write (Frame CAN).vi. Frame C transmits followed by frame E, both using the
frame values from the first element (index O of each array).

According to the database, frame C transmits once every 2.0 ms, and frame E is limited to an
event-driven transmit once every 2.5 ms.

At 2.0 ms in the timeline, the frame value with bytes 3, 4 is taken from index 1 of the frame C
array and used for transmit of frame C.

When 2.5 ms have elapsed after acknowledgment of the previous transmit of frame E, the
frame value with bytes 5, 8, 0, 0 is taken from index 1 of frame E array and used for transmit
of frame E.

At 4.0 ms in the timeline, the frame value with bytes 5, 6 is taken from index 2 of the frame C
array and used for transmit of frame C.

Because there are no more frame values for frame E, this frame no longer transmits. Frame E
is event-driven, so new frame values are required for each transmit.

Because frame C is a cyclic frame, it transmits repeatedly. Although there are no more frame
values for frame C, the previous frame value is used again at 6.0 ms in the timeline, and every
2.0 ms thereafter. If XNET Write (Frame CAN).vi is called again, the new frame value is
used.

Frame Output Single-Point Mode

This mode writes frame values for the next transmit. It typically is used for control or
simulation applications that require lower level access to frames (not signals).

This mode does not use queues to store frame values. If XNET Write.vi is called twice before
the next transmit, the transmitted frame uses the value from the second call to XNET
Write.vi.

The output data is provided as an array of frames, one for each frame specified for the session.

If the session uses a CAN interface, XNET Write (Frame CAN).vi is the recommended way
to write data for this mode. This instance provides an array of frame values, where each value
is a LabVIEW cluster specific to the CAN protocol. If the session uses a FlexRay or LIN
interface, the write selection for that protocol is recommended. For more advanced
applications, you can use XNET Write (Frame Raw).vi, which provides frame values in an
optimized, protocol-independent format.

For this mode, NI-XNET transmits each frame according to its properties in the database.
Therefore, when you call XNET Write.vi, the number of payload bytes in each frame value
must match that frame’s Payload Length property. The other frame value elements are

NI-XNET Hardware and Software Manual 4-24 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

ignored, so you can leave them uninitialized. For CAN interfaces, if the number of payload
bytes you write is smaller than the Payload Length configured in the database, the requested
number of bytes transmits. If the number of payload bytes is larger than the Payload Length
configured in the database, the queue is flushed and no frames transmit. For other interfaces,
transmitting a number of payload bytes different than the frame’s payload may cause
unexpected results on the bus.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every
2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval) of
2.5 ms. For information about cyclic and event-driven frames, refer to Cyclic and Event
Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the
CAN network. Each frame contains its name (C or E), followed by the value of its two signals.
The timeline shows three calls to XNET Write (Frame CAN).vi.

Time

C1,2 C3,4 C5,6 C5,6

E7,8 E3,4

0ms 1ms 2ms 3ms 4 ms 5ms 6 ms 7 ms 8 ms

|-
I I I I I I I e

© National Instruments 4-25 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET AP for LabVIEW—Sessions

The following figure shows the data provided to each of the three calls to XNET Write
(Frame CAN).vi. The session contains frame values for two frames: C and E.

1100:00:00.000000
{MM/DD Y

1100:00:00.000000
{MM/DD Y

1100:00:00.000000
{MM/DD Y

1100:00:00.000000
{MM/DD Y

1100:00:00.000000
{MM/DD Y

1100:00:00.000000
{MM/DD Y

Assuming the Auto Start? property uses the default of true, the session starts within the first
call to XNET Write (Frame CAN).vi. Frame C transmits followed by frame E, both using
frame values from the first call to XNET Write (Frame CAN).vi.

After the second call to XNET Write (Frame CAN).vi, frame C transmits using its value
(bytes 3, 4), but frame E does not transmit, because its minimal interval of 2.5 ms has not
elapsed since acknowledgment of the previous transmit.

NI-XNET Hardware and Software Manual 4-26 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

Because the third call to XNET Write (Frame CAN).vi occurs before the minimum interval
elapses for frame E, its next transmit uses its value (bytes 3, 4, 0, 0). The value for frame E in
the second call to XNET Write (Frame CAN).vi is not used.

Frame C transmits the third time using the value from the third call to XNET Write (Frame
CAN).vi (bytes 5, 6). Because frame C is cyclic, it transmits again using the same value
(bytes 5, 6).

Frame Output Stream Mode

This mode transmits an arbitrary sequence of frame values using a single stream. The values
are not limited to a single frame in the database, but can transmit any frame.

The data wired to XNET Write.vi is an array of frame values, each of which transmits as soon
as possible. Frames transmit sequentially (one after another).

This mode is not supported for FlexRay.

Like Frame Input Stream sessions, you can create more than one Frame Output Stream
session for a given interface.

For CAN, frame values transmit on the network based entirely on the time when you call
XNET Write.vi. The timing of each frame as specified in the database is ignored. For
example, if you provide four frame values to XNET Write.vi, the first frame value transmits
immediately, followed by the next three values transmitted back to back. For this mode, the
CAN frame payload length in the database is ignored, and the payload provided to XNET
Werite.vi is always used.

XNET Write (Frame CAN).vi is the recommended way to write data for this mode for CAN.
This instance provides an array of frame values, where each value is a LabVIEW cluster
specific to the CAN protocol. XNET Write (Frame LIN).vi is the recommended way to
write data for this mode for LIN. This instance provides an array of frame values, where each
value is a LabVIEW cluster specific to the LIN protocol. For more advanced applications, you
can use XNET Write (Frame Raw).vi, which provides frame values in an optimized format.

Similar to CAN, LIN frame values transmit on the network based entirely on the time when
you call XNET Write.vi. The timing of each frame as specified in the database is ignored.
The LIN frame payload length in the database is ignored. For LIN, this mode is allowed only
on the interface as master. If the payload for a frame is empty, only the header part of the
frame is transmitted. For a nonempty payload, the header + response for the frame is
transmitted. If a frame for transmit is defined in the database (in-memory or otherwise), it is
transmitted using its database checksum type. If the frame for transmit is not defined in the
database, it is transmitted using enhanced checksum.

© National Instruments 4-27 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Sessions

XNET Write (Frame LIN).vi is the recommended way to write data for this mode for LIN.
This instance provides an array of frame values, where each value is a LabVIEW cluster
specific to the LIN protocol. For more advanced applications, you can use XNET Write
(Frame Raw).vi, which provides frame values in an optimized format.

The frame values for this mode are stored in a queue, such that every value provided is
transmitted.

Example

In this example CAN database, frame C is a cyclic frame that transmits on the network once
every 2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval)
of 2.5 ms. For information about cyclic and event-driven CAN frames, refer to Cyclic and
Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The following figure shows a timeline of a frame transfer on the CAN network. Each frame
contains its name (C or E), followed by the value of its two signals. The timeline begins with
a single call to XNET Write (Frame CAN).vi.

Time

0ms 1ms 2ms 3ms 4 ms 5ms 6ms 7ms 8ms

C1,2 C3,4

E7,8|E5,6 E3,4

| -
I I I I I I I I e

The following figure shows the data provided to the single call to XNET Write (Frame
CAN).vi. The array provides values for frames C and E.

NI-XNET Hardware and Software Manual 4-28 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

{ o) CET— e
MM/DD Y

Cole.mt .t e @t e e e o
£, ¢ 4 00:00:00,000000
/ ;
Cole e ot -t e e e e o
£, ¢ 4 00:00:00,000000
/ ;
CENE .t it e e e e e
£, ¢ 4 00:00:00,000000
/ ;

f

f?Elﬁ;.; mt f mE Bt B mE o

ﬂ X] ﬂ é 00:00:00.000000
HMmDD Yy

o TR 1 1 10 o0 o ok

Assuming the Auto Start? property uses the default of true, each session starts within the call
to XNET Write (Frame CAN).vi. All frame values transmit immediately, using the same
sequence as the array.

Although frame C and E specify a slower timing in the database, the Frame Output Stream
mode disregards this timing and transmits the frame values in quick succession.

Within each frame values, this example uses an invalid timestamp value (0). This is
acceptable, because each frame value timestamp is ignored for this mode.

Although frame C is specified in the database as a cyclic frame, this mode does not repeat its
transmit. Unlike the Frame Output Queued Mode, the Frame Output Stream mode does not
use CAN frame properties from the database.

Signal Input Single-Point Mode

This mode reads the most recent value received for each signal. It typically is used for control
or simulation applications, such as Hardware In the Loop (HIL).

© National Instruments 4-29 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Sessions

This mode does not use queues to store each received frame. If the interface receives
two frames prior to calling XNET Read.vi, that call to XNET Read.vi returns signals for the
second frame.

Use XNET Read (Signal Single-Point).vi for this mode. For more advanced applications,
you can use XNET Read (Signal XY).vi, which returns a timestamp for each signal value.
You can use the additional timestamps to determine whether each value is new since the
last read.

You also can specify a trigger signal for a frame. This signal name is :trigger:.<frame name>,
and once it is specified in the XNET Create Session.vi signal list, it returns a value of 0.0 if
the frame did not arrive since the last Read (or Start), and 1.0 if at least one frame of this ID
arrived. You can specify multiple trigger signals for different frames in the same session. For
multiplexed signals, a signal may or may not be contained in a received frame. To define a
trigger signal for a multiplexed signal, use the signal name :trigger:.<frame name>.<signal
name>. This signal returns 1.0 only if a frame with appropriate set multiplexer bit has been
received since the last Read or Start.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every
2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven
frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the
CAN network. Each frame contains its name (C or E), followed by the value of its two signals.
The timelines shows three calls to XNET Read (Signal Single-Point).vi.

Time

0ms 1ms 2ms 3ms 4 ms 5ms 6 ms 7 ms 8 ms

1st 2nd 3rd
Read Read Read

C1,2 C34 C5,6

E7,8|E5,6 E1,2

NI-XNET Hardware and Software Manual 4-30 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

The following figure shows the data returned from each of the three calls to XNET Read
(Signal Single-Point).vi. The session contains all four signals.

C O ¢ | & N £ o ﬁﬁl#m
£ £

o0 ¢ -
Jso0 oo

In the data returned from the first call to XNET Read (Signal Single-Point).vi, values 3 and 4
are returned for the signals of frame C. The values of the first reception of frame C (1 and 2)
were lost, because this mode returns the most recent values.

In the frame timeline, Time of 0 ms indicates the time at which the session started to receive
frames. For frame E, no frame is received prior to the first call to XNET Read (Signal
Single-Point).vi, so the last two values return the signal Default Values. For this example,
assume that the Default Value is 0.0.

In the data returned from the second call to XNET Read (Signal Single-Point).vi, values 3
and 4 are returned again for the signals of frame C, because no new frame has been received
since the previous call to XNET Read (Signal Single-Point).vi. New values are returned for
frame E (5 and 6).

In the data returned from the third call to XNET Read (Signal Single-Point).vi, both frame
C and frame E are received, so all signals return new values.

The following figure shows the data for the same frame timing, but using XNET Read
(Signal XY).vi. The signal values are the same, but an additional timestamp is provided for
each signal.

© National Instruments 4-31 NI-XNET Hardware and Software Manual

Chapter4 NI-XNET API for LabVIEW—Sessions

For the first call to XNET Read (Signal XY).vi, notice that the timestamps for frame E (last
two signals) are invalid (all zero). This indicates that frame E has not been received since the
session started, and therefore the signal values are the default.

For the second call to XNET Read (Signal XY).vi, notice that the timestamps for frame C
(first two signals) are the same as the first call to XNET Read (Signal XY).vi. This indicates
that frame C has not been received since the previous read, and therefore the signal values are
repeated.

Signal Input Waveform Mode

Using the time when the signal frame is received, this mode resamples the signal data to a
waveform with a fixed sample rate. This mode typically is used for synchronizing XNET data
with DAQmx analog/digital input channels.

Use XNET Read (Signal Waveform).vi for this mode. You can wire the data XNET Read
(Signal Waveform).vi returns directly to a LabVIEW Waveform Graph or Waveform Chart.
The data consists of an array of waveforms, one for each signal specified for the session. Each
waveform contains t0 (timestamp of first sample), dt (time between samples in seconds), and
an array of resampled values for the signal.

You specify the resample rate using the XNET Session Resample Rate property.

NI-XNET Hardware and Software Manual 4-32 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

Example

In this example network, frame C is a cyclic frame that transmits on the network once every
2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven
frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the
CAN network, followed by a single call to XNET Read (Signal Waveform).vi. Each frame
contains its name (C or E), followed by the value of its two signals.

Read

C1,2 C3,4 C3,4 C5,6

E7,8|E5,6 E1,2

Time »
I I I I I I I I [~

0ms 1ms 2ms 3ms 4ms 5ms 6 ms 7ms 8ms

© National Instruments 4-33 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Sessions

The following figure shows the data returned from XNET Read (Signal Waveform).vi. The
session contains all four signals and uses the default resample rate of 1000.0.

Read
r
'—)U 0 Y ﬁD
1:00:00 FM
| i EREENERENENENE
dt Frame C, 1st signal
0.001000 Frame C, 2nd signal
o Y [50 Frame E, 1st signal
1:00:00 PM Waveform Graph Frame E, 2nd signal
E= PRERRRERT
12/31/2010
dt
0.001000
0 Y |50
1:00:00 PM &
| Lo PRl B[R 3%
dt L]
0.001000
o Y |50
1:00:00 FM bl lbBERLE
B ’ | | ‘ |
dt 1:00:00.000 FM 1:00:00.002PM 1:00:00.004PM 1:00:00.006 PM 1:00:00.008 PM
Comomon 12/31/2010 12/31/2010 12/31/2010 12/31/2010 12/31/2010
= Time

In the data returned from XNET Read (Signal Waveform).vi, tO provides an absolute
timestamp for the first sample. Assuming this is the first call to XNET Read (Signal
Waveform).vi after starting the session, this tO reflects that start of the session, which
corresponds to Time O ms in the frame timeline. At time 0 ms, no frame has been received.
Therefore, the first sample of each waveform uses the signal default value. For this example,
assume the default value is 0.0.

In the frame timeline, frame C is received twice with signal values 3 and 4. In the waveform
diagram, you cannot distinguish this from receiving the frame only once, because the time of
each frame reception is resampled into the waveform timing.

In the frame timeline, frame E is received twice in fast succession, once with signal values 7
and 8, then again with signals 5 and 6. These two frames are received within one sample of
the waveform (within 1 ms). The effect on the data from XNET Read (Signal Waveform).vi
is that values for the first frame (7 and 8) are lost.

You can avoid the loss of signal data by setting the session resample rate to a high rate.
NI-XNET timestamps receive frames to an accuracy of 100 ns. Therefore, if you use a
resample rate of 1000000 (1 MHz), each frame’s signal values are represented in the
waveforms without loss of data. Nevertheless, using a high resample rate can result in a large
amount of duplicated (redundant) values. For example, if the resample rate is 1000000,

a frame that occurs once per second results in one million duplicated signal values.

This tradeoff between accuracy and efficiency is a disadvantage of the Signal Input
Waveform mode.

NI-XNET Hardware and Software Manual 4-34 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

The Signal Input XY Mode does not have the disadvantages mentioned previously. The signal
value timing is a direct reflection of received frames, and no resampling occurs. Signal Input
XY Mode provides the most efficient and accurate representation of a sequence of received
signal values.

One of the disadvantages of Signal Input XY Mode is that the corresponding LabVIEW
indicator (XY Graph) does not provide the same features as the indicator for Signal Input
Waveform (Waveform Graph). For example, the Waveform Graph can plot consecutive calls
to XNET Read.vi in a history, whereas XY Graph can plot only values from a single call to
XNET Read.vi.

In summary, when reading a sequence of received signal values, use Signal Input Waveform
mode when you need to synchronize CAN/FlexRay/LIN data with DAQmx analog/digital
input waveforms or display CAN/FlexRay/LIN data on the front panel (without significant
validation). Use Signal Input XY Mode when you need to analyze CAN/FlexRay/LIN data
on the diagram, for validation purposes.

Signal Input XY Mode

For each frame received, this mode provides the frame signals as a timestamp/value pair. This
is the recommended mode for reading a sequence of all signal values.

The timestamp represents the absolute time when the XNET interface received the frame (end
of frame), accurate to microseconds.

Use XNET Read (Signal XY).vi for this mode. You can wire the data XNET Read (Signal
XY).vi returns directly to a LabVIEW XY Graph.

The data consists of an array of LabVIEW clusters, one for each signal specified for the
session. Each cluster contains two arrays, one for timestamp and one for value. For each
signal, the timestamp and value array size is always the same, such that it represents a single
array of timestamp/value pairs.

Each timestamp/value pair represents a value from a received frame. When signals exist in
different frames, the array size may be different from one cluster (signal) to another.

The received frames for this mode are stored in queues to avoid signal data loss.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every
2 ms. Frame E is an event-driven frame. For information about cyclic and event-driven
frames, refer to Cyclic and Event Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

© National Instruments 4-35 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Sessions

The example uses CAN. The following figure shows a timeline of a frame transfer on the
CAN network, followed by a single call to XNET Read (Signal XY).vi. Each frame contains
its name (C or E), followed by the value of its two signals.

Read
C1,2 C34 C3,4 C5,6
E7,8|E5,6 E1,2
Time | | | | | | | | >
0ms 1ms 2ms 3ms 4 ms 5ms 6 ms 7ms 8 ms
The following figure shows the data returned from XNET Read (Signal XY).vi. The session
contains all four signals.
. Read
oo | e
N
D)IU_ 1:00:00,000502 PM 1:00:00,002506 PM 1:00:00,004509 PM 1:00:00,006503 PM
12312010 12312010 12312010 12312010
: value
oo s s Is
_tmestamp Frame C, 1stsignal
’D)IU_ 1:00:00,000502 PM 1:00:00,002506 PM 1:00:00,004509 PM 1:00:00,006503 PM Frame C, 2nd signal -
12312010 12312010 12312010 12312010 Frame E, 15t signal
value XY Graph Frame E, 2nd signal
oo I I e
‘ timestamp
’D)IU_ 1:00:00,003504 PM 1:00:00,004002 PM 1:00:00.006011 PM 00:01 00000 PM
12312010 12312010 12312010
_ 3
X a
oo | iz Is |1 0 1
‘ timestamp
’D)IU_ 1:00:00,003504 PM 1:00:00,004002 PM 1:00:00.006011 PM 00:01

12/31/2010 12/31/2010 12/31/2010

value = d
\ 1300:00.000 PM L00:00.008 PM
o 0 B 2 0 12/31/2010 12/31/2010

g
1:00:00.006 PM
12/31/2010

i i

1:00:00.002PM 1:00:00.004 PM

12/31/2010 12/31/2010
Time

Frame C was received four times, resulting in arrays of size 4 in the first two clusters. Frame E
was received 3 times, resulting in arrays of size 3 in the first two clusters. The timestamp and
value arrays are the same size for each signal. The timestamp represents the end of frame, to
microsecond accuracy.

NI-XNET Hardware and Software Manual 4-36 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

The XY Graph displays the data from XNET Read (Signal XY).vi. This display is an
accurate representation of signal changes on the network.

Signal Output Single-Point Mode

This mode writes signal values for the next frame transmit. It typically is used for control or
simulation applications, such as Hardware In the Loop (HIL).

This mode does not use queues to store signal values. If XNET Write.vi is called twice before
the next transmit, the transmitted frame uses signal values from the second call to XNET
Write.vi.

Use XNET Write (Signal Single-Point).vi for this mode.

You also can specify a trigger signal for a frame. This signal name is :trigger:. <frame name>,
and once it is specified in the XNET Create Session.vi signal list, you can write a value of
0.0 to suppress writing of that frame, or any value not equal to 0.0 to write the frame. You can
specify multiple trigger signals for different frames in the same session.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every
2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval) of
2.5 ms. For information about cyclic and event-driven frames, refer to Cyclic and Event
Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the
CAN network. Each frame contains its name (C or E), followed by the value of its two signals.
The timeline shows three calls to XNET Write (Signal Single-Point).vi.

Time

C1,2 C34 C5,6 C5,6

E7.,8 E3,4

0ms 1ms 2ms 3ms 4ms 5ms 6 ms 7ms 8ms

| -
I I I I I I I e

© National Instruments 4-37 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Sessions

The following figure shows the data provided to each of the three calls to XNET Write
(Signal Single-Point).vi. The session contains all four signals.

o

1st Write 2nd Write 3rd Write
Frame C, 1st signal
Frame C, 2nd signal

Frame E, 1st signal

Frame E, 2nd signal

Assuming the Auto Start? property uses the default of true, the session starts within the first
call to XNET Write (Signal Single-Point).vi. Frame C transmits followed by frame E, both
using signal values from the first call to XNET Write (Signal Single-Point).vi.

If a transmitted frame contains a signal not included in the output session, that signal transmits
its Default Value. If a transmitted frame contains bits no signal uses, those bits transmit the
Default Payload.

After the second call to XNET Write (Signal Single-Point).vi, frame C transmits using its
values (3 and 4), but frame E does not transmit, because its minimal interval of 2.5 ms has not
elapsed since acknowledgment of the previous transmit.

Because the third call to XNET Write (Signal Single-Point).vi occurs before the minimum
interval elapses for frame E, its next transmit uses its values (3 and 4). The values for frame E
in the second call to XNET Write (Signal Single-Point).vi are not used.

Frame C transmits the third time using values from the third call to XNET Write (Signal
Single-Point).vi (5 and 6). Because frame C is cyclic, it transmits again using the same
values (5 and 6).

Signal Output Waveform Mode

Using the time when the signal frame is transmitted according to the database, this mode
resamples the signal data from a waveform with a fixed sample rate. This mode typically is
used for synchronizing XNET data with DAQmx analog/digital output channels.

The resampling translates from the waveform timing to each frame’s transmit timing. When
the time for the frame to transmit occurs, it uses the most recent signal values in the waveform
that correspond to that time.

Use XNET Write (Signal Waveform).vi for this mode. You can wire the data provided to
XNET Write (Signal Waveform).vi directly from a LabVIEW Waveform Graph or

NI-XNET Hardware and Software Manual 4-38 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

Waveform Chart. The data consists of an array of waveforms, one for each signal specified
for the session. Each waveform contains an array of resampled values for the signal.

You specify the resample rate using the XNET Session Resample Rate property.
The frames for this mode are stored in queues.

This mode is not supported for a LIN interface operating as slave. For more information, refer
to LIN Frame Timing and Session Mode.

Example

In this example network, frame C is a cyclic frame that transmits on the network once every
2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval) of
2.5 ms. For information about cyclic and event-driven frames, refer to Cyclic and Event
Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the
CAN network. Each frame contains its name (C or E), followed by the value of its two signals.
The timeline begins with a single call to XNET Write (Signal Waveform).vi.

C1,2 C5,6 C7,8 C5,6

E5,6 E5,6 E5,6

Time

| .
I I I I I I I I e

0ms 1ms 2ms 3 ms 4 ms 5ms 6 ms 7ms 8 ms

The following figure shows the data provided to the call to XNET Write (Signal
Waveform).vi. The session contains all four signals and uses the default resample rate of
1000.0 samples per second.

© National Instruments 4-39 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Sessions

Write

g

'—)U 0 Y ﬁD
4/1:00:00 PM
e 5t 5 W w8
dt Frame C, 1st signal
0001000 Frame C, 2nd signal
0 Y’gllo— :ame:,;:;signall
211:11:232:133[;2;3 |ﬂl_§4_§’6_§’8_§’8_§6_§6_§’6_ Waveform Graph rame E, signal -
dt
50.001000
to Y|z0

00 w

ﬁiz?rgﬁri&’ﬁ |§|s_§3_§11_§|s_g3_§1_g5_§3_ é
dt Ll
%0.001000
to Y50
4/1:00:00 PM 5 Mg o5 a dy Ay o
112/31/2010 |ffffffff o | . . .
dt 1:00:00.000 PM 1:00:00.002PM 1:00:00.004PM 1:00:00.005PM 1:00:00.008 PM
%0.001000 12/31/2010 12/31/2010 124’313‘;2210 12/31/2010 12/31/2010

Assuming the Auto Start? property uses the default of true, the session starts within the call
to XNET Write (Signal Waveform).vi. Frame C transmits followed by frame E, both using
signal values from the first sample (index 0 of all four Y arrays).

The waveform elements tO (timestamp of first sample) and dt (time between samples in
seconds) are ignored for the call to XNET Write (Signal Waveform).vi. Transmit of frames
starts as soon as the XNET session starts. The frame properties in the database determine each
frame’s transmit time. The session resample rate property determines the time between
waveform samples.

In the waveforms, the sample at index 1 occurs at 1.0 ms in the frame timeline. According to
the database, frame C transmits once every 2.0 ms, and frame E is limited to an event-driven
transmit with interval 2.5 ms. Therefore, the sample at index 1 cannot be resampled to a
transmitted frame and is discarded.

Index 2 in the waveforms occurs at 2.0 ms in the frame timeline. Frame C is ready for its next
transmit at that time, so signal values 5 and 6 are taken from the first two Y arrays and used
for transmit of frame C. Frame E still has not reached its transmit time of 2.5 ms from the
previous acknowledgment, so signal values 1 and 2 are discarded.

At index 3, frame E is allowed to transmit again, so signal values 5 and 6 are taken from the
last two Y arrays and used for transmit of frame E. Frame C is not ready for its next transmit,
so signal values 7 and 8 are discarded.

This behavior continues for Y array indices 4 through 7. For the cyclic frame C, every second
sample is used to transmit. For the event-driven frame E, every sample is interpreted as an
event, such that every third sample is used to transmit.

NI-XNET Hardware and Software Manual 4-40 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

Although not shown in the frame timeline, frame C transmits again at 8.0 ms and every 2.0 ms
thereafter. Frame C repeats signal values 5 and 6 until the next call to XNET Write (Signal
Waveform).vi. Because frame E is event driven, it does not transmit after the timeline shown,
because no new event has occurred.

Because the waveform timing is fixed, you cannot use it to represent events in the data.
When used for event driven frames, the frame transmits as if each sample was an event. This
mismatch between frame timing and waveform timing is a disadvantage of the Signal Output
Waveform mode.

When you use the Signal Output XY Mode, the signal values provided to XNET Write
(Signal XY).vi are mapped directly to transmitted frames, and no resampling occurs. Unless
your application requires correlation of output data with DAQmx waveforms, Signal Output
XY Mode is the recommended mode for writing a sequence of signal values.

Signal Output XY Mode

This mode provides a sequence of signal values for transmit using each frame’s timing as
specified in the database. This is the recommended mode for writing a sequence of all signal
values.

Use XNET Write (Signal XY).vi for this mode. The data consists of an array of LabVIEW
clusters, one for each signal specified for the session. Each cluster contains two arrays, one for
timestamp and one for value. The timestamp array is unused (reserved).

Each signal value is mapped to a frame for transmit. Therefore, the array of signal values is
mapped to an array of frames to transmit. When signals exist in the same frame, signals at the
same index in the arrays are mapped to the same frame. When signals exist in different
frames, the array size may be different from one cluster (signal) to another.

The frames for this mode are stored in queues, such that every signal provided is transmitted
in a frame.

Examples

In this example network, frame C is a cyclic frame that transmits on the network once every
2.0 ms. Frame E is an event-driven frame that uses a transmit time (minimum interval) of
2.5 ms. For information about cyclic and event-driven frames, refer to Cyclic and Event
Timing.

Each frame contains two signals, one in the first byte and another in the second byte.

The example uses CAN. The following figure shows a timeline of a frame transfer on the
CAN network. Each frame contains its name (C or E), followed by the value of its two signals.
The timeline begins with a single call to XNET Write (Signal XY).vi.

© National Instruments 4-41 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET AP for LabVIEW—Sessions

C1,2 C3,4 C5,6 C5,6

E7,8 E5,8

Time

B
I I I I I I I I I

0ms 1ms 2ms 3ms 4 ms 5ms 6 ms 7 ms 8 ms

The following figure shows the data provided to XNET Write (Signal XY).vi. The session
contains all four signals.

Assuming the Auto Start? property uses the default of true, the session starts within a call to
XNET Write (Signal XY).vi. This occurs at 0 ms in the timeline. Frame C transmits followed
by frame E, both using signal values from the first sample (index O of all four Y arrays).

NI-XNET Hardware and Software Manual 4-42 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

According to the database, frame C transmits once every 2.0 ms, and frame E is limited to an
event-driven interval of 2.5 ms.

At 2.0 ms in the timeline, signal values 3 and 4 are taken from index 1 of the first two Y arrays
and used for transmit of frame C.

At 3.5 ms in the timeline, signal value 5 is taken from index 1 of the third Y array. Because
this is a new value for frame E, it represents a new event, so the frame transmits again.
Because no new signal value was provided at index 1 in the fourth array, the second signal
of frame E uses the value 8 from the previous transmit.

At 4.0 ms in the timeline, signal values 5 and 6 are taken from index 2 of the first two Y arrays
and used for transmit of frame C.

Because there are no more signal values for frame E, this frame no longer transmits. Frame E
is event driven, so new signal values are required for each transmit.

Because frame C is a cyclic frame, it transmits repeatedly. Although there are no more signal
values for frame C, the values of the previous frame are used again at 6.0 ms in the timeline
and every 2.0 ms thereafter. If XNET Write (Signal XY).vi is called again, the new signal
values are used.

The next example network demonstrates a potential problem that can occur with Signal
Output XY Mode.

In this example network, frame C is a cyclic frame that transmits on the network once every
2.0 ms. Frame X is a cyclic frame that transmits on the network once every 1.0 ms. Each frame
contains two signals, one in the first byte and another in the second byte. The timeline begins
with a single call to XNET Write (Signal XY).vi.

C1,2 C3,4 C5,6 C7,8

X7,8 X5,6 X3,4 X1,2 X1,2 X1,2 X1,2 X1,2

Time

0Oms 1ms 2ms 3 ms 4 ms 5ms 6 ms 7 ms 8 ms

© National Instruments 4-43 NI-XNET Hardware and Software Manual

Chapter4 NI-XNET API for LabVIEW—Sessions

The following figure shows the data provided to XNET Write (Signal XY).vi. The session
contains all four signals.

&+ T

€ o ¢t et om am omE ol

&+ T

600/ e o o o G

&+ T

€ ¢ o om omd e omE o

&+ T

600/ o o o e G

The number of signal values in all four Y arrays is the same. The four elements of the arrays
are mapped to four frames. The problem is that because frame X transmits twice as fast as
frame C, the frames for the last two arrays transmit twice as fast as the frames for the first
two arrays.

The result is that the last pair of signals for frame X (1 and 2) transmit over and over, until the
timeline has completed for frame C. This sort of behavior usually is unintended. The Signal
Output XY Mode goal is to provide a complete sequence of signal values for each frame.

The best way to resolve this issue is to provide a different number of values for each signal,
such that the number of elements corresponds to the timeline for the corresponding frame. If
the previous call to XNET Write (Signal XY).vi provided eight elements for frame X (last
two Y arrays) instead of just four elements, this would have created a complete 8.0 ms
timeline for both frames.

Although you need to resolve this sort of timeline for cyclic frames, this is not necessarily true
for event-driven frames. For an event-driven frame, you may decide simply to pass either zero
or one set of signal values to XNET Write (Signal XY).vi. When you do this, each call to

NI-XNET Hardware and Software Manual 4-44 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

XNET Write (Signal XY).vi can generate a single event, and the overall timeline is not a
major consideration.

Conversion Mode

This mode is intended to convert NI-XNET signal data to frame data or vice versa. It does not
use any NI-XNET hardware, and you do not specify an interface when creating this mode.

Conversion occurs with XNET Convert.vi. Neither XNET Read.vi nor XNET Write.vi
work with this mode; they return an error because hardware I/O is not permitted.

Conversion works similar to Single-Point mode. You specify a set of signals that can span
multiple frames. Signal to frame conversion reads a set of values for the signals specified and
writes them to the respective frame(s). Frame to signal conversion parses a set of frames and
returns the latest signal value read from a corresponding frame.

Frames can be in any NI-XNET frame representations (CAN, FlexRay, LIN, or Raw). You
select the conversion direction and the frame type by choosing the appropriate instance of
XNET Convert.vi.

Example 1: Conversion of CAN Frames to Signals

Suppose you have a database with a CAN frame with ID 0x123 and two unsigned byte signals
assigned to it (byte 1 and byte 2).

Creating an appropriate conversion session and calling XNET Convert (Frame CAN to
Signal).vi with the following input:

© National Instruments 4-45 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Sessions

frame data

1"_I m é -;L 02 é -;L ¥

results in the following signal values being returned:

a signal data
7
200

Explanation: The data are taken from frame 4. Frames 1 and 3 are ignored because they have
a wrong (unmatched) ID. Frame 2 is ignored because its data are overwritten later with the
values from frame 4, because frames are processed in the order of input.

Example 2: Conversion of Signals to FlexRay Frames

Suppose you have two FlexRay frames with slot ID 3 and 6, and each one has assigned a
two-byte, Big Endian signal at byte 2 and 3 (zero based). Suppose also that all relevant default
values of other signals in the frame are 0.

NI-XNET Hardware and Software Manual 4-46 ni.com

Chapter 4 NI-XNET API for LabVIEW—Sessions

Creating an appropriate conversion session and calling XNET Convert (Signal to Frame
FlexRay).vi with the following input:

signal data

causes the following frames to be generated:

frame data

00:00:00.000000¢
MM/DDAYYY

L
Y m i'im i'im i'i i'im i'im i'im i'im i'im

g6 Jo

FlexRay Data 00:00:00.000000C
MM/DDAYYY

L
Y m i'im i'im i'iﬂ i'im i'im i'im i'im i'im

Explanation: The first signal is converted to the byte sequence 0x01, 0x02 (1 x 256 + 2), and
the byte sequence is placed at byte 2 of the frame with slot ID 3. The second signal is

converted to byte sequence 0x03, 0x04 (3 x 256 + 4) and placed at byte 2 of the frame with
slot ID 6. All other data are filled with the default values (0).

How Do | Create a Session?

There are two methods for creating a session: a LabVIEW project and XNET Create
Session.vi. You typically use only one method to create all sessions for your application.

© National Instruments 4-47 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Using CAN

LabVIEW Project

Using LabVIEW project sessions is best suited for applications that are static, in that the
network data does not change from one execution to the next. Refer to Getting Started for a
description of creating a session in a LabVIEW project.

When you configure the session in a LabVIEW project, you select the interface, mode, and
database objects with the NI-XNET user interface. The database objects (cluster, frames, and
signals) must exist in a file. If you do not already have a database file, you can create one using
the NI-XNET Database Editor, which you can launch from NI-XNET user interface.

XNET Create Session.vi

You can use XNET Create Session.vi to create NI-XNET sessions at run time. This run-time
creation has advantages over a LabVIEW project, because the end user of your application
can configure sessions from the front panel. The disadvantage is that the VI diagram is more
complex.

If your application is used for a specific product (for example, an instrument panel for a
specific make/model/year car), and the front panel must be simple (for example, a test button
with a pass/fail LED), a LabVIEW project is the best method to use for NI-XNET sessions.
Because the configuration does not change, a LabVIEW project provides the easiest
programming model.

If your application is used for many different products (for example, a test system for an
engine in any make/model/year car), XNET Create Session.vi is the best method to use for
NI-XNET sessions. On the front panel, the application end user can provide a database file
and select the specific frames or signals to read and/or write.

XNET Create Session.vi takes inputs for the interface, mode, and database objects. You
select the interface using techniques described in How Do I View Available Interfaces?. The
database objects depend on the mode (for example, Signal Input Waveform requires an array
of signals). You select the database objects using techniques described in Database
Programming.

Using CAN

This section summarizes some useful NI-XNET features specific to the CAN protocol.

CAN FD, ISO Versus Non-I1SO

Bosch published several versions of the CAN specification, such as CAN 2.0, published in
1991. This specification has two parts; part A is for the standard format with an 11-bit
identifier, and part B is for the extended format with a 29-bit identifier. CAN 2.0 supports
frames with payload up to 8 bytes and transmission speed up to 1 Mbaud.

NI-XNET Hardware and Software Manual 4-48 ni.com

Chapter 4 NI-XNET API for LabVIEW—Using CAN

To allow faster transmission rates, in 2012 Bosch released CAN FD 1.0 (CAN with Flexible
Data-Rate), supporting a payload length up to 64 bytes and faster baud rates. ISO later
standardized CAN FD. ISO CAN FD 11898-1:2015 introduced some changes to the original
CAN FD 1.0 protocol from Bosch, which made the CAN FD 1.0 (non-ISO CAN FD) and ISO
CAN FD protocols incompatible. These changes are now available under ISO 11898-1:2015.
The standards cannot communicate with each other.

NI-XNET supports both ISO CAN FD and non-ISO CAN FD. The default is ISO CAN FD.
The NI-XNET API behavior supporting ISO CAN FD mode has been changed slightly to
allow new features compared to the Non-ISO FD mode. In Non-ISO CAN FD mode, you
must use the Interface:CAN:Transmit I/O Mode session property to switch the CAN I/O
mode of transmitted frames. In ISO CAN FD mode, the transmission mode is specified in the
database (CAN:I/O Mode property) or, when the database is not used, in the frame type field
of the frame header.

Received data frames in Non-ISO CAN FD mode always have the type CAN Data, while in
ISO CAN FD mode the type is more specific, indicating the protocol in which the frame has
been transmitted (CAN 2.0, CAN FD, or CAN FD+BRS).

Because an existing CAN FD application developed with NI-XNET 15.0 (which supported
non-ISO CAN FD only) might not work with the API changes for ISO CAN FD, NI-XNET
15.5 has introduced a Legacy ISO mode. In this mode, the API behavior is the same as in
Non-ISO CAN FD mode, but it communicates on the bus using ISO CAN FD mode.

You define the ISO CAN FD mode when you add an alias for a database supporting CAN FD.
In a dialog box (or XNET Database Add Alias.vi), you define whether the mode default is
ISO CAN FD, Non-ISO CAN FD, or Legacy ISO mode. In the session, you still can change
the ISO mode with an Interface:CAN:FD ISO Mode property.

Understanding CAN Frame Timing

When you use an NI-XNET database for CAN, the properties of each CAN frame specify the
CAN data transfer timing. To understand how the CAN frame timing properties apply to
NI-XNET sessions, refer to CAN Timing Type and Session Mode.

Configuring Frame 1/0 Stream Sessions

As described in Database Programming, you typically need to specify database objects when
creating an NI-XNET session.

The CAN protocol supports an exception that makes some applications easier to program. In
sessions with Frame Input Stream or Frame Output Stream mode, you can read or write
arbitrary frames. Because these modes do not use specific frames, only the database cluster
properties apply. For CAN, the only required cluster property is the baud rate. If the I/O mode
of your cluster is CAN FD or CAN FD+BRS, the FD baud rate also is required.

© National Instruments 4-49 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Using FlexRay

Although the CAN baud rate applies to all hardware on the bus (cluster), NI-XNET also

provides the baud rate properties as interface properties. You can set these interface properties
using the session property node.

If your application uses only Frame I/O Stream sessions, no database object is required (no

cluster). You simply can call XNET Create Session.vi and then set the baud rate using the

session property node. The following figure shows an example diagram that creates a Frame
Input Stream session and sets the baud rate to 500 kbps. The resulting session operates in the
standard CAN I/O mode.

MI-HHET

B wz ¥NET Session S
e mov n
1 |.{ [coo000HF IntFBaudrate L

|Frame In Stream V"

Figure 4-6. Configure CAN Frame Input Stream

If your application uses only Frame I/O Stream sessions, but you want to connect to a CAN
FD bus, use the in-memory database :can_fd: or :can_fd_brs: as shown in Figure 4-7. These
databases are configured as a CAN cluster with the CAN:I/O Mode set to CAN FD or CAN

FD+BRS, as appropriate. If you use either database, you must set the Interface: CAN:64bit FD
Baud Rate property.

I%:can_fd_hrs: e [HEERET
[cant oy | E—

e B ﬂ-ﬁ HMET Session ﬁ“

|Frar‘ne In Stream T" IED[IIJIJEI —* Intf.BaudRate
|1I]EI[II]I]I] Mntf. CoMN. FdBaudRate

Figure 4-7. Configure CAN Frame Input Stream for a CAN FD Session

Using FlexRay

This section summarizes some useful NI-XNET features specific to the FlexRay protocol.

Starting Communication

FlexRay is a Time Division Multiple Access (TDMA) protocol, which means that all
hardware products on the network share a synchronized clock. Slots of time for that clock
determine when each frame transmits.

NI-XNET Hardware and Software Manual 4-50 ni.com

Chapter 4 NI-XNET API for LabVIEW—Using FlexRay

To start communication on FlexRay, the first step is to start the synchronized network clock.
In the FlexRay database, two or more hardware products are designated to transmit a special
startup frame. These products (nodes) are called coldstart nodes. Each coldstart node uses the
startup frame to contribute its local clock as part of the shared network clock.

Because at least two coldstart nodes are required to start FlexRay communication, your
NI-XNET FlexRay interface may need to act as a coldstart node, and therefore transmit a
special startup frame. The properties of each startup frame (including the time slot used) are
specified in the FlexRay database.

The following scenarios apply to FlexRay startup frames:

* Port to port: When you get started with your NI-XNET FlexRay hardware, you can
connect two FlexRay interfaces (ports) to run simple programs, such as the NI-XNET
examples. Because this is a cluster with two nodes, each NI-XNET interface must
transmit a different startup frame.

* Connect to existing cluster: If you connect your NI-XNET FlexRay interface to an
existing cluster (for example, a FlexRay network within a vehicle), that cluster already
must contain coldstart nodes. In this scenario, the NI-XNET interface should not transmit
a startup frame.

* Test single ECU that is coldstart: If you connect to a single ECU (and nothing else),
and that ECU is a coldstart node, the NI-XNET interface must transmit a startup frame.
The NI-XNET interface must transmit a startup frame that is different than the startup
frame the ECU transmits.

* Testsingle ECU that is not coldstart: If you connect to a single ECU (and nothing else),
and that ECU is not a coldstart node, you must connect two NI-XNET interfaces. The
ECU cannot communicate without two coldstart nodes (two clocks). According to the
FlexRay specification, a single FlexRay interface can transmit only one startup frame.
Therefore, you need to connect two NI-XNET FlexRay interfaces to the ECU, and each
NI-XNET interface must transmit a different startup frame.

NI-XNET has two options to transmit a startup frame:

* Key Slot Identifier: The NI-XNET session property node includes a property called
Interface:FlexRay:Key Slot Identifier. This property specifies the static slot that the
session interface uses to transmit a startup frame. The property is zero by default,
meaning that no startup frame transmits. If you set this property, the value specifies the
static slot (identifier) to transmit as a coldstart node. The startup frame transmits
automatically when the interface starts, and its payload is null (no data). The session can
be input or output, and the startup frame is not required in the session’s list of
frames/signals.

e QOutput Startup Frame: If you create an NI-XNET output session, and the session’s list
of frames/signals uses a startup frame, the NI-XNET interface acts as a coldstart node.

© National Instruments 4-51 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Using LIN

To find startup frames in the database, look for a frame with the FlexRay:Startup? property
true. You can use that frame name for an output session or use its identifier as the key slot.
When selecting a startup frame, avoid selecting one that the ECUs you connect to already
transmit.

Understanding FlexRay Frame Timing

When you use an NI-XNET database for FlexRay, the properties of each FlexRay frame
specify the FlexRay data transfer timing. To understand how the FlexRay frame timing
properties apply to NI-XNET sessions, refer to FlexRay Timing Type and Session Mode.

In LabVIEW Real-Time, NI-XNET provides a timing source you can use to synchronize your
LabVIEW VI with the timing of frames. For more information, refer to Using LabVIEW
Real-Time.

Protocol Data Unit (PDU)

Many FlexRay networks use a Protocol Data Unit (PDU) to implement configurations similar
to CAN. The PDU is a signal container. You can use a single PDU within multiple frames for
faster timing. A single frame can contain multiple PDUs, each updated independently. For
more information, refer to Protocol Data Units (PDUs) in NI-XNET.

Using LIN

This section summarizes some useful NI-XNET features specific to the LIN protocol.

Changing the LIN Schedule

LIN networks (clusters) always include a single ECU in the system called the master. The
master transmits a schedule of frame headers. Each frame header is a remote request for a
specific frame ID. For each header, a single ECU in the network (slave) responds by
transmitting the payload for the requested ID. The master ECU also can respond to a specific
header, and thus the master can transmit payload data for the slave ECUs to receive.

Unlike some other scheduled protocols such as FlexRay, LIN allows the master ECU to
change the schedule of frame headers. For example, the master can initially use a “normal”
schedule that requests IDs 1, 2, 3, 4, and then the master can change to a “diagnostic” schedule
that requests IDs 60 and 61.

With NI-XNET, you change the LIN schedule using XNET Write (State LIN Schedule
Change).vi. When you want the NI-XNET interface to act as a master on the network, you
must call this XNET Write VI at least once, to specify the schedule to run. When you write
a schedule change, this automatically configures NI-XNET as master (the XNET Session
Interface:LIN:Master? property is set to true). As a LIN master, NI-XNET handles all

NI-XNET Hardware and Software Manual 4-52 ni.com

Chapter 4 NI-XNET API for LabVIEW—Using LabVIEW Real-Time

real-time scheduling of frame headers for you, using the LIN interface hardware onboard
processor.

If you do not write a schedule change, NI-XNET leaves the interface at its default
configuration of slave. As a LIN slave, you still can write signal or frame values to an output
session, but NI-XNET waits for each frame’s header to arrive before transmitting payload data.

Understanding LIN Frame Timing

Because LIN is a scheduled network, the headers that the master transmits determine the
timing of all frames. To understand how and when each frame transmits, you must examine
the entries in each schedule. Each entry transfers one frame (or possibly multiple frames). For
more information, refer to the XNET LIN Schedule Entry Type property.

Because it is possible to use a single frame in multiple schedules and schedule entries, the
overall timing for an individual frame can be complex. Nevertheless, each LIN schedule entry
generally fits the concepts of cyclic and event timing that are common for other protocols such
as CAN and FlexRay. For more information about how these concepts apply to LIN, refer to
Cyclic and Event Timing.

LIN Diagnostics

Refer to XNET Write (State LIN Diagnostic Schedule Change).vi for details.

Special Considerations for Using Stream Output Mode with LIN
Refer to the Interface:Output Stream Timing property for details.

Using LabVIEW Real-Time

The LabVIEW Real-Time (RT) module combines LabVIEW graphical programming with
the power of a real-time operating system, enabling you to build real-time applications.
NI-XNET provides features and performance specifically designed for LabVIEW RT.

High Priority Loops

Many real-time applications contain at least one loop that must execute at the highest priority.
This high-priority loop typically contains code to read inputs, execute a control algorithm, and
then write outputs. The high-priority loop executes at a fast period, such as 500 ps (2 kHz).
To ensure that the loop diagram executes within the period, the average execution time (cost)
of read and write VIs must be low. The execution time also must be consistent from one loop
iteration to another (low jitter).

Within NI-XNET, the session modes for single-point I/O are designed for use within
high-priority loops. This applies to all four single-point modes: input, output, signal, or frame.

© National Instruments 4-53 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Using LabVIEW Real-Time

XNET Read.vi and XNET Write.vi provide fast and consistent execution time, and they
avoid access to shared resources such as the memory manager.

The session modes other than single-point all use queues to store data. Although you can use
the queued session modes within a high priority loop, those modes use a variable amount of
data for each read/write. This requires a variable amount of time to process the data, which
can introduce jitter to the loop. When using the queued modes, measure the performance of
your code within the loop to ensure that it meets your requirements even when bus traffic is
variable.

When XNET Read.vi and XNET Write.vi execute for the very first loop iteration, they often
perform tasks such as auto-start of the session, allocation of internal memory, and so on.
These tasks result in high cost for the first iteration compared to any subsequent iteration.
When you measure performance of XNET Read.vi and XNET Write.vi, discard the first
iteration from the measurement.

For another VI or property node (not XNET Read.vi or XNET Write.vi), you must assume
it is not designed for use within high priority loops. The property nodes are designed for
configuration purposes. VIs that change state (for example, XNET Start.vi) require time for
hardware/software configuration. Nevertheless, there are exceptions for which certain
properties and VIs support high-priority use. Refer to the help for the specific features you
want to use within a high priority loop. This help may specify an exception.

XNET 1/0 Names

You can use a LabVIEW project to program RT targets. When you open a VI front panel on
an RT target, that front panel accesses the target remotely (over TCP/IP).

When you use an XNET I/O name on a VI front panel on LabVIEW RT, the remote access
provides the user interface features of that I/O name. For example, the drop-down list of an
XNET Interface provides all CAN, FlexRay, and LIN interfaces on the RT target (for
example, a PXI chassis).

For the remote access to operate properly, you must connect the LabVIEW RT target using a
LabVIEW project. To connect the target, right-click the target in a LabVIEW project and
select Connect. The target shows a green LED in project, and the user interface of I/O names
is operational.

If the RT target is disconnected in a LabVIEW project, each I/O name displays the text (target
disconnected) in its drop-down list.

NI-XNET Hardware and Software Manual 4-54 ni.com

Chapter 4 NI-XNET API for LabVIEW—Using LabVIEW Real-Time

Deploying Databases

When you create an NI-XNET application for LabVIEW RT, you must assign an alias to your
database file. When you deploy to the RT target, the text database file is compressed to an
optimized binary format, and that binary file is transferred to the target.

When you create NI-XNET sessions using a LabVIEW project, you assign the alias within
the session dialog (for example, Browse for Database File). When you drag the session to a
VI under the RT target, then run that VI, NI-XNET automatically deploys the database file to
the target.

When you create NI-XNET sessions at run time, you must explicitly deploy the database to
the RT target. There are two options for this deployment:

* XNET I/0O Names: If you are using I/O names for database objects, you can click on an
I/0 name and select Manage Database Deployment. This opens a dialog you can use to
assign new aliases and deploy them to the RT target.

» File Management Subpalette VIs: To manage database deployment from a VI running
on the host (Windows computer), use VIs in the NI-XNET File Management palette.
This palette includes VIs to add an alias and deploy the database to the RT target.

To delete the database file from the RT target after execution of a test, you perform this
undeploy using either option described above.

Memory Use for Databases

When you access properties of a database object (for example, cluster, frame, signal) on the
diagram of your VI, NI-XNET opens the database on disk and maintains a binary image in
memory. Use XNET Database Close.vi to close the database prior to performing
memory-sensitive tasks, such as a control loop on LabVIEW Real-Time.

When you pass database objects as input to XNET Create Session.vi, NI-XNET internally
opens the database, reads the information required to create the session, then closes the
database. Therefore, there is no need to explicitly close the database after creating sessions.

FlexRay Timing Source

FlexRay is a deterministic protocol, which means it enables ECUs to synchronize code
execution and data exchange. When you use LabVIEW to test an ECU that uses these
deterministic features, you typically need to synchronize the LabVIEW VI to the FlexRay
communication cycle. For example, to validate that the ECU transmits a different value each
FlexRay cycle, you must read that frame every FlexRay cycle.

NI-XNET provides XNET Create Timing Source (FlexRay Cycle).vi to create a LabVIEW
timing source. You wire this timing source to a LabVIEW timed loop to execute LabVIEW

© National Instruments 4-55 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET AP for LabVIEW—J1939 Sessions

code synchronized to the FlexRay cycle. Because the length of time for each FlexRay cycle
is a few milliseconds, LabVIEW RT provides the required real-time execution.

Creating a Built Real-Time Application

NI-XNET supports creation of a real-time application, which you can set to run automatically
when you power on the RT target. Create the real-time application by right-clicking Build
Specifications under the RT target, then selecting New»Real-Time Application.

If you created NI-XNET sessions in a LabVIEW project, those sessions are deployed to the
RT target in the same manner as running a VI.

Deployment of databases for a real-time application is the same as running a VI.

J1939 Sessions

If you use a DBC file defining a J1939 database or create a stream session with the cluster
name :can_j1939:, you will create a J1939 XNET session. If the session is running in J1939
mode, the session property application protocol returns J7939 instead of None. This property
is read only, as you cannot change the application protocol while the session is running.

FIBEX databases do not define support for J1939 in the standard. If you save a J1939 database
to FIBEX in the NI-XNET Database Editor or with XNET Database Save.vi, the J1939
properties are saved in a FIBEX extension defined by National Instruments in the FIBEX
XML file.

Compatibility Issue

If you have used a J1939 database with a version of NI-XNET that does not support J1939,
the session now opens in J1939 mode, which defines a different behavior than a non-J1939
session. This may break the compatibility of your application. To avoid issues, you can ignore
the application protocol for the database alias in question.

Complete the following steps to set whether the database application protocol is used or
ignored when the alias is added:

1. Launch the NI-XNET Database Editor.

2. From the main menu, select File»xManage Aliases, which opens the Manage NI-XNET
Databases dialog.

3. In the Manage NI-XNET Databases dialog, click the Add Alias button, which opens
the Add Alias to NI-XNET Database... dialog.

4. Browse to the database file to add, then click OK to continue. If the protocol for the
selected database is CAN and the application protocol is J1939, an Ignore Application
Protocol checkbox is displayed, as shown in the following figure. (The Baud Rate
control may or may not be displayed, depending on whether the database specifies it.)

NI-XNET Hardware and Software Manual 4-56 ni.com

Chapter 4 NI-XNET API for LabVIEW—J1939 Sessions

| 3§ Default NI-XNET Database Settings =5

You are adding a new alias for an NI-XNET database that does not specify a
baud rate or other settings, and/or specifies a setting which may be ignored or
disabled. Different database types specify different settings.

Please specify the default setting(s) to use with this file.

Baud Rate 500 kBaud [~

[T] Ignore Application Protocol

ok |

5. To have NI-XNET interpret the alias as an alias for a J1939 database, leave Ignore
Application Protocol unchecked. To have NI-XNET interpret the alias as an alias for a
plain CAN database, check Ignore Application Protocol.

6. Click OK to complete the alias addition.

J1939 Basics

A J1939 network consists of ECUs connected by a CAN bus running at 250 k baud rate. Some
newer networks might use a 500 k baud rate. A physical ECU can contain one or more logical
ECUs called nodes or Controller Applications. This description refers to it as a node or ECU.

J1939 application protocol uses a 29-bit extended frame identifier. The ID is divided into
several parts:

* Source Address (8 bits): Determines the address of the node transmitting the frame. By
examining the Source Address part of the ID, the receiving session can recognize which
node has sent the frame.

* PGN (18 bits): Identifies the frame and defines which signals it contains.

* Priority (3 bits): Priority is used when multiple CAN frames are sent on the bus at
exactly the same time. In this case, the CAN frame with the higher priority (lower
number) is transmitted before the lower priority frame. The CAN standard defines the
CAN frames priority (lower IDs have higher priority). Therefore, the J1939 priority bits

© National Instruments 4-57 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET AP for LabVIEW—J1939 Sessions

are the most significant bits in the ID. This ensures that the ID value with a higher priority
is always lower, independent of the PGN and Source Address, as shown in the following
figure.

28 26 25 87 0
Prio PGN Source Addr

You can send a frame to a global address (all nodes) or a specific address (node with this
address). This information is coded inside the PGN, as shown in the following figure.

28 2625 24 23 1615 87 0

E

Prio D D PF PS Source Addr

The PF value in the identifier defines whether the message has a global or specific destination:
e (0-239 (0x00-0xEF): specific destination
e 240-255 (0xFO-0xFF): global destination

In the CAN identifier, this looks like the following (X = don’t care):
o xXXFOXXXX to 0xXXFFXXXX are messages with global destination (broadcast)
¢ 0xXX00XXXX to 0xXXEFXXXX are messages with specific destination

For global messages, the PS byte of the ID defines group extension. This extends the number
of possible global PGNs to 4096 (0xF000 to OxFFFF).

For destination-specific messages, PS defines the destination address, so PF defines only
240 destination-specific PGNs (0-239).

DP and EDP bits increase the number of possible PGNs by defining data pages. EDP,
however, always is set to 0in J1939, so only DP can be set to O or 1, which doubles the number
of PGNs described above. The maximum number of possible PGNs (and so, different
messages) in J1939 is 2 * (4096 + 240) = 8672.

For node addresses (source address and destination address), the ID reserves 8 bit, which
allows values from 0 to 255. Two values have a special meaning:

e 254 is the null address. This means there is no valid address assigned to a node yet.

e 255 is the global address. This allows sending even PGNs with PF 0 to 239 to a global
destination.

NI-XNET Hardware and Software Manual 4-58 ni.com

Chapter 4 NI-XNET API for LabVIEW—J1939 Sessions

Node Addresses in NI-XNET

A newly created XNET session has no node address. If you read the J1939 Node Address
property after creating a session, it returns the value 254 (null address).

A receiving XNET session without address can read all frames from the bus. A receiving
XNET session with an assigned address can read only frames with a global destination
address (255) and frames sent to this address, but not frames sent to other nodes.

A transmitting XNET session requires a node address. All nodes in the network must have
different node addresses; otherwise, two nodes could send a frame with the same CAN
identifier, which is not allowed by the CAN standard. To ensure that each node has a different
address, J1939 defines a procedure called address claiming to obtain an address on the
network. There are two properties required for address claiming:

¢ Node name (64 bit value)
¢ Node address

The node name identifies a node (ECU) and usually is saved in the database. Each ECU in the
network has a unique node name. For the address claiming procedure, there are two important
features of the node name value:

* Priority: The lower name value has the higher priority.

* Arbitrary address capability (bit 63 = 1): This node can use a different address than
specified in case of conflict.

The arbitrary address capability is defined in the highest significant bit of the value (bit 63).
All arbitrary-capable names have a lower priority than nonarbitrary-capable names.

Address Claiming Procedure

To obtain an address on the network, set the J1939/Node Name and J1939/Node Address
properties or set the J1939/ECU property (which is equivalent to setting the other properties
using the values in the ECU object in the database). After setting the Node Address (to a value
less than 254), XNET sends an address claimed message and waits 300 ms for the response
from the network. If no other node is using this address, there is no response to the message;
after the timeout, the address is granted to the session and the session can transmit frames on
the network.

During the claiming procedure, the node address property returns the null address (254), so
you can poll this address until it gets a valid value.

If the address cannot be granted to the session (for example, when the name is not arbitrary
and another node with higher priority uses the node address), the address is not granted. After
timeout, the J1939 CommState indicates the reason for failed address claiming. If the node

name is arbitrary address capable, NI-XNET tries to find another address and claim it. This

© National Instruments 4-59 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET AP for LabVIEW—J1939 Sessions

procedure can take some time depending on how fast the other nodes respond to the address
claimed message.

NI-XNET examples contain the address claiming procedure, which you can use in your
applications.

The frames transmitted during address claiming are not passed to the J1939 input session. To
see those frames, open a non-J1939 CAN session, which can be running parallel with a J1939
session on the same interface.

Transmitting Frames

When transmitting frames, the granted address of the node automatically replaces the source
address part of the identifier.

Transmitting Frames without Granted Node Address

In your application, you may want a session to transmit frames using the source address
provided in the identifier in the database or the frame data. If you do not assign a valid address
to a session (or set the address to 254 explicitly), NI-XNET does not change the address in
your frame identifier before transmitting. If a transmitting session without an address tries to
send a frame without a valid address in the identifier, this returns an error.

Mixing J1939 and CAN Messages

J1939 frames in the database and CAN frames data in XNET include the Application Protocol
property. This means you can mix J1939 and standard CAN messages in one session.
Standard CAN messages cannot exceed 8 bytes and do not use the node address.

In standard CAN frames, the complete identifier is considered as the CAN message identifier;
in J1939, only the PGN determines the message. Frames with the same PGN but different
priority or source address are considered the same message.

Received frames with extended identifier always are considered J1939 frames. If you use
extended CAN frames as non-J1939 frames, you must process the received data to update the
Application Protocol property.

Transport Protocol (TP)

When you use frames with more than 8 bytes, NI-XNET automatically uses the J1939
transport protocol to transmit and receive the frames. You do not receive any transport
protocol management messages in the sessions. When this is required, you must open a
non-J1939 CAN session, which can be running parallel to a J1939 session on the same
interface.

NI-XNET Hardware and Software Manual 4-60 ni.com

Chapter 4 NI-XNET API for LabVIEW—J1939 Sessions

Transport protocol defines many properties used to change the behavior (for example,
timing).

If errors occur in the transport protocol, they are not reported directly from the read function.
You can monitor errors in the TP by reading the J1939 CommState function.

Note that the transport protocol is not using the priority in the identifier, and the priority value
is not transmitted with the TP. Received TP messages have the priority always set to 0.

NI-XNET Sessions

You can use all NI-XNET session modes with J1939 protocol, whether or not the frames use
transport protocol. This includes frame and signal sessions in queued, single point, or stream
mode.

Not Supported in the Current NI-XNET Version
Signal Ranges

For coded signal values in frames, J1939 reserves special values to transmit specific indicators
(for example, the error indicator). The current NI-XNET version does not support this; those
values are converted to signal values. This behavior may change in a future NI-XNET version.

© National Instruments 4-61 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—NI-XNET API for LabVIEW Reference

NI-XNET API for LabVIEW Reference

This section describes the NI-XNET LabVIEW APIs and properties.

XNET Session Constant

This constant provides the constant form of the XNET Session I/O name. You drag a constant
to the block diagram of your VI, then select a session. You can change constants only during
configuration, prior to running the VI. For a complete description, refer to XNET Session I/0
Name.

NI-XNET Hardware and Software Manual 4-62 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session.vi

XNET Create Session.vi

Purpose

Creates an XNET session to read/write data on the network.

Description

The XNET session specifies a relationship between National Instruments interface hardware
and frames or signals to access on the external network (cluster). The XNET session also
specifies the input/output direction and how data is transferred between your application and
the network. For more information about NI-XNET concepts and object classes, refer to
Interfaces, Databases, and Sessions.

Use this VI to create a session at run time. Run-time creation is useful when the session
configuration must be selected using the front panel. If you prefer to create a session at edit
time (static configuration), refer to Appendix E, LabVIEW Project Provider.

The instances of this polymorphic VI specify the session mode to create:

XNET Create Session (Signal Input Single-Point).vi
XNET Create Session (Signal Input Waveform).vi
XNET Create Session (Signal Input XY).vi

XNET Create Session (Signal Output Single-Point).vi
XNET Create Session (Signal Output Waveform).vi
XNET Create Session (Signal Output XY).vi

XNET Create Session (Frame Input Stream).vi
XNET Create Session (Frame Input Queued).vi
XNET Create Session (Frame Input Single-Point).vi
XNET Create Session (PDU Input Queued).vi

XNET Create Session (PDU Input Single Point).vi
XNET Create Session (Frame Output Stream).vi
XNET Create Session (Frame Output Queued).vi
XNET Create Session (Frame Output Single-Point).vi
XNET Create Session (PDU Output Queued).vi
XNET Create Session (PDU Output Single-Point).vi

XNET Create Session (Generic).vi: (This instance is used for advanced applications,
when you need to specify the configuration as strings.)

XNET Create Session (Conversion).vi

© National Instruments 4-63 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Conversion).vi

XNET Create Session (Conversion).vi
Purpose
Creates an XNET session at run time for the Conversion Mode.
Format
signal list HI=HHET session auk
e
Error in (Ao errar) 4 error ouk
Inputs
signal list is the array of XNET signals to convert to or from frames. These
signals are specified in your database and describe the values encoded in
one or more frames.
= error in is the error cluster input (refer to Error Handling).
Outputs
session out is the created session.
= error out is the error cluster output (refer to Error Handling).

NI-XNET Hardware and Software Manual

4-64

ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Frame Input Queued).vi

XNET Create Session (Frame Input Queued).vi

Purpose
Creates an XNET session at run time for the Frame Input Queued Mode.
Format
frame HI-FHET) session ouk
2z
interface ~22 "L arror out
Errar in (no errar)
Inputs
170 frame is the XNET Frame to read. This mode supports only one frame per

session. Your database specifies this frame.
interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

-
-
L]

Outputs

70 session out is the created session.

error out is the error cluster output (refer to Error Handling).

© National Instruments 4-65 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Frame Input Single-Point).vi

XNET Create Session (Frame Input Single-Point).vi

Purpose
Creates an XNET session at run time for the Frame Input Single-Point Mode.

Format

frame list HI=HHET) ses5ion ouk

2z
interface ~om "L errar aut
Error in (no error)

Inputs

Is0
these frames.

—
-
-
o

Outputs

70 session out is the created session.

[

NI-XNET Hardware and Software Manual

4-66

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

error out is the error cluster output (refer to Error Handling).

frame list is the array of XNET Frames to read. Your database specifies

ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Frame Input Stream).vi

XNET Create Session (Frame Input Stream).vi

Purpose
Creates an XNET session at run time for the Frame Input Stream Mode.
Format
cluster Cmemary:) e session out
' ' 2z
interface ~~z "L errar ouk
error in (no error)
Inputs
170 cluster is the XNET Cluster to use for interface configuration. The default

value is :memory:, the in-memory database.

There are six options:

© National Instruments

Empty in-memory database: cluster is unwired, and the in-memory
database is empty (XNET Database Create Object.vi is not used).
This option is supported for CAN only (not FlexRay or LIN). After
you create the session, you must set the XNET Session Interface:64bit
Baud Rate property using a Session node. You must set the baud rate
prior to starting the session.

Pre-defined CAN FD in-memory database: Pass in special
in-memory databases :can_fd: and :can_fd_brs:, as the cluster (XNET
Database Create Object.vi is not used). These databases are similar
to the empty in-memory database (:memory:), but configure the cluster
in either CAN FD or CAN FD+BRS mode, respectively. After you
create the session, you must set the XNET Session Interface:64bit
Baud Rate and Interface:CAN:64bit FD Baud Rate properties using a
Session node. You must set these baud rates prior to starting the
session.

Pre-defined SAE J1939 Database: Pass in the special in-memory
database :can_j1939:. This database is similar to the empty in-memory
database (:memory:), but configures the cluster in CAN SAE J1939
application protocol mode. After you create the session, you must set
the XNET Session Interface:64bit Baud Rate property using a Session
node. You must set this baud rate prior to starting the session.

Cluster within database file: cluster specifies a cluster within a
database file. This is the most common option used with FlexRay. The
cluster within the FIBEX database file contains all required properties

4-67 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Frame Input Stream).vi

to configure the interface. For CANdD files, although the file itself
does not specify a CAN baud rate, you provide this when you add an
alias to the file within NI-XNET. For LIN, the LDF file format already
specifies the baud rate.

* Nonempty in-memory database: Call XNET Database Create
Object.vi to create a cluster within the in-memory database, use the
XNET Cluster property node to set properties (such as baud rate), then
wire from the Cluster node to this cluster.

* Subordinate: Wire in cluster of :subordinate:. A subordinate session
uses the cluster and interface configuration from other sessions. For
example, you may have a test application with which the end user
specifies the database file, cluster, and signals to read/write. You also
have a second application with which you want to log all received
frames (input stream), but that application does not specify a database.
You run this second application using a subordinate session, meaning
it does not configure or start the interface, but depends on the primary
test application. For a subordinate session, start and stop of the
interface (using XNET Start.vi) is ignored. The subordinate session
reads frames only when another nonsubordinate session starts the
interface.

interface is the XNET Interface to use for this session.

| I/0 :
error in is the error cluster input (refer to Error Handling).

Outputs
session out is the created session.
= error out is the error cluster output (refer to Error Handling).
- o

NI-XNET Hardware and Software Manual 4-68 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (PDU Input Queued).vi

XNET Create Session (PDU Input Queued).vi

Purpose

Creates an XNET session at run time for the Frame Input Queued Mode.

This selection uses a PDU instead of a frame, but otherwise it is the same as XNET Create
Session (Frame Input Queued).vi. You read PDU data using the XNET Read.vi frame
selections. The payload in each frame value contains the PDU’s data, not the entire frame.

XNET Create Session (PDU Input Single Point).vi

Purpose
Creates an XNET session at run time for the Frame Input Single-Point Mode.
This selection uses one or more PDUs instead of frames, but otherwise it is the same as XNET
Create Session (Frame Input Single-Point).vi. You read PDU data using the XNET

Read.vi frame selections. The payload in each frame value contains the PDU’s data, not the
entire frame.

© National Instruments 4-69 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Frame Output Queued).vi

XNET Create Session (Frame Output Queued).vi

Purpose
Creates an XNET session at run time for the Frame Output Queued Mode.
Format
frame HI=FHET] session auk
ez
interface -5z "L errar aut
error in (no error)
Inputs
170 frame is the XNET Frame to write. This mode supports only one frame per

session. Your database specifies this frame.

-
-
o

Outputs

70 session out is the created session.

[

NI-XNET Hardware and Software Manual

4-70

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

error out is the error cluster output (refer to Error Handling).

ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Frame Output Single-Point).vi

XNET Create Session (Frame Qutput Single-Point).vi

Purpose
Creates an XNET session at run time for the Frame Output Single-Point Mode.
Format
frame list N;—::NET session ouk
interface ~ "L errar aut
error in (no error)
Inputs

—
=2
=
-

these frames.

-
-
L]

o

Outputs

70 session out is the created session.

© National Instruments

4-71

frame list is the array of XNET Frames to write. Your database specifies

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

error out is the error cluster output (refer to Error Handling).

NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—XNET Create Session (Frame Output Stream).vi

XNET Create Session (Frame Output Stream).vi

Purpose

Creates an XNET session at run time for the Frame Output Stream Mode.

5

Note This instance is supported for CAN and LIN only (not FlexRay).

Format

Inputs

HI-RHET session auk

clusker {imemory:) e
3
interface ~22] "
errar in (no errar)

error auk

cluster is the XNET Cluster /O Name to use for interface configuration.
The default value is :memory:, the in-memory database.

There are five options:

Empty in-memory database: cluster is unwired, and the in-memory
database is empty (XNET Database Create Object.vi is not used).
After you create the session, you must set the XNET Session
Interface:64bit Baud Rate property using a Session node. You must set
the CAN or LIN baud rate prior to starting the session.

Pre-defined CAN FD in-memory database: Pass in special
in-memory databases :can_fd: and :can_fd_brs:, as the cluster (XNET
Database Create Object.vi is not used). These databases are similar
to the empty in-memory database (:memory:), but configure the cluster
in either CAN FD or CAN FD+BRS mode, respectively. After you
create the session, you must set the XNET Session Interface:64bit
Baud Rate and Interface:CAN:64bit FD Baud Rate properties using a
Session node. You must set these baud rates prior to starting the
session.

Pre-defined SAE J1939 Database: Pass in the special in-memory
database :can_j1939:. This database is similar to the empty in-memory
database (:memory:), but configures the cluster in CAN SAE J1939
application protocol mode. After you create the session, you must set
the XNET Session Interface:64bit Baud Rate property using a Session
node. You must set this baud rate prior to starting the session.

NI-XNET Hardware and Software Manual 4-72 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Frame Output Stream).vi

¢ Cluster within database file: cluster specifies a cluster within a
database file. For CANdb files, although the file itself does not specify
a CAN baud rate, you provide this when you add an alias to the file
within NI-XNET.

¢ Nonempty in-memory database: Call XNET Database Create
Object.vi to create a cluster within the in-memory database, use the
Cluster node to set properties (such as baud rate), then wire from the
Cluster node to this cluster.

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).
Outputs
session out is the created session.
= error out is the error cluster output (refer to Error Handling).

© National Instruments 4-73 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (PDU Output Queued).vi

XNET Create Session (PDU Output Queued).vi

Purpose

Creates an XNET session at run time for the Frame Output Queued Mode.

This selection uses a PDU instead of a frame, but otherwise it is the same as XNET Create
Session (Frame Output Queued).vi. You write PDU data using the XNET Write.vi frame
selections. The payload in each frame value contains the PDU’s data, not the entire frame.

XNET Create Session (PDU Output Single-Point).vi

Purpose
Creates an XNET session at run time for the Frame Output Single-Point Mode.
This selection uses a PDU instead of a frame, but otherwise it is the same as XNET Create
Session (Frame Output Single-Point).vi. You write PDU data using the XNET Write.vi

frame selections. The payload in each frame value contains the PDU’s data, not the entire
frame.

NI-XNET Hardware and Software Manual 4-74 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Generic).vi

XNET Create Session (Generic).vi

Purpose

Creates an XNET session at run time using strings instead of XNET I/O Names. This VI is
for advanced applications, when you need to store the configuration as strings (such as within
a text file).

Format
list (empty) N;—;u sEssion ouk
mode I error ouk
interface “jmﬂ
Error in {no errar)
database (imemary:)
cluster {empky)
Inputs
list provides the list of signals or frames for the session.
The list syntax depends on the mode:
Mode list Syntax
Signal Input list contains one or more XNET Signal names.
Single-Point, If more than one name is provided, a comma must
Signal Output | separate each name. Each name must use the
Single-Point <signal> or <frame.signal> syntax as specified for
the I/0O name (new line and <dbSelection> not
included).
Signal Input list contains one or more XNET Signal names.
Waveform, If more than one name is provided, a comma must
Signal Output | separate each name. Each name must use the
Waveform <signal> or <frame.signal> syntax as specified for
the I/0 name (new line and <dbSelection> not
included).

© National Instruments 4-75 NI-XNET Hardware and Software Manual

Chapter 4

Outputs

-
)
=]

NI-XNET API for LabVIEW—XNET Create Session (Generic).vi

Mode list Syntax
Signal Input list contains one or more XNET Signal names.
XY, Signal If more than one name is provided, a comma must
Output XY separate each name. Each name must use the

<signal> or <frame.signal> syntax as specified for
the I/0 name (new line and <dbSelection> not
included).

Frame Input
Stream, Frame
Output Stream

list is empty (unwired).

Frame Input
Queued,
Frame Output
Queued

list contains only one XNET Frame name. Only
one name is supported. The frame name must use
the <frame> syntax as specified for the I/O name
(new line and <dbSelection> not included).

Frame Input
Single-Point,
Frame Output
Single-Point

list contains one or more XNET Frame names.

If more than one name is provided, a comma must
separate each name. The frame name must use the
<frame> syntax as specified for the I/O name
(new line and <dbSelection> not included).

mode is the session mode.

interface is the XNET Interface to use for this session.

database is the XNET Database to use for interface configuration. The
database name must use the <alias> or <filepath> syntax specified for the
I/O name. The default value is :memory:, the in-memory database.

cluster is the XNET Cluster to use for interface configuration. The cluster
name must use the <cluster> syntax specified for the I/O name (<alias>.
prefix not included).

error in is the error cluster input (refer to Error Handling).

session out is the created session.

error out is the error cluster output (refer to Error Handling).

NI-XNET Hardware and Software Manual

4-76 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Signal Input Single-Point).vi

XNET Create Session (Signal Input Single-Point).vi

Purpose
Creates an XNET session at run time for the Signal Input Single-Point Mode.
Format
. N HI—ZHET] session out
signal list .
interface ~~ooomn "L errar aut
Error in (no error)
Inputs
signal list is the array of XNET Signals to read. These signals are specified

in your database and describe the values encoded in one or more frames, or
they are trigger signals for frames. For more information about trigger
signals, refer to Signal Input Single-Point Mode.

: interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

il

Outputs

70 session out is the created session.

error out is the error cluster output (refer to Error Handling).

© National Instruments 4-77 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Signal Input Waveform).vi

XNET Create Session (Signal Input Waveform).vi

Purpose
Creates an XNET session at run time for the Signal Input Waveform Mode.
Format
A . HI=EHET session ouk
signal list o1z
interface ~~r "L errar aut
Error in (no error)
Inputs
170 signal list is the array of XNET Signals to read. These signals are specified

in your database and describe the values encoded in one or more frames.
interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

—
-
-
o

Outputs

70 session out is the created session.

error out is the error cluster output (refer to Error Handling).

[

NI-XNET Hardware and Software Manual 4-78 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Signal Input XY).vi

XNET Create Session (Signal Input XY).vi

Purpose
Creates an XNET session at run time for the Signal Input XY Mode.
Format
. i HI=%HET] session oukt
signal list e
interface ~o "] errar aut
Error in (no error)
Inputs
170 signal list is the array of XNET Signals to read. These signals are specified

in your database and describe the values encoded in one or more frames.
interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

—
-
-
L]

Outputs

70 session out is the created session.

error out is the error cluster output (refer to Error Handling).

© National Instruments 4-79 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Signal Output Single-Point).vi

XNET Create Session (Signal Output Single-Point).vi

Purpose
Creates an XNET session at run time for the Signal Output Single-Point Mode.
Format
A) WI-HHET session auk
signal list o
interface ~~n "L srrar ouk
Errar in (no error)
Inputs
signal list is the array of XNET Signals to write. These signals are specified

in your database and describe the values encoded in one or more frames, or
they are trigger signals for frames. For information about trigger signals,
refer to Signal Output Single-Point Mode.

0 interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

il

Outputs

70 session out is the created session.

error out is the error cluster output (refer to Error Handling).

B

NI-XNET Hardware and Software Manual 4-80 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Signal Output Waveform).vi

XNET Create Session (Signal Output Waveform).vi

Purpose
Creates an XNET session at run time for the Signal Output Waveform Mode.
Format
A) WI-HHET session auk
signal list o
interface =~ "L srrar ouk
Error in (no error)
Inputs
170 signal list is the array of XNET Signals to write. These signals are specified

in your database and describe the values encoded in one or more frames.
interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

—
-
-
L]

Outputs

70 session out is the created session.

error out is the error cluster output (refer to Error Handling).

© National Instruments 4-81 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Create Session (Signal Output XY).vi

XNET Create Session (Signal Output XY).vi

Purpose
Creates an XNET session at run time for the Signal Output XY Mode.
Format
. N HI—ZHET] session out
signal list .
interface ~~ooomn "L errar aut
Error in (no error)
Inputs
170 signal list is the array of XNET Signals to write. These signals are specified

—
-
-
o

Outputs
session out is the created session.
NI-XNET Hardware and Software Manual 4-82

interface is the XNET Interface to use for this session.

error in is the error cluster input (refer to Error Handling).

error out is the error cluster output (refer to Error Handling).

in your database and describe the values encoded in one or more frames.

ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Session Property Node

XNET Session Property Node

Format

[=¢]

Description

Property node used to read/write properties for an XNET Session I/O Name.

Pull down this node to add properties. Right-click to change direction between read and write.
Right-click each property name to create a constant, control, or indicator.

For help on a specific property, open the LabVIEW context help window (<Ctrl-H>) and
move your cursor over the property name.

For more information about LabVIEW property nodes, open the main LabVIEW help (select
Search the LabVIEW Help from the Help menu) and look for the Property Nodes topic in
the index.

© National Instruments 4-83 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface Properties

Properties in the Interface category apply to the interface and not the session. If more than one
session exists for the interface, changing an interface property affects all the sessions.

CAN Interface Properties

This category includes CAN-specific interface properties.

NI-XNET Hardware and Software Manual 4-84 ni.com

Chapter 4

Interface:CAN:64hit FD Baud Rate

NI-XNET API for LabVIEW—Interface Properties

Data Type Direction Required? Default

Read/Write No 0

Property Class
XNET Session

Short Name
Intf. CAN.FdBaudRate64

Description

@ Note You can modify this property only when the interface is stopped.

@ Note This property replaces the former 32-bit property. You still can use the baud rate
values used with the 32-bit property. The new custom 64-bit baud rate setting requires

using values greater than 32 bit.

The Interface:CAN:64bit FD Baud Rate property sets the fast data baud rate for CAN
FD+BRS CAN:I/O Mode. The default value for this interface property is the same as the
cluster’s FD baud rate in the database. Your application can set this interface FD baud rate to

override the value in the database.

When the upper nibble (0xFO000000) is clear, this is a numeric baud rate (for example,

500000).

NI-XNET CAN hardware currently accepts the following numeric baud rates: 200000,
250000, 400000, 500000, 800000, 1000000, 1250000, 1600000, 2000000, 2500000,

4000000, 5000000, and 8000000.

@ Note Not all CAN transceivers are rated to transmit at the requested rate. If you attempt
to use a rate that exceeds the transceiver’s qualified rate, XNET Start returns a warning.
Chapter 3, NI-XNET Hardware Overview, describes the CAN transceivers’ limitations.

© National Instruments 4-85

NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Interface Properties

When the upper nibble of the lower 32 bit is set to 0x8 (that is, 0x80000000), the remaining
bits provide fields for more custom CAN communication baud rate programming. The fields
are shown in the following table:

31..28 27..26 25..24 23..20 19..16 15..10 9.8 7..0
Normal b0000 Baud Rate (200 k—8 M)
Custom b1000 Res SIW TSEG2 | TSEGI Res Tq (25-800)
(0-3) 0-7) (1-15)
e (Re-)Synchronization Jump Width (SJW)
— Valid programmed values are 0-3.
— The actual hardware interpretation of this value is one more than the programmed
value.
* Time Segment 2 (TSEG?2) is the time segment after the sample point.
— Valid programmed values are 0-7.
— Thisis the Phase_Seg2(D) from Bosch’s CAN with Flexible Data-Rate specification,
version 1.0.
— The actual hardware interpretation of this value is one more than the programmed
value.
¢ Time Segment 1 (TSEG1) is the time segment before the sample point.
— Valid programmed values are 1-15.
— This is the combination of Prop_Seg(D) and Phase_Seg1(D) from Bosch’s CAN with
Flexible Data-Rate specification, version 1.0.
— The actual hardware interpretation of this value is one more than the programmed
value.
e Time quantum (Tq) is used to program the baud rate prescaler.
— Valid programmed values are 25-800, in increments of 25 ns.
31..28 55 45.40 37..32 26..13 12..8 7.4 3.0
Custom | bl1010 TDC TDCO TDCF Tq DTSEG1 | DTSEG2 | DSIW
64 Bit

(Re-)Synchronization Jump Width (DSJW)
— Valid values are 0-3.

— The actual hardware interpretation of this value is one more than the programmed
value.

NI-XNET Hardware and Software Manual 4-86 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

* Time Segment 2 (DTSEG?2) is the time segment after the sample point.
— Valid values are 0-15.

— This is the DTSEG?2 value from the Bosch M_CAN Controller Area Network User’s
Manual, version 3.2.1.

— The actual hardware interpretation of this value is one more than the programmed
value.

* Time Segment 1 (DTSEG1) is the time segment before the sample point.
— Valid values are 0-31.

— This is the DTSEG1 value from the Bosch M_CAN Controller Area Network User’s
Manual, version 3.2.1.

— The actual hardware interpretation of this value is one more than the programmed
value.

* Time quantum (Tq) is used to program the baud rate prescaler.
— Valid values are 25-800, in increments of 25 ns.
* Transmitter Delay Compensation (TDC) enables or disables this feature.
— 0: TDC disabled
— 1: TDC enabled
* Transmitter Delay Compensation Offset (TDCO)
— Valid values are 0-127.

— Defines the distance between the delay from transmit to receive point and secondary
sample point.

¢ Transmitter Delay Compensation Filter Window Length (TDCF).
— Valid values are 0—127.

— Defines the minimum value for the secondary sample point position. It is enabled
when TDCEF is greater than TDCO.

© National Instruments 4-87 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:CAN:Disable Protocol Exception Handling

Data Type Direction Required? Default
Read/Write No False

Property Class
XNET Session

Short Name
Intf. CAN.DisProtExcHdlng

Description

A protocol exception occurs when the CAN hardware detects an invalid combination of bits
on the CAN bus reserved for a future protocol expansion. NI-XNET allows you to define how

the hardware should behave in case of a protocol exception:

e When this property is enabled (false, default), the CAN hardware stops receiving frames

and starts a bus integration.

* When this property is disabled (true), the CAN hardware transmits an error frame when

it detects a protocol exception condition.

NI-XNET Hardware and Software Manual 4-88

ni.com

Chapter 4

Interface:CAN:Enable Edge Filter

NI-XNET API for LabVIEW—Interface Properties

Data Type Direction Required? Default
Read/Write No False

Property Class
XNET Session

Short Name
Intf. CAN.EdgeFilter

Description

When this property is enabled, the CAN hardware requires two consecutive dominant tq for

hard synchronization.

© National Instruments 4-89

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:CAN:External Transceiver Config

Data Type Direction Required? Default

Write Only ~ No 0x00000007

Property Class
XNET Session

Short Name
Intf. CAN.ExtTcvrCfg

Description

This property allows you to configure XS series CAN hardware to communicate properly
with your external transceiver. The connector on your XS series CAN hardware has five lines
for communicating with your transceiver.

Line Direction Purpose

Ext RX In Data received from the CAN bus.

Ext_TX Out Data to transmit on the CAN bus.

OutputO Out Generic output used to configure the transceiver
mode.

Outputl Out Generic output used to configure the transceiver
mode.

NERR In Input to connect to the nERR pin of your transceiver
to route status back from the transceiver to the
hardware.

The Ext_RX and Ext_TX lines are self explanatory and provide for the transfer of CAN data
to and from the transceiver. The remaining three lines are for configuring the transceiver and
retrieving status from the transceivers. Not all transceivers use all pins. Typically, a
transceiver has one or two lines that can configure the transceiver mode. The NI-XNET driver
natively supports five transceiver modes: Normal, Sleep, Single Wire Wakeup, Single Wire
High Speed, and Power-On. This property configures how the NI-XNET driver sets the
outputs of your external transceiver for each mode.

NI-XNET Hardware and Software Manual 4-90 ni.com

Chapter 4

NI-XNET API for LabVIEW—Interface Properties

The configuration is in the form of a u32 written as a bitmask. The u32 bitmask is defined as:

© National Instruments

31 30..15 14..12 11.9 8..6 5.3 2..0
nERR Reserved PowerOn SWHighSpeed SWWakeup Sleep Normal
Connected Configuration| Configuration Configuration Configuration Configuration

Where each configuration is a 3-bit value defined as:
2 1 0
State Supported Outputl Value OutputO Value

The Interface: CAN:Transceiver State property changes the transceiver state. Based on the
transceiver configuration, if the state is supported, the configuration determines how the two
pins are set. If the state is not supported, an error is returned, because you tried to set an invalid
configuration. Note that all transceivers must support a Normal state, so the State Supported
bit for that configuration is ignored.

Other internal state changes may occur. For example, if you put the transceiver to sleep and a
remote wakeup occurs, the transceiver automatically is changed to the normal state. For
information about the state machine for the transceiver state, refer to CAN Transceiver State
Machine in Additional Topics.

If nERR Connected is set, the nERR pin into the connector determines a transceiver error. It
is active low, meaning a value of 0 on this pin indicates an error. A value of 1 indicates no
error. If this line is connected, the NI-XNET driver monitors this line and reports its status via
the Transceiver Error field of XNET Read (State CAN Comm).vi.

Examples

TJA1041 (HS): To connect to the TJA1041 transceiver, connect OutputO to the nSTB pin and
Output] to the EN pin. The TJA1041 does have an nERR pin, so that should be connected to
the nERR input. The TJA1041 supports a power-on state, a sleep state, and a normal state. As
this is not a single wire transceiver, it does not support any single wire state. For normal
operation, the TJA1041 uses a 1 for both nSTB and EN. For sleep, the TJA1041 uses the
standby mode, which uses a 0 for both nSTB and EN. For power-on, the TIA1041 uses a 1 for
nSTB and a 0 for EN. The final configuration is 0x80005027.

TJA1054 (LS): You can connect and configure the TIA1054 identically to the TIA1041.

AUS5790 (SW): To connect to the AU5790 transceiver, connect OutputO to the nSTB pin and
Outputl to the EN pin. The AU5790 does not support any transceiver status, so you do not
need to connect the nERR pin. The AU5790 supports all states. For normal operation, the
AU5790 uses a 1 for both nSTB and EN. For sleep, the AU5790 uses a 0 for both nSTB and
EN. For Single Wire Wakeup, the AU5790 requires nSTB to be a 0 and EN to be a 1. For
Single Wire High-Speed, the AU5790 requires nSTB to be a 1, and EN to be a 0. For

4-91 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

power-on, the sleep state is used so there is less interference on the bus. The final
configuration is 0x00004DA7.

NI-XNET Hardware and Software Manual 4-92 ni.com

Chapter 4

Interface:CAN:FD ISO Mode

NI-XNET API for LabVIEW—Interface Properties

Data Type Direction Required? Default
Read/Write No ISO
Property Class
XNET Session
Short Name
Intf. CAN.FdIsoMode
Description

This property is valid only when the interface is in CAN FD(+BRS) mode. It specifies
whether the interface is working in the ISO CAN FD standard (ISO standard 11898-1:2015)
or non-ISO CAN FD standard (Bosch CAN FD 1.0 specification). Two ports using different
standards (ISO CAN FD vs. non-ISO CAN FD) cannot communicate with each other.

When you use a CAN FD database (DBC or FIBEX file created with NI-XNET), you can
specify the ISO CAN FD mode when creating an alias name for the database. An alias is
created automatically when you open a new database in the NI-XNET Database Editor. The
specified ISO CAN FD mode is used as default, which you can change in the session using

this property.

Note InISO CAN FD mode, for every transmitted frame, you can specify in the database

or frame header whether a frame must be sent in CAN 2.0, CAN FD, or CAN FD+BRS
mode. In the frame type field of the frame header, received frames indicate whether they
have been sent with CAN 2.0, CAN FD, or CAN FD+BRS. You cannot use the
Interface:CAN:Transmit I/O Mode property in ISO CAN FD mode, as the frame defines

the transmit mode.

Note In Non-ISO CAN FD mode, CAN data frames are received at CAN data typed
frames, which is either CAN 2.0, CAN FD, or CAN FD+BRS, but you cannot distinguish
the standard in which the frame has been transmitted.

Note You also can set the mode to Legacy ISO mode. In this mode, the behavior is the

same as in Non-ISO CAN FD mode (Interface:CAN:Transmit I/O Mode is working, and
received frames have the CAN data type). But the interface is working in ISO CAN FD
mode, so you can communicate with other ISO CAN FD devices. Use this mode only for

compatibility with existing applications.

© National Instruments 4-93

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:CAN:1/0 Mode

Data Type Direction Required? Default
Read Only — Same as XNET Cluster CAN:I/O Mode

Property Class
XNET Session

Short Name
Intf. CAN.IoMode

Description

This property indicates the I/O Mode the interface is using. It is a ring of three values, as
described in the following table:

Enumeration Value Meaning

CAN 0 This is the default CAN 2.0 A/B standard I/O mode
as defined in ISO 11898-1:2003. A fixed baud rate
is used for transfer, and the payload length is limited
to 8 bytes.

CAN FD 1 This is the CAN FD mode as specified in the CAN
with Flexible Data-Rate specification, version 1.0.
Payload lengths are allowed up to 64 bytes, but they
are transmitted at a single fixed baud rate (defined
by XNET Cluster 64bit Baud Rate or
Interface:64bit Baud Rate.)

CAN FD+BRS 2 This is the CAN FD mode as specified in the CAN
with Flexible Data-Rate specification, version 1.0,
with the optional Baud Rate Switching enabled. The
same payload lengths as CAN FD mode are
allowed; additionally, the data portion of the CAN
frame is transferred at a different (higher) baud rate
(defined by XNET Cluster CAN:64bit FD Baud
Rate or Interface:CAN:64bit FD Baud Rate).

The value is initialized from the database cluster when the session is created and cannot be
changed later. However, you can transmit standard CAN frames on a CAN FD network. Refer
to the Interface:CAN:Transmit I/O Mode property.

NI-XNET Hardware and Software Manual 4-94 ni.com

Chapter 4

Interface:CAN:Listen Only?

NI-XNET API for LabVIEW—Interface Properties

Data Type Direction Required? Default
Read/Write No False
Property Class
XNET Session
Short Name
Intf. CAN.LstnOnly?
Description

5

Note You can modify this property only when the interface is stopped.

The Listen Only? property configures whether the CAN interface transmits any information

to the CAN bus.

When this property is false, the interface can transmit CAN frames and acknowledge received

CAN frames.

When this property is true, the interface can neither transmit CAN frames nor acknowledge a
received CAN frame. The true value enables passive monitoring of network traffic, which can
be useful for debugging scenarios when you do not want to interfere with a communicating

network cluster.

© National Instruments 4-95

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:CAN:Pending Transmit Order

Data Type Direction Required? Default

Read/Write No As Submitted

Property Class
XNET Session

Short Name
Intf. CAN.PendTxOrder

Description

@ Note You can modify this property only when the interface is stopped.

@ Note Setting this property causes the internal queue to be flushed. If you start a session,
queue frames, and then stop the session and change this mode, some frames may be lost.
Set this property to the desired value once; do not constantly change modes.

The Pending Transmit Order property configures how the CAN interface manages the internal
queue of frames. More than one frame may desire to transmit at the same time. NI-XNET
stores the frames in an internal queue and transmits them onto the CAN bus when the bus is
idle.

This property modifies how NI-XNET handles this queue of frames. The following table lists
the accepted values:

Enumeration Value
As Submitted 0
By Identifier 1

When you configure this property to be As Submitted, frames are transmitted in the order that
they were submitted into the queue. There is no reordering of any frames, and a higher priority
frame may be delayed due to the transmission or retransmission of a previously submitted
frame. However, this mode has the highest performance.

When you configure this property to be By Identifier, frames with the highest priority
identifier (lower CAN ID value) transmit first. The frames are stored in a priority queue sorted
by ID. If a frame currently being transmitted requires retransmission (for example, it lost
arbitration or failed with a bus error), and a higher priority frame is queued in the meantime,

NI-XNET Hardware and Software Manual 4-96 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

the lower priority frame is not immediately retried, but the higher priority frame is transmitted
instead. In this mode, you can emulate multiple ECUs and still see a behavior similar to a real
bus in that the highest priority message is transmitted on the bus. This mode may be slower
in performance (possible delays between transmissions as the queue is re-evaluated), and

lower priority messages may be delayed indefinitely due to frequent high-priority messages.

© National Instruments 4-97 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:CAN:Single Shot Transmit?

Data Type Direction Required? Default
Read/Write No False

Property Class
XNET Session

Short Name
Intf. CAN.SingShot?

Description

@ Note You can modify this property only when the interface is stopped.

@ Note Setting this property causes the internal queue to be flushed. If you start a session,
queue frames, and then stop the session and change this mode, some frames may be lost.
Set this property to the desired value once; do not constantly change modes.

The Single Shot Transmit? property configures whether the CAN interface retries failed
transmissions.

When this property is false, failed transmissions retry as specified by the CAN protocol
(ISO 11898-1, 6.11 Automatic Retransmission). If a CAN frame is not transmitted
successfully, the interface attempts to retransmit the frame as soon as the bus is idle again.
This retransmit process continues until the frame is successfully transmitted.

When this property is true, failed transmissions do not retry. If a CAN frame is not transmitted
successfully, no further transmissions are attempted.

NI-XNET Hardware and Software Manual 4-98 ni.com

Chapter 4

Interface:CAN:Termination

NI-XNET API for LabVIEW—Interface Properties

Data Type Direction Required? Default
Read/Write No Off (0)
Property Class
XNET Session
Short Name
Intf. CAN.Term
Description

5

Note You can modify this property only when the interface is stopped.

This property does not take effect until the interface is started.

The Termination property configures the onboard termination of the NI-XNET interface CAN
connector (port). The enumeration is generic and supports two values: Off and On. However,
different CAN hardware has different termination requirements, and the Off and On values

have different meanings, as described below.

High-Speed CAN

High-Speed CAN networks are typically terminated on the bus itself instead of within a node.
However, NI-XNET allows you to configure termination within the node to simplify testing.
If your bus already has the correct amount of termination, leave this property in the default
state of Off. However, if you require termination, set this property to On.

Value Meaning Description
Off Disabled Termination is disabled.
On Enabled Termination (120 Q) is enabled.

Low-Speed/Fault-Tolerant CAN

Every node on a Low-Speed CAN network requires termination for each CAN data line
(CAN_H and CAN_L). This configuration allows the Low-Speed/Fault-Tolerant CAN port to
provide fault detection and recovery. Refer to Termination for more information about
low-speed termination. In general, if the existing network has an overall network termination
of 125 Q or less, turn on termination to enable the 4.99 kQ option. Otherwise, you should

select the default 1.11 kQ2 option.

© National Instruments 4-99

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Value Meaning Description
Off 1.11 kQ Termination is set to 1.11 kQ.
On 4.99 kQ Termination is set to 4.99 kQ.

Single Wire CAN

The ISO standard requires single wire transceivers to have a 9.09 kQ resistor, and no

additional configuration is supported.

NI-XNET Hardware and Software Manual

4-100

ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:CAN:Transceiver State

Data Type Direction Required? Default

Read/Write No Normal (0)

Property Class
XNET Session

Short Name
Intf. CAN.TcvrState

Description

The Transceiver State property configures the CAN transceiver and CAN controller modes.
The transceiver state controls whether the transceiver is asleep or communicating, as well as
configuring other special modes. The following table lists the accepted values.

Enumeration Value
Normal 0
Sleep 1
Single Wire Wakeup 2
Single Wire High-Speed 3

Normal

This state sets the transceiver to normal communication mode. If the transceiver is in the
Sleep mode, this performs a local wakeup of the transceiver and CAN controller chip.

Sleep

This state sets the transceiver and CAN controller chip to Sleep (or standby) mode. You can
set the interface to Sleep mode only while the interface is communicating. If the interface has
not been started, setting the transceiver to Sleep mode returns an error.

Before going to sleep, all pending transmissions are transmitted onto the CAN bus. Once all
pending frames have been transmitted, the interface and transceiver go into Sleep (or standby)
mode. Once the interface enters Sleep mode, further communication is not possible until a
wakeup occurs. The transceiver and CAN controller wake from Sleep mode when either a
local wakeup or remote wakeup occurs.

© National Instruments 4-101 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

A local wakeup occurs when the application sets the transceiver state to either Normal or
Single Wire Wakeup.

A remote wakeup occurs when a remote node transmits a CAN frame (referred to as the
wakeup frame). The wakeup frame wakes up the NI-XNET interface transceiver and CAN
controller chip. The CAN controller chip does not receive or acknowledge the wakeup frame.
After detecting the wakeup frame and idle bus, the CAN interface enters Normal mode.

When the local or remote wakeup occurs, frame transmissions resume from the point at which
the original Sleep mode was set.

You can use XNET Read (State CAN Comm).vi to detect when a wakeup occurs. To
suspend the application while waiting for the remote wakeup, use XNET Wait (CAN
Remote Wakeup).vi.

Single Wire Wakeup

For a remote wakeup to occur for Single Wire transceivers, the node that transmits the wakeup
frame first must place the network into the Single Wire Wakeup Transmission mode by
asserting a higher voltage.

This state sets a Single Wire transceiver into the Single Wire Wakeup Transmission mode,
which forces the Single Wire transceiver to drive a higher voltage level on the network to
wake up all sleeping nodes. Other than this higher voltage, this mode is similar to Normal
mode. CAN frames can be received and transmitted normally.

If you are not using a Single Wire transceiver, setting this state returns an error. If your current
mode is Single Wire High-Speed, setting this mode returns an error because you are not
allowed to wake up the bus in high-speed mode.

The application controls the timing of how long the wakeup voltage is driven. The application
typically changes to Single Wire Wakeup mode, transmits a single wakeup frame, and then
returns to Normal mode.

Single Wire High-Speed

This state sets a Single Wire transceiver into Single Wire High-Speed Communication mode.
If you are not using a Single Wire transceiver, setting this state returns an error.

Single Wire High-Speed Communication mode disables the transceiver’s internal
waveshaping function, allowing the SAE J2411 High Speed baud rate of 83.333 kbytes/s to
be used. The disadvantage versus Single Wire Normal Communication mode, which only
allows the SAE J2411 baud rate of 33.333 kbytes/s, is degraded EMC performance. Other
than the disabled waveshaping, this mode is similar to Normal mode. CAN frames can be
received and transmitted normally.

NI-XNET Hardware and Software Manual 4-102 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

This mode has no relationship to High-Speed transceivers. It is merely a higher speed mode
of the Single Wire transceiver, typically used to download data when the onboard network is
attached to an offboard tester ECU.

The Single Wire transceiver does not support use of this mode in conjunction with Sleep
mode. For example, a remote wakeup cannot transition from sleep to this Single Wire
High-Speed mode. Therefore, setting the mode to Sleep from Single Wire High-Speed mode
returns an error.

© National Instruments 4-103 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:CAN:Transceiver Type

Data Type Direction Required? Default

Read/Write No High-Speed (0) for High-Speed and XS Hardware;
Low-Speed (1) for Low-Speed Hardware

Property Class
XNET Session

Short Name
Intf. CAN.TcvrType

Description

@ Notes You can modify this property only when the interface is stopped.

For XNET hardware that provides a software-selectable transceiver, the Transceiver Type
property allows you to set the transceiver type. Use the XNET Interface CAN.Transceiver
Capability property to determine whether your hardware supports a software-selectable
transceiver.

You also can use this property to determine the currently configured transceiver type.
The following table lists the accepted values:

Enumeration Value
High-Speed (HS) 0
Low-Speed (LS) 1
Single Wire (SW) 2

External (Ext) 3
Disconnect (Disc) 4

The default value for this property depends on your type of hardware. If you have
fixed-personality hardware, the default value is the hardware value. If you have hardware that
supports software-selectable transceivers, the default is High-Speed.

NI-XNET Hardware and Software Manual 4-104 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

This attribute uses the following values:

High-Speed

This configuration enables the High-Speed transceiver. This transceiver supports baud rates
of 40 kbaud to 1 Mbaud. When using a High-Speed transceiver, you also can communicate

with a CAN FD bus. Refer to Chapter 3, NI-XNET Hardware Overview, to determine which
CAN FD baud rates are supported.

Low-Speed/Fault-Tolerant

This configuration enables the Low-Speed/Fault-Tolerant transceiver. This transceiver
supports baud rates of 40—125 kbaud.

Single Wire

This configuration enables the Single Wire transceiver. This transceiver supports baud rates
of 33.333 kbaud and 83.333 kbaud.

External

This configuration allows you to use an external transceiver to connect to your CAN bus.
Refer to Interface:CAN:External Transceiver Config for more information.

Disconnect

This configuration allows you to disconnect the CAN controller chip from the connector. You
can use this value when you physically change the external transceiver.

© National Instruments 4-105 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:CAN:Transmit I/0 Mode

Data Type Direction Required? Default
Read/Write No Same as Interface:CAN:I/O Mode

Property Class
XNET Session

Short Name
Intf. CAN.TxIoMode

Description
This property specifies the /O Mode the interface uses when transmitting a CAN frame. By
default, it is the same as the XNET Cluster CAN:I/O Mode property. However, even if the
interface is in CAN FD+BRS mode, you can force it to transmit frames in the standard CAN
format. For this purpose, set this property to CAN.

@ Note This property is not supported in CAN FD+BRS ISO mode. If you are using ISO
CAN FD mode, you define the transmit I/O mode in the database with the /O Mode
property of the frame. (When a database is not used (for example, in frame stream mode),
define the transmit I/O mode with the frame type field of the frame data.) Note that ISO
CAN FD mode is the default mode for CAN FD in NI-XNET.

@ Note This property affects only the transmission of frames. Even if you set the transmit
I/0 mode to CAN, the interface still can receive frames in FD modes (if the XNET Cluster
CAN:I/O Mode property is configured in an FD mode).

The Transmit I/O mode may not exceed the mode set by the XNET Cluster CAN:I/O Mode
property.

NI-XNET Hardware and Software Manual 4-106 ni.com

Chapter 4

Interface:CAN:Transmit Pause

NI-XNET API for LabVIEW—Interface Properties

Data Type Direction Required? Default
Read/Write No False

Property Class
XNET Session

Short Name
Intf. CAN.TxPause

Description

When this property is enabled, the CAN hardware waits for two bit times before transmitting
the next frame. This allows other CAN nodes to transmit lower priority CAN messages while
this CAN node is transmitting high-priority CAN messages with high speed.

© National Instruments 4-107

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

FlexRay Interface Properties

These properties are calculated based on constraints in the FlexRay Protocol Specification.
To calculate these properties, the constraints use cluster settings and knowledge of the
oscillator that the FlexRay interface uses.

At Create Session time, the XNET driver automatically calculates these properties, and they
are passed down to the hardware. However, you can use the XNET property node to change
these settings.

@ Note Changing the interface properties can affect the integration and communication of
the XNET FlexRay interface with the cluster.

Interface:FlexRay:Accepted Startup Range

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings
Property Class

XNET Session
Short Name

Intf.FlexRay.AccStartRng

Description

Range of measure clock deviation allowed for startup frames during node integration. This
property corresponds to the pdAcceptedStartupRange node parameter in the FlexRay
Protocol Specification.

The range for this property is 0-1875 MT.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

NI-XNET Hardware and Software Manual 4-108 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Allow Halt Due To Clock?

Data Type Direction Required? Default

Read/Write No False
Property Class

XNET Session
Short Name

Intf FlexRay. AlwHItClk?

Description

Controls the FlexRay interface transition to the POC: halt state due to clock synchronization
errors. If set to true, the node can transition to the POC: halt state. If set to false, the node does
not transition to the POC: halt state and remains in the POC: normal passive state, allowing
for self recovery.

This property corresponds to the pAllowHaltDueToClock node parameter in the FlexRay
Protocol Specification.

The property is a Boolean flag.
The default value of this property is false.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

Refer to XNET Read (State FlexRay Comm).vi for more information about the POC: halt
and POC: normal passive states.

© National Instruments 4-109 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Allow Passive to Active

Data Type Direction Required? Default

Read/Write No 0

Property Class
XNET Session

Short Name
Intf.FlexRay.AlwPassAct

Description

Number of consecutive even/odd cycle pairs that must have valid clock correction terms

before the FlexRay node can transition from the POC: normal-passive to the POC:

normal-active state. If set to zero, the node cannot transition from POC: normal-passive to

POC: normal-active.

This property corresponds to the pAllowPassiveToActive node parameter in the FlexRay

Protocol Specification.

The property is expressed as the number of even/odd cycle pairs, with values of 0-31.

The default value of this property is zero.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

Refer to XNET Read (State FlexRay Comm).vi for more information about the POC:

normal-active and POC: normal-passive states.

NI-XNET Hardware and Software Manual 4-110

ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Auto Asleep When Stopped

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings
Property Class

XNET Session
Short Name

Intf FlexRay.AutoAslpStp

Description

This property indicates whether the FlexRay interface (node) automatically places the
FlexRay transceiver and controller into sleep when the interface is stopped. The default value
of this property is False, and you must handle the wakeup/sleep processing manually using
the XNET Session Interface:FlexRay:Sleep property.

When this property is called with the value True while the interface is asleep, the interface is
put to sleep immediately. When this property is called with the value False, the interface is set
to a local awake state immediately.

If the interface is asleep when XNET Start.vi is called, the FlexRay interface waits for a
wakeup pattern on the bus before transitioning out of the POC:READY state. To initiate a bus
wakeup, you can set the XNET Session Interface:FlexRay:Sleep property with a value of
Remote Wake.

After XNET Stop.vi is called, if this property is True, the FlexRay interface automatically
goes back to sleep to be ready to handle the wakeup on subsequent XNET Start.vi calls.
When this property is False when XNET Stop.vi is called, the FlexRay interface remains in
the sleep state it was in prior to the XNET Stop.vi call.

You can overwrite the default value by writing this property prior to starting the FlexRay
interface (refer to Session States for more information).

© National Instruments 4-111 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Cluster Drift Damping

Data Type Direction Required? Default
Read/Write No Calculated from Cluster Settings

Property Class
XNET Session

Short Name
Intf FlexRay.ClstDriftDmp

Description

Local cluster drift damping factor used for rate correction.

This property corresponds to the pAllowPassiveToActive node parameter in the FlexRay

Protocol Specification.

The range for the property is 020 MT.

The cluster drift damping property should be configured in such a way that the damping

values in all nodes within the same cluster have approximately the same duration.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

NI-XNET Hardware and Software Manual 4-112

ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Coldstart?

Data Type Direction Required? Default
Read No False

Property Class
XNET Session

Short Name
Intf FlexRay.Coldstart?

Description

This property specifies whether the FlexRay interface operates as a coldstart node

on the cluster. This property is read only and calculated from the XNET Session
Interface:FlexRay:Key Slot Identifier property. If the KeySlot Identifier is O (invalid slot
identifier), the XNET FlexRay interface does not act as a coldstart node, and this property is
false. If the KeySlot Identifier is 1 or more, the XNET FlexRay interface transmits a startup
frame from that slot, and the Coldstart? property is true.

This property returns a Boolean flag (true/false).

The default value of this property is false.

© National Instruments 4-113 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Connected Channels

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings
Property Class

XNET Session
Short Name

Intf FlexRay.ConnectedChs

Description

This property specifies the channel(s) that the FlexRay interface (node) is physically
connected to. The default value of this property is connected to all channels available on the
cluster. However, if you are using a node connected to only one channel of a multichannel
cluster that uses wakeup, you must set the value properly. If you do not, your node may not
wake up, as the wakeup pattern cannot be received on a channel not physically connected.

This property corresponds to the pChannels node parameter in the FlexRay Protocol
Specification.

The values supported for this property (enumeration) are A =1, B =2, and A and B = 3.

You can overwrite the default value by writing this property prior to starting the FlexRay
interface (refer to Session States for more information).

NI-XNET Hardware and Software Manual 4-114 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Decoding Correction

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings
Property Class

XNET Session
Short Name

Intf.FlexRay.DecCorr
Description

This property specifies the value that the receiving FlexRay node uses to calculate the
difference between the primary time reference point and secondary reference point. The clock
synchronization algorithm uses the primary time reference and the sync frame’s expected
arrival time to calculate and compensate for the node’s local clock deviation.

This property corresponds to the pDecodingCorrection node parameter in the FlexRay
Protocol Specification.

The range for the property is 14—143 MT.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

© National Instruments 4-115 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Delay Compensation Ch A

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings
Property Class

XNET Session
Short Name

Intf FlexRay.DelayCompA

Description

This property specifies the value that the XNET FlexRay interface (node) uses to compensate
for reception delays on channel A. This takes into account the assumed propagation delay up
to the maximum allowed propagation delay (cPropagationDelayMax) for microticks in the
0.0125-0.05 range. In practice, you should apply the minimum of the propagation delays of
all sync nodes.

This property corresponds to the pDelayCompensation[A] node parameter in the FlexRay
Protocol Specification.

The property range is 0-200 MT.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

NI-XNET Hardware and Software Manual 4-116 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Delay Compensation Ch B

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings
Property Class

XNET Session
Short Name

Intf FlexRay.DelayCompB

Description

This property specifies the value that the XNET FlexRay interface (node) uses to compensate
for reception delays on channel B. This takes into account the assumed propagation delay up
to the maximum allowed propagation delay (Propagation Delay Max) for microticks in the
0.0125-0.05 range. In practice, you should apply the minimum of the propagation delays of
all sync nodes.

This property corresponds to the pDelayCompensation[B] node parameter in the FlexRay
Protocol Specification.

The property range is 0-200 MT.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

© National Instruments 4-117 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Key Slot Identifier

Data Type Direction Required? Default

Read/Write No 0

Property Class
XNET Session

Short Name
Intf FlexRay.KeySlotID

Description

This property specifies the FlexRay slot number from which the XNET FlexRay interface
transmits a startup frame, during the process of integration with other cluster nodes.

For a network (cluster) of FlexRay nodes to start up for communication, at least two nodes
must transmit startup frames. If your application is designed to test only one external ECU,
you must configure the XNET FlexRay interface to transmit a startup frame. If the one
external ECU does not transmit a startup frame itself, you must use two XNET FlexRay
interfaces for the test, each of which must transmit a startup frame.

There are two methods for configuring the XNET FlexRay interface as a coldstart node
(transmit startup frame).

Output Session with Startup Frame

Create an output session that contains a startup frame (or one of its signals). The XNET Frame
FlexRay:Startup? property is true for a startup frame. If you use this method, this Key Slot
Identifier property contains the identifier property of that startup frame. You do not write this

property.

Write this Key Slot Identifier Property

This interface uses the identifier (slot) you write to transmit a startup frame using that slot.

@ Note If you create an output session that contains the startup frame, with the same
identifier as that specified in the Key Slot Identifier property, the data you write to the
session transmits in the frame. If you do not create an output session that contains the
startup frame, the interface transmits a null frame for startup purposes.

If you create an output session that contains a startup frame with an identifier that does not
match the Key Slot Identifier property, an error is returned.

NI-XNET Hardware and Software Manual 4-118 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

The default value of this property is 0 (no startup frame).

You can overwrite the default value by writing an identifier that corresponds to the identifier
of a startup frame prior to starting the FlexRay interface (refer to Session States for more
information).

© National Instruments 4-119 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Latest Tx

Data Type Direction Required? Default

Read No 0

Property Class
XNET Session

Short Name
Intf.FlexRay.LatestTx

Description

This property specifies the number of the last minislot in which a frame transmission can start
in the dynamic segment. This is a read-only property, as the FlexRay controller evaluates it

based on the configuration of the frames in the dynamic segment.

This property corresponds to the pLatestTx node parameter in the FlexRay Protocol

Specification.

The range of values for this property is 0-7981 minislots.

This property can be read any time prior to closing the FlexRay interface.

NI-XNET Hardware and Software Manual 4-120

ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Listen Timeout

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings
Property Class
XNET Session
Short Name
Intf.FlexRay.ListTimo
Description
This property specifies the upper limit for the startup listen timeout and wakeup listen
timeout.

Refer to Summary of the FlexRay Standard for more information about startup and wakeup
procedures within the FlexRay protocol.

This property corresponds to the pdListenTimeout node parameter in the FlexRay Protocol
Specification.

The range of values for this property is 1284-1283846 MT.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

© National Instruments 4-121 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Macro Initial Offset Ch A

Data Type Direction Required? Default
Read/Write No Calculated from Cluster Settings

Property Class
XNET Session

Short Name
Intf FlexRay.MacInitOffA

Description

This property specifies the integer number of macroticks between the static slot boundary and
the following macrotick boundary of the secondary time reference point based on the nominal
macrotick duration. This property applies only to Channel A.

This property corresponds to the pMacrolnitialOffset[A] node parameter in the FlexRay
Protocol Specification.

The range of values for this property is 2-72 MT.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

NI-XNET Hardware and Software Manual 4-122 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Macro Initial Offset Ch B

Data Type Direction Required? Default
Read/Write No Calculated from Cluster Settings

Property Class
XNET Session

Short Name
Intf FlexRay.MacInitOffB

Description

This property specifies the integer number of macroticks between the static slot boundary and
the following macrotick boundary of the secondary time reference point based on the nominal
macrotick duration. This property applies only to Channel B.

This property corresponds to the pMacrolnitialOffset[B] node parameter in the FlexRay
Protocol Specification.

The range of values for this property is 2-72 MT.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

© National Instruments 4-123 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Max Drift

Data Type Direction Required? Default
Read/Write No Calculated from Cluster Settings

Property Class
XNET Session

Short Name
Intf.FlexRay.MaxDrift

Description

This property specifies the maximum drift offset between two nodes that operate with
unsynchronized clocks over one communication cycle.

This property corresponds to the pdMaxDrift node parameter in the FlexRay Protocol
Specification.

The range of values for this property is 2-1923 MT.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

NI-XNET Hardware and Software Manual 4-124 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Micro Initial Offset Ch A

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings
Property Class

XNET Session
Short Name

Intf FlexRay.MiclnitOffA

Description

This property specifies the number of microticks between the closest macrotick boundary
described by the Macro Initial Offset Ch A property and the secondary time reference point.
This parameter depends on the Delay Compensation property for Channel A, and therefore
you must set it independently for each channel.

This property corresponds to the pMicrolnitialOffset[A] node parameter in the FlexRay
Protocol Specification.

The range of values for this property is 0-240 MT.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

© National Instruments 4-125 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Micro Initial Offset Ch B

Data Type Direction Required? Default
Read/Write No Calculated from Cluster Settings

Property Class
XNET Session

Short Name
Intf FlexRay.MiclnitOffB

Description

This property specifies the number of microticks between the closest macrotick boundary
described by the Macro Initial Offset Ch B property and the secondary time reference point.
This parameter depends on the Delay Compensation property for Channel B, and therefore
you must set it independently for each channel.

This property corresponds to the pMicrolnitialOffset[B] node parameter in the FlexRay
Protocol Specification.

The range of values for this property is 0-240 MT.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

NI-XNET Hardware and Software Manual 4-126 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Microtick

Data Type Direction Required? Default

Read No Calculated from Cluster Settings
Property Class

XNET Session
Short Name

Intf.FlexRay.Microtick
Description

This property specifies the duration of a microtick. This property is calculated based on the
product of the Samples per Microtick interface property and the BaudRate cluster. This is a
read-only property.

This property corresponds to the pdMicrotick node parameter in the FlexRay Protocol
Specification.

This property can be read any time prior to closing the FlexRay interface.

© National Instruments 4-127 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Null Frames To Input Stream?

Data Type Direction Required? Default
Read/Write No False

Property Class
XNET Session

Short Name
Intf FlexRay.NullToInStrm?

Description

This property indicates whether the Frame Input Stream Mode session should return FlexRay

null frames from XNET Read.vi.

When this property uses the default value of false, FlexRay null frames are not returned for a
Frame Input Stream Mode session. This behavior is consistent with the other two frame input
modes (Frame Input Single-Point Mode and Frame Input Queued Mode), which never return

FlexRay null frames from XNET Read.vi.

When you set this property to true for a Frame Input Stream Mode session, XNET Read.vi
returns all FlexRay null frames that are received by the interface. This feature is used to
monitor all frames that occur on the network, regardless of whether new payload is available
or not. When you use XNET Read (Frame FlexRay).vi instance of XNET Read.vi, each

frame’s type field indicates a null frame.

You can overwrite the default value prior to starting the FlexRay interface (refer to Session

States for more information).

NI-XNET Hardware and Software Manual 4-128

ni.com

Chapter 4

Interface:FlexRay:Offset Correction

NI-XNET API for LabVIEW—Interface Properties

Data Type Direction Required? Default

Read No N/A

Property Class
XNET Session

Short Name
Intf FlexRay.OffCorr

Description

This property provides the maximum permissible offset correction value, expressed in
microticks. The offset correction synchronizes the cycle start time. The value indicates the
number of microticks added or subtracted to the offset correction portion of the network idle
time, to synchronize the interface to the FlexRay network. The value is returned as a signed
32-bit integer (I32). The offset correction value calculation takes place every cycle, but the
correction is applied only at the end of odd cycles. This is a read-only property.

This property can be read anytime prior to closing the FlexRay interface.

© National Instruments 4-129

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Offset Correction Out

Data Type Direction Required? Default
Read/Write No Calculated from Cluster Settings

Property Class
XNET Session

Short Name
Intf FlexRay.OffCorrOut

Description

This property specifies the magnitude of the maximum permissible offset correction value.
This node parameter is based on the value of the maximum offset correction for the specific
cluster.

This property corresponds to the pOffsetCorrectionOut node parameter in the FlexRay
Protocol Specification.

The value range for this property is 5-15266 MT.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

NI-XNET Hardware and Software Manual 4-130 ni.com

Chapter 4

Interface:FlexRay:Rate Correction

NI-XNET API for LabVIEW—Interface Properties

Data Type Direction Required? Default

Read No N/A

Property Class
XNET Session

Short Name
Intf FlexRay.RateCorr

Description

Read-only property that provides the rate correction value, expressed in microticks. The rate
correction synchronizes frequency. The value indicates the number of microticks added to or
subtracted from the configured number of microticks in a cycle, to synchronize the interface

to the FlexRay network.

The value is returned as a signed 32-bit integer (I32). The rate correction value calculation
takes place in the static segment of an odd cycle, based on values measured in an even-odd

double cycle.

This property can be read prior to closing the FlexRay interface.

© National Instruments 4-131

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Rate Correction Out

Data Type Direction Required? Default
Read/Write No Calculated from Cluster Settings

Property Class
XNET Session

Short Name
Intf FlexRay.RateCorrOut

Description

This property specifies the magnitude of the maximum permissible rate correction value. This
node parameter is based on the value of the maximum rate correction for the specific cluster.
This property corresponds to the pRateCorrectionOut node parameter in the FlexRay
Protocol Specification.

The range of values for this property is 2-1923 MT.
This property is calculated from the microticks per cycle and clock accuracy.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

NI-XNET Hardware and Software Manual 4-132 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Samples Per Microtick

Data Type Direction Required? Default

Read/Write No Calculated from Cluster Settings
Property Class

XNET Session
Short Name

Intf FlexRay.SampPerMicro

Description

This property specifies the number of samples per microtick.

There is a defined relationship between the “ticks” of the microtick timebase and the sample
ticks of bit sampling. Specifically, a microtick consists of an integral number of samples.

As aresult, there is a fixed phase relationship between the microtick timebase and the sample
clock ticks.

This property corresponds to the pSamplesPerMicrotick node parameter in the FlexRay
Protocol Specification.

The supported values for this property are 1, 2, and 4 samples.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

© National Instruments 4-133 NI-XNET Hardware and Software Manual

NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Single Slot Enabled?

Data Type Direction Required? Default
Read/Write No False

Property Class

XNET Session

Short Name

Intf FlexRay.SingSlotEn

Description

This property serves as a flag to indicate whether the FlexRay interface (node) should enter
single slot mode following startup.

This Boolean property supports a strategy to limit frame transmissions following startup

to a single frame (designated by the XNET Session Interface:FlexRay:Key Slot Identifier
property). If you leave this property false prior to start (default), all configured output frames
transmit. If you set this property to true prior to start, only the key slot transmits. After the
interface is communicating (integrated), you can set this property to false at runtime to enable
the remaining transmissions (the protocol’s ALL_SLOTS command). After the interface is
communicating, you cannot set this property from false to true.

This property corresponds to the pSingleSlotEnabled node parameter in the FlexRay
Protocol Specification.

You can overwrite the default value prior to starting the FlexRay interface (refer to Session
States for more information).

NI-XNET Hardware and Software Manual 4-134 ni.com

Chapter 4

Interface:FlexRay:Sleep

NI-XNET API for LabVIEW—Interface Properties

Data Type Direction Required? Default
Write Only No N/A
Property Class
XNET Session
Short Name
Intf FlexRay.Sleep
Description

Use the Sleep property to change the NI-XNET FlexRay interface sleep/awake state and
optionally to initiate a wakeup on the FlexRay cluster.

The property is a ring (enumerated list) with the following values:

String Value Description
Local Sleep 0 Set interface and transceiver(s) to sleep
Local Wake 1 Set interface and transceiver(s) to awake
Remote Wake 2 Set interface and transceivers to awake and attempt to

wake up the FlexRay bus by sending the wakeup
pattern on the configured wakeup channel

This property is write only. Setting a new value is effectively a request, and the property node
returns before the request is complete. To detect the current interface sleep/wake state, use
XNET Read (State FlexRay Comm).vi.

The FlexRay interface maintains a state machine to determine the action to perform when this
property is set (request). The following table specifies the sleep/wake action on the FlexRay

interface.

© National Instruments

4-135 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Current Local State

Request Sleep Awake
Local Sleep No action Change local state
Local Wake Attempt to integrate with the bus (move from No action

POC:READY to POC:NORMAL)
Remote Wake | Attempt to wake up the bus followed by an attempt | No action

to integrate with the bus (move from POC:READY
to POC:NORMAL ACTIVE). If the interface is not
yet started, setting Remote Wake schedules a
remote wake to be generated once the interface has
started.

NI-XNET Hardware and Software Manual 4-136

ni.com

Chapter 4

Interface:FlexRay:Statistics Enabled?

NI-XNET API for LabVIEW—Interface Properties

Data Type Direction Required? Default

Read/Write No False
Property Class

XNET Session
Short Name

Intf FlexRay.StatisticsEn?

Description

This XNET Boolean property enables reporting FlexRay error statistics. When this property
is false (default), calls to XNET Read (State FlexRay Statistics).vi always return zero for
each statistic. To enable FlexRay statistics, set this property to true in your application.

You can overwrite the default value prior to starting the FlexRay interface (refer to Session

States for more information).

© National Instruments 4-137

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Symbol Frames To Input Stream?

Data Type Direction Required? Default
Read/Write No False

Property Class
XNET Session

Short Name
Intf FlexRay.SymToInStrm?

Description

This property indicates whether the Frame Input Stream Mode session should return FlexRay
symbols from XNET Read.vi.

When this property uses the default value of False, FlexRay symbols are not returned for a
Frame Input Stream Mode session. This behavior is consistent with the other two frame input
modes (Frame Input Single-Point Mode and Frame Input Queued Mode), which never return
FlexRay symbols from XNET Read.vi.

When you set this property to true for a Frame Input Stream Mode session, XNET Read.vi
returns all FlexRay symbols the interface receives. This feature detects wakeup symbols and
Media Access Test Symbols (MTS). When you use the XNET Read (Frame FlexRay).vi
instance of XNET Read.vi, each frame type field indicates a symbol.

When the frame type is FlexRay Symbol, the first payload byte (offset 0) specifies the type of
symbol: 0 for MTS or 1 for wakeup. The frame payload length is 1 or higher, with bytes
beyond the first reserved for future use. The frame timestamp specifies when the symbol
window occurred. The cycle count, channel A indicator, and channel B indicator are encoded
the same as FlexRay data frames. All other fields in the frame are unused (0).

You can overwrite the default value prior to starting the FlexRay interface (refer to Session
States for more information).

NI-XNET Hardware and Software Manual 4-138 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Sync Frames Channel A Even

Data Type Direction Required? Default

(U2 Read No N/A
Property Class
XNET Session
Short Name

Intf.FlexRay.SyncChAEven

Description

This property returns an array of sync frames (slot IDs) transmitted or received on channel A
during the last even cycle. This read-only property returns an array in which each element
holds the slot ID of a sync frame. If the interface is not started, this returns an empty array. If
you start the interface, but it fails to communicate (integrate), this property may be helpful in
diagnosing the problem.

Refer to Appendix B, Summary of the FlexRay Standard, for more information about the
FlexRay protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

© National Instruments 4-139 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Sync Frames Channel A Odd

Data Type Direction Required? Default

[n32 Read No N/A

Property Class
XNET Session

Short Name
Intf FlexRay.SyncChAOdd

Description

This property returns an array of sync frames (slot IDs) transmitted or received on channel A
during the last odd cycle. This read-only property returns an array in which each element
holds the slot ID of a sync frame. If the interface is not started, this returns an empty array. If
you start the interface, but it fails to communicate (integrate), this property may be helpful in
diagnosing the problem.

Refer to Appendix B, Summary of the FlexRay Standard, for more information about the
FlexRay protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

NI-XNET Hardware and Software Manual 4-140 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Sync Frames Channel B Even

Data Type Direction Required? Default

(U2 Read No N/A
Property Class
XNET Session
Short Name

Intf FlexRay.SyncChBEven

Description

This property returns an array of sync frames (slot IDs) transmitted or received on channel B
during the last even cycle. This read-only property returns an array in which each element
holds the slot ID of a sync frame. If the interface is not started, this returns an empty array. If
you start the interface, but it fails to communicate (integrate), this property may be helpful in
diagnosing the problem.

Refer to Appendix B, Summary of the FlexRay Standard, for more information about the
FlexRay protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

© National Instruments 4-141 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Sync Frames Channel B Odd

Data Type Direction Required? Default

[n32 Read No N/A

Property Class
XNET Session

Short Name
Intf FlexRay.SyncChBOdd

Description

This property returns an array of sync frames (slot IDs) transmitted or received on channel B
during the last odd cycle. This read-only property returns an array in which each element
holds the slot ID of a sync frame. If the interface is not started, this returns an empty array. If
you start the interface, but it fails to communicate (integrate), this property may be helpful in
diagnosing the problem.

Refer toAppendix B, Summary of the FlexRay Standard, for more information about the
FlexRay protocol startup procedure.

This property can be read any time prior to closing the FlexRay interface.

NI-XNET Hardware and Software Manual 4-142 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Sync Frame Status

Data Type Direction Required? Default

Read No N/A

Property Class
XNET Session

Short Name
Intf.FlexRay.SyncStatus

Description

This property returns the status of sync frames since the interface (enumeration) start. Within
Limits means the number of sync frames is within the protocol’s limits since the interface
start. Below Minimum means that in at least one cycle, the number of sync frames was below
the limit the protocol requires (2 or 3, depending on number of nodes). Overflow means that
in at least one cycle, the number of sync frames was above the limit set by the XNET Cluster
FlexRay:Sync Node Max property. Both Min and Max means that both minimum and
overflow errors have occurred (this is unlikely).

If the interface is not started, this property returns Within Limits. If you start the interface, but
it fails to communicate (integrate), this property may be helpful in diagnosing the problem.

Refer to Appendix B, Summary of the FlexRay Standard, for more information about the
FlexRay protocol startup and cluster integration procedure.

This property can be read any time prior to closing the FlexRay interface.

© National Instruments 4-143 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Termination

Data Type Direction Required? Default

Read/Write No False

Property Class
XNET Session

Short Name
Intf.FlexRay.Term

Description

This property controls termination at the NI-XNET interface (enumeration) connector (port).
This applies to both channels (A and B) on each FlexRay interface. False means the interface

is not terminated (default). True means the interface is terminated.

You can overwrite the default value by writing this property prior to starting the FlexRay
interface (refer to Session States for more information). You can start the FlexRay interface
by calling XNET Start.vi with scope set to either Normal or Interface Only on the session.

NI-XNET Hardware and Software Manual 4-144

ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Wakeup Channel

Data Type Direction Required? Default

Read/Write No A

Property Class
XNET Session

Short Name
Intf FlexRay. WakeupCh

Description

This property specifies the channel the FlexRay interface (node) uses to send a wakeup
pattern. This property is used only when the XNET Session Interface:FlexRay:Sleep property
is set to Remote Wake.

This property corresponds to the pWakeupChannel node parameter in the FlexRay Protocol
Specification.

The values supported for this property (enumeration) are A=0and B=1.

You can overwrite the default value by writing this property prior to starting the FlexRay
interface (refer to Session States for more information).

© National Instruments 4-145 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:FlexRay:Wakeup Pattern

Data Type Direction Required? Default

Read/Write No 2

Property Class
XNET Session

Short Name
Intf.FlexRay.WakeupPtrn

Description

This property specifies the number of repetitions of the wakeup symbol that are combined to
form a wakeup pattern when the FlexRay interface (node) enters the POC:wakeup-send state.
The POC:wakeup send state is one of the FlexRay controller state transitions during the

wakeup process. In this state, the controller sends the wakeup pattern on the specified Wakeup

Channel and checks for collisions on the bus.

This property corresponds to the pWakeupPattern node parameter in the FlexRay Protocol

Specification.

The supported values for this property are 2—-63.

You can overwrite the default value by writing a value within the specified range to this
property prior to starting the FlexRay interface (refer to Session States for more information).

NI-XNET Hardware and Software Manual 4-146

ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

LIN Interface Properties

This category includes LIN-specific interface properties.

Properties in the Interface category apply to the interface and not the session. If more than
one session exists for the interface, changing an interface property affects all the sessions.

Interface:LIN:Break Length

Data Type Direction Required? Default

Read/Write No 13

Property Class
XNET Session

Short Name
Intf LIN.BreaklLen

Description

This property determines the length of the serial break used at the start of a frame header
(schedule entry). The value is specified in bit-times.

The valid range is 10-36 (inclusive). The default value is 13, which is the value the LIN
standard specifies.

At baud rates below 9600, the upper limit may be lower than 36 to avoid violating hold times
for the bus. For example, at 2400 baud, the valid range is 10-14.

This property is applicable only when the interface is the master.

© National Instruments 4-147 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:LIN:DiagP2min

Data Type Direction Required? Default

Read/Write No 0.05

Property Class
XNET Session

Short Name
Intf.LIN.DiagP2min

Description

When the interface is the slave, this is the minimum time in seconds between reception of the
last frame of the diagnostic request message and transmission of the response for the first

frame in the diagnostic response message by the slave.

This property applies only to the interface as slave. An attempt to write the property for

interface as master results in error nxErrInvalidProperty Value being reported.

NI-XNET Hardware and Software Manual 4-148

ni.com

Chapter 4

Interface:LIN:DiagSTmin

NI-XNET API for LabVIEW—Interface Properties

Data Type Direction Required? Default
Read/Write No 0
Property Class
XNET Session
Short Name
Intf. LIN.DiagSTmin
Description

When the interface is the slave, this property sets the minimum time in seconds it places
between the end of transmission of a frame in a diagnostic response message and the start of
transmission of the response for the next frame in the diagnostic response message.

When the interface is the master, this property sets the minimum time in seconds it places
between the end of transmission of a frame in a diagnostic request message and the start of
transmission of the next frame in the diagnostic request message.

© National Instruments 4-149

NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Interface Properties

Interface:LIN:Master?

Data Type Direction Required? Default
Read/Write No False

Property Class

XNET Session

Short Name

Intf.LIN.Master?

Description

5

Note You can set this property only when the interface is stopped.

This Boolean property specifies the NI-XNET LIN interface role on the network: master
(true) or slave (false).

In a LIN network (cluster), there always is a single ECU in the system called the master. The
master transmits a schedule of frame headers. Each frame header is a remote request for a
specific frame ID. For each header, typically a single ECU in the network (slave) responds by
transmitting the requested ID payload. The master ECU can respond to a specific header as
well, and thus the master can transmit payload data for the slave ECUs to receive. For more
information, refer to Appendix C, Summary of the LIN Standard.

The default value for this property is false (slave). This means that by default, the interface
does not transmit frame headers onto the network. When you use input sessions, you read
frames that other ECUs transmit. When you use output sessions, the NI-XNET interface waits
for the remote master to send a header for a frame in the output sessions, then the interface
responds with data for the requested frame.

If you call XNET Write (State LIN Schedule Change).vi to request execution of a schedule,
that implicitly sets this property to true (master). You also can set this property to true using
a property node, but no schedule is active by default, so you still must call XNET Write
(State LIN Schedule Change).vi at some point to request a specific schedule.

Regardless of this property’s value, you use can input and output sessions. This property
specifies which hardware transmits the scheduled frame headers: NI-XNET (true) or a remote
master ECU (false).

NI-XNET Hardware and Software Manual 4-150 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:LIN:Output Stream Slave Response List By NAD

Data Type Direction Required? Default

[u32 Read/Write No Empty Array
Property Class
XNET Session
Short Name

Intf. LIN.OutStrmS1vRspListByNAD

Description

The Output Stream Slave Response List by NAD property provides a list of NADs for use
with the replay feature (Interface:Output Stream Timing property set to Replay Exclusive or
Replay Inclusive).

For LIN, the array of frames to replay might contain multiple slave response frames, each
with the same slave response identifier, but each having been transmitted by a different slave
(per the NAD value in the data payload). This means that processing slave response frames
for replay requires two levels of filtering. First, you can include or exclude the slave response
frame or ID for replay using Interface:Output Stream List or Interface:Output Stream List By
ID. If you do not include the slave response frame or ID for replay, no slave responses are
transmitted. If you do include the slave response frame or ID for replay, you can use the
Output Stream Slave Response List by NAD property to filter which slave responses (per the
NAD values in the array) are transmitted. This property is always inclusive, regardless of the
replay mode (inclusive or exclusive). If the NAD is in the list and the response frame or ID
has been enabled for replay, any slave response for that NAD is transmitted. If the NAD is not
in the list, no slave response for that NAD is transmitted. The property’s data type is an array
of unsigned 32-bit integer (u32). Currently, only byte O is required to hold the NAD value.
The remaining bits are reserved for future use.

© National Instruments 4-151 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:LIN:Schedules

Data Type Direction Required? Default

Read Only No N/A

Property Class
XNET Session

Short Name
Intf.LIN.Schedules

Description

This property provides the list of schedules for use when the NI-XNET LIN interface acts as
a master (Interface:LIN:Master? is true). When the interface is master, you can wire one of
these schedules to XNET Write (State LIN Schedule Change).vi to request a schedule

change.

When the interface is slave, you cannot control the schedule, and XNET Write (State LIN
Schedule Change).vi returns an error if it cannot set the interface into master mode (for

example, if the interface already is started).

This array of XNET LIN Schedule I/O names is the same list as the XNET Cluster
LIN:Schedules property used to configure the session.

NI-XNET Hardware and Software Manual 4-152

ni.com

Chapter 4

Interface:LIN:Sleep

NI-XNET API for LabVIEW—Interface Properties

Data Type Direction Required? Default
Write Only No N/A
Property Class
XNET Session
Short Name
Intf.LIN.Sleep
Description

Use the Sleep property to change the NI-XNET LIN interface sleep/awake state and
optionally to change remote node (ECU) sleep/awake states.

The property is a ring (enumerated list) with the following values:

String Value Description

Remote Sleep 0 Set interface to sleep locally and transmit sleep requests
to remote nodes

Remote Wake 1 Set interface to awake locally and transmit wakeup
requests to remote nodes

Local Sleep 2 Set interface to sleep locally and not to interact with the
network

Local Wake 3 Set interface to awake locally and not to interact with
the network

The property is write only. Setting a new value is effectively a request, and the property node
returns before the request is complete. To detect the current interface sleep/wake state, use
XNET Read (State LIN Comm).vi.

The LIN interface maintains a state machine to determine the action to perform when this
property is set (request). The following sections specify the action when the interface is

master and slave.

© National Instruments

4-153 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Interface Properties

Table 4-1. Sleep/Wake Action for Master

Request

Current Local State

Sleep

Awake

Remote Sleep

No action

Change local state; pause
scheduler; transmit go-to-sleep
request frame

scheduler

Remote Wake Change local state; transmit No action

master wakeup pattern (serial

break); resume scheduler
Local Sleep No action Change local state
Local Wake Change local state; resume No action

When the master’s scheduler pauses, it finishes the pending entry (slot) and saves its current
position. When the master’s scheduler resumes, it continues with the schedule where it left
off (entry after the pause).

The go-to-sleep request is frame ID 63, payload length 8, payload byte O has the value 0, and
the remaining bytes have the value OxFF.

If the master is in the Sleep state, and a remote slave (ECU) transmits the slave wakeup

pattern, this is equivalent to setting this property to Local Wake. In addition, a pending XNET
Wait (LIN Remote Wakeup).vi returns. This XNET Wait VI does not apply to setting this
property, because you know when you set it.

Table 4-2. Sleep/Wake Action for Slave

Current Local State

Request Sleep Awake
Remote Sleep Error Error
Remote Wake Transmit slave wakeup pattern; | No action
change local state when first
break from master is received
Local Sleep No action Change local state
Local Wake Change local state No action

NI-XNET Hardware and Software Manual

4-154

ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

According to the LIN protocol standard, Remote Sleep is not supported for slave mode, so
that request returns an error.

If the slave is in Sleep state, and a remote master (ECU) transmits the master wakeup pattern,
this is equivalent to setting this property to Local Wake. In addition, a pending XNET Wait
(LIN Remote Wakeup).vi returns. This XNET Wait VI does not apply to setting this
property, because you know when you set it.

© National Instruments 4-155 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:LIN:Start Allowed without Bus Power?

Data Type Direction Required? Default
Read/Write No False

Property Class
XNET Session

Short Name
Intf. LIN.StrtWoPwr?

Description
@ Note You can modify this property only when the interface is stopped.

The Start Allowed Without Bus Power? property configures whether the LIN interface does
not check for bus power present at interface start, or checks and reports an error if bus power
is missing.

When this property is true, the LIN interface does not check for bus power present at start, so
no error is reported if the interface is started without bus power.

When this property is false, the LIN interface checks for bus power present at start, and
nxErrMissingBusPower is reported if the interface is started without bus power.

NI-XNET Hardware and Software Manual 4-156 ni.com

Chapter 4

Interface:LIN:Termination

NI-XNET API for LabVIEW—Interface Properties

Data Type Direction Required? Default
Read/Write No Off (0)
Property Class
XNET Session
Short Name
Intf LIN.Term
Description

5

Notes You can modify this property only when the interface is stopped.

This property does not take effect until the interface is started.

The Termination property configures the NI-XNET interface LIN connector (port) onboard
termination. The enumeration is generic and supports two values: Off (disabled) and On

(enabled).

The property is a ring (enumerated list) with the following values:

String Value
Off 0
On 1

Per the LIN 2.1 standard, the Master ECU has a ~1 kQ) termination resistor between Vbat and
Vbus. Therefore, use this property only if you are using your interface as the master and do

not already have external termination.

For more information about LIN cabling and termination, refer to NI-XNET LIN Hardware.

© National Instruments 4-157

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Source Terminal Interface Properties

This category includes properties to route trigger signals between multiple DAQmx and
XNET devices.

Interface:Source Terminal:Start Trigger

Data Type Direction Required? Default

10 Read/Write No (Disconnected)

Property Class
XNET Session

Short Name
Intf.SrcTerm.StartTrigger

Description

This property specifies the name of the internal terminal to use as the interface Start Trigger.
The data type is NI Terminal (DAQmx terminal).

This property is supported for C Series modules in a CompactDAQ chassis. It is not supported
for CompactRIO, PXI, or PCI (refer to XNET Connect Terminals.vi for those platforms).

The digital trigger signal at this terminal is for the Start Interface transition, to begin
communication for all sessions that use the interface. This property routes the start trigger, but
not the timebase (used for timestamp of received frames and cyclic transmit of frames).
Timebase routing is not required for CompactDAQ, because all modules in the chassis
automatically use a shared timebase.

Use this property to connect the interface Start Trigger to triggers in other modules and/or
interfaces. When you read this property, you specify the interface Start Trigger as the source
of a connection. When you write this property, you specify the interface Start Trigger as the
destination of a connection, and the value you write represents the source. For examples that
demonstrate use of this property to synchronize NI-XNET and NI-DAQmzx hardware, refer to
the Synchronization category within the NI-XNET examples.

The connection this property creates is disconnected when you clear (close) all sessions that
use the interface.

NI-XNET Hardware and Software Manual 4-158 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:64bit Baud Rate

Data Type Direction Required? Default
Read/Write Yes (If Not in Database) 0 (If Not in Database)

Property Class
XNET Session

Short Name
Intf BaudRate64

Description

@ Note You can modify this property only when the interface is stopped.

@ Note This property replaces the former 32-bit property. You still can use the baud rate
values used with the 32-bit property. The custom 64-bit baud rate setting requires using
values greater than 32 bit.

The Interface:64bit Baud Rate property sets the CAN, FlexRay, or LIN interface baud rate.
The default value for this interface property is the same as the cluster’s baud rate in the
database. Your application can set this interface baud rate to override the value in the database,
or when no database is used.

CAN

When the upper nibble (0xFO000000) is clear, this is a numeric baud rate (for example,
500000).

NI-XNET CAN hardware currently accepts the following numeric baud rates: 33333, 40000,
50000, 62500, 80000, 83333, 100000, 125000, 160000, 200000, 250000, 400000, 500000,
800000, and 1000000.

Note The 33333 baud rate is supported with single-wire transceivers only.

& @

Note Baud rates greater than 125000 are supported with high-speed transceivers only.

When the upper nibble is set to 0x8 (that is, 0x80000000), the remaining bits provide fields
for more custom CAN communication baud rate programming. Additionally, if the

upper nibble is set to 0xC (that is, 0xC0000000), the remaining bits provide fields for
higher-precision custom CAN communication baud rate programming. The higher-precision

© National Instruments 4-159 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Interface Properties

bit timings facilitate connectivity to a CAN FD cluster. The baud rate models are shown in the
following table:

31..28 27..26 ‘ 25..24 ‘ 23 ‘ 22..20 | 19..16 | 15..14 | 13..12 ‘ 11..8 ‘ 7.4 ‘ 3.0
Normal b0000 Baud Rate (33.3 k-1 M)
Custom b1000 Res SIW TSEG2 (0-7) TSEG1| Res Tq (125-0x3200)
(0-3) (1-15)
High b1100 SIW (0-15) TSEG2 (0-15) TSEG1 (1-63) Tq (25-0x3200)
Precision

(Re-)Synchronization Jump Width (SJW)

Valid programmed values are 0-3 in normal custom mode and 0-15 in
high-precision custom mode.

The actual hardware interpretation of this value is one more than the programmed
value.

Time Segment 2 (TSEG2), which is the time segment after the sample point

Valid programmed values are 0—7 in normal custom mode and 0-15 in
high-precision custom mode.

This is the Phase_Seg?2 time from ISO 11898-1, 12.4.1 Bit Encoding/Decoding.

The actual hardware interpretation of this value is one more than the programmed
value.

Time Segment 1 (TSEG1), which is the time segment before the sample point

Valid programmed values are 1-0xF (1-15 decimal) in normal custom mode and
1-0x3F (1-63 decimal) in high-precision custom mode.

This is the combination of the Prop_Seg and Phase_Seg1 time from ISO 11898-1,
12.4.1 Bit Encoding/Decoding.

The actual hardware interpretation of this value is one more than the programmed
value.

Time quantum (Tq), which is used to program the baud rate prescaler

Valid programmed values are 125-12800, in increments of 0x7D (125 decimal) ns
for normal custom mode and 25-12800, in increments of 0x19 (25 decimal) ns for
high-precision custom mode.

This is the time quantum from ISO 118981, 12.4.1 Bit Encoding/Decoding.

An advanced baud rate example is 0x8014007D. This example breaks down into the
following values:

SJW = 0x0 (0x01 in hardware, due to the + 1)
TSEG2 = 0x1 (0x02 in hardware, due to the + 1)

NI-XNET Hardware and Software Manual 4-160 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

TSEG 1 = 0x4 (0x05 in hardware, due to the + 1)
Tq = 0x7D (125 ns in hardware)

Each time quanta is 125 ns. From IS0 11898-1, 12.4.1.2 Programming of Bit Time, the
nominal time segments length is Sync_Seg(Fixed at 1) + (Prop_Seg + Phase_Seg1)(B) +
Phase_Seg2(C) =1 +2 + 5 = 8. So, the total time for a bit in this example is 8 * 125 ns =
1000 ns =1 ps. A 1 ps bit time is equivalent to a 1 MHz baud rate.

31..28 45..32 22..16 15..8 6..0

Custom
64 Bit

b1010 Tq NSIW NTSEG1 NTSEG2

LIN

Time quantum (Tq), which is used to program the baud rate prescaler

Valid values are 25—-12800, in increments of 0x19 (25 decimal).

This is the time quantum from ISO 11898-1, 12.4.1 Bit Encoding/Decoding.
(Re-)Synchronization Jump Width (NSJW)

Valid values are 0—127.

The actual hardware interpretation of this value is one more than the programmed
value.

Time Segment 1 (NTSEG1), which is the time segment before the sample point
Valid values are 1-0xFF (1-255 decimal).

This is the NTSEG1 value from the Bosch M_CAN Controller Area Network User’s
Manual, version 3.2.1.

The actual hardware interpretation of this value is one more than the programmed
value.

Time Segment 2 (NTSEG?2), which is the time segment after the sample point
Valid values are 0-0x7F (0-127 decimal).

This is the NTSEG?2 value from the Bosch M_CAN Controller Are a Network User’s
Manual, version 3.2.1.

The actual hardware interpretation of this value is one more than the programmed
value.

When the upper nibble (0xFO000000) is clear, you can set only baud rates within the
LIN-specified range (2400 to 20000) for the interface.

When the upper nibble is set to 0x8 (0x80000000), no check for baud rate within
LIN-specified range is performed, and the lowest 16 bits of the value may contain the custom

© National Instruments

4-161 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

baud rate. Any custom value higher than 65535 is masked to a 16-bit value. As with the
noncustom values, the interface internally calculates the appropriate divisor values to
program into its UART. Because the interface uses the Atmel ATA6620 LIN transceiver,
which is guaranteed to operate within the LIN 2.0 specification limits, there are some special
considerations when programming custom baud rates for LIN:

» The ATA6620 transceiver incorporates a TX dominant timeout function to prevent a
faulty device that it is built into from holding the LIN dominant indefinitely. If the TX
line into the transceiver is held in the dominant state for too long, the transceiver switches
its driver to the recessive state. This places a limit on how long the LIN header break field
that the interface transmits may be, and thus limits the lowest baud rate you can set. At
the point the baud rate or break length is set for the interface, it uses the baud rate bit time
and break length settings internally to calculate the resulting break duration and returns
an error if that duration is long enough to trigger the TX dominant timeout.

e At the other end of the baud range, the ATA6620 is specified to work up to 20000 baud.
While you can use the custom bit to program rates higher than that, the transceiver
behavior when operating above that rate is not guaranteed.

NI-XNET Hardware and Software Manual 4-162 ni.com

Chapter 4

Interface:Echo Transmit?

NI-XNET API for LabVIEW—Interface Properties

Data Type Direction

Property Class
XNET Session

Required? Default

Read/Write No False

Short Name
Intf.EchoTx?

Description

The Interface:Echo Transmit? property determines whether Frame Input or Signal Input

sessions contain frames that the interface transmits.

When this property is true, and a frame transmit is complete for an Output session, the frame
is echoed to the Input session. Frame Input sessions can use the Flags field to differentiate
frames received from the bus and frames the interface transmits. When using XNET Read
(Frame CAN).vi, XNET Read (Frame FlexRay).vi, or XNET Read (Frame LIN).vi, the
Flags field is parsed into an echo? Boolean in the frame cluster. When using XNET Read
(Frame Raw).vi, you can parse the Flags manually by reviewing the Raw Frame Format
section. Signal Input sessions cannot differentiate the origin of the incoming data.

5

Note Echoed frames are placed into the input sessions only after the frame transmit is

complete. If there are bus problems (for example, no listener) such that the frame did not

transmit, the frame is not received.

© National Instruments 4-163

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:l/0 Name

Data Type Direction Required? Default

1/0 Read Only N/A N/A

Property Class
XNET Session

Short Name
Intf.IOName

Description

The I/O Name property returns a reference to the interface used to create the session.

You can pass this I/O name into an XNET Interface property node to retrieve hardware

information for the interface, such as the name and serial number. The I/O Name is the same
reference available from the XNET System property node, which is used to read information

for all XNET hardware in the system.

You can use this property on the diagram to:

* Display a string that contains the name of the interface as shown in Measurement and

Automation Explorer (MAX).

* Provide a refnum you can wire to a property node to read information for the interface.

NI-XNET Hardware and Software Manual 4-164

ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:Qutput Stream List

Data Type Direction Required? Default

Read/Write No Empty Array

Property Class
XNET Session

Short Name
Intf.OutStrmList

Description

@ Note Only CAN and LIN interfaces currently support this property.

The Output Stream List property provides a list of frames for use with the replay feature
(Interface:Output Stream Timing property set to Replay Exclusive or Replay Inclusive). In
Replay Exclusive mode, the hardware transmits only frames that do not appear in the list. In
Replay Inclusive mode, the hardware transmits only frames that appear in the list. For a LIN
interface, the header of each frame written to stream output is transmitted, and the Exclusive
or Inclusive mode controls the response transmission. Using these modes, you can either
emulate an ECU (Replay Inclusive, where the list contains the frames the ECU transmits) or
test an ECU (Replay Exclusive, where the list contains the frames the ECU transmits), or
some other combination.

This property’s data type is an array of XNET Frame from a database. When you are using a
database file such as CANdb or FIBEX, each XNET frame uses the string name. If you are
not using a database file or prefer to specify the frames using CAN arbitration IDs or LIN
unprotected IDs, you can use Interface:Output Stream List By ID instead of this property.

© National Instruments 4-165 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:OQutput Stream List By ID

Data Type Direction Required? Default

[w32 Read/Write No Empty Array

Property Class
XNET Session

Short Name
Intf.OutStrmListByld

Description

@ Note Only CAN and LIN interfaces currently support this property.

The Output Stream List By ID property provides a list of frames for use with the replay
feature (Interface:Output Stream Timing property set to Replay Exclusive or Replay
Inclusive).

This property serves the same purpose as Interface:Output Stream List, in that it provides a
list of frames for replay filtering. This property provides an alternate format for you to specify
the frames by their CAN arbitration ID or LIN unprotected ID. The property’s data type is an
array of unsigned 32-bit integer (u32). Each integer represents a CAN or LIN frame’s
identifier, using the same encoding as the Raw Frame Format.

Within each CAN frame ID value, bit 29 (hex 20000000) indicates the CAN identifier format
(set for extended, clear for standard). If bit 29 is clear, the lower 11 bits (0—~10) contain the
CAN frame identifier. If bit 29 is set, the lower 29 bits (0-28) contain the CAN frame
identifier. LIN frame ID values may be within the range of possible LIN IDs (0-63).

NI-XNET Hardware and Software Manual 4-166 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:Output Stream Timing

Data Type Direction Required? Default

Read/Write No Immediate

Property Class
XNET Session

Short Name
Intf.OutStrmTimng

Description

@ Note Only CAN and LIN interfaces currently support this property.

The Output Stream Timing property configures how the hardware transmits frames queued
using a Frame Output Stream session. The following table lists the accepted values:

Enumeration Value
Immediate 0
Replay Exclusive 1
Replay Inclusive 2

When you configure this property to be Immediate, frames are dequeued from the queue and
transmitted immediately to the bus. The hardware transmits all frames in the queue as fast as
possible.

When you configure this property as Replay Exclusive or Replay Inclusive, the hardware is
placed into a Replay mode. In this mode, the hardware evaluates the frame timestamps and
attempts to maintain the original transmission times as the timestamp stored in the frame
indicates. The actual transmission time is based on the relative time difference between the
first dequeued frame and the time contained in the dequeued frame.

When in one of the replay modes, you can use the Interface:Output Stream List property to
supply a list. In Replay Exclusive mode, the hardware transmits only frames that do not
appear in the list. In Replay Inclusive mode, the hardware transmits only frames that appear
in the list. Using these modes, you can either emulate an ECU (Replay Inclusive, where the
list contains the frames the ECU transmits) or test an ECU (Replay Exclusive, where the list
contains the frames the ECU transmits), or some other combination. You can replay all frames
by using Replay Exclusive mode without setting any list.

© National Instruments 4-167 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Interface Properties

Runtime Behavior

When the hardware is in a replay mode, the first frame received from the application is
considered the start time, and all subsequent frames are transmitted at the appropriate delta
from the start time. For example, if the first frame has a timestamp of 12:01.123, and the
second frame has a timestamp of 12:01.456, the second frame is transmitted 333 ms after the
first frame.

If a frame’s time is identical or goes backwards relative to the first timestamp, this is treated
as a new start time, and the frame is transmitted immediately on the bus. Subsequent frames
are compared to this new start time to determine the transmission time. For example, assume
that the application sends the hardware four frames with the following timestamps:
12:01.123, 12:01.456, 12:01.100, and 12:02.100. In this scenario, the first frame transmits
immediately, the second frame transmits 333 ms after the first, the third transmits
immediately after the second, and the fourth transmits one second after the third. Using this
behavior, you can replay a logfile of frames repeatedly, and each new replay of the file begins
with new timing.

A frame whose timestamp goes backwards relative to the previous timestamp, but still is
forward relative to the start time, is transmitted immediately. For example, assume that the
application sends the hardware four frames with the following timestamps: 12:01.123,
12:01.456, 12:01.400, and 12:02.100. In this scenario, the first frame transmits immediately,
the second frame transmits 333 ms after the first, the third transmits immediately after the
second, and the fourth transmits 544 ms after the third.

When a frame with a Delay Frame frame type is received, the hardware delays for the
requested time. The next frame to be dequeued is treated as a new first frame and transmitted
immediately. You can use a Delay Frame with a time of 0 to restart time quickly. If you replay
a logfile of frames repeatedly, you can insert a Delay Frame at the start of each replay to insert
a delay between each iteration through the file.

When a frame with a Start Trigger frame type is received, the hardware treats this frame as a
new first frame and uses the absolute time associated with this frame as the new start time.
Subsequent frames are compared to this new start time to determine the transmission time.
Using a Start Trigger is especially useful when synchronizing with data acquisition products,
so that you can replay the first frame at the correct time relative to the start trigger for accurate
synchronized replay.

Special Considerations for LIN

Only LIN interface as Master supports stream output. You do not need to set the interface
explicitly to Master if you want to use stream output. Just create a stream output session, and
the driver automatically sets the interface to Master at interface start.

You can use immediate mode to transmit a header or full frame. You can transmit only the
header for a frame by writing the frame to stream output with the desired ID and an empty

NI-XNET Hardware and Software Manual 4-168 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

data payload. You can transmit a full frame by writing the frame to stream output with the
desired ID and data payload. If you write a full frame for ID 7 to stream output, and you have
created a frame output session for frame with ID #, the stream output data takes priority (the
stream output frame data is transmitted and not the frame output data). If you write a full
frame to stream output, but the frame has not been defined in the database, the frame transmits
with Enhanced checksum. To control the checksum type transmitted for a frame, you first
must create the frame in the database and assign it to an ECU using the LIN specification you
desire (the specification number determines the checksum type). You then must create a frame
output object to transmit the response for the frame, and use stream output to transmit the
header. Similarly, to transmit n corrupted checksums for a frame, you first must create a frame
object in the database, create a frame output session for it, set the transmit n corrupted
checksums property, and then use stream output to transmit the header.

Regarding event-triggered frame handling for immediate mode, if the hardware can determine
that an ID is for an event-triggered frame, which means an event-triggered frame has been
defined for the ID in the database, the frame is processed as if it were in an event-triggered
slot in a schedule. If you write a full frame with event-triggered ID, the full frame is
transmitted. If there is no collision, the next stream output frame is processed. If there is a
collision, the hardware executes the collision-resolving schedule. The hardware retransmits
the frame response at the corresponding slot time in the collision resolving schedule. If you
write a header frame with an event-triggered ID and there is no collision, the next stream
output frame is processed. If there is a collision, the hardware executes the collision-resolving
schedule.

You can mix use of the hardware scheduler and stream output immediate mode. Basically, the
hardware treats each stream output frame as a separate run-once schedule containing a single
slot for the frame. Transmission of a stream output frame may interrupt a run-continuous
schedule, but may not interrupt a run-once schedule. Transmission of stream output frames is
interleaved with run-continuous schedule slot executions, depending on the application
timing of writes to stream output. Stream output is prioritized to the equivalent of the lowest
priority level for a run-once schedule. If you write one or more run-once schedules with
higher-than-lowest priority and write frames to stream output, all the run-once schedules are
executed before stream output transmits anything. If you write one or more run-once
schedules with the lowest priority and write frames to stream output, the run-once schedules
execute in the order you wrote them, and are interleaved with stream output frames,
depending on the application timing of writes to stream output and writes of run-once
schedule changes.

In contrast to the immediate mode, neither replay mode allows for the concurrent use of the
hardware scheduler, and an error is reported if you attempt to do so. Event-triggered frame
handling is different for the replay modes. If the hardware can determine that an ID is for an
event-triggered frame, which means an event-triggered frame has been defined for the ID in
the database, the frame is transmitted as if it were being transmitted during the
collision-resolving schedule for the event triggered frame. The full frame is transmitted with

© National Instruments 4-169 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Interface Properties

the Data[0] value (the underlying unconditional frame ID), copied into the header ID. If a
frame cannot be found in the database, it is transmitted with Enhanced checksum. Otherwise,
it is transmitted with the checksum type defined in the database.

The reply modes provide an easy means to replay headers only, full frames only, or some mix
of the two. For either replay mode, the header for each frame is always transmitted and the
slot delay is preserved. For replay inclusive, if you want only to replay headers, leave the
Interface:Output Stream List property empty. To replay some of the responses, add their
frames to Interface:Output Stream List. For frames that are not in Interface:Output Stream
List, you are free to create frame output objects for them, for which you can change the
checksum type or transmit corrupted checksums.

There is another consideration for the replay of diagnostic slave response frames. Because the
master always transmits only the diagnostic slave response header, and a slave transmits the
response if its NAD matches the one transmitted in the preceding master request frame, an
array of frames for replay might include multiple slave response frames (each having the same
slave response header ID) transmitted by different slaves (each having a different NAD value
in the data payload). If you are using inclusive mode, you can choose not to replay any slave
response frames by not including the slave response frame in Interface:Output Stream List.
You can choose to replay some or all of the slave response frames by first including the slave
response frame in Interface:Output Stream List, then including the NAD values for the slave
responses you want to play back, in Interface:LIN:Output Stream Slave Response List By
NAD. In this way, you have complete control over which slave responses are replayed (which
diagnostic slaves you emulate). Replay of a diagnostic master request frame is handled like
replay of any other frame; the header is always transmitted. Using the inclusive mode as an
example, the response may or may not be transmitted depending on whether or not the master
request frame is in Interface:Output Stream List.

Restrictions on Other Sessions

When you use Immediate mode, there are no restrictions on frames that you use in other
sessions.

When you use Replay Inclusive mode, you can create output sessions that use frames that do
not appear in the Interface:Output Stream List property. Attempting to create an output
session that uses a frame from the Interface:Output Stream List property results in an error.
Input sessions have no restrictions.

When you use Replay Exclusive mode, you cannot create any other output sessions.
Attempting to create an output session returns an error. Input sessions have no restrictions.

NI-XNET Hardware and Software Manual 4-170 ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Interface:Start Trigger Frames to Input Stream?

Data Type Direction Required? Default

Read/Write No False
Property Class

XNET Session
Short Name

Intf.StartTrigToInStrm?

Description

The Start Trigger Frames to Input Stream? property configures the hardware to place a start
trigger frame into the Stream Input queue after it is generated. A Start Trigger frame is
generated when the interface is started. The interface start process is described in Interface
Transitions. For more information about the start trigger frame, refer to Special Frames.

The start trigger frame is especially useful if you plan to log and replay CAN data.

Interface:Bus Error Frames to Input Stream?

Data Type Direction Required? Default
Read/Write No False

Property Class
XNET Session

Short Name
Intf. BusErrToInStrm?

Description
@ Note Only CAN and LIN interfaces currently support this property.

The Bus Error Frames to Input Stream? property configures the hardware to place a CAN or
LIN bus error frame into the Stream Input queue after it is generated. A bus error frame is
generated when the hardware detects a bus error. For more information about the bus error
frame, refer to Special Frames.

© National Instruments 4-171 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

Session:Application Protocol

Data Type Direction Required? Default

Read Only N/A None

Property Class
XNET Session

Short Name
ApplProtocol

Description

This property returns the application protocol that the session uses.

The database used with XNET Create Session.vi determines the application protocol.

The values (enumeration) for this property are:
0 None

1 J1939

NI-XNET Hardware and Software Manual 4-172

ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

SAE J1939:ECU

Data Type Direction Required? Default

140 Write Only No Unassigned

Property Class
XNET Session

Short Name
J1939.ECU

Description
@ Note This property applies to only the CAN J1939 application protocol.

This property assigns a database ECU to a J1939 session. Setting this property changes the
node address and J1939 64-bit ECU name of the session to the values stored in the database
ECU object. Changing the node address starts an address claiming procedure, as described in
the SAE J1939:Node Address property.

You can assign the same ECU to multiple sessions running on the same CAN interface (for
example, CAN1). All sessions with the same assigned ECU represent one J1939 node.

If multiple sessions have been assigned the same ECU, setting the SAE J1939:Node Address
property in one session changes the address in all sessions with the same assigned ECU
running on the same CAN interface.

For more information, refer to the SAE J1939:Node Address property.

© National Instruments 4-173 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

SAE J1939:ECU Busy

Data Type Direction Required? Default
Read/Write No False

Property Class
XNET Session

Short Name
J1939.Busy

Description

@ Note This property applies to only the CAN J1939 application protocol.

Busy is a special ECU state defined in the SAE J1939 standard. A busy ECU receives
subsequent RTS messages while handling a previous RTS/CTS communication.

If the ECU cannot respond immediately to an RTS request, the ECU may send CTS Hold
messages. In this case, the originator receives information about the busy state and waits until
the ECU leaves the busy state. (That is, the ECU no longer sends CTS Hold messages and

sends the first CTS message with the requested data.)

Use the ECU Busy property to simulate this ECU behavior. If a busy XNET ECU receives a
CTS message, it sends CTS Hold messages instead of CTS data messages immediately.
Afterward, if clearing the busy property, the XNET ECU resumes handling the transport

protocol starting with CTS data messages, as the originator expects.

NI-XNET Hardware and Software Manual 4-174

ni.com

Chapter 4

NI-XNET API for LabVIEW—Interface Properties

SAE J1939:Hold Time Th
Data Type Direction Required? Default
Read/Write No 05s
Property Class
XNET Session
Short Name
J1939.HoldTimeTh
Description

@ Note

This property applies to only the CAN J1939 application protocol.

This property changes the Hold Time Timeout value at the responder node. The value is the
maximum time between a TP.CM_CTS hold message and the next TP.CM_CTS message, in

seconds.

This property is related to handling the transport protocol.

© National Instruments 4-175

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

SAE J1939:Maximum Repeat CTS

Data Type Direction Required? Default

Read/Write No 2

Property Class
XNET Session

Short Name
J1939. MAXReptCTS

Description

@ Note This property applies to only the CAN J1939 application protocol.

This property limits the number of requests for retransmission of data packet(s) using the

TP.CM_CTS message.

This property is related to handling the transport protocol.

NI-XNET Hardware and Software Manual 4-176

ni.com

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

SAE J1939:Node Address

Data Type Direction Required? Default

(U2 Read/Write No Null (254)
Property Class
XNET Session
Short Name
J1939.Address
Description

@ Note This property applies to only the CAN J1939 application protocol.

This property changes the node address of a J1939 session by starting an address claiming
procedure. After setting this property to a valid value (<253), reading the property returns the
null address (254) until the address is granted. Poll the property and wait until the address gets
to a valid value again before starting to write. Refer to the NI-XNET examples that
demonstrate this procedure.

The node address value determines the source address in a transmitting session or a
destination address in a receiving session. The source address in the extended frame identifier
is overwritten with the node address of the session before transmitting.

A session with a null (254) or global address (255) receives all messages sent on the bus, but
cannot transmit messages. A session with an assigned address of less than 254 receives only
messages sent to this address or global messages, but not messages sent to other nodes. This
session also can transmit messages.

In NI-XNET, you can assign the same J1939 node address to multiple sessions running on the
same interface (for example, CAN1). Those sessions represent one J1939 node. By assigning
different J1939 node addresses to multiple sessions running on the same interface, you also
can create multiple nodes on the same interface.

If aJ1939 ECU is assigned to multiple sessions, changing the address in one session also
changes the address in all other sessions with the same assigned ECU.

For more information, refer to the SAE J1939:ECU property.

© National Instruments 4-177 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Interface Properties

SAE J1939:NodeName

Data Type Direction Required? Default

Read/Write Yes 0

Property Class

XNET Session

Short Name

J1939.NodeName

Description

5

Note This property applies to only the CAN J1939 application protocol.

This property changes the name value of a J1939 session. The name is an unsigned 64-bit
integer value. Beside the SAE J1939:Node Address property, the value is specific to the ECU
you want to emulate using the session. That means the session can act as if it were the
real-world ECU, using the identical address and name value.

The name value is used within the address claiming procedure. If the ECU (session) wants to
claim its address, it sends out an address claiming message. That message contains the ECU
address and the name value of the current session’s ECU. If there is another ECU within the
network with an identical address but lower name value, the current session loses its address.
In this case, the session cannot send out further messages, and all addressed messages using
the previous address of the current session are addressed to another ECU within the network.

The most significant bit (bit 63) in the Node Name defines the ECU’s arbitrary address
capability (bit 63 = 1 means it is arbitrary address capable). If the node cannot use the
assigned address, it automatically tries to claim another random value between 128 and 247
until it is successful.

If multiple sessions are assigned the same ECU, setting the SAE J1939.NodeName property
in one session changes the address in all sessions with the same assigned ECU running on the
same CAN interface.

The name value has multiple bit fields, as described in SAE J1939-81 (Network
Management). A single 64-bit value represents the name value within XNET.

For more information, refer to the SAE J1939:Node Address property.

NI-XNET Hardware and Software Manual 4-178 ni.com

Chapter 4

SAE J1939:Number of Packets Received

NI-XNET API for LabVIEW—Interface Properties

Data Type Direction Required? Default

Read/Write No 255

Property Class
XNET Session

Short Name
J1939. NumPktsRecv

Description

@ Note This property applies to only the CAN J1939 application protocol.

This property changes the maximum number of data packet(s) that can be received in one

block at the responder node.

This property is related to handling the transport protocol.

© National Instruments 4-179

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

SAE J1939:Number of Packets Response

Data Type Direction Required? Default

Read/Write No 255

Property Class
XNET Session

Short Name
J1939 . NumPktsResp

Description

@ Note This property applies to only the CAN J1939 application protocol.

This property limits the maximum number of packets in a response. This allows the originator

node to limit the number of packets in the TP.CM_CTS message. When the responder

complies with this limit, it ensures the sender always can retransmit packets that the responder

may not have received.

This property is related to handling the transport protocol.

NI-XNET Hardware and Software Manual 4-180

ni.com

Chapter 4

SAE J1939:Response Time Tr_GD

NI-XNET API for LabVIEW—Interface Properties

Data Type Direction Required? Default

Read/Write No 0.05s

Property Class
XNET Session

Short Name
J1939.RespTimeTrGD

Description

@ Note This property applies to only the CAN J1939 application protocol.

This property changes the Device Response Time for global destination messages
(TP.CM_BAM messages). The value is the maximum delay between sending two
TP.CM_BAM messages, in seconds. The recommended range is 0.05-200 s.

This property is related to handling the transport protocol.

© National Instruments 4-181

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

SAE J1939:Response Time Tr_SD

Data Type Direction Required? Default

Read/Write No 0.05s

Property Class
XNET Session

Short Name
J1939.RespTimeTrSD

Description

@ Note This property applies to only the CAN J1939 application protocol.

This property changes the Device Response Time value for specific destination messages
(TP.CM_RTS/CTS messages). The value is the maximum time between receiving a message
and sending the response message, in seconds. The recommended range is 0.05-0.200 s.

This property is related to handling the transport protocol.

NI-XNET Hardware and Software Manual 4-182

ni.com

Chapter 4

NI-XNET API for LabVIEW—Interface Properties

SAE J1939:Timeout T1
Data Type Direction Required? Default
Read/Write No 0.75 s
Property Class
XNET Session
Short Name
J1939.TimeoutT1
Description

@ Note

This property applies to only the CAN J1939 application protocol.

This property changes the timeout T1 value for the responder node. The value is the maximum
gap between two received TP.DT messages in seconds.

This property is related to handling the transport protocol.

© National Instruments 4-183

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Interface Properties

SAE J1939:Timeout T2

Data Type Direction Required? Default

Read/Write No 1.25s

Property Class
XNET Session

Short Name
J1939.TimeoutT?2

Description

@ Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T2 value at the responder node. This value is the maximum
gap between sending out the TP.CM_CTS message and receiving the next TP.DT message, in

seconds.

This property is related to handling the transport protocol.

NI-XNET Hardware and Software Manual 4-184

ni.com

Chapter 4

NI-XNET API for LabVIEW—Interface Properties

SAE J1939:Timeout T3
Data Type Direction Required? Default
Read/Write No 1.25s
Property Class
XNET Session
Short Name
J1939.TimeoutT3
Description

@ Note

This property applies to only the CAN J1939 application protocol.

This property changes the timeout T3 value at the originator node. This value is the maximum
gap between sending out a TP.CM_RTS message or the last TP.DT message and receiving the

TP.CM_CTS response, in seconds.

This property is related to handling the transport protocol.

© National Instruments 4-185

NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—Interface Properties

SAE J1939:Timeout T4

Data Type Direction Required? Default

Read/Write No 1.05s

Property Class

XNET Session

Short Name

J1939.TimeoutT4

Description

5

Note This property applies to only the CAN J1939 application protocol.

This property changes the timeout T4 value at the originator node. This value is the maximum
gap between the TP.CM_CTS hold message and the next TP.CM_CTS message, in seconds.

This property is related to handling the transport protocol.

NI-XNET Hardware and Software Manual 4-186

ni.com

Chapter 4 NI-XNET API for LabVIEW—~Frame Properties

Frame Properties

This section includes the frame-specific properties in the session property node.

CAN Frame Properties

This category includes CAN-specific frame properties.

Frame:CAN:Start Time Offset

Data Type Direction Required? Default

Write Only No -1

Property Class
XNET Session

Short Name
Frm.CAN.StartTimeOff

Description

Use this property to configure the amount of time that must elapse between the session being
started and the time that the first frame is transmitted across the bus. This is different than the
cyclic rate, which determines the time between subsequent frame transmissions.

Use this property to have more control over the schedule of frames on the bus, to offer more
determinism by configuring cyclic frames to be spaced evenly.

If you do not set this property or you set it to a negative number, NI-XNET chooses this start
time offset based on the arbitration identifier and periodic transmit time.

This property takes effect whenever a session is started. If you stop a session and restart it, the
start time offset is re-evaluated.

@ Note This property affects the active frame object in the session. Review the
Frame:Active property to learn more about setting a property on an active frame.

© National Instruments 4-187 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—~Frame Properties

Frame:CAN:Transmit Time

Data Type Direction Required? Default

Write Only No From Database

Property Class
XNET Session

Short Name
Frm.CAN.TxTime

Description

Use this property to change the frame’s transmit time while the session is running. The
transmit time is the amount of time that must elapse between subsequent transmissions of a
cyclic frame. The default value of this property comes from the database (the XNET Frame
CAN:Transmit Time property).

If you set this property while a frame object is currently started, the frame object is stopped,
the cyclic rate updated, and then the frame object is restarted. Because of the stopping and
starting, the frame’s start time offset is re-evaluated.

&

Note This property affects the active frame object in the session. Review the
Frame:Active property to learn more about setting property on an active frame.

Note The first time a queued frame object is started, the XNET frame’s transmit time
determines the object’s default queue size. Changing this rate has no impact on the queue
size. Depending on how you change the rate, the queue may not be sufficient to store data
for an extended period of time. You can mitigate this by setting the session Queue Size
property to provide sufficient storage for all rates you use. If you are using a single-point
session, this is not relevant.

&

NI-XNET Hardware and Software Manual 4-188 ni.com

Chapter 4

Frame:Active

NI-XNET API for LabVIEW—~Frame Properties

Data Type Direction

Property Class
XNET Session

Required? Default

Write Only No 0

Short Name

Frm.Active

Description

This property provides access to properties for a specific frame running within the session.
Writing this property sets the active frame for subsequent properties in the Frame category.

The string syntax supports the following options:

* Decimal number: This is interpreted as the index of the signal or frame in the session’s
list. If the session is signal I/O, subsequent frame properties change the signal’s parent

frame.

e XNET Frame: If the session is frame I/O, you can wire a frame name from the session’s

List of Frames property.

» XNET Signal: If the session is signal I/O, you can wire a signal name from the session’s
List of Signals property. Subsequent frame properties change the signal’s parent frame.

If the session is Frame Stream Input or Frame Stream Output, this property has no effect,

because stream I/O sessions do not use specific frames.

The default value of this property is 0, the first frame or signal in the session’s list. If the empty
string is wired to this property, this is converted to O internally.

© National Instruments 4-189

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—~Frame Properties

Frame:LIN:Transmit N Corrupted Checksums

Data Type Direction Required? Default

Write Only No 0

Property Class
XNET Session

Short Name
Frm.LIN.TxNCrptChks

Description

When set to a nonzero value, this property causes the next N number of checksums to be
corrupted. The checksum is corrupted by negating the value calculated per the database;
(Enhancedvalue * -1)or(ClassicValue * -1). This property is valid only for output
sessions. If the frame is transmitted in an unconditional or sporadic schedule slot, N is always
decremented for each frame transmission. If the frame is transmitted in an event-triggered slot
and a collision occurs, N is not decremented. In that case, N is decremented only when the
collision resolving schedule is executed and the frame is successfully transmitted. If the frame
is the only one to transmit in the event-triggered slot (no collision), N is decremented at

event-triggered slot time.

This property is useful for testing ECU behavior when a corrupted checksum is transmitted.

@ Note This property affects the active frame object in the session. Review the
Frame:Active property to learn more about setting a property on an active frame.

NI-XNET Hardware and Software Manual 4-190

ni.com

Chapter 4

Frame:Skip N Cyclic Frames

NI-XNET API for LabVIEW—~Frame Properties

Data Type Direction Required? Default

Write Only No 0

Property Class
XNET Session

Short Name
Frm.SkipNCyclic

Description

@ Note This property is currently supported by CAN interfaces only.

When set to a nonzero value, this property causes the next N cyclic frames to be skipped.
When the frame’s transmission time arrives and the skip count is nonzero, a frame value is
dequeued (if this is not a single-point session), and the skip count is decremented, but the
frame actually is not transmitted across the bus. When the skip count decrements to zero,
subsequent cyclic transmissions resume. This property is valid only for output sessions and
frames with cyclic timing (that is, not event-based frames).

This property is useful for testing of ECU behavior when a cyclic frame is expected, but is

missing for N cycles.

@ Note This property affects the active frame object in the session. Review the
Frame:Active property to learn more about setting a property on an active frame.

© National Instruments 4-191

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Auto Start?

Auto Start?

Data Type Direction Required? Default
Read/Write No True

Property Class
XNET Session

Short Name
AutoStart?

Description

Automatically starts the output session on the first call to XNET Write.vi.

For input sessions, start always is performed within the first call to XNET Read.vi (if not
already started using XNET Start.vi). This is done because there is no known use case for

reading a stopped input session.

For output sessions, as long as the first call to XNET Write.vi contains valid data, you can
leave this property at its default value of true. If you need to call XNET Write.vi multiple
times prior to starting the session, or if you are starting multiple sessions simultaneously, you
can set this property to false. After calling XNET Write.vi as desired, you can call XNET

Start.vi to start the session(s).

When automatic start is performed, it is equivalent to XNET Start.vi with scope set to

Normal. This starts the session itself, and if the interface is not already started, it starts the

interface also.

NI-XNET Hardware and Software Manual 4-192

ni.com

Chapter 4 NI-XNET API for LabVIEW—Cluster

Cluster

Data Type Direction Required? Default

140 Read Only N/A N/A

Property Class
XNET Session

Short Name
Cluster

Description

This property returns the cluster (network) used with XNET Create Session.vi.

Use this property on the block diagram as follows:

* Asarefnum wired to a property node to access information for the cluster and its objects
(frames, signals, etc.).

* As astring containing the cluster name. This name typically is the database alias
followed by the cluster name.

© National Instruments 4-193 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Database

Databhase

Data Type Direction Required? Default

1/0 Read Only N/A N/A

Property Class
XNET Session

Short Name
Database

Description

This property returns the database used with XNET Create Session.vi.

Use this property on the block diagram as follows:

* Asarefnum wired to a property node to access information for the database and its

objects (frames, signals, etc.).

* As astring containing the database name. This name is typically a database alias, but it

also can be a complete file path.

NI-XNET Hardware and Software Manual 4-194

ni.com

Chapter 4 NI-XNET API for LabVIEW—List of Frames

List of Frames

Data Type Direction Required? Default

Read Only N/A N/A

Property Class
XNET Session

Short Name
ListFrms

Description

This property returns the list of frames in the session.

This property is valid only for sessions of Frame Input or Frame Output mode. For a Signal
Input/Output session, use the List of Signals property.

Use each array element on the block diagram as follows:
* Asarefnum wired to a property node to access information for the frame.

* As astring containing the frame name. The name is the one used to create the session.

© National Instruments 4-195 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—List of Signals

List of Signals

Data Type Direction Required? Default

Read Only N/A N/A

Property Class
XNET Session

Short Name
ListSigs

Description

This property returns the list of signals in the session.

This property is valid only for sessions of Signal Input or Signal Output mode. For a Frame

Input/Output session, use the List of Frames property.

Use each array element on the block diagram as follows:

* Asarefnum wired to a property node to access information for the signal.

e Asastring containing the signal name. The name is the one used to create the session.

NI-XNET Hardware and Software Manual 4-196

ni.com

Chapter 4 NI-XNET API for LabVIEW—Mode

Mode

Data Type Direction Required? Default

Read Only N/A N/A

Property Class
XNET Session

Short Name
Mode

Description

This property returns the session mode (ring). You provided this mode when you created the
session. For more information, refer to Session Modes.

Number in List

Data Type Direction Required? Default

Read Only N/A N/A

Property Class
XNET Session

Short Name
NumlInList

Description

This property returns the number of frames or signals in the session’s list. This is a quick way
to get the size of the List of Frames or List of Signals property.

© National Instruments 4-197 NI-XNET Hardware and Software Manual

NI-XNET API for LabVIEW—Number of Values Pending

Number of Values Pending

Data Type Direction Required? Default

Read Only N/A N/A

Property Class

XNET Session

Short Name

NumPend

Description

This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available to XNET Read.vi. If
you call XNET Read.vi with number to read of this number and timeout of 0.0, XNET
Read.vi should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided to XNET Write.vi
but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames.
In these cases, this property assumes the largest possible frame size. If you use smaller
frames, the real number of pending values might be higher.

The largest possible frames sizes are:

* CAN FD: 64 byte payload.

* FlexRay: The higher value of the frame size in the static segment and the maximum
frame size in the dynamic segment. The XNET Cluster FlexRay:Payload Length
Maximum property provides this value.

The execution time to read this property is sufficient for use in a high-priority loop on
LabVIEW Real-Time (RT) (refer to High Priority Loops for more information).

NI-XNET Hardware and Software Manual 4-198 ni.com

Chapter 4 NI-XNET API for LabVIEW—Number of Values Unused

Number of Values Unused

Data Type Direction Required? Default

Read Only N/A N/A

Property Class
XNET Session

Short Name

NumUnused

Description

This property returns the number of values (frames or signals) unused for the session. If you
get this property prior to starting the session, it provides the size of the underlying queue(s).
Contrary to the Queue Size property, this value is in number of frames for Frame /O, not
number of bytes; for Signal I/0, it is the number of signal values in both cases. After start,
this property returns the queue size minus the Number of Values Pending property.

For input sessions, this is the number of frame/signal values unused in the underlying
queue(s).

For output sessions, this is the number of frame/signal values you can provide to a subsequent
call to XNET Write.vi. If you call XNET Write.vi with this number of values and timeout
of 0.0, XNET Write.vi should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames.
In these cases, this property assumes the largest possible frame size. If you use smaller
frames, the real number of pending values might be higher.

The largest possible frames sizes are:
* CAN FD: 64 byte payload.

* FlexRay: The higher value of the frame size in the static segment and the maximum
frame size in the dynamic segment. The XNET Cluster FlexRay:Payload Length
Maximum property provides this value.

The execution time to read this property is sufficient for use in a high-priority loop on
LabVIEW Real-Time (RT) (refer to High Priority Loops for more information).

© National Instruments 4-199 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—~Payload Length Maximum

Payload Length Maximum

Data Type Direction Required? Default

Read Only N/A N/A

Property Class
XNET Session

Short Name
PayldLenMax

Description

This property returns the maximum payload length of all frames in this session, expressed as

bytes (0-254).

This property does not apply to Signal sessions (only Frame sessions).

For CAN Stream (Input and Output), this property depends on the XNET Cluster CAN:I/O
Mode property. If the I/O mode is CAN, this property is 8 bytes. If the I/O mode is CAN FD

or CAN FD+BRS, this property is 64 bytes.

For LIN Stream (Input and Output), this property always is 8 bytes. For FlexRay Stream
(Input and Output), this property is the same as the XNET Cluster FlexRay:Payload Length

Maximum property value. For Queued and Single-Point (Input and Output), this is the
maximum payload of all frames specified in the List of Frames property.

NI-XNET Hardware and Software Manual 4-200

ni.com

Protocol

Chapter 4

NI-XNET API for LabVIEW—Protocol

Data Type Direction Required? Default

Property Class
XNET Session

Read Only N/A N/A

Short Name

Protocol

Description

This property returns the protocol that the interface in the session uses.

The values (enumeration) for this property are:

0 CAN
1 FlexRay
2 LIN

© National Instruments 4-201

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—AQueue Size

Queue Size

Data Type Direction Required? Default
Read/Write No Refer to Description

Property Class
XNET Session

Short Name

QueueSize

Description

For output sessions, queues store data passed to XNET Write.vi and not yet transmitted onto
the network. For input sessions, queues store data received from the network and not yet
obtained using XNET Read.vi.

For most applications, the default queue sizes are sufficient. You can write to this property to
override the default. When you write (set) this property, you must do so prior to the first
session start. You cannot set this property again after calling XNET Stop.vi.

For signal I/O sessions, this property is the number of signal values stored. This is analogous
to the number of values you use with XNET Read.vi or XNET Write.vi.

For frame I/O sessions, this property is the number of bytes of frame data stored.

For standard CAN and LIN frame I/O sessions, each frame uses exactly 24 bytes. You can use
this number to convert the Queue Size (in bytes) to/from the number of frame values.

For CAN FD and FlexRay frame 1/O sessions, each frame value size can vary depending on
the payload length. For more information, refer to Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame. Within the
implementation, each frame uses a dedicated queue. According to the formulas below, the
default queue sizes can be different for each frame. If you read the default Queue Size
property for a Signal Input XY session, the largest queue size is returned, so that a call to
XNET Read.vi of that size can empty all queues. If you read the default Queue Size property
for a Signal Output XY session, the smallest queue size is returned, so that a call to XNET
Write.vi of that size can succeed when all queues are empty. If you write the Queue Size
property for a Signal I/O XY session, that size is used for all frames, so you must ensure that
it is sufficient for the frame with the fastest transmit time.

For Signal I/0O Waveform sessions, you can use signals from more than one frame. Within the
implementation, each frame uses a dedicated queue. The Queue Size property does not

NI-XNET Hardware and Software Manual 4-202 ni.com

Chapter 4 NI-XNET API for LabVIEW—Queue Size

represent the memory in these queues, but rather the amount of time stored. The default queue
allocations store Application Time worth of resampled signal values. If you read the default
Queue Size property for a Signal I/O Waveform session, it returns Application Time
multiplied by the time Resample Rate. If you write the Queue Size property for a Signal I/O
Waveform session, that value is translated from a number of samples to a time, and that time
is used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored. Single-Point sessions
always use a value of 1 as the effective queue size.

Default Value

You calculate the default queue size based on the following assumptions:

* Application Time: The time between calls to XNET Read.vi/XNET Write.vi in your
application.

¢ Frame Time: The time between frames on the network for this session.

The following pseudo code describes the default queue size formula:

if (session is Signal I/0 Waveform)

Queue_Size = (Application_Time * Resample_Rate);
else
Queue_Size = (Application_Time / Frame_Time) ;

if (Queue_Size < 64)
Queue_Size = 64;

if (session mode is Frame I/O0)
Queue_Size = Queue_Size * Frame_Size;

For Signal I/O Waveform sessions, the initial formula calculates the number of resampled
values that occur within the Application Time. This is done by multiplying Application Time
by the XNET Session Resample Rate property.

For all other session modes, the initial formula divides Application Time by Frame Time.

The minimum for this formula is 64. This minimum ensures that you can read or write at least
64 elements. If you need to read or write more elements for a slow frame, you can set the
Queue Size property to a larger number than the default. If you set a large Queue Size, this
may limit the maximum number of frames you can use in all sessions.

For Frame I/O sessions, this formula result is multiplied by each frame value size to obtain a
queue size in bytes.

For Signal I/O sessions, this formula result is used directly for the queue size property to
provide the number of signal values for XNET Read.vi or XNET Write.vi. Within the Signal
I/O session, the memory allocated for the queue incorporates frame sizes, because the signal
values are mapped to/from frame values internally.

© National Instruments 4-203 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—AQueue Size

Application Time
The LabVIEW target in which your application runs determines the Application Time:
¢ Windows: 400 ms (0.4 s)
e LabVIEW Real-Time (RT): 100 ms (0.1 s)

This works under the assumption that for Windows, more memory is available for input
queues, and you have limited control over the application timing. LabVIEW RT targets
typically have less available memory, but your application has better control over application
timing.

Frame Time

Frame Time is calculated differently for Frame I/O Stream sessions compared to other modes.
For Frame I/O Stream, you access all frames in the network (cluster), so the Frame Time is
related to the average bus load on your network. For other modes, you access specific frames
only, so the Frame Time is obtained from database properties for those frames.

The Frame Time used for the default varies by session mode and protocol, as described below.
CAN, Frame 1/0 Stream

Frame Time is 100 us (0.0001 s).

This time assumes a baud rate of 1 Mbps, with frames back to back (100 percent busload).

For CAN sessions created for a standard CAN bus, the Frame Size is 24 bytes. For CAN
sessions created for a CAN FD Bus (the cluster I/O mode is CAN FD or CAN FD+BRS), the
frame size can vary up to 64 bytes. However, the default queue size is based on the 24-byte
frame time. When connecting to a CAN FD bus, you may need to adjust this size as necessary.

When you create an application to stress test NI-XNET performance, it is possible to generate
CAN frames faster than 100 ps. For this application, you must set the queue size to larger than
the default.

FlexRay, Frame 1/0 Stream
Frame Time is 20 ps (0.00002 s).

This time assumes a baud rate of 10 Mbps, with a cycle containing static slots only
(no minislots or NIT), and frames on channel A only.

Small frames at a fast rate require a larger queue size than large frames at a slow rate.
Therefore, this default assumes static slots with 4 bytes, for a Frame Size of 24 bytes.

NI-XNET Hardware and Software Manual 4-204 ni.com

Chapter 4 NI-XNET API for LabVIEW—Queue Size

When you create an application to stress test NI-XNET performance, it is possible to generate
FlexRay frames faster than 20 ps. For this application, you must set the queue size to larger
than the default.

LIN, Frame 1/0 Stream
Frame Time is 2 ms (0.002 s).

This time assumes a baud rate of 20 kbps, with 1 byte frames back to back (100 percent
busload).

For all LIN sessions, Frame Size is 24 bytes.

CAN, Other Modes

For Frame I/0 Queued, Signal I/O XY, and Signal I/O Waveform, the Frame Time is different
for each frame in the session (or frame within which signals are contained).

For CAN frames, Frame Time is the frame property CAN:Transmit Time, which specifies the
time between successive frames (in floating-point seconds).

If the frame’s CAN Transmit Time is 0, this implies the possibility of back-to-back frames on
the network. Nevertheless, this back-to-back traffic typically occurs in bursts, and the average
rate over a long period of time is relatively slow. To keep the default queue size to a reasonable
value, when CAN Transmit Time is 0, the formula uses a Frame Time of 50 ms (0.05 s).

For CAN sessions using a standard CAN cluster, the frame size is 24 bytes. For CAN sessions
using a CAN FD cluster, the frame size may differ for each frame in the session. Each frame
size is obtained from its XNET Frame Payload Length property in the database.

FlexRay, Other Modes
For Frame I/0 Queued, Signal I/O XY, and Signal I/O Waveform, the Frame Time is different
for each frame in the session (or frame within which signals are contained).

For FlexRay frames, Frame Time is the time between successive frames (in floating-point
seconds), calculated from cluster and frame properties. For example, if a cluster Cycle (cycle
duration) is 10000 ps, and the frame Base Cycle is 0 and Cycle Repetition is 1, the frame’s
Transmit Time is 0.01 (10 ms).

For these session modes, the Frame Size is different for each frame in the session. Each Frame
Size is obtained from its XNET Frame Payload Length property in the database.

LIN, Other Modes

© National Instruments 4-205 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET AP for LabVIEW—Queue Size

For LIN frames, Frame Time is a property of the schedule running in the LIN master node. It
is assumed that the Frame Time for a single frame always is larger than 8 ms, so that the

default queue size is set to 64 frames throughout.

For all LIN sessions, Frame Size is 24 bytes.

Examples

The following table lists example session configurations and the resulting default queue sizes.

Session Configuration

Default Queue Size

Formula

Frame Input Stream, CAN, 96000 (0.4 /0.0001) = 4000; 4000 x 24 bytes
Windows
Frame Output Stream, CAN, 96000 (0.4 /0.0001) = 4000; 4000 x 24 bytes;
Windows output is always same as input
Frame Input Stream, FlexRay, 480000 (0.4 /0.00002) = 20000;
Windows 20000 x 24 bytes
Frame Input Stream, CAN, 24000 (0.1/0.0001) = 1000; 1000 x 24 bytes
LabVIEW RT
Frame Input Stream, FlexRay, 120000 (0.1 /0.00002) = 5000; 5000 x 24 bytes
LabVIEW RT
Frame Input Queued, CAN, 1536* (0.4 /0.05) = 8; Transmit Time O uses
Transmit Time 0.0, Windows Frame Time 50 ms; use minimum of
64 frames (64 x 24)

Frame Input Queued, CAN, 19200* (0.4 /0.0005) = 800; 800 x 24 bytes
Transmit Time 0.0005,
Windows
Frame Input Queued, CAN, 1536%* (0.4/1.0) =0.4; use minimum of
Transmit Time 1.0 (1 s), 64 frames (64 x 24)
Windows
Frame Input Queued, FlexRay, 4800 (0.4 /0.002) = 200; 200 x 24 bytes
every 2 ms cycle, payload
length 4, Windows
Frame Input Queued, FlexRay, 2048 (0.1/0.002) = 50, use minimum of 64,
every 2 ms cycle, payload payload length 16 requires 32 bytes;
length 16, LabVIEW RT 64 x 32 bytes

NI-XNET Hardware and Software Manual 4-206 ni.com

Chapter 4

NI-XNET API for LabVIEW—Queue Size

Session Configuration Default Queue Size Formula
Signal Input XY, two CAN 64* and 800* (0.4/0.05) = 8, use minimum of 64;
frames, Transmit Time 0.0 and (read as 800) (0.4/0.0005) = 800; expressed as signal

0.0005, Windows

values

Signal Output XY, two CAN

64* and 800*

(0.4 /0.05) = 8, use minimum of 64;

frames, Transmit Time 0.0 and (read as 64) (0.4/0.0005) = 800; expressed as signal
0.0005, Windows values

Signal Output Waveform, 400* Memory allocation is 400 and 64 frames
two CAN frames, 1 ms and to provide 0.4 sec of storage, queue size
400 ms, resample rate represents number of samples, or

1000 Hz, Windows (0.4 x 1000.0)

Signal Output Waveform, 400* Memory allocation is 400 and 64 frames

two CAN frames, 1 ms and
400 ms, resample rate
1000 Hz, Windows

to provide 0.4 sec of storage, queue size
represents number of samples, or
(0.4 x 1000.0)

* For a CAN FD cluster, the default queue size is based on the frame’s database payload length, which may be larger than

24 bytes (up to 64 bytes).

© National Instruments

4-207

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—Resample Rate

Resample Rate

Data Type Direction Required? Default
Read/Write No 1000.0 (Sample Every Millisecond)

Property Class
XNET Session

Short Name
ResampRate

Description

Rate used to resample frame data to/from signal data in waveforms.

This property applies only when the session mode is Signal Input Waveform or Signal Output
Waveform. This property is ignored for all other modes.

The data type is 64-bit floating point (DBL). The units are in Hertz (samples per second).

NI-XNET Hardware and Software Manual 4-208 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read.vi

XNET Read.vi

Purpose

Reads data from the network using an XNET session.

Description
The instances of this polymorphic VI specify the type of data returned.

XNET Read.vi and XNET Write.vi are optimized for real-time performance. XNET
Read.vi executes quickly and avoids access to shared resources that can induce jitter on other
VI priorities.

There are three categories of XNET Read instance VIs:

Signal: Use when the session mode is Signal Input. The XNET Read.vi instance must
match the mode exactly (for example, the Signal Waveform instance when mode is
Signal Input Waveform).

Frame: Use when the session mode is Frame Input. The XNET Read.vi instance
specifies the desired data type for frames and is not related to the mode. For an
easy-to-use data type, use the CAN, FlexRay, or LIN instance.

State: Use to read state, status, and time information for the session interface. You can
use these instances in addition to Signal or Frame instances, and they are not related to
the mode. The data these instances return is optimized for performance. Although
property nodes may return similar runtime data, those properties are not necessarily
optimized for real-time loops.

The XNET Read instance VIs are:

XNET Read (Frame CAN).vi: The session uses a CAN interface, and the mode is
Frame Input Stream Mode, Frame Input Queued Mode, or Frame Input Single-Point
Mode.

XNET Read (Frame FlexRay).vi: The session uses a FlexRay interface, and the mode
is Frame Input Stream Mode, Frame Input Queued Mode, Frame Input Single-Point
Mode, PDU Input Queued Mode (similar to Frame Input Queued Mode), and PDU Input
Single-Point Mode (similar to Frame Input Single-Point Mode).

XNET Read (Frame LIN).vi: The session uses a LIN interface, and the mode is Frame
Input Stream Mode, Frame Input Queued Mode, or Frame Input Single-Point Mode

XNET Read (Frame Raw).vi: A data type for frame input that is protocol independent
and more efficient than the protocol-specific instances.

XNET Read (Signal Single-Point).vi: The session mode is Signal Input Single-Point.
XNET Read (Signal Waveform).vi: The session mode is Signal Input Waveform.
XNET Read (Signal XY).vi: The session mode is Signal Input XY.

© National Instruments 4-209 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—XNET Read.vi

XNET Read (State CAN Comm).vi: Returns the CAN interface’s communication state.

XNET Read (State FlexRay Comm).vi: Returns the FlexRay interface’s
communication state.

XNET Read (State LIN Comm).vi: Returns the LIN interface’s communication state.
XNET Read (State SAE J1939 Comm).vi: Reads the state of J1939 communication
using an XNET session.

XNET Read (State FlexRay Cycle Macrotick).vi: Returns the current global time of
the session FlexRay interface, represented as cycle and macrotick.

XNET Read (State FlexRay Statistics).vi: Returns the communication statistics for the
session FlexRay interface.

XNET Read (State Time Comm).vi: Returns the LabVIEW timestamp at which
communication began for the session interface.

XNET Read (State Time Current).vi: Returns the session interface current time as a
LabVIEW timestamp.

XNET Read (State Time Start).vi: Returns the LabVIEW timestamp at which
communication started for the session interface. This time always precedes the
Communication time.

XNET Read (State Session Info).vi: Returns the current state for the session provided.

NI-XNET Hardware and Software Manual 4-210 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame CAN).vi

XNET Read (Frame CAN).vi

Purpose

Reads data from a session as an array of CAN frames. The session must use a CAN interface
and Frame Input Stream Mode, Frame Input Queued Mode, or Frame Input Single-Point

Mode.
Format
session in HI-HHET session auk
number bo read (-1 ———— ghg” Badata
kimeout (0} Beom g or ol
error in (no error) ===-=E
Inputs
T session in is the session to read. This session is selected from the LabVIEW

© National Instruments

project or returned from XNET Create Session.vi. The session mode must
be Frame Input Stream, Frame Input Queued, or Frame Input Single-Point.

number to read is the number of frame values desired.

If number to read is positive (or 0), the data array size is no greater than
this number.

If number to read is negative (typically —1), all available frame values are
returned. If number to read is negative, you must use timeout of 0.

This input is optional. The default value is —1.

If the session mode is Frame Input Single-Point, set number to read to
either —1 or the number of frames in the sessions list. This ensures that the
XNET Read (Frame CAN).vi can return the current value of all session
frames.

timeout is the time to wait for number to read frame values to become
available.

The timeout is a LabVIEW relative time, represented as 64-bit
floating-point in units of seconds.

If timeout is positive, the XNET Read (Frame CAN).vi waits for number
to read frame values, then returns that number. If the values do not arrive
prior to the timeout, an error is returned.

4-211 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame CAN).vi

If timeout is negative, the XNET Read (Frame CAN).vi waits indefinitely
for number to read frame values.

If timeout is zero, the XNET Read (Frame CAN).vi does not wait and
immediately returns all available frame values up to the limit number to
read specifies.

This input is optional. The default value is 0.0.

If the session mode is Frame Input Single-Point, you must leave timeout
unwired (0.0). Because this mode reads the most recent value of each
frame, timeout does not apply.

S error in is the error cluster input (refer to Error Handling).
Outputs
FIi0 session out is the same as session in, provided for use with subsequent VIs.
En—_] data returns an array of LabVIEW clusters.

Each array element corresponds to a frame the session receives.

For a Frame Input Single-Point session mode, the order of frames in the
array corresponds to the order in the session list.

The elements of each cluster are specific to the CAN protocol. For more
information, refer to Appendix A, Summary of the CAN Standard, or the
CAN protocol specification.

The cluster elements are:
identifier is the CAN frame arbitration identifier.

If extended? Is false, the identifier uses standard format, so
11 bits of this identifier are valid. If extended? Is true, the
identifier uses extended format, so 29 bits of this identifier are
valid.

extended? is a Boolean value that determines whether the
identifier uses extended format (true) or standard format (false).

echo? is a Boolean value that determines whether the frame was
an echo of a successful transmit (true), or received from the
network (false).

This value is true only when you enable echo of transmitted
frames by setting the XNET Session Interface:Echo Transmit?
property to True.

NI-XNET Hardware and Software Manual 4-212 ni.com

© National Instruments

Chapter 4

NI-XNET API for LabVIEW—XNET Read (Frame CAN).vi

type is the frame type (decimal value in parentheses):

CAN Data (0)

CAN 2.0 Data (8)

CAN FD Data (16)

The CAN data frame contains payload
data. This is the most commonly used
frame type for CAN. In ISO CAN FD
mode, the CAN data type is more
specific and is one of the types listed
below.

The frame contains payload data and has
been transmitted in an ISO CAN FD
session using the CAN 2.0 standard.

The frame contains payload data and has
been transmitted in an ISO CAN FD
session using the ISO CAN FD standard.

CAN FD+BRS Data (24) The frame contains payload data

CAN Remote (1)

Log Trigger (225)

Start Trigger (226)

CAN Bus Error (2)

4-213

and has been transmitted in an ISO
CAN FD session using the CAN
FD+BRS standard.

A CAN remote frame. An ECU
transmits a CAN remote frame to request
data for the corresponding identifier.
Your application can respond by writing
a CAN data frame for the identifier.

A Log Trigger frame. This frame is
generated when a trigger occurs on an
external connection (for example,
PXI_Trig0). For information about this
frame, including the other frame fields,
refer to Special Frames.

A Start Trigger frame is generated when
the interface is started (refer to Start
Interface for more information). For
information about this frame, including
the other frame fields, refer to Special
Frames.

A CAN Bus Error frame is generated
when a bus error is detected on the CAN
bus. For information about this frame,

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame CAN).vi

including the other frame fields, refer to
Special Frames.

timestamp represents the absolute time when the XNET interface
received the frame (end of frame), accurate to microseconds. The

timestamp uses the LabVIEW absolute timestamp type.
fus] payload is the array of data bytes for the CAN data frame.

The array size indicates the received frame value payload length.
According to the CAN protocol, this payload length range is 0-8.
For CAN FD, the range can be 0-8, 12, 16, 20, 24, 32, 48, or 64.

For a received remote frame (type of CAN Remote), the payload
length in the frame value specifies the number of payload bytes
requested. This payload length is provided to your application
by filling payload with the requested number of bytes. Your
application can use the payload array size, but you must ignore
the actual values in the payload bytes.

For an example of how this data applies to network traffic, refer to Frame
Input Stream Mode, Frame Input Queued Mode, or Frame Input
Single-Point Mode.

error out is the error cluster output (refer to Error Handling).

Description
The data represents an array of CAN frames. Each CAN frame uses a LabVIEW cluster with
CAN-specific elements.
The CAN frames are associated to the session’s list of frames as follows:
e Frame Input Stream Mode: Array of all frame values received (list ignored).

e Frame Input Queued Mode: Array of frame values received for the single frame specified
in the list.

* Frame Input Single-Point Mode: Array of single frame values, one for each frame
specified in the list.

Due to issues with LabVIEW memory allocation for clusters with an array, this XNET
Read.vi instance can introduce jitter to a high-priority loop on LabVIEW Real-Time (RT)
(refer to High Priority Loops for more information). The XNET Read (Frame Raw).vi
instance provides optimal performance for high-priority loops.

NI-XNET Hardware and Software Manual 4-214 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame FlexRay).vi

XNET Read (Frame FlexRay).vi

Purpose

Reads data from a session as an array of FlexRay frames. The session must use a FlexRay
interface and Frame Input Stream Mode, Frame Input Queued Mode, or Frame Input
Single-Point Mode.

Format
session in HI-HHET session auk
rumber o read (1) ———— ghg” E=data
kimeout {0} Becm grror ook
errar in (no error) mﬂ
Inputs
170 session in is the session to read. This session is selected from the LabVIEW

© National Instruments

project or returned from XNET Create Session.vi. The session mode must
be Frame Input Stream, Frame Input Queued, or Frame Input Single-Point.

number to read is the number of frame values desired.

If number to read is positive (or 0), the data array size is no greater than
this number.

If number to read is negative (typically —1), all available frame values are
returned. If number to read is negative, you must use a timeout of 0.

This input is optional. The default value is —1.

If the session mode is Frame Input Single-Point, set number to read to
either —1 or the number of frames in the session list. This ensures that
XNET Read (Frame FlexRay).vi can return the current value of all
session frames.

timeout is the time to wait for number to read frame values to become
available.

The timeout is a LabVIEW relative time, represented as 64-bit
floating-point in units of seconds.

If timeout is positive, XNET Read (Frame FlexRay).vi waits for number
to read frame values, then returns that number. If the values do not arrive
prior to the timeout, an error is returned.

4-215 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame FlexRay).vi

If timeout is negative, XNET Read (Frame FlexRay).vi waits indefinitely
for number to read frame values.

If timeout is zero, XNET Read (Frame FlexRay).vi does not wait and
immediately returns all available frame values up to the limit number to
read specifies.

This input is optional. The default value is 0.0.

If the session mode is Frame Input Single-Point, you must leave timeout
unwired (0.0). Because this mode reads the most recent value of each
frame, timeout does not apply.

S error in is the error cluster input (refer to Error Handling).

Outputs

70 session out is the same as session in, provided for use with subsequent VIs.

data returns an array of LabVIEW clusters.

T

Each array element corresponds to a frame the session receives.

For the Frame Input Single-Point and PDU Input Single-Point session
modes, the order of frames/payload in the array corresponds to the order in
the session list.

The elements of each cluster are specific to the FlexRay protocol. For more
information, refer to Appendix B, Summary of the FlexRay Standard, or the
FlexRay Protocol Specification.

The cluster elements are:
slot specifies the slot number within the FlexRay cycle.

cycle count specifies the cycle number.

BE

The FlexRay cycle count increments from O to 63, then rolls over

back to 0.

startup? is a Boolean value that specifies whether the frame is a
startup frame (true) or not (false).

sync? is a Boolean value that specifies whether the frame is a sync
frame (true) or not (false).

preamble? is a Boolean value that specifies the value of the

payload preamble indicator in the frame header.

NI-XNET Hardware and Software Manual 4-216 ni.com

© National Instruments

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame FlexRay).vi

If the frame is in the static segment, preamble? being true
indicates the presence of a network management vector at the
beginning of the payload. The XNET Cluster FlexRay:Network
Management Vector Length property specifies the number of
bytes at the beginning.

If the frame is in the dynamic segment, preamble? being true
indicates the presence of a message ID at the beginning of the
payload. The message ID is always 2 bytes in length.

If preamble? is false, the payload does not contain a network
management vector or a message ID.

chA is a Boolean value that specifies whether the frame was
received on channel A (true) or not (false).

chB is a Boolean value that specifies whether the frame was
received on channel B (true) or not (false).

echo? Is a Boolean value that determines whether the frame was
an echo of a successful transmit (true) or received from the
network (false).

This value is true only when you enable echo of transmitted
frames by setting the XNET Session Interface:Echo Transmit?
property to true. Frames are echoed only to a session with the
Frame Input Stream Mode.

type is the frame type (decimal value in parentheses):

FlexRay Data (32) FlexRay data frame. The frame contains
payload data. This is the most commonly
used frame type for FlexRay. All
elements in the frame are applicable.

FlexRay Null (33) FlexRay null frame. When a FlexRay
null frame is received, it indicates that
the transmitting ECU did not have new
data for the current cycle.

Null frames occur in the static segment
only. This frame type does not apply to
frames in the dynamic segment.

This frame type occurs only when you
set the XNET Session
Interface:FlexRay:Null Frames To Input

4-217 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame FlexRay).vi

Stream? property to true. This property

enables logging of received null frames

to a session with the Frame Input Stream
Mode. Other sessions are not affected.

For this frame type, the payload array is
empty (size 0), and preamble? and
echo? are false. The remaining elements
in the frame reflect the data in the
received null frame and the timestamp
when it was received.

FlexRay Symbol (34) FlexRay symbol frame. The frame
contains a symbol received on the
FlexRay bus.

For this frame type, the first payload byte
(offset 0) specifies the type of symbol:
0 for MTS, 1 for wakeup. The frame
payload length is 1 or higher, with bytes
beyond the first byte reserved for future
use. The frame timestamp specifies when
the symbol window occurred. The cycle
count, channel A indicator, and

channel B indicator are encoded the
same as FlexRay data frames. All other
fields in the frame are unused (0).

Log Trigger (225) A Log Trigger frame. This frame is
generated when a trigger occurs on an
external connection (for example,
PXI_Trig0). For information about this
frame, including the other frame fields,
refer to Special Frames.

Start Trigger (226) A Start Trigger frame is generated when
the interface is started (refer to Start
Interface for more information). For
information about this frame, including
the other frame fields, refer to Special
Frames.

timestamp represents the absolute time when the XNET interface
received the frame (end of frame), accurate to microseconds. The

timestamp uses the LabVIEW absolute timestamp type.

NI-XNET Hardware and Software Manual 4-218 ni.com

=mn

Description

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame FlexRay).vi

While the NI-XNET FlexRay interface is communicating
(integrated), this timestamp is normally derived from FlexRay
global time, the FlexRay network timebase. Under this
configuration, the timestamp does not drift as compared to the
FlexRay global time (XNET Read (State FlexRay Cycle
Macrotick).vi), but it may drift relative to other NI hardware
products and the LabVIEW absolute timebase. If you prefer to
synchronize this timestamp to other sources, you can use XNET
Connect Terminals.vi to change the source of the Master
Timebase terminal.

payload is the array of data bytes for FlexRay frames of type
FlexRay Data or FlexRay Null.

The array size indicates the received frame value payload length.
According to the FlexRay protocol, this length range is 0-254.

For PDU session modes, only the payload for the particular PDU
is returned, not the entire frame.

For an example of how this data applies to network traffic, refer to Frame
Input Stream Mode, Frame Input Queued Mode, or Frame Input
Single-Point Mode.

error out is the error cluster output (refer to Error Handling).

The data represents an array of FlexRay frames. Each FlexRay frame uses a LabVIEW cluster
with FlexRay-specific elements.

The FlexRay frames are associated to the session list of frames as follows:

* Frame Input Stream Mode: Array of all frame values received (list ignored).

* Frame Input Queued Mode: Array of frame values received for the single frame specified

in the list.

* Frame Input Single-Point Mode: Array of single frame values, one for each frame

specified in the list.

* PDU Input Queued Mode: Array of frame (PDU payload) values received for the single
PDU specified in the list. This mode is similar to Frame Input Queued Mode,

* PDU Input Single-Point Mode: Array of single frame (PDU payload) values, one for
each PDU specified in the list. This mode is similar to Frame Input Single-Point Mode.

Due to issues with LabVIEW memory allocation for clusters with an array, this XNET
Read.vi instance can introduce jitter to a high-priority loop on LabVIEW Real-Time (RT)
(refer to High Priority Loops for more information). The XNET Read (Frame Raw).vi
instance provides optimal performance for high-priority loops.

© National Instruments

4-219 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame LIN).vi

XNET Read (Frame LIN).vi

Purpose

Reads data from a session as an array of LIN frames. The session must use a LIN interface
and Frame Input Stream Mode, Frame Input Queued Mode, or Frame Input Single-Point

Mode.

Format

SES5I0Nn in HI-HHET session out
number to read {(-1) —— &g B daty
T arror out

error in {no error) =====H

Inputs

/0

session in is the session to read. This session is selected from the LabVIEW
project or returned from XNET Create Session.vi. The session mode must
be Frame Input Stream, Frame Input Queued, or Frame Input Single-Point.

number to read is the number of frame values desired.

If number to read is positive (or 0), the data array size is no greater than
this number.

If number to read is negative (typically —1), all available frame values are
returned. If number to read is negative, you must use a timeout of 0.

This input is optional. The default value is —1.

If the session mode is Frame Input Single-Point, set number to read to
either —1 or the number of frames in the session list. This ensures that
XNET Read (Frame LIN).vi can return the current value of all session
frames.

timeout is the time to wait for number to read frame values to become
available.

The timeout is a LabVIEW relative time, represented as 64-bit
floating-point in units of seconds.

If timeout is positive, XNET Read (Frame LIN).vi waits for number to
read frame values, then returns that number. If the values do not arrive prior
to the timeout, an error is returned.

NI-XNET Hardware and Software Manual 4-220 ni.com

o

Outputs
]

"

a

© National Instruments

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame LIN).vi

If timeout is negative, XNET Read (Frame LIN).vi waits indefinitely for
number to read frame values.

If timeout is zero, XNET Read (Frame LIN).vi does not wait and
immediately returns all available frame values up to the limit number to
read specifies.

This input is optional. The default value is 0.0.

If the session mode is Frame Input Single-Point, you must leave timeout
unwired (0.0). Because this mode reads the most recent value of each
frame, timeout does not apply.

error in is the error cluster input (refer to Error Handling).

session out is the same as session in, provided for use with subsequent VIs.
data returns an array of LabVIEW clusters.
Each array element corresponds to a frame the session receives.

For a Frame Input Single-Point session mode, the order of frames in the
array corresponds to the order in the session list.

The elements of each cluster are specific to the LIN protocol. For more
information, refer to Appendix C, Summary of the LIN Standard, or the
LIN protocol specification.

For the Frame Input Stream session mode, LIN frames are read in their
raw form, without interpretation of their elements using the database. For
the Frame Input Single-point and Frame Input Queued session modes,
information from the database is used to interpret the LIN frames for ease
of use.

The following cluster description applies to session modes Frame Input
Single-point and Frame Input Queued. For these modes, the cluster
elements are:

identifier is the LIN frame identifier.

The identifier is a number from 0 to 63. This number identifies the
content of the data contained within payload.

The location of this ID within the frame depends on the value of
event slot?. If event slot? is false, this ID is taken from the
frame’s header. If event slot? is true, this ID is taken from the first

4-221 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame LIN).vi

NI-XNET Hardware and Software Manual

payload byte. This ensures that the number identifies the payload,
regardless of how it was scheduled.

Regardless of its location, this is the unprotected ID, without
parity applied. For more information about LIN ID protection,
refer to Appendix C, Summary of the LIN Standard.

event slot? is a Boolean value that specifies whether the frame
was received within an event-triggered schedule entry (slot). If the
value is true, the frame was received within an event-triggered
slot. If the value is false, the frame was received within an
unconditional or sporadic slot.

When this value is true, event ID contains the ID from the frame’s
header.

event ID is the identifier for an event-triggered slot (event slot?
true).

When event slot? is true, event ID is the ID from the frame’s
header. The event ID is a number from O to 63. This is the
unprotected ID, without parity applied.

When event slot? is false, this value does not apply (it is 0).

echo? is a Boolean value that determines whether the frame was
an echo of a successful transmit (true), or received from the
network (false).

This value is true only when you enable echo of transmitted
frames by setting the XNET Session Interface:Echo Transmit?
property to True.

type is the frame type (decimal value in parentheses):

LIN Data (64) The LIN data frame contains payload
data.

Log Trigger (225) A Log Trigger frame. This frame is
generated when a trigger occurs on an
external connection (for example,
PXI_Trig0). For information about this
frame, including the other frame fields,
refer to Special Frames.

Start Trigger (226) A Start Trigger frame is generated when
the interface is started (refer to Start
Interface for more information). For

4-222 ni.com

] H

[va

© National Instruments

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame LIN).vi

information about this frame, including
the other frame fields, refer to Special
Frames.

LIN Bus Error (65) A LIN Bus Error frame is generated
when a bus error is detected on the LIN
bus. For information about this frame,
including the other frame fields, refer to
Special Frames.

timestamp represents the absolute time when the XNET interface
received the frame (end of frame), accurate to microseconds. The
timestamp uses the LabVIEW absolute timestamp type.

payload is the array of data bytes for the LIN data frame.

The array size indicates the received frame’s payload length.
According to the LIN protocol, this payload is 0-8 bytes in length.

If the frame payload is used within an event-triggered schedule
entry (slot), the first byte of payload is the identifier of the frame
in its protected form (checksum applied). This is required by the
LIN standard even if the frame transmits in an unconditional or
sporadic slot. For this type of LIN frame, the actual data (for
example, signal values) is limited to 7 bytes.

For example, assume that frame ID 5 is received in an
unconditional slot and an event-triggered slot of ID 9. When you
receive from the unconditional slot, identifier is 5, event slot? is
false, event ID is 0, and the first payload byte contains 5 with
checksum applied. When you receive from the event-triggered
slot, identifier is 5, event slot? is true, event ID is 9, and the first
payload byte contains 5 with checksum applied. Regardless of
how the frame is received, you can use the identifier to determine
the contents of the actual payload data contents in bytes 2—8.

The following cluster description applies to session mode Frame Input
Stream. For this mode, the cluster elements are:

identifier is the identifier received within the frame’s header.
The identifier is a number from O to 63.

If the schedule entry (slot) is unconditional or sporadic, this
identifies the payload data (LIN frame). If the schedule entry is
event triggered, this identifies the schedule entry itself, and the

4-223 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame LIN).vi

protected ID contained in the first payload byte identifies the
payload.

event slot? is not used. This element is false.
event ID is not used. This element is 0.

echo? uses the same semantics as the previous description for
Frame Input Queued.

type uses the same semantics as the previous description for
Frame Input Queued.

timestamp uses the same semantics as the previous description
for Frame Input Queued.

payload uses the same semantics as the previous description for
Frame Input Queued.

For an example of how this data applies to network traffic, refer to Frame
Input Stream Mode, Frame Input Queued Mode, or Frame Input
Single-Point Mode.

=mn

Description

error out is the error cluster output (refer to Error Handling).

The data represents an array of LIN frames. Each LIN frame uses a LabVIEW cluster with

LIN-specific elements.

The LIN frames are associated to the session’s list of frames as follows:

e Frame Input Stream Mode: Array of all frame values received (list ignored).

e Frame Input Queued Mode: Array of frame values received for the single frame specified

in the list.

e Frame Input Single-Point Mode: Array of single frame values, one for each frame

specified in the list.

Due to issues with LabVIEW memory allocation for clusters with an array, this XNET
Read.vi instance can introduce jitter to a high-priority loop on LabVIEW Real-Time (RT)
(refer to High Priority Loops for more information). The XNET Read (Frame Raw).vi
instance provides optimal performance for high-priority loops.

NI-XNET Hardware and Software Manual

4-224 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame Raw).vi

XNET Read (Frame Raw).vi

Purpose
Reads data from a session as an array of raw bytes.

Format

session in HI=HHET session auk

number to read (-1 ——— @ L data
Eirmeout {0} Bocn grror ouk
Errar in (no error) ===-=ﬂ
Inputs
170 session in is the session to read. This session is selected from the LabVIEW

© National Instruments

project or returned from XNET Create Session.vi. The session mode must
be Frame Input Stream Mode, Frame Input Queued Mode, or Frame Input
Single-Point Mode.

number to read is the number of bytes (U8) desired.

This number does not represent the number of frames to read. As encoded
in raw data, each frame can vary in length. Therefore, the number
represents the maximum raw bytes to read, not the number of frames.

Standard CAN and LIN frames are always 24 bytes in length. If you want
to read a specific number of frames, multiply that number by 24.

CAN FD and FlexRay frames vary in length. For example, if you pass
number to read of 91, the data might return 80 bytes, within which the
first 24 bytes encode the first frame, and the next 56 bytes encode the
second frame.

If number to read is positive (or 0), the data array size is no greater than
this number. The minimum size for a single frame is 24 bytes.

If number to read is negative (typically —1), all available raw data is
returned. If number to read is negative, you must use a timeout of 0.

This input is optional. The default value is —1.

If the session mode is Frame Input Single-Point, set number to read to —1.
This ensures that XNET Read (Frame Raw).vi can return the current
value of all session frames.

4-225 NI-XNET Hardware and Software Manual

Chapter 4

Outputs

£

NI-XNET API for LabVIEW—XNET Read (Frame Raw).vi

]

timeout is the time to wait for number to read frame bytes to become
available.

To avoid returning a partial frame, even when number to read bytes are
available from the hardware, this read may return fewer bytes in data. For
example, assume you pass number to read of 70 bytes and timeout of
10 seconds. During the read, two frames are received, the first 24 bytes in
size, and the second 56 bytes in size, for a total of 80 bytes. The read returns
after the two frames are received, but only the first frame is copied to data.
If the read copied 46 bytes of the second frame (up to the limit of 70), that
frame would be incomplete and therefore difficult to interpret. To avoid this
problem, the read always returns complete frames in data.

The timeout is a LabVIEW relative time, represented as 64-bit
floating-point in units of seconds.

If timeout is positive, XNET Read (Frame Raw).vi waits for number to
read frame bytes to be received, then returns complete frames up to that
number. If the bytes do not arrive prior to the timeout, an error is returned.

If timeout is negative, XNET Read (Frame Raw).vi waits indefinitely for
number to read frame bytes.

If timeout is zero, XNET Read (Frame Raw).vi does not wait and
immediately returns all available frame bytes up to the limit number to
read specifies.

This input is optional. The default value is 0.0.

If the session mode is Frame Input Single-Point, you must leave timeout
unwired (0.0). Because this mode reads the most recent value of each
frame, timeout does not apply.

error in is the error cluster input (refer to Error Handling).

session out is the same as session in, provided for use with subsequent VIs.
data returns an array of bytes.

The raw bytes encode one or more frames using the Raw Frame Format.
This frame format is the same for read and write of raw data, and it is also
used for log file examples.

The data always returns complete frames.

NI-XNET Hardware and Software Manual 4-226 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Frame Raw).vi

For information about which elements of the raw frame are applicable,
refer to the frame read for the protocol in use (XNET Read (Frame
CAN).vi, XNET Read (Frame FlexRay).vi), or XNET Read (Frame
LIN).vi. For example, when you read FlexRay frames for a Frame Input
Queued session, the only frame type is FlexRay Data (other types apply to
Frame Input Stream only).

For an example of how this data applies to network traffic, refer to Frame
Input Stream Mode, Frame Input Queued Mode, or Frame Input
Single-Point Mode.

= error out is the error cluster output (refer to Error Handling).
- -]

Description

The raw bytes encode one or more frames using the Raw Frame Format. The session must use
Frame Input Stream Mode, Frame Input Queued Mode, Frame Input Single-Point Mode,
PDU Input Queued Mode (similar to Frame Input Queued Mode), or PDU Input Single-Point
Mode (similar to Frame Input Single-Point Mode). The raw frame format is protocol
independent, so the session can use either a CAN, FlexRay, or LIN interface.

The raw frame format matches the format of data transferred to/from the XNET hardware.
Because it is not converted to/from LabVIEW clusters for ease of use, it is more efficient with
regard to performance. This XNET Read.vi instance typically is used to read raw frame data
from the interface and log the data to a file for later analysis. The NI-XNET examples provide
code to read the raw frame data from the log file and convert the raw data into
protocol-specific LabVIEW clusters.

The raw frames are associated to the session’s list of frames as follows:

* Frame Input Stream Mode: Array of all frame values received (list ignored).

e Frame Input Queued Mode: Array of frame values received for the single frame specified
in the list.

* Frame Input Single-Point Mode: Array of single frame values, one for each frame
specified in the list.

e PDU Input Queued Mode: Array of frame (PDU payload) values received for the single
PDU specified in the list. This mode is similar to Frame Input Queued Mode.

* PDU Input Single-Point Mode: Array of single frame (PDU payload) values, one for each
PDU specified in the list. This mode is similar to Frame Input Single-Point Mode.

© National Instruments 4-227 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Signal Single-Point).vi

XNET Read (Signal Single-Point).vi

Purpose

Reads data from a session of Signal Input Single-Point Mode.

Format

SEession in HI-RHET session ouk
ahg data
error in (no error) S grror ook

Inputs

H

Outputs
I/0

FDEL]

=mo

session in is the session to read. This session is selected from the LabVIEW
project or returned from XNET Create Session.vi. The session mode must
be Signal Input Single-Point Mode.

error in is the error cluster input (refer to Error Handling).

session out is the same as session in, provided for use with subsequent VIs.

data returns a one-dimensional array of signal values. Each signal value is
scaled, 64-bit floating point.

Each array element corresponds to a signal configured for the session. The
order of signals in the array corresponds to the order in the session list.

The data returns the most recent value received for each signal. If multiple
frames for a signal are received since the previous call to XNET Read
(Signal Single-Point).vi (or session start), only signal data from the most
recent frame is returned.

If no frame is received for the corresponding signals since you started the
session, the XNET Signal Default Value is returned.

For an example of how this data applies to network traffic, refer to Signal
Input Single-Point Mode.

A trigger signal returns a value of 1.0 or 0.0, depending on whether its
frame arrived since the last Read (or Start) or not. For more information
about trigger signals, refer to Signal Input Single-Point Mode.

error out is the error cluster output (refer to Error Handling).

NI-XNET Hardware and Software Manual 4-228 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Signal Waveform).vi

XNET Read (Signal Waveform).vi

Purpose

Reads data from a session of Signal Input Waveform Mode.

The data represents a waveform of resampled values for each signal in the session. You can
wire the data directly to a LabVIEW Waveform Graph for display.

Format
session in HI-HHET session auk
riarnber bo read (-1) ———— 4" o data
tirmeouk [0} Beon prror ouk
error in (no error) ====ﬂ
Inputs

/0

© National Instruments

session in is the session to read. This session is selected from the LabVIEW
project or returned from XNET Create Session.vi. The session mode must
be Signal Input Waveform.

number to read is the number of samples desired.

If number to read is positive (or 0), the number of samples returned (size
of Y arrays) is no greater than this number. If timeout is nonzero, the
number returned is exactly this number on success.

If number to read is negative (typically —1), the maximum number of
samples is returned. If number to read is negative, you must use a timeout
of zero.

This input is optional. The default value is —1.

timeout is the time to wait for number to read samples to become
available.

The timeout is a LabVIEW relative time, represented as 64-bit
floating-point in units of seconds.

If timeout is positive, XNET Read (Signal Waveform).vi waits for
number to read samples, then returns that number. If the samples do not
arrive prior to the timeout, an error is returned.

If timeout is negative, XNET Read (Signal Waveform).vi waits
indefinitely for number to read samples.

4-229 NI-XNET Hardware and Software Manual

Chapter 4

H

Outputs

.

I

NI-XNET API for LabVIEW—XNET Read (Signal Waveform).vi

!

0

_

| H

FDEL]

If timeout is zero, XNET Read (Signal Waveform).vi does not wait and
immediately returns all available samples up to the limit number to read
specifies.

Because time determines sample availability, typical values for this
timeout are O (return available) or a large positive value such as 100.0 (wait
for a specific number to read). This input is optional. The default value
is 0.0.

error in is the error cluster input (refer to Error Handling).

session out is the same as session in, provided for use with subsequent VIs.
data returns a one-dimensional array of LabVIEW waveforms.

Each array element corresponds to a signal configured for the session. The
order of signals in the array corresponds to the order in the session list.

The waveform elements are:

t0 is the waveform start time. This is a LabVIEW absolute
timestamp that specifies the time for the first sample in the
Y array.

dt is the waveform delta time. This is a LabVIEW relative time
that specifies the time between each sample in the Y array.
LabVIEW relative time is represented as 64-bit floating point in
units of seconds. The waveform dt always is the inverse of the
XNET Session Resample Rate property.

Y is the array of resampled signal values. Each signal value is
scaled, 64-bit floating point.

The Y array size is the same for all waveforms returned, because
it is determined based on time, and not the number of frames
received.

If no frame is received for the corresponding signals since you
started the session, the XNET Signal Default Value is returned.

For an example of how this data applies to network traffic, refer to Signal
Input Waveform Mode.

error out is the error cluster output (refer to Error Handling).

NI-XNET Hardware and Software Manual 4-230 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Signal XY).vi

XNET Read (Signal XY).vi

Purpose
Reads data from a session of Signal Input XY Mode.
Format
session in HI=RHET session auk
riurnber bo read (-1 —0 & = data
kirne limit {rone) ,_,.ﬂmj Bocs gprr ouk
errar in (no errar)
Inputs
170 session in is the session to read. This session is selected from the LabVIEW

© National Instruments

project or returned from XNET Create Session.vi. The session mode must
be Signal Input XY.

number to read is the number of values desired.

If number to read is positive (or 0), the size of value arrays is no greater
than this number.

If number to read is negative (typically —1), the maximum number of
values is returned.

This input is optional. The default value is —1.

If number to read values are received for any signal, XNET Read (Signal
XY).vi returns those values, even if the time limit has not occurred.
Therefore, to read values up to the time limit, leave number to read
unwired (-1).

time limit is the timestamp to wait for before returning signal values.

If time limit is valid, XNET Read (Signal XY).vi waits for the timestamp
to occur, then returns available values (up to number to read). If you
increment time limit by a fixed number of seconds for each call to XNET
Read (Signal XY).vi, you effectively obtain a moving window of signal
values.

If time limit is unwired (invalid), XNET Read (Signal XY).vi returns
immediately all available values up to the current time (up to number to
read).

4-231 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Signal XY).vi

This input is optional. The default value is an invalid timestamp.

The timeout of other XNET Read.vi instances specifies the maximum
amount time to wait for a specific number to read values. The time limit
of XNET Read (Signal XY).vi does not specify a worst-case timeout
value, but rather a specific absolute timestamp to wait for.

error in is the error cluster input (refer to Error Handling).

H

Outputs

170 session out is the same as session in, provided for use with subsequent VIs.

data returns an array of LabVIEW clusters.

T

Each array element corresponds to a signal configured for the session. The
order of signals in the array corresponds to the order in the session list.

Each cluster contains two arrays, one for timestamp and one for value. For
each signal, the size of the timestamp and value arrays always is the same,
such that it represents a single array of timestamp/value pairs.

Each timestamp/value pair represents a value from a received frame. When
signals exist in different frames, the array sizes may be different from one
cluster (signal) to another.

The cluster elements are:

=] timestamp is the array of LabVIEW timestamps, one for each
frame received that contains the signal.

Each timestamp represents the absolute time when the XNET
interface received the frame (end of frame), accurate to
microseconds.

foBL] value is the array of signal values, one for each frame received that
contains the signal.

Each signal value is scaled, 64-bit floating point.
The value array size is the same as the timestamp array size.

For an example of how this data applies to network traffic, refer to Signal
Input XY Mode.

When you use this instance with a session of Signal Input Single-Point
Mode, time limit and number to read are ignored, and the timestamp and
value arrays always contain only one element per signal. This effectively
returns a single pair of timestamp and value for every signal.

NI-XNET Hardware and Software Manual 4-232 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (Signal XY).vi

error out is the error cluster output (refer to Error Handling).

Description

You also can use this instance to read data from a session of Signal Input Single-Point Mode,
although XNET Read (Signal Single-Point).vi is more common for that mode.

The data represents an XY plot of timestamp/value pairs for each signal in the session. You
can wire the data directly to a LabVIEW XY Graph for display.

© National Instruments 4-233 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State CAN Comm).vi

XNET Read (State CAN Comm).vi

Purpose
Reads the state of CAN communication using an XNET session.

Format

session in HI-HHET sEssion ouk

ey B ZAN comm
Error in (no error) B gy oLk
Inputs
I’ session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

i E

Outputs
session out is the same as session in, provided for use with subsequent VIs.
S CAN comm returns a LabVIEW cluster containing the communication

elements. The elements are:

communication state specifies the CAN interface state with
respect to error confinement (decimal value in parentheses):

Error Active (0) This state reflects normal communication,
with few errors detected. The CAN interface
remains in this state as long as receive error
counter and transmit error counter are
both below 128.

Error Passive (1) If either the receive error counter or
transmit error counter increment above
127, the CAN interface transitions into this
state. Although communication proceeds, the
CAN device generally is assumed to have
problems with receiving frames.

When a CAN interface is in error passive
state, acknowledgement errors do not
increment the transmit error counter.

NI-XNET Hardware and Software Manual 4-234 ni.com

Chapter 4

Bus Off (2)

Init (3)

NI-XNET API for LabVIEW—XNET Read (State CAN Comm).vi

Therefore, if the CAN interface transmits a
frame with no other device (ECU) connected,
it eventually enters error passive state due to
retransmissions, but does not enter bus off
state.

If the transmit error counter increments
above 255, the CAN interface transitions into
this state. Communication immediately stops
under the assumption that the CAN interface
must be isolated from other devices.

When a CAN interface transitions to the bus
off state, communication stops for the
interface. All NI-XNET sessions for the
interface no longer receive or transmit frame
values. To restart the CAN interface and all its
sessions, call XNET Start.vi.

This is the CAN interface initial state on
power-up. The interface is essentially off, in
that it is not attempting to communicate with
other nodes (ECUs).

When the start trigger occurs for the CAN
interface, it transitions from the Init state to
the Error Active state. When the interface
stops due to a call to XNET Stop.vi, the CAN
interface transitions from either Error Active
or Error Passive to the Init state. When the
interface stops due to the Bus Off state, it
remains in that state until you restart.

transceiver error? indicates whether an error condition exists on
the physical transceiver. This is typically referred to as the

transceiver chip NERR pin. False indicates normal operation
(no error), and true indicates an error.

sleep? indicates whether the transceiver and communication
controller are in their sleep state. False indicates normal operation
(awake), and true indicates sleep.

last error specifies the status of the last attempt to receive or
transmit a frame (decimal value in parentheses):

None (0)

© National Instruments

The last receive or transmit was successful.

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State CAN Comm).vi

NI-XNET Hardware and Software Manual

Stuff (1) More than 5 equal bits have occurred in sequence,
which the CAN specification does not allow.

Form (2) A fixed format part of the received frame used the
wrong format.

Ack (3) Another node (ECU) did not acknowledge the frame
transmit.

If you call XNET Write.vi and do not have a cable
connected, or the cable is connected to a node that is
not communicating, you see this error repeatedly.
The CAN communication state eventually
transitions to Error Passive, and the frame transmit
retries indefinitely.

Bit1 (4) During a frame transmit (with the exception of the
arbitration ID field), the interface wanted to send a
recessive bit (logical 1), but the monitored bus value
was dominant (logical 0).

Bit 0 (5) During a frame transmit (with the exception of the
arbitration ID field), the interface wanted to send a
dominant bit (logical 0), but the monitored bus value
was recessive (logical 1).

CRC (6) The CRC contained within a received frame does
not match the CRC calculated for the incoming bits.

The receive error counter begins at 0 when communication starts
on the CAN interface. The counter increments when an error is
detected for a received frame and decrements when a frame is
received successfully. The counter increases more for an error
than it is decreased for success. This ensures that the counter
generally increases when a certain ratio of frames (roughly 1/8)
encounter errors.

The transmit error counter begins at 0 when communication
starts on the CAN interface. The counter increments when an error
is detected for a transmitted frame and decrements when a frame
transmits successfully. The counter increases more for an error
than it is decreased for success. This ensures that the counter
generally increases when a certain ratio of frames (roughly 1/8)
encounter errors.

When communication state transitions to Bus Off, the transmit
error counter no longer is valid.

4-236 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State CAN Comm).vi

fault? indicates that a fault occurred, and its code is available as
fault code.
fault code returns a numeric code you can use to obtain a

description of the fault. If fault? is false, the fault code is 0.

A fault is an error that occurs asynchronously to the NI-XNET VIs
your application calls. The fault cause may be related to CAN
communication, but it also can be related to XNET hardware, such
as a fault in the onboard processor. Although faults are extremely
rare, XNET Read (State CAN Comm).vi provides a detection
method distinct from the error out of NI-XNET VIs, yet easy

to use alongside the common practice of checking the
communication state.

To obtain a fault description, wire the fault code into the
LabVIEW Simple Error Handler.vi error code input and view
the resulting message. You also can bundle the fault code into a
LabVIEW error cluster as the code element and use front panel
features to view the error description.

error out is the error cluster output (refer to Error Handling).

Description

You can use XNET Read (State CAN Comm).vi with any XNET session mode, as long as
the session interface is CAN. Because the state reflects the CAN interface, it can apply to
multiple sessions.

Your application can use XNET Read (State CAN Comm).vi to check for problems on the
CAN network independently from other aspects of your application. For example, you
intentionally may introduce noise into the CAN cables to test how your ECU behaves under
these conditions. When you do this, you do not want the error out of NI-XNET VIs to return
errors, because this may cause your application to stop. Your application can use XNET Read
(State CAN Comm).vi to read the CAN network state quickly as data, so that it does not
introduce errors into the flow of your LabVIEW VIs.

Alternately, to log bus errors, you can set the Interface:Bus Error Frames to Input Stream?
property to cause CAN bus errors to be logged as a special frame (refer to Special Frames for
more information) into a Frame Stream Input queue.

© National Instruments 4-237 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State FlexRay Comm).vi

XNET Read (State FlexRay Comm).vi

Purpose

Reads the state of FlexRay communication using an XNET session.
Format

session in HI=FHET session auk
i E=FlexRay comm
EFror in (no error) CE—————
Inputs
70 session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

H

Outputs

170 session out is the same as session in, provided for use with subsequent VIs.

FlexRay comm returns a LabVIEW cluster containing the communication
elements. The elements are:

POC state specifies the FlexRay interface state (decimal value in
parentheses):

Default Config (0) This is the FlexRay interface initial state on
power-up. The interface is essentially off,
in that it is not configured and is not
attempting to communicate with other
nodes (ECUs).

Ready (1) When the interface starts, it first enters
Config state to validate the FlexRay cluster
and interface properties. Assuming the
properties are valid, the interface
transitions to this Ready state.

In the Ready state, the FlexRay interface
attempts to integrate (synchronize) with
other nodes in the network cluster. This
integration process can take several

NI-XNET Hardware and Software Manual 4-238 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State FlexRay Comm).vi

FlexRay cycles, up to 200 ms. If the
integration succeeds, the interface
transitions to Normal Active.

You can use XNET Read (State Time
Start).vi to read the time when the FlexRay
interface entered Ready. If integration
succeeds, you can use XNET Read (State
Time Comm).vi to read the time when the
FlexRay entered Normal Active.

Normal Active (2) This is the normal operation state. The
NI-XNET interface is adequately
synchronized to the cluster to allow
continued frame transmission without
disrupting the transmissions of other nodes
(ECUs). If synchronization problems
occur, the interface can transition from this
state to Normal Passive.

Normal Passive (3) Frame reception is allowed, but frame
transmission is disabled due to degraded
synchronization with the cluster remainder.
If synchronization improves, the interface
can transition to Normal Active. If
synchronization continues to degrade, the
interface transitions to Halt.

Halt (4) Communication halted due to
synchronization problems.

When the FlexRay interface is in Halt state,
all NI-XNET sessions for the interface
stop, and no frame values are received or
transmitted. To restart the FlexRay
interface, you must restart the NI-XNET
sessions.

If you clear (close) all NI-XNET sessions
for the interface, it transitions from Halt to
Default Config state.

Config (15) This state is transitional when
configuration is valid. If you detect this
state after starting the interface, it typically
indicates a problem with the configuration.

© National Instruments 4-239 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State FlexRay Comm).vi

NI-XNET Hardware and Software Manual

Check the fault? output for a fault. If no
fault is returned, check your FlexRay
cluster and interface properties. You can
check the validity of these properties using
the NI-XNET Database Editor, which
displays invalid configuration properties.

In the FlexRay specification, this value is
referred to as the Protocol Operation
Control (POC) state. For more information
about the FlexRay POC state, refer to
Appendix B, Summary of the FlexRay
Standard.

clock correction failed returns the number of consecutive
even/odd cycle pairs that have occurred without successful clock
synchronization.

If this count reaches the value in the XNET Cluster FlexRay:Max
Without Clock Correction Passive property, the FlexRay interface
POC state transitions from Normal Active to Normal Passive
state. If this count reaches the value in the XNET cluster
FlexRay:Max Without Clock Correction Fatal property, the
FlexRay interface POC state transitions from Normal Passive to
Halt state.

In the FlexRay specification, this value is referred to as
vClockCorrectionFailed.

passive to active count returns the number of consecutive
even/odd cycle pairs that have occurred with successful clock
synchronization.

This count increments while the FlexRay interface is in POC state
Error Passive. If the count reaches the value in the XNET Session
Interface:FlexRay:Allow Passive to Active property, the interface
POC state transitions to Normal Active.

In the FlexRay specification, this value is referred to as
vAllowPassiveToActive.

fault? indicates that a fault occurred, and its code is available is
fault code.

fault code returns a numeric code you can use to obtain a fault
description. If fault? is false, the fault code is 0.

4-240 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State FlexRay Comm).vi

A faultis an error that occurs asynchronously to the NI-XNET VIs
your application calls. The fault cause may be related to FlexRay
communication, but it also can be related to XNET hardware, such
as a fault in the onboard processor. Although faults are extremely
rare, XNET Read (State FlexRay Comm).vi provides a
detection method distinct from the error out of NI-XNET VIs,
yet easy to use alongside the common practice of checking the
communication state.

To obtain a fault description fault, wire the fault code into the
LabVIEW Simple Error Handler.vi error code input and view
the resulting message. You also can bundle the fault code into a
LabVIEW error cluster as the code element and use front panel
features to view the error description.

channel A sleep? indicates whether channel A currently is asleep.
channel B sleep? indicates whether channel B currently is asleep.
error out is the error cluster output (refer to Error Handling).

Description

You can use XNET Read (State FlexRay Comm).vi with any XNET session mode, as long
as the session interface is FlexRay. Because the state reflects the FlexRay interface, it can
apply to multiple sessions.

Your application can use XNET Read (State FlexRay Comm).vi to check for problems on
the FlexRay network independently from the other aspects of your application. For example,
you intentionally may introduce noise into the FlexRay cables to test how your ECU behaves
under these conditions. When you do this, you do not want the error out of NI-XNET VIs to
return errors, because this may cause your application to stop. Your application can use
XNET Read (State FlexRay Comm).vi to read the FlexRay network state quickly as data,
so that it does not introduce errors into the flow of your LabVIEW VIs.

© National Instruments 4-241 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State LIN Comm).vi

XNET Read (State LIN Comm).vi

Purpose
Reads the state of LIN communication using an XNET session.
Format
SESSIon in HI=HHET session out
™ &=| IN comm
error in {no error) %o srror oUL
Inputs
I’ session in is the session to read. This session is selected from the LabVIEW
project or returned from XNET Create Session.vi. The session must use a
LIN interface.

error in is the error cluster input (refer to Error Handling).

B E

Outputs

session out is the same as session in, provided for use with subsequent VIs.

-
“eu
=

S LIN comm returns a LabVIEW cluster containing the communication
elements. The elements are:

communication state specifies the LIN interface state (decimal
value in parentheses):

Idle (0): This is the LIN interface initial state on power-up.
The interface is essentially off, in that it is not
attempting to communicate with other nodes
(ECUs).

When the start trigger occurs for the LIN
interface, it transitions from the Idle state to the
Active state. When the interface stops due to a call
to XNET Stop, the LIN interface transitions from
either Active or Inactive to the Idle state.

Active (1): This state reflects normal communication. The
LIN interface remains in this state as long as bus
activity is detected (frame headers received or
transmitted).

NI-XNET Hardware and Software Manual 4-242 ni.com

© National Instruments

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State LIN Comm).vi

Inactive (2): This state indicates that no bus activity has been
detected in the past four seconds.

Regardless of whether the interface acts as a
master or slave, it transitions to this state after four
seconds of bus inactivity. As soon as bus activity
is detected (break or frame header), the interface
transitions to the Active state.

The LIN interface does not go to sleep
automatically when it transitions to Inactive. To
place the interface into sleep mode, set the XNET
Session Interface:LIN:Sleep property when you
detect the Inactive state.

sleep? indicates whether the transceiver and communication
controller are in their sleep state. False indicates normal operation
(awake), and true indicates sleep.

This Boolean value changes from false to true only when you set
the XNET Session Interface:LIN:Sleep property to Remote Sleep
or Local Sleep.

This Boolean value changes from true to false when one of the
following occurs:

* You set the XNET Session Interface:LIN:Sleep property to
Remote Wake or Local Wake.

* The interface receives a remote wakeup pattern (break). In
addition to this XNET Read VI, you can wait for a remote
wakeup event using XNET Wait (LIN Remote Wakeup).vi.

transceiver ready? indicates whether the LIN transceiver is
powered from the bus.

True indicates the bus power exists, so it is safe to start
communication on the LIN interface.

If this value is false, you cannot start communication successfully.
Wire power to the LIN transceiver and run your application again.

last error specifies the status of the last attempt to receive or
transmit a frame. It is an enumeration (ring data type). For a table
of all values for last error, refer to the Description section.

last received returns the value received from the network when
last error occurred.

4-243 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State LIN Comm).vi

TF

B A E E

last expected returns the value that the LIN interface expected to
see (instead of last received).

last identifier returns the frame identifier in which the last error
occurred.

fault? indicates that a fault occurred, and its code is available as
fault code.

fault code returns a numeric code you can use to obtain a
description of the fault. If fault? is false, the fault code is 0.

A faultis an error that occurs asynchronously to the NI-XNET VIs
your application calls. The fault cause may be related to LIN
communication, but it also can be related to XNET hardware, such
as a fault in the onboard processor. Although faults are extremely
rare, the XNET Read (State LIN Comm).vi provides a detection
method distinct from the error out of NI-XNET VIs, yet easy to
use alongside the common practice of checking the
communication state.

To obtain a fault description, wire the fault code into the
LabVIEW Simple Error Handler.vi error code input and view
the resulting message. You also can bundle the fault code into a
LabVIEW error cluster as the code element and use front panel
features to view the error description.

For more information, refer to Fault Handling.

schedule index indicates the LIN schedule that the interface is
currently running.

This index refers to a LIN schedule that you requested using
XNET Write (State LIN Schedule Change).vi. It indexes the
array of schedules that are represented in the XNET Session
Interface:LIN:Schedules property.

This index applies only when the LIN interface is running as a
master. If the LIN interface is running as a slave only, this element
should be ignored.

error out is the error cluster output (refer to Error Handling).

NI-XNET Hardware and Software Manual

4-244 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State LIN Comm).vi

Description

You can use XNET Read (State LIN Comm).vi with any XNET session mode, as long as
the session interface is LIN. Because the state reflects the LIN interface, it can apply to
multiple sessions.

Your application can use XNET Read (State LIN Comm).vi to check for problems on the
LIN network independently from other aspects of your application. For example, you
intentionally may introduce noise into the LIN cables to test how your ECU behaves under
these conditions. When you do this, you do not want the error out of NI-XNET VIs to return
errors, because this may cause your application to stop. Your application can use XNET Read
(State LIN Comm).vi to read the LIN network state quickly as data, so that it does not
introduce errors into the flow of your LabVIEW VIs.

The following table lists each value for last error, along with a description, and applicable
use of last received, last expected, and last identifier. In the last error column, the decimal

value is shown in parentheses after the string name.

Last Last Last
Last Error Description Received Expected Identifier

None (0) No bus error has occurred since | 0 (N/A) 0 (N/A) 0 (N/A)
the previous communication
state read.

Unknown ID (1) Received a frame identifier that | 0 (N/A) 0 (N/A) 0 (N/A)
is not valid (0-63).

Form (2) The form of areceived frameis | 0 (N/A) 0 (N/A) Received
incorrect. For example, the frame ID
database specifies 8 bytes of
payload, but you receive only
4 bytes.

Framing (3) The byte framing is incorrect 0 (N/A) 0 (N/A) Received
(for example, a missing stop frame ID
bit).

Readback (4) The interface transmitted a Value read Value Received
byte, but the value read back back transmitted frame ID
from the transceiver was
different. This often is caused
by a cabling problem, such as
noise.

© National Instruments

4-245

NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State LIN Comm).vi

Last Last Last
Last Error Description Received Expected Identifier
Timeout (5) Receiving the frame took 0 (N/A) 0 (N/A) Received
longer than the LIN-specified frame ID
timeout.
Checksum (6) The received checksum was Received Calculated Received
different than the expected checksum checksum frame ID
checksum.

If the bus error is detected at time when no frame ID is received (such as wakeup), last

identifier uses the special value 64.

Alternately, to log bus errors, you can set the Interface:Bus Error Frames to Input Stream?
property to cause LIN bus errors to be logged as a special frame (refer to Special Frames for
more information) into a Frame Stream Input queue.

NI-XNET Hardware and Software Manual

4-246

ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State SAE J1939 Comm).vi

XNET Read (State SAE J1939 Comm).vi

Purpose

Reads the state of J1939 communication using an XNET session.
Format

session in NI-HNET session out
] k= J1939 comm
error in (no error) s error out
Inputs
session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi.

=i error in is the error cluster input (refer to Error Handling).

Outputs

session out is the same as session in, provided for use with subsequent VIs.

J1939 comm returns a LabVIEW cluster containing the communication
elements. The elements are:

-
-
=

PGN specifies the J1939 PGN that occurred the last error. You
cannot assign a PGN to every error.

src address specifies the source address that occurred the last
error. You cannot assign a source address to every error.

dest addr specifies the destination address that occurred the last
error. You cannot assign a destination address to every error or
warning.

transmit error indicates a transmit-related error occurred.
receive error indicates a receive-related error occurred.

fault? indicates that a fault occurred, and its code is available as
fault code.

7| (7] |7

© National Instruments 4-247 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State SAE J1939 Comm).vi

fault code returns a numeric code you can use to obtain a
description of the fault. If fault? is false, the fault code is 0.

A fault is an error that occurs asynchronously to the NI-XNET VIs
your application calls. The fault cause may be related to J1939
communication, but it also can be related to XNET hardware, such
as a fault in the onboard processor. Although faults are extremely
rare, XNET Read (State SAE J1939 Comm).vi provides a
detection method distinct from the error out of NI-XNET Vs, yet
easy to use alongside the common practice of checking the
communication state.

To obtain a fault description, wire the fault code into the
LabVIEW Simple Error Handler.vi error code input and view
the resulting message. You also can bundle the fault code into a
LabVIEW error cluster as the code element and use front p nel
features to view the error description.

error out is the error cluster output (refer to Error Handling).

Description

You can use XNET Read (State SAE J1939 Comm).vi with any XNET session mode, as
long as the session interface is CAN. Because the state reflects the CAN interface, it can apply

to multiple sessions.

Your application can use XNET Read (State SAE J1939 Comm).vi to check for problems
on the J1939 network independently from other aspects of your application. For example, you
intentionally may introduce noise into the CAN cables to test how your ECU behaves under
these conditions. When you do this, you do not want the error out of NI-XNET VIs to return
errors, because this may cause your application to stop. Your application can use XNET Read
(State SAE J1939 Comm).vi to read the J1939 network state quickly as data, so it does not
introduce errors into the flow of your LabVIEW VIs.

NI-XNET Hardware and Software Manual

4-248 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State FlexRay Cycle Macrotick).vi

XNET Read (State FlexRay Cycle Macrotick).vi

Purpose
Reads the current FlexRay global time using an XNET session.
Format
session in HI-HHET ses5ion ouk
cyile
errar in {no errar) ¢ %macmtick
error out
Inputs

/0

[E

Outputs

/0

E

© National Instruments

session in is the session to read. This session is selected from a LabVIEW
project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

session out is the same as session in, provided for use with subsequent VIs.

cycle returns the current FlexRay cycle counter. The cycle counter range is
0-63. In the FlexRay specification, the current cycle counter is referred to
as vCycleCounter.

The XNET Cluster FlexRay:Cycle property returns the cycle length in
microseconds.

macrotick returns the current FlexRay macrotick. In the FlexRay
specification, the current macrotick is referred to as vMacrotick.

The XNET Cluster FlexRay:Macro Per Cycle property returns the number
of macroticks in the cycle. The current macrotick returned from this XNET
Read.vi instance ranges from 0 to (FlexRay:Macro Per Cycle — 1).

The XNET Cluster FlexRay:Macrotick property returns the macrotick
length in floating-point seconds.

error out is the error cluster output (refer to Error Handling).

4-249 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—XNET Read (State FlexRay Cycle Macrotick).vi

Description

Global time represents the timebase that all ECUs on the FlexRay network cluster share. You
use sync frames to synchronize the global time. The global time components are the current
cycle counter and macrotick within the cycle. For more information about global time, refer
to Appendix B, Summary of the FlexRay Standard.

You can use this XNET Read.vi instance with any XNET session mode, as long as the session
interface is FlexRay. Because the state reflects the FlexRay interface, it can apply to multiple
sessions.

For this VI to operate properly, you must connect FlexRay global time as the FlexRay
interface timebase source. To do this, you must call XNET Connect Terminals.vi with a
source of FlexRay Macrotick and destination of Master Timebase. If the terminals are not
connected in this manner, this XNET Read.vi instance returns an error.

When using LabVIEW Real-Time, this VI often is useful in conjunction with XNET Create
Timing Source (FlexRay Cycle).vi. The FlexRay Cycle timing source enables a LabVIEW
timed loop to execute at a specific macrotick within the cycle. Only one FlexRay Cycle timing
source is allowed within the cycle. Within the timed loop, you can read the current FlexRay
global time to measure performance or synchronize LabVIEW code to additional macroticks
in the cycle.

NI-XNET Hardware and Software Manual 4-250 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State FlexRay Statistics).vi

XNET Read (State FlexRay Statistics).vi

Purpose

Reads statistics for FlexRay communication using an XNET session.

Format
session in HI-HHET session auk
S b= FlexRay statistics
EFFOF in (N0 error) Yees st QUE
Inputs
170 session in is the session to read. This session is selected from a LabVIEW

project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

B

Outputs

session out is the same as session in, provided for use with subsequent VIs.

FlexRay statistics returns a LabVIEW cluster that contains the statistical
elements. The elements are:

-
-
=

num syntax error ch A is the number of syntax errors that have
occurred on channel A since communication started.
A syntax error occurs if:

* A node starts transmitting while the channel is not in the idle
state.

e There is a decoding error.

e A frame is decoded in the symbol window or in the network
idle time.

* Asymbolis decoded in the static segment, dynamic segment,
or network idle time.

e A frame is received within the slot after reception of a
semantically correct frame (two frames in one slot).

e Two or more symbols are received within the symbol window.

num syntax error ch B is the number of syntax errors that have
occurred on channel B since communication started.

© National Instruments 4-251 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State FlexRay Statistics).vi

num content error ch A is the number of content errors that have
occurred on channel A since communication started.
A content error occurs if:

* In a static segment, the payload length of a frame does not
match the global cluster property.

* In a static segment, the Startup indicator (bit) is 1 while the
Sync indicator is 0.

¢ A frame ID encoded in the frame header does not match the
current slot.

* A cycle count encoded in the frame’s header does not match
the current cycle count.

* In adynamic segment, the Sync indicator is 1.
* In adynamic segment, the Startup indicator is 1.
* Inadynamic segment, the Null indicator is 0.

num content error ch B is the number of content errors that have
occurred on channel B since communication started.

num slot boundary violation ch A is the number of slot
boundary violations that have occurred on channel A since
communication started.

A slot boundary violation error occurs if the interface does not
consider the channel to be idle at the boundary of a slot (either
beginning or end).

num slot boundary violation ch B is the number of slot boundary
violations that have occurred on channel B since communication
started.

For more information about these statistics, refer to Appendix B,
Summary of the FlexRay Standard.

error out is the error cluster output (refer to Error Handling).

Description

You can use this XNET Read.vi instance with any XNET session mode, as long as the
session’s interface is FlexRay. Because the state reflects the FlexRay interface, it can apply to

multiple sessions.

Like other XNET Read.vi instances, this VI executes quickly, so it is appropriate for
real-time loops. The statistical information is updated during the Network Idle Time (NIT) of

each FlexRay cycle.

NI-XNET Hardware and Software Manual

4-252 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State Time Comm).vi

XNET Read (State Time Comm).vi

Purpose

Reads the time at which the session’s interface completed its integration with the network
cluster. This represents the time at which communication began.

Format
session in HI=FHET session auk
e E=time communicating
errar in (no errar) Ren 1t QUL
Inputs
I session in is the session to read. This session is selected from a LabVIEW

project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

B E

Outputs

session out is the same as session in, provided for use with subsequent VIs.

time communicating returns the communication time of the interface as a

LabVIEW absolute timestamp.

If the interface is not communicating when this read is called, time
communicating returns an invalid time (0).

= error out is the error cluster output (refer to Error Handling).
- -]

Description

You can use this XNET Read.vi instance with any XNET session mode. Because the time is
associated with the interface, it can apply to multiple sessions.

This XNET Read.vi instance returns time as a LabVIEW absolute timestamp data type.

After your application starts the XNET interface hardware, the communication controller
begins to integrate with ECUs in the network. The timestamp at which this integration starts
is available using XNET Read (State Time Start).vi. Once the XNET interface is fully
integrated and communicating on the network (transmitting and receiving frames), this VI
captures and returns the time. For the CAN protocol, the time difference between Start and
Communicating is very small. For the FlexRay protocol, the time difference can be many
milliseconds due to factors such as clock synchronization and cycle length.

© National Instruments 4-253 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State Time Current).vi

XNET Read (State Time Current).vi

Purpose
Reads the current interface timestamp using an XNET session.

Format

session in HI=HHET session auk

e f=time current
EFrar in (no error) %o sppar oLk
Inputs
170 session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

B E

Outputs
session out is the same as session in, provided for use with subsequent VIs.
time current returns the current interface timestamp as a LabVIEW

absolute time. If the interface is not started when XNET Read (State Time
Current).vi is called, time current returns an invalid time (0).

error out is the error cluster output (refer to Error Handling).

Description

You can use XNET Read (State Time Current).vi with any XNET session mode. Because
the time is associated with the interface, it can apply to multiple sessions.

XNET Read (State Time Current).vi returns time as a LabVIEW absolute timestamp data
type. The timestamp represents absolute time that the interface timebase source drives. You
use the timebase source to timestamp frames the interface receives. For a CAN interface, you
use the timebase source to schedule cyclic frame transmit.

The interface timebase source is not necessarily connected to the LabVIEW CPU clock, so
this timestamp can drift relative to the LabVIEW time used for internally sourced timed loops
and Get Date/Time in Seconds.vi.

For more information about the interface timebase source, refer to XNET Connect
Terminals.vi.

NI-XNET Hardware and Software Manual 4-254 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State Time Start).vi

XNET Read (State Time Start).vi

Purpose
Reads the time when the session interface started its integration.
Format
session in HI=HHET session ouk
e E=time start

Errar in (no errar) Ren 1t QUL

Inputs
7 session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

E E

Outputs

session out is the same as session in, provided for use with subsequent VIs.

time start returns the interface start time as a LabVIEW absolute
timestamp.

-
.
=

If the interface is not started when XNET Read (State Time Start).vi is
called, time start returns an invalid time (0).

error out is the error cluster output (refer to Error Handling).

Description

You can use XNET Read (State Time Start).vi with any XNET session mode. Because the
time is associated with the interface, it can apply to multiple sessions.

XNET Read (State Time Start).vi returns time as a LabVIEW absolute timestamp data type.

Your application typically starts the interface simply by calling XNET Read.vi or XNET
Werite.vi, because the XNET Session Auto Start? property is true by default. If you set Auto
Start? to false, you start the interface using XNET Start.vi. If you use XNET Connect
Terminals.vi to import a start trigger for the interface, all sessions for that interface wait for
the trigger to occur before starting the interface.

© National Instruments 4-255 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State Time Start).vi

Once the interface starts, this VI captures and returns the time. Unless you connect a start
trigger, this time generally is known, so this VI may not be useful.

After the XNET interface starts, the communication controller begins to integrate with ECUs
in the network. After this integration is complete, the time is captured and available using
XNET Read (State Time Comm).vi. That time often is useful for FlexRay, because it
indicates the time when true communication began.

NI-XNET Hardware and Software Manual 4-256 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Read (State Session Info).vi

XNET Read (State Session Info).vi

Purpose

Returns the current state for the session provided.

Format
session in HI=HHET session auk
Eh” L session info state
errar in (no error) %o sprar oLk
Inputs
170 session in is the session to read. This session is selected from the LabVIEW

project or returned from XNET Create Session.vi.

error in is the error cluster input (refer to Error Handling).

H

Outputs

170 session out is the same as session in, provided for use with subsequent VIs.

session info state returns the state of the provided session.

EE

Stopped (0) All frames in the session are stopped.
Started (1) All frames in the session are started.

Mix (2) Some frames in the session are started while other frames are
stopped.

ST error out is the error cluster output (refer to Error Handling).
Description
You can use XNET Read (State Session Info).vi with any XNET session mode.

XNET Read (State Session Info).vi returns the state of the session’s objects. A mixed state
may occur when using XNET Start.vi or XNET Stop.vi with the Session Only option. By
reading this state, your application can ensure that all frames in the session have started or
stopped.

If the session is started with any option other than Session Only, the state is known, so this VI
may not be useful.

© National Instruments 4-257 NI-XNET Hardware and Software Manual

Chapter 4

NI-XNET API for LabVIEW—XNET Write.vi

XNET Write.vi

Purpose

Writes data to the network using an XNET session.

Description
The instances of this polymorphic VI specify the type of data provided.
XNET Read.vi and XNET Write.vi are optimized for real-time performance. XNET

Write.vi executes quickly and avoids access to shared resources that can induce jitter on other
VI priorities.

The XNET Write.vi instances are asynchronous, in that data is written to a hardware buffer,
but the XNET Write.vi returns before the corresponding frames are transmitted onto the
network. If you need to wait for the data provided to XNET Write.vi to transmit onto the
network, use XNET Wait (Transmit Complete).vi.

There are two categories of XNET Write instance VIs:

Signal: Use when the session mode is Signal Output. The XNET Write.vi instance must
match the mode exactly (for example, the instance is Signal Waveform when the mode is
Signal Output Waveform).

Frame: Use when the session mode is Frame Output. The XNET Write.vi instance
specifies the desired data type for frames and is not related to the mode. For an
easy-to-use data type, use the CAN, FlexRay, or LIN instance.

State: Use to change the session’s interface state. You can use these instances in addition
to Signal or Frame instances, and they are not related to the mode. These instances are
optimized for performance. Although property nodes may provide write access to similar
runtime data, those properties are not necessarily optimized for real-time loops.

The XNET Write instance VIs are:

XNET Write (Signal Single-Point).vi: The session mode is Signal Output Single-Point.
XNET Write (Signal Waveform).vi: The session mode is Signal Output Waveform.
XNET Write (Signal XY).vi: The session mode is Signal Output XY.

XNET Write (Frame CAN).vi: The session uses a CAN interface, and the mode is
Frame Output Stream Mode, Frame Output Single-Point Mode, or Frame Output Queued
Mode. Additionally, XNET Write (Frame CAN).vi can be called on any signal or frame
input session if it contains one or more Event Remote frames (refer to CAN:Timing
Type). In this case, it signals an event to transmit those remote frames.

XNET Write (Frame FlexRay).vi: The session uses a FlexRay interface, and the mode
is Frame Output Single-Point Mode, Frame Output Queued Mode, PDU Output

NI-XNET Hardware and Software Manual 4-258 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Write.vi

Single-Point Mode (similar to Frame Output Single-Point Mode), or PDU Output
Queued Mode (similar to Frame Output Queued Mode).

e XNET Write (Frame LIN).vi: The session uses a LIN interface, and the mode is Frame
Output Stream Mode, Frame Output Single-Point Mode, or Frame Output Queued Mode.

* XNET Write (Frame Raw).vi: A data type for frame output that is protocol independent
and more efficient than the CAN, FlexRay, and LIN instances.

e XNET Write (State FlexRay Symbol).vi: Writes a request for the FlexRay interface to
transmit a symbol on the FlexRay bus.

* XNET Write (State LIN Schedule Change).vi: Submits a request for the LIN interface
to change the running schedule.

© National Instruments 4-259 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Signal Single-Point).vi

XNET Write (Signal Single-Point).vi

Purpose

Writes data to a session of Signal Output Single-Point Mode.

Format

session in HI=AHET session auk
data ﬁ
eFror in (no error) === efrar out

Inputs

I/0

H

Outputs

I/0

HE

session in is the session to write. This session is selected from the
LabVIEW project or returned from XNET Create Session.vi. The session
mode must be Signal Output Single-Point.

data provides a one-dimensional array of signal values. Each signal value
is scaled, 64-bit floating point.

Each array element corresponds to a signal configured for the session. The
order of signals in the array corresponds to the order in the session list.

The data provides the value for the next transmit of each signal. If XNET
Write (Signal Single-Point).vi is called twice before the next transmit, the
transmitted frame uses signal values from the second call to XNET Write
(Signal Single-Point).vi.

For an example of how this data applies to network traffic, refer to Signal
Output Single-Point Mode.

A trigger signal written a value of 0.0 suppresses writing of its frame’s data;
writing a value not equal to 0.0 enables it. For more information about
trigger signals, refer to Signal Output Single-Point Mode.

error in is the error cluster input (refer to Error Handling).

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

NI-XNET Hardware and Software Manual 4-260 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Signal Waveform).vi

XNET Write (Signal Waveform).vi

Purpose

Writes data to a session of Signal Output Waveform Mode. The data represents a waveform
of resampled values for each signal in the session.

Format
session in HI=HHET sEssion ouk
data = ﬁ
kirnecak (107 error ouk
Error in (no error)
Inputs

/0

© National Instruments

session in is the session to write. This session is selected from the
LabVIEW project or returned from XNET Create Session.vi. The session
mode must be Signal Output Waveform.

data provides a one-dimensional array of LabVIEW waveforms.

The data you write is queued up for transmit on the network. Using the
default queue configuration for this mode, and assuming a 1000 Hz
resample rate, you can safely write 64 frames if you have a sufficiently long
timeout. To write more data, refer to the XNET Session Number of Values
Unused property to determine the actual amount of queue space available
for writing.

For an example of how this data applies to network traffic, refer to Signal
Output Waveform Mode.

Each array element corresponds to a signal configured for the session. The
order of signals in the array corresponds to the order in the session list.

The waveform elements are:

t0 is the waveform start time. This is a LabVIEW absolute
timestamp.

This start time is unused (reserved) for Signal Output Waveform
mode. If you change it from its default value of O (invalid), XNET
Write (Signal Waveform).vi returns an error.

dt is the waveform delta time. This is a LabVIEW relative time
that specifies the time between each sample in the Y array.

4-261 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Signal Waveform).vi

H

Outputs

10

[DBL

LabVIEW relative time is represented as 64-bit floating point in
units of seconds.

This delta time is unused (reserved) for Signal Output Waveform
mode. If you change it from its default value of 0, XNET Write
(Signal Waveform).vi returns an error.

Y is the array of resampled signal values. Each signal value is
scaled, 64-bit floating point.

The Y array size must be the same for all waveforms, because the
size determines the total timeline for XNET Write (Signal
Waveform).vi. If the Y array sizes are not the same, XNET
Write (Signal Waveform).vi returns an error.

timeout is the time to wait for the data to be queued for transmit. The
timeout does not wait for frames to be transmitted on the network (refer to
XNET Wait (Transmit Complete).vi).

The timeout is a LabVIEW relative time, represented as 64-bit
floating-point in units of seconds.

If timeout is positive, XNET Write (Signal Waveform).vi waits up to that
timeout for space to become available in queues. If the space is not
available prior to the timeout, a timeout error is returned.

If timeout is negative, XNET Write (Signal Waveform).vi waits
indefinitely for space to become available in queues.

If timeout is 0, XNET Write (Signal Waveform).vi does not wait and
immediately returns an error if all data cannot be queued. Regardless of the
timeout used, if a timeout error occurs, none of the data is queued, so you
can attempt to call XNET Write (Signal Waveform).vi again at a later
time with the same data.

This input is optional. The default value is 10.0 (10 seconds).

error in is the error cluster input (refer to Error Handling).

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

NI-XNET Hardware and Software Manual 4-262 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Signal XY).vi

XNET Write (Signal XY).vi

Purpose

Writes data to a session of Signal Output XY Mode. The data represents a sequence of signal
values for transmit using each frame’s timing as the database specifies.

Format

session in HI=AHET seasion ouk
data =] ﬁ
Eirmeout (107 errar ouk

Errar in {no error)

Inputs

/0

© National Instruments

session in is the session to write. This session is selected from the
LabVIEW project or returned from XNET Create Session.vi. The session
mode must be Signal Output XY.

data provides an array of LabVIEW clusters.

Each array element corresponds to a signal configured for the session. The
order of signals in the array corresponds to the order in the session list.

The data you write is queued up for transmit on the network. Using the
default queue configuration for this mode, you can safely write 64 elements
if you have a sufficiently long timeout. To write more data, refer to the
XNET Session Number of Values Unused property to determine the actual
amount of queue space available for writing.

For an example of how this data applies to network traffic, refer to Signal
Output XY Mode.

Each cluster contains two arrays, one for value, and one for timestamp.
Each value is mapped to a frame for transmit. When signals exist in
different frames, the array sizes may be different from one cluster (signal)
to another.

The cluster elements are:
timestamp is the array of LabVIEW timestamps.

The timestamp array is unused (reserved) for Signal Output XY.
If you change it from its default value of empty, XNET Write
(Signal XY).vi returns an error.

4-263 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Signal XY).vi

H

Outputs

I/0

f

value is the array of signal values, one for each frame that contains
the signal. Frame transmission is timed according to the frame
properties in the database.

Each signal value is scaled, 64-bit floating point.

timeout is the time to wait for the data to be queued for transmit. The
timeout does not wait for frames to be transmitted on the network (refer to
XNET Wait (Transmit Complete).vi).

The timeout is a LabVIEW relative time, represented as 64-bit
floating-point in units of seconds.

If timeout is positive, XNET Write (Signal XY).vi waits up to that
timeout for space to become available in queues. If the space is not
available prior to the timeout, a timeout error is returned.

If timeout is negative, XNET Write (Signal XY).vi waits indefinitely for
space to become available in queues.

If timeout is 0, XNET Write (Signal XY).vi does not wait and
immediately returns with a timeout error if all data cannot be queued.
Regardless of the timeout used, if a timeout error occurs, none of the data
is queued, so you can attempt to call XNET Write (Signal XY).vi again at
a later time with the same data.

This input is optional. The default value is 10.0 (10 seconds).

error in is the error cluster input (refer to Error Handling).

session out is the same as session in, provided for use with subsequent VIs.

error out is the error cluster output (refer to Error Handling).

NI-XNET Hardware and Software Manual 4-264 ni.com

Chapter 4 NI-XNET API for LabVIEW—XNET Werite (Frame CAN).vi

XNET Write (Frame CAN).vi

Purpose

Writes data to a session as an array of CAN frames. The session must use a CAN interface
and Frame Output Stream Mode, Frame Output Queued Mode, or Frame Output Single-Point

Mode.

Format

session in HI=HHET sEssion auk
data = 7
Eirmeout (107 error ouk

Error in (no error)

Inputs

/0

© National Instruments

session in is the session to write. This session is selected from the
LabVIEW project or returned from XNET Create Session.vi. The session
mode must be Frame Output Stream, Frame Output Queued, or Frame
Output Single-Point.

data provides the array of LabVIEW clusters.
Each array element corresponds to a frame value to transmit.

For a Frame Output Single-Point session mode, the order of frames in the
array corresponds to the order in the session list.

The data you write is queued up for transmit on the network. Using the
default queue configuration for this mode, you can safely write 64 frames
if you have a sufficiently long timeout. To write more data, refer to the
XNET Session Number of Values Unused property to determine the actual
amount of queue space available for write.

For an example of how this data applies to network traffic, refer to Frame
Output Stream Mode, Frame Output Queued Mode, or Frame Output
Single-Point Mode.

Additionally, XNET Write (Frame CAN).vi can be called on any signal
or frame input session if it contains one or more Event Remote frames
(refer to CAN:Timing Type). In this case, it signals an event to transmit
those remote frames. The data parameter is ignored in this case, and you
can set it to an empty array.

4-265 NI-XNET Hardware and Software Manual

Chapter 4 NI-XNET API for LabVIEW—XNET Write (Frame CAN).vi

The elements of each cluster are specific to the CAN protocol. For more
information, refer to Appendix A, Summary of the CAN Standard, or the
CAN protocol specification.

The cluster elements are:

identifier is the CAN frame arbitration identifier.

If extended? is false, the identifier uses standard format, so 11 bits
of this identifier are valid.

If extended? is true, the identifier uses extended format, so 29 bits
of this identifier are valid.

extended? is a Boolean value that determines whether the
identifier uses extended format (true) or standard format (false).

echo? is not used for transmit. You must set this element to false.

type is the frame type (decimal value in parentheses):

HE E

CAN Data (0) The CAN data frame contains payload data.
This is the most commonly used frame type
for CAN. In ISO CAN FD interface mode,
this transmits a frame according to the
interface setting (FD or FD+BRS). ISO CAN
FD mode allows transmitting CAN 2.0, CAN
FD, or CAN FD+BRS frames using the frame
type (refer to the types listed below).

CAN 2.0 Data (8) The CAN data frame contains payload data.
In ISO CAN FD interface mode, this frame is
transmitted as a CAN 2.0 frame. When the
interface is not in ISO CAN FD mode, this
type is treated like CAN Data (0).

CAN FD Data (16) The CAN data frame contains payload
data. In ISO CAN FD interface mode,
this frame is transmitted as a CAN FD
(no BRS) frame. When the interface is
not in ISO CAN FD mode, this type is
treated like CAN Data (0).

CAN FD+BRS Data (24) The CAN data frame contains
payload data. In ISO CAN
FD+BRS mode, this frame is
transmitted as a CAN FD+BRS
frame. When the interface is not in

NI-XNET Hardware and Software Manual 4-266 ni.com

] i

[ve

© National Instruments

Chapter 4 NI-XNET API for LabVIEW—XNET Werite (Frame CAN).vi

ISO CAN FD mode, this type is
treated like CAN Data (0).

CAN Remote (1) CAN remote frame. Your application
transmits a CAN remote frame to request data
for the corresponding identifier. A remote
ECU should respond with a CAN data frame
for the identifier, which you can obtain using
XNET Read.vi.

timestamp represents absolute time using the LabVIEW absolute
timestamp type. timestamp is not used for transmit. You must set
this element to the default value, invalid (0).

payload is the array of data bytes for a CAN data frame.

The array size indicates the payload length of the