COMPREHENSIVE SERVICES We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources. #### **SELL YOUR SURPLUS** We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs. ## **OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP** We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware. **Bridging the gap** between the manufacturer and your legacy test system. 0 1-800-915-6216 www.apexwaves.com sales@apexwaves.com All trademarks, brands, and brand names are the property of their respective owners. Request a Quote PXIe-4139 #### **CALIBRATION PROCEDURE** ## **NI PXIe-4139** #### Single-Channel Precision Source-Measure Unit (SMU) This document contains the verification and adjustment procedures for the PXIe-4139. Refer to *ni.com/calibration* for more information about calibration solutions. #### Contents | Required Software | 2 | |---|----| | Related Documentation. | 2 | | Password | 2 | | Calibration Interval | 2 | | Test Equipment. | 3 | | Test Conditions. | 3 | | As-Found and As-Left Limits. | 4 | | Calibration Overview. | | | Verification | 5 | | Self-Calibrating the PXIe-4139 | 6 | | Connecting and Configuring Equipment for Voltage Verification | | | Verifying Voltage Measurement and Output | | | Verifying Remote Sense Voltage Offset | | | Verifying Voltage Remote Sense | | | Verifying Current Offset. | | | Verifying Load Regulation | 11 | | Verifying 1 μA and 10 μA Current Measurement and Output | | | Verifying 100 μA to 100 mA Current Measurement and Output | 14 | | Verifying 1 A and 3 A Current Measurement and Output | 16 | | Adjustment | 17 | | Adjusted Specifications | 18 | | Initiating the Adjustment Session | 18 | | Voltage and Current Output | 18 | | Residual Offset Voltage | 22 | | Closing the Adjustment Session | | | Alternative to Performing Adjustment Procedures | | | Reverification | | | Worldwide Support and Services | | ## Required Software Calibrating the PXIe-4139 requires you to install the following software on the calibration system: - NI-DCPower 15.1 or later - Supported application development environment (ADE)—LabVIEW or LabWindowsTM/CVITM - Supported operating system—Windows When you install NI-DCPower, you need to install support only for the application software that you intend to use. Access calibration support in the locations shown in the following table: | ADE | Calibration Support Location | | | |----------------|--|--|--| | LabVIEW | NI-DCPower Calibration palette | | | | LabWindows/CVI | NI-DCPower function panel (niDCPower.fp) | | | You can download all required software from *ni.com/downloads*. #### **Related Documentation** For additional information, refer to the following documents as you perform the calibration procedure: - NI PXIe-4138/4139 Getting Started Guide - NI DC Power Supplies and SMUs Help - PXIe-4139 Specifications - NI-DCPower Readme - LabVIEW Help Visit *ni.com/manuals* for the latest versions of these documents. #### **Password** The default password for password-protected operations is NI. #### Calibration Interval |--| ## Test Equipment The following table lists the equipment NI recommends for the performance verification and adjustment procedures. If the recommended equipment is not available, select a substitute using the minimum requirements listed in the table. Required Recommended Model(s) **Parameter** Minimum Equipment Measured **Specifications** Digital Keysight 3458 A Voltage: $< \pm 9 \text{ ppm}$ All parameters accuracy and < 100 nV multimeter except remote (DMM) resolution. sense accuracy Current: $<\pm25$ ppm accuracy and < 10 pA resolution. 1 MΩ current IET Labs SRL-1M/1Triax 1 uA and 10 uA < 4 ppm accuracy, < shunt current accuracy 0.2 ppm / °C tempco. 1.O current Ohm Labs CS-1 1 A current <65 ppm accuracy, < 5 ppm / °C tempco. shunt accuracy 333 m Ω current Ohm Labs CS-3 3 A current < 120 ppm accuracy, < 5 ppm / °C tempco. shunt accuracy $3 k\Omega$ resistor Vishay PTF563K0000BYEB Remote sense 0.1% 250 mW accuracy Table 1. Required Equipment for Calibration ## **Test Conditions** Follow the setup and environmental information below to ensure the PXIe-4139 meets the published specifications. Test limits in this document are based on the January 2016 edition of the PXIe-4139 Specifications, except for more recently revised remote sense test limits. - Keep cabling as short as possible. Long cables act as antennas, picking up extra noise that can affect measurements. - Verify that all connections to the PXIe-4139, including front panel connections and screws, are secure. - Ensure that the PXI chassis fan speed is set to HIGH, that the fan filters (if present) are clean, and that the empty slots contain slot blockers and filler panels. For more information about cooling, refer to the Maintain Forced-Air Cooling Note to Users document available at ni.com/manuals. - Allow a warm-up time of at least 30 minutes after the chassis is powered on and NI-DCPower is loaded and recognizes the PXIe-4139. The warm-up time ensures that the PXIe-4139 and test instrumentation are at a stable operating temperature. - Use shielded copper wire for all cable connections to the device. Use twisted-pair wire to eliminate noise and thermal offsets. - To ensure the system has had adequate time to settle, wait one second after requesting a new current or voltage or after changing a load before taking a measurement. - Keep relative humidity between 10% and 70%, noncondensing. - When making measurements, configure the following aperture time-related settings: - Set the niDCPower Aperture Time property or NIDCPOWER_ATTR_APERTURE_TIME attribute to 2 power-line cycles (PLCs) on the device. - Set the niDCPower Aperture Time Units property or NIDCPOWER ATTR APERTURE TIME UNITS to power line cycles. - Set the niDCPower Configure Power Line Frequency property or the NIDCPOWER_ATTR_POWER_LINE_FREQUENCY attribute to either 50 or 60 depending on the frequency of the AC power line in your location. - Do not use the NI-DCPower Soft Front Panel (SFP) to request test points for any adjustment functions because you cannot set aperture time using the SFP. - Ensure that properties or attributes for the device that are not specified in calibration procedures are set to their default values. - When making measurements, configure any specified digital multimeters (DMMs) with the best available ranges and measurement settings for each specified test point. - For verification procedures, maintain an ambient temperature of 23 °C ± 5 °C. Maintain an internal device temperature range of $T_{cal} \pm 1$ °C. ¹ - For adjustment procedures, maintain an ambient temperature of 23 °C \pm 1 °C. The PXIe-4139 internal temperature is greater than the ambient temperature. #### As-Found and As-Left Limits The *as-found limits* are the published specifications for the device. NI uses these limits to determine whether the device meets the device specifications when it is received for calibration. The *as-left limits* are equal to the published NI specifications for the device, less guard bands for measurement uncertainty, temperature drift, and drift over time. NI uses these limits to determine whether the device will meet the device specifications over its calibration interval. ¹ T_{cal} is the internal device temperature recorded by the PXIe-4139 at the completion of the last self-calibration. Call the niDCPower Get Self Cal Last Temp VI to query T_{cal} from the PXIe-4139. #### Calibration Overview Calibration includes the steps shown in the following figure: Figure 1. Calibration Overview - Initial setup—Install the PXIe-4139 and configure it in Measurement & Automation Explorer (MAX). - 2. Verification—Verify the existing operation of the PXIe-4139. This step confirms whether the device is operating within the published specifications prior to adjustment. - 3. Adjustment—Adjust the calibration constants of the PXIe-4139. - Reverification—Repeat the Verification procedure to ensure that the device is operating within the published specifications after adjustment. #### Verification The performance verification procedures assume that adequate traceable uncertainties are available for the calibration references. You do not need to separately verify both measurement and output. The architecture of the PXIe-4139 ensures that if measurement is accurate, then output is as well, and vice versa. #### **Related Information** Reverification on page 23 After completing adjustment, wait a minimum of five minutes for the internal device temperature to stabilize. Repeat the *Verification* section to determine the as-left status of the device. #### Self-Calibrating the PXIe-4139 Complete the following steps to self-calibrate the PXIe-4139. - Disconnect or disable all connections to the PXIe-4139. - 2. Allow the PXIe-4139 30 minutes to warm up with the PXI chassis fans set to HIGH. - 3. Initialize an NI-DCPower session. - 4. Call the self-calibration function. - Close the NI-DCPower session. # Connecting and Configuring Equipment for Voltage Verification 1. Make the necessary connections for this procedure, as shown in the following figure: Figure 2. Voltage Verification or Adjustment Connection Diagram 2. Set the **niDCPower Output Function** property or NIDCPOWER_OUTPUT_FUNCTION attribute to DC Voltage for the PXIe-4139. #### Verifying Voltage Measurement and Output Compare a set of voltages measured by a DMM to the voltage test points requested by the PXIe-4139. Refer to the following table as you complete the following steps. Verify ranges in the order listed in the table. Table 2. Voltage Output and Measurement Verification | Level
Range | Limit
Range and
Limit | Test Point | As-Found
Measurement Test
Limit (% of Voltage +
Offset) | As-Left Measurement Test Limit (% of Voltage + Offset) | |----------------|-----------------------------|------------|--|--| | 600 mV | 1 mA | -600 mV | $0.016\% + 30 \mu V$ | $0.0065\% + 25 \mu V$ | | | | 0 mV | | | | | | 600 mV | | | | 6 V | 1 mA | -6 V | 0.016% + 90 μV | $0.0045\% + 85 \mu V$ | | | | 0 V | | | | | | 6 V | | | | 60 V | 1 mA | -60 V | 0.016% + 900 μV | 0.0065% + 820 μV | | | | 0 V | | | | | | 60 V | | | - Set the first specified level range, limit range, and limit on the PXIe-4139. 1. - 2. Set the niDCPower Sense property or NIDCPOWER ATTR SENSE attribute to Local. - 3. Measure the internal device temperature and perform self-calibration if necessary. - If the internal device temperature exceeds $T_{cal} \pm 1$ °C, wait up to five minutes for the temperature to stabilize to within $T_{cal} \pm 1$ °C. - If after five minutes the stable temperature still exceeds $T_{cal} \pm 1$ °C, call the selfcalibration VI or function. - Set the level on the PXIe-4139 to the first specified test point. 4. - 5 Compare a DMM voltage measurement to the voltage measurement test limits. - Take a voltage measurement using the DMM. - Calculate the lower and upper voltage measurement test limits using the following b) formula: $Voltage\ Measurement\ Test\ Limits = Test\ Point \pm (|Test\ Point| * \%\ of\ Voltage + Offset)$ - Verify the DMM measurement falls within the test limits. - 6. If more than one test point per level range is specified, repeat the previous steps for each test point, from setting the level to the test point on the PXIe-4139 up to this step. - 7. If more than one level range is specified, repeat the previous steps using the values specified in each level range. ## Verifying Remote Sense Voltage Offset Compare a set of voltages measured by a DMM to the voltage test points requested by the PXIe-4139. Refer to the following table as you complete the following steps. Verify ranges in the order listed in the table. Use the same connections as the previous test. Level Range **Limit Range Test Point** As-Found As-Left Measurement and Limit **Measurement Test Test Limit** Limit 600 mV 1 mA 0 V $\pm 30 \mu V$ ±25 uV 6 V $\pm 90~\mu V$ ±85 μV 60 V $\pm 900 \, \mu V$ ±820 μV Table 3. Remote Sense Voltage Offset Verification - 1. Set the first specified level range, limit range, and limit on the PXIe-4139. - 2. Set the **niDCPower Sense** property or NIDCPOWER ATTR SENSE attribute to Remote. - 3. Set the level on the PXIe-4139 to the first specified test point. - 4. Compare a DMM voltage measurement to the voltage measurement test limits. - a) Take a voltage measurement using the DMM. - b) Verify the DMM measurement falls within the test limits. - 5. If more than one level range is specified, repeat the previous steps using the values specified in each level range. ## Verifying Voltage Remote Sense Use the PXIe-4139 in constant current mode with a test circuit to simulate the voltage drop between the device and a load. Refer to the following table as you complete the following steps. | Level
Range | Limit Range and Limit | Test Point | Load1 | Load2 | Voltage Remote Sense Test
Limit | | |----------------|-----------------------|------------|-------|-------|------------------------------------|-------| | | | | | | Load1 | Load2 | | 1 mA | 600 mV | 0 mA | 3 kΩ | 3 kΩ | ≤38.4 μV | ≤6 μV | | | | 1 mA | | | | | Table 4. Remote Sense Voltage Output Verification 1. Set the **niDCPower Output Function** property or NIDCPOWER_OUTPUT_FUNCTION attribute to DC Current for the PXIe-4139. - 2. Set the niDCPower Sense property or NIDCPOWER ATTR SENSE attribute to Remote. - 3. Make the necessary connections for this procedure, as shown in the following figure: Figure 3. Voltage Remote Sense Diagram, Part 12 - Set the first specified level range, limit range, and limit on the PXIe-4139. 4. - 5. Measure the internal device temperature and perform self-calibration if necessary. - If the internal device temperature exceeds $T_{cal} \pm 1$ °C, wait up to five minutes for the temperature to stabilize to within $T_{cal} \pm 1$ °C. - If after five minutes the stable temperature still exceeds $T_{cal} \pm 1$ °C, call the selfb) calibration VI or function. - Set the level on the PXIe-4139 to the first specified test point. 6. - 7. Take a voltage measurement using the PXIe-4139. - Record the voltage from the previous step as V1. 8. - Repeat the previous three steps for the other test point specified in the range. This time, 9. record the value as V2. - 10. Calculate the remote sense error using the following formula, and then record the value. Remote Sense Error = |V2 - V1| - 11. Verify that the recorded value falls within the test limits. - 12. Repeat the previous steps. This time, make the necessary connections as shown in the following figure: ² Follow industry best practices for minimizing thermal electromotive force (EMF) when making the necessary connections for this procedure. #### Verifying Current Offset Remove all connections from the PXIe-4139 and confirm the current measured by the PXIe-4139 at 0 V falls within the test limits. Refer to the following table as you complete the following steps. Complete this procedure only after successfully completing all previous verification procedures. Verify ranges in the order listed in the table. Table 5. Current Offset Verification | Level
Range | Limit Test Range and Point | | As-Found Offset Test
Limit | | As-Left Offset Test Limit | | |----------------|----------------------------|------|-------------------------------|----------------|---------------------------|----------------| | | Limit | | Lower Limit | Upper
Limit | Lower Limit | Upper
Limit | | 600 mV | 1 μΑ | 0 mV | -40 pA | 40 pA | -25 pA | 25 pA | | | 10 μΑ | | -300 pA | 300 pA | -200 pA | 200 pA | | | 100 μΑ | | -2 nA | 2 nA | -1.5 nA | 1.5 nA | | | 1 mA | | -20 nA | 20 nA | -15 nA | 15 nA | | | 10 mA | | -200 nA | 200 nA | -150 nA | 150 nA | | | 100 mA | | -2 μΑ | 2 μΑ | -1.5 μΑ | 1.5 μΑ | | | 1 A | | -20 μΑ | 20 μΑ | -15 μΑ | 15 μΑ | | | 3 A | | -600 μΑ | 600 μΑ | -500 μΑ | 500 μΑ | ³ Follow industry best practices for minimizing thermal electromotive force (EMF) when making the necessary connections for this procedure. - Disconnect all equipment from the output of the PXIe-4139. 1. - 2. Measure the internal device temperature and perform self-calibration if necessary. - If the internal device temperature exceeds $T_{cal} \pm 1$ °C, wait up to five minutes for the temperature to stabilize to within $T_{cal} \pm 1$ °C. - If after five minutes the stable temperature still exceeds $T_{cal} \pm 1$ °C, call the selfb) calibration VI or function. - Take a current measurement using the PXIe-4139. 3. - Record the value from the previous step. 4. - Verify that the recorded value falls within the test limits. 5. - If more than one limit range is specified, repeat the previous steps using the values 6. specified in each limit range. #### Verifying Load Regulation **Note** Although load regulation is listed as a typical specification for the PXIe-4139, verification is required. If the PXIe-4139 fails the load regulation verification procedure, discontinue use of the device and contact an authorized NI service representative to request a Return Material Authorization (RMA). Refer to the following table as you complete the following steps: **Limit Range and Limit Test Point** As-found/As-left Limit Level Range 10 mA 600 mV 10 mA 1 mV Table 6. Load Regulation Verification - Set the niDCPower Output Function property or NIDCPOWER OUTPUT FUNCTION 1. attribute to DC Current for the PXIe-4139. - 2. Set the niDCPower Sense property or NIDCPOWER ATTR SENSE attribute to Local. - 3. Make the necessary connections for this procedure, as shown in the following figure: **Note** Connection wires should be 18 or 20 AWG and as short as possible to ensure low resistance. - Set the first specified level range, limit range, and limit on the PXIe-4139. 4. - 5. Measure the internal device temperature and perform self-calibration if necessary. - If the internal device temperature exceeds $T_{cal} \pm 1$ °C, wait up to five minutes for the temperature to stabilize to within $T_{cal} \pm 1$ °C. - If after five minutes the stable temperature still exceeds $T_{cal} \pm 1$ °C, call the selfcalibration VI or function. - Set the level on the PXIe-4139 to the first specified test point. 6. - Take a voltage measurement using the PXIe-4139. ## Verifying 1 µA and 10 µA Current Measurement and Output Compare a set of measured currents reported by the PXIe-4139 to the currents measured by a DMM Refer to the following table as you complete the following steps. Complete this procedure only after successfully completing all previous verification procedures. Verify ranges in the order listed in the table. **Table 7.** 1 μA and 10 μA Current Output and Measurement Verification | Level
Range | Limit
Range and
Limit | Shunt | Test
Point | As-Found
Measurement Test
Limit (% of Current +
Offset) | As-Left Measurement Test Limit (% of Current + Offset) | |----------------|-----------------------------|-------|---------------|--|--| | 6 V | 1 μΑ | 1 ΜΩ | -0.9 V | 0.022% + 40 pA | 0.013% + 25 pA | | | | | 0.9 V | | | | 60 V | 10 μΑ | | -9 V | 0.022% + 300 pA | 0.013% + 200 pA | | | | | 9 V | | | 1 Make the necessary connections for this procedure, as shown in the following figure: Figure 6. Current Connection Diagram, Part 1 - 2. Set the niDCPower Output Function property or NIDCPOWER OUTPUT FUNCTION attribute to DC Voltage for the PXIe-4139. - Set the first specified level range, limit range, and limit on the PXIe-4139. 3. - Measure the internal device temperature and perform self-calibration if necessary. - If the internal device temperature exceeds $T_{cal} \pm 1$ °C, wait up to five minutes for the temperature to stabilize to within $T_{cal} \pm 1$ °C. - If after five minutes the stable temperature still exceeds $T_{cal} \pm 1$ °C, call the selfb) calibration VI or function. - Set the level on the PXIe-4139 to the first specified test point. 5. - Complete the following four steps within 5 minutes or less of completing step 4 in order to ensure the internal device temperature remains stable. - Calculate the current through the shunt by completing the following steps. - Take a voltage measurement across the shunt using the DMM. - b) Divide the voltage measurement by the calibrated value of the shunt. - Record the calculated value as *DMM Measured Current*. c) - Calculate the lower and upper current measurement test limits using the following formula: - Current Measurement Test Limits = DMM Measured Current ± (|DMM Measured *Current* | * % of *Current* + *Offset*) - Disconnect the DMM. Leave the PXIe-4139 output on. 8 - 9. Make the necessary connections as shown in the following figure: Figure 7. Current Connection Diagram, Part 2 - 10. Take a current measurement using the PXIe-4139. - 11. Record the value from the previous step. - 12. Verify that the recorded PXIe-4139 value falls within the test limits. - 13. If more than one test point per level range is specified, repeat the previous steps for each test point, from setting the level to the test point on the PXIe-4139 up to this step. - 14. If more than one level range is specified, repeat the previous steps using the values specified in each level range. ## Verifying 100 µA to 100 mA Current Measurement and Output Compare a set of currents measured by a DMM to the current test points requested by the PXIe-4139. Refer to the following table as you complete the following steps. Complete this procedure only after successfully completing all previous verification procedures. Verify ranges in the order listed in the table. Table 8. 100 µA to 100 mA Current Output and Measurement Verification | Level Range | Limit
Range and
Limit | Test Point | As-Found
Measurement Test
Limit (% of Current +
Offset) | As-Left Measurement
Test Limit (% of
Current + Offset) | |-------------|-----------------------------|------------|--|--| | 100 μΑ | 6 V | -100 μΑ | 0.022% + 2 nA | 0.013% + 1.5 nA | | | | 100 μΑ | | | | 1 mA | 6 V | -1 mA | 0.022% + 20 nA | 0.013% + 15 nA | | | | 1 mA | | | | 10 mA | 6 V | -10 mA | 0.022% + 200 nA | 0.013% + 150 nA | | | | 10 mA | | | | 100 mA | 6 V | -100 mA | $0.022\% + 2 \mu A$ | 0.013% + 1.5 μΑ | | | | 100 mA | | | 1. Make the necessary connections for this procedure, as shown in the following figure: Figure 8. Current Verification Connection Diagram - 2. Set the niDCPower Output Function property or NIDCPOWER OUTPUT FUNCTION attribute to DC Current for the PXIe-4139. - Set the first specified level range, limit range, and limit on the PXIe-4139. 3. - Measure the internal device temperature and perform self-calibration if necessary. - If the internal device temperature exceeds $T_{cal} \pm 1$ °C, wait up to five minutes for the temperature to stabilize to within $T_{cal} \pm 1$ °C. - If after five minutes the stable temperature still exceeds $T_{cal} \pm 1$ °C, call the selfcalibration VI or function. - 5. Set the level on the PXIe-4139 to the first specified test point. - Compare a DMM current measurement to the current measurement test limits. - Take a current measurement using the DMM. - b) Calculate the lower and upper current measurement test limits using the following formula: Current Measurement Test Limits = Test Point ± (|Test Point| * % of Current + Offset) - c) Verify the DMM measurement falls within the test limits. - If more than one test point per level range is specified, repeat the previous steps for each test point, from setting the level to the test point on the PXIe-4139 up to this step. - 8. If more than one level range is specified, repeat the previous steps using the values specified in each level range. ## Verifying 1 A and 3 A Current Measurement and Output Compare a set of currents measured by a DMM to the current test points requested by the PXIe-4139. Refer to the following table as you complete the following steps. Complete this procedure only after successfully completing all previous verification procedures. Verify ranges in the order listed in the table. | Level
Range | Limit
Range
and Limit | Shunt | Test
Point | As-Found Measurement Test Limit (% of Current + Offset) | As-Left Measurement Test Limit (% of Current + Offset) | |----------------|-----------------------------|--------|---------------|---|--| | 1 A | 6 V | 1 Ω | -1 A | 0.027% + 20 μA | 0.013% + 15 μΑ | | | | | 1 A | | | | 3 A | 6 V | 333 mΩ | -3 A | $0.083\% + 600 \mu A$ | 0.045% + 500 μΑ | | | | | 3 A | | | **Table 9.** 1 A and 3 A Current Output and Measurement Verification Make the necessary connections for this procedure, as shown in the following figure: Figure 9. Current Verification Connection Diagram - Set the niDCPower Output Function property or NIDCPOWER OUTPUT FUNCTION 2. attribute to DC Current for the PXIe-4139. - Set the first specified level range, limit range, and limit on the PXIe-4139. 3. - Measure the internal device temperature and perform self-calibration if necessary. 4 - If the internal device temperature exceeds $T_{cal} \pm 1$ °C, wait up to five minutes for the temperature to stabilize to within $T_{cal} \pm 1$ °C. - If after five minutes the stable temperature still exceeds $T_{cal} \pm 1$ °C, call the selfb) calibration VI or function. - 5 Set the level on the PXIe-4139 to the first specified test point. - Calculate the current through the shunt by completing the following steps. 6. - Take a voltage measurement across the shunt using the DMM. - b) Divide the voltage measurement by the calibrated value of the shunt. - Record the calculated value as DMM Measured Current. - 7 Calculate the lower and upper current measurement test limits using the following formula: Current Measurement Test Limits = Test Point \pm (|Test Point| * % of Current + Offset) - 8. Verify that the recorded *DMM Measured Current* value falls within the test limits. - If more than one test point per level range is specified, repeat the previous steps for each test point, from setting the level to the test point on the PXIe-4139 up to this step. - 10. If more than one level range is specified, repeat the previous steps using the values specified in each level range. ## Adjustment This section describes the steps needed to adjust the PXIe-4139 to meet published specifications. #### **Adjusted Specifications** Adjustment corrects the following specifications for the device: - Voltage programming accuracy - Current programming accuracy - Voltage measurement accuracy - Current measurement accuracy Following the adjustment procedure automatically updates the calibration date and temperature on the device. **Note** You do not need to separately adjust both measurement and output. The architecture of the PXIe-4139 ensures that if measurement is accurate, then output is as well, and vice versa. ## Initiating the Adjustment Session - After completing verification, wait a minimum of five minutes for the internal device temperature to stabilize. - Initiate an external calibration session (a special type of NI-DCPower session) by calling the niDCPower Initialize External Calibration VI or niDCPower InitExtCal function. - Call the self-calibration function. Follow the actions below during adjustment: - Keep the calibration session open until you complete all adjustment procedures. - Complete all adjustment procedures within 15 minutes or less after initiating the external calibration session. - Complete all adjustment procedures in the specified order. - Do not self-calibrate the device except as specified in a procedure. ## Voltage and Current Output #### Connecting and Configuring Equipment for Voltage Adjustment Make the necessary connections for this procedure, as shown in the following figure: Figure 10. Voltage Verification or Adjustment Connection Diagram - 2. Set the **niDCPower Sense** property or NIDCPOWER ATTR SENSE attribute to Local. - 3. Set the niDCPower Output Function property or NIDCPOWER OUTPUT FUNCTION attribute to DC Voltage for the PXIe-4139. #### Adjusting Voltage Output and Measurement Compare a set of measured currents reported by the PXIe-4139 to the currents measured by a DMM. Refer to the following table as you complete the following steps: Table 10. Voltage Output and Measurement Adjustment | Level Range | Limit Range and Limit | Test Point | |-------------|-----------------------|------------| | 6 V | 100 mA | 5 V | | | | -5 V | - 1. Set the first specified level range, limit range, and limit on the PXIe-4139. - 2. Set the level on the PXIe-4139 to the first specified test point. - 3. Take a voltage measurement using the DMM. - 4 Store the value from the previous step to use as an input for the niDCPower Cal Adjust VI or function called in the following steps. - 5. If more than one test point per level range is specified, repeat the previous steps for each test point, from setting the level to the test point on the PXIe-4139 up to this step. - Update the output calibration constants by configuring and calling the niDCPower Cal 6. Adjust Voltage Level VI or niDCPower CalAdjustVoltageLevel function. - a) Input the DMM measurements as the **measured outputs**. - b) Input the test points as the **requested outputs**. - c) Input the specified level range as the range. #### Adjusting 1 µA to 100 mA Current Output and Measurement Complete this procedure only after successfully completing all previous adjustment procedures. Adjust ranges in the specified order. Refer to the following table as you complete the following steps: Table 11. 1 μA to 100 mA Current Output and Measurement Adjustment⁴ | Level Range | Limit Range and Limit | Test Point | |-------------|-----------------------|----------------------| | 100 μΑ | 6 V | 100 μΑ | | | | -100 μΑ | | 1 mA | 6 V | 100 μA ⁵ | | | | -100 μA ⁵ | 1. Make the necessary connections for this procedure, as shown in the following figure: Figure 11. Current Output and Measurement Adjustment Connection Diagram - 2. Set the **niDCPower Output Function** property or NIDCPOWER_OUTPUT_FUNCTION attribute to DC Current for the PXIe-4139. - 3. Set the first specified level range, limit range, and limit on the PXIe-4139. - 4. Set the level on the PXIe-4139 to the first specified test point. - 5. Take a current measurement using the DMM. - 6. Store the value from the previous step to use as an input for the niDCPower Cal Adjust VI or function called in the following steps. - 7. If more than one test point per level range is specified, repeat the previous steps for each test point, from setting the level to the test point on the PXIe-4139 up to this step. $^{^4}$ Adjusting the 100 μA and 1 mA level ranges automatically adjusts the following ranges: 1 $\mu A,$ 10 $\mu A,$ 10 mA, and 100 mA. ⁵ The PXIe-4139 requires that you adjust $\pm 100 \mu A$ test points in the 1 mA level range. - Update the output calibration constants by configuring and calling the niDCPower Cal Adjust Current Limit VI or niDCPower CalAdjustCurrentLimit function. - Input the calculated shunt current measurements as the **measured outputs**. - Input the test points as the **requested outputs**. b) - Input the specified level range as the range. c) - If more than one level range is specified, repeat the previous steps using the values 9. specified in each level range. #### Adjusting 1 A and 3 A Current Output and Measurement Compare a set of measured currents reported by the PXIe-4139 to the currents measured by a DMM. Complete this procedure only after successfully completing all previous adjustment procedures. Adjust ranges in the specified order. Refer to the following table as you complete the following steps. Table 12. 1 A and 3 A Current Output and Measurement Adjustment | Level Range | Limit Range and Limit | Shunt | Test Point | |-------------|-----------------------|--------|------------| | 1 A | 6 V | 1 Ω | 1 A | | | | | -1 A | | 3 A | 6 V | 333 mΩ | 3 A | | | | | -3 A | Make the necessary connections for this procedure, as shown in the following figure: 1. Figure 12. Current Verification Connection Diagram - Set the niDCPower Output Function property or NIDCPOWER OUTPUT FUNCTION 2. attribute to DC Current for the PXIe-4139. - Set the first specified level range, limit range, and limit on the PXIe-4139. 3. - 4. Set the level on the PXIe-4139 to the first specified test point. - 5. Calculate the current through the shunt by completing the following steps. - a) Take a voltage measurement across the shunt using the DMM. - b) Divide the voltage measurement by the calibrated value of the shunt. - 6. Store the value from the previous step to use as an input for the niDCPower Cal Adjust VI or function called in the following steps. - 7. If more than one test point per level range is specified, repeat the previous steps for each test point, from setting the level to the test point on the PXIe-4139 up to this step. - 8. Update the output calibration constants by configuring and calling the niDCPower Cal Adjust Current Limit VI or niDCPower CalAdjustCurrentLimit function. - a) Input the calculated shunt current measurements as the **measured outputs**. - b) Input the test points as the **requested outputs**. - c) Input the specified level range as the range. - 9. If more than one level range is specified, repeat the previous steps using the values specified in each level range. #### Residual Offset Voltage ## Connecting and Configuring Equipment to Adjust Residual Offset Voltage 1. Make the necessary connections for this procedure, as shown in the following figure: Figure 13. Residual Voltage Offset Diagram 6 Set the niDCPower Output Function property or NIDCPOWER_OUTPUT_FUNCTION attribute to DC Voltage for the PXIe-4139. ⁶ Follow industry best practices for minimizing thermal electromotive force (EMF) when making the necessary connections for this procedure. #### Adjusting Residual Voltage Offset Eliminate residual offset voltage at 0 V by configuring and calling the niDCPower Cal Adjust Residual Voltage Offset VI or niDCPower CalAdjustResidualVoltageOffset function. #### Closing the Adjustment Session Close the session and commit the new constants to hardware by calling the niDCPower Close External Calibration VI or niDCPower CloseExtCal function and specifying Commit as the calibration close action ## Alternative to Performing Adjustment Procedures If your device passes all verification procedures successfully and you want to skip updating the calibration constants, you can update solely the calibration date by completing the following steps. **Note** NI recommends following all adjustment procedures in order to update the calibration constants and renew the device calibration interval. - Call either the niDCPower Initialize External Calibration VI or the niDCPower InitExtCal function. - Call either the niDCPower Close External Calibration VI or the niDCPower CloseExtCal function, specifying Commit in calibration close action. #### Reverification After completing adjustment, wait a minimum of five minutes for the internal device temperature to stabilize. Repeat the *Verification* section to determine the as-left status of the device. **Note** If any test fails reverification after performing an adjustment, verify that you have met the *Test Conditions* before returning your PXIe-4139 to NI. Refer to the Worldwide Support and Services section for information about support resources or service requests. #### **Related Information** Test Conditions on page 3 Verification on page 5 ## Worldwide Support and Services The NI website is your complete resource for technical support. At ni.com/support, you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers. Visit *ni.com/services* for NI Factory Installation Services, repairs, extended warranty, and other services. Visit *ni.com/register* to register your NI product. Product registration facilitates technical support and ensures that you receive important information updates from NI. A Declaration of Conformity (DoC) is our claim of compliance with the Council of the European Communities using the manufacturer's declaration of conformity. This system affords the user protection for electromagnetic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting *ni.com/certification*. If your product supports calibration, you can obtain the calibration certificate for your product at *ni.com/calibration*. NI corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. NI also has offices located around the world. For telephone support in the United States, create your service request at *ni.com/support* or dial 1 866 ASK MYNI (275 6964). For telephone support outside the United States, visit the *Worldwide Offices* section of *ni.com/niglobal* to access the branch office websites, which provide up-to-date contact information, support phone numbers, email addresses, and current events. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/fechnology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.