PXIe-4147 Specifications

Contents

DV/ 44.47.0 'C' 1'	_
PXIe-4147 Specifications	-
「	

PXIe-4147 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- Typical specifications describe the performance met by a majority of models.
- Nominal specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- Measured specifications describe the measured performance of a representative model.

Specifications are **Warranted** unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- Ambient temperature¹ of 23 °C ± 5 °C
- Relative humidity between 10% and 70%, noncondensing. See Programming and Measurement Accuracy/Resolution for additional performance derating when operating above 70% relative humidity.
- Chassis with slot cooling capacity ≥38 W²
 - For chassis with slot cooling capacity = 38 W, fan speed set to HIGH
- ¹ The ambient temperature of a PXI system is defined as the temperature at the chassis fan inlet (air intake).
- ² For increased capability, NI recommends installing the PXIe-4147 in a chassis with slot cooling capacity ≥58 W.

- Calibration interval of 1 year
- 30 minutes warm-up time
- Self-calibration performed within the last 24 hours
- niDCPower Aperture Time property or NIDCPOWER_ATTR_APERTURE_TIME attribute set to 2 power-line cycles (PLC)

Block Diagrams

Figure 1. PXIe-4147 Block Diagram

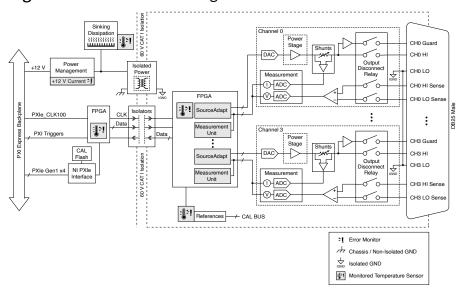
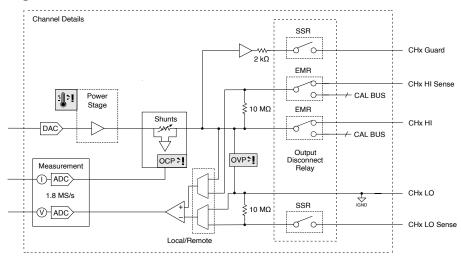



Figure 2. Channel-Level Block Diagram

Instrument Capabilities

Channels	0 through 3 ³
DC voltage ranges	1 V, 8 V
DC current ranges	1 μA, 10 μA, 100 μA, 1 mA, 10 mA, 100 mA, 3 A

The following figure illustrates the voltage and the current source and sink ranges of the PXIe-4147.

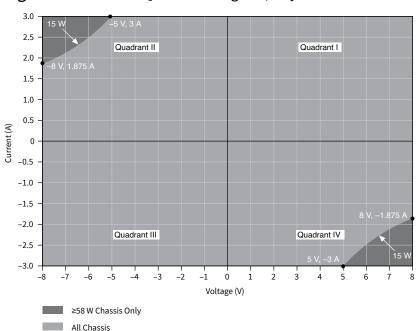


Figure 1. PXIe-4147 Quadrant Diagram, Any Channel

Available DC output power⁴	
Sourcing ⁵	
All chassis	24 W per channel and 40 W total

- ³ Channels isolated from earth ground, but share a common LO for all channels (bank isolation).
- ⁴ Power limit defined by voltage measured between HI and LO terminals.
- ⁵ Sourcing power may be limited by total power available from the chassis power supply. Refer to the Performing a Power Budget on a PXI/PXIe System article for more information.

Sinking		
≥58 W Slot Cooling Capacity Chassis ⁶	24 W per channel and 40 W total	
<58 W Slot Cooling Capacity Chassis	15 W per channel and 15 W total	

Voltage

Table 1. Voltage Programming and Measurement Accuracy/Resolution

Range	Resolution (Noise Limited)	,	Resolution Noise (0.1 Hz Accuracy ± (% of Voltage + Offset) ⁷		Tempco ⁸ ± (% of Voltage +
			T _{ambient} 23 °C±5	°C, T _{cal} ⁹ ±5 °C	Offset)/°C
	typicaty	Multiple Channels ¹⁰	Single Channel ¹¹	T _{ambient} 0 °C to 55 °C, T _{cal} ±5 °C	
1 V	100 nV	2 μV	0.025% + 110 μ\	/0.02% + 70 μV	0.0002% + 1 μV
8 V	1 μV	12 μV	0.02% + 600 μV	0.015% + 400 μ\	

⁶ When sinking more than 15 W into the PXIe-4147, transients may not exceed 200 mW/μs.

⁷ Refer to the <u>Remote Sense</u> and <u>Load Regulation</u> sections for additional accuracy derating and conditions.

⁸ Temperature coefficient applies beyond 23 °C±5 °C ambient within ±5 °C of T_{cal}.

 $^{^{9}}$ T_{cal} is the internal device temperature recorded by the PXIe-4147 at the completion of the last self-calibration.

Multiple-channel specifications apply whenever two or more channels are connected and sourcing/sinking current. Multiple-channel specifications account for interactions between the channels when operated at high current, including board heating.

¹¹ Single-channel specifications assume only one channel is connected and sourcing/sinking current which results in improved accuracy due to the reduction of effects between the channels, including board heating. When transitioning from a multiple-channel configuration to a single-channel configuration, a ten-minute cool down period is required to meet Single Channel accuracy specifications.

Current

Table 2. Current Programming and Measurement Accuracy/Resolution

Range	Resolution (Noise Limited)	Noise (0.1 Hz to 10 Hz, peak- to-peak, typical)	Accuracy ± (% o Offset) ¹²	f Current +	Tempco ¹³ ± (% of Current + Offset)/°C
			T _{ambient} 23 °C±5	°C, T _{cal} ¹⁴ ±5 °C	T _{ambient} 0 °C to
			Multiple Channels ¹⁵	Single Channel ¹⁶	55 °C, T _{cal} ±5 °C
1 μΑ	100 fA	8 pA	0.045% + 250 pA	0.035% + 150 pA	0.0003% + 2 pA
10 μΑ	1 pA	60 pA	0.05% + 1.6 nA	0.035% + 1 nA	
100 μΑ	10 pA	400 pA	0.045% + 14 nA	0.035% + 8 nA	
1 mA	100 pA	4 nA	0.04% + 120 nA	0.03% + 70 nA	
10 mA	1 nA	40 nA	0.04% + 1.2 μΑ	0.03% + 700 nA	
100 mA	10 nA	400 nA	0.045% + 12 μΑ	$0.035\% + 7 \mu A$	
3 A	1 μΑ	40 μΑ	0.07% + 800 μΑ	0.07% + 400 μΑ	

Noise

Wideband source noise ¹⁷	<10 mV _{pk-pk} , typical

¹² Relative humidity between 10% and 70%, noncondensing. When operating above 70% relative humidity, add 30 pA to current accuracy specifications.

¹³ Temperature coefficient applies beyond 23 °C±5 °C ambient within ±5 °C of T_{cal}.

¹⁴ T_{cal} is the internal device temperature recorded by the PXIe-4147 at the completion of the last self-calibration.

¹⁵ Multiple-channel specifications apply whenever two or more channels are connected and sourcing/sinking current. Multiple-channel specifications account for interactions between the channels when operated at high current, including board heating.

¹⁶ Single-channel specifications assume only one channel is connected and sourcing/sinking current which results in improved accuracy due to the reduction of effects between the channels, including board heating. When transitioning from a multiple-channel configuration to a singlechannel configuration, a ten-minute cool down period is required to meet Single Channel accuracy specifications.

¹⁷ 10 Hz to 20 MHz bandwidth. PXIe-4147 configured for normal transient response.

The following figures illustrate measurement noise as a function of measurement aperture for the PXIe-4147.

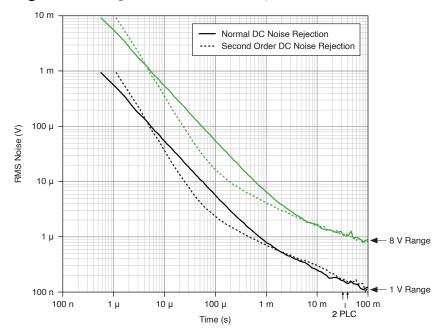


Figure 1. Voltage RMS Noise Versus Aperture Time, Nominal

Note When the aperture time is set to two power-line cycles (PLCs), measurement noise differs slightly depending on whether the niDCPower Power Line Frequency property or NIDCPOWER_ATTR_POWER_LINE_FREQUENCY attribute is set to 50 Hz or 60 Hz.

Note To configure normal or second-order DC noise rejection, set the niDCPower DC Noise Rejection property or NIDCPOWER_ATTR_DC_NOISE_REJECTION attribute.

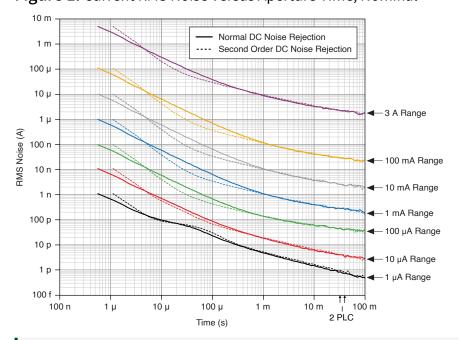


Figure 1. Current RMS Noise Versus Aperture Time, Nominal

Note When the aperture time is set to two power-line cycles (PLCs), measurement noise differs slightly depending on whether the niDCPower Power Line Frequency property or NIDCPOWER_ATTR_POWER_LINE_FREQUENCY attribute is set to 50 Hz or 60 Hz.

Note To configure normal or second-order DC noise rejection, set the niDCPower DC Noise Rejection property or NIDCPOWER_ATTR_DC_NOISE_REJECTION attribute.

Transient Response and Settling Time

<50 μs, typical

¹⁸ Measured as the time to settle to within 0.1% of step amplitude, PXIe-4147 configured for fast transient response.

¹⁹ Current limit set to ≥30 μA and ≥20% of the selected current limit range.

Current mode, full-scale step, 3 A to 100 μA ranges ²⁰ [20]	<50 μs, typical
Current mode, full-scale step, 10 μA range[20]	<100 μs, typical
Current mode, full-scale step, 1 μA range[20]	<200 μs, typical
Transient response ²¹	
3 A to 100 μA ranges	<40 μs, typical
10 μA range	<100 μs, typical
1 μA range	<200 μs, typical

Remote Sense

Voltage accuracy	Add (10 ppm of voltage range + 25 μV) per volt of LO lead drop, plus 10 μV per volt of HI lead drop to voltage accuracy specification
Maximum sense lead resistance	100 Ω
Maximum lead drop per lead	1 V, maximum 8 V between HI and LO terminals

Load Regulation

Voltage, local sense ²²	100 μV/mA, nominal; 200 μV/mA, maximum

²⁰ Voltage limit set to ≥2 V, resistive load set to 1 V/selected current range.

²¹ Time to recover within 10 mV after a load current change from 10% to 90% of range, PXIe-4147 configured for fast transient response.

²² At the output terminals of attached TB-414X Screw Terminal Connector Kit.

Voltage, remote sense	Error included in accuracy specifications.
Current	Error included in accuracy specifications.

Isolation

Isolation voltage, any pin to earth ground ²³	60 V DC, CAT I
Withstand voltage	800 V _{pk}

Protection

Absolute maximum voltage to Output LO, all pins		
Output HI	±10 V	
All other pins	±60 V	
Output channel protection		
Overcurrent or overvoltage	Automatic shutdown, output disconnect relay opens	
Overtemperature	Automatic shutdown, output disconnect relay opens	

Guard Output Characteristics

Cable guard	
Output impedance	2 kΩ, nominal

²³ Channels isolated from earth ground, but share a common LO for all channels (bank isolation).

Offset voltage	1 mV, typical

Output Resistance Programming Accuracy

Table 3. Output Resistance Programming Accuracy

Current Level/	Voltage Mode		Current Mode	
Limit Range	Programmable Resistance Range	Accuracy, ±(% of Resistance Setting + Offset) ²⁴ [24]	Programmable Resistance Range	Accuracy, ±(% of resistance setting Offset)[24]
1 μΑ	0 to ±4 MΩ	0.05% + 100 Ω	$\pm 2.5 \text{M}\Omega \text{to}$ $\pm \text{infinity}$	0.05% 100 GΩ
10 μΑ	0 to ±400 kΩ	0.05% + 10 Ω	$\pm 250 \text{ k}\Omega \text{ to}$ $\pm \text{infinity}$	0.05% 10 GΩ
100 μΑ	0 to ±40 kΩ	0.05% + 1 Ω	$\pm 25~\text{k}\Omega$ to ±infinity	0.05% 1 GΩ
1 mA	0 to ±4 kΩ	0.05% + 100 mΩ	$\pm 2.5 \text{ k}\Omega \text{ to}$ $\pm \text{infinity}$	0.05% 100 ΜΩ
10 mA	0 to $\pm 400~\Omega$	$0.05\% + 10 \text{ m}\Omega$	$\pm 250~\Omega$ to $\pm infinity$	$0.05\% \parallel 10 \ M\Omega$
100 mA	0 to ±40 Ω	0.05% + 1 mΩ	$\pm 25~\Omega$ to $\pm infinity$	0.05% 1 ΜΩ
3 A	0 to ±1.25 Ω	0.08% + 100 μΩ	± 750 m Ω to $\pm infinity$	0.08% 10 kΩ

Measurement and Update Timing

• $N = 1, 2, 3, ..., 2^{24}$

²⁴ Accuracy is typical and applies within ±5 °C of last self calibration.

²⁵ When source-measuring, both the NI-DCPowerSource Delay and Aperture Time properties affect the sampling rate. When taking a measure record, only the Aperture Time property affects the sampling rate.

S is samples		
Sample rate accuracy	Equal to PXIe_CLK100 accuracy, nominal	
Maximum measure rate to host	1.8 MS/s per channel, continuous, nominal	
Maximum source update rate ²⁶	100,000 updates/s, nominal	
Input trigger to		
Source event delay	10 μs, nominal	
Source event jitter	2 μs _{pk-pk} , nominal	
Measure event jitter	2 μs _{pk-pk} , nominal	

Triggers

Input triggers		
Types	Start	
	Source	
	Sequence Advance	
	Measure	
Sources (PXI trigger lines 0 to 7)[27]27		
Polarity	Active high (not configurable)	

²⁶ As the source delay is adjusted or if advanced sequencing is used, maximum source update rates may vary.

²⁷ Pulse widths and logic levels are compliant with **PXI Express Hardware Specification Revision** 1.0 ECN 1.

Minimum pulse width	100 ns	
Destinations ²⁸ (PXI trigger lines 0 to 7)[27]		
Polarity	Active high (not configurable)	
Minimum pulse width	>200 ns	
Output triggers (events)		
Types	Source Complete Sequence Iteration Complete Sequence Engine Done Measure Complete	
Destinations (PXI trigger lines 0 to 7)[27]		
Polarity	Active high (not configurable)	
Pulse width	230 ns	

Physical

Dimensions	3U, one-slot, PXI Express/CompactPCI Express module
	2.0 cm × 13.0 cm × 21.6 cm (0.8 in. × 5.1 in. × 8.5 in.)
Weight	
20 W	448 g (15.8 oz)

²⁸ Input triggers can come from any source (PXI trigger or software trigger) and be exported to any PXI trigger line. This allows for easier multi-board synchronization regardless of the trigger source.

40 W	428 g (15.1 oz)
Front panel connectors	25-position D-SUB, male

Calibration Interval

Recommended calibration interval	1 year

Power Requirements

+3.3 V	1 A, typical
+12 V	1.3 A, typical at idle; 6 A, maximum at full load

Environmental Characteristics

Temperature and Humidity

Temperature		
Operating	0 °C to 55 °C ²⁹	
Storage	-40 °C to 71 °C	
Humidity		
Operating	10% to 90%, noncondensing 30	

²⁹ Not all chassis can achieve this ambient temperature range. Refer to PXI chassis specifications to determine the ambient temperature ranges your chassis can achieve.

When transitioning a device from a storage or operation environment with relative humidity above 70%, device should be allowed to stabilize in the lower humidity environment for several hours before use. Refer to the PXIe-4147Programming and Measurement Accuracy/Resolution specifications for additional performance derating when operating above 70% relative humidity.

Storage	5% to 95%, noncondensing
Pollution Degree	2
Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)