COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs.

Sell For Cash Get Credit Receive a Trade-In Deal

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

Bridging the gap between the manufacturer and your legacy test system.

0

1-800-915-6216

www.apexwaves.com

sales@apexwaves.com

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote

PXIe-4310

PXIe-4310

8-channel, 16-bit, 400 kS/s/ch, Ch-Ch Isolated Analog Input Module

Français Deutsch 日本語 한국어 简体中文 ni.com/manuals

This document lists specifications for the PXIe-4310 module. These specifications are typical for the range of 0 °C to 55 °C unless otherwise stated. The system must be allowed to warm up for 15 minutes to achieve the rated accuracy. All specifications are subject to change without notice. Visit ni.com/manuals for the most current specifications and product documentation.

Note To maintain forced air cooling in the PXI Express system, refer to the *Maintain Forced-Air Cooling Note to Users*.

Caution Maximum voltage for all analog inputs is ± 11 V for all ranges.

Terminology

Maximum and *minimum* specifications characterize the warranted performance of the instrument within the recommended calibration interval and under the stated operating conditions. These specifications are subject to production verification or guaranteed by design.

Typical specifications are specifications met by the majority of the instruments within the recommended calibration interval and under the stated operating conditions, based on measurements taken during production verification and/or engineering development. The performance of the instrument is not warranted.

Supplemental specifications describe the basic function and attributes of the instrument established by design and are not subject to production verification. They provide information that is relevant for the adequate use of the instrument that is not included in the previous definitions.

All performance specifications are *typical* unless otherwise noted. These specifications are valid within the full operating temperature range.

Safety Guidelines for Hazardous Voltages

If hazardous voltages are connected to the module, take the following precautions. A hazardous voltage is a voltage greater than 42.4 V_{pk} or 60 VDC to earth ground.

Caution Ensure that hazardous voltage wiring is performed only by qualified personnel adhering to local electrical standards.

Caution You must install mating connectors according to local safety codes and standards and according to the specifications provided by the manufacturer. You are responsible for verifying the safety compliance of third-party connectors and their usage according to the relevant standard(s), including UL and CSA in North America and IEC and VDE in Europe.

Caution Make sure that devices and circuits connected to the module are properly insulated from human contact.

Caution When module terminals are hazardous voltage LIVE (>42.4 V_{pk} /60 VDC), you must ensure that devices and circuits connected to the module are properly insulated from human contact.

Caution Do not mix hazardous voltage circuits and human-accessible circuits on the same module.

Analog Input

Number of channels	.8 differential
ADC resolution	.16 bits
DNL	No missing codes guaranteed
INL	Refer to the AI Absolute Accuracy section.
Sampling rate	
Maximum	.400 kS/s per channel
Minimum	. No minimum
Timing accuracy	.50 ppm of sample rate
Timing resolution	.10 ns
Input coupling	.DC
PXIe-4310 or TB-4310 (10V)	
Voltage measurement range	
(software-selectable per channel)	$\pm 10 \text{ V}, \pm 5 \text{ V}, \pm 2 \text{ V}, \pm 1 \text{ V}$

Maximum working voltage (signal + common mode)

Maximum Working Voltage (Signal + Common Mode)		
Range	Working Voltage	
10 V	±11 V	
5 V	±10.5 V	
2 V	±9 V	
1 V	±8.5 V	

CMRR (to 60 Hz)130 dB
Bandwidth (small signal, -3 dB)950 kHz
Filtering
Lowpass (software-selectable
per channel) 10 kHz, 100 kHz, disable
Cut-off frequency tolerance±5%
Filter type2 nd order Butterworth
Input impedance
Device on ¹
AI+ to AI COM>1 G Ω in parallel with 50 pF
AI- to AI COM>1 G Ω in parallel with 50 pF
Device off
AI+ to AI COM $5 \text{ k}\Omega$
AI- to AI COM $5 \text{ k}\Omega$
Input bias current±100 pA
Input FIFO size
Data transfers
Fault protection (powered on)
Between AI+ and AI±60 V
Between any AI and COM±60 V
Between PFI or RSVD lines and COM ±24 V
Input current during fault conditions±0.5 mA max/AI pin

¹ The impedance given is for the PXIe-4310 module only. Refer to the PXIe-4310 and TB-4310 (10V)/TB-4310 (600V) Getting Started Guide and Terminal Block Specifications for terminal block impedance information.

Al Absolute Accuracy

INL error51 ppm of range

Nomina	l Range	Residual	Residual	Offset	B I	Absolute
Positive Full Scale	Negative Full Scale	Gain Error (ppm of Reading)	Offset (ppm of Range)	Tempco (ppm of Range/°C)	Random Noise σ (μV _{rms})	Accuracy at Full Scale (μV)
10	-10	110	16	9	171	2495
5	-5	111	21	9	91	1278
2	-2	114	42	10	49	561
1	-1	120	75	13	38	323

Note Accuracies listed are valid for up to two years from the module external calibration.

Stability

Al Absolute Accuracy Equation

AbsoluteAccuracy = Reading * (GainError) + Range * (OffsetError) + NoiseUncertainty GainError = ResidualAIGainError + GainTempco * (TempChangeFromLastInternalCal) + ReferenceTempco * (TempChangeFromLastExternalCal) OffsetError = ResidualAIOffsetError + OffsetTempco * (TempChangeFromLastInternalCal) + INL Error

NoiseUncertainty = $\frac{RandomNoise * 3}{\sqrt{10000}}$

For a coverage factor of 3 sigma and averaging 10000 points.

Al Absolute Accuracy Example

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

- $TempChangeFromLastExternalCal = 10 \, ^{\circ}C$
- TempChangeFromLastInternalCal = 1 °C
- number of readings = 10000
- $CoverageFactor = 3 \sigma$

For example, on the 10 V range, the absolute accuracy at full scale is as follows:

$$GainError = 110 \text{ ppm} + 13 \text{ ppm} * 1 ^{\circ}\text{C} + 5 \text{ ppm} * 10 ^{\circ}\text{C} = 173 \text{ ppm of reading}$$

OffsetError = 16 ppm + 9 ppm * 1
$$^{\circ}$$
C + 51 ppm = 76 ppm of range

NoiseUncertainty =
$$\frac{171 \mu V * 3}{\sqrt{10000}}$$
 = 5.13 μV

AbsoluteAccuracy = 10 V * (GainError) + 10 V * (OffsetError) + NoiseUncertainty = 2495 μV

Digital PFI Input

Electrical Characteristics

Level	Min	Max
Input high voltage (VIH)	2.09 V	5.5 V
Input low voltage (VIL)	0 V	0.90 V
Hysteresis	0.60 V	0.87 V

Triggers

nal	log trigger	
	Source	. AI<07>
	Purpose	Reference Trigger
	Level	Full Scale (depending on AI Range), Programmable
	Resolution	. 16-bit
	Mode	Rising-edge, Rising-edge with Hysteresis, Falling-edge, Falling-edge with Hysteresis, Entering Window, Leaving Window

D	
Digital	trigger

Source	PXI_TRIG<07>, PXI_STAR,
	PXIe_DSTAR <ab> PFI<01></ab>
Purpose	. Start Trigger, Reference Trigger, Pause Trigger
Polarity	Software-selectable
Debounce filter settings	Disable, 90 ns, 5.12 μs, 2.56 ms,
	custom interval

Clocking

Source	Onboard Clock, PXI_TRIG<07>, PXI_STAR, PXIe_DSTAR <ab>, PFI<01>, PXIe_Clk100 (RefClk Only)</ab>
Destination	Sample Clock, Sample Clock Timebase, Reference Clock
Polarity	Software-selectable (except Reference Clock)
Debounce filter settings (Sample clock only)	Disable, 90 ns, 5.12 μs, 2.56 ms, custom interval

Table 1. Reference Clock Locking Frequencies

	Locking Input Frequency (MHz)		
Reference Signal	10	20	100
PXIe_DSTAR <ab></ab>	✓	✓	✓
PXI_STAR	✓	✓	_
PXIe_Clk100	_	_	✓
PXI_TRIG<07>	✓	✓	_
PFI<01>	✓	✓	_

Note National Instruments does not recommend using any combination of locking input frequency and reference signal other than those checked as supported in Table 1.

Output Timing Signals

Source	Start Trigger, Reference Trigger,
	Pause Trigger,
	PFI<01>,
	Sample Clock,
	Various derived timebases and clocks
Destination	PXI_TRIG<07>, PXIe_DSTAR C
Polarity	Software-selectable

Bus Interface

Form factor	x1 PXI Express peripheral module, specification rev 1.0 compliant
Slot compatibility	PXI Express or PXI Express hybrid slots
DMA channels	1 analog input

Calibration

You can obtain the calibration certificate and information about calibration services for the PXIe-4310 at ni.com/calibration.

Power Requirements

+3.3 V	2.9	W (I
+12 V			

Physical Requirements

Dimensions	Standard 3U PXIe,
	16 cm by 10 cm
	(6.3 in. by 3.9 in.)
Weight	170 g (6.0 oz)

Caution Clean the hardware with a soft, nonmetallic brush. Make sure that the hardware is completely dry and free from contaminants before returning it to service.

Environmental

Maximum altitude	2,000 m (800 mbar), at 25 °C ambient temperature
Pollution Degree	2
Indoor use only	

Operating Environment

1 0	
Ambient temperature range	0 °C to 55 °C
	(Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800F Class 3 low temperature limit and MIL-PRF-28800F Class 2 high temperature limit.)
Relative humidity range	10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Storage Environment

<u> </u>	
Ambient temperature range	40 °C to 71 °C
	(Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800F Class 3 limits.)
Relative humidity range	5% to 95% noncondensing (Tested in accordance with IEC 60068-2-56.)

Shock and Vibration

Operating shock	30 g peak, half-sine, 11 ms pulse
	(Tested in accordance with IEC 60068-2-27.
	Meets MIL-PRF-28800F Class 2 limits.)
Random vibration	
Operating	5 Hz to 500 Hz, 0.3 g _{rms}
Non-operating	5 Hz to 500 Hz, 2.4 g _{rms}
	(Tested in accordance with IEC 60068-2-64.
	Nonoperating test profile exceeds the
	requirements of MIL-PRF-28800F, Class 3.)

Safety Voltage

Connect only voltages that are within the following limits:

Between any AI+ and AI-....±11 V Between any AI terminal and COM±11 V

Isolation

Channel to channel

300 V_{rms}, Measurement Category II

Rated transient overvoltage 2,500 V_{pk}

Channel to earth ground

300 V_{rms}, Measurement Category II

Rated transient overvoltage 2,500 V_{pk}

Caution Do *not* use for measurements within Measurement Categories III or IV.

Caution The protection provided by the PXIe-4310 can be impaired if it is used in a manner not described in this document.

Safety Standards

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or the Online Product Certification section.

Measurement Categories CAT I and CAT O are equivalent. These test and measurement circuits are not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV. MAINS is a hazardous live electrical supply system that powers equipment. Measurement Category O is for measurements of voltages from specially protected secondary circuits, such as signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

Measurement Category II is for measurements performed on circuits directly connected to the electrical distribution system. This category refers to local-level electrical distribution, such as that provided by a standard wall outlet, for example, 120 V for U.S. or 240 V for Europe.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions •
- EN 55024 (CISPR 24): Immunity •
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations and certifications, and additional information, refer to the Online Product Certification section.

CE Compliance (€

This product meets the essential requirements of applicable European Directives as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni. com/ certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the Minimize Our Environmental Impact web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all products *must* be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on Waste and Electronic Equipment, visit ni.com/environment/ weee.

电子信息产品污染控制管理办法 (中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/ environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Worldwide Support and Services

The NI website is your complete resource for technical support. At ni.com/support you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

Visit ni.com/services for NI Factory Installation Services, repairs, extended warranty, and other services.

Visit ni.com/register to register your NI product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

A Declaration of Conformity (DoC) is our claim of compliance with the Council of the European Communities using the manufacturer's declaration of conformity. This system affords the user protection for electromagnetic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification. If your product supports calibration, you can obtain the calibration certificate for your product at ni.com/calibration.

NI corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. NI also has offices located around the world. For telephone support in the United States, create your service request at ni.com/support or dial 1 866 ASK MYNI (275 6964). For telephone support outside the United States, visit the Worldwide Offices section of ni.com/niglobal to access the branch office websites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.

Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for more information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the National Instruments Patents Notice at ni.com/patents. You can find information about end-user license agreements (EULAS) and third-party legal notices in the readme file for your NI product. Refer to the Export Compliance Information at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECONs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.

© 2017 National Instruments. All rights reserved.

377031A-01 Apr17