COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs. We Sell For Cash We Get Credit We Receive a Trade-In Deal

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

APEX WAVES

Bridging the gap between the manufacturer and your legacy test system.

1-800-915-6216
 www.apexwaves.com
 sales@apexwaves.com

 \bigtriangledown

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote CLICK HERE PXIe-5820

SPECIFICATIONS

PXIe-5820

1.25 GS/s Baseband I/Q Vector Signal Transceiver

Contents

Definitions	2
Conditions	2
Differential Operation	3
Frequency	4
Internal Frequency Reference	4
I/Q Input	5
I/Q Input Common-Mode Accuracy	5
I/Q Input DC Offset	. 5
I/Q Input Absolute AC Gain Accuracy	5
I/Q Input Frequency Response	6
I/Q Input Settling Time	. 7
I/Q Input Average Noise Density	
I/Q Input Spectral Characteristics	
I/Q Output	
I/Q Output Common-Mode Accuracy	11
I/Q Output DC Offset	
I/Q Output Absolute AC Gain Accuracy	12
I/Q Output Frequency Response	12
I/Q Output Settling Time	14
I/Q Output Average Noise Density	14
I/Q Output Spectral Characteristics	14
Additional Performance Information	16
Image Suppression	16
SINAD and ENOB	16
I/Q Loopback Third-Order Intermodulation (IMD3)	17
I/Q Loopback Second-Order Intermodulation (IMD2)	
Application-Specific Modulation Quality	21
WLAN 802.11ax	21
WLAN 802.11ac	21
LTE	22
Baseband Characteristics	23
Onboard FPGA	23
Onboard DRAM	24
Onboard SRAM	24

Front Panel I/O	24
I/Q IN 0	24
I/Q OUT 0	25
REF IN	
REF OUT	27
PFI 0	28
DIGITAL I/O	28
Power Requirements	30
Calibration	31
Physical Characteristics	31
Environment	31
Operating Environment	31
Storage Environment	31
Shock and Vibration	31
Compliance and Certifications	32
Safety	32
Electromagnetic Compatibility	32
CE Compliance	32
Online Product Certification	32
Environmental Management	33

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- *Typical-95* specifications describe the performance met by 95% (≈2σ) of models with a 95% confidence.
- *Nominal* specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are Warranted unless otherwise noted.

Conditions

Warranted specifications are valid under the following conditions unless otherwise noted.

- Over ambient temperature range of 0 °C to 45 °C.
- 30 minutes warm-up time.
- Calibration cycle is maintained.
- Chassis fan speed is set to High. In addition, NI recommends using slot blockers and EMC filler panels in empty module slots to minimize temperature drift.
- Calibration IP is used properly during the creation of custom FPGA bitfiles.

Typical specifications do not include measurement uncertainty and are measured immediately after a device self-calibration is performed.

Unless otherwise noted, specifications assume the PXIe-5820 is configured in the following default mode of operation:

- I/Q IN voltage range: 2.0 V_{pk-pk} differential
- I/Q IN common-mode voltage: 0 V
- I/Q OUT voltage range: 1.0 V_{pk-pk} differential
- I/Q OUT common-mode voltage: 0 V
- I/Q OUT load impedance: 100 Ω differential

Note Within the specifications, *self-calibration* $^{\circ}C$ refers to the recorded device temperature of the last successful self-calibration. You can read the self-calibration temperature from the device using the appropriate software functions.

Differential Operation

The I/Q inputs and outputs of the PXIe-5820 support differential operation. This section explains some of the fundamental analog signal processing that occurs in the first stages of the I/Q receiver.

A differential signal system has a positive component ($V_{INPUT}(CH+)$) and a negative component ($V_{INPUT}(CH-)$). The differential signal can have a common-mode offset (V_{IN_COM}) shared by both $V_{INPUT}(CH+)$ and $V_{INPUT}(CH-)$. The differential input signal is superimposed on the common-mode offset. The input circuitry rejects the input common-mode offset signal.

In a differential system, any noise present on both $V_{INPUT}(CH^+)$ and $V_{INPUT}(CH^-)$ gets rejected. Differential systems also double the dynamic range compared to a single-ended system with the same voltage swing. The following figure illustrates the key concepts of differential offset and common-mode offset associated with a differential system.

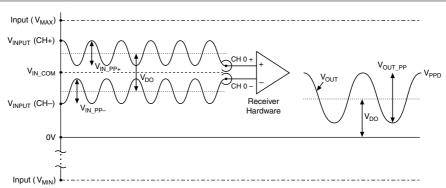


Figure 1. Definition of Common-Mode Offset and Differential Offset

where

 $V_{IN\ PP+}$ represents the peak-to-peak amplitude of the positive AC input signal

 $V_{IN\ PP}$ represents the peak-to-peak amplitude of the negative AC input signal

V_{DO} represents the differential offset voltage

 $V_{IN\ COM}$ represents the common-mode offset voltage

 $V_{OUT\ PP}$ represents the peak-to-peak amplitude of the output signal

In the previous figure, the input common-mode voltage is not present after the first stage of the receiver system. The signal remaining at the output of the receiver circuitry is the signal of interest.

Note The differential signal can have an offset between $V_{INPUT}(CH+)$ and $V_{INPUT}(CH-)$. This is known as the *differential offset* and is retained by the receiver circuitry.

In an I/Q analyzer, a differential offset can occur because of LO leakage or harmonics. In the case of I/Q generation, a differential offset can cause spurs and magnitude error.

In a phase-balanced differential system, the peak-to-peak amplitude of the positive AC input signal (V_{IN_PP+}) is equal to the peak-to-peak amplitude of the negative AC input signal (V_{IN_PP-}). The AC peak-to-peak amplitude of the output signal is the sum of V_{IN_PP+} and V_{IN_PP-}. A more general definition for the output voltage regardless of phase is the difference between V_{IN_PP+} and V_{IN_PP-} described by the following equation:

 $V_{OUT} = (V_{INPUT}(CH+)) - (V_{INPUT}(CH-))$

The common-mode offset, which represents the rejected component common to both signals, is described by the following equation:

 $V_{\text{IN COM}} = [(V_{\text{INPUT}}(\text{CH}+)) + (V_{\text{INPUT}}(\text{CH}-))]/2$

Frequency

Complex I/Q equalized bandwidth ¹	1 GHz
Frequency Range	DC-500 MHz

Note To operate the device in complex baseband mode, configure each channel with identical ranges and termination. Complex baseband mode requires two input signals that are 90° out of phase.

Internal Frequency Reference

Initial adjustment accuracy	$\pm 200 \times 10^{-9}$
Temperature stability	$\pm 1 \times 10^{-6}$, maximum

¹ Complex equalized bandwidth is the combined bandwidth of I and Q channels. Valid only when using identical gain and termination settings for each I/Q channel.

Accuracy

Initial adjustment accuracy $\pm Aging \pm$ *Temperature stability*

I/Q Input

I/Q Input Common-Mode Accuracy

Common-Mode (V)	Accuracy (mV) at 23 °C	
-0.25 to 1.50	±2.5	
Conditions: Massured with a DMM. Common mode affect is not adjusted during salf		

Conditions: Measured with a DMM. Common-mode offset is not adjusted during selfcalibration. Valid for vertical ranges between 0.1 Vpp and 2.0 Vpp, differential. Measured with both input terminals terminated to ground through a high impedance >1 M Ω .

I/Q Input DC Offset

Reference Location	DC Offset at 23 °C ± 5 °C	
At ADC	<-57 dBFS	
At connector	<10 mV	
Conditions: Terminated with 100 O differential impedance		

12 uniferential impedance. erminated with 100

I/Q Input Absolute AC Gain Accuracy

Table 3. I/Q Input Absolute AC Gain Accuracy (dB)

Input Vertical Range (V _{pp} , Differential)	23 °C ± 5 °C	0 °C to 45 °C
0.5 to 4.0	±0.57	±0.71
	±0.15, typical	±0.28, typical

Table 3. I/Q Input Absolute AC Gain Accuracy (dB) (Continued)

Input Vertical Range (V _{pp} , Differential)	23 °C ± 5 °C	0 °C to 45 °C
1.0 to 4.0	±0.44	±0.57

Conditions: Valid for all common-mode voltages. Measured with 10 MHz CW tone from a 100 Ω differential source.

This specification is valid only when the module is operating within the specified ambient temperature range and within ± 5 °C from the last self-calibration temperature, as indicated by the **niRFSA Device Temperature** property or NIRFSA ATTR DEVICE TEMPERATURE attribute.

I/Q Input Frequency Response

Frequency	Input Vertical Range (V _{pp} , Differential)	23 °C ± 5 °C	0 °C to 45 °C
100 kHz to 100 MHz	0.5 to 4.0	±0.31, typical	±0.36, typical
		±0.82	±0.92
	1.0 to 4.0	±0.67	±0.77
100 kHz to 250 MHz	0.5 to 4.0	±0.31, typical	±0.36, typical
		±0.82	±0.97
	1.0 to 4.0	±0.67	±0.83
100 kHz to 500 MHz	0.5 to 4.0	±0.31, typical	±0.62, typical
		±0.82	±1.22
	1.0 to 4.0	±0.68	±1.10

Table 4. I/Q Input Frequency Response² (dB)


² Referenced to 10 MHz. Digital equalization enabled. Valid only when using identical gain and termination settings for each I/Q channel.

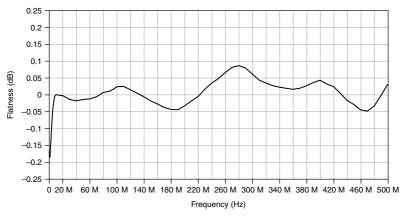

Frequency	Input Vertical Range (V _{pp} , Differential)	23 °C ± 5 °C	0 °C to 45 °C
10 MHz to 250 MHz	0.5 to 4.0	±0.10, typical	±0.28, typical
10 MHz to 500 MHz		±0.25, typical	±0.62, typical

Table 4. I/Q Input Frequency Response² (dB) (Continued)

Conditions: Valid for all common-mode voltages. Referenced to 10 MHz.

This specification is the individual I or Q channel flatness and is valid only when the module is operating within the specified ambient temperature range and within ± 5 °C from the last self-calibration temperature, as indicated by the **niRFSA Device Temperature** property or the NIRFSA_ATTR_DEVICE_TEMPERATURE attribute.

I/Q Input Settling Time

Table 5	5. I/Q	Input	Amplitude	Settlina	Times.	Nominal

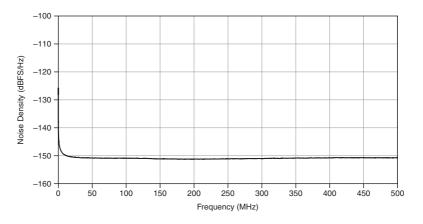
Proximity to Final Settled Value (dB)	Settling Time (µs)
0.5	9
0.1	100

² Referenced to 10 MHz. Digital equalization enabled. Valid only when using identical gain and termination settings for each I/Q channel.

³ Measured at 23 °C with 0 V common-mode and 1 V_{pp} vertical range, differential.

Proximity to Final Settled Value (dB)	Settling Time (µs)
0.05	100
0.01	100

Table 5. I/Q Input Amplitude Settling Times, Nominal (Continued)


Nominal common-mode voltage settling 1.2 mstime $(0.01 \text{ dB})^4$

I/Q Input Average Noise Density

Table of , d , therage input there benergy, Typical					
dBFs/Hz	dBm/Hz	Input Vertical Range (V _{pp} , Differential)			
-149	-152	0.5			
-146	-143	1			
-149	-141	2			
-150	-140	3			
	-140	3 Conditions: Terminated with a 100 Ω differential impedance.			

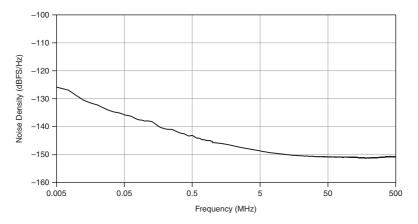

Table 6. I/Q Average Input Noise Density, Typical

Figure 3. Input Average Noise Density vs. Linear Frequency (dBFS/Hz), Nominal ⁵

⁴ Nominal settling time is for max common-mode change.

 $^{^5~}$ Terminated with a 100 Ω differential impedance. Linear scale used for frequency axis.

I/Q Input Spectral Characteristics

Harmonics⁷

Table 7. I/Q Input I Channel Highest Harmonic Spur Level (dBc)

Input Vertical Range (V _{pp} , Differential)	10 MHz		100 MHz	
	Typical	Nominal	Typical	Nominal
0.5	-74	-78	-76	-80
1	-75	-80	-76	-83
2	-76	-81	-73	-80
3	-78	-80	-73	-79

Table 8. I/Q Input Q Channel Highest Harmonic Spur Level (dBc)

Input Vertical Range (V _{pp} , Differential)	10 MHz		tical Range (V _{pp} , Differential) 10 MHz 100 MHz		MHz
	Typical	Nominal	Typical	Nominal	
0.5	-78	-81	-78	-81	
1	-80	-85	-82	-86	

 $^{^{6}}$ Terminated with a 100 Ω differential impedance. Log scale used for frequency axis.

⁷ Conditions: Measured with a -2 dBFS CW tone.

Input Vertical Range (V _{pp} , Differential)	10 MHz		nge (V _{pp} , Differential) 10 MHz 100 MHz		MHz
	Typical	Nominal	Typical	Nominal	
2	-79	-82	-80	-85	
3	-77	-80	-79	-84	

Table 8. I/Q Input Q (Channel Highest	Harmonic Spu	ur Level (dBc) (Continued)	
Tuble of i & input &	onumer righeet	riannonio ope		abo) (containaca)	

Input Vertical Range (V _{pp} , Differential)	10 MHz		100 MHz	
	Typical	Nominal	Typical	Nominal
0.5	-74	-77	-75	-79
1	-75	-80	-75	-82
2	-76	-80	-73	-79
3	-77	-79	-73	-79

Table 9. I/Q Input I Channel THD (dBc)

Table 10. I/Q Input Q Channel THD (dBc)

Input Vertical Range (V _{pp} , Differential)	10 MHz		100 MHz	
	Typical	Nominal	Typical	Nominal
0.5	-76	-79	-77	-81
1	-80	-84	-81	-85
2	-79	-81	-79	-84
3	-76	-79	-78	-83

Table 11. I/Q Input Second Harmonic (dBc), Nominal

Input Vertical Range (V _{pp} , Differential)	10 MHz	100 MHz
0.5	-89	-89
1	-89	-88
2	-89	-89
3	-89	-88

Input Vertical Range (V _{pp} , Differential)	10 MHz	100 MHz
0.5	-88	-91
1	-89	-89
2	-86	-85
3	-86	-84

Table 12. I/Q Input Third Harmonic (dBc), Nominal

Nonharmonics⁸

 Table 13. I/Q Input Nonharmonics (dBc)

Input Vertical Range (V _{pp} , Differential)	10 MHz		100 MHz	
	Typical	Nominal	Typical	Nominal
0.5	-80	-82	-79	-81
1	-79	-81	-79	-81
2	-80	-81	-79	-81
3	-80	-81	-80	-82

I/Q Output

I/Q Output Common-Mode Accuracy

Table 14. I/Q Output Common-Mode Accuracy, Typical	Table 14.	I/Q Output	Common-Mode	Accuracy,	Typical
--	-----------	------------	-------------	-----------	---------

Common-Mode (V) Accuracy (mV) at 23 °C			
-0.25 to 1.50 ±2			
Conditions: Measured with a DMM. Common-mode offset is not adjusted during self- calibration. Valid for vertical ranges between 0.1 V_{pp} and 2.0 V_{pp} , differential. Measured			

with both output terminals terminated to ground through a high impedance >1 M Ω .

⁸ Conditions: Measured with a -2 dBFS CW tone.

I/Q Output DC Offset

Temperature Range	I/Q Output DC Offset Error
$23 \degree C \pm 5 \degree C$	-60

dBr is dB relative to the peak to peak output voltage setting (V_{pp} , differential).

I/Q Output Absolute AC Gain Accuracy

Output Vertical Range (V _{pp} , Differential)	0	
0.25 to 2.0	±0.43	±0.68
	± 0.10 , typical	±0.35, typical

Table 16. I/Q Output Absolute AC Gain Accuracy (dB)

Conditions: Valid for all common-mode voltages. 10 MHz CW tone into a 100 Ω differential load.

This specification is valid only when the module is operating within the specified ambient temperature range and within ± 5 °C from the last self-calibration temperature, as indicated by the **niRFSG Device Temperature** property or the

NIRFSA_ATTR_DEVICE_TEMPERATURE attribute.

I/Q Output Frequency Response

Frequency Range	Output Vertical Range (V _{pp} , Differential)	23 °C ± 5 °C	0 °C to 45 °C
100 kHz to 100 MHz	0.25 to 2.0	±0.17, typical	±0.24, typical
		±0.51	±0.61
	0.50 to 2.0	±0.44	±0.54

 Table 17. I/Q Output Frequency Response (dB)

⁹ Conditions: 100 Ω differential load.

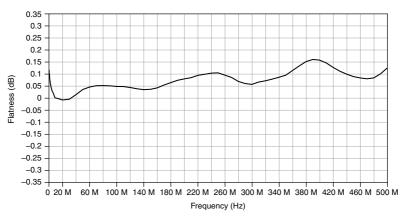

Frequency Range	Output Vertical Range (V _{pp} , Differential)	23 °C ± 5 °C	0 °C to 45 °C
100 kHz to 250 MHz	0.25 to 2.0	±0.17, typical	±0.25, typical
		±0.57	±0.69
	0.50 to 2.0	±0.55	±0.68
100 kHz to 500 MHz	0.25 to 2.0	±0.18, typical	±0.36, typical
		±0.65	±0.83
	0.50 to 2.0	±0.59	±0.80

Table 17. I/Q Output Frequency Response (dB) (Continued)

Conditions: Valid for all common-mode voltages. Referenced to 10 MHz.

This specification is the individual I or Q channel flatness and is valid only when the module is operating within the specified ambient temperature range and within ± 5 °C from the last self-calibration temperature, as indicated by the **niRFSG Device Temperature** property or the NIRFSA_ATTR_DEVICE_TEMPERATURE attribute.

 $^{^{10}~}$ Measured at 23 °C with 0 V common-mode and 1 V $_{\rm pp}$ vertical range, differential.

I/Q Output Settling Time

Proximity to Final Settled Value (dB)	Settling Time (us)
0.5	9
0.1	100
0.05	100
0.01	100

 Table 18. I/Q Output Nominal Amplitude Settling Times

Nominal common-mode settling time 1.2 ms(0.01 dB)¹¹

I/Q Output Average Noise Density

Table 19. I/Q Average Output Noise Density, Typical		
Output Vertical Range (V _{pp} , Differential)	dBm/Hz	dl

Output Vertical Range (V _{pp} , Differential)	dBm/Hz	dBFS/Hz
0.5	-152	-147
1	-154	-155
2	-156	-162
Conditions: Terminated with a 100 Ω differential impedance.		

I/Q Output Spectral Characteristics

Harmonics¹²

Table 20. I/Q Output I or Q Channel Highest Harmonic Spur Level (dBc)

Output Vertical Range (V _{pp} , Differential)	10 MHz		100 MHz	
	Typical	Nominal	Typical	Nominal
0.5	-77	-80	-70	-74
1	-78	-80	-69	-74
2	-69	-71	-66	-68

¹¹ Nominal settling time is for max common-mode voltage change.

¹² Conditions: Measured with a -1 dBFS CW tone.

Output Vertical Range (V _{pp} , Differential)	10 MHz		100 MHz	
	Typical	Nominal	Typical	Nominal
0.5	-75	-78	-69	-73
1	-77	-78	-69	-73
2	-69	-70	-65	-67

Table 21. I/Q Output I or Q Channel THD (dBc)

Table 22. I/Q Output I or Q Channel Second Harmonic (dBc)

Output Vertical Range (V _{pp} , Differential)	10 MHz		100 MHz	
	Typical	Nominal	Typical	Nominal
0.5	-72	-82	-67	-77
1	-73	-81	-68	-77
2	-74	-82	-66	-76

Table 23. I/Q Output I or Q Channel Third Harmonic (dBc)

Output Vertical Range (V _{pp} , Differential)	10 MHz		100 MHz	
	Typical	Nominal	Typical	Nominal
0.5	-73	-81	-69	-78
1	-79	-85	-73	-80
2	-72	-75	-65	-71

Nonharmonics¹³

Output Vertical Range (V _{pp} , Differential)	10 MHz		100 MHz	
	Typical	Nominal	Typical	Nominal
0.5	-76	-77	-75	-77
1	-79	-81	-79	-81
2	-80	-82	-79	-81

 Table 24. I/Q Loopback Nonharmonics

Additional Performance Information

Image Suppression

Table 25. I/Q Loopback Image Suppression¹⁴ (dBc), Nominal

Complex Bandwidth	Image Suppression	
200 MHz	-69	
1 GHz -61		
Image suppression is equivalent to or better than the specification at all frequency offsets		

within the specified bandwidth.

SINAD and ENOB

Real Bandwidth (MHz)	Real SINAD	Real ENOB	Complex SINAD	Complex ENOB
0.5	80.1	13.0	80.5	13.1
1	79.9	13.0	80.4	13.1
2.5	79.7	13.0	80.3	13.1

Table 26. Input SINAD and ENOB

¹³ Conditions: Measured in loopback with a -1 dBFS CW tone. The I/Q input vertical range is set to twice the I/Q output vertical range.

¹⁴ Measured at 23 °C. Digital equalization enabled. Valid only when using identical gain and termination settings for each I/Q channel. Measured using short phase matched loopback cables <1 ps.</p>

Real Bandwidth (MHz)	Real SINAD	Real ENOB	Complex SINAD	Complex ENOB
5	78.8	12.8	79.4	12.9
10	77.9	12.6	78.4	12.7
20	77.7	12.6	78.3	12.7
100	76.3	12.4	77.4	12.6
500	69.5	11.3	70.6	11.4
Complex equalized bandwidth is the combined bandwidth of Land O channels				

Table 26. Input SINAD and ENOB (Continued)

Complex equalized bandwidth is the combined bandwidth of I and Q channels.

Real SINAD	Real ENOB	Complex SINAD	Complex ENOB	
79.3	12.9	80.5	13.1	
78.7	12.8	80.1	13.0	
75.8	12.3	77.9	12.6	
76.8	12.5	78.7	12.8	
75.8	12.3	77.9	12.6	
74.3	12.0	76.8	12.5	
69.7	11.3	72.5	11.8	
63.6	10.3	66.6	10.8	
	79.3 78.7 75.8 76.8 75.8 74.3 69.7	79.3 12.9 78.7 12.8 75.8 12.3 76.8 12.5 75.8 12.3 74.3 12.0 69.7 11.3	79.3 12.9 80.5 78.7 12.8 80.1 75.8 12.3 77.9 76.8 12.3 77.9 75.8 12.3 77.9 74.3 12.0 76.8 69.7 11.3 72.5	

Table 27. Output SINAD and ENOB

Complex equalized bandwidth is the combined bandwidth of I and Q channels.

I/Q Loopback Third-Order Intermodulation (IMD3)

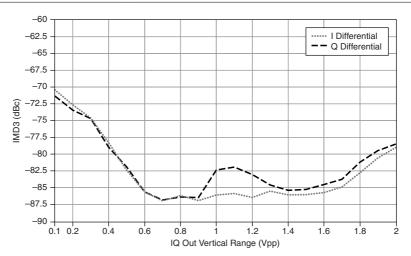
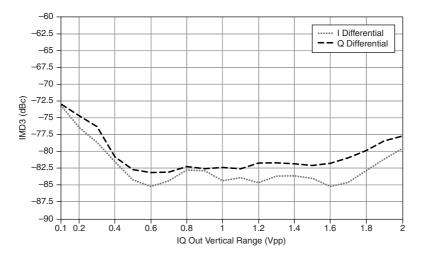

Vertical Range (V _{pp} ,	0 °C t	o 45 °C	
Differential)	Center Frequency (MHz)		
	10 MHz	100 MHz	
0.25	-77	-77	
0.50	-77	-77	

Table 28. I/Q Loopback IMD3 (dBc), Typical

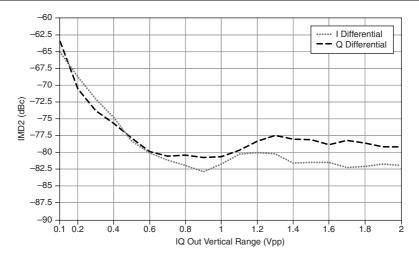
Vertical Range (V _{pp} ,	0 °C t	o 45 °C
Differential)	Center Fred	quency (MHz)
	10 MHz	100 MHz
1.00	-78	-76
2.00	-73	-72

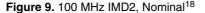

Table 28. I/Q Loopback IMD3 (dBc), Typical (Continued)

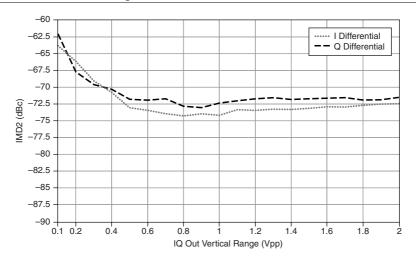
Conditions: Measured in loopback with two-tone stimulus, each tone is -8 dBFS with a 700 kHz spacing between the tones (equally spaced from the center frequency). IQ In and IQ Out ports are configured with the same Vertical Range and with 0 V common-mode.

Figure 6. 10 MHz IMD3, Nominal¹⁵

 $^{^{15}~}$ Measured at 23 °C with both I/Q In and I/Q Out common-mode voltage set to 0 V and with I/Q In vertical range set to 2.0 V_{pp} , differential.


I/Q Loopback Second-Order Intermodulation (IMD2)


Vertical Range (V _{pp} ,	0 °C to 45 °C Center Frequency (MHz)		
Differential)			
	10 MHz	100 MHz	
0.25	-74	-68	
0.50	-73	-67	
1.00	-73	-68	
2.00	-73	-67	

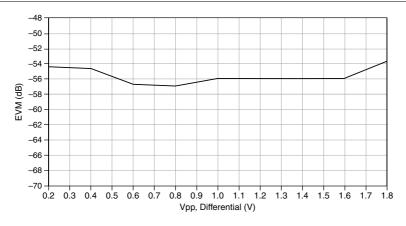

Table 29. I/Q Loopback IMD2 (dBc), Typical

Conditions: Measured in loopback with two-tone stimulus, each tone is -8 dBFS with a 700 kHz spacing between the tones (equally spaced from the center frequency). IQ In and IQ Out ports are configured with the same Vertical Range and with 0 V common-mode.

¹⁶ Measured at 23 °C with both I/Q In and I/Q Out common-mode voltage set to 0 V and with I/Q In vertical range set to 2.0 V_{pp}, differential.

¹⁷ Measured at 23 °C with both I/Q In and I/Q Out common-mode voltage set to 0 V and with I/Q In vertical range set to 2.0 V_{pp}, differential.

¹⁸ Measured at 23 °C with both I/Q In and I/Q Out common-mode voltage set to 0 V and with I/Q In vertical range set to 2.0 V_{pp} , differential.


Application-Specific Modulation Quality

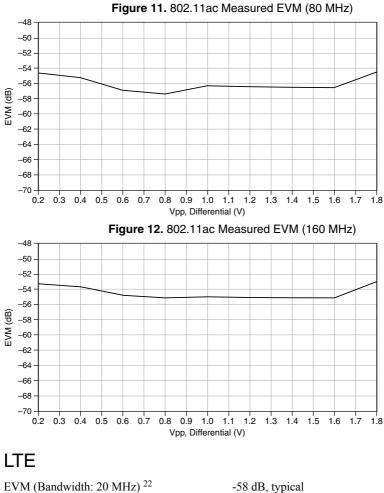
WLAN 802.11ax

EVM (Bandwidth: 80 MHz)19

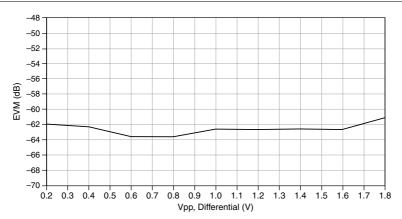
-50 dB, typical

WLAN 802.11ac

EVM (Bandwidth:	80 MHz) ²⁰
-----------------	-----------------------


EVM (Bandwidth: 160 MHz)²¹

-50 dB, typical


¹⁹ Loopback with phase matched cables <1 ps; transmit power auto-leveled based on real-time average power measurements; MCS=11.

²⁰ Loopback with phase matched cables <1 ps; transmit power auto-leveled based on real-time average power measurements; MCS=11.

²¹ Loopback with phase matched cables <1 ps; transmit power auto-leveled based on real-time average power measurements; MCS=11.

 $^{^{22}}$ Loopback with phase matched cables ${<}1$ ps; transmit power auto-leveled based on real-time average power measurements.

Baseband Characteristics

Analog-to-digital converters (ADC	Cs)	
Resolution	14 bits	
Sample rate	1.25 GS/s	
I/Q data rate ²³	19 kS/s to 1.25 GS/s	
Digital-to-analog converters (DAC	Cs)	
Resolution	16 bits	
Sample rate ²⁴	1.25 GS/s	
I/Q data rate ²⁵	19 kS/s to 1.25 GS/s	

Onboard FPGA

FPGA	Xilinx Virtex-7 X690T
LUTs	433,200
Flip-flops	866,400
DSP48 slices	3,600
Embedded block RAM	52.9 Mbits
Data transfers	DMA, interrupts, programmed I/O
Number of DMA channels	56

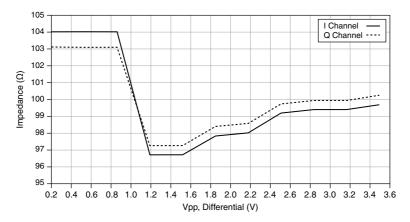
²³ I/Q data rates lower than 1.25 GS/s are achieved using fractional decimation.

²⁴ DAC sample rate is internally interpolated to 2.5 GS/s, automatically configured.

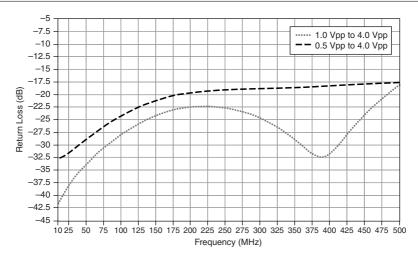
 $^{^{25}}$ I/Q data rates lower than 1.25 GS/s are achieved using fractional interpolation.

Onboard DRAM

Memory size	2 banks, 2 GB per bank	
Theoretical maximum data rate	12 GB/s per bank	
Onboard SRAM		
Memory size	2 MB	
Maximum data rate (read)	31 MB/s	
Maximum data rate (write)	29 MB/s	


Front Panel I/O

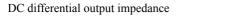

I/Q IN 0


Connectors	MMPX (female)
Input coupling, per terminal	DC
Input type	Differential
Number of channels	2
Vertical Range	
Input voltage range per I/Q input pin ²⁶ (no damage)	-3 V to 5 V
Common-mode range ²⁷	-0.25 V to 1.5 V
Maximum vertical range	4 V _{pp} , differential
Impedance	
DC differential input impedance	$100 \pm 10 \Omega$, typical

 ²⁶ Common-mode voltage plus peak AC voltage.
 ²⁷ Valid for all Vpp differential levels with a 100 Ω differential source.

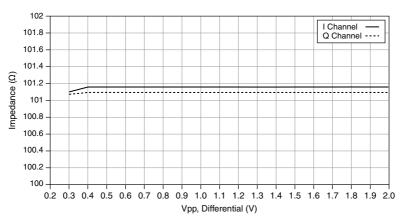
I/Q OUT 0

Connectors	MMPX (female)
Output coupling, per terminal	DC
Output type	differential
Number of channels	2

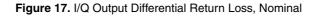

Vertical Range

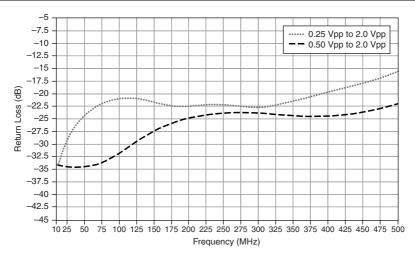
Maximum voltage range per I/Q output	$V_{com} \pm 3.5 V$
pin (no damage)	
Common-mode range ²⁸	-0.25 V to 1.5 V

Table 30. I/Q Output Vertical Range (Vpp, Differential)


NI-RFSG Signal Bandwidth Setting (Complex)	Maximum Vertical Range
≤ 160 MHz	3.4, nominal
$\leq 1 \text{ GHz}$	2, typical
Conditions: Into a 100 Ω differential load.	

Impedance




 $100 \pm 10 \Omega$, typical

 $^{^{28}}$ Valid for all V_{pp}, differential levels.

REF IN

Connector	MMPX (female)
Frequency	10 MHz
Tolerance ²⁹	$\pm 10 imes 10^{-6}$
Amplitude ³⁰	0.7 V_{pk-pk} to 3.3 V_{pk-pk} into 50 Ω , typical
Input impedance	50 Ω, nominal
Coupling	AC
REF OUT	

Connector	MMPX (female)
Frequency	10 MHz, nominal
Amplitude	1.65 V_{pk-pk} into 50 Ω , nominal
Output impedance	50 Ω, nominal
Coupling	AC

²⁹ Frequency Accuracy = Tolerance × Reference Frequency

³⁰ Jitter performance improves with increased slew rate of input signal.

PFI 0

Connector	MMPX (female)
Voltage levels ³¹	
Absolute maximum input range	-0.5 V to 5.5 V
V _{IL} , maximum	0.8 V
V _{IH} , minimum	2.0 V
V _{OL} , maximum	0.2 V with 100 µA load
V _{OH} , minimum	2.9 V with 100 µA load
Input impedance	10 kΩ, nominal
Output impedance	50 Ω, nominal
Maximum DC drive strength	24 mA

DIGITAL I/O

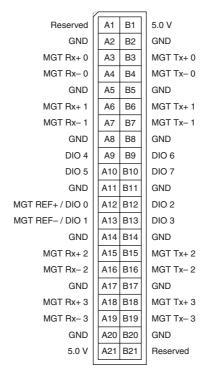
Connector	Molex Nano-Pitch I/O	
5.0 V Power	±5%, 50mA maximum, nominal	

Table 31. DIGITAL I/O Signal Characteristics

Signal	Туре	Direction
MGT Tx± <30>	Xilinx Virtex-7 GTH	Output
MGT Rx± <30>	Xilinx Virtex-7 GTH	Input
MGT REF±	Differential	Input
DIO <10> ³²	Single-ended	Bidirectional
DIO <72>	Single-ended	Bidirectional
5.0 V	DC	Output
GND	Ground	

Digital I/O High Speed Serial MGT³³

Data rate	500 Mbps to 12 Gbps, nominal
Number of Tx channels	4


 ³¹ Voltage levels are guaranteed by design through the digital buffer specifications.
 ³² Pins are multiplexed with MGT REF±.

Number of Rx channels	4
I/O AC coupling capacitor	100 nF
MGT Tx± <30> Channels	
Minimum differential output voltage ³⁴	800 mV _{pk-pk} into 100 Ω , nominal
MGT Rx± <30> Channels	
Differential input voltage range	
\leq 6.6 GB/s	150 mV _{pk-pk} to 2000 mV _{pk-pk} , nominal
> 6.6 GB/s	150 mV _{pk-pk} to 1250 mV _{pk-pk} , nominal
Differential input resistance	100 Ω , nominal
MGT Reference Clock	
Clocking Resources	
Internal MGT reference ³⁵	78.125 MHz to 625 MHz
Data Clock	156.25 MHz
MGT REF± Input	60 MHz to 820 MHz, nominal
MGT REF± Input	
AC coupling capacitors	100 nF
Differential input resistance	100 Ω, nominal
Differential input V _{pk-pk} range	350 mV to 2000 mV, nominal
Absolute maximum input range	-1.25 V to 4.5 V ³⁶

 ³³ For detailed FPGA and High Speed Serial Link specifications, refer to Xilinx documentation.
 ³⁴ When transmitter output swing is set to the maximum setting.

³⁵ Internal MGT Reference is derived from the Sample Clock PLL. Available frequencies are 2.5 GHz / *N*, where $4 \le N \le 32$. Set via MGT component level IP (CLIP).

³⁶ Absolute maximum levels at input, prior to AC coupling capacitors.

Power Requirements

Table	32.	Power	Requirements
-------	-----	-------	--------------

Voltage (V _{DC})	Typical Current (A)
+3.3	3.3
+12	6.0
Power is 83 W, typical. Consumption is from both PXI Express backplane power connectors.	

Conditions: Simultaneous generation and acquisition using NI-RFSG and NI-RFSA at 1.25 GS/s I/Q rate, 45 °C ambient temperature. Power consumption depends on FPGA image being used.

Interval

1 year

Physical Characteristics

PXIe-5820 module	3U, two slot, PXI Express module 4.1 cm × 13.0 cm × 21.6 cm
	$1.6 \text{ in.} \times 5.1 \text{ in.} \times 8.5 \text{ in.}$
Weight	795 g (28.0 oz)

Environment

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 45 °C
Relative humidity range	10% to 90%, noncondensing

Storage Environment

Ambient temperature range	-40 °C to 71 °C
Relative humidity range	5% to 95%, noncondensing

Shock and Vibration

Operating shock	30 g peak, half-sine, 11 ms pulse
Random vibration	
Operating	5 Hz to 500 Hz, 0.3 g_{rms}
Nonoperating	5 Hz to 500 Hz, 2.4 g_{rms}

Safety

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the *Online Product Certification* section.

CE Compliance $C \in$

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit *ni.com*/

certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Minimize Our Environmental Impact* web page at *ni.com/environment*. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit *ni.com/environment/weee*.

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: **Help**»**Patents** in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.

© 2017-2018 National Instruments. All rights reserved.