COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs. We Sell For Cash We Get Credit We Receive a Trade-In Deal

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

APEX WAVES

Bridging the gap between the manufacturer and your legacy test system.

1-800-915-6216
www.apexwaves.com
sales@apexwaves.com

 \bigtriangledown

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote CLICK HERE PXIe-5840

Manufacturer: National Instruments

Board Assembly Part Numbers (Refer to Procedure 1 for identification procedure):

Part Number and Revision	Description	
158395E-01L or later	PXIe-5840	

Volatile Memory

			Battery	User ¹	System	Sanitization
Target Data	Туре	Size	Backup	Accessible	Accessible	Procedure
Waveform storage – Bank 1	DRAM	2 GB	No	Yes	Yes	Cycle Power
Waveform storage – Bank 2	DRAM	2 GB	No	Yes	Yes	Cycle Power
FPGA Image Memory	SDRAM	32 MB	No	Yes	Yes	Cycle Power
FPGA Configuration PLD	RAM	10 KB	No	No	No	Cycle Power
FPGA General User Memory	Block RAM	6,615 KB	No	Yes	Yes	Cycle Power
FPGA Distributed User	LUTRAM	1,361 KB	No	Yes	Yes	Cycle Power
Memory						
Instruction Storage	SRAM	2 MB	No	Yes	Yes	Cycle Power
RF Input Control PLD	Block RAM	48 KB	No	No	No	Cycle Power
RF Output Control PLD	Block RAM	48 KB	No	No	No	Cycle Power

Non-Volatile Memory (incl. Media Storage)

			Battery	User	System	Sanitization
Target Data	Туре	Size	Backup	Accessible	Accessible	Procedure
Device configuration	Flash	128 MB	No			
• Device configuration and info				No	Yes	None
FPGA bitstream				No	Yes	None
Calibration metadata				Yes	Yes	Procedure 2
• Calibration data ²				No	Yes	None
Spread Spectrum Clock	On-chip	48 Bytes	No	No	Yes	None
	EEPROM					
FPGA Configuration PLD						
User Flash Memory	Flash	8 KB	No	No	Yes	None
Configuration Image	Flash	42 KB	No	No	Yes	None
Baseband Control PLD						
User Flash Memory	Flash	1 KB	No	No	Yes	None
Configuration Image	Flash	1270 LEs	No	No	Yes	None
RF Input Control PLD						
User Flash Memory	Flash	114 KB	No	No	Yes	None
Configuration Image	Flash	198 KB	No	No	Yes	None

¹ Refer to *Terms and Definitions* section for clarification of *User* and *System Accessible*

² Calibration constants that are stored on the device include information for the device's full operating range. Any implications resulting from partial self-calibration can be eliminated by running the full self-calibration procedure.

Non-Volatile Memory (incl. Media Storage) (continued)

Target Data	Туре	Size	Battery Backup	User Accessible	System Accessible	Sanitization Procedure
RF Output Control PLD	-)]**		2	11000000000		
• User Flash Memory	Flash	114 KB	No	No	Yes	None
Configuration Image	Flash	198 KB	No	No	Yes	None

Procedures

Procedure 1 – Board Assembly Part Number identification:

To determine the Board Assembly Part Number and Revision, refer to the label applied to the surface of your product. The Assembly Part Number should be formatted as "P/N: 158395#-01L" where "#" is the letter module revision.

Procedure 2 - Device Configuration Flash (Calibration Metadata):

The user-accessible portion of the Device Calibration Flash is limited to a programmable calibration password which is exposed through an NI-RFSG attribute that can be programmed in LabVIEW. To clear this metadata, complete the following steps in an empty VI and run in LabVIEW:

- 1. Open an RFSG session using the niRFSG Initialize VI.
- 2. To clear/reset the calibration password:
 - a. Add the niRFSG Change External Calibration Password VI after the niRFSG Initialize VI.
 - b. Specify the current password in the "password" input of the niRFSG Change External Calibration Password VI.
 - c. Wire a string of 32 "0" characters to the "new password" input of the niRFSG Change External Calibration Password VI.
- 3. Close the RFSG session using the niRFSG Close VI.

Terms and Definitions

Cycle Power:

The process of completely removing power from the device and its components and allowing for adequate discharge. This process includes a complete shutdown of the PC and/or chassis containing the device; a reboot is not sufficient for the completion of this process.

Volatile Memory:

Requires power to maintain the stored information. When power is removed from this memory, its contents are lost. This type of memory typically contains application specific data such as capture waveforms.

Non-Volatile Memory:

Power is not required to maintain the stored information. Device retains its contents when power is removed. This type of memory typically contains information necessary to boot, configure, or calibrate the product or may include device power up states.

User Accessible:

The component is read and/or write addressable such that a user can store arbitrary information to the component from the host using a publicly distributed NI tool, such as a Driver API, the System Configuration API, or MAX.

System Accessible:

The component is read and/or write addressable from the host without the need to physically alter the product.

Clearing:

Per *NIST Special Publication 800-88 Revision 1*, "clearing" is a logical technique to sanitize data in all User Accessible storage locations for protection against simple non-invasive data recovery techniques using the same interface available to the user; typically applied through the standard read and write commands to the storage device.

Sanitization:

Per *NIST Special Publication 800-88 Revision 1*, "sanitization" is a process to render access to "Target Data" on the media infeasible for a given level of effort. In this document, clearing is the degree of sanitization described.