COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs.

Sell For Cash Get Credit Receive a Trade-In Deal

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

Bridging the gap between the manufacturer and your legacy test system.

0

1-800-915-6216

www.apexwaves.com

sales@apexwaves.com

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote

PXIe-6358

DEVICE SPECIFICATIONS

NI 6358

X Series Data Acquisition: 1.25 MS/s/ch, 16 AI, 48 DIO, 4 AO

The following specifications are typical at 25 °C, unless otherwise noted. For more information about the NI 6358, refer to the *X Series User Manual* available from *ni.com/manuals*.

Analog Input

Number of channels	16 differential
ADC resolution	16 bits
DNL	No missing codes guaranteed
INL	Refer to the AI Absolute Accuracy section.
Sample rate	
Single channel maximum	1.25 MS/s
Minimum	No minimum
Timing resolution	10 ns
Timing accuracy	50 ppm of sample rate
Input coupling	DC
Input range	±1 V, ±2 V, ±5 V, ±10 V
Maximum working voltage for all ana	alog inputs
Positive input (AI+)	±11 V for all ranges, Measurement Category I
Negative input (AI-)	±11 V for all ranges, Measurement Category I

 $\textbf{Caution} \quad \text{Do not use for measurements within Categories II, III, and IV.}$

CMRR (at 60 Hz)	75 dB
Bandwidth	1 MHz
THD	-80 dBFS

Input impedance

Device on	
AI+ to AI GND	$>$ 100 G Ω in parallel with 100 pF
AI- to AI GND	$>$ 100 G Ω in parallel with 100 pF
Device off	
AI+ to AI GND	2 kΩ
AI- to AI GND	$2~\mathrm{k}\Omega$
Input bias current	±10 pA
Crosstalk (at 100 kHz)	
Adjacent channels	-80 dB
Non-adjacent channels	-100 dB
Input FIFO size	8,182 samples shared among channels used
Data transfers	DMA (scatter-gather), programmed I/O
Overvoltage protection for all analog inp	ut channels
Device on	±36 V
Device off	±15 V
Input current during overvoltage conditions	±20 mA max/AI pin

Analog Triggers

Number of triggers	1
Source	AI <015>, APFI <0, 1>
Functions	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Source level	
AI <015>	±Full scale
APFI <0, 1>	±10 V
Resolution	16 bits
Modes	Analog edge triggering, analog edge triggering with hysteresis, and analog window triggering

Bandwidth (-3 dB)

AI <015>	3.4 MHz	
APFI <0, 1>	3.9 MHz	
Accuracy	±1% of range	
APFI <0, 1> characteristics		
Input impedance	10 kΩ	
Coupling	DC	
Protection, power on	±30 V	
Protection, power off	±15 V	

Al Absolute Accuracy

Table 1. Al Absolute Accuracy

Nominal Range Positive Full Scale	Nominal Range Negative Full Scale	Residual Gain Error (ppm of Reading)	Offset Tempco (ppm of Range/°C)	Random Noise, σ (μVrms)	Absolute Accuracy at Full Scale (μV)
10	-10	114	35	252	2,688
5	-5	120	36	134	1,379
2	-2	120	42	71	564
1	-1	138	50	61	313

Note For more information about absolute accuracy at full scale, refer to the *AI* Absolute Accuracy Example section.

Gain tempco	8 ppm/°C
Reference tempco	5 ppm/°C
Residual offset error	15 ppm of range
INL error	46 ppm of range

Note Accuracies listed are valid for up to two years from the device external calibration.

Al Absolute Accuracy Equation

 $AbsoluteAccuracy = Reading \cdot (GainError) + Range \cdot (OffsetError) + NoiseUncertainty$ $GainError = ResidualGainError + GainTempco \cdot (TempChangeFromLastInternalCal) + GainError + Gain$ ReferenceTempco · (TempChangeFromLastExternalCal)

 $OffsetError = ResidualOffsetError + OffsetTempco \cdot (TempChangeFromLastInternalCal) + INLError \\ NoiseUncertainty = \frac{\text{Random Noise} \cdot 3}{\sqrt{10,000}} \text{ for a coverage factor of 3 } \sigma \text{ and averaging} \\ 10,000 \text{ points}.$

Al Absolute Accuracy Example

Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

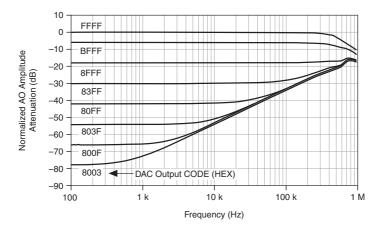
- TempChangeFromLastExternalCal = 10 °C
- TempChangeFromLastInternalCal = 1 °C
- $number\ of\ readings = 10,000$
- $CoverageFactor = 3 \sigma$

For example, on the 10 V range, the absolute accuracy at full scale is as follows:

$$\begin{aligned} \textit{GainError} &= 114 \text{ ppm} + 8 \text{ ppm} \cdot 1 + 5 \text{ ppm} \cdot 10 = 172 \text{ ppm} \\ \textit{OffsetError} &= 15 \text{ ppm} + 35 \text{ ppm} \cdot 1 + 46 \text{ ppm} = 96 \text{ ppm} \\ \textit{Noise Uncertainty} &= \frac{252 \, \mu \text{V} \cdot 3}{\sqrt{10,000}} = 7.6 \, \mu \text{V} \end{aligned}$$

AbsoluteAccuracy = 10 V \cdot (GainError) + 10 V \cdot (OffsetError) + NoiseUncertainty = 2688 μ V

Analog Output


Number of channels	4
DAC resolution	16 bits
DNL	±1 LSB, max
Monotonicity	16 bit guaranteed
Accuracy	Refer to the AO Absolute Accuracy section.
Maximum update rate (simultaneous)	
1 channel	3.3 MS/s
2 channels	3.3 MS/s
3 channels	3.3 MS/s
4 channels	3.3 MS/s
Minimum update rate	No minimum
Timing accuracy	50 ppm of sample rate
Timing resolution	10 ns

Output range	± 10 V, ± 5 V, $\pm external$ reference on APFI <0, 1>
Output coupling	DC
Output impedance	0.4 Ω
Output current drive	±5 mA
Overdrive protection	±25 V
Overdrive current	10 mA
Power-on state	±5 mV
Power-on/off glitch	1.5 V peak for 200 ms
Output FIFO size	8,191 samples shared among channels used
Data transfers	DMA (scatter-gather), programmed I/O
AO waveform modes	Non-periodic waveform, periodic waveform regeneration mode from onboard FIFO, periodic waveform regeneration from host buffer including dynamic update
Settling time, full-scale step, 15 ppm (1 LSB)	2 μs
Slew rate	20 V/μs
Glitch energy at midscale transition, ±10 V range	6 nV·s

External Reference

APFI <0, 1> characteristics		
Input impedance	$10~\mathrm{k}\Omega$	
Coupling	DC	
Protection, device on	± 30 V	
Protection, device off	± 15 V	
Range	± 11 V	
Slew rate	20 V/μs	

Figure 1. Analog Output External Reference Bandwidth

AO Absolute Accuracy

Absolute accuracy at full-scale numbers is valid immediately following self calibration and assumes the device is operating within 10 °C of the last external calibration.

Table 2. AO Absolute Accuracy

Nominal Range Positive Full Scale	Nominal Range Negative Full Scale	Residual Gain Error (ppm of Reading)	Gain Tempco (ppm/°C)	Reference Tempco (ppm/°C)	Residual Offset Error (ppm of Range)	Offset Tempco (ppm of Range/ °C)	INL Error (ppm of Range)	Absolute Accuracy at Full Scale (µV)
10	-10	129	17	5	65	1	64	3,256

Note Accuracies listed are valid for up to two years from the device external calibration.

AO Absolute Accuracy Equation

 $AbsoluteAccuracy = OutputValue \cdot (GainError) + Range \cdot (OffsetError)$

 $GainError = ResidualGainError + GainTempco \cdot (TempChangeFromLastInternalCal) +$ $ReferenceTempco \cdot (TempChangeFromLastExternalCal)$

 $OffsetError = ResidualOffsetError + OffsetTempco \cdot (TempChangeFromLastInternalCal)$ + INLError

Digital I/O/PFI

Static Characteristics

Number of channels	48 total, 32 (P0.<031>, 16 (PFI <07>/P1, PFI <815>/P2)
Ground reference	D GND
Direction control	Each terminal individually programmable as input or output
Pull-down resistor	50 kΩ typical, 20 kΩ minimum
Input voltage protection	±20 V on up to two pins

Caution Stresses beyond those listed under the Input voltage protection specification may cause permanent damage to the device.

Waveform Characteristics (Port 0 Only)

Terminals used	Port 0 (P0.<031>)
Port/sample size	Up to 32 bits
Waveform generation (DO) FIFO	2,047 samples
Waveform acquisition (DI) FIFO	255 samples
DI Sample Clock frequency	0 to 10 MHz, system and bus activity dependent
DO Sample Clock frequency	
Regenerate from FIFO	0 to 10 MHz
Streaming from memory	0 to 10 MHz, system and bus activity dependent
Data transfers	DMA (scatter-gather), programmed I/O
Digital line filter settings	160 ns, 10.24 μs, 5.12 ms, disable

PFI/Port 1/Port 2 Functionality

Functionality	Static digital input, static digital output, timing input, timing output
Timing output sources	Many AI, AO, counter, DI, DO timing signals
Debounce filter settings	90 ns, 5.12 μs, 2.56 ms, custom interval, disable; programmable high and low transitions; selectable per input

Recommended Operating Conditions

Input high voltage (V _{IH})		
Minimum	2.2 V	
Maximum	5.25 V	
Input low voltage (V _{IL})		
Minimum	0 V	
Maximum	0.8 V	
Output high current (I _{OH})		
P0.<07>	-24 mA maximum	
PFI <015>/P1/P2	-16 mA maximum	
Output low current (I _{OL})		
P0.<07>	24 mA maximum	
PFI <015>/P1/P2	16 mA maximum	

Digital I/O Characteristics

Positive-going threshold (VT+)	2.2 V maximum
Negative-going threshold (VT-)	0.8 V minimum
Delta VT hysteresis (VT+ - VT-)	0.2 V minimum
I_{IL} input low current ($V_{IN} = 0 \text{ V}$)	-10 μA maximum
I_{IH} input high current ($V_{IN} = 5 \text{ V}$)	250 μA maximum

Figure 2. P0.<0..31>: I_{OH} versus V_{OH}

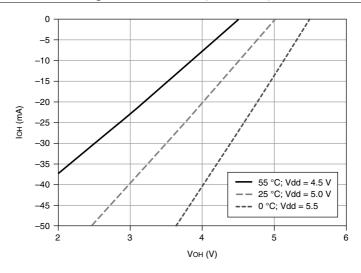
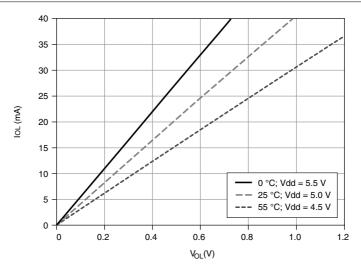



Figure 3. P0.<0..31>: I_{OL} versus V_{OL}

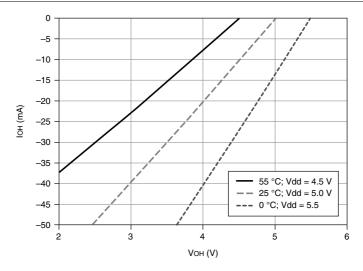
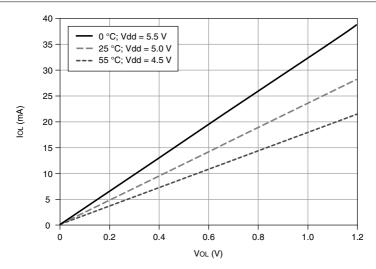



Figure 5. PFI <0..15>/P1/P2: I_{OL} versus V_{OL}

General-Purpose Counters

Number of counter/timers	4
Resolution	32 bits

Counter measurements	Edge counting, pulse, pulse width, semi-period, period, two-edge separation
Position measurements	X1, X2, X4 quadrature encoding with Channel Z reloading; two-pulse encoding
Output applications	Pulse, pulse train with dynamic updates, frequency division, equivalent time sampling
Internal base clocks	100 MHz, 20 MHz, 100 kHz
External base clock frequency	0 MHz to 25 MHz; 0 MHz to 100 MHz on PXIe_DSTAR <a,b></a,b>
Base clock accuracy	50 ppm
Inputs	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down, Sample Clock
Routing options for inputs	Any PFI, PXIe_DSTAR <a,b>, PXI_TRIG, PXI_STAR, analog trigger, many internal triggers</a,b>
FIFO	127 samples per counter

Frequency Generator

Number of channels	1
Base clocks	20 MHz, 10 MHz, 100 kHz
Divisors	1 to 16
Base clock accuracy	50 ppm

Output can be available on any PFI terminal.

Phase-Locked Loop (PLL)

Number of PLLs 1

Table 3. Reference Clock Locking Frequencies

Reference Signal	PXI Express Locking Input Frequency (MHz)
PXIe_DSTAR <a,b></a,b>	10, 20, 100
PXI_STAR	10, 20

Table 3. Reference Clock Locking Frequencies (Continued)

Reference Signal	PXI Express Locking Input Frequency (MHz)
PXIe_CLK100	100
PXI_TRIG <07>	10, 20
PFI <015>	10, 20

Output of PLL 100 MHz Timebase; other signals derived from 100 MHz Timebase including 20 MHz and 100 kHz Timebases

External Digital Triggers

Source	Any PFI, PXIe_DSTAR <a,b>, PXI_TRIG, PXI_STAR</a,b>
Polarity	Software-selectable for most signals
Analog input function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Convert Clock, Sample Clock Timebase
Analog output function	Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Counter/timer functions	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down, Sample Clock
Digital waveform generation (DO) function	Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase
Digital waveform acquisition (DI) function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase

Device-to-Device Trigger Bus

Input source	PXI_TRIG <07>, PXI_STAR, PXIe_DSTAR <a,b></a,b>
Output destination	PXI_TRIG <07>, PXIe_DSTARC

Output selections	10 MHz Clock, frequency generator output, many internal signals
Debounce filter settings	90 ns, 5.12 µs, 2.56 ms, custom interval, disable; programmable high and low transitions; selectable per input

Bus Interface

Form factor	x1 PXI Express peripheral module, specification rev 1.0 compliant
Slot compatibility	x1 and x4 PXI Express or PXI Express hybrid slots
DMA channels	8, can be used for analog input, analog output, digital input, digital output, counter/timer 0, counter/timer 1, counter/timer 2, counter/timer 3

All PXIe devices may be installed in PXI Express slots or PXI Express hybrid slots.

Power Requirements

Caution The protection provided by the device can be impaired if the device is used in a manner not described in the X Series User Manual.

PXIe		
+3.3 V	7.8 W	
+12 V	22.2 W	

Current Limits

Caution Exceeding the current limits may cause unpredictable device behavior.

+5 V terminal (connector 0)	1 A max ¹
+5 V terminal (connector 1)	1 A max ¹
P0/PFI/P1/P2 and +5 V terminals combined	1.8 A max

¹ Has a self-resetting fuse that opens when current exceeds this specification.

Physical Characteristics

PXIe printed circuit board dimensions	Standard 3U PXI
Weight	241 g (8.5 oz)
I/O connectors	2 68-pin VHDCI

Table 4. PXIe Mating Connectors

Manufacturer, Part Number	Description
MOLEX 71430-0011	68-Pos Right Angle Single Stack PCB-Mount VHDCI (Receptacle)
MOLEX 74337-0016	68-Pos Right Angle Dual Stack PCB-Mount VHDCI (Receptacle)
MOLEX 71425-3001	68-Pos Offset IDC Cable Connector (Plug) (SHC68-*)

USB screw terminal/BNC screw terminal 16-24 AWG wiring

Calibration

Recommended warm-up time	15 minutes
Calibration interval	2 years

Maximum Working Voltage

Maximum working voltage refers to the signal voltage plus the common-mode voltage.

Channel to earth 11 V, Measurement Category I

Caution Do not use for measurements within Categories II, III, or IV.

Shock and Vibration

Operational shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)
Random vibration	
Operating	5 to 500 Hz, $0.3 g_{rms}$
Nonoperating	5 to 500 Hz, 2.4 g _{rms} (Tested in accordance with IEC 60068-2-64. Nonoperating test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Environmental

Operating temperature	0 to 55 °C
Storage temperature	-40 to 70 °C
Operating humidity	10 to 90% RH, noncondensing
Storage humidity	5 to 95% RH, noncondensing
Pollution Degree	2
Maximum altitude	2,000 m

Indoor use only.

Safety

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online* Product Certification section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions

- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations and certifications, and additional information, refer to the Online Product Certification section.

CE Compliance (E

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/ certification, search by model number or product line, and click the appropriate link in the Certification column

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the Minimize Our Environmental Impact web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document

Waste Electrical and Electronic Equipment (WEEE)

X

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物 质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs china. (For information about China RoHS compliance, go to ni.com/environment/rohs china.)

Device Pinout

AI 0+ AI 0-P0.30 D GND 68 34 AI 0 GND 67 33 AI 1+ P0.28 2 D GND AI 1 GND AI 1-66 32 P0.25 3 37 P0 24 Al 2+ 65 31 AI 2-D GND 4 38 P0 23 CONNECTOR 1 (Al 8-15) AI 2 GND 64 30 AI 3+ P0 22 5 39 P0.31 AI 3-63 29 AI 3 GND P0.21 6 P0.29 7 41 NC 62 28 D GND P0.20 8 42 AI 4-61 27 AI 4 GND +5 V P0 19 9 43 60 26 AI 5+ AI 5-D GND P0.18 AI 5 GND 10 44 59 25 AI 6+ P0.17 D GND P0.16 AI 6-58 24 AI 6 GND 11 45 P0.26 AI 7+ 57 23 AI 7-D GND 12 46 P0.27 **TERMINAL 68** TERMINAL 35 AI 7 GND 56 22 D GND 13 47 P0.11 TERMINAL 34 TERMINAL 1 AO GND 55 21 AO 1 +5 V 14 48 P0.15 54 20 APFI 0 AO GND D GND 15 49 P0.10 D GND 53 19 P0 4 P0 14 16 50 D GND P0.0 52 18 D GND 17 51 P0.9 P0.13 D GND P0.5 51 17 P0.1 18 52 P0.8 D GND 50 16 P0.6 P0.12 19 53 D GND 20 54 49 15 P0.2 D GND APFI 1 AO GND 48 14 21 55 P0.7 +5 V AO 3 AO GND TERMINAL 1 **TERMINAL 34** P0.3 47 13 D GND AO 2 22 56 AI 15 GND **TERMINAL 68 TERMINAL 35** PFI 11/P2.3 46 12 D GND AI 15-23 57 AI 15+ PFI 10/P2.2 PFI 0/P1.0 AI 14 GND 24 45 11 AI 14-D GND 44 10 PFI 1/P1.1 AI 14+ 25 AI 13 GND PFI 2/P1.2 43 9 D GND AI 13-26 60 AI 13+ PFI 3/P1.3 42 8 +5 V AI 12 GND 27 61 AI 12-28 62 PFI 4/P1.4 41 7 D GND AI 12+ NC PFI 13/P2.5 40 6 PFI 5/P1.5 AI 11 GND 29 63 AI 11-PFI 15/P2.7 39 PFI 6/P1.6 AI 11+ 30 64 AI 10 GND PFI 7/P1.7 38 4 D GND AI 10-31 65 AI 10+ PFI 8/P2.0 37 3 PFI 9/P2.1 AI 9 GND 32 66 AI 9-D GND 36 2 PFI 12/P2.4 AI 9+ 33 67 AI 8 GND D GND 35 1 PFI 14/P2.6 AI 8-34 68 AI 8+ NC = No Connect NC = No Connect

Figure 6. NI PXIe-6358 Pinout

Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: **Help»Patents** in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.