PXle-6571 Specifications

Contents

XIe-6571 Specifications	3
	7

PXIe-6571 Specifications

These specifications apply to the PXIe-6571 (8-channel) and PXIe-6571 (32-channel).

Note Unless otherwise noted, "PXIe-6571" encompasses both the 8-channel and 32-channel variants.

When using the PXIe-6571 in the Semiconductor Test System, refer to the *Semiconductor Test System Specifications*.

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty. Warranted specifications account for measurement uncertainties, temperature drift, and aging. Warranted specifications are ensured by design or verified during production and calibration.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

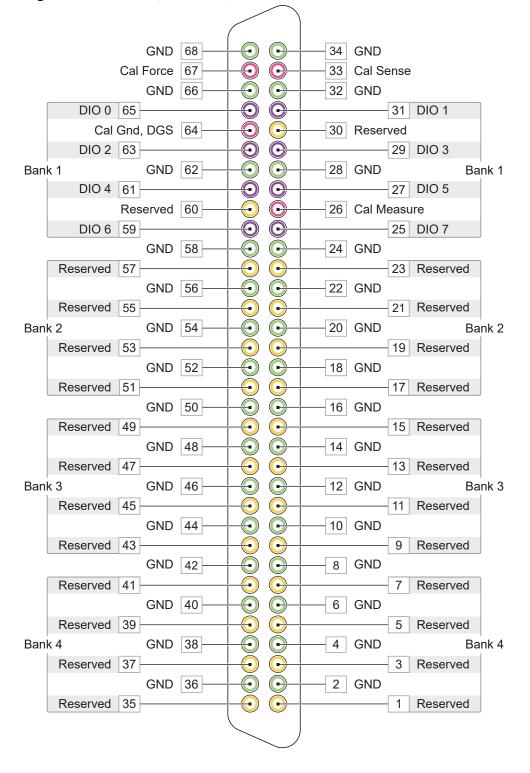
- **Typical** specifications describe the performance met by a majority of models.
- *Nominal* specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are *Nominal* unless otherwise noted.

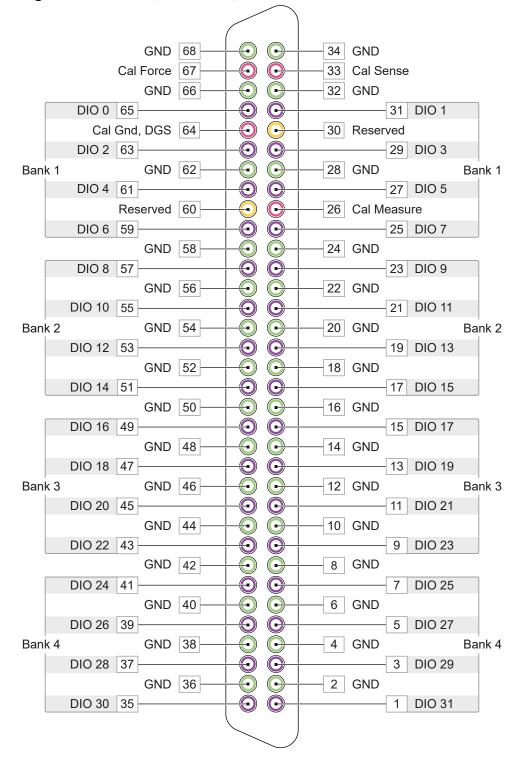
Conditions

Specifications are valid under the following conditions unless otherwise noted.

- Operating temperature of 0 °C to 40 °C
- Chassis with slot cooling capacity as follows:
 - PXIe-6571 (8-channel): ≥58 W


- PXIe-6571 (32-channel): 82 W
- Operating temperature within ±5 °C of the last self-calibration temperature¹
- Recommended calibration interval of 1 year. The PXIe-6571 will not meet specifications unless operated within the recommended calibration interval.
- DUT Ground Sense (DGS) same potential as the Ground (GND) pins
- 30-minute warmup time before operation

Note When the pin electronics on the PXIe-6571 are in the disconnect state, some I/O protection and sensing circuitry remain connected. Do not subject the PXIe-6571 to voltages beyond the supported measurement range.


PXIe-6571 Pinout

The PXIe-6571 exposes signal terminals via a VHDCI connector.

^{1.} For guidance on thermal management best practices, visit <u>ni.com/info</u> and enter the Info Code ThermalManagement.

Figure 1. PXIe-6571 (8-channel) Connector Pinout

Figure 2. PXIe-6571 (32-channel) Connector Pinout

Signal Type	Signal Name	Signal Description	
Data	DIO <031>	Bidirectional PPMU-capable digital I/O data channels 0 through 31.	
Current	GND	Instrument ground. Acts as the default ground reference when DUT Ground Sense (DGS) is not connected.	
Ground DGS Optional DGS for improved accuracy at higher currents in some configurations.		Optional DGS for improved accuracy at higher currents in some configurations.	
Analog	CAL MEASURE	Resource for external calibration.	
	CAL SENSE		
	CAL GND		
	CAL FORCE		
N/A	RESERVED	These terminals are reserved for future use. Do not connect to these pins.	

Table 1. PXIe-6571 Digital Data and Control Connector Pins/Signal Descriptions

Note The digital I/O data channels of 32-channel digital pattern instruments are split into banks for PPMU operation efficiency: DIO <0..7>, DIO <8..15>, DIO <16..23>, DIO <24..31>. PPMU measurements run in parallel when you take measurements on channels across different banks. Taking PPMU measurements simultaneously with channels on the same bank impacts test time performance based on certain measurement settings. Test time performance for frequency counter measurements is not impacted by taking multiple frequency counter measurements on channels in the same bank.

General

Channel count PXIe-6571 (8-channel) 8

PXIe-6571 (32-channel)	32
------------------------	----

System channel count, PXIe-6571 (32-channel) ²	512

Multi-site resources per instrument	
PXIe-6571 (8-channel)	8
PXIe-6571 (32-channel)	8

Large Vector Memory (LVM)	128M vectors
History RAM (HRAM)	(8,192 / n sites) - 1 cycles
Maximum allowable offset (DGS minus GND)	±300 mV
Supported measurement range ³	-2 V to 7 V ⁴

- 2. The *system channel count* is the maximum number of channels available when using multiple PXIe-6571 (32-channel) instruments in a single chassis as a digital subsystem within an application system. Some functionality described in this document requires that a PXIe-6674T synchronization module be used in conjunction with each digital subsystem.
- 3. If the total voltage sourced or driven on any pin relative to GND exceeds the supported measurement range, instrument performance may be degraded.
- 4. **Voltage** > 6 V requires the Extended Voltage Range mode of operation. For additional information, refer to **PPMU Force Voltage**.

Vector Timing

Maximum vector rate	100 MHz
Vector period range	10 ns to 40 μs (100 MHz to 25 kHz)
Vector period resolution	38 fs

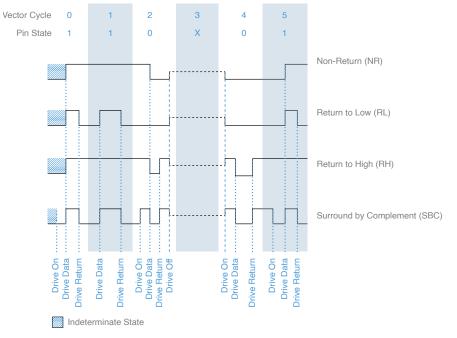
Timing control	
Vector period	Vector-by-vector on the fly
Edge timing	Per channel, vector-by-vector on the fly
Drive formats	Per channel, vector-by-vector on the fly

Clocking

Master clock source	PXIe_CLK100 ⁵
Sequencer clock domains	One (independent sequencer clock domains on a single instrument not supported)

Drive and Compare Formats

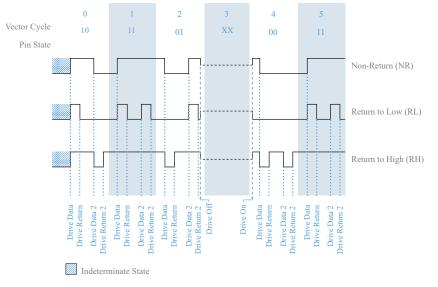
Drive formats^{6[6]}


5. Sourced from chassis 100 MHz backplane reference clock, external 10 MHz reference, or PXIe-6674T.

6. The maximum vector rate for patterns may be limited by the pulse width requirements, which may

100 MHz maximum vector rate	Non-Return (NR), Return to Low (RL), Return to High (RH)
50 MHz maximum vector rate	Surround by Complement (SBC) ⁷

Compare formats	Edge strobe
Edge Multipliers ^[6]	1x, 2x


Figure 3. Drive Formats

not allow all formats and edge multipliers to be used up to the fastest vector rate.

7. The SBC format is not supported within the 2x edge multiplier mode.

Figure 4. 2x Mode Drive Formats

Pin Data States

- 0—Drive zero
- 1—Drive one
- L—Compare low
- H—Compare high
- X—Do not drive; mask compare
- M—Compare midband, not high or low
- V—Compare high or low, not midband; store results from capture functionality if configured
- D—Drive data from source functionality if configured
- E-Expect data from source functionality if configured
- ---Repeat previous cycle; do not use a dash (-) for the pin state on the first vector of a pattern file unless the file is used only as a target of a jump or call operation

Note Termination mode settings affect the termination applied to all nondriving pin states. Non-drive states include L, H, M, V, X, E, and potentially -. Refer to the <u>Programmable input termination mode</u> specification for more information.

Edge Types

Drive edges	6: drive on, drive data, drive return, drive data 2, drive return 2, drive off
Compare edge	2: strobe, strobe 2
Number of time sets ⁸	31

Edge Generation Timing

Edge placement range	
Minimum	Start of vector period (0 ns)
Maximum	5 vector periods or 40 μs , whichever is smaller

Minimum required edge separation	
Between any driven data change	3.75 ns
Between any Drive On and Drive Off edges	5 ns
Between Compare Strobes	5 ns

8. 31 time sets can be configured. One additional time set, represented by a -, repeats the previous time set.

Edge placement resolution	39.0625 ps	

Edge placement accuracy, drive ^{9[9]}		
Edge Multiplier = 1x, PXIe-6571 (32-channel)	±500 ps, warranted	
Edge Multiplier = 1x, PXIe-6571 (8-channel)	±500 ps, typical	
Edge Multiplier = 2x	<i>Bit Rate</i> ≤ 200 Mbps: ±500 ps, typical <i>Bit Rate</i> ≤ 266 Mbps: ±600 ps, typical	

Edge placement accuracy, compare ^[9]	
Edge Multiplier = 1x, PXIe-6571 (32-channel)	±500 ps, warranted
Edge Multiplier = 1x, PXIe-6571 (8-channel)	±500 ps, typical
Edge Multiplier = 2x	<i>Bit Rate</i> ≤ 100 Mbps: ±500 ps, typical <i>Bit Rate</i> ≤ 133 Mbps: ±700 ps, typical

Overall timing accuracy ^[9]	
Edge Multiplier = 1x, PXIe-6571 (32-channel)	±1.5 ns, warranted

9. For specifications in a Semiconductor Test System, refer to the *Semiconductor Test System Specifications*.

Edge Multiplier = 1x, PXIe-6571 (8-channel)	±1.5 ns, typical
Edge Multiplier = 2x	<i>Bit Rate</i> ≤ 200 Mbps: ±1.5 ns, typical <i>Bit Rate</i> ≤ 266 Mbps: ±1.8 ns, typical

Т	DR deskew adjustment resolution	39.0625 ps

Driver

Signal type	Single-ended, referenced to the DGS pin when connected. Otherwise referenced to GND.
Programmable levels	V _{IH} , V _{IL} , V _{TERM}

Voltage levels	
Range (V _{IH} , V _{IL} , V _{TERM})	-2 V to 6 V
Minimum swing (V _{IH} minus V _{IL})	400 mV, into a 1 M Ω load
Resolution (V _{IH} , V _{IL} , V _{TERM})	122 μV
Accuracy (V _{IH} , V _{IL} , V _{TERM})	± 15 mV, 1 M\Omega load, warranted

Maximum DC drive current	±32 mA
Output impedance	50 Ω
Rise/fall time, 20% to 80%	1.2 ns, up to 5 V

Comparator

Signal type	Single-ended, referenced to the DGS pin when connected. Otherwise referenced to GND.
Programmable levels	V _{OH} , V _{OL}

Voltage levels	
Range (V _{OH} , V _{OL})	-2 V to 6 V
Resolution (V _{OH} , V _{OL})	122 μV
Accuracy (V _{OH} , V _{OL})	±25 mV, from -1.5 V to 5.8 V, warranted

Programmable input termination modes	High Z, 50 Ω to V_{TERM} , Active Load
Leakage current	<15 nA, in the High Z termination mode

Active Load

F	Programmable levels	I _{OH} , I _{OL}

Commutating voltage (V _{COM})	
Range	-2 V to 6 V
Resolution	122 μV

Current levels		
Range	1.5 mA to 16 mA	
Resolution	488 nA	
Accuracy	1 mA, 3 V over/under drive, typical	

PPMU Force Voltage

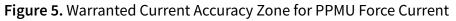
	Signal type	Single-ended, referenced to the DGS pin when connected. Otherwise referenced to GND.	
--	----------------	--	--

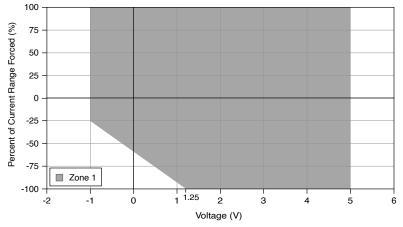
Voltage levels		
Range	-2 V to 6 V	

	6 V to 7 V in Extended Voltage Range ^{10[10]}
Resolution	122 μV
Accuracy	±15 mV, 1 MΩ load, from -2 V to 6 V, warranted ±50 mV, 1 MΩ load, from 6 V to 7 V, typical $^{[10]}$

PPMU Measure Voltage

Signal type	Single-ended, referenced to the DGS pin when connected. Otherwise referenced to GND.


Voltage levels	
Range	-2 V to 6 V
Resolution	228 μV
Accuracy	±5 mV, warranted


10. The Extended Voltage Range is an unwarranted mode of operation that allows the PMU to force voltages between 6 V and 7 V for applications that can tolerate more error than the normal force voltage accuracy.

PPMU Force Current

Table 2. PPMU Force Current Accuracy

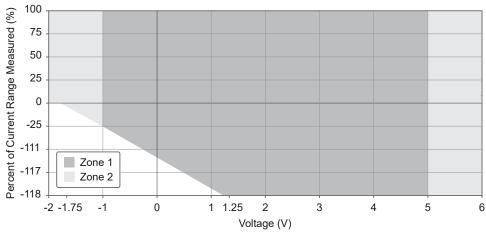
Range	Resolution	Accuracy
±2 μA	60 pA	
±32 μΑ	980 pA	
±128 μΑ	3.9 nA	±1% of range for Zone 1 of <u>Figure 5,</u> warranted
±2 mA	60 nA	<u>ingure s</u> , warrantea
±32 mA	980 nA	

Note The boundaries of Zone 1 are inclusive of that zone. The area outside of Zone 1 does not have a warranted specification for PPMU force current accuracy.

How to Calculate PPMU Force Current Accuracy

- 1. Specify the desired forced current.
- 2. Based on the desired forced current, select an appropriate current range from <u>Table 2</u>.
- 3. Divide the desired forced current from step 1 by the current range from step 2 and multiply by 100 to calculate the Percent of Current Range Forced.
- 4. Based on the impedance of the load, calculate the voltage required to force the desired current from step 1. Use the following equation: *Voltage Required* =

Desired Current × Load Impedance.


- 5. Using Figure 5, locate the zone in which the Percent of Current Range Forced calculated in step 3 intersects with the voltage calculated in step 4. If the intersection is outside of Zone 1, then there are no warranted specifications. To get warranted specifications, the current range and/or forced current must be adjusted until the intersection is in Zone 1.
- 6. Based on the zone found in step 5, use <u>Table 2</u> to calculate the accuracy of the forced current.

PPMU voltage clamps	
Range	-2 V to 6 V
Resolution	122 μV
Accuracy	±100 mV, typical

PPMU Measure Current

Table 3. PPMU Measure Current Accuracy

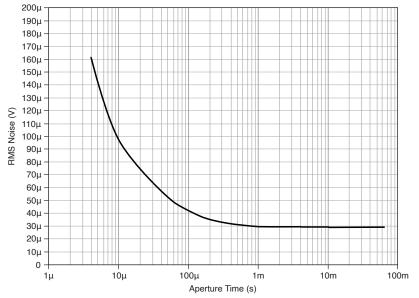
Range	Resolution	Accuracy
±2 μΑ	460 pA	
±32 μΑ	7.3 nA	±1% of range for Zone 1 of <u>Figure 6,</u> warranted
±128 μA	30 nA	
±2 mA	460 nA	±1.5% of range for Zone 2 of <u>Figure 6,</u> warranted
±32 mA	7.3 μA	

Figure 6. Warranted Current Accuracy Zones for PPMU Measure Current

Note The boundaries of Zone 1 are inclusive of that zone. All other boundaries are inclusive of Zone 2. The area outside of Zone 1 and Zone 2 does not have a warranted specification for PPMU measure current accuracy.

How to Calculate PPMU Measure Current Accuracy

- 1. Specify the desired measured current.
- 2. Based on the desired measured current, select an appropriate current range from <u>Table 3</u>.
- 3. Divide the desired measured current from step 1 by the current range from step 2 and multiply by 100 to calculate the Percent of Current Range Measured.
- 4. If forcing voltage and then measuring current, Voltage in Figure 6 is equal to the forced voltage. If forcing current and then measuring current, Voltage in Figure 6 is equal to the voltage required to force the desired current based on the impedance of the load. Use the following equation: *Voltage Required* = *Desired Current* × *Load transment*.


Load Impedance.

- 5. Using Figure 6, locate the zone in which the Percent of Current Range Measured calculated in step 3 intersects with the Voltage calculated in step 4. If the intersection is outside of Zone 1 or Zone 2, then there are no warranted specifications. To get warranted specifications, the current range and forced current or forced voltage must be adjusted until the intersection is in Zone 1 or Zone 2.
- 6. Based on the zone found in step 5, use <u>Table 3</u> to calculate the accuracy of the measured current.

PPMU Programmable Aperture Time

Aperture time		
Minimum	4 μs	
Maximum	65 ms	
Resolution	4 μs	

Figure 7. Voltage Measurement Noise for Given Aperture Times, Typical

Opcodes

Refer to the following table for supported opcodes. Using matched and failed opcode parameters with multiple PXIe-6571 instruments requires the PXIe-6674T synchronization module. Other uses of flow-control opcodes with multiple PXIe-6571 instruments only require NI-TClk synchronization.

Category	Supported Opcodes
Flow Control	<pre>• repeat • jump • jump_if • set_loop • end_loop • exit_loop • exit_loop_if • call • return • keep_alive • match • halt</pre>
Sequencer Flags and Registers	set_seqflagclear_seqflagwrite_reg
Signal	set_signalpulse_signalclear_signal
Digital Source and Capture	 capture_start capture capture_stop source_start source source_d_replace

Pipeline Latencies

Minimum delay between <code>source_start</code> opcode and the first <code>source</code> opcode or <code>subsequent</code> <code>source_start</code> opcode

3μs

Matched and failed condition pipeline latency	80 cycles
---	-----------

Source and Capture

Digital Source ^{11[11]}		
Operation modes	Serial and parallel; broadcast and site-unique	
Source memory size	32 MB (256 Mbit) total	
Maximum waveforms	512	

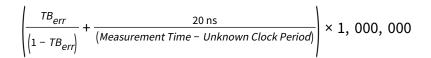
Digital Capture ^[11]		
Operation modes	Serial and parallel; site-unique	
Capture memory size	1 million samples	
Maximum waveforms	512	

Independent Clock Generators

Number of clock generators	
PXIe-6571 (8-channel)	8 (one per pin)

11. To learn how to calculate achievable data rates for Digital Source or Digital Capture, visit <u>ni.com/info</u> and enter the Info Code DigitalSourceCapture to access the Calculating Digital Source Rate tutorial or the Calculating Digital Capture Rate tutorial.

PXIe	-6571 (32-channel)	32 (one per pin)


Clock period range	6.25 ns to 40 us (160 MHz to 25 kHz) ¹²
Clock period resolution	38 fs

Frequency Measurements

Frequency counter measure frequency	
Range	5 kHz to 200 MHz, 2.5 ns minimum pulse width
Accuracy	See <u>Calculating Frequency Counter Error</u>

Calculating Frequency Counter Error

Use the following equation to calculate the frequency counter error (ppm).

where

- *Measurement Time* is the time, in seconds, over which the frequency counter measurement is configured to run
- Unknown Clock Period is the time, in seconds, of the period of the signal being measured
- **TBerr** is the error of the Clk100 timebase
- 12. Clocks with *Period* < 7.5 ns will have a non-50% duty cycle.

Refer to the following table for a few examples of common Clk100 timebase accuracies.

Table 4. TBerr

PXI Express Hardware Specification Revision 1.0	PXIe-1095 Chassis	PXIe-6674T Override
100 μ (100 ppm)	25 μ (25 ppm)	80 n (80 ppb)

Example 1: Calculating Error with a PXIe-1095 Chassis

Calculate the error of performing a frequency measurement of a 10 MHz clock (100 ns period) with a 1 ms measurement time using the PXIe-Clk100 provided by the PXIe-1095 chassis as the timebase.

Solution

 $\left(\frac{25\mu}{(1-25\mu)} + \frac{20ns}{(1ms - 100ns)}\right) \times 1,\ 000,\ 000 = 45\ ppm$

Example 2: Calculating Error when Overriding with the PXIe-6674T

Calculate the error if you override the PXIe-Clk100 timebase with the PXIe-6674T and increase the measurement time to 10 ms.

Solution

 $\left(\frac{80n}{(1-80n)} + \frac{20ns}{(10ms - 100ns)}\right) \times 1,\ 000,\ 000 = 2\ ppm$

Calibration Interval

Recommended calibration interval

1 year

Safety Voltages

Connect only voltages that are within these limits.

Supported measurement range ¹³	-2 V to 7 V ¹⁴
Measurement Category	CAT I

Measurement Category

Caution Do not connect the product to signals or use for measurements within Measurement Categories II, III, or IV.

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as **MAINS** voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

Note Measurement Categories CAT I and CAT O are equivalent. These test and measurement circuits are for other circuits not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV.

Environmental Guidelines

Notice This model is intended for use in indoor applications only.

- 13. If the total voltage sourced or driven on any pin relative to GND exceeds the supported measurement range, instrument performance may be degraded.
- 14. *Voltage* > 6 V requires the Extended Voltage Range mode of operation.

Environmental Characteristics

Temperature	
Operating ¹⁵	0 °C to 40 °C
Storage	-40 °C to 71 °C

Humidity	
Operating	10% to 90%, noncondensing
Storage	5% to 95%, noncondensing

Pollution Degree	2
Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)

Shock and Vibration	
Operating vibration	5 Hz to 500 Hz, 0.3 g RMS
Non-operating vibration	5 Hz to 500 Hz, 2.4 g RMS
Operating shock	30 g, half-sine, 11 ms pulse

15. The PXIe-6571 (8-channel) requires a chassis with ≥58 W slot cooling capacity; the PXIe-6571 (32-channel) requires a chassis with 82 W slot cooling capacity. Refer to the specifications for your PXI chassis to determine the ambient temperature ranges your chassis can achieve.

Physical Characteristics

PXIe slots	1
Dimensions	131 mm × 21 mm × 214 mm (5.16 in. × 0.83 in. × 8.43 in.)
Weight	640 g (22.5 oz.)

Related information:

• Dimensional Drawings

Power Requirements

The PXIe-6571 draws current from a combination of the 3.3 V and 12 V power rails. The maximum current drawn from each of these rails can vary depending on the PXIe-6571 mode of operation.

Input power	
PXIe-6571 (8-channel)	49 W
PXIe-6571 (32-channel)	76 W

Current draw, PXIe-6571 (8-channel)	
3.3 V	1.3 A
12 V	3.7 A

Current draw, PXIe-6571 (32-channel)	
3.3 V	1.7 A
12 V	5.9 A