# PXIe-7903 Getting Started





## Contents

| PXIe-7903 Getting Started                                   | 3  |
|-------------------------------------------------------------|----|
| FlexRIO Documentation and Resources                         | 4  |
| Jnpacking the Kit                                           | 6  |
| What You Need to Get Started                                | 6  |
| Preparing the Environment                                   | 9  |
| nstalling the Software                                      | 0  |
| nstalling the PXIe-7903                                     | 1  |
| PXIe-7903 Front Panel                                       | .3 |
| /erifying the Installation in MAX 1                         | 6  |
| Accessing FlexRIO with Integrated I/O Examples              | 7  |
| Block Diagram                                               | .8 |
| Component-Level Intellectual Property (CLIP)                | 5  |
| Adding the Socketed CLIP to a LabVIEW Project (FPGA Module) | 6  |
| ۲roubleshooting                                             | 7  |
| What Should I Do if the PXIe-7903 Does Not Appear in MAX?   | 7  |

## PXIe-7903 Getting Started

**Note** Before you begin, install and configure your chassis and controller.

This document explains how to install, configure, and troubleshoot the PXIe-7903 high-speed serial module. You can program the PXIe-7903 using NI-FlexRIO driver software

For device specifications, refer to the **PXIe-7903 Specifications**.

**Caution** Observe all instructions and cautions in the user documentation. Using the product in a manner not specified can damage the product and compromise the built-in safety protection.



**Attention** Suivez toutes les instructions et respectez toutes les mises en garde de la documentation d'utilisation. L'utilisation du produit de toute autre façon que celle spécifiée risque de l'endommager et de compromettre la protection de sécurité intégrée.

## FlexRIO Documentation and Resources

Use the following resources to find more information about the PXIe-7903.

All documentation can be found at <u>ni.com/manuals</u> or in LabVIEW by clicking **Help**.

| Document                                                       | Contents                                                                                                                                                                       |  |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <b>PXIe-7903 Getting Started Guide</b> (this document)         | <ul><li>Installation instructions</li><li>Basic programming information</li></ul>                                                                                              |  |  |
| PXIe-7903 Specifications                                       | <ul> <li>Operating environment requirements</li> <li>DIO specifications</li> <li>Clocking specifications</li> <li>Physical and mechanical specifications</li> </ul>            |  |  |
| PXIe-7903 Safety, Environmental, and<br>Regulatory Information | <ul><li>Safety and compliance information</li><li>Environmental information</li></ul>                                                                                          |  |  |
| LabVIEW FPGA Module Help                                       | <ul> <li>Basic functionality of the FPGA module</li> <li>Instructions for developing and<br/>debugging custom hardware logic</li> </ul>                                        |  |  |
| FlexRIO Readme                                                 | <ul> <li>Minimum system requirements</li> <li>Supported Application Development<br/>Environments (ADEs)</li> <li>Known issues and bug fixes</li> <li>Recent updates</li> </ul> |  |  |
| FlexRIO Help                                                   | <ul> <li>FlexRIO driver API and programming information</li> <li>I/O Component Level IP (CLIP) development information</li> </ul>                                              |  |  |

| Document         | Contents                                                                                                                             |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| LabVIEW Examples | <ul> <li>Examples showing how to run FPGA VIs on your device</li> <li>Examples showing how to run host VIs on your device</li> </ul> |

## Unpacking the Kit

**Notice** To prevent electrostatic discharge (ESD) from damaging the device, ground yourself using a grounding strap or by holding a grounded object, such as your computer chassis.

- 1. Touch the antistatic package to a metal part of the computer chassis.
- 2. Remove the device from the package and inspect the device for loose components or any other sign of damage.

**Notice** Never touch the exposed pins of connectors.



**Note** Do not install a device if it appears damaged in any way.

3. Unpack any other items and documentation from the kit.

Store the device in the antistatic package when the device is not in use. What You Need to Get Started

#### **Kit Contents**

Verify that the following items are included in the PXIe-7903 kit.

Figure 1. PXIe-7903





#### **Recommended Cables**

NI recommends the following cables for use with the PXIe-7903.

| Model                                          | Description            | NI Part Number |
|------------------------------------------------|------------------------|----------------|
| Mini-SAS zHD-Mini-SAS zHD<br>HSS Passive Cable | 0.5 m zHD to zHD cable | 788927-0R5     |
| Mini-SAS zHD-Mini-SAS zHD<br>HSS Passive Cable | 1 m zHD to zHD cable   | 788927-01      |

| Model                                                        | Description                                        | NI Part Number |
|--------------------------------------------------------------|----------------------------------------------------|----------------|
| Mini-SAS zHD-Mini-SAS zHD<br>HSS Passive Cable               | 2 m zHD to zHD cable                               | 788927-02      |
| Mini-SAS zHD-QSFP28 HSS<br>Passive Cable                     | 2 m zHD to QSFP28 Cable                            | 788928-02      |
| Cable Assembly, Mini-HDMI to Mini-HDMI, 1 Meter <sup>1</sup> | Cable Assembly, Mini-HDMI to<br>Mini-HDMI, 1 Meter | 143045-01      |

**Notice** Use care when handling zHD cables. If you meet resistance when connecting the cable, stop and inspect the cable; replace the cable if the EMI gasket is damaged.

<sup>1</sup> NI Mini-HDMI (Type C) cable used to connect the module to DIO ports on other devices.

## **Preparing the Environment**

Ensure that the environment you are using the PXIe-7903 in meets the following specifications.

**Caution** Do not use the PXIe-7903 in a manner not specified in this document. Product misuse can result in a hazard. You can compromise the safety protection built into the product if the product is damaged in any way. If the product is damaged, return it to NI for repair.

**Attention** Le PXIe-7903 ne doit en aucun cas être utilisé d'une autre façon que celle spécifiée dans ce document. Une mauvaise utilisation du produit peut s'avérer dangereuse. Si le produit est endommagé de quelque manière que ce soit, la sécurité intégrée dans le produit risque d'en être compromise. Si le produit est endommagé, le renvoyer à NI pour réparation.

| Operating ambient temperature<br>(IEC-60068-2-1, IEC-60068-2-2) | 0 °C to 40 °C                                        |
|-----------------------------------------------------------------|------------------------------------------------------|
| Operating relative humidity (IEC-60068-2-56)                    | 10% to 90%, noncondensing                            |
| Maximum altitude                                                | 2,000 m (800 mbar)<br>(at 25 °C ambient temperature) |
| Pollution degree                                                | 2                                                    |

Indoor use only.



**Note** Refer to the **PXIe-7903 Specifications** at <u>ni.com/manuals</u> for complete specifications.

## Installing the Software

You must install the FlexRIO driver software before installing the PXIe-7903.

 Install LabVIEW. Refer to the LabVIEW Installation Guide for installation instructions and system requirements. Refer to the LabVIEW Upgrade Notes for additional information about upgrading to the most recent version of LabVIEW.

Documentation for LabVIEW is available at <u>ni.com/manuals</u> and by selecting Start » All Programs » National Instruments » LabVIEW » LabVIEW Manuals.

- 2. Install the LabVIEW FPGA Module. Refer to the LabVIEW FPGA Module Release and Upgrade Notes for installation instructions and information about getting started with the LabVIEW FPGA Module. Documentation for the LabVIEW FPGA Module is available is available at <u>ni.com/manuals</u> and by selecting Start » All Programs » National Instruments » LabVIEW » LabVIEW Manuals.
- 3. Install the FlexRIO driver. Refer to the FlexRIO Readme on the FlexRIO installation media for system requirements and installation instructions. For the latest version of the FlexRIO driver, visit <u>ni.com/downloads</u> Documentation for the FlexRIO driver is available at <u>ni.com/manuals</u> and by selecting Start » All Programs » National Instruments » FlexRIO.

## Installing the PXIe-7903

This section contains general installation instructions for installing the PXIe-7903 in a PXI Express chassis.

**Note** The PXIe-7903 requires a chassis with a slot cooling capacity of 82 W. Refer to chassis specifications to determine the ambient temperature ranges your chassis can achieve.

Refer to your chassis user manual for specific instructions and warnings. To install the module, complete the following steps:

- 1. Connect the AC power source to the PXI Express chassis before installing the module. The AC power cord grounds the chassis and protects it from electrical damage while you install the module.
- 2. Ensure that the chassis is powered off.
- 3. Install the PXIe-7903 into a chassis slot by first placing the module card PCB into the front of the card guides (top and bottom), as shown in the following figure. Slide the module to the rear of the chassis, making sure that the injector/ejector handle is pushed down, as shown in the following figure.
- 4. When you begin to feel resistance, push up on the injector/ejector handle to fully seat the module into the chassis frame. Secure the module front panel to the chassis using the module front-panel mounting screws.

Figure 2. Installing the PXI-7903 Module



- a. Injector/Ejector Handle
- b. FlexRIO Module
- c. Front Panel Mounting Screws (4x)
- d. PXI Express Chassis
- e. Injector/Ejector Rail

## PXIe-7903 Front Panel

The following table and figures show the available connections on the PXIe-7903.

Table 2. Connector Types

| Signal  | Connector Type | Description                                                                             |
|---------|----------------|-----------------------------------------------------------------------------------------|
| 0–7     | MiniSAS zHD    | Use passive, copper cables only                                                         |
| 8-11    | MiniSAS zHD    | Use passive or powered optical cables                                                   |
| CLKIN   | SMA            | Sample Clock or Reference<br>Clock input                                                |
| CLK Out | SMA            | Reference Clock output                                                                  |
| DIO     | mini-HDMI      | Programmable function digital<br>I/O (DIO) connector for use with<br>triggers or events |

#### Figure 3. Ports 0-7 and 8-11



#### Figure 4. DIO Port



| Table 3. | NH | Mini-HDMI | (Type | C) Pin | out |
|----------|----|-----------|-------|--------|-----|
|----------|----|-----------|-------|--------|-----|

| Pin Number | Signal Type | Signal Description           |
|------------|-------------|------------------------------|
| 1          | Ground      | Ground reference for signals |
| 2          | NC          | No connection                |
| 3          | Ground      | Ground reference for signals |
| 4          | Ground      | Ground reference for signals |
| 5          | NC          | No connection                |

| Pin Number | Signal Type Signal Description |                              |  |
|------------|--------------------------------|------------------------------|--|
| 6          | Ground                         | Ground reference for signals |  |
| 7          | Ground                         | Ground reference for signals |  |
| 8          | Digital                        | Digital signal               |  |
| 9          | Digital                        | Digital signal               |  |
| 10         | Ground                         | Ground reference for signals |  |
| 11         | Digital                        | Digital signal               |  |
| 12         | Digital                        | Digital signal               |  |
| 13         | Ground                         | Ground reference for signals |  |
| 14         | Digital                        | Digital signal               |  |
| 15         | Digital                        | Digital signal               |  |
| 16         | Digital                        | Digital signal               |  |
| 17         | Digital                        | Digital signal               |  |
| 18         | Power                          | Power provided by PXI module |  |
| 19         | Ground                         | Ground reference for signals |  |

**Notice** The DIO port is not an HDMI interface. Do not connect the DIO port on the PXIe-7903 to the HDMI interface of another device. NI is not liable for any damage resulting from such signal connections.

(!)

**Notice** Do not connect a commercial HDMI cable to the PXIe-7903. Instead, use the cable suggested in <u>Recommended Cables</u>.

## Verifying the Installation in MAX

Use Measurement & Automation Explorer (MAX) to configure your NI hardware. MAX informs other programs about which NI hardware products are in the system and how they are configured. MAX is automatically installed with FlexRIO.

- 1. Launch MAX.
- 2. In the configuration tree, expand **Devices and Interfaces** to see the list of installed NI hardware.

Installed modules appear under the name of their associated chassis.

3. Expand your **Chassis** tree item. MAX lists all modules installed in the chassis. Your default names may vary.



**Note** If you do not see your module listed, press <F5> to refresh the list of installed modules. If the module is still not listed, power off the system, ensure the module is correctly installed, and restart.

- 4. Record the identifier MAX assigns to the hardware. Use this identifier when programming the PXIe-7903.
- Self-test the hardware by selecting the item in the configuration tree and clicking Self-Test in the MAX toolbar. MAX self-test performs a basic verification of hardware resources.

## Accessing FlexRIO with Integrated I/O Examples

The FlexRIO driver includes several example applications for LabVIEW. These examples serve as interactive tools, programming models, and as building blocks in your own applications. To access all FlexRIO with Integrated I/O getting started examples, complete the following steps.

- 1. In LabVIEW, click Help » Find Examples.
- 2. In the NI Example Finder window that opens, click Hardware Input and Output » FlexRIO » Integrated IO » Getting Started.
- 3. Double click Getting Started with FlexRIO Integrated IO.vi. The FlexRIO with Integrated IO Project Creator window opens.
- 4. Select the example that corresponds to the name of your FlexRIO module. The Description window includes a short description of the getting started example for your device. Rename the project, select a location for the project, and click **OK**.

The Project Explorer window for your new project opens.

Online examples are also available to demonstrate FlexRIO basics, such as using DRAM, acquiring data, and performing high throughput streaming. To access these examples, search FlexRIO examples in the **Search the community** field at <u>ni.com/</u><u>examples</u>.

## **Block Diagram**

#### Figure 5. PXIe-7903 Block Diagram



#### Table 4. MGT Resources

| Connector | Mini-SAS zHD<br>Connector Lane | CLIP Signal Name                      | Common Physical<br>Resource | Channel Physical<br>Resource |
|-----------|--------------------------------|---------------------------------------|-----------------------------|------------------------------|
| Port 0    | 0                              | MgtPortRx_p/n(0),<br>MgtPortTx_p/n(0) | GTYE4_COMMON_<br>X0Y0       | GTYE4_CHANNEL_<br>X0Y1       |
|           | 1                              | MgtPortRx_p/n(1),<br>MgtPortTx_p/n(1) |                             | GTYE4_CHANNEL_<br>X0Y0       |
|           | 2                              | MgtPortRx_p/n(2),<br>MgtPortTx_p/n(2) |                             | GTYE4_CHANNEL_<br>X0Y2       |
|           | 3                              | MgtPortRx_p/n(3),<br>MgtPortTx_p/n(3) |                             | GTYE4_CHANNEL_<br>X0Y3       |
| Port 1    | 0                              | MgtPortRx_p/n(4),<br>MgtPortTx_p/n(4) | GTYE4_COMMON_<br>X0Y1       | GTYE4_CHANNEL_<br>X0Y5       |
|           | 1                              | MgtPortRx_p/n(5),<br>MgtPortTx_p/n(5) |                             | GTYE4_CHANNEL_<br>X0Y4       |

| Connector | Mini-SAS zHD<br>Connector Lane | CLIP Signal Name                                | Common Physical<br>Resource | Channel Physical<br>Resource |
|-----------|--------------------------------|-------------------------------------------------|-----------------------------|------------------------------|
|           | 2                              | MgtPortRx_p/n(6),<br>MgtPortTx_p/n(6)           |                             | GTYE4_CHANNEL_<br>X0Y6       |
|           | 3                              | MgtPortRx_p/n(7),<br>MgtPortTx_p/n(7)           |                             | GTYE4_CHANNEL_<br>X0Y7       |
| Port 2    | 0                              | MgtPortRx_p/n(8),<br>MgtPortTx_p/n(8)           | GTYE4_COMMON_<br>X0Y2       | GTYE4_CHANNEL_<br>X0Y9       |
|           | 1                              | MgtPortRx_p/n(9),<br>MgtPortTx_p/n(9)           |                             | GTYE4_CHANNEL_<br>X0Y8       |
|           | 2                              | MgtPortRx_p/<br>n(10),<br>MgtPortTx_p/<br>n(10) |                             | GTYE4_CHANNEL_<br>X0Y10      |
|           | 3                              | MgtPortRx_p/<br>n(11),<br>MgtPortTx_p/<br>n(11) |                             | GTYE4_CHANNEL_<br>X0Y11      |
| Port 3    | 0                              | MgtPortRx_p/<br>n(12),<br>MgtPortTx_p/<br>n(12) | GTYE4_COMMON_<br>X0Y3       | GTYE4_CHANNEL_<br>X0Y13      |
|           | 1                              | MgtPortRx_p/<br>n(13),<br>MgtPortTx_p/<br>n(13) |                             | GTYE4_CHANNEL_<br>X0Y12      |
|           | 2                              | MgtPortRx_p/<br>n(14),<br>MgtPortTx_p/<br>n(14) |                             | GTYE4_CHANNEL_<br>X0Y14      |
|           | 3                              | MgtPortRx_p/<br>n(15),<br>MgtPortTx_p/<br>n(15) |                             | GTYE4_CHANNEL_<br>X0Y15      |
| Port 4    | 0                              | MgtPortRx_p/<br>n(16),<br>MgtPortTx_p/<br>n(16) | GTYE4_COMMON_<br>X1Y4       | GTYE4_CHANNEL_<br>X1Y17      |

| Connector | Mini-SAS zHD<br>Connector Lane | CLIP Signal Name                                | Common Physical<br>Resource | Channel Physical<br>Resource |
|-----------|--------------------------------|-------------------------------------------------|-----------------------------|------------------------------|
|           | 1                              | MgtPortRx_p/<br>n(17),<br>MgtPortTx_p/<br>n(17) |                             | GTYE4_CHANNEL_<br>X1Y16      |
|           | 2                              | MgtPortRx_p/<br>n(18),<br>MgtPortTx_p/<br>n(18) |                             | GTYE4_CHANNEL_<br>X1Y18      |
|           | 3                              | MgtPortRx_p/<br>n(19),<br>MgtPortTx_p/<br>n(19) |                             | GTYE4_CHANNEL_<br>X1Y19      |
| Port 5    | 0                              | MgtPortRx_p/<br>n(20),<br>MgtPortTx_p/<br>n(20) | GTYE4_COMMON_<br>X1Y5       | GTYE4_CHANNEL_<br>X1Y21      |
|           | 1                              | MgtPortRx_p/<br>n(21),<br>MgtPortTx_p/<br>n(21) |                             | GTYE4_CHANNEL_<br>X1Y20      |
|           | 2                              | MgtPortRx_p/<br>n(22),<br>MgtPortTx_p/<br>n(22) |                             | GTYE4_CHANNEL_<br>X1Y22      |
|           | 3                              | MgtPortRx_p/<br>n(23),<br>MgtPortTx_p/<br>n(23) |                             | GTYE4_CHANNEL_<br>X1Y23      |
| Port 6    | 0                              | MgtPortRx_p/<br>n(24),<br>MgtPortTx_p/<br>n(24) | GTYE4_COMMON_<br>X1Y6       | GTYE4_CHANNEL_<br>X1Y25      |
|           | 1                              | MgtPortRx_p/<br>n(25),<br>MgtPortTx_p/<br>n(25) |                             | GTYE4_CHANNEL_<br>X1Y24      |

| Connector | Mini-SAS zHD<br>Connector Lane | CLIP Signal Name                                | Common Physical<br>Resource | Channel Physical<br>Resource |
|-----------|--------------------------------|-------------------------------------------------|-----------------------------|------------------------------|
|           | 2                              | MgtPortRx_p/<br>n(26),<br>MgtPortTx_p/<br>n(26) |                             | GTYE4_CHANNEL_<br>X1Y26      |
|           | 3                              | MgtPortRx_p/<br>n(27),<br>MgtPortTx_p/<br>n(27) |                             | GTYE4_CHANNEL_<br>X1Y27      |
| Port 7    | 0                              | MgtPortRx_p/<br>n(28),<br>MgtPortTx_p/<br>n(28) | GTYE4_COMMON_<br>X1Y7       | GTYE4_CHANNEL_<br>X1Y29      |
|           | 1                              | MgtPortRx_p/<br>n(29),<br>MgtPortTx_p/<br>n(29) |                             | GTYE4_CHANNEL_<br>X1Y28      |
|           | 2                              | MgtPortRx_p/<br>n(30),<br>MgtPortTx_p/<br>n(30) |                             | GTYE4_CHANNEL_<br>X1Y30      |
|           | 3                              | MgtPortRx_p/<br>n(31),<br>MgtPortTx_p/<br>n(31) |                             | GTYE4_CHANNEL_<br>X1Y31      |
| Port 8    | 0                              | MgtPortRx_p/<br>n(32),<br>MgtPortTx_p/<br>n(32) | GTYE4_COMMON_<br>X0Y4       | GTYE4_CHANNEL_<br>X0Y17      |
|           | 1                              | MgtPortRx_p/<br>n(33),<br>MgtPortTx_p/<br>n(33) |                             | GTYE4_CHANNEL_<br>X0Y16      |
|           | 2                              | MgtPortRx_p/<br>n(34),<br>MgtPortTx_p/<br>n(34) |                             | GTYE4_CHANNEL_<br>X0Y18      |

| Connector | Mini-SAS zHD<br>Connector Lane | CLIP Signal Name                                | Common Physical<br>Resource | Channel Physical<br>Resource |
|-----------|--------------------------------|-------------------------------------------------|-----------------------------|------------------------------|
|           | 3                              | MgtPortRx_p/<br>n(35),<br>MgtPortTx_p/<br>n(35) |                             | GTYE4_CHANNEL_<br>X0Y19      |
| Port 9    | 0                              | MgtPortRx_p/<br>n(36),<br>MgtPortTx_p/<br>n(36) | GTYE4_COMMON_<br>X0Y5       | GTYE4_CHANNEL_<br>X0Y21      |
|           | 1                              | MgtPortRx_p/<br>n(37),<br>MgtPortTx_p/<br>n(37) |                             | GTYE4_CHANNEL_<br>X0Y20      |
|           | 2                              | MgtPortRx_p/<br>n(38),<br>MgtPortTx_p/<br>n(38) |                             | GTYE4_CHANNEL_<br>X0Y22      |
|           | 3                              | MgtPortRx_p/<br>n(39),<br>MgtPortTx_p/<br>n(39) |                             | GTYE4_CHANNEL_<br>X0Y23      |
| Port 10   | 0                              | MgtPortRx_p/<br>n(40),<br>MgtPortTx_p/<br>n(40) | GTYE4_COMMON_<br>X0Y6       | GTYE4_CHANNEL_<br>X0Y25      |
|           | 1                              | MgtPortRx_p/<br>n(41),<br>MgtPortTx_p/<br>n(41) |                             | GTYE4_CHANNEL_<br>X0Y24      |
|           | 2                              | MgtPortRx_p/<br>n(42),<br>MgtPortTx_p/<br>n(42) |                             | GTYE4_CHANNEL_<br>X0Y26      |
|           | 3                              | MgtPortRx_p/<br>n(43),<br>MgtPortTx_p/<br>n(43) |                             | GTYE4_CHANNEL_<br>X0Y27      |

| Connector | Mini-SAS zHD<br>Connector Lane | CLIP Signal Name                                | Common Physical<br>Resource | Channel Physical<br>Resource |
|-----------|--------------------------------|-------------------------------------------------|-----------------------------|------------------------------|
| Port 11   | 0                              | MgtPortRx_p/<br>n(44),<br>MgtPortTx_p/<br>n(44) | GTYE4_COMMON_<br>X0Y7       | GTYE4_CHANNEL_<br>X0Y29      |
|           | 1                              | MgtPortRx_p/<br>n(45),<br>MgtPortTx_p/<br>n(45) |                             | GTYE4_CHANNEL_<br>X0Y28      |
|           | 2                              | MgtPortRx_p/<br>n(46),<br>MgtPortTx_p/<br>n(46) |                             | GTYE4_CHANNEL_<br>X0Y30      |
|           | 3                              | MgtPortRx_p/<br>n(47),<br>MgtPortTx_p/<br>n(47) |                             | GTYE4_CHANNEL_<br>X0Y31      |

Each reference clock is driven by one of the two clocking integrated circuits (ICs), listed in the following table. Each clocking IC can generate two independent frequencies, for a total of four possible frequencies across all ports.

### **Note** MgtRefClk\_p/n are connected to REFCLK0 of each respective quad.

| Table 5. MGT | Clocking |
|--------------|----------|
|--------------|----------|

| Connector | CLIP Signal Name | Common Physical<br>Resource | User Clock Index | Clocking IC |
|-----------|------------------|-----------------------------|------------------|-------------|
| CLK OUT   | N/A              | N/A                         | 0                | 2           |
| Port 0    | MgtRefClk_p/n(0) | GTYE4_COMMON_<br>X0Y0       | 1 <sup>2</sup>   | 1           |
| Port 1    | MgtRefClk_p/n(1) | GTYE4_COMMON_<br>X0Y1       |                  |             |
| Port 2    | MgtRefClk_p/n(2) | GTYE4_COMMON_<br>X0Y2       | 2 <sup>3</sup>   |             |

<sup>2</sup> User Clock 1 controls both MgtRefClk\_p/n(0) and MgtRefClk\_p/n(1). These clocks cannot be independently configured.

| Connector | CLIP Signal Name  | Common Physical<br>Resource | User Clock Index | Clocking IC |
|-----------|-------------------|-----------------------------|------------------|-------------|
| Port 3    | MgtRefClk_p/n(3)  | GTYE4_COMMON_<br>X0Y3       |                  |             |
| Port 4    | MgtRefClk_p/n(4)  | GTYE4_COMMON_<br>X1Y4       | 3                | 2           |
| Port 5    | MgtRefClk_p/n(5)  | GTYE4_COMMON_<br>X1Y5       | 4                |             |
| Port 6    | MgtRefClk_p/n(6)  | GTYE4_COMMON_<br>X16        | 5                |             |
| Port 7    | MgtRefClk_p/n(7)  | GTYE4_COMMON_<br>X1Y7       | 6                |             |
| Port 8    | MgtRefClk_p/n(8)  | GTYE4_COMMON_<br>X0Y4       | 7                | 1           |
| Port 9    | MgtRefClk_p/n(9)  | GTYE4_COMMON_<br>X0Y5       | 8                |             |
| Port 10   | MgtRefClk_p/n(10) | GTYE4_COMMON_<br>X0Y6       | 9                |             |
| Port 11   | MgtRefClk_p/n(11) | GTYE4_COMMON_<br>X0Y7       | 10               |             |

<sup>3</sup> User Clock 2 controls both MgtRefClk\_p/n(2) and MgtRefClk\_p/n(3). These clocks cannot be independently configured.

## Component-Level Intellectual Property (CLIP)

The LabVIEW FPGA Module includes component-level intellectual property (CLIP) for HDL IP integration. FlexRIO devices support two types of CLIP: user-defined and socketed.

- **User-defined CLIP** allows you to insert HDL IP into an FPGA target, enabling VHDL code to communicate directly with an FPGA VI.
- **Socketed CLIP** provides the same IP integration of the user-defined CLIP, but it also allows the CLIP to communicate directly with circuitry external to the FPGA. Adapter module socketed CLIP allows your IP to communicate directly with both the FPGA VI and the external adapter module connector interface.

The PXIe-7903 ships with socketed CLIP items that add module I/O to the LabVIEW project.

Refer to **Configuring Your Adapter Module Using LabVIEW FPGA** in FlexRIO documentation for more information about CLIP.

## Adding the Socketed CLIP to a LabVIEW Project (FPGA Module)

Before you begin, ensure that you have installed your hardware into the chassis and completed the steps in <u>Installing the Software</u>.

Add a component-level IP (CLIP) item to the LabVIEW project to instantiate the CLIP inside the FPGA.

Complete the following steps to add a CLIP item in a project:

- 1. Create and save a new LabVIEW project (for example, My7903Clip.lvproj).
- 2. Add an FPGA target that supports CLIP to the project.
- 3. Right-click the FPGA target and select **Properties** from the shortcut menu to display the FPGA Target Properties dialog box.
- 4. Select **Component-Level IP** from the **Category** list to display the Component-Level IP Properties page.
- 5. Click **Add**, select the declaration XML file for the socketed clip, and then click **OK**.



**Note** The CLIP wizard automatically adds the declaration XML file to the project.

- 6. Click **OK** to close the FPGA Target Properties dialog box.
- 7. In the Project Explorer window, right-click the IO Socket under the FPGA target, and select **Properties** from the shortcut menu.
- 8. On the **General** page of the IO Socket Properties dialog box, select the socketed CLIP to instantiate.
- 9. On the **Clock Selections** page, select the appropriate clocks for the CLIP. Clock selections will vary depending on CLIP requirements.
- 10. Click **OK**. Notice that the Project Explorer window now includes socketed CLIP under the IO Socket, as well as the I/O defined in the declaration XML file.

## Troubleshooting

If an issue persists after you complete a troubleshooting procedure, search our KnowledgeBase for additional information our technical support engineers create as they answer common user questions and resolve unexpected issues.

#### What Should I Do if the PXIe-7903 Does Not Appear in MAX?

- 1. In the MAX configuration tree, expand **Devices and Interfaces**.
- 2. Expand the **Chassis** tree to see the list of installed hardware, and press <F5> to refresh the list.
- 3. If the module is still not listed, power off the system, ensure that all hardware is correctly installed, and restart the system.
- 4. Navigate to the Device Manager by right-clicking the Start button, and selecting **Device Manager**.
- 5. Verify the PXIe-7903 appears in the Device Manager.
  - a. Under an NI entry, confirm that a PXIe-7903 entry appears.



**Note** If you are using a PC with a device for PXI remote control system, under **System Devices**, also confirm that no error conditions appear for the **PCI-to-PCI Bridge**.

b. If error conditions appear, reinstall the FlexRIO driver.