COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs.

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

Bridging the gap between the manufacturer and your legacy test system.

1-800-915-6216

www.apexwaves.com

sales@apexwaves.com

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote

PXIe-8135

GETTING STARTED GUIDE

MIMO Prototyping System

This document explains how to use the MIMO Application Framework with a modular hardware system consisting of multiple universal software radio peripheral (USRP) devices in a multiple input, multiple output (MIMO) configuration.

Contents

System Requirements	2
Software Requirements	2
Hardware Requirements	3
Hardware Setup	4
Electromagnetic Compatibility Guidelines	4
About the Hardware	4
Base Station	4
Mobile Station	6
System Configurations	7
Hardware Setup	8
Rack Assembly Diagrams	8
Installing PXIe Modules	13
Cable Connections	13
Installing the Software	15
Powering on the Hardware	15
Base Station	15
Mobile Station	15
Connection Diagrams	16
Software	19
Hardware Naming	19
Understanding the Components of this Sample Project	20
Create a New Project Instance	
Folder Structure	20
System Overview	22
System Features	
System Components	

Running the LabVIEW Host Code	26
On the BS Host Computer	26
On the MS Host Computer	27
Running Video Streaming	29
Start Video Stream at the Transmitter (MS)	29
Start Video Stream of the Receiver (BS)	30
Description of Controls and Indicators	31
Description of Controls and Indicators on the BS Host Front Panel	31
Description of Controls and Indicators on the MS Host Front Panel	44
Troubleshooting	51
Related Information	52
Appendix	53
Cable Connection Mapping and Labeling	53
Equipment Labeling Rules	53
Other Labeling Rules	53
End-User License Agreements and Third-Party Legal Notices	69
Worldwide Support and Services	69

System Requirements

Software Requirements

- Microsoft Windows 8/7 (64-bit) preinstalled on the PXI controller
- NI-USRP 15.5
- LabVIEW Communication System Design Suite 2.0
- MIMO Application Framework 1.0

The installation of NI software is started by running setup.exe from the provided installation media. Follow the installer prompts to complete the installation process.

Hardware Requirements

Depending on the configuration, the main system hardware components are listed in the following table.

Table 1. MIMO Base Station (BS) Parts List¹

	Quantity needed for each configuration				
	128 antennas	64 antennas	32 antennas	16 antennas	
Description	(8 subsystems)	(4 subsystems)	(2 subsystems)	(1 subsystem)	
USRP RIO Software Defined	64	32	16	8	
Radio (SDR) ²					
x4 MXI-Express Cable	64	32	16	8	
PXIe-1085 Chassis (18-Slot,	1	1	1	1	
24 GB/s Sys Bandwidth					
(BW))					
PXIe-8135 Controller	1	1	1	1	
PXIe-7976R FPGA Module	5	3	2	2	
for FlexRIO					
PXIe-6674T Synchronization	1	1	1	1	
Module					
2.4 GHz and 5 GHz Dual Band	128	64	32	16	
Vertical Antenna					
CDA-2990 Clock Distribution	9	5	3	1	
Device ³					
8 GB RAM Upgrade for PXIe-	1	1	1	1	
8135					
PXIe-8384 Remote Control	8	4	2	1	
Module (x8 Gen2 MXI-					
Express)					
x8 MXI-Express Cable	8	4	2	1	
SMA to SMA Cable	19	11	7	3	
CPS-8910 Switch Device for	8	4	2	1	
PCI Express ⁴					

¹ This is not a complete list of required hardware. For a complete list please contact your local sales representative.

² USRP-2940R/2942R/2943R/2944R/2950R/2952R/2953R/2954R.

³ Also referred to as a Clock Distribution Accessory (CDA).

⁴ Also referred to as a Cabled PXI Express Switch Box (CPS).

Hardware Setup

Electromagnetic Compatibility Guidelines

The individual components of this product were tested and comply with the regulatory requirements and limits for electromagnetic compatibility (EMC) stated in their respective specifications. These requirements and limits provide reasonable protection against harmful interference when the product is operated in the intended operational electromagnetic environment. However, the system as a whole has not been through EMC testing as a unit and the users are expected to use it in a way that complies to all regulations in their region.

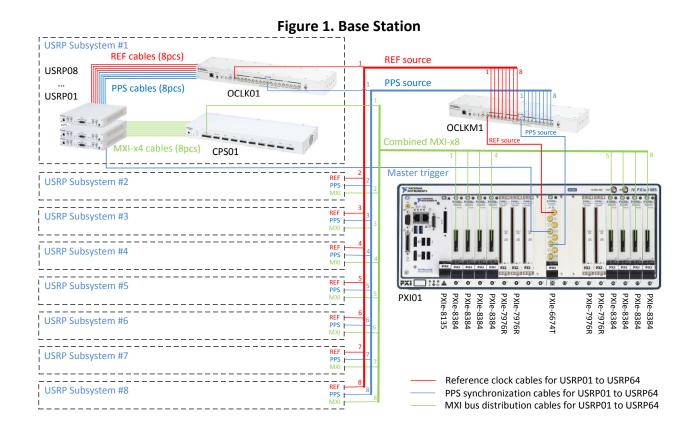
To minimize interference with radio and television reception and prevent unacceptable performance degradation, install and use this product in strict accordance with the instructions in the product documentation.

Furthermore, any changes or modifications to the product not expressly approved by National Instruments could void your authority to operate it under your local regulatory rules.

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Caution The MIMO System is intended for use only indoors test environment as test and measurement equipment. This product is intended for professional use only.

Caution To ensure the specified EMC performance, operate this product only with shielded cables and accessories.



Caution To ensure the specified EMC performance, operate this product only with cables less than 3 meters in length.

About the Hardware

The system consists of the BS and Mobile Station (MS).

Base Station

The BS consists of the PXIe-8135 controller, one to eight PXIe-8384 MXI-Express modules for communication with the USRP RIO devices (through the CPS-8910), up to five PXIe-7976R modules (depending on the number of USRP subsystems), and a PXIe-6674T module, installed on the PXIe-1085 chassis.

Clock and synchronization signals are distributed to up to eight USRP subsystems through the CDA-2990 (OCLKM1)⁵. It provides both clock and time synchronization by amplifying and splitting a 10 MHz reference signal, generated by the PXIe-6674T and the pulse per second (PPS) signal from master USRP, eight ways through matched-length traces.

The system can control up to eight USRP subsystems. Each subsystem consists of eight USRP RIO devices, connected to the CPS-8910 device (CPS01 to CPS08). The clock and synchronization signals received by the USRP subsystem are distributed among the eight USRP RIO devices in the subsystem through the CDA-2990 (OCLK01 to OCLK08). A detailed connections diagram for each USRP subsystem is given in Figure 2.

Note The lengths of used cables are critical for timing. The signal path (the sum of the lengths of all cables from the PXIe-6674T module to each USRP RIO) must be equal for each channel.

⁵ Not required for the single subsystem configuration (up to 16 antennas), in which both clock and PPS are provided directly from the PXIe-6674T module.

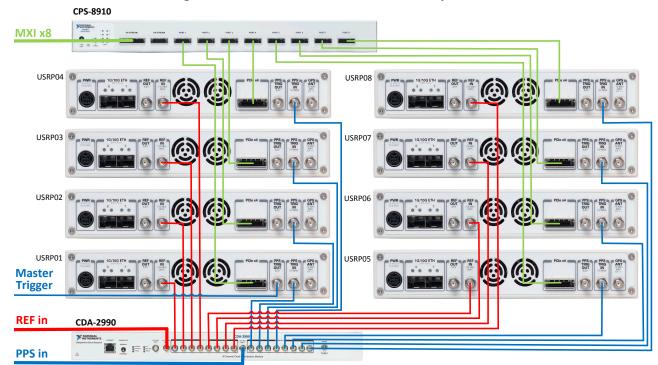


Figure 2. Connections in Each USRP Subsystem

Mobile Station

The MIMO Application Framework supports up to 12 simultaneous MSs. An MS represents a handset or other wireless device with single input, single output (SISO) wireless capabilities. The MS prototype uses a USRP RIO with an integrated GPS disciplined oscillator⁶ (GPSDO)⁷, connected to a PC (typically a laptop) or PXI chassis using a cabled PCI Express to an ExpressCard. A typical testbed implementation includes multiple MSs where each USRP RIO might represent one or two MS devices. Software on the MS is implemented as a single antenna system, placing the physical layer (PHY) in the FPGA of the USRP RIO while the basic media access control (MAC) layer functionality (data piping) is split between the FPGA and host.

⁶ The GPSDO is important because it provides improved clock accuracy and enables synchronization and geo-location capability if needed in future system expansion.

⁷ USRP-2950R/2952R/2953R/2954R (USRP-295x)

Figure 3. Typical MS Setup with Laptop and USRP RIO

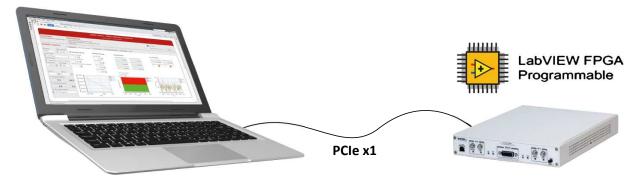


Table 2 provides a quick reference of parts used in a single MS system. It includes hardware devices and cables used to connect the devices as shown in Figure 3. Alternatively, a PCI Express connection can be used if a desktop or PXI chassis is chosen for the MS controller.

Table 2. Mobile Station Equipment

Description					
USRP-295x device	1				
USRP RIO Laptop Connectivity Kit (ExpressCard and Cable)					
Laptop with ExpressCard Slot	1				

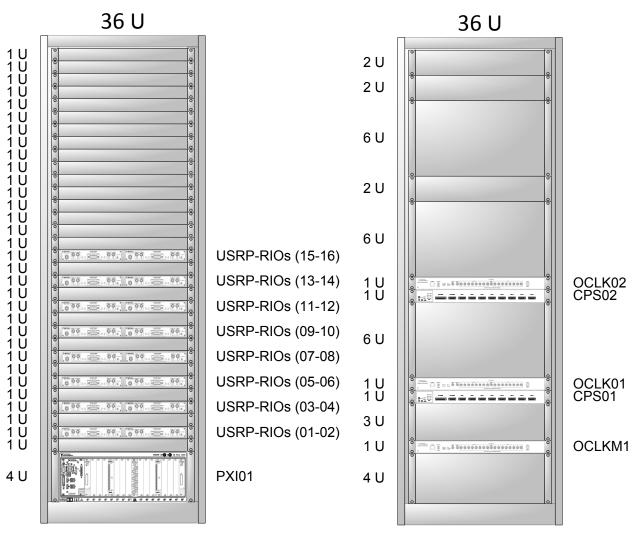
System Configurations

The software can be configured to use four to 128 antennas, and the BS is typically used in one of the following configurations:

- 16 antenna MIMO (1 USRP subsystem)
- 32 antenna MIMO (2 USRP subsystems)
- 64 antenna MIMO (4 USRP subsystems)
- 128 antenna MIMO (8 USRP subsystems)

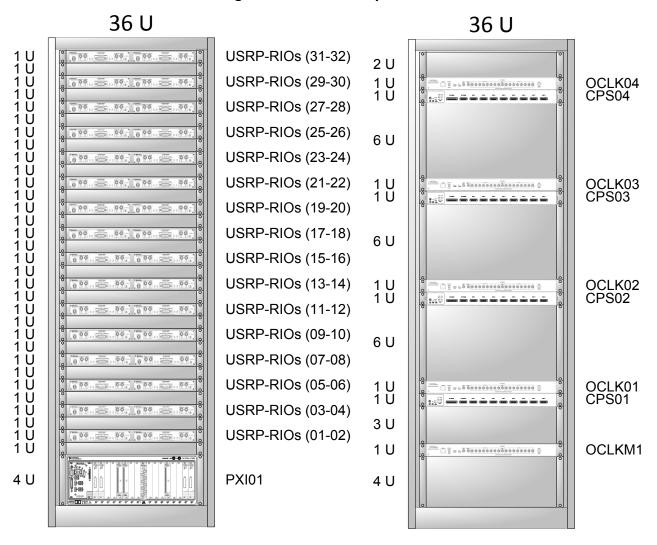
Refer to the Connection Diagrams section for detailed connection diagrams for BS systems based on each configuration.

Hardware Setup


Rack Assembly Diagrams

36 U 36 U 2 U 2 U 6 U 2 U 6 U 2 U 6 U USRP-RIOs (07-08) OCLK01 CPS01 USRP-RIOs (05-06) 1 U 1 U USRP-RIOs (03-04) 3 U USRP-RIOs (01-02) 1 U PXI01 4 U 4 U

Figure 4. 16-Antenna System


Rear view Front view

Front view Rear view

Figure 6. 64-Antenna System

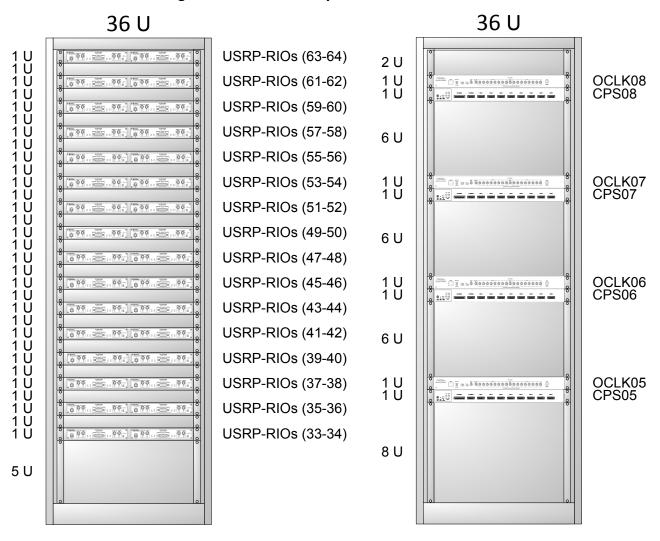

Front view Rear view

Figure 7. 128-Antenna System: Subrack 1 of 2

Front view Rear view

Figure 8. 128-Antenna System: Subrack 2 of 2

Front view Rear view

Installing PXIe Modules

Install the PXIe modules on the chassis in accordance with the hardware configuration as shown in the following table.

Table 3. MIMO BS Parts

PXIe-1085	Number of Antennas (USRP subsystems)					
slot #	128 (8)	64 (4)	32 (2)	16 (1)		
1	PXIe-8135	PXIe-8135	PXIe-8135	PXIe-8135		
2	PXIe-8384	PXIe-8384	PXIe-8384	PXIe-8384		
3	PXIe-8384	PXIe-8384	_	_		
4	PXIe-8384	_	_	_		
5	PXIe-8384	_	_	_		
6	PXIe-7976R	PXIe-7976R	PXIe-7976R	PXIe-7976R		
7	PXIe-7976R	PXIe-7976R	_	_		
8	PXIe-7976R	_	_	_		
9	_	_	_	_		
10	PXIe-6674T	PXIe-6674T	PXIe-6674T	PXIe-6674T		
11	_	_	_	_		
12	_	_	_	_		
13	PXIe-7976R	_	_	-		
14	PXIe-7976R	PXIe-7976R	PXIe-7976R	PXIe-7976R		
15	PXIe-8384	_	_	_		
16	PXIe-8384	_	_	_		
17	PXIe-8384	PXIe-8384	_	_		
18	PXIe-8384	PXIe-8384	PXIe-8384	_		

Refer to the **Connection Diagrams** section for detailed connection diagrams and interconnections tables.

Cable Connections

Cabled connections between various hardware components of the system are listed in Tables 4 through 9 below.

Table 4. Cable Connections within USRP Subsystems

				Cable type and	
Device #1	Port	Device #2	Port	quantity	Description
USRP01 to USRP08	REF IN	CDA	10 MHz OUT 1 to 8	RF_coax (x8)	Reference clock for USRP
USRP01 to USRP08	PPS TRIG IN	CDA	PPS OUT 1 to 8	RF_coax (x8)	PPS trigger for USRP
USRP01 to USRP08	PCle x4	CPS	PORT 1 to PORT 8	MXI (x8)	MXI for USRP

Table 5. Cable Connections between the Master CDA and the CDAs in USRP Subsystems

		Port in MIMO				ber of a		
USRP	Port in Master	subsystem	Cable		128	64	32	16
subsystem #	CDA	CDA	type	Description	(8)	(4)	(2)	(1)
01	10 MHz OUT 1	EXT 10	RF_coax	Reference clock for	х	х	х	Х
		MHz INPUT		subsystem #1	^	^	^	^
02	10 MHz OUT 2	EXT 10	RF_coax	Reference clock for	х	Х	Х	
		MHz INPUT		subsystem #2	^	^	^	
03	10 MHz OUT 3	EXT 10	RF_coax	Reference clock for	х	Х		
		MHz INPUT		subsystem #3	^	^		
04	10 MHz OUT 4	EXT 10	RF_coax	Reference clock for	х	Х		
		MHz INPUT		subsystem #4	^	^		
05	10 MHz OUT 5	EXT 10	RF_coax	Reference clock for	x			
		MHz INPUT		subsystem #5	^			
06	10 MHz OUT 6	EXT 10	RF_coax	Reference clock for	х			
		MHz INPUT		subsystem #6	^			
07	10 MHz OUT 7	EXT 10	RF_coax	Reference clock for	х			
		MHz INPUT		subsystem #7	^			
08	10 MHz OUT 8	EXT 10	RF_coax	Reference clock for	х			
		MHz INPUT		subsystem #8	^			
01	PPS OUT 1	EXT PPS	RF_coax	PPS trigger for	х	Х	х	х
		INPUT		subsystem #1	^	^	^	^
02	PPS OUT 2	EXT PPS	RF_coax	PPS TRIGGER for	х	Х	Х	
		INPUT		subsystem #2	^	^	^	
03	PPS OUT 3	EXT PPS	RF_coax	PPS TRIGGER for	х	Х		
		INPUT		subsystem #3	^	^		
04	PPS OUT 4	EXT PPS	RF_coax	PPS TRIGGER for	х	Х		
		INPUT		subsystem #4	^	^		
05	PPS OUT 5	EXT PPS	RF_coax	PPS TRIGGER for	х			
		INPUT		subsystem #5	^			
06	PPS OUT 6	EXT PPS	RF_coax	PPS TRIGGER for				
		INPUT		subsystem #6	Х			
07	PPS OUT 7	EXT PPS	RF_coax	PPS TRIGGER for	v			
		INPUT		subsystem #7	Х			
08	PPS OUT 8	EXT PPS	RF_coax	PPS TRIGGER for	V			
		INPUT		subsystem #8	Х			

Table 6. Cable Connections between the PXI and the CPS in USRP subsystems

PXIe-8384	128 (8)	64 (4)	32 (2)	16 (1)			
in slot #		JSRP sub		•	CPS port	Cable type	Description
02	1	1	1	1	UP STREAM	MXI	MXI for subsystem #1
03	2	2			UP STREAM	MXI	MXI for subsystem #2
04	3				UP STREAM	MXI	MXI for subsystem #3
05	4				UP STREAM	MXI	MXI for subsystem #4
15	5				UP STREAM	MXI	MXI for subsystem #5
16	6				UP STREAM	MXI	MXI for subsystem #6
17	7	3			UP STREAM	MXI	MXI for subsystem #7
18	8	4	2		UP STREAM	MXI	MXI for subsystem #8

Table 7. Cable Connections between PXIe-6674T and Master CDA

Output Port on PXIe-6674T	Input Port on CDA	Cable type	Description
CLK OUT	EXT 10 MHz INPUT	RF_coax	Reference clock from
			PXI
PFI3	EXT PPS INPUT	RF_coax	PPS trigger from PXI

Table 8. Cable Connection between USRP Subsystem #1 and the PXIe-6674T (Master Trigger)

Port on USRP01	Port on		
in subsystem #1	PXIe-6674T	Cable type	Description
PPS TRIG OUT	PFI1	RF_coax	Master PPS trigger

Installing the Software

You must be an Administrator to install NI software on your computer.

- 1. Install LabVIEW Communication System Design Suite 2.0.
- 2. Install NI-USRP 15.5.
- 3. Install MIMO Application Framework.
- 4. When the installers complete the installation, select **Restart** in the dialog box.

Powering on the Hardware

Caution Ensure that all SMA connectors are properly tightened. Poor connections may result in a delay in signal propagation, resulting in poor system operation.

Caution Ensure that the PRIMARY REF flip switches on all CDA-2990 devices are in the EXTERNAL position.

Base Station

- 1. Power on all the USRP subsystems.
- 2. Power on the PXI controller.

Mobile Station

- 1. Power on the USRP RIO.
- 2. Power on the computer (laptop, PC, or PXI chassis) to which the USRP RIO is connected.

Connection Diagrams

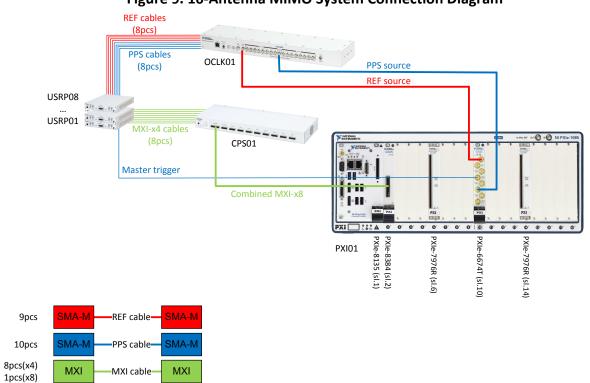


Figure 9. 16-Antenna MIMO System Connection Diagram

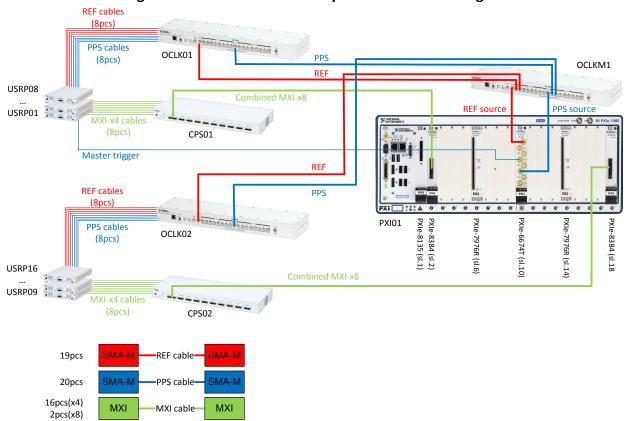


Figure 10. 32-Antenna MIMO System Connection Diagram

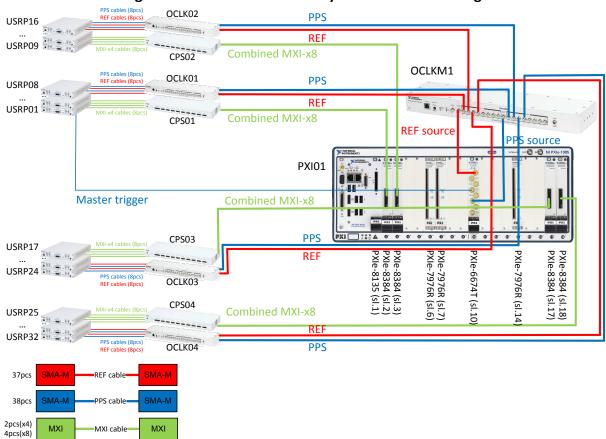


Figure 11. 64-Antenna MIMO System Connection Diagram

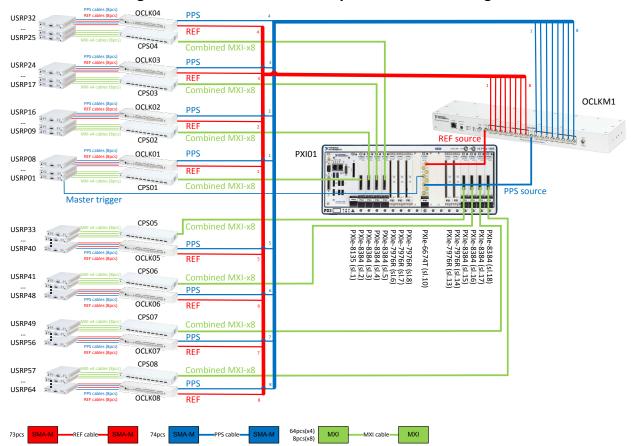


Figure 12. 128-Antenna MIMO System Connection Diagram

Software

Hardware Naming

Use MAX, or System Diagram in LabVIEW Communications, to change the hardware aliases. The MIMO Application Framework is designed to work with the hardware aliases in the following table.

Table 9. Hardware Aliases

Device	Configuration	Alias
PXIe-6674T	All	TIME
PXIe-7976	All	FLEXO, FLEX1,,FLEX4
USRP RIO	CPS switch	CPS1Port1Dev1, CPS1Port2Dev1,,CPS1Port8Dev1,
	box	CPS2Port1Dev1, CPS2Port2Dev1,,CPS2Port8Dev1, and so
		on.
		You can keep the default names if you set USRP Naming Scheme to CPS(1-8)Port(1-8)Dev1
		Naming Scheme to CPS(1-8)Port(1-8)Dev1.
	PXI chassis	PXI2Slot2Port1Dev1, PXI2Slot3Port1Dev1,,
		PXI2Slot18Port1Dev1, PXI3Slot2Port1Dev1,

	PXI3Slot2Port1Dev1,,PXI3Slot18Port1Dev1.
	You can keep the default names if you set USRP Naming
	Scheme to PXI(2-5)Slot(2-18)Port1Dev1.
All	Rename the USRP RIO devices to USRP01, USRP02,
	USRP03, and so on, and set USRP Naming Scheme to
	USRP (01-64).

Understanding the Components of this Sample Project

The development project is comprised of LabVIEW host code and LabVIEW FPGA code. The related folder structure and components of the project are described in the following subsections. The description covers the Development project, which comprises all FPGA and Host software parts. There is a Deployment project limited to the Mobile Station Host code only and does not include all contents listed below.

Create a New Project Instance

To create a new instance of the MIMO Application Framework, launch LabVIEW Communications System Design Suite 2.0 by selecting LabVIEW Communications 2.0 from the Start menu. From the Project Templates on the launched Project tab, select Application Frameworks » MIMO Application Framework Development v1.0 to launch the project.

Folder Structure

The following files and folders are created inside the specified folder:

MIMO Development v1.0.lvproject

This project file contains reference to all VIs and targets.

Base Station Host.gvi

This is the top-level host VI of the BS, also called the Evolved Node B (eNodeB). It implements a downlink (DL) transmitter (TX) and an uplink (UL) receiver (RX) and can communicate with up to twelve MSs.

The host interfaces with multiple FlexRIO FPGA modules which serve as processors and multiple USRP RIOs which serve as remote radio heads (RRHs). The bitfiles are built from the following corresponding FPGA top-levels:

- Base Station MIMO Processor FPGA.gvi: This is the MIMO Processor top-level where the largest part of the in-phase/quadrature (I/Q) baseband signal processing is executed. A MIMO Processor bitfile can be configured to work for up to 32, 64 or 128 antennas. Each bitfile handles either all, the half or a fourth of all subcarriers per OFDM symbol. Refer to the "System Overview" section for more details.
- Base Station Bit Processor FPGA.gvi: This is the Bit Processor top-level where the TX and RX bit processing are executed. The TX packet generator as well as the RX packet validator are executed in the bit processor.

• Base Station RRH FPGA.gvi: This is the RRH top-level where the OFDM modulation and demodulation as well the interfacing with the RF is performed. Refer to the "System Overview" section for more details.

Mobile Station Host.gvi

This is the top-level host VI of the MS, also called User Equipment (UE). Each host configures two MSs. The host interfaces with the bitfile built from the following corresponding FPGA top-level:

• Mobile Station FPGA.gvi: This is the MS top-level. It implements two MSs ("UE 0" and "UE 1"), each with a DL RX and UL TX.

Builds

This folder contains the precompiled bitfiles. The FlexRIO modules are loaded with MIMO Processor bitfiles. Which bitfile is used specifically depends on which of the following system configurations is used:

- MIMO Processor 32 Antennas.lvbitx: Used for BSs that are configured for up to 32 antennas.
- MIMO Processor 64 Antennas.lvbitx: Used for BSs that are configured for up to 64 antennas.
- MIMO Processor 128 Antennas.lvbitx: Used for BSs that are configured for up to 128 antennas.

For bit processing, a single FlexRIO module is loaded with Bit Processor bitfile:

Bit Processor.lvbitx: Used for BS bit processing. It works with all BS configurations.

The USRP RIOs that serve as RRHs are loaded with the following bitfiles:

- RRH Combiner.lvbitx: Used for all RRHs in a subsystem except the last one. Applicable for USRP RIO devices with 120 or 160 MHz bandwidth.
- RRH Splitter.lvbitx: Used for the last RRH in a subsystem. Applicable for USRP RIO devices with 120 or 160 MHz bandwidth.
- RRH Combiner 40 MHz.lvbitx: Used for all RRHs in a subsystem except the last one. Applicable for USRP RIO devices with 40 MHz bandwidth.
- RRH Splitter 40 MHz.lvbitx: Used for the last RRH in a subsystem. Applicable for USRP RIO devices with 40 MHz bandwidth.

The USRP RIO devices that serve as MSs are loaded with the following bitfiles:

- Mobile Station.lvbitx: Used for USRO RIO devices with 120 MHz or 160 MHz bandwidth.
- Mobile Station 40 MHz.lybitx: Used for USRO RIO devices with 40 MHz bandwidth.

Common

The common folder contains generic nodes for host and FPGA that are shared between different Application Frameworks, such as mathematical functions, type conversions, and so on.

Link Simulator

This folder contains the Link Simulator which simulates the UL and DL transmission chain on the host.

MIMO v1.0

This folder contains host and FPGA nodes, which were specifically designed for the MIMO Application Framework. It has three subfolders: FPGA, Host, and Types. The Types subfolder contains type definitions that are required in the system.

Resources

This folder contains the FPGA resources which are needed for the bitfiles to compile.

USRP RIO 120 MHz BW

This directory was taken from the NI USRP RIO Multi-Device Streaming project.

Testbenches

Host simulation test benches for all parts of the design.

System Overview

The MIMO Application framework provides the functional elements of the PHY as well as the basic MAC of both BS and MSs. It includes the following elements:

- MIMO DL data transmission and reception
- MIMO UL data transmission and reception
- Synchronization of BSs and MSs, either over a common trigger signal, or over-the-air using the primary synchronization sequence (PSS)
- Basic MAC functionality provided for packet-based user data transmission in DL and UL to enable user data streaming applications

System Features

The MIMO Application Framework is presented on a flexible platform. It supports the following features:

- Scalable number of antennas from four to 128 at the BSs. Data rates and interfaces scale automatically.
- One to 12 MSs.
- 20 MHz bandwidth with a frame structure based on long-term evolution (LTE).
- Fully reconfigurable frame schedule.
- Multi-user MIMO precoding and equalization on FPGA including 128×12 minimum mean squared error (MMSE), zero-forcing (ZF), and maximum-ratio combining (MRC).
- Bidirectional Time Division Duplex (TDD) with fully reconfigurable UL and DL.
- Channel reciprocity calibration per RF channel.
- Aggregates all data to the processing units.
- Time and frequency synchronization over-the-air, all using commercial off-the-shelf components.
- Support for different modulation schemes for modulating the data subcarriers: quadrature phase shift keying (QPSK), 16-quadrature amplitude modulation (QAM), 64-QAM, and 256-QAM.

Visit ni.com/info and enter the Info Code exrukz to access the MIMO Application Framework White Paper for more information about the MIMO Application Framework design.

System Components

Base Station

The following figure shows the block diagram of the BS in the UL and DL. The components perform the following tasks:

Host: Configures the system and displays the system status. Interfaces with multiple processor bitfiles loaded to the FlexRIO modules and multiple RRH bitfiles loaded to the USRP RIO devices. It also receives and transmits payload data using the user datagram protocol (UDP).

- Data Source: Data source for the DL payload data. If configured as "UDP," data is read from the configured UDP ports.
- Data Sink: Data sink for the received UL payload data. If configured as "Off," the received data is discarded. If configured as "UDP," the received data is sent as UDP packets to the configured remote address and ports.

Bit Processor: The central processing unit for TX and RX bit Processing. The main components of this module are:

- **TX Packet Generator:** Generates the packets based on the MAC packet structure.
- RX Packet Validator: Performs frame validation by means of frame check sequence (FCS), which contains an IEEE 32-bit cyclic redundancy code (CRC).
- TX Bit Processing: It is responsible for TX bit processing including data scrambling, TX bit grouping, modulation and data reordering.
- RX Bit Processing: It is responsible for RX bit processing including data reordering, demapping, packing, and descrambling.
- Router 0 & 1: Used for dynamically routing data. Every router has its own routing program which is written from the host depending on the given system configuration. Router 0 is used to route the receive data from MIMO processors to the RX bit processing chain. Router 1 is used to route the transmit data from the TX bit processing chain to the MIMO processors.

MIMO Processors: The central processing units for TX and RX I/Q Processing. Depending on the system configuration, a MIMO processor process all, one half or one fourth of the subcarriers per orthogonal frequency division multiplexing (OFDM) symbol.

- TX I/Q Chain: Includes modules such as Precoding, Stream Combiner, and so on.
- Routers: Used for dynamically routing data. Every router has its own routing program which is written from the host depending on the given system configuration.
 - o Router 0 & 1: Used to route receive data from RRH subsystems to the MIMO processor.
 - Router 2 & 3: Used to route transmit data from the MIMO processor to the RRH subsystems.
- RX I/Q Chain: Estimates the channel towards the MS from the received data and equalizes the received signals.

RRH Subsystem: The RRHs contain the analog-to-digital converters (ADC) and digital-to-analog converters (DAC). They handle the transformation from time domain to frequency domain and vice versa. Multiple RRHs (two to eight) build a subsystem. A base station can consist of one to eight subsystems.

- RRH Splitter (last RRH in subsystem): Receives the transmit data from the MIMO processors, distributes it to the TX chains of all other RRHs in the subsystem, one after the other, and finally to its own TX chain.
- RRH Combiner (remaining RRHs): Accumulates the received data from its own RX chain, followed by the RX chains of all other RRHs in a subsystem, one after the other, and sends it to the MIMO processors.
- OFDM TX and OFDM RX: Each RRH contains OFDM modulation and OFDM demodulation.
- RF: In the transmit path, it performs DUC, RF impairments correction, and writes the transmit data to the RF. In the receive path, it reads the receive data from the RF, performs DDC and performs RF impairments correction.

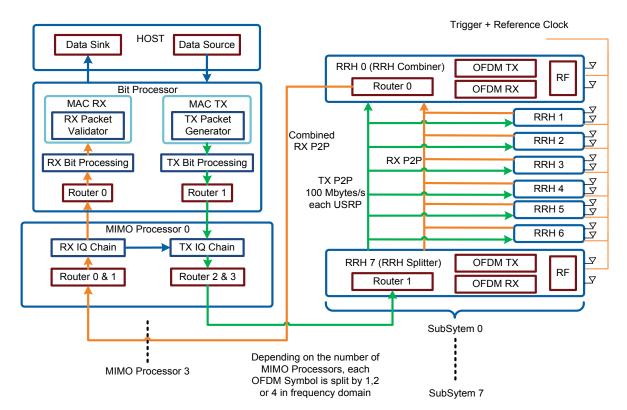


Figure 13. Block Diagram of the BS (TX and RX Chain)

Mobile Station

The following figure shows the block diagram of the MS system in the UL and DL.

Digital Payload Baseband UDP Data **UDP** Read Stream in MAC UE TX **UL TX PHY** Conversion PN Source TDD Switching RF UDP LIDP Data Down Stream MAC UE RX DL RX PHY Handling Write Conversion out Payload Data Host Trigger Source **FPGA**

Figure 14. Block Diagram of the MS (TX and RX Chains)

The components shown in Figure 14 perform the following tasks:

- Host: Configures the FPGA and displays the system status. Interfaces with the MS bitfile.
 - **UDP read:** Reads data, provided by an external application, from a UDP socket. The data is used as a payload data in the UL Data field of each slot, which is then encoded and modulated as an UL signal by the UL TX (UL TX PHY).
 - PN Source: Generates a pseudo noise (PN) sequence, a sequence of pseudorandom numbers.
 - **UDP write:** Writes the payload data that was received and decoded from the DL signal by the DL RX (DL RX PHY) to an UDP socket. The data can then be read by an external application.
 - Data Handling: Reads received data from FPGA, checks packets validation, and stores received payload to queues.
- FPGA: Contains the MAC and PHY modules for the UL and the DL.
 - MAC TX: A simple MAC implementation which adds a header containing the number of payload bytes. The header is followed by the payload in bytes and the remaining bytes are filled with padding bytes. The 32-bit CRC is then added.
 - **MAC RX:** Packets validator and payload extraction.
 - UL TX PHY: The physical layer of the UL TX creates the UL signal based on the configured frame structure as digital baseband I/Q data. This includes resource mapping, pilot generation, and OFDM modulation.
 - DL RX PHY: The physical layer of the DL RX demodulates the downlink signal. This includes PSS-based synchronization, OFDM demodulation, channel estimation and equalization.
 - **Up Conversion:** Performs digital up conversion (from the LTE sampling rate of 30.72 MS/s to 120 MS/s or 200 MS/s, depending on the USRP RIO model), performs RF impairments correction, and writes the resulting TX samples to the RF interface.
 - **Down Conversion:** Reads RX samples from the RF interface, performs digital down conversion (from 120 MS/s or 200 MS/s, depending on the USRP RIO model, to the LTE sampling rate of 30.72 MS/s), and performs RF impairments correction.

- Trigger Source: The MS can be synchronized to the BS using the PSS over-the-air or by using an external trigger signal which is provided from the BS.
- TDD Switching: The TDD Switching module is responsible for TX and RX activation based on the frame schedule.

Running the LabVIEW Host Code

Caution Ensure you meet the hardware and software requirements before trying to run the host code.

On the BS Host Computer

- 1. Launch LabVIEW Communications System Design Suite 2.0 by selecting LabVIEW Communications 2.0 from the Start menu.
- 2. From the Project Templates on the launched **Project** tab, select **Application Frameworks**, then select MIMO Development to launch the project.
- 3. Within that project, open Base Station Host.gvi. The front panel of this VI is shown in Figure 15.
- 4. Set the following configurations in **Base Station Host.gvi**:
 - a. Set the USRP Naming Scheme depending on the hardware aliases that you configured using MAX (see Table 9 for details)
 - b. Set the USRP Bandwidth Model depending on the hardware model of your USRP RIO devices.
 - c. Set the **System Configuration** control to the required configuration
 - d. Set the RF Frequency to a frequency supported by your USRP RIO devices.⁸
 - e. Set the **TX power** in dBm and **RX gain** in dB or keep the default values.
- 5. Run the **Base Station Host.gvi** by clicking the run button ().
 - If successful, the Base Station Active indicator lights.
 - o If an error is indicated, go to the Error tab to check the error message. Here you will also see if an error occurred during the initialization of the timing module, the MIMO Processors, the Bit processor or the RRHs. The first failing element tells which module could not be initialized correctly. Use MAX to check if the failing module is configured with the correct hardware alias.

⁸ Consider local laws if you are transmitting over-the-air. The USRP-29xx is not approved or licensed for transmission over-the-air using an antenna.

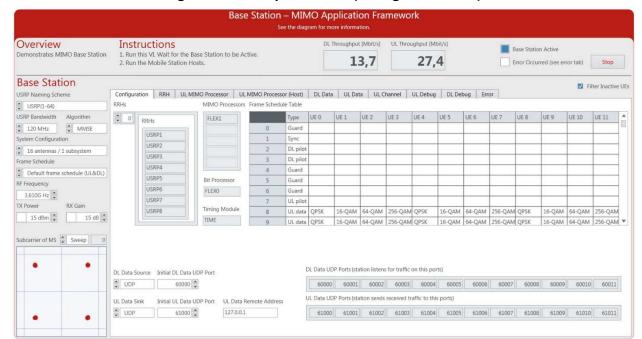


Figure 15. Front panel of BS (Configuration Tab)

On the MS Host Computer

- 1. Launch LabVIEW Communications System Design Suite 2.0 by selecting LabVIEW **Communications 2.0** from the Start menu.
- 2. From the Project Templates on the launched **Project** tab, select **Application Frameworks**, then select MIMO Development to launch the project.
- 3. Within that project, open Mobile Station Host.gvi. The front panel of this VI is shown in Figure 16.
- 4. Set the following configurations in Mobile Station Host.gvi:
 - a. Configure the RIO identifier in the RIO Device control. Use MAX to configure the hardware alias of the USRP RIO that you want to use as MS.
 - b. Set the USRP Bandwidth Model depending on the hardware model of your USRP RIO
 - c. Select the **UE Synchronization Mode** using the **UE Sync Mode** control (over-the-air or using external trigger).
 - d. Set the **RF Frequency** according to the base station.⁹
 - e. Set the automatic gain control (AGC) mode to auto or manual. If the AGC is configured to manual, set the TX power in dBm and RX gain in dB that are available in the AGC Settings and Status tab.
 - f. Set the MS ID of both MSs (UE ID 0 and UE ID 1). Each MS ID has its modulation scheme as shown in Figure 15.
- Run Mobile Station Host.gvi by clicking the run button ().
 - If successful, the FPGA Ready indicator lights.

⁹ Consider local laws if you are transmitting over-the-air. The USRP-29xx is not approved or licensed for transmission over-the-air using an antenna.

If an error is indicated, go to the **Error** tab to check the error message. Use MAX to check if the USRP RIO is configured with the correct hardware alias.

Mobile Station – MIMO Application Framework Overview Instructions FPGA Ready onstrates MIMO Mobile Station 1. Wait for the Base Station to be ready 2. Apply same configuration as on Base Station side. Error Occurred (see Error tab) Stop Mobile Station | Configuration | AGC/Synchronization | DL Information | DL Advanced Information | UL Information | Error USRP Bandwidth UE TX Delay [clock cycles] Frame Schedule Table RIO Device USRP17 120 MHz 30 1 UL Sync Mode UL Sync Mode Type UE 0 UE 1 UE 2 UE 3 auto Over the air Frame Schedule DL pilot Default frame schedule (UL&DL) RF Frequency 3,610G Hz 🛊 auto 16-QAM 64-QAM 256-QAM QPSK UL data QPSK 16-QAM 64-QAM 256-QAM QPSK 16-QAM 64-QAM 256-QAN UE ID 1 UL data QPSK 16-QAM 64-QAM 256-QAM QPSK 16-QAM 64-QAM 256-QAM QPSK 16-QAM 64-QAM 256-QAM ▼ 0 × 5 × UL Throughput [Mbit/s] 9,3 18,2 DL Throughput [Mbit/s] UL Data Source Initial UL Data UDP Port UL Data UDP Ports (station listens for traffic on this ports) 4,6 9,1 UDP 50000 W DL Data UDP Ports (station sends received traffic to this ports) UE Throughput Selection DL Data Sink Initial DL Data UDP Port DL Data Remote Address 51000 51001 ▼ UDP 51000 ▼ 127.0.0.1 PHY Throughput

Figure 16. Front Panel of MS (Configuration Tab)

For initial verification that the system is running:

- 1. Select the Frame Schedule Table in the Configuration tab on the Base Station Host.gvi to find the modulation scheme of the selected MSs.
- 2. For UL investigation, select the UL MIMO Processor tab on the Base Station Host.gvi, and verify that the presented RX constellations match the corresponding modulation schemes according to the Frame Schedule Table. When using the default frame schedule UE 0 should have QPSK modulation and UE 1 should have 16 QAM modulation. Furthermore, select the UL Data tab and verify the UL throughput.
- For DL investigation, select the DL Advanced Information tab on the Mobile Station Host.gvi, and verify that the presented RX constellations match the corresponding modulation schemes according to the Frame Schedule Table. Furthermore, select the DL Information tab and verify the DL throughput.

If you want to transmit and receive with more than two MSs (one MS host), you have two options:

- 1. Use different host computers. For example, use one laptop with one USRP RIO connected to it per MS Host.
- 2. Use the same host computer (for example, a PXI chassis) with multiple USRP RIOs connected to it. For running multiple MS Hosts, you have to duplicate Mobile Station Host.gvi.

When using multiple MS hosts, the above configurations should be repeated for each MS host. Please make sure to select the correct RIO Device each time and to choose unique UE IDs. When using the same UE ID twice the BS will not be able to decode the UL because it receives a mixed signal with the same UL pilots and the same UL data scrambling sequence.

Running Video Streaming

The MIMO Application Framework implements a basic MAC functionality which allows for packet-based data exchange of user-defined payload data. Figure 17 shows an example where user-defined data is transferred in the uplink. The user-data is received at the MS from a data source in form of UDP packets and send out at the BS to a data sink also in form of UDP packets. Any program capable of transmitting UDP data can serve as a data source. Similarly, any program capable of receiving UDP data can serve as a data sink.

If you use a video streaming application as a data source and a video player as a data sink, the MIMO Application Framework can be used for video streaming. The following section describes video streaming using the VLC media player that is available at www.videolan.org.

Start Video Stream at the Transmitter (MS)

The MS host acting as an UL transmitter receives UDP packets from the video streaming application and utilizes the MIMO Application Framework to transmit the data frames.

- 1. Create a new project as described in **Running the LabVIEW Host Code**.
- 2. Open the top-level host VI of the MS, Mobile Station Host.gvi, set the correct RIO identifier in the RIO device parameter, and then set UL Data Source on the Configuration tab to UDP
- 3. Run the LabVIEW host VI by clicking the run button ().
- 4. Start cmd.exe and change the directory to the VLC installation directory.
- 5. Start the VLC application as a streaming client with the following command:

```
vlc.exe --repeat "PATH TO VIDEO FILE"
    :sout=#std{access=udp{ttl=1}, mux=ts, dst=@:UDP PORT TX}
where PATH TO VIDEO FILE should be replaced with the location of the video that should
be used. The value of UDP PORT TX is 50.000, which is the default UDP Receive Port for MS ID
0. The default UDP receive port can be changed using the Initial UL Data UDP Port control on
the Configuration tab.
```

When using multiple MSs, the value of UDP PORT TX has to be adapted. Each MS Host opens two UDP ports for the two RF chains. See **UL UDP Data Ports** indicator for the used ports.

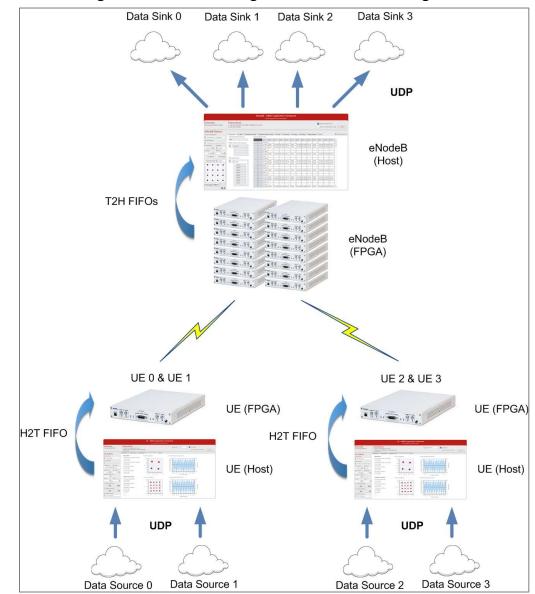


Figure 17. Data Streaming from MSs to the BS Using UDP

Start Video Stream of the Receiver (BS)

The BS host acting as a receiver utilizes the MIMO Application Framework to validate the received data frames and pass them via UDP to the video player.

- 1. Create a new project as described in **Running the LabVIEW Host Code section**.
- 2. Open the top-level host VI of the BS, **Base Station Host.gvi**, and then switch to **Configuration** tab and set **UL Data Sink** to **UDP**.
- 3. Run the LabVIEW host VI by clicking the run button (▶).
- 4. Start cmd.exe and change the directory to the VLC installation directory.
- 5. Start the VLC application as a streaming client with the following command: vlc.exe udp://@: UDP_PORT_RX

The value of UDP PORT RX is 61.000, which is the default UDP Transmit Port. The default value of UDP PORT RX can be changed using the Initial UL Data UDP Port control on Configuration tab. The UDP PORT RX values must be derived as Initial UL Data UDP Port + UE-ID.

Description of Controls and Indicators

Description of Controls and Indicators on the BS Host Front Panel

This section describes all controls, graphs and indicators which are placed on the BS Host front panel.

BS Basic Controls and Indicators

Several controls and indicators are placed outside the main tab control of Base Station Host.gvi as shown in Figure 15. The following table lists the corresponding controls. Table 11 lists the corresponding indicators.

Table 10. BS Basic Configuration - Controls

Control	Description
USRP Naming Scheme	Determines the naming scheme of the USRP RIO devices which are loaded with the RRH bitfiles. The enumeration contains the following values: • CPS(1-8)Port(1-8)Dev1 • PXI(2-5)Slot(2-18)Port1Dev1
	• USRP(01-64)
USRP Bandwidth	Determines the bandwidth of the used USRP RIO devices. The enumeration contains the following values: • 120 or 160 MHz • 40 MHz
Algorithm	Configures the algorithm that is used for precoding. The enumeration contains the following values: • MMSE • MRC • ZF
System Configuration	Determines the system configuration. The number of antennas and subsystems is based on this configuration.
Frame Schedule	Determines the frame schedule to use.

RF Frequency	The center frequency for radio transmission and reception. 10
TX Power	Sets the BS RF transmit power in dBm.
RX Gain	Sets the BS RF receive gain in dB.
Subcarrier of MS	Selects the MS ID for the constellation plot below. Set to "sweep"
	to sweep through the MSs over time. If the Filter Inactive UEs
	control is active, the sweeping will include only the active MSs.
Filter Inactive UEs	Filters inactive MSs in several graphs, for example in the
	constellation plots.

Table 11. BS Basic Configurations - Indicators and Graphs

Indicator	Description
TX Clipping	Indicates a numeric overflow at the output of DAC. It is located
	beside TX Power control
RX Clipping	Indicates a numeric overflow at the output of ADC. It is located
	beside RX Gain control.
Equalized Subcarriers	Shows the constellations of the selected MS using Subcarrier of
	MS control or of all MSs in sweep.
UL Throughput	Numerical display showing the total UL throughput in Mbit/s
[MBit/s]	
DL Throughput	Numerical display showing the total DL throughput in Mbit/s
[MBit/s]	
Base Station Active	A Boolean indicator that indicates the BS is ready.
Error Occurred (see	A Boolean indicator that lights up if an error occurred.
error tab)	

BS Indicators on Configuration Tab

The following two tables list the controls and indicators, respectively, which are placed on the Configuration tab of Base Station Host.gvi as shown in Figure 16.

Table 12. BS Host - Controls on Configuration Tab

Control	Description
DL Data Source	It has three options:
	 Off: Data source is inactive. UDP: To read data from an UDP socket
	PN Data: Generate data from a PN Source.
UL Data Sink	If it is set to UDP, received frames are forwarded to the configured
OL Data SIIIK	UDP address and port.

 $^{^{10}}$ Consider local laws if you are transmitting over-the-air. The USRP-29xx is not approved or licensed for transmission over-the-air using an antenna.

Initial DL Data UDP Port	An offset to start opening UDP ports for UDP packet reception.
	The default UDP Transmit Port is 60.000. For each extra MS, the
	corresponding UDP port value is 60.000 plus the MS identity.
Initial UL Data UDP Port	An offset to start opening UDP ports for UDP packet transmission.
	The default UDP Receiver Port is 61.000. For each extra MS, the
	corresponding UDP port value is 61.000 plus the MS identity.
UL Data Remote	The IP address that the UDP packets received from MS are sent to.
Address	

Table 13. BS Host - Indicators on Configuration Tab

Indicator	Description
RRHs	Shows the RIO aliases of active USRP RIO devices per subsystem.
MIMO Processors	Shows the addresses of active FlexRIO modules for I/Q Processing.
Bit Processor	Shows the address of active FlexRIO module for bit processing.
Timing Module	Shows the address of Timing Module RIO card.
Frame Schedule Table	Shows the OFDM Frame Schedule of all 12 MSs. The OFDM symbol types of each MS frame (140 OFDM Symbols) are presented. The OFDM symbol type could be Guard, Sync, DL pilot, DL data, UL pilot, and UL data. In addition, the modulation schemes of all MSs are presented, which could be QPSK, 16-QAM, 64-QAM, and 256-QAM. The Frame Schedule Table indicator is controlled by Frame Schedule control.
DL Data UDP Ports	Shows the UDP ports to forward traffic to the MSs.
UL Data UDP Ports	Shows the UDP ports to forward traffic from the MSs.

BS Control and Indicators on RRH Tab

The following table lists the control which is placed on the RRH tab of Base Station Host.gvi as shown in Figure 19. Table 15 lists the corresponding indicators.

Table 14. BS Host - Control on RRH Tab

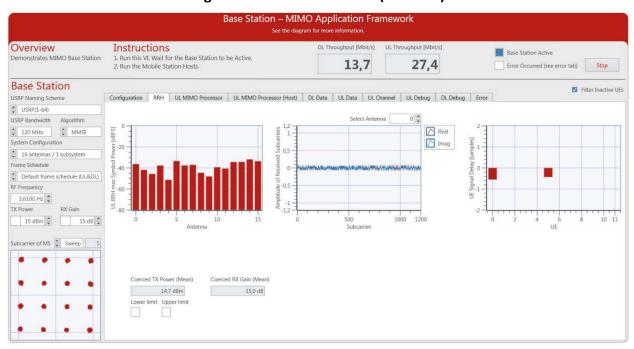

Control	Description
Select Antenna	Determines the antenna for which the received subcarriers are
	shown on this tab.

Table 15. BS Host - Graphs and Indicators on RRH Tab

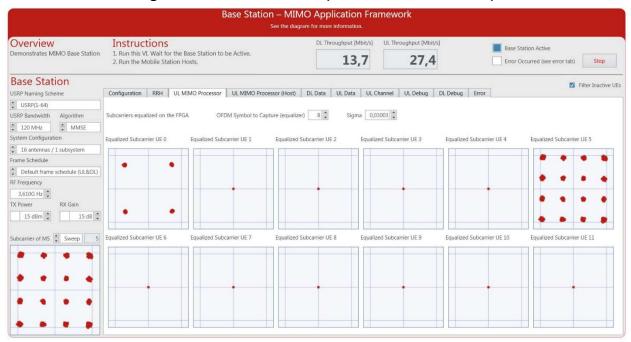
Indicator	Description
Coerced TX Power	Numerical indication shows the actual used analog TX RF power of
(Mean)	all antennas as the mean value, which is set by TX Power control in [dBm].
Lower limit	Boolean indicator shows if the configured TX Power value is
	coerced to the allowed range.

Upper limit	Boolean indicator shows if the configured TX Power value is
	coerced to the allowed range.
Coerced RX Gain	Numerical indication shows the actual used analog RX RF gain of
(Mean)	all antennas as the mean value, which is set by RX Gain control in
	[dB]. The gain value is coerced by the capabilities of the device.
UL RRH max Symbol	Graphical indication shows the maximum signal strength of a radio
Power [dBFS]	frame (calculated on OFDM symbol basis) over all antennas.
Amplitude of Received	Graphical indication shows the received subcarriers of the
Subcarriers	selected antenna. The antenna can be selected using Select
	Antenna control that is located on the above side of the figure.
UE Signal Delay	Graphical indication shows the estimated time delay of all MSs in
[Samples]	LTE samples. This graphical representation can be used to
	calibrate the time delay of each MS manually by using the UE TX
	Delay control on the Configuration tab of MS host top-level.

Figure 18. Front Panel of BS (RRH Tab)

BS Controls and Indicators on UL MIMO Processor Tab

The following table lists the controls that are placed on the **UL MIMO Processor** tab of **Base Station** Host.gvi as shown in Figure 20. Table 17 lists the corresponding indicators.

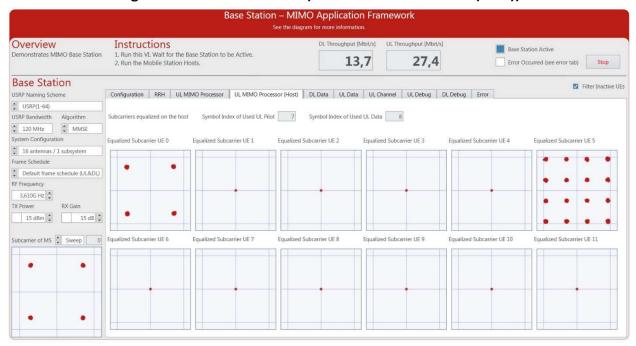

Table 16. BS Host - Controls on UL MIMO Processor Tab

Control	Description
OFDM Symbol to	This control is used to show the constellation of RX I/Q samples of
Capture (equalizer)	the selected OFDM symbol number after equalization. The same
	OFDM symbol number is selected for all MSs.
Sigma	Selects the scaling factor that is used in the modified Gram-
	Schmidt QR decomposition (MGS-QRD) algorithm of the MMSE
	channel estimator.

Table 17. BS Host - Indicators on UL MIMO Processor Tab

Indicator	Description
Equalized Subcarrier UE	Those 12 graphical representations show the constellation of RX
0 to Equalized	I/Q samples of all MSs. If the number of active MSs is less than 12,
Subcarrier UE 11	it is recommended to filter the inactive MSs using the Filter
	Inactive UEs control located on the right side under the Stop
	button.

Figure 19. Front Panel of BS (UL MIMO Processor Tab)


BS Indicators on UL MIMO Processor (Host) Tab

This tab contains the same graphical indicators as on the previous tab as shown on **Figure** 20. However, the channel estimation and equalization is performed on the host and not on the FPGA. The following table shows the corresponding numerical indicators.

Table 18. BS Host - Indicators on UL MIMO Processor (Host) Tab

Indicator	Description
Symbol index of Used	OFDM symbol index of the UL pilot to derive the channel
UL Pilot	estimation from.
Symbol index of Used	OFDM symbol index of the UL data to apply the channel
UL Data	equalization and display the constellations.

Figure 20. Front Panel of BS (UL MIMO Processor Tab (Host))

BS Indicators on DL Data Tab

The following table lists the indicators which are placed on the DL Data tab of Base Station Host.gvi as shown in Figure 21.

Table 19. BS Host - Indicators on DL Data Tab

Indicator	Description
Throughput Graph	Graphical indication showing the DL throughput of all MSs in Mbit
	per second with respect to time.
Throughput Table	Numerical indication of the DL throughput of all MSs in Mbit per
	second.

Base Station – MIMO Application Framework DL Throughput [Mbit/s] UL Throughput [Mbit/s] Overview Instructions Base Station Active Run this VI. Wait for the Base Station to be Active.
 Run the Mobile Station Hosts. ates MIMO Base Station 13,7 27,4 Error Occurred (see error tab) Stop **Base Station** Filter Inactive UEs Configuration RRH UL MIMO Processor UL MIMO Processor (Host) DL Data UL Data UL Channel UL Debug DL Debug Error USRP Naming Scheme USRP Bandwidth DL Throughput per UE [Mbit/s] ME 0 PHY ♣ 120 MHz MMSE 13 -4.6 12 -System Configuration 16 antennas / 1 subsystem 11 -10 -Default frame schedule (UL&DL) 3,610G Hz TX Power 15 dBm 15 dB Subcarrier of MS Sweep

Figure 21. Front Panel of BS (DL Data Tab)

BS Indicators on UL Data Tab

The following table lists the indicators which are placed on the UL Data tab of Base Station Host.gvi as shown in Figure 22.

Table 20. BS Host - Indicators on UL Data Tab

Indicator	Description
Throughput Graph	Graphical indication showing the actual throughput of all MSs in
	Mbit per second.
Throughput Table	Numerical indication of the throughput of all MSs in Mbit per
	second.

Figure 22. Front Panel of BS (UL Data Tab)

BS Indicators and Controls on UL Channel Tab

Table 21 lists the control which is placed on the **UL Channel** tab of **Base Station Host.gvi** as shown in Figure 23. Table 22 lists the corresponding indicators.

Table 21. BS Host - Control on UL Channel Tab

Control	Description
Antenna Selection	Numerical control selects the BS antenna to calculate the Channel
	Frequency Responses, Channel Impulse Responses, and the Users
	intensity.

Table 22. BS Host - Indicators on UL Channel Tab

Indicator	Description
Signal Strength	Graphical indication located on top-right side showing the
	received signal strength for all MSs versus all antennas of BS.
Channel Frequency	Graphical indication located on bottom-right showing the channel
Response	frequency responses of all MSs in dBFS.
Channel Impulse	Graphical indication located on bottom-left showing the channel
Response	impulse responses of all MSs. The amplitude of the channel
	impulse responses is in dBFS while the time delay is in terms of
	LTE samples.
Intensity Graph	Graphical indication located on top-left side showing the Channel
	Impulse Response of MSs as an intensity figure.

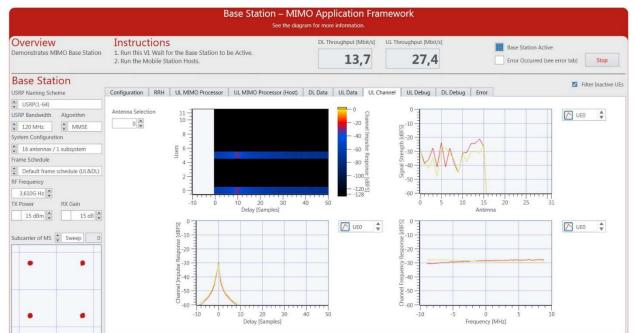


Figure 23. Front Panel of BS (UL Channel Tab)

BS Control and Indicators on UL Debug Tab

Figure 24 shows the screenshot of the UL Debug tab of Base Station Host.gvi. This tab contains a block diagram of the uplink part of the system overlaid with numeric and Boolean indicators which indicate the number of samples processed per second and fixed-point overflows. The control and indicators are listed in Table 23 and Table 24.

Table 23. BS Host - Control on UL Debug Tab

Control	Description
RRH Subsystem (UL)	Numerical control selects the subsystem number based on the
	MIMO system configuration. The maximum number of subsystems
	is 8, hence the control ranges from 0 to 7.

Table 24. BS Host - Indicators on UL Debug Tab

Indicator	Description
For RRH 0 to RRH 7	
RX Samples	Numerical indicator displaying the number of RX samples in the time domain processed per second. Because the LTE sampling frequency is 30.72 MHz, the values should equal 3.072×10^7 .

RX Overflows	Numerical indicator that indicates overflows in the FIFO which connects the USRP RX loop (which reads from the ADC and performs digital down-conversion) and the RX I/Q processing loop (which performs OFDM demodulation). Overflows can occur when the samples are not processed fast enough either in the RX I/Q processing chain or on the MIMO Processors. Another possibility is too high traffic on the PCI-Express bus which stalls the P2P streams. The values should be zero if the system is in normal operation.
Fixed-point overflow	Boolean indicator that indicates fixed-point overflows in the I/Q processing chain. The TX power levels and RX gains should be configured so that no fixed-point overflows occur.
RRH Router 0	Number of samples processed per second by RRH Router 0. The number should be 1.26×10^7 multiplied by the number of RRHs in the subsystem for the first RRH in a subsystem (RRH Combiner).
For MIMO Processor 0 to MIMO Processor 3	
Router 0 and	Numeric indicators displaying the number of samples processed
Router 1	by router 0 and router 1 per second. The value should be 1.008×10^8 .
Bit Processor	
Router 0	Numeric indicator displaying the number of samples processed by router 0 per second. The value depends on the selected frame schedule.
Overflows in RX Chain	
RRH USRP RX Overflow	Indicates that an overflow occurred on the RRH between RF and baseband clock domain.
RRH Local FIFO Overflow	Indicates that an overflow occurred on the RRH when forwarding RX data to Router 0.
MIMO Processor Local FIFO Overflow	Indicates that an overflow occurred on the MIMO processor when forwarding RX data to the bit processor.
Bit Processor Data FIFO Overflow	Indicates that an overflow occurred on the Bit processor when writing RX data to host.

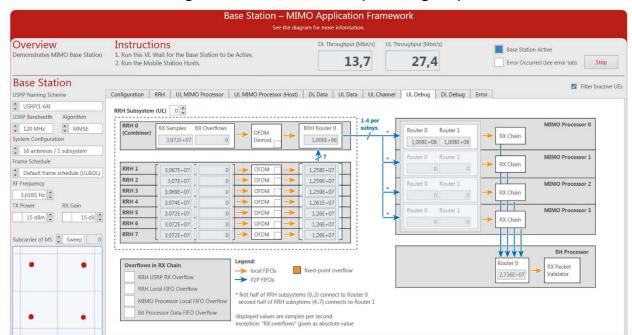


Figure 24. Front Panel of BS (UL Debug Tab)

BS Control and Indicators on DL Debug Tab

Figure 25 shows the screenshot of the DL Debug tab of Base Station Host.gvi. This tab contains a block diagram of the downlink part of the system overlaid with numeric and Boolean indicators which indicate the number of samples processed per second and fixed-point overflows. The control and indicators are listed Table 25 and Table 26.

Table 25. BS Host - Control on DL Debug Tab

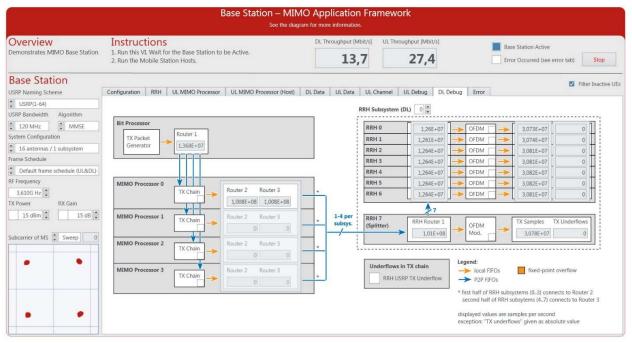

Control	Description
RRH Subsystem (DL)	Numerical control selects the subsystem number based on the
	MIMO system configuration. The maximum number of
	subsystems per MIMO system is 8, hence the control ranges
	from 0 to 7.

Table 26. BS Host - Indicators on DL Debug Tab

Indicator	Description
Bit processor	
Router 1	Numeric indicator displaying the number of samples processed by router 1 per second. The value depends on the selected frame schedule.
For MIMO Processor 0 to	
MIMO Processor 3	
Fixed-point	Boolean indicator that indicates fixed-point overflows in the TX
overflow	chain.

Router 2 and	Numeric indicators displaying the number of samples processed
Router 3	by router 2 and router 3 per second. The value should be
	1.008×10^8 .
For RRH 0 to RRH 7	
RRH Router 1	Number of samples processed per second by RRH Router 1. The
	number should be $1.26 imes 10^7$ multiplied by the number of RRHs
	in the subsystem for the last RRH in a subsystem (RRH Splitter).
Fixed-point	Boolean indicator that indicates fixed-point overflows in the
overflow	OFDM modulation.
TX Samples	Numerical indicator displaying the number of TX samples in the
	time domain processed per second. Because the LTE sampling
	frequency is 30.72 MHz, the values should equal 3.072×10^7 .
TX Underflows	Numerical indicator that indicates underflows in the FIFO
	between baseband and RF processing on each RRH. Underflows
	can occur when the samples are not processed fast enough
	either on the MIMO Processors or in the TX I/Q processing chain.
	Another possibility is too high traffic on the PCI-Express bus
	which stalls the P2P streams. The values should be zero if the
	system is in normal operation.

Figure 25. Front Panel of BS (DL Debug Tab)

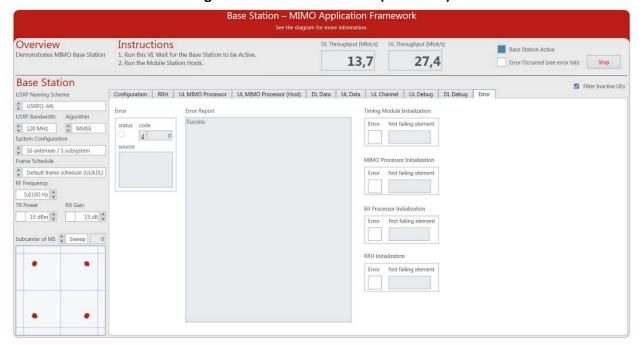

BS Indicators on Error Tab

Figure 26 shows the screenshot of the Error tab of Base Station Host.gvi. The indicators on this tab are listed in Table 27. The values are updated when the system stops, for example, upon receiving an error during initialization.

Table 27. BS Host - Indicators on Error Tab

Indicator	Description
Error	Displays the resulting error cluster.
Error Report	Displays resulting error as error report.
Timing Module	Indicates if an error occurred during initialization of the timing
Initialization	module and, if yes, displays the hardware alias that was used.
MIMO Processor	Indicates if an error occurred during initialization of the MIMO
Initialization	processors and, if yes, displays the hardware alias of the first
	failing element.
Bit Processor	Indicates if an error occurred during initialization of the bit
Initialization	processor.
RRH Initialization	Indicates if an error occurred during initialization of the RRHs
	and, if yes, displays the hardware alias of the first failing
	element.

Figure 26. Front Panel of BS (Error Tab)

Description of Controls and Indicators on the MS Host Front Panel

This section describes all controls and indicators that are placed on the front panel of **Mobile Station** Host.gvi.

MS Basic Configurations

Several controls and indicators are placed outside the main tab control of Mobile Station Host.gvi as shown in Figure 17. The following table lists the corresponding controls. Table 29 lists the corresponding indicators.

Table 28. MS – Controls on Basic Configurations

Control	Description
RIO Device	Configures the RIO identifier of the RIO device. Use MAX to get or
	modify the RIO identifiers of your devices. You can also launch
	Hardware tab, where LabVIEW Communications System Design
	Suite has an integrated hardware manager. This control should be
	configured before running MS.
USRP Bandwidth	Determines the bandwidth of the used USRP RIO devices. The
	enumeration contains the following values:
	• 120 or 160 MHz
	• 40 MHz
UE Sync Mode	Selects the MS Synchronization Mode:
	Over-the-air by using synchronization signal.
	Using external trigger provided by the BS via PPS trigger port.
Frame Schedule	Determines the frame schedule to use.
RF Frequency	Selects the RF Frequency to a frequency supported by your USRP
	RIO. ¹¹
AGC Mode	Selects the AGC mode: manual or auto.
UE ID 0	Selects the MS identity, which should be from the set {0,, 11}. 12
UE ID 1	Selects the MS identity, which should be from the set {0,, 11}. 12
UE Throughput	Selects the MS throughput type of UL Throughput [Mbit/s] and DL
Selection	Throughput [Mbit/s] indicators:
	PHY Throughput: Shows the packet throughput.
	MAC Throughput: Shows the payload throughput.

 $^{^{11}\,\}text{Consider local laws if you are transmitting over-the-air.}\,\text{The USRP-29xx is not approved or licensed for transmission}$ over-the-air using an antenna.

¹² Each MS should be given a different identity otherwise both MSs that have the same identity look like one MS with respect to the BS, and they will receive the same data.

Table 29. MS – Indicators on Basic Configurations

Indicator	Description
FPGA Ready	If the VI started up successfully, it lights.
Error Occurred (see	A Boolean indicator that indicates if an error occurred during
Error tab)	initialization.
UL Throughput	Numerical display showing the UL throughput in Mbit/s for UE 0
[Mbit/s]	and UE 1.
DL Throughput	Numerical display showing the DL throughput in Mbit/s for UE 0
[Mbit/s]	and UE 1.

MS Configuration Tab

The following two tables list the controls and indicators, respectively, which are placed on the Configuration tab of **Mobile Station Host.gvi** as shown in Figure 17.

Table 30. MS – Controls on Configuration Tab

Control	Description
UE TX Delay [clock	Used to adjust the time delay manually in RF clock cycles of the
cycles]	USRP. It should be used with the UE Signal Delay figure placed on
	RRH tab of the BS front panel.
UL Synchronization	Used to select the UL transmission synchronization source if the UE
Source	Sync Mode control is over-the-air. It can be automatic or UE 0 or UE
	1.
UL Data Source	It has three options:
	Off: Data source is inactive.
	UDP: To read data from an UDP socket
	PN Data: Generate data from a PN Source.
DL Data Sink	If it is set to UDP, received frames are forwarded to the configured
	UDP address and port.
Initial UL Data UDP	This UDP port address and the subsequent one is opened for UDP
Port	packet reception for both MSs. The default UDP UL Data Port is
	50.000.
Initial DL Data UDP	This UDP port address and the subsequent one is opened for UDP
Port	packet transmission of both MSs. The default UDP DL Data Port is
	51.000.
DL Data Remote	The IP address that the UDP packets received from BS are sent to.
Address	

Table 31: MS - Indicators on Configuration Tab

Indicator	Description
Frame Schedule Table	Shows the OFDM Frame Schedule of all 12 MSs. The OFDM symbol
	types of each MS frame (140 OFDM Symbols) are presented. The
	OFDM symbol type could be Guard, Sync, DL pilot, DL data, UL pilot,
	and UL data. In addition, the modulation schemes of all MSs are
	presented, which could be QPSK, 16-QAM, 64-QAM, and 256-QAM.
	The Frame Schedule Table indicator is controlled by Frame
	Schedule control.
UL Data UDP Ports	Shows the value of UDP ports to forward traffic to the BS.
DL Data UDP Ports	Shows the value of UDP ports to forward traffic from the BS.

MS Controls and Indicators on AGC/Synchronization Tab

The following table shows the MS controls that occur on AGC/Synchronization tab as shown in Figure 28. Table 33 shows the indicators of the MS on this tab.

Table 32. MS Controls on AGC/Synchronization Tab

Control	Description
AGC Automatic Settings	Sets the required controls in the calculation of the AGC TX module if the AGC Mode control is set to automatic:
	 RX Gain of Base Station: Sets the value similar to that of BS RF receive gain in dB. TX Power of Base Station: Sets the value similar to that of BS
	RF transmit power in dBm.
	Number of Active UEs at Base Station: Selects the number of active MSs in the system.
AGC Manual Settings	Sets the required controls if the AGC Mode control is set to Manual:
	 UE 0 RX Gain: Sets the RF receive gain in dB of MS 0. UE 1 RX Gain: Sets the RF receive gain in dB of MS 1. UE 0 TX Power: Sets the RF transmit power in dBm of MS 0. UE 1 TX Power: Sets the RF transmit power in dBm of MS 1.

Table 33. MS Indicators on AGC/Synchronization Tab

Indicator	Description
DL RX AGC Status	Shows the status of the DL RX AGC using the following numerical
	indicators:

	 Coerced RX Gain UEO: The actual used analog RX RF gain either set by automatic or manual AGC Mode. Coerced RX Gain UE1: The actual used analog RX RF gain either set by automatic or manual AGC Mode. Max Symbol Power UEO: Shows the maximum power from the received OFDM symbols of UEO. Max Symbol Power UE1: Shows the maximum power from the received OFDM symbols of UE1. PSS Symbol Power UEO: Shows the power of the received PSS synchronization signal of UEO. PSS Symbol Power UE1: Shows the power of the received PSS synchronization signal of UE1.
UL TX AGC Status	 Shows the status of the UL TX AGC using the following numerical and Boolean indicators: Coerced TX Power UE 0: Indicates the coerced value that is actually used as maximum RF transmit output power for UE 0 after applying the device capabilities (range and resolution limitations) to the configured UE TX Power control. Lower Limit and Upper Limit Boolean indicators corresponding to the Coerced TX Power UE0 indicator: Show if the configured UE TX Power value is coerced to the allowed range. Coerced TX Power UE 1: Similar to that Coerced TX Power UE 0 of UEO. Lower Limit and Upper Limit Boolean indicators corresponding to the Coerced TX Power UE 1 indicator: Similar to that of UE 0.
Frame Timing Estimation [Samples]	Graphical indication showing the timing estimation of the radio frame.
Signal Detected	Graphical indication showing whether each of the UEs is able to detect the synchronization signal.
Sync Loss Counter	Counts how often the sync was lost since starting the VI.
CFO [Hz]	Graphical indication showing the carrier frequency offset (CFO) in Hz of both MSs.

Mobile Station - MIMO Application Framework Overview Instructions FPGA Ready Demonstrates MIMO Mobile Station 1. Wait for the Base Station to be ready Error Occurred (see Error tab) 2. Apply same configuration as on Base Station side. Stop **Mobile Station** Configuration AGC/Synchronization DL Information DL Advanced Information UL Information Error AGC Automatic Settings AGC Manual Setting DL RX AGC Status UL TX AGC Status ↑ 120 MHz UE Sync Mode Coerced RX Gain UE 0 RX Gain of eNodeB UE 0 RX Gain Coerced RX Gain UE 1 Coerced TX Power UE 0 Coerced TX Power UE 1 Over the air 15 dB 💌 15 dB 32,0 dB 33,5 dB 20,1 d8m 18,8 d8m Frame Schedule TX Power of eNodeB UE 1 RX Gain Max Symbol Power UE 0 Max Symbol Power UE 1 Default frame schedule (UL&DL) 15 dBm 15 dB -16,9 dBFS -16,8 dBFS RF Frequency AGC Mode Number of Active UEs at eNodeB UE 0 TX Power PSS Symbol Power UE 0 PSS Symbol Power UE 1 3,610G Hz auto 15 dBm 💌 -30,1 dBFS -28,4 dBFS 2 🛊 UE 1 TX Power 15 dBm 💂 Sync Loss Counter UE ID 1 0 0 জু 255600 -2,1 ✓ UE 0 ME 0 ✓ UE 0 UL Throughput [Mbit/s] E 255500 -MUE 1 MUE1 MUE 1 9,1 18,2 E 255400 · DL Throughput [Mbit/s] 255300 -4,6 9,1 255200 UE Throughput Selection Ē 255100 -PHY Throughput 3560 3580 3600 Time

Figure 27. Front Panel of MS (AGC/Synchronization)

MS Control and Indicators on DL Information Tab

From Figure 28, the control and indicators on the DL Information tab of MS are presented in the following table.

Table 34. MS Control and Indicators on DL Information Tab

Parameter	Description
UE 0 RX Power Spectrum	Indicates the power spectrum of the DL RX baseband signal
	received from the RF of UE 0.
UE 1 RX Power Spectrum	Indicates the power spectrum of the DL RX baseband signal
	received from the RF of UE 1.
DL Throughput UE 0	Graphical indication showing the DL throughput of UE 0 in Mbit/s.
UE 0 PHY	Numerical display showing the PHY throughput of UE 0 in Mbit/s.
UE 0 MAC	Numerical display showing the MAC throughput of UE 0 in Mbit/s.
DL Throughput UE 1	Graphical indication showing the DL throughput of UE 1 in Mbit/s.
UE 1 PHY	Numerical display showing the PHY throughput of UE 1 in Mbit/s.
UE 1 MAC	Numerical display showing the MAC throughput of UE 1 in Mbit/s.
BLER UE 0	Graphical and numerical indicator showing the block error rate of
	UE 0.
BLER UE 1	Graphical and numerical indicator showing the block error rate of
	UE 1.

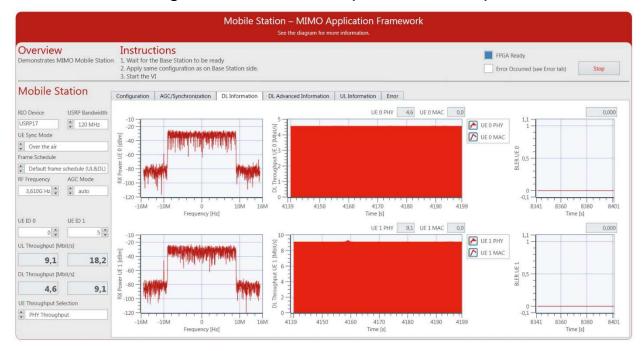


Figure 28. Front Panel of MS (DL Information Tab)

MS Indicators on DL Advanced Information Tab

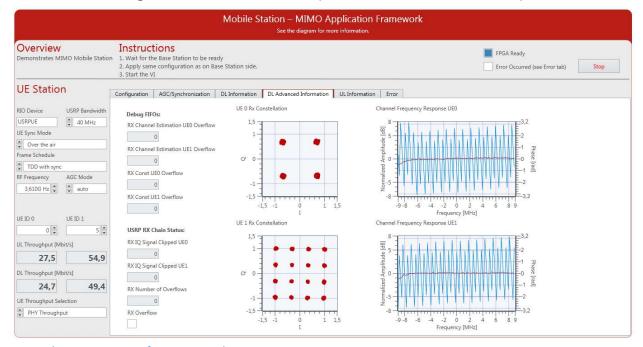

From Figure 29, the indicators on the DL Advanced Information tab of MS are presented in the following table.

Table 35. MS Indicators on DL Advanced Information Tab

Indicator	Description
Debug FIFOs	The following numerical indicators are used to show how many overflows occurred for the following target to host FIFOs:
	 RX Channel Estimation UE0 Overflow RX Channel Estimation UE1 Overflow RX Const UE0 Overflow RX Const UE1 Overflow
USRP RX Chain Status	The following numerical and Boolean indicators are used to count occurrences within RX chain status: RX IQ Signal Clipped UE0 RX IQ Signal Clipped UE1 RX Number of Overflows RX Overflow

Rx Constellation UE 0	Constellation of RX I/Q samples of UE 0 after equalization. The OFDM symbol to display is changed after each update in a round robin fashion.
Rx Constellation UE 1	Constellation of RX I/Q samples of UE 1 after equalization. The OFDM symbol to display is changed after each update in a round robin fashion.
Channel Frequency	Graphical representation of the channel amplitude and phase
Response UE 0	estimated using the pilots.
Channel Frequency	Graphical representation of the channel amplitude and phase
Response UE 1	estimated using the pilots.

Figure 29. Front Panel of MS (DL Advanced Information Tab)

MS Indicators on UL Information Tab

From Figure 30, the indicators on the UL Information tab of the MS are presented in Table 36.

Table 36. MS Indicators on UL Information Tab

Indicator	Description
IFFT Output Clipped UE 0	Indicates a numeric overflow after the IFFT of UE 0.
TX Power Spectrum UE 0	Indicates the power spectrum of the UL TX baseband signal
	transferred to the RF of UE 0.
IFFT Output Clipped UE 1	Indicates a numeric overflow after the IFFT of UE 1.
TX Power Spectrum UE 1	Indicates the power spectrum of the UL TX baseband signal
	transferred to the RF of UE 1.
UE 0 PHY and UE 0 MAC	Numerical displays showing the PHY and MAC UL throughput
	in Mbit/s for UE 0.

UL Throughput UE 0	Graphical indication showing the UL throughput in Mbit/s of UE 0.
UE 1 PHY and UE 1 MAC	Numerical displays showing the PHY and MAC UL throughput in Mbit/s for UE 1.
UL Throughput UE 1	Graphical indication showing the UL throughput in Mbit/s of UE 1.

Mobile Station - MIMO Application Framework Overview Instructions FPGA Ready Demonstrates MIMO Mobile Station .. Wait for the Base Station to be ready 2. Apply same configuration as on Base Station side. Error Occurred (see Error tab) **Mobile Station** Configuration AGC/Synchronization DL Information DL Advanced Information UL Information Error UE 0 PHY 9,1 UE 0 MAC 0,0 IFFT Output Clipped UE 0 USRP Bandwidth USRP17 120 MHz ME 0 PHY UE Sync Mode ✓ UE 0 MAC Over the air -60 -Frame Schedule -80 -Default frame schedule (UL&DL) RF Frequency AGC Mode 3,610G Hz auto 10M 4230 4220 -16M UE ID 1 IFFT Output Clipped UE 1 UE 1 PHY 18,2 UE 1 MAC 0,0 0 -20 -ME 1 PHY UL Throughput [Mbit/s] -40 -✓ UE 1 MAC 9,1 18,2 -60 -DL Throughput (Mbit/sl -80 -4,6 9,1 UE Throughput Selection PHY Throughput 10M

Figure 30. Front Panel of MS (UL Information Tab)

MS Indicators on Error Tab

Such as the BS Error tab, there are two indicators (Error and Error Report) that are used to show the error reports in the system.

Troubleshooting

Ensure that you have verified the following:

- Your hardware devices are connected correctly.
- The USRP devices are already switched on and connected to the host before the host is switched on. Otherwise the NI USRP devices may not properly recognized by the host.
- If any device such as USRP is switched off, restart the laptop or the PXI system.

You can access the software and documentation known issues list online. Refer to the MIMO Application Framework 1.0 Known Issues at ni.com/info and enter the Info Code exevw4 for an up-to-date list of known issues in MIMO Application Framework 1.0.

Related Information

- NI USRP and LabVIEW Communications System Design Suite Getting Started Guide
- IEEE Standards Association: 802.11 Wireless LANs
- 3GPP TS 36.211 (Physical channels and modulation) Release 10
- 3GPP TS 36.213 (Physical layer procedure) Release 10
- Visit ni.com/info and enter commsmanual to access the LabVIEW Communications System Design Suite Manual for information about LabVIEW concepts or objects used in this sample project.
- Use the Context Help window to learn basic information about LabVIEW objects as you move the cursor over each object. To display the Context Help window in LabVIEW, select View»Context Help.

Appendix

Cable Connection Mapping and Labeling

Equipment Labeling Rules

Table 37. Equipment Labeling Rules

Equipment	Labeling rule
USRP RIO	USRPxx
CDA-2990	OCLKxx
CPS-8910	CPSxx
PXI	PXIxx
PXI slot	slxx_pxx

Exception: OCLKMx represents OCLK Master

"sl"=slot, "p"=port

Other Labeling Rules

- All numbers should be represented as double-digit integers, that is, xx
- Labels should be short abbreviation of the equipment type
- Labels should be unique for the certain type of equipment
- Labels should represent the type of the equipment
- No dots (".") are allowed
- No spaces (" ") are allowed

Red text = REF

Blue text = PPS / TRIG

Green text = MXI

Table 38. 16-Antenna MIMO System Cable Connection Mapping

	S	ide 1			Side 2			
Cable	Equip-			Equip-		Label on	Label on	
name	ment	Port/Slot	Cable type	ment	Port/Slot	Cable End 1	Cable End 2	Description
REF1	USRP01	RefIn	RF_coax	OCLK01	10MHzOut01	OCLK01_10MHzOut01	USRP01_RefIn	Ref.Clock for USRP01
REF2	USRP02	RefIn	RF_coax	OCLK01	10MHzOut02	OCLK01_10MHzOut02	USRP02_RefIn	Ref.Clock for USRP02
REF3	USRP03	RefIn	RF_coax	OCLK01	10MHzOut03	OCLK01_10MHzOut03	USRP03_RefIn	Ref.Clock for USRP03
REF4	USRP04	RefIn	RF_coax	OCLK01	10MHzOut04	OCLK01_10MHzOut04	USRP04_RefIn	Ref.Clock for USRP04
REF5	USRP05	RefIn	RF_coax	OCLK01	10MHzOut05	OCLK01_10MHzOut05	USRP05_RefIn	Ref.Clock for USRP05
REF6	USRP06	RefIn	RF_coax	OCLK01	10MHzOut06	OCLK01_10MHzOut06	USRP06_RefIn	Ref.Clock for USRP06
REF7	USRP07	RefIn	RF_coax	OCLK01	10MHzOut07	OCLK01_10MHzOut07	USRP07_RefIn	Ref.Clock for USRP07
REF8	USRP08	RefIn	RF_coax	OCLK01	10MHzOut08	OCLK01_10MHzOut08	USRP08_RefIn	Ref.Clock for USRP08
C1REF	PXI01	sl10_CLKout	RF_coax	OCLK01	Ext10MHzInput	OCLK01_Ext10MHzInput	PXI01_sl10_CLKout	Ref.Clock for OCLK01 from PXI01
PPS1	USRP01	PPSIn	RF_coax	OCLK01	PPSout01	OCLK01_PPSout01	USRP01_PPSIn	PPS for USRP01
PPS2	USRP02	PPSIn	RF_coax	OCLK01	PPSout02	OCLK01_PPSout02	USRP02_PPSIn	PPS for USRP02
PPS3	USRP03	PPSIn	RF_coax	OCLK01	PPSout03	OCLK01_PPSout03	USRP03_PPSIn	PPS for USRP03
PPS4	USRP04	PPSIn	RF_coax	OCLK01	PPSout04	OCLK01_PPSout04	USRP04_PPSIn	PPS for USRP04
PPS5	USRP05	PPSIn	RF_coax	OCLK01	PPSout05	OCLK01_PPSout05	USRP05_PPSIn	PPS for USRP05
PPS6	USRP06	PPSIn	RF_coax	OCLK01	PPSout06	OCLK01_PPSout06	USRP06_PPSIn	PPS for USRP06
PPS7	USRP07	PPSIn	RF_coax	OCLK01	PPSout07	OCLK01_PPSout07	USRP07_PPSIn	PPS for USRP07
PPS8	USRP08	PPSIn	RF_coax	OCLK01	PPSout08	OCLK01_PPSout08	USRP08_PPSIn	PPS for USRP08
C1PPS	PXI01	sl10_PFI3	RF_coax	OCLK01	PPSin	OCLK01_PPSin	PXI01_sl10_PFI3	PPS for OCLK01 from PXI01
MTRIG	USRP01	TRIGout	RF_coax	PXI01	sl10_PFI1	PXI01_sl10_PFI1	USRP01_TRIGout	Master TRIG for PXI01 from USRP01
MXI1	USRP01	MXI01	MXI	CPS01	MXIx4_p01	CPS01_MXIx4_p01	USRP01_MXI01	MXI for USRP01
MXI2	USRP02	MXI01	MXI	CPS01	MXIx4_p02	CPS01_MXIx4_p02	USRP02_MXI01	MXI for USRP02
MXI3	USRP03	MXI01	MXI	CPS01	MXIx4_p03	CPS01_MXIx4_p03	USRP03_MXI01	MXI for USRP03
MXI4	USRP04	MXI01	MXI	CPS01	MXIx4_p04	CPS01_MXIx4_p04	USRP04_MXI01	MXI for USRP04
MXI5	USRP05	MXI01	MXI	CPS01	MXIx4_p05	CPS01_MXIx4_p05	USRP05_MXI01	MXI for USRP05
MXI6	USRP06	MXI01	MXI	CPS01	MXIx4_p06	CPS01_MXIx4_p06	USRP06_MXI01	MXI for USRP06
MXI7	USRP07	MXI01	MXI	CPS01	MXIx4_p07	CPS01_MXIx4_p07	USRP07_MXI01	MXI for USRP07
MXI8	USRP08	MXI01	MXI	CPS01	MXIx4_p08	CPS01_MXIx4_p08	USRP08_MXI01	MXI for USRP08
C1MXI	PXI01	sl02_MXI1	MXI	CPS01	MXIx8	CPS01_MXIx8	PXI01_sl02_MXI1	MXI for CPS01 from PXI01

Table 39. 32-Antenna MIMO System Cable Connection Mapping

	S	ide 1			Side 2	-		
Cable	Equip-		Cable	Equip-				
name	ment	Port/Slot	type	ment	Port/Slot	Label on Cable End 1	Label on Cable End 2	Description
REF1	USRP01	RefIn	RF_coax	OCLK01	10MHzOut 01	OCLK01_10MHzOut01	USRP01_RefIn	Ref.Clock for USRP01
REF2	USRP02	RefIn	RF_coax	OCLK01	10MHzOut02	OCLK01_10MHzOut02	USRP02_RefIn	Ref.Clock for USRP02
REF3	USRP03	RefIn	RF_coax	OCLK01	10MHzOut03	OCLK01_10MHzOut03	USRP03_RefIn	Ref.Clock for USRP03
REF4	USRP04	RefIn	RF_coax	OCLK01	10MHzOut04	OCLK01_10MHzOut04	USRP04_RefIn	Ref.Clock for USRP04
REF5	USRP05	RefIn	RF_coax	OCLK01	10MHzOut05	OCLK01_10MHzOut05	USRP05_RefIn	Ref.Clock for USRP05
REF6	USRP06	RefIn	RF_coax	OCLK01	10MHzOut06	OCLK01_10MHzOut06	USRP06_RefIn	Ref.Clock for USRP06
REF7	USRP07	RefIn	RF_coax	OCLK01	10MHzOut07	OCLK01_10MHzOut07	USRP07_RefIn	Ref.Clock for USRP07
REF8	USRP08	RefIn	RF_coax	OCLK01	10MHzOut08	OCLK01_10MHzOut08	USRP08_RefIn	Ref.Clock for USRP08
REF9	USRP09	RefIn	RF_coax	OCLK02	10MHzOut01	OCLK02_10MHzOut01	USRP09_RefIn	Ref.Clock for USRP09
REF10	USRP10	RefIn	RF_coax	OCLK02	10MHzOut02	OCLK02_10MHzOut02	USRP10_RefIn	Ref.Clock for USRP10
REF11	USRP11	RefIn	RF_coax	OCLK02	10MHzOut03	OCLK02_10MHzOut03	USRP11_RefIn	Ref.Clock for USRP11
REF12	USRP12	RefIn	RF_coax	OCLK02	10MHzOut04	OCLK02_10MHzOut04	USRP12_RefIn	Ref.Clock for USRP12
REF13	USRP13	RefIn	RF_coax	OCLK02	10MHzOut05	OCLK02_10MHzOut05	USRP13_RefIn	Ref.Clock for USRP13
REF14	USRP14	RefIn	RF_coax	OCLK02	10MHzOut06	OCLK02_10MHzOut06	USRP14_RefIn	Ref.Clock for USRP14
REF15	USRP15	RefIn	RF_coax	OCLK02	10MHzOut07	OCLK02_10MHzOut07	USRP15_RefIn	Ref.Clock for USRP15
REF16	USRP16	RefIn	RF_coax	OCLK02	10MHzOut08	OCLK02_10MHzOut08	USRP16_RefIn	Ref.Clock for USRP16
C1REF	OCLKM1	10MHzOut01	RF_coax	OCLK01	Ext10MHzInput	OCLK01_Ext10MHzInput	OCLKM1_10MHzOut01	Ref.Clock for OCLK01 from
								OCLKM1
C2REF	OCLKM1	10MHzOut02	RF_coax	OCLK02	Ext10MHzInput	OCLK02_Ext10MHzInput	OCLKM1_10MHzOut02	Ref.Clock for OCLK02 from
								OCLKM1
	PXI01	_	RF_coax		-	OCLKM1_Ext10MHzInput		Ref.Clock for OCLKM1 from PXI01
	USRP01	PPSIn	_	OCLK01	PPSout01	OCLK01_PPSout01	USRP01_PPSIn	PPS for USRP01
	USRP02		RF_coax		PPSout02	OCLK01_PPSout02	USRP02_PPSIn	PPS for USRP02
	USRP03	PPSIn	RF_coax		PPSout03	OCLK01_PPSout03	USRP03_PPSIn	PPS for USRP03
	USRP04	PPSIn		OCLK01	PPSout04	OCLK01_PPSout04	USRP04_PPSIn	PPS for USRP04
	USRP05	PPSIn	RF_coax		PPSout05	OCLK01_PPSout05	USRP05_PPSIn	PPS for USRP05
	USRP06	PPSIn	_	OCLK01	PPSout06	OCLK01_PPSout06	USRP06_PPSIn	PPS for USRP06
PPS7	USRP07	PPSIn	RF_coax	OCLK01	PPSout07	OCLK01_PPSout07	USRP07_PPSIn	PPS for USRP07

PPS8	USRP08	PPSIn	RF_coax	OCLK01	PPSout08	OCLK01_PPSout08	USRP08_PPSIn	PPS for USRP08
PPS9	USRP09	PPSIn	RF_coax	OCLK02	PPSout01	OCLK02_PPSout01	USRP09_PPSIn	PPS for USRP09
PPS10	USRP10	PPSIn	RF_coax	OCLK02	PPSout02	OCLK02_PPSout02	USRP10_PPSIn	PPS for USRP10
PPS11	USRP11	PPSIn	RF_coax	OCLK02	PPSout03	OCLK02_PPSout03	USRP11_PPSIn	PPS for USRP11
PPS12	USRP12	PPSIn	RF_coax	OCLK02	PPSout04	OCLK02_PPSout04	USRP12_PPSIn	PPS for USRP12
PPS13	USRP13	PPSIn	RF_coax	OCLK02	PPSout05	OCLK02_PPSout05	USRP13_PPSIn	PPS for USRP13
PPS14	USRP14	PPSIn	RF_coax	OCLK02	PPSout06	OCLK02_PPSout06	USRP14_PPSIn	PPS for USRP14
PPS15	USRP15	PPSIn	RF_coax	OCLK02	PPSout07	OCLK02_PPSout07	USRP15_PPSIn	PPS for USRP15
PPS16	USRP16	PPSIn	RF_coax	OCLK02	PPSout08	OCLK02_PPSout08	USRP16_PPSIn	PPS for USRP16
C1PPS	OCLKM1	PPSout01	RF_coax	OCLK01	PPSin	OCLK01_PPSin	OCLKM1_PPSout01	PPS for OCLK01 from OCLKM1
C2PPS	OCLKM1	PPSout02	RF_coax	OCLK02	PPSin	OCLK02_PPSin	OCLKM1_PPSout02	PPS for OCLK02 from OCLKM1
CMPPS	PXI01	sl10_PFI3	RF_coax	OCLKM1	PPSin	OCLKM1_PPSin	PXI01_sl10_PFI3	PPS for OCLKM1 from PXI01
MTRIG	USRP01	TRIGout	RF_coax	PXI01	sl10_PFI1	PXI01_sl10_PFI1	USRP01_TRIGout	Master TRIG for PXI01 from
								USRP01
MXI1	USRP01	MXI01	MXI	CPS01	MXIx4_p01	CPS01_MXIx4_p01	USRP01_MXI01	MXI for USRP01
MXI2	USRP02	MXI01	MXI	CPS01	MXIx4_p02	CPS01_MXIx4_p02	USRP02_MXI01	MXI for USRP02
MXI3	USRP03	MXI01	MXI	CPS01	MXIx4_p03	CPS01_MXIx4_p03	USRP03_MXI01	MXI for USRP03
MXI4	USRP04	MXI01	MXI	CPS01	MXIx4_p04	CPS01_MXIx4_p04	USRP04_MXI01	MXI for USRP04
MXI5	USRP05	MXI01	MXI	CPS01	MXIx4_p05	CPS01_MXIx4_p05	USRP05_MXI01	MXI for USRP05
MXI6	USRP06	MXI01	MXI	CPS01	MXIx4_p06	CPS01_MXIx4_p06	USRP06_MXI01	MXI for USRP06
MXI7	USRP07	MXI01	MXI	CPS01	MXIx4_p07	CPS01_MXIx4_p07	USRP07_MXI01	MXI for USRP07
MXI8	USRP08	MXI01	MXI	CPS01	MXIx4_p08	CPS01_MXIx4_p08	USRP08_MXI01	MXI for USRP08
MXI9	USRP09	MXI01	MXI	CPS02	MXIx4_p01	CPS02_MXIx4_p01	USRP09_MXI01	MXI for USRP09
MXI10	USRP10	MXI01	MXI	CPS02	MXIx4_p02	CPS02_MXIx4_p02	USRP10_MXI01	MXI for USRP10
MXI11	USRP11	MXI01	MXI	CPS02	MXIx4_p03	CPS02_MXIx4_p03	USRP11_MXI01	MXI for USRP11
MXI12	USRP12	MXI01	MXI	CPS02	MXIx4_p04	CPS02_MXIx4_p04	USRP12_MXI01	MXI for USRP12
MXI13	USRP13	MXI01	MXI	CPS02	MXIx4_p05	CPS02_MXIx4_p05	USRP13_MXI01	MXI for USRP13
	USRP14	MXI01	MXI	CPS02	MXIx4_p06	CPS02_MXIx4_p06	USRP14_MXI01	MXI for USRP14
MXI15	USRP15	MXI01	MXI	CPS02	MXIx4_p07	CPS02_MXIx4_p07	USRP15_MXI01	MXI for USRP15
MXI16	USRP16	MXI01	MXI	CPS02	MXIx4_p08	CPS02_MXIx4_p08	USRP16_MXI01	MXI for USRP16
C1MXI	PXI01	sl02_MXI1	MXI	CPS01	MXIx8	CPS01_MXIx8	PXI01_sl02_MXI1	MXI for CPS01 from PXI01
C2MXI	PXI01	sl18_MXI1	MXI	CPS02	MXIx8	CPS02_MXIx8	PXI01_sl18_MXI1	MXI for CPS02 from PXI01

Table 40. 64-Antenna MIMO System Cable Connection Mapping

	S	ide 1			Side 2			
Cable name	Equip- ment	Port/Slot	Cable type	Equip- ment	Port/Slot	Label on Cable End 1	Label on Cable End 2	Description
REF1	USRP01	RefIn	RF_coax	OCLK01	10MHzOut01	OCLK01_10MHzOut01	USRP01_RefIn	Ref.Clock for USRP01
REF2	USRP02	RefIn	RF_coax	OCLK01	10MHzOut02	OCLK01_10MHzOut02	USRP02_RefIn	Ref.Clock for USRP02
REF3	USRP03	RefIn	RF_coax	OCLK01	10MHzOut03	OCLK01_10MHzOut03	USRP03_RefIn	Ref.Clock for USRP03
REF4	USRP04	RefIn	RF_coax	OCLK01	10MHzOut04	OCLK01_10MHzOut04	USRP04_RefIn	Ref.Clock for USRP04
REF5	USRP05	RefIn	RF_coax	OCLK01	10MHzOut05	OCLK01_10MHzOut05	USRP05_RefIn	Ref.Clock for USRP05
REF6	USRP06	RefIn	RF_coax	OCLK01	10MHzOut06	OCLK01_10MHzOut06	USRP06_RefIn	Ref.Clock for USRP06
REF7	USRP07	RefIn	RF_coax	OCLK01	10MHzOut07	OCLK01_10MHzOut07	USRP07_RefIn	Ref.Clock for USRP07
REF8	USRP08	RefIn	RF_coax	OCLK01	10MHzOut08	OCLK01_10MHzOut08	USRP08_RefIn	Ref.Clock for USRP08
REF9	USRP09	RefIn	RF_coax	OCLK02	10MHzOut01	OCLK02_10MHzOut01	USRP09_RefIn	Ref.Clock for USRP09
REF10	USRP10	RefIn	RF_coax	OCLK02	10MHzOut02	OCLK02_10MHzOut02	USRP10_RefIn	Ref.Clock for USRP10
REF11	USRP11	RefIn	RF_coax	OCLK02	10MHzOut03	OCLK02_10MHzOut03	USRP11_RefIn	Ref.Clock for USRP11
REF12	USRP12	RefIn	RF_coax	OCLK02	10MHzOut04	OCLK02_10MHzOut04	USRP12_RefIn	Ref.Clock for USRP12
REF13	USRP13	RefIn	RF_coax	OCLK02	10MHzOut05	OCLK02_10MHzOut05	USRP13_RefIn	Ref.Clock for USRP13
REF14	USRP14	RefIn	RF_coax	OCLK02	10MHzOut06	OCLK02_10MHzOut06	USRP14_RefIn	Ref.Clock for USRP14
REF15	USRP15	RefIn	RF_coax	OCLK02	10MHzOut07	OCLK02_10MHzOut07	USRP15_RefIn	Ref.Clock for USRP15
REF16	USRP16	RefIn	RF_coax	OCLK02	10MHzOut08	OCLK02_10MHzOut08	USRP16_RefIn	Ref.Clock for USRP16
REF17	USRP17	RefIn	RF_coax	OCLK03	10MHzOut01	OCLK03_10MHzOut01	USRP17_RefIn	Ref.Clock for USRP17
REF18	USRP18	RefIn	RF_coax	OCLK03	10MHzOut02	OCLK03_10MHzOut02	USRP18_RefIn	Ref.Clock for USRP18
REF19	USRP19	RefIn	RF_coax	OCLK03	10MHzOut03	OCLK03_10MHzOut03	USRP19_RefIn	Ref.Clock for USRP19
REF20	USRP20	RefIn	RF_coax	OCLK03	10MHzOut04	OCLK03_10MHzOut04	USRP20_RefIn	Ref.Clock for USRP20
REF21	USRP21	RefIn	RF_coax	OCLK03	10MHzOut05	OCLK03_10MHzOut05	USRP21_RefIn	Ref.Clock for USRP21
REF22	USRP22	RefIn	RF_coax	OCLK03	10MHzOut06	OCLK03_10MHzOut06	USRP22_RefIn	Ref.Clock for USRP22
REF23	USRP23	RefIn	RF_coax	OCLK03	10MHzOut07	OCLK03_10MHzOut07	USRP23_RefIn	Ref.Clock for USRP23
REF24	USRP24	RefIn	RF_coax	OCLK03	10MHzOut08	OCLK03_10MHzOut08	USRP24_RefIn	Ref.Clock for USRP24
REF25	USRP25	RefIn	RF_coax	OCLK04	10MHzOut01	OCLK04_10MHzOut01	USRP25_RefIn	Ref.Clock for USRP25
REF26	USRP26	RefIn	RF_coax	OCLK04	10MHzOut02	OCLK04_10MHzOut02	USRP26_RefIn	Ref.Clock for USRP26

REF27	USRP27	RefIn	RF_coax	OCLK04	10MHzOut03	OCLK04_10MHzOut03	USRP27_RefIn	Ref.Clock for USRP27
REF28	USRP28	RefIn	RF_coax	OCLK04	10MHzOut04	OCLK04_10MHzOut04	USRP28_RefIn	Ref.Clock for USRP28
REF29	USRP29	RefIn	RF_coax	OCLK04	10MHzOut05	OCLK04_10MHzOut05	USRP29_RefIn	Ref.Clock for USRP29
REF30	USRP30	RefIn	RF_coax	OCLK04	10MHzOut06	OCLK04_10MHzOut06	USRP30_RefIn	Ref.Clock for USRP30
REF31	USRP31	RefIn	RF_coax	OCLK04	10MHzOut07	OCLK04_10MHzOut07	USRP31_RefIn	Ref.Clock for USRP31
REF32	USRP32	RefIn	RF_coax	OCLK04	10MHzOut08	OCLK04_10MHzOut08	USRP32_RefIn	Ref.Clock for USRP32
C1REF	OCLKM1	10MHzOut01	RF_coax	OCLK01	Ext10MHzInput	OCLK01_Ext10MHzInput	OCLKM1_10MHzOut01	Ref.Clock for OCLK01 from OCLKM1
C2REF	OCLKM1	10MHzOut02	RF_coax	OCLK02	Ext10MHzInput	OCLK02_Ext10MHzInput	OCLKM1_10MHzOut02	Ref.Clock for OCLK02 from OCLKM1
C3REF	OCLKM1	10MHzOut03	RF_coax	OCLK03	Ext10MHzInput	OCLK03_Ext10MHzInput	OCLKM1_10MHzOut03	Ref.Clock for OCLK03 from OCLKM1
C4REF	OCLKM1	10MHzOut04	RF_coax	OCLK04	Ext10MHzInput	OCLK04_Ext10MHzInput	OCLKM1_10MHzOut04	Ref.Clock for OCLK04 from OCLKM1
CMREF	PXI01	sl10_CLKout	RF_coax	OCLKM1	Ext10MHzInput	OCLKM1_Ext10MHzInput	PXI01_sl10_CLKout	Ref.Clock for OCLKM1 from PXI01
PPS1	USRP01	PPSIn	RF_coax	OCLK01	PPSout01	OCLK01_PPSout01	USRP01_PPSIn	PPS for USRP01
PPS2	USRP02	PPSIn	RF_coax	OCLK01	PPSout02	OCLK01_PPSout02	USRP02_PPSIn	PPS for USRP02
PPS3	USRP03	PPSIn	RF_coax	OCLK01	PPSout03	OCLK01_PPSout03	USRP03_PPSIn	PPS for USRP03
PPS4	USRP04	PPSIn	RF_coax	OCLK01	PPSout04	OCLK01_PPSout04	USRP04_PPSIn	PPS for USRP04
PPS5	USRP05	PPSIn	RF_coax	OCLK01	PPSout05	OCLK01_PPSout05	USRP05_PPSIn	PPS for USRP05
PPS6	USRP06	PPSIn	RF_coax	OCLK01	PPSout06	OCLK01_PPSout06	USRP06_PPSIn	PPS for USRP06
PPS7	USRP07	PPSIn	RF_coax	OCLK01	PPSout07	OCLK01_PPSout07	USRP07_PPSIn	PPS for USRP07
PPS8	USRP08	PPSIn	RF_coax	OCLK01	PPSout08	OCLK01_PPSout08	USRP08_PPSIn	PPS for USRP08
PPS9	USRP09	PPSIn	RF_coax	OCLK02	PPSout01	OCLK02_PPSout01	USRP09_PPSIn	PPS for USRP09
PPS10	USRP10	PPSIn	RF_coax	OCLK02	PPSout02	OCLK02_PPSout02	USRP10_PPSIn	PPS for USRP10
PPS11	USRP11	PPSIn	RF_coax	OCLK02	PPSout03	OCLK02_PPSout03	USRP11_PPSIn	PPS for USRP11
PPS12	USRP12	PPSIn	RF_coax	OCLK02	PPSout04	OCLK02_PPSout04	USRP12_PPSIn	PPS for USRP12
PPS13	USRP13	PPSIn	RF_coax	OCLK02	PPSout05	OCLK02_PPSout05	USRP13_PPSIn	PPS for USRP13
PPS14	USRP14	PPSIn	RF_coax	OCLK02	PPSout06	OCLK02_PPSout06	USRP14_PPSIn	PPS for USRP14
PPS15	USRP15	PPSIn	RF_coax	OCLK02	PPSout07	OCLK02_PPSout07	USRP15_PPSIn	PPS for USRP15
PPS16	USRP16	PPSIn	RF_coax	OCLK02	PPSout08	OCLK02_PPSout08	USRP16_PPSIn	PPS for USRP16

PPS17	USRP17	PPSIn	RF_coax	OCLK03	PPSout01	OCLK03_PPSout01	USRP17_PPSIn	PPS for USRP17
PPS18	USRP18	PPSIn	RF_coax	OCLK03	PPSout02	OCLK03_PPSout02	USRP18_PPSIn	PPS for USRP18
PPS19	USRP19	PPSIn	RF_coax	OCLK03	PPSout03	OCLK03_PPSout03	USRP19_PPSIn	PPS for USRP19
PPS20	USRP20	PPSIn	RF_coax	OCLK03	PPSout04	OCLK03_PPSout04	USRP20_PPSIn	PPS for USRP20
PPS21	USRP21	PPSIn	RF_coax	OCLK03	PPSout05	OCLK03_PPSout05	USRP21_PPSIn	PPS for USRP21
PPS22	USRP22	PPSIn	RF_coax	OCLK03	PPSout06	OCLK03_PPSout06	USRP22_PPSIn	PPS for USRP22
PPS23	USRP23	PPSIn	RF_coax	OCLK03	PPSout07	OCLK03_PPSout07	USRP23_PPSIn	PPS for USRP23
PPS24	USRP24	PPSIn	RF_coax	OCLK03	PPSout08	OCLK03_PPSout08	USRP24_PPSIn	PPS for USRP24
PPS25	USRP25	PPSIn	RF_coax	OCLK04	PPSout01	OCLK04_PPSout01	USRP25_PPSIn	PPS for USRP25
PPS26	USRP26	PPSIn	RF_coax	OCLK04	PPSout02	OCLK04_PPSout02	USRP26_PPSIn	PPS for USRP26
PPS27	USRP27	PPSIn	RF_coax	OCLK04	PPSout03	OCLK04_PPSout03	USRP27_PPSIn	PPS for USRP27
PPS28	USRP28	PPSIn	RF_coax	OCLK04	PPSout04	OCLK04_PPSout04	USRP28_PPSIn	PPS for USRP28
PPS29	USRP29	PPSIn	RF_coax	OCLK04	PPSout05	OCLK04_PPSout05	USRP29_PPSIn	PPS for USRP29
PPS30	USRP30	PPSIn	RF_coax	OCLK04	PPSout06	OCLK04_PPSout06	USRP30_PPSIn	PPS for USRP30
PPS31	USRP31	PPSIn	RF_coax	OCLK04	PPSout07	OCLK04_PPSout07	USRP31_PPSIn	PPS for USRP31
PPS32	USRP32	PPSIn	RF_coax	OCLK04	PPSout08	OCLK04_PPSout08	USRP32_PPSIn	PPS for USRP32
C1PPS	OCLKM1	PPSout01	RF_coax	OCLK01	PPSin	OCLK01_PPSin	OCLKM1_PPSout01	PPS for OCLK01 from OCLKM1
C2PPS	OCLKM1	PPSout02	RF_coax	OCLK02	PPSin	OCLK02_PPSin	OCLKM1_PPSout02	PPS for OCLK02 from OCLKM1
C3PPS	OCLKM1	PPSout03	RF_coax	OCLK03	PPSin	OCLK03_PPSin	OCLKM1_PPSout03	PPS for OCLK03 from OCLKM1
C4PPS	OCLKM1	PPSout04	RF_coax	OCLK04	PPSin	OCLK04_PPSin	OCLKM1_PPSout04	PPS for OCLK04 from OCLKM1
CMPPS	PXI01	sl10_PFI3	RF_coax	OCLKM1	PPSin	OCLKM1_PPSin	PXI01_sl10_PFI3	PPS for OCLKM1 from PXI01
MTRIG	USRP01	TRIGout	RF_coax	PXI01	sl10_PFI1	PXI01_sl10_PFI1	USRP01_TRIGout	Master TRIG for PXI01 from USRP01
MXI1	USRP01	MXI01	MXI	CPS01	MXIx4_p01	CPS01_MXIx4_p01	USRP01_MXI01	MXI for USRP01
MXI2	USRP02	MXI01	MXI	CPS01	MXIx4_p02	CPS01_MXIx4_p02	USRP02_MXI01	MXI for USRP02
MXI3	USRP03	MXI01	MXI	CPS01	MXIx4_p03	CPS01_MXIx4_p03	USRP03_MXI01	MXI for USRP03
MXI4	USRP04	MXI01	MXI	CPS01	MXIx4_p04	CPS01_MXIx4_p04	USRP04_MXI01	MXI for USRP04
MXI5	USRP05	MXI01	MXI	CPS01	MXIx4_p05	CPS01_MXIx4_p05	USRP05_MXI01	MXI for USRP05
MXI6	USRP06	MXI01	MXI	CPS01	MXIx4_p06	CPS01_MXIx4_p06	USRP06_MXI01	MXI for USRP06
MXI7	USRP07	MXI01	MXI	CPS01	MXIx4_p07	CPS01_MXIx4_p07	USRP07_MXI01	MXI for USRP07
MXI8	USRP08	MXI01	MXI	CPS01	MXIx4_p08	CPS01_MXIx4_p08	USRP08_MXI01	MXI for USRP08
MXI9	USRP09	MXI01	MXI	CPS02	MXIx4_p01	CPS02_MXIx4_p01	USRP09_MXI01	MXI for USRP09

MXI10	USRP10	MXI01	MXI	CPS02	MXIx4_p02	CPS02_MXIx4_p02	USRP10_MXI01	MXI for USRP10
MXI11	USRP11	MXI01	MXI	CPS02	MXIx4_p03	CPS02_MXIx4_p03	USRP11_MXI01	MXI for USRP11
MXI12	USRP12	MXI01	MXI	CPS02	MXIx4_p04	CPS02_MXIx4_p04	USRP12_MXI01	MXI for USRP12
MXI13	USRP13	MXI01	MXI	CPS02	MXIx4_p05	CPS02_MXIx4_p05	USRP13_MXI01	MXI for USRP13
MXI14	USRP14	MXI01	MXI	CPS02	MXIx4_p06	CPS02_MXIx4_p06	USRP14_MXI01	MXI for USRP14
MXI15	USRP15	MXI01	MXI	CPS02	MXIx4_p07	CPS02_MXIx4_p07	USRP15_MXI01	MXI for USRP15
MXI16	USRP16	MXI01	MXI	CPS02	MXIx4_p08	CPS02_MXIx4_p08	USRP16_MXI01	MXI for USRP16
MXI17	USRP17	MXI01	MXI	CPS03	MXIx4_p01	CPS03_MXIx4_p01	USRP17_MXI01	MXI for USRP17
MXI18	USRP18	MXI01	MXI	CPS03	MXIx4_p02	CPS03_MXIx4_p02	USRP18_MXI01	MXI for USRP18
MXI19	USRP19	MXI01	MXI	CPS03	MXIx4_p03	CPS03_MXIx4_p03	USRP19_MXI01	MXI for USRP19
MXI20	USRP20	MXI01	MXI	CPS03	MXIx4_p04	CPS03_MXIx4_p04	USRP20_MXI01	MXI for USRP20
MXI21	USRP21	MXI01	MXI	CPS03	MXIx4_p05	CPS03_MXIx4_p05	USRP21_MXI01	MXI for USRP21
MXI22	USRP22	MXI01	MXI	CPS03	MXIx4_p06	CPS03_MXIx4_p06	USRP22_MXI01	MXI for USRP22
MXI23	USRP23	MXI01	MXI	CPS03	MXIx4_p07	CPS03_MXIx4_p07	USRP23_MXI01	MXI for USRP23
MXI24	USRP24	MXI01	MXI	CPS03	MXIx4_p08	CPS03_MXIx4_p08	USRP24_MXI01	MXI for USRP24
MXI25	USRP25	MXI01	MXI	CPS04	MXIx4_p01	CPS04_MXIx4_p01	USRP25_MXI01	MXI for USRP25
MXI26	USRP26	MXI01	MXI	CPS04	MXIx4_p02	CPS04_MXIx4_p02	USRP26_MXI01	MXI for USRP26
MXI27	USRP27	MXI01	MXI	CPS04	MXIx4_p03	CPS04_MXIx4_p03	USRP27_MXI01	MXI for USRP27
MXI28	USRP28	MXI01	MXI	CPS04	MXIx4_p04	CPS04_MXIx4_p04	USRP28_MXI01	MXI for USRP28
MXI29	USRP29	MXI01	MXI	CPS04	MXIx4_p05	CPS04_MXIx4_p05	USRP29_MXI01	MXI for USRP29
MXI30	USRP30	MXI01	MXI	CPS04	MXIx4_p06	CPS04_MXIx4_p06	USRP30_MXI01	MXI for USRP30
MXI31	USRP31	MXI01	MXI	CPS04	MXIx4_p07	CPS04_MXIx4_p07	USRP31_MXI01	MXI for USRP31
MXI32	USRP32	MXI01	MXI	CPS04	MXIx4_p08	CPS04_MXIx4_p08	USRP32_MXI01	MXI for USRP32
C1MXI	PXI01	sl02_MXI1	MXI	CPS01	MXIx8	CPS01_MXIx8	PXI01_sl02_MXI1	MXI for CPS01 from PXI01
C2MXI	PXI01	sl03_MXI1	MXI	CPS02	MXIx8	CPS02_MXIx8	PXI01_sl03_MXI1	MXI for CPS02 from PXI01
C3MXI	PXI01	sl17_MXI1	MXI	CPS03	MXIx8	CPS03_MXIx8	PXI01_sl17_MXI1	MXI for CPS03 from PXI01
C4MXI	PXI01	sl18_MXI1	MXI	CPS04	MXIx8	CPS04_MXIx8	PXI01_sl18_MXI1	MXI for CPS04 from PXI01

Table 41. 128-Antenna MIMO System Cable Connection Mapping

Cable		Side 1		S	ide 2			
name	Equipment	Port/Slot	Cable type	Equipment	Port/Slot	Label on Cable End 1	Label on Cable End 2	Description
REF1	USRP01	RefIn	RF_coax	OCLK01	10MHzOut01	OCLK01_10MHzOut01	USRP01_RefIn	Ref.Clock for USRP01
REF2	USRP02	RefIn	RF_coax	OCLK01	10MHzOut02	OCLK01_10MHzOut02	USRP02_RefIn	Ref.Clock for USRP02
REF3	USRP03	RefIn	RF_coax	OCLK01	10MHzOut03	OCLK01_10MHzOut03	USRP03_RefIn	Ref.Clock for USRP03
REF4	USRP04	RefIn	RF_coax	OCLK01	10MHzOut04	OCLK01_10MHzOut04	USRP04_RefIn	Ref.Clock for USRP04
REF5	USRP05	RefIn	RF_coax	OCLK01	10MHzOut05	OCLK01_10MHzOut05	USRP05_RefIn	Ref.Clock for USRP05
REF6	USRP06	RefIn	RF_coax	OCLK01	10MHzOut06	OCLK01_10MHzOut06	USRP06_RefIn	Ref.Clock for USRP06
REF7	USRP07	RefIn	RF_coax	OCLK01	10MHzOut07	OCLK01_10MHzOut07	USRP07_RefIn	Ref.Clock for USRP07
REF8	USRP08	RefIn	RF_coax	OCLK01	10MHzOut08	OCLK01_10MHzOut08	USRP08_RefIn	Ref.Clock for USRP08
REF9	USRP09	RefIn	RF_coax	OCLK02	10MHzOut01	OCLK02_10MHzOut01	USRP09_RefIn	Ref.Clock for USRP09
REF10	USRP10	RefIn	RF_coax	OCLK02	10MHzOut02	OCLK02_10MHzOut02	USRP10_RefIn	Ref.Clock for USRP10
REF11	USRP11	RefIn	RF_coax	OCLK02	10MHzOut03	OCLK02_10MHzOut03	USRP11_RefIn	Ref.Clock for USRP11
REF12	USRP12	RefIn	RF_coax	OCLK02	10MHzOut04	OCLK02_10MHzOut04	USRP12_RefIn	Ref.Clock for USRP12
REF13	USRP13	RefIn	RF_coax	OCLK02	10MHzOut05	OCLK02_10MHzOut05	USRP13_RefIn	Ref.Clock for USRP13
REF14	USRP14	RefIn	RF_coax	OCLK02	10MHzOut06	OCLK02_10MHzOut06	USRP14_RefIn	Ref.Clock for USRP14
REF15	USRP15	RefIn	RF_coax	OCLK02	10MHzOut07	OCLK02_10MHzOut07	USRP15_RefIn	Ref.Clock for USRP15
REF16	USRP16	RefIn	RF_coax	OCLK02	10MHzOut08	OCLK02_10MHzOut08	USRP16_RefIn	Ref.Clock for USRP16
REF17	USRP17	RefIn	RF_coax	OCLK03	10MHzOut01	OCLK03_10MHzOut01	USRP17_RefIn	Ref.Clock for USRP17
REF18	USRP18	RefIn	RF_coax	OCLK03	10MHzOut02	OCLK03_10MHzOut02	USRP18_RefIn	Ref.Clock for USRP18
REF19	USRP19	RefIn	RF_coax	OCLK03	10MHzOut03	OCLK03_10MHzOut03	USRP19_RefIn	Ref.Clock for USRP19
REF20	USRP20	RefIn	RF_coax	OCLK03	10MHzOut04	OCLK03_10MHzOut04	USRP20_RefIn	Ref.Clock for USRP20
REF21	USRP21	RefIn	RF_coax	OCLK03	10MHzOut05	OCLK03_10MHzOut05	USRP21_RefIn	Ref.Clock for USRP21
REF22	USRP22	RefIn	RF_coax	OCLK03	10MHzOut06	OCLK03_10MHzOut06	USRP22_RefIn	Ref.Clock for USRP22
REF23	USRP23	RefIn	RF_coax	OCLK03	10MHzOut07	OCLK03_10MHzOut07	USRP23_RefIn	Ref.Clock for USRP23
REF24	USRP24	RefIn	RF_coax	OCLK03	10MHzOut08	OCLK03_10MHzOut08	USRP24_RefIn	Ref.Clock for USRP24
REF25	USRP25	RefIn	RF_coax	OCLK04	10MHzOut01	OCLK04_10MHzOut01	USRP25_RefIn	Ref.Clock for USRP25
REF26	USRP26	RefIn	RF_coax	OCLK04	10MHzOut02	OCLK04_10MHzOut02	USRP26_RefIn	Ref.Clock for USRP26
REF27	USRP27	RefIn	RF_coax	OCLK04	10MHzOut03	OCLK04_10MHzOut03	USRP27_RefIn	Ref.Clock for USRP27
REF28	USRP28	RefIn	RF_coax	OCLK04	10MHzOut04	OCLK04_10MHzOut04	USRP28_RefIn	Ref.Clock for USRP28

REF30 USRP30 Refin RF_coax OCLK04 10MHzOut06 OCLK04_10MHzOut06 USRP31_Refin Ref.Clock for IR. REF31 USRP31 Refin RF_coax OCLK04 10MHzOut07 OCLK04_10MHzOut08 USRP31_Refin Ref.Clock for IN. REF32 USRP33 Refin RF_coax OCLK05 10MHzOut03 OCLK06_10MHzOut02 USRP33_Refin Ref.Clock for IN. REF34 USRP34 Refin RF_coax OCLK05 10MHzOut02 OCLK05_10MHzOut02 USRP34_Refin Ref.Clock for IN. REF35 USRP34 Refin RF_coax OCLK05 10MHzOut03 OCLK05_10MHzOut03 USRP35_Refin Ref.Clock for IN. REF36 USRP35 Refin RF_coax OCLK05 10MHzOut04 OCLK05_10MHzOut04 USRP36_Refin Ref.Clock for IN. REF37 USRP37 Refin RF_coax OCLK05 10MHzOut04 OCLK05_10MHzOut04 USRP37_Refin Ref.Clock for IN. REF38 USRP38 Refin RF_coax OCLK05 10MHzOut07 OCLK05_10MHzOu	JSRP29
REF32 USRP32 Refin RF_coax OCLK04 10MHzOut08 OCLK04_10MHzOut01 USRP32_Refin Ref.Clock for IREF33 REF33 USRP33 Refin RF_coax OCLK05 10MHzOut01 OCLK05_10MHzOut01 USRP33_Refin Ref.Clock for IREF36 USRP34_Refin Ref.Clock for IREF36 USRP35_Refin Ref.Clock for IREF36 USRP35_Refin Ref.Clock for IREF36 USRP35_Refin Ref.Clock for IREF36 USRP36_Refin Ref.Clock for IREF36 USRP36_Refin Ref.Clock for IREF37 USRP37_Refin Ref.Clock for IREF37 USRP37_Refin Ref.Clock for IREF37 USRP37_Refin Ref.Clock for IREF38 USRP38_Refin Ref.Clock for IREF38 USRP38_Refin Ref.Clock for IREF38 USRP38_Refin Ref.Clock for IREF38 USRP38_Refin Ref.Clock for IREF39 USRP38_Refin Ref.Clock for IREF39 USRP38_Refin Ref.Clock for IREF39 USRP38_Refin Ref.Clock for IREF38 USRP38_R	JSRP30
REF33 USRP33 Refin RF_coax OCLK05 10MHzOut01 OCLK05_10MHzOut01 USRP33_Refin Ref.Clock for IREF34 REF34 USRP34 Refin RF_coax OCLK05 10MHzOut03 OCLK05_10MHzOut03 USRP34_Refin Ref.Clock for IREF35 REF35 USRP36 Refin RF_coax OCLK05 10MHzOut04 OCLK05_10MHzOut04 USRP36_Refin Ref.Clock for IREF36 REF37 USRP37 Refin RF_coax OCLK05 10MHzOut05 OCLK05_10MHzOut04 USRP36_Refin Ref.Clock for IREF38 USRP37 Refin RF_coax OCLK05 10MHzOut05 OCLK05_10MHzOut04 USRP36_Refin Ref.Clock for IREF38 USRP38 Refin RF_coax OCLK05 10MHzOut05 OCLK05_10MHzOut04 USRP38_Refin Ref.Clock for IREF38 USRP39 Refin RF_coax OCLK05 10MHzOut05 OCLK05_10MHzOut04 USRP38_Refin Ref.Clock for IREF38 USRP41 Refin RF_coax OCLK06 10MHzOut08 OCLK06_10MHzOut00 USRP48_Refin Ref.Clock for IREF38	JSRP31
REF34 USRP34 Refin RF_coax OCLK05 10MHzOut02 OCLK05_10MHzOut02 USRP34_Refin Ref.Clock for Interest REF35 USRP35 Refin RF_coax OCLK05 10MHzOut03 OCLK05_10MHzOut03 USRP35_Refin Ref.Clock for Interest REF36 USRP36 Refin RF_coax OCLK05 10MHzOut05 OCLK05_10MHzOut04 USRP36_Refin Ref.Clock for Interest REF37 USRP37 Refin RF_coax OCLK05 10MHzOut05 OCLK05_10MHzOut05 USRP37_Refin Ref.Clock for Interest REF38 USRP38 Refin RF_coax OCLK05 10MHzOut06 OCLK05_10MHzOut07 USRP38_Refin Ref.Clock for Interest REF49 USRP39 Refin RF_coax OCLK05 10MHzOut08 OCLK05_10MHzOut07 USRP38_Refin Ref.Clock for Interest REF41 USRP40 Refin RF_coax OCLK06 10MHzOut01 OCLK06_10MHzOut08 USRP41_Refin Ref.Clock for Interest REF42 USRP42 Refin RF_coax OCLK06 10MHzOu	JSRP32
REF35 USRP35 Refin RF_coax OCLK05 10MHzOut03 OCLK05_10MHzOut04 USRP35_Refin Ref.Clock for	JSRP33
REF36 USRP36 Refin RF_coax OCLK05 10MHzOut04 OCLK05_10MHzOut04 USRP36_Refin Ref.Clock for IREF37 REF37 USRP37 Refin RF_coax OCLK05 10MHzOut05 OCLK05_10MHzOut05 USRP37_Refin Ref.Clock for IREF.S REF38 USRP38 Refin RF_coax OCLK05 10MHzOut06 OCLK05_10MHzOut07 USRP38_Refin Ref.Clock for IREF.S REF39 USRP39 Refin RF_coax OCLK05 10MHzOut07 OCLK05_10MHzOut07 USRP39_Refin Ref.Clock for IREF.S REF40 USRP40 Refin RF_coax OCLK06 10MHzOut08 OCLK06_10MHzOut08 USRP40_Refin Ref.Clock for IREF.S REF41 USRP41 Refin RF_coax OCLK06 10MHzOut02 OCLK06_10MHzOut01 USRP41_Refin Ref.Clock for IREF.S REF43 USRP41 Refin RF_coax OCLK06 10MHzOut03 OCLK06_10MHzOut03 USRP42_Refin Ref.Clock for IREF.S REF44 USRP43 Refin RF_coax OCLK06 10MHzOut03	JSRP34
REF37 USRP37 Refin RF_coax OCLK05 10MHzOut05 OCLK05_10MHzOut05 USRP37_Refin Ref.Clock for Interest REF38 USRP38 Refin RF_coax OCLK05 10MHzOut06 OCLK05_10MHzOut06 USRP38_Refin Ref.Clock for Interest REF39 USRP39 Refin RF_coax OCLK05 10MHzOut07 OCLK05_10MHzOut07 USRP39_Refin Ref.Clock for Interest REF40 USRP40 Refin RF_coax OCLK05 10MHzOut08 OCLK05_10MHzOut08 USRP40_Refin Ref.Clock for Interest REF41 USRP40 Refin RF_coax OCLK06 10MHzOut01 OCLK06_10MHzOut01 USRP41_Refin Ref.Clock for Interest REF42 USRP42 Refin RF_coax OCLK06 10MHzOut02 OCLK06_10MHzOut02 USRP42_Refin Ref.Clock for Interest REF43 USRP43 Refin RF_coax OCLK06 10MHzOut03 OCLK06_10MHzOut03 USRP43_Refin Ref.Clock for Interest REF44 USRP44 Refin RF_coax OCLK06 10MHzOu	JSRP35
REF38 USRP38 Refin RF_coax OCLK05 10MHzOut06 OCLK05_10MHzOut06 USRP38_Refin Ref.Clock for Inverse of the cook o	JSRP36
REF39 USRP39 Refin RF_coax OCLK05 10MHzOut07 OCLK05_10MHzOut07 USRP39_Refin Ref.Clock for Inversional Ref.Clock for Inversional Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref.	JSRP37
REF40 USRP40 Refin RF_coax OCLK05 10MHzOut08 OCLK05_10MHzOut08 USRP40_Refin Ref.Clock for USRP41 Refin RF_coax OCLK06 10MHzOut01 OCLK06_10MHzOut01 USRP41_Refin Ref.Clock for USRP42_Refin Ref.Clock for USRP42_Refin Ref.Clock for USRP43_Refin Ref.Clock for USRP44_Refin Ref.Clock for USRP43_Refin Ref.Clock for USRP43_Refin Ref.Clock for USRP44_Refin Ref.Clock for USRP44_Ref	JSRP38
REF41 USRP41 Refin RF_coax OCLK06 10MHzOut01 OCLK06_10MHzOut01 USRP41_Refin Ref.Clock for Inverse. REF42 USRP42 Refin RF_coax OCLK06 10MHzOut02 OCLK06_10MHzOut03 USRP42_Refin Ref.Clock for Inverse. REF43 USRP43 Refin RF_coax OCLK06 10MHzOut03 OCLK06_10MHzOut03 USRP43_Refin Ref.Clock for Inverse. REF44 USRP44 Refln RF_coax OCLK06 10MHzOut04 OCLK06_10MHzOut04 USRP44_Refin Ref.Clock for Inverse. REF45 USRP45 Refin RF_coax OCLK06 10MHzOut05 OCLK06_10MHzOut05 USRP45_Refin Ref.Clock for Inverse. REF46 USRP46 Refin RF_coax OCLK06 10MHzOut06 OCLK06_10MHzOut06 USRP46_Refin Ref.Clock for Inverse. REF47 USRP47 Refin RF_coax OCLK06 10MHzOut07 OCLK06_10MHzOut07 USRP47_Refin Ref.Clock for Inverse. REF48 USRP48 Refin RF_coax OCLK06 10MHzOu	JSRP39
REF42 USRP42 Refin RF_coax OCLK06 10MHzOut02 OCLK06_10MHzOut02 USRP42_Refin Ref.Clock for USRP43 Refin RF_coax OCLK06 10MHzOut03 OCLK06_10MHzOut03 USRP43_Refin Ref.Clock for USRP44 Refin RF_coax OCLK06 10MHzOut04 OCLK06_10MHzOut04 USRP44_Refin Ref.Clock for USRP45 Refin RF_coax OCLK06 10MHzOut05 OCLK06_10MHzOut05 USRP45_Refin Ref.Clock for USRP46 Refin RF_coax OCLK06 10MHzOut06 OCLK06_10MHzOut06 USRP46_Refin Ref.Clock for USRP47 Refin RF_coax OCLK06 10MHzOut06 OCLK06_10MHzOut06 USRP46_Refin Ref.Clock for USRP48 Refin RF_coax OCLK06 10MHzOut07 OCLK06_10MHzOut07 USRP47_Refin Ref.Clock for USRP48 Refin RF_coax OCLK06 10MHzOut08 OCLK06_10MHzOut08 USRP48_Refin Ref.Clock for USRP49 Refin RF_coax OCLK06 10MHzOut08 OCLK06_10MHzOut08 USRP48_Refin Ref.Clock for USRP49 Refin RF_coax OCLK07 10MHzOut01 OCLK07_10MHzOut01 USRP49_Refin Ref.Clock for USRP50 Refin RF_coax OCLK07 10MHzOut02 OCLK07_10MHzOut02 USRP50_Refin Ref.Clock for USRP51 Refin RF_coax OCLK07 10MHzOut03 OCLK07_10MHzOut03 USRP51_Refin Ref.Clock for USRP52 Refin RF_coax OCLK07 10MHzOut04 OCLK07_10MHzOut04 USRP52_Refin Ref.Clock for USRP53 Refin RF_coax OCLK07 10MHzOut05 OCLK07_10MHzOut04 USRP52_Refin Ref.Clock for USRP53 Refin RF_coax OCLK07 10MHzOut05 OCLK07_10MHzOut05 USRP53_Refin Ref.Clock for USRP54 Refin RF_coax OCLK07 10MHzOut05 OCLK07_10MHzOut06 USRP54_Refin Ref.Clock for USRP54 Refin RF_coax OCLK07 10MHzOut06 OCLK07_10MHzOut06 USRP54_Refin Ref.Clock for USRP55 Refin RF_coax OCLK07 10MHzOut06 OCLK07_10MHzOut06 USRP54_Refin Ref.Clock for USRP55 Refin Re	JSRP40
REF43 USRP43 Refin RF_coax OCLK06 10MHzOut03 OCLK06_10MHzOut03 USRP43_Refin Ref.Clock for USRP44_Refin REF44 USRP44 Refin RF_coax OCLK06 10MHzOut04 OCLK06_10MHzOut04 USRP44_Refin Ref.Clock for USRP44_Refin Ref.Clock for USRP45_Refin Ref.Clock for USRP45_Refin Ref.Clock for USRP45_Refin Ref.Clock for USRP46_Refin Ref.Clock for USRP56_Refin Ref.Clock for USRP56_Refin Ref.Clock for USRP56_Refin Ref.Clock for USRP56_Refin	JSRP41
REF44 USRP44 Refin RF_coax OCLK06 10MHzOut04 OCLK06_10MHzOut04 USRP44_Refin Ref.Clock for URF45 USRP45 Refin RF_coax OCLK06 10MHzOut05 OCLK06_10MHzOut05 USRP45_Refin Ref.Clock for URF46 USRP46 Refin RF_coax OCLK06 10MHzOut06 OCLK06_10MHzOut06 USRP46_Refin Ref.Clock for URF47 USRP47 Refin RF_coax OCLK06 10MHzOut07 OCLK06_10MHzOut07 USRP47_Refin Ref.Clock for URF48 USRP48 Refin RF_coax OCLK06 10MHzOut08 OCLK06_10MHzOut08 USRP48_Refin Ref.Clock for URF49 USRP49 Refin RF_coax OCLK07 10MHzOut01 OCLK07_10MHzOut01 USRP49_Refin Ref.Clock for URF50 USRP50 Refin RF_coax OCLK07 10MHzOut02 OCLK07_10MHzOut02 USRP50_Refin Ref.Clock for URF51 USRP51 Refin RF_coax OCLK07 10MHzOut03 OCLK07_10MHzOut03 USRP51_Refin Ref.Clock for URF52 USRP52 Refin RF_coax OCLK07 10MHzOut04 OCLK07_10MHzOut04 USRP52_Refin Ref.Clock for URF53 USRP53 Refin RF_coax OCLK07 10MHzOut05 OCLK07_10MHzOut04 USRP53_Refin Ref.Clock for URF54 USRP54 Refin RF_coax OCLK07 10MHzOut05 OCLK07_10MHzOut05 USRP53_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut06 OCLK07_10MHzOut06 USRP54_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut06 OCLK07_10MHzOut06 USRP54_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut06 OCLK07_10MHzOut06 USRP54_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut06 USRP55_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut06 USRP55_Refin Ref.Clock for URF55_REfin Ref.Clock for URF55_RE	JSRP42
REF45 USRP45 Refin RF_coax OCLK06 10MHzOut05 OCLK06_10MHzOut05 USRP45_Refin Ref.Clock for USRP46_Refin Ref.Clock for USRP46_Refin Ref.Clock for USRP46_Refin Ref.Clock for USRP46_Refin Ref.Clock for USRP47_Refin Ref.Clock for USRP47_Refin Ref.Clock for USRP47_Refin Ref.Clock for USRP48_Refin Ref.Clock for USRP48_Refin Ref.Clock for USRP48_Refin Ref.Clock for USRP48_Refin Ref.Clock for USRP49_Refin Ref.Clock for USRP49_Refin Ref.Clock for USRP49_Refin Ref.Clock for USRP50_Refin Ref.Clock for USRP50_Refin Ref.Clock for USRP50_Refin Ref.Clock for USRP50_Refin Ref.Clock for USRP51_Refin Ref.Clock for USRP51_Refin Ref.Clock for USRP51_Refin Ref.Clock for USRP52_Refin Ref.Clock for USRP52_Refin Ref.Clock for USRP53_Refin Ref.Clock for USRP53_Refin Ref.Clock for USRP53_Refin Ref.Clock for USRP54_Refin Ref.Clock for USRP54_Refin Ref.Clock for USRP54_Refin Ref.Clock for USRP55_Refin Ref.Clo	JSRP43
REF46 USRP46 Refin RF_coax OCLK06 10MHzOut06 OCLK06_10MHzOut06 USRP46_Refin Ref.Clock for URF47 USRP47 Refin RF_coax OCLK06 10MHzOut07 OCLK06_10MHzOut07 USRP47_Refin Ref.Clock for URF48 USRP48 Refin RF_coax OCLK06 10MHzOut08 OCLK06_10MHzOut08 USRP48_Refin Ref.Clock for URF49 USRP49 Refin RF_coax OCLK07 10MHzOut01 OCLK07_10MHzOut01 USRP49_Refin Ref.Clock for URF50 USRP50 Refin RF_coax OCLK07 10MHzOut02 OCLK07_10MHzOut02 USRP50_Refin Ref.Clock for URF51 USRP51 Refin RF_coax OCLK07 10MHzOut03 OCLK07_10MHzOut03 USRP51_Refin Ref.Clock for URF52 USRP52 Refin RF_coax OCLK07 10MHzOut04 OCLK07_10MHzOut04 USRP52_Refin Ref.Clock for URF53 USRP53 Refin RF_coax OCLK07 10MHzOut04 OCLK07_10MHzOut04 USRP53_Refin Ref.Clock for URF54 USRP54 Refin RF_coax OCLK07 10MHzOut05 OCLK07_10MHzOut05 USRP53_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut06 OCLK07_10MHzOut05 USRP54_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut06 OCLK07_10MHzOut06 USRP54_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut07 USRP55_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut07 USRP55_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut07 USRP55_Refin Ref.Clock for URF55 USRP55 Refin Ref.Cloc	JSRP44
REF47 USRP47 Refin RF_coax OCLK06 10MHzOut07 OCLK06_10MHzOut07 USRP47_Refin Ref.Clock for URF48 USRP48 Refin RF_coax OCLK06 10MHzOut08 OCLK06_10MHzOut08 USRP48_Refin Ref.Clock for URF49 USRP49 Refin RF_coax OCLK07 10MHzOut01 OCLK07_10MHzOut01 USRP49_Refin Ref.Clock for URF50 USRP50 Refin RF_coax OCLK07 10MHzOut02 OCLK07_10MHzOut02 USRP50_Refin Ref.Clock for URF51 USRP51 Refin RF_coax OCLK07 10MHzOut03 OCLK07_10MHzOut03 USRP51_Refin Ref.Clock for URF52 USRP52 Refin RF_coax OCLK07 10MHzOut04 OCLK07_10MHzOut04 USRP52_Refin Ref.Clock for URF53 USRP53 Refin RF_coax OCLK07 10MHzOut05 OCLK07_10MHzOut05 USRP53_Refin Ref.Clock for URF54 USRP54 Refin RF_coax OCLK07 10MHzOut05 OCLK07_10MHzOut05 USRP54_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut06 OCLK07_10MHzOut06 USRP54_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut07 USRP55_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut07 USRP55_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut07 USRP55_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut07 USRP55_Refin Ref.Clock for URF55_Refin Ref.Cl	JSRP45
REF48 USRP48 Refln RF_coax OCLK06 10MHzOut08 OCLK06_10MHzOut08 USRP48_Refln Ref.Clock for USRP49 Refln RF_coax OCLK07 10MHzOut01 OCLK07_10MHzOut01 USRP49_Refln Ref.Clock for USRP50 USRP50 Refln RF_coax OCLK07 10MHzOut02 OCLK07_10MHzOut02 USRP50_Refln Ref.Clock for USRP51 Refln RF_coax OCLK07 10MHzOut03 OCLK07_10MHzOut03 USRP51_Refln Ref.Clock for USRP52 Refln RF_coax OCLK07 10MHzOut04 OCLK07_10MHzOut04 USRP52_Refln Ref.Clock for USRP53 USRP53 Refln RF_coax OCLK07 10MHzOut04 OCLK07_10MHzOut04 USRP53_Refln Ref.Clock for USRP54 Refln RF_coax OCLK07 10MHzOut05 OCLK07_10MHzOut05 USRP53_Refln Ref.Clock for USRP54 Refln RF_coax OCLK07 10MHzOut06 OCLK07_10MHzOut06 USRP54_Refln Ref.Clock for USRP55 Refln RF_coax OCLK07 10MHzOut06 OCLK07_10MHzOut06 USRP55_Refln Ref.Clock for USRP55 Refln RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut07 USRP55_Refln Ref.Clock for USRP55_Refln Ref.Clock fo	JSRP46
REF49 USRP49 Refin RF_coax OCLK07 10MHzOut01 OCLK07_10MHzOut01 USRP49_Refin Ref.Clock for USRP50 USRP50 Refin RF_coax OCLK07 10MHzOut02 OCLK07_10MHzOut02 USRP50_Refin Ref.Clock for USRP51 Refin RF_coax OCLK07 10MHzOut03 OCLK07_10MHzOut03 USRP51_Refin Ref.Clock for USRP52 USRP52 Refin RF_coax OCLK07 10MHzOut04 OCLK07_10MHzOut04 USRP52_Refin Ref.Clock for USRP53 Refin RF_coax OCLK07 10MHzOut05 OCLK07_10MHzOut05 USRP53_Refin Ref.Clock for USRP54 Refin RF_coax OCLK07 10MHzOut05 OCLK07_10MHzOut05 USRP54_Refin Ref.Clock for USRP55 Refin RF_coax OCLK07 10MHzOut06 OCLK07_10MHzOut06 USRP54_Refin Ref.Clock for USRP55 Refin RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut07 USRP55_Refin Ref.Clock for USRP	JSRP47
REF50 USRP50 Refln RF_coax OCLK07 10MHzOut02 OCLK07_10MHzOut02 USRP50_Refln Ref.Clock for USRP51 Refln RF_coax OCLK07 10MHzOut03 OCLK07_10MHzOut03 USRP51_Refln Ref.Clock for USRP52 Refln RF_coax OCLK07 10MHzOut04 OCLK07_10MHzOut04 USRP52_Refln Ref.Clock for USRP53 Refln RF_coax OCLK07 10MHzOut05 OCLK07_10MHzOut05 USRP53_Refln Ref.Clock for USRP54 Refln RF_coax OCLK07 10MHzOut05 OCLK07_10MHzOut05 USRP53_Refln Ref.Clock for USRP54 Refln RF_coax OCLK07 10MHzOut06 OCLK07_10MHzOut06 USRP54_Refln Ref.Clock for USRP55 Refln RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut07 USRP55_Refln Ref.Clock for USRP55_Refln Ref.Cloc	JSRP48
REF51 USRP51 Refln RF_coax OCLK07 10MHzOut03 OCLK07_10MHzOut03 USRP51_Refln Ref.Clock for URF52 USRP52 Refln RF_coax OCLK07 10MHzOut04 OCLK07_10MHzOut04 USRP52_Refln Ref.Clock for URF53 USRP53 Refln RF_coax OCLK07 10MHzOut05 OCLK07_10MHzOut05 USRP53_Refln Ref.Clock for URF54 USRP54 Refln RF_coax OCLK07 10MHzOut06 OCLK07_10MHzOut06 USRP54_Refln Ref.Clock for URF55 USRP55 Refln RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut07 USRP55_Refln Ref.Clock for URF55_Refln Ref.Clock for URF55_Refl	JSRP49
REF52 USRP52 Refin RF_coax OCLK07 10MHzOut04 OCLK07_10MHzOut04 USRP52_Refin Ref.Clock for URF53 USRP53 Refin RF_coax OCLK07 10MHzOut05 OCLK07_10MHzOut05 USRP53_Refin Ref.Clock for URF54 USRP54 Refin RF_coax OCLK07 10MHzOut06 OCLK07_10MHzOut06 USRP54_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut07 USRP55_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut07 USRP55_Refin Ref.Clock for URF55_Refin Ref.Clock for URF55_RefI	JSRP50
REF53 USRP53 Refln RF_coax OCLK07 10MHzOut05 OCLK07_10MHzOut05 USRP53_Refln Ref.Clock for URF54 USRP54 Refln RF_coax OCLK07 10MHzOut06 OCLK07_10MHzOut06 USRP54_Refln Ref.Clock for URF55 USRP55 Refln RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut07 USRP55_Refln Ref.Clock for URF55_Refln Ref.Clock for URF55_Re	JSRP51
REF54 USRP54 Refin RF_coax OCLK07 10MHzOut06 OCLK07_10MHzOut06 USRP54_Refin Ref.Clock for URF55 USRP55 Refin RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut07 USRP55_Refin Ref.Clock for URF55_Refin Ref.Cloc	JSRP52
REF55 USRP55 Refln RF_coax OCLK07 10MHzOut07 OCLK07_10MHzOut07 USRP55_Refln Ref.Clock for U	JSRP53
	JSRP54
REESS USRPS6 Refin RE coax OCLKO7 10MHzOut08 OCLKO7 10MHzOut08 USRPS6 Refin Ref Clock for I	JSRP55
NET SO SON SO NET NET SOURCE SOLICE SOLICE NET SOLICE N	JSRP56
REF57 USRP57 RefIn RF_coax OCLK08 10MHzOut01 OCLK08_10MHzOut01 USRP57_RefIn Ref.Clock for U	JSRP57
REF58 USRP58 RefIn RF_coax OCLK08 10MHzOut02 OCLK08_10MHzOut02 USRP58_RefIn Ref.Clock for U	JSRP58
REF59 USRP59 Refln RF_coax OCLK08 10MHzOut03 OCLK08_10MHzOut03 USRP59_Refln Ref.Clock for U	JSRP59
REF60 USRP60 RefIn RF_coax OCLK08 10MHzOut04 OCLK08_10MHzOut04 USRP60_RefIn Ref.Clock for U	JSRP60

REF61	USRP61	Refin	RF_coax	OCLK08	10MHzOut05	OCLK08_10MHzOut05	USRP61_RefIn	Ref.Clock for USRP61
REF62	USRP62	RefIn	RF_coax	OCLK08	10MHzOut06	OCLK08_10MHzOut06	USRP62_RefIn	Ref.Clock for USRP62
REF63	USRP63	RefIn	RF_coax	OCLK08	10MHzOut07	OCLK08_10MHzOut07	USRP63_RefIn	Ref.Clock for USRP63
REF64	USRP64	RefIn	RF_coax	OCLK08	10MHzOut08	OCLK08_10MHzOut08	USRP64_RefIn	Ref.Clock for USRP64
C1REF	OCLKM1	10MHzOut01	RF_coax	OCLK01	Ext10MHzInput	OCLK01_Ext10MHzInput	OCLKM1_10MHzOut	Ref.Clock for OCLK01
							01	from OCLKM1
C2REF	OCLKM1	10MHzOut02	RF_coax	OCLK02	Ext10MHzInput	OCLK02_Ext10MHzInput	OCLKM1_10MHzOut	Ref.Clock for OCLK02
							02	from OCLKM1
C3REF	OCLKM1	10MHzOut03	RF_coax	OCLK03	Ext10MHzInput	OCLK03_Ext10MHzInput	OCLKM1_10MHzOut	Ref.Clock for OCLK03
							03	from OCLKM1
C4REF	OCLKM1	10MHzOut04	RF_coax	OCLK04	Ext10MHzInput	OCLK04_Ext10MHzInput	OCLKM1_10MHzOut	
							04	from OCLKM1
C5REF	OCLKM1	10MHzOut05	RF_coax	OCLK05	Ext10MHzInput	OCLK05_Ext10MHzInput	OCLKM1_10MHzOut	
							05	from OCLKM1
C6REF	OCLKM1	10MHzOut06	RF_coax	OCLK06	Ext10MHzInput	OCLK06_Ext10MHzInput	OCLKM1_10MHzOut	
							06	from OCLKM1
C7REF	OCLKM1	10MHzOut07	RF_coax	OCLK07	Ext10MHzInput	OCLK07_Ext10MHzInput	OCLKM1_10MHzOut	
20055	00114144	401411 0 100		0.01.1400	5 :400411		07	from OCLKM1
C8REF	OCLKM1	10MHzOut08	RF_coax	OCLK08	Ext10MHzInput	OCLK08_Ext10MHzInput	OCLKM1_10MHzOut	
CNADEE	DVIO4	-140 CLK+	DE	00110044	Forta ON All Indiana est	OCUMAN Forth ORALL-Lourney	08	from OCLKM1
CMREF	PXI01	sl10_CLKout	RF_coax	OCLKM1	Ext10MHzinput	OCLKM1_Ext10MHzInput	PXIO1_SI10_CLKOUT	Ref.Clock for OCLKM1 from PXI01
PPS1	USRP01	PPSIn	RF_coax	OCLK01	PPSout01	OCLK01_PPSout01	USRP01_PPSIn	PPS for USRP01
PPS2	USRP02	PPSIn	RF_coax	OCLK01	PPSout02	OCLK01_PPSout02	USRP02_PPSIn	PPS for USRP02
PPS3	USRP03	PPSIn	RF_coax	OCLK01	PPSout03	OCLK01_PPSout03	USRP03_PPSIn	PPS for USRP03
PPS4	USRP04	PPSIn	RF_coax	OCLK01	PPSout04	OCLK01_PPSout04	USRP04_PPSIn	PPS for USRP04
PPS5	USRP05	PPSIn	RF_coax	OCLK01	PPSout05	OCLK01_PPSout05	USRP05_PPSIn	PPS for USRP05
PPS6	USRP06	PPSIn	RF_coax	OCLK01	PPSout06	OCLK01_PPSout06	USRP06_PPSIn	PPS for USRP06
PPS7	USRP07	PPSIn	RF_coax	OCLK01	PPSout07	OCLK01_PPSout07	USRP07_PPSIn	PPS for USRP07
PPS8	USRP08	PPSIn	RF_coax	OCLK01	PPSout08	OCLK01_PPSout08	USRP08_PPSIn	PPS for USRP08
PPS9	USRP09	PPSIn	RF_coax	OCLK02	PPSout01	OCLK02_PPSout01	USRP09_PPSIn	PPS for USRP09
PPS10	USRP10	PPSIn	RF_coax	OCLK02	PPSout02	OCLK02_PPSout02	USRP10_PPSIn	PPS for USRP10
PPS11	USRP11	PPSIn	RF_coax	OCLK02	PPSout03	OCLK02_PPSout03	USRP11_PPSIn	PPS for USRP11

PPS12	USRP12	PPSIn	RF_coax	OCLK02	PPSout04	OCLK02_PPSout04	USRP12_PPSIn	PPS for USRP12
PPS13	USRP13	PPSIn	RF_coax	OCLK02	PPSout05	OCLK02_PPSout05	USRP13_PPSIn	PPS for USRP13
PPS14	USRP14	PPSIn	RF_coax	OCLK02	PPSout06	OCLK02_PPSout06	USRP14_PPSIn	PPS for USRP14
PPS15	USRP15	PPSIn	RF_coax	OCLK02	PPSout07	OCLK02_PPSout07	USRP15_PPSIn	PPS for USRP15
PPS16	USRP16	PPSIn	RF_coax	OCLK02	PPSout08	OCLK02_PPSout08	USRP16_PPSIn	PPS for USRP16
PPS17	USRP17	PPSIn	RF_coax	OCLK03	PPSout01	OCLK03_PPSout01	USRP17_PPSIn	PPS for USRP17
PPS18	USRP18	PPSIn	RF_coax	OCLK03	PPSout02	OCLK03_PPSout02	USRP18_PPSIn	PPS for USRP18
PPS19	USRP19	PPSIn	RF_coax	OCLK03	PPSout03	OCLK03_PPSout03	USRP19_PPSIn	PPS for USRP19
PPS20	USRP20	PPSIn	RF_coax	OCLK03	PPSout04	OCLK03_PPSout04	USRP20_PPSIn	PPS for USRP20
PPS21	USRP21	PPSIn	RF_coax	OCLK03	PPSout05	OCLK03_PPSout05	USRP21_PPSIn	PPS for USRP21
PPS22	USRP22	PPSIn	RF_coax	OCLK03	PPSout06	OCLK03_PPSout06	USRP22_PPSIn	PPS for USRP22
PPS23	USRP23	PPSIn	RF_coax	OCLK03	PPSout07	OCLK03_PPSout07	USRP23_PPSIn	PPS for USRP23
PPS24	USRP24	PPSIn	RF_coax	OCLK03	PPSout08	OCLK03_PPSout08	USRP24_PPSIn	PPS for USRP24
PPS25	USRP25	PPSIn	RF_coax	OCLK04	PPSout01	OCLK04_PPSout01	USRP25_PPSIn	PPS for USRP25
PPS26	USRP26	PPSIn	RF_coax	OCLK04	PPSout02	OCLK04_PPSout02	USRP26_PPSIn	PPS for USRP26
PPS27	USRP27	PPSIn	RF_coax	OCLK04	PPSout03	OCLK04_PPSout03	USRP27_PPSIn	PPS for USRP27
PPS28	USRP28	PPSIn	RF_coax	OCLK04	PPSout04	OCLK04_PPSout04	USRP28_PPSIn	PPS for USRP28
PPS29	USRP29	PPSIn	RF_coax	OCLK04	PPSout05	OCLK04_PPSout05	USRP29_PPSIn	PPS for USRP29
PPS30	USRP30	PPSIn	RF_coax	OCLK04	PPSout06	OCLK04_PPSout06	USRP30_PPSIn	PPS for USRP30
PPS31	USRP31	PPSIn	RF_coax	OCLK04	PPSout07	OCLK04_PPSout07	USRP31_PPSIn	PPS for USRP31
PPS32	USRP32	PPSIn	RF_coax	OCLK04	PPSout08	OCLK04_PPSout08	USRP32_PPSIn	PPS for USRP32
PPS33	USRP33	PPSIn	RF_coax	OCLK05	PPSout01	OCLK05_PPSout01	USRP33_PPSIn	PPS for USRP33
PPS34	USRP34	PPSIn	RF_coax	OCLK05	PPSout02	OCLK05_PPSout02	USRP34_PPSIn	PPS for USRP34
PPS35	USRP35	PPSIn	RF_coax	OCLK05	PPSout03	OCLK05_PPSout03	USRP35_PPSIn	PPS for USRP35
PPS36	USRP36	PPSIn	RF_coax	OCLK05	PPSout04	OCLK05_PPSout04	USRP36_PPSIn	PPS for USRP36
PPS37	USRP37	PPSIn	RF_coax	OCLK05	PPSout05	OCLK05_PPSout05	USRP37_PPSIn	PPS for USRP37
PPS38	USRP38	PPSIn	RF_coax	OCLK05	PPSout06	OCLK05_PPSout06	USRP38_PPSIn	PPS for USRP38
PPS39	USRP39	PPSIn	RF_coax	OCLK05	PPSout07	OCLK05_PPSout07	USRP39_PPSIn	PPS for USRP39
PPS40	USRP40	PPSIn	RF_coax	OCLK05	PPSout08	OCLK05_PPSout08	USRP40_PPSIn	PPS for USRP40
PPS41	USRP41	PPSIn	RF_coax	OCLK06	PPSout01	OCLK06_PPSout01	USRP41_PPSIn	PPS for USRP41
PPS42	USRP42	PPSIn	RF_coax	OCLK06	PPSout02	OCLK06_PPSout02	USRP42_PPSIn	PPS for USRP42
PPS43	USRP43	PPSIn	RF_coax	OCLK06	PPSout03	OCLK06_PPSout03	USRP43_PPSIn	PPS for USRP43

PPS44	USRP44	PPSIn	RF_coax	OCLK06	PPSout04	OCLK06_PPSout04	USRP44_PPSIn	PPS for USRP44
PPS45	USRP45	PPSIn	RF_coax	OCLK06	PPSout05	OCLK06_PPSout05	USRP45_PPSIn	PPS for USRP45
PPS46	USRP46	PPSIn	RF_coax	OCLK06	PPSout06	OCLK06_PPSout06	USRP46_PPSIn	PPS for USRP46
PPS47	USRP47	PPSIn	RF_coax	OCLK06	PPSout07	OCLK06_PPSout07	USRP47_PPSIn	PPS for USRP47
PPS48	USRP48	PPSIn	RF_coax	OCLK06	PPSout08	OCLK06_PPSout08	USRP48_PPSIn	PPS for USRP48
PPS49	USRP49	PPSIn	RF_coax	OCLK07	PPSout01	OCLK07_PPSout01	USRP49_PPSIn	PPS for USRP49
PPS50	USRP50	PPSIn	RF_coax	OCLK07	PPSout02	OCLK07_PPSout02	USRP50_PPSIn	PPS for USRP50
PPS51	USRP51	PPSIn	RF_coax	OCLK07	PPSout03	OCLK07_PPSout03	USRP51_PPSIn	PPS for USRP51
PPS52	USRP52	PPSIn	RF_coax	OCLK07	PPSout04	OCLK07_PPSout04	USRP52_PPSIn	PPS for USRP52
PPS53	USRP53	PPSIn	RF_coax	OCLK07	PPSout05	OCLK07_PPSout05	USRP53_PPSIn	PPS for USRP53
PPS54	USRP54	PPSIn	RF_coax	OCLK07	PPSout06	OCLK07_PPSout06	USRP54_PPSIn	PPS for USRP54
PPS55	USRP55	PPSIn	RF_coax	OCLK07	PPSout07	OCLK07_PPSout07	USRP55_PPSIn	PPS for USRP55
PPS56	USRP56	PPSIn	RF_coax	OCLK07	PPSout08	OCLK07_PPSout08	USRP56_PPSIn	PPS for USRP56
PPS57	USRP57	PPSIn	RF_coax	OCLK08	PPSout01	OCLK08_PPSout01	USRP57_PPSIn	PPS for USRP57
PPS58	USRP58	PPSIn	RF_coax	OCLK08	PPSout02	OCLK08_PPSout02	USRP58_PPSIn	PPS for USRP58
PPS59	USRP59	PPSIn	RF_coax	OCLK08	PPSout03	OCLK08_PPSout03	USRP59_PPSIn	PPS for USRP59
PPS60	USRP60	PPSIn	RF_coax	OCLK08	PPSout04	OCLK08_PPSout04	USRP60_PPSIn	PPS for USRP60
PPS61	USRP61	PPSIn	RF_coax	OCLK08	PPSout05	OCLK08_PPSout05	USRP61_PPSIn	PPS for USRP61
PPS62	USRP62	PPSIn	RF_coax	OCLK08	PPSout06	OCLK08_PPSout06	USRP62_PPSIn	PPS for USRP62
PPS63	USRP63	PPSIn	RF_coax	OCLK08	PPSout07	OCLK08_PPSout07	USRP63_PPSIn	PPS for USRP63
PPS64	USRP64	PPSIn	RF_coax	OCLK08	PPSout08	OCLK08_PPSout08	USRP64_PPSIn	PPS for USRP64
C1PPS	OCLKM1	PPSout01	RF_coax	OCLK01	PPSin	OCLK01_PPSin	OCLKM1_PPSout01	PPS for OCLK01 from OCLKM1
C2PPS	OCLKM1	PPSout02	RF_coax	OCLK02	PPSin	OCLK02_PPSin	OCLKM1_PPSout02	PPS for OCLK02 from OCLKM1
C3PPS	OCLKM1	PPSout03	RF_coax	OCLK03	PPSin	OCLK03_PPSin	OCLKM1_PPSout03	PPS for OCLK03 from OCLKM1
C4PPS	OCLKM1	PPSout04	RF_coax	OCLK04	PPSin	OCLK04_PPSin	OCLKM1_PPSout04	PPS for OCLK04 from OCLKM1
C5PPS	OCLKM1	PPSout01	RF_coax	OCLK05	PPSin	OCLK05_PPSin	OCLKM1_PPSout01	PPS for OCLK05 from OCLKM1
C6PPS	OCLKM1	PPSout02	RF_coax	OCLK06	PPSin	OCLK06_PPSin	OCLKM1_PPSout02	PPS for OCLK06 from OCLKM1

C7PPS	OCLKM1	PPSout03	RF_coax	OCLK07	PPSin	OCLK07_PPSin	OCLKM1_PPSout03	PPS for OCLK07 from
								OCLKM1
C8PPS	OCLKM1	PPSout04	RF_coax	OCLK08	PPSin	OCLK08_PPSin	OCLKM1_PPSout04	PPS for OCLK08 from
								OCLKM1
CMPPS	PXI01	sl10_PFl3	RF_coax	OCLKM1	PPSin	OCLKM1_PPSin	PXI01_sl10_PFI3	PPS for OCLKM1 from
								PXI01
MTRIG	USRP01	TRIGout	RF_coax	PXI01	sl10_PFI1	PXI01_sl10_PFI1	USRP01_TRIGout	Master TRIG for PXI01
								from USRP01
MXI1	USRP01	MXI01	MXI	CPS01	MXIx4_p01	CPS01_MXIx4_p01	USRP01_MXI01	MXI for USRP01
MXI2	USRP02	MXI01	MXI	CPS01	MXIx4_p02	CPS01_MXIx4_p02	USRP02_MXI01	MXI for USRP02
MXI3	USRP03	MXI01	MXI	CPS01	MXIx4_p03	CPS01_MXIx4_p03	USRP03_MXI01	MXI for USRP03
MXI4	USRP04	MXI01	MXI	CPS01	MXIx4_p04	CPS01_MXIx4_p04	USRP04_MXI01	MXI for USRP04
MXI5	USRP05	MXI01	MXI	CPS01	MXIx4_p05	CPS01_MXIx4_p05	USRP05_MXI01	MXI for USRP05
MXI6	USRP06	MXI01	MXI	CPS01	MXIx4_p06	CPS01_MXIx4_p06	USRP06_MXI01	MXI for USRP06
MXI7	USRP07	MXI01	MXI	CPS01	MXIx4_p07	CPS01_MXIx4_p07	USRP07_MXI01	MXI for USRP07
MXI8	USRP08	MXI01	MXI	CPS01	MXIx4_p08	CPS01_MXIx4_p08	USRP08_MXI01	MXI for USRP08
MXI9	USRP09	MXI01	MXI	CPS02	MXIx4_p01	CPS02_MXIx4_p01	USRP09_MXI01	MXI for USRP09
MXI10	USRP10	MXI01	MXI	CPS02	MXIx4_p02	CPS02_MXIx4_p02	USRP10_MXI01	MXI for USRP10
MXI11	USRP11	MXI01	MXI	CPS02	MXIx4_p03	CPS02_MXIx4_p03	USRP11_MXI01	MXI for USRP11
MXI12	USRP12	MXI01	MXI	CPS02	MXIx4_p04	CPS02_MXIx4_p04	USRP12_MXI01	MXI for USRP12
MXI13	USRP13	MXI01	MXI	CPS02	MXIx4_p05	CPS02_MXIx4_p05	USRP13_MXI01	MXI for USRP13
MXI14	USRP14	MXI01	MXI	CPS02	MXIx4_p06	CPS02_MXIx4_p06	USRP14_MXI01	MXI for USRP14
MXI15	USRP15	MXI01	MXI	CPS02	MXIx4_p07	CPS02_MXIx4_p07	USRP15_MXI01	MXI for USRP15
MXI16	USRP16	MXI01	MXI	CPS02	MXIx4_p08	CPS02_MXIx4_p08	USRP16_MXI01	MXI for USRP16
MXI17	USRP17	MXI01	MXI	CPS03	MXIx4_p01	CPS03_MXIx4_p01	USRP17_MXI01	MXI for USRP17
MXI18	USRP18	MXI01	MXI	CPS03	MXIx4_p02	CPS03_MXIx4_p02	USRP18_MXI01	MXI for USRP18
MXI19	USRP19	MXI01	MXI	CPS03	MXIx4_p03	CPS03_MXIx4_p03	USRP19_MXI01	MXI for USRP19
MXI20	USRP20	MXI01	MXI	CPS03	MXIx4_p04	CPS03_MXIx4_p04	USRP20_MXI01	MXI for USRP20
MXI21	USRP21	MXI01	MXI	CPS03	MXIx4_p05	CPS03_MXIx4_p05	USRP21_MXI01	MXI for USRP21
MXI22	USRP22	MXI01	MXI	CPS03	MXIx4_p06	CPS03_MXIx4_p06	USRP22_MXI01	MXI for USRP22
MXI23	USRP23	MXI01	MXI	CPS03	MXIx4_p07	CPS03_MXIx4_p07	USRP23_MXI01	MXI for USRP23
MXI24	USRP24	MXI01	MXI	CPS03	MXIx4_p08	CPS03_MXIx4_p08	USRP24_MXI01	MXI for USRP24

MXI25	USRP25	MXI01	MXI	CPS04	MXIx4_p01	CPS04_MXIx4_p01	USRP25_MXI01	MXI for USRP25
MXI26	USRP26	MXI01	MXI	CPS04	MXIx4_p02	CPS04_MXIx4_p02	USRP26_MXI01	MXI for USRP26
MXI27	USRP27	MXI01	MXI	CPS04	MXIx4_p03	CPS04_MXIx4_p03	USRP27_MXI01	MXI for USRP27
MXI28	USRP28	MXI01	MXI	CPS04	MXIx4_p04	CPS04_MXIx4_p04	USRP28_MXI01	MXI for USRP28
MXI29	USRP29	MXI01	MXI	CPS04	MXIx4_p05	CPS04_MXIx4_p05	USRP29_MXI01	MXI for USRP29
MXI30	USRP30	MXI01	MXI	CPS04	MXIx4_p06	CPS04_MXIx4_p06	USRP30_MXI01	MXI for USRP30
MXI31	USRP31	MXI01	MXI	CPS04	MXIx4_p07	CPS04_MXIx4_p07	USRP31_MXI01	MXI for USRP31
MXI32	USRP32	MXI01	MXI	CPS04	MXIx4_p08	CPS04_MXIx4_p08	USRP32_MXI01	MXI for USRP32
MXI33	USRP33	MXI01	MXI	CPS05	MXIx4_p01	CPS05_MXIx4_p01	USRP33_MXI01	MXI for USRP33
MXI34	USRP34	MXI01	MXI	CPS05	MXIx4_p02	CPS05_MXIx4_p02	USRP34_MXI01	MXI for USRP34
MXI35	USRP35	MXI01	MXI	CPS05	MXIx4_p03	CPS05_MXIx4_p03	USRP35_MXI01	MXI for USRP35
MXI36	USRP36	MXI01	MXI	CPS05	MXIx4_p04	CPS05_MXIx4_p04	USRP36_MXI01	MXI for USRP36
MXI37	USRP37	MXI01	MXI	CPS05	MXIx4_p05	CPS05_MXIx4_p05	USRP37_MXI01	MXI for USRP37
MXI38	USRP38	MXI01	MXI	CPS05	MXIx4_p06	CPS05_MXIx4_p06	USRP38_MXI01	MXI for USRP38
MXI39	USRP39	MXI01	MXI	CPS05	MXIx4_p07	CPS05_MXIx4_p07	USRP39_MXI01	MXI for USRP39
MXI40	USRP40	MXI01	MXI	CPS05	MXIx4_p08	CPS05_MXIx4_p08	USRP40_MXI01	MXI for USRP40
MXI41	USRP41	MXI01	MXI	CPS06	MXIx4_p01	CPS06_MXIx4_p01	USRP41_MXI01	MXI for USRP41
MXI42	USRP42	MXI01	MXI	CPS06	MXIx4_p02	CPS06_MXIx4_p02	USRP42_MXI01	MXI for USRP42
MXI43	USRP43	MXI01	MXI	CPS06	MXIx4_p03	CPS06_MXIx4_p03	USRP43_MXI01	MXI for USRP43
MXI44	USRP44	MXI01	MXI	CPS06	MXIx4_p04	CPS06_MXIx4_p04	USRP44_MXI01	MXI for USRP44
MXI45	USRP45	MXI01	MXI	CPS06	MXIx4_p05	CPS06_MXIx4_p05	USRP45_MXI01	MXI for USRP45
MXI46	USRP46	MXI01	MXI	CPS06	MXIx4_p06	CPS06_MXIx4_p06	USRP46_MXI01	MXI for USRP46
MXI47	USRP47	MXI01	MXI	CPS06	MXIx4_p07	CPS06_MXIx4_p07	USRP47_MXI01	MXI for USRP47
MXI48	USRP48	MXI01	MXI	CPS06	MXIx4_p08	CPS06_MXIx4_p08	USRP48_MXI01	MXI for USRP48
MXI49	USRP49	MXI01	MXI	CPS07	MXIx4_p01	CPS07_MXIx4_p01	USRP49_MXI01	MXI for USRP49
MXI50	USRP50	MXI01	MXI	CPS07	MXIx4_p02	CPS07_MXIx4_p02	USRP50_MXI01	MXI for USRP50
MXI51	USRP51	MXI01	MXI	CPS07	MXIx4_p03	CPS07_MXIx4_p03	USRP51_MXI01	MXI for USRP51
MXI52	USRP52	MXI01	MXI	CPS07	MXIx4_p04	CPS07_MXIx4_p04	USRP52_MXI01	MXI for USRP52
MXI53	USRP53	MXI01	MXI	CPS07	MXIx4_p05	CPS07_MXIx4_p05	USRP53_MXI01	MXI for USRP53
MXI54	USRP54	MXI01	MXI	CPS07	MXIx4_p06	CPS07_MXIx4_p06	USRP54_MXI01	MXI for USRP54
MXI55	USRP55	MXI01	MXI	CPS07	MXIx4_p07	CPS07_MXIx4_p07	USRP55_MXI01	MXI for USRP55
MXI56	USRP56	MXI01	MXI	CPS07	MXIx4_p08	CPS07_MXIx4_p08	USRP56_MXI01	MXI for USRP56

							1	
MXI57	USRP57	MXI01	MXI	CPS08	MXIx4_p01	CPS08_MXIx4_p01	USRP57_MXI01	MXI for USRP57
MXI58	USRP58	MXI01	MXI	CPS08	MXIx4_p02	CPS08_MXIx4_p02	USRP58_MXI01	MXI for USRP58
MXI59	USRP59	MXI01	MXI	CPS08	MXIx4_p03	CPS08_MXIx4_p03	USRP59_MXI01	MXI for USRP59
MXI60	USRP60	MXI01	MXI	CPS08	MXIx4_p04	CPS08_MXIx4_p04	USRP60_MXI01	MXI for USRP60
MXI61	USRP61	MXI01	MXI	CPS08	MXIx4_p05	CPS08_MXIx4_p05	USRP61_MXI01	MXI for USRP61
MXI62	USRP62	MXI01	MXI	CPS08	MXIx4_p06	CPS08_MXIx4_p06	USRP62_MXI01	MXI for USRP62
MXI63	USRP63	MXI01	MXI	CPS08	MXIx4_p07	CPS08_MXIx4_p07	USRP63_MXI01	MXI for USRP63
MXI64	USRP64	MXI01	MXI	CPS08	MXIx4_p08	CPS08_MXIx4_p08	USRP64_MXI01	MXI for USRP64
C1MXI	PXI01	sl02_MXI1	MXI	CPS01	MXIx8	CPS01_MXIx8	PXI01_sl02_MXI1	MXI for CPS01 from PXI01
C2MXI	PXI01	sl03_MXI1	MXI	CPS02	MXIx8	CPS02_MXIx8	PXI01_sl03_MXI1	MXI for CPS02 from PXI01
C3MXI	PXI01	sl04_MXI1	MXI	CPS03	MXIx8	CPS03_MXIx8	PXI01_sl04_MXI1	MXI for CPS03 from PXI01
C4MXI	PXI01	sl05_MXI1	MXI	CPS04	MXIx8	CPS04_MXIx8	PXI01_sl05_MXI1	MXI for CPS04 from PXI01
C5MXI	PXI01	sl15_MXI1	MXI	CPS05	MXIx8	CPS05_MXIx8	PXI01_sl15_MXI1	MXI for CPS05 from PXI01
C6MXI	PXI01	sl16_MXI1	MXI	CPS06	MXIx8	CPS06_MXIx8	PXI01_sl16_MXI1	MXI for CPS06 from PXI01
C7MXI	PXI01	sl17_MXI1	MXI	CPS07	MXIx8	CPS07_MXIx8	PXI01_sl17_MXI1	MXI for CPS07 from PXI01
C8MXI	PXI01	sl18_MXI1	MXI	CPS08	MXIx8	CPS08_MXIx8	PXI01_sl18_MXI1	MXI for CPS08 from PXI01

End-User License Agreements and Third-Party Legal Notices

You can find end-user license agreements (EULAs) and third-party legal notices in the following locations after installation:

- o Notices are located in the ProgramFiles (x86) \National Instruments \ Legal Information and ProgramFiles (x86) \National Instruments directories.
- o EULAs are located in the ProgramFiles (x86) \National Instruments\Shared\MDF\Legal\license directory.
- o Review ProgramFiles (x86) \National Instruments \ Legal Information.txt for information on including legal information in installers built with NI products.

Worldwide Support and Services

The NI website is your complete resource for technical support. At ni.com/support you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

Visit ni.com/services for NI Factory Installation Services, repairs, extended warranty, and other services.

Visit ni.com/register to register your NI product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

A Declaration of Conformity (DoC) is our claim of compliance with the Council of the European Communities using the manufacturer's declaration of conformity. This system affords the user protection for electromagnetic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification. If your product supports calibration, you can obtain the calibration certificate for your product at ni.com/calibration.

NI corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. NI also has offices located around the world. For telephone support in the United States, create your service request at ni.com/support or dial 1 866 ASK MYNI (275 6964). For telephone support outside the United States, visit the Worldwide Offices section of ni.com/niglobal to access the branch office websites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.

are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Help-Patents in your software, the patents.txt file on your media, or the National Instruments Patents Notice at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in this document. Refer to the Export Compliance Information at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015. © 2016 National Instruments. All rights reserved. Oct 2016 376638A-01