

 SB-MXI

https://www.apexwaves.com/modular-systems/national-instruments/vxi-and-vme/SB-MXI?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/vxi-and-vme/SB-MXI?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/vxi-and-vme/SB-MXI?aw_referrer=pdf

© Copyright 1991, 1994 National Instruments Corporation.
All Rights Reserved.

NI-VXI™

Software Reference Manual for C

bus

October 1994 Edition

Part Number 371693A-01

National Instruments Corporate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 794-0100
Technical support fax: (800) 328-2203

(512) 794-5678

Branch Offices:
Australia (03) 879 9422, Austria (0662) 435986, Belgium 02/757.00.20, Canada (Ontario) (519) 622-9310,
Canada (Québec) (514) 694-8521, Denmark 45 76 26 00, Finland (90) 527 2321, France (1) 48 14 24 24,
Germany 089/741 31 30, Italy 02/48301892, Japan (03) 3788-1921, Mexico 95 800 010 0793,
Netherlands 03480-33466, Norway 32-84 84 00, Singapore 2265886, Spain (91) 640 0085, Sweden 08-730 49 70,
Switzerland 056/20 51 51, Taiwan 02 377 1200, U.K. 0635 523545

Limited Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as
evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software
media that do not execute programming instructions if National Instruments receives notice of such defects during
the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted
or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the
outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the
shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN , NATIONAL INSTRUMENTS MAKES NO WARRANTIES , EXPRESS OR IMPLIED ,
AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE . CUSTOMER 'S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART

OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER.
NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA , PROFITS ,
USE OF PRODUCTS , OR INCIDENTAL OR CONSEQUENTIAL DAMAGES , EVEN IF ADVISED OF THE POSSIBILITY

THEREOF . This limitation of the liability of National Instruments will apply regardless of the form of action,
whether in contract or tort, including negligence. Any action against National Instruments must be brought within
one year after the cause of action accrues. National Instruments shall not be liable for any delay in performance due
to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects,
malfunctions, or service failures caused by owner's failure to follow the National Instruments installation, operation,
or maintenance instructions; owner's modification of the product; owner's abuse, misuse, or negligent acts; and
power failure or surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole
or in part, without the prior written consent of National Instruments Corporation.

Trademarks

NI-VXI™ and TIC™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE

OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on
the part of the user or application designer. Any use or application of National Instruments products for or involving
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all
traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent
serious injury or death should always continue to be used when National Instruments products are being used.
National Instruments products are NOT intended to be a substitute for any form of established process, procedure, or
equipment used to monitor or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corporation v NI-VXI Software Reference Manual for C

Contents

About This Manual .. xiii

Organization of This Manual .. xiii
Conventions Used in This Manual.. xiv
Related Documentation .. xv
Customer Communication .. xv

Chapter 1

Introduction to VXI .. 1-1

About the NI-VXI Functions .. 1-1
VXIbus Overview ... 1-1

VXI Devices ... 1-1
Register-Based Devices.. 1-2
Message-Based Devices ... 1-2
Word Serial Protocol .. 1-2
Commander/Servant Hierarchies.. 1-3
Interrupts and Asynchronous Events .. 1-3

MXIbus Overview .. 1-3

Chapter 2

Introduction to the NI-VXI Functions .. 2-1

Calling Syntax .. 2-2
LabWindows/CVI ... 2-2
Type Definitions ... 2-3
Input Versus Output Parameters ... 2-3
Return Parameters and System Errors .. 2-3
Multiple Mainframe Support .. 2-3
Embedded Versus External and Extended Controllers ... 2-3

The Extender Versus Controller Parameters .. 2-5
NI-VXI Multiple Mainframe Portability .. 2-6
Using NI-VXI ... 2-7

Variable Types.. 2-7
The datasize.h File ... 2-7
The busacc.h File ... 2-7
The devinfo.h File .. 2-8

The Beginning and End.. 2-8
Useful Tools ... 2-8
Word Serial Communication.. 2-9
Master Memory Access.. 2-9
Slave Memory Access .. 2-11
Interrupts and Signals ... 2-12
Triggers .. 2-13

Chapter 3

System Configuration Functions ... 3-1

Functional Overview .. 3-1
InitVXIlibrary () ... 3-1
CloseVXIlibrary ().. 3-1
FindDevLA (namepat, manid, modelcode, devclass, slot, mainframe, cmdrla, la) 3-2
GetDevInfo (la, field, fieldvalue) ... 3-2
GetDevInfoShort (la, field, shortvalue) .. 3-2
GetDevInfoLong (la, field, longvalue) ... 3-2

Contents

NI-VXI Software Reference Manual for C vi © National Instruments Corporation

GetDevInfoStr (la, field, stringvalue) .. 3-2
SetDevInfo (la, field, fieldvalue) .. 3-2
SetDevInfoShort (la, field, shortvalue) .. 3-3
SetDevInfoLong (la, field, longvalue).. 3-3
SetDevInfoStr (la, field, stringvalue) ... 3-3
CreateDevInfo (la) .. 3-3

Function Descriptions ... 3-4
CloseVXIlibrary ... 3-4
CreateDevInfo .. 3-5
FindDevLA... 3-6
GetDevInfo ... 3-8
GetDevInfoLong .. 3-10
GetDevInfoShort .. 3-11
GetDevInfoStr .. 3-13
InitVXIlibrary... 3-14
SetDevInfo.. 3-15
SetDevInfoLong ... 3-17
SetDevInfoShort ... 3-18
SetDevInfoStr ... 3-20

Chapter 4

Commander Word Serial Protocol Functions ... 4-1

Programming Considerations.. 4-2
Interrupt Service Routine Support .. 4-2
Single-Tasking Operating System Support .. 4-2
Multitasking Support (Non-Preemptive Operating System) .. 4-2
Real-Time Multitasking Support (Preemptive Operating System) .. 4-3

Functional Overview .. 4-5
WSrd (la, buf, count, mode, retcount) .. 4-5
WSrdf (la, filename, count, mode, retcount) .. 4-5
WSwrt (la, buf, count, mode, retcount) .. 4-5
WSwrtf (la, filename, count, mode, retcount) .. 4-5
WScmd (la, cmd, respflag, response) ... 4-5
WSresp (la, response) ... 4-6
WStrg (la) ... 4-6
WSclr (la) ... 4-6
WSabort (la, abortop) ... 4-6
WSLcmd (la, cmd, respflag, response) .. 4-6
WSLresp (la, response) .. 4-7
WSEcmd (la, cmdExt, cmd, respflag, response) .. 4-7
WSsetTmo (timo, actualtimo) .. 4-7
WSgetTmo (actualtimo) ... 4-7

Function Descriptions ... 4-8
WSabort .. 4-8
WSclr .. 4-9
WScmd ... 4-10
WSEcmd... 4-11
WSgetTmo.. 4-13
WSLcmd... 4-14
WSLresp ... 4-15
WSrd... 4-16
WSrdf ... 4-18
WSresp ... 4-20
WSsetTmo .. 4-21
WStrg.. 4-22
WSwrt ... 4-23
WSwrtf ... 4-25

Contents

© National Instruments Corporation vii NI-VXI Software Reference Manual for C

Chapter 5

Servant Word Serial Protocol Functions .. 5-1

Programming Considerations.. 5-2
Functional Overview .. 5-3

WSSenable () .. 5-3
WSSdisable () ... 5-3
WSSrd (buf, count, mode) .. 5-3
SetWSSrdHandler (func) .. 5-3
GetWSSrdHandler () .. 5-3
DefaultWSSrdHandler (status, count) .. 5-4
WSSwrt (buf, count, mode).. 5-4
SetWSSwrtHandler (func).. 5-4
GetWSSwrtHandler () .. 5-4
DefaultWSSwrtHandler (status, count) .. 5-4
SetWSScmdHandler (func) .. 5-4
GetWSScmdHandler () .. 5-5
DefaultWSScmdHandler (cmd).. 5-5
WSSsendResp (response) ... 5-5
WSSnoResp () .. 5-5
SetWSSLcmdHandler (func) .. 5-5
GetWSSLcmdHandler () .. 5-5
DefaultWSSLcmdHandler (cmd) ... 5-6
WSSLsendResp (response) .. 5-6
WSSLnoResp () .. 5-6
SetWSSEcmdHandler (func) .. 5-6
GetWSSEcmdHandler () .. 5-6
DefaultWSSEcmdHandler (cmdExt, cmd) .. 5-6
WSSabort (abortop) .. 5-7
GenProtError (proterr) .. 5-7
RespProtError () ... 5-7

Function Descriptions ... 5-8
GenProtError .. 5-8
GetWSScmdHandler .. 5-9
GetWSSEcmdHandler .. 5-10
GetWSSLcmdHandler .. 5-11
GetWSSrdHandler .. 5-12
GetWSSwrtHandler .. 5-13
RespProtError ... 5-14
SetWSScmdHandler ... 5-15
SetWSSEcmdHandler .. 5-16
SetWSSLcmdHandler .. 5-17
SetWSSrdHandler .. 5-18
SetWSSwrtHandler .. 5-19
WSSabort.. 5-20
WSSdisable .. 5-21
WSSenable ... 5-22
WSSLnoResp ... 5-23
WSSLsendResp .. 5-24
WSSnoResp.. 5-25
WSSrd .. 5-26
WSSsendResp .. 5-27
WSSwrt .. 5-28

Default Handlers for the Servant Word Serial Functions ... 5-29
DefaultWSScmdHandler .. 5-29
DefaultWSSEcmdHandler.. 5-30
DefaultWSSLcmdHandler.. 5-31
DefaultWSSrdHandler.. 5-31
DefaultWSSwrtHandler.. 5-32

Contents

NI-VXI Software Reference Manual for C viii © National Instruments Corporation

Chapter 6

Low-Level VXIbus Access Functions ... 6-1

Programming Considerations.. 6-1
Multiple Pointer Access for a Window .. 6-2

Owner Privilege ... 6-2
Access Only Privilege.. 6-3
Owner and Access Only Privilege Versus Interrupt Service Routines........................ 6-3

Functional Overview .. 6-3
MapVXIAddress (accessparms, address, timo, window, ret) .. 6-3
UnMapVXIAddress (window) ... 6-4
GetWindowRange (window, windowbase, windowend) ... 6-4
VXIpeek (addressptr, width, value).. 6-4
VXIpoke (addressptr, width, value) ... 6-4
SaveContext (contextlist) ... 6-4
RestoreContext (contextlist) ... 6-5
SetContext (window, context) .. 6-5
GetContext (window, context) ... 6-5
SetPrivilege (window, priv).. 6-5
GetPrivilege (window, priv) ... 6-5
SetByteOrder (window, ordermode) .. 6-5
GetByteOrder (window, ordermode).. 6-6
GetVXIbusStatus (controller, status).. 6-6
GetVXIbusStatusInd (controller, field, status) ... 6-6

Function Descriptions ... 6-7
GetByteOrder ... 6-7
GetContext.. 6-8
GetPrivilege.. 6-9
GetVXIbusStatus.. 6-10
GetVXIbusStatusInd .. 6-11
GetWindowRange .. 6-12
MapVXIAddress .. 6-13
RestoreContext ... 6-15
SaveContext.. 6-16
SetByteOrder .. 6-17
SetContext .. 6-18
SetPrivilege .. 6-19
UnMapVXIAddress.. 6-20
VXIpeek ... 6-21
VXIpoke ... 6-22

Chapter 7

High-Level VXIbus Access Functions .. 7-1

Programming Considerations for High-Level VXIbus Access Functions.. 7-1
Functional Overview .. 7-2

VXIin (accessparms, address, width, value) .. 7-2
VXIout (accessparms, address, width, value) .. 7-2
VXIinReg (la, reg, value) ... 7-2
VXIoutReg (la, reg, value) ... 7-2
VXImove (srcparms, srcaddr, destparms, destaddr, length, width) ... 7-2

Function Descriptions ... 7-3
VXIin.. 7-3
VXIinReg ... 7-5
VXImove .. 7-6
VXIout .. 7-8
VXIoutReg ... 7-10

Contents

© National Instruments Corporation ix NI-VXI Software Reference Manual for C

Chapter 8

Local Resource Access Functions .. 8-1

Functional Overview .. 8-1
GetMyLA () .. 8-1
VXIinLR (reg, width, value) .. 8-1
VXIoutLR (reg, width, value) .. 8-1
SetMODID (enable, modid) ... 8-2
ReadMODID (modid) .. 8-2
VXImemAlloc (size, useraddr, vxiaddr) .. 8-2
VXImemCopy (useraddr, bufaddr, size, dir) .. 8-2
VXImemFree (useraddr) .. 8-2

Function Descriptions ... 8-3
GetMyLA ... 8-3
ReadMODID .. 8-4
SetMODID ... 8-5
VXIinLR... 8-6
VXImemAlloc .. 8-7
VXImemCopy .. 8-8
VXImemFree.. 8-10
VXIoutLR... 8-11

Chapter 9

VXI Signal Functions ... 9-1

Programming Considerations for Signal Queuing.. 9-1
WaitForSignal Considerations.. 9-2

Functional Overview .. 9-3
RouteSignal (la, modemask) .. 9-3
EnableSignalInt () .. 9-3
DisableSignalInt ().. 9-3
SetSignalHandler (la, func) .. 9-3
GetSignalHandler (la) .. 9-4
DefaultSignalHandler (signal) .. 9-4
SignalDeq (la, signalmask, signal) ... 9-4
SignalEnq (signal) .. 9-4
SignalJam (signal) .. 9-4
WaitForSignal (la, signalmask, timeout, retsignal, retsignalmask).. 9-4

Function Descriptions ... 9-5
DisableSignalInt ... 9-5
EnableSignalInt .. 9-6
GetSignalHandler ... 9-7
RouteSignal .. 9-8
SetSignalHandler .. 9-10
SignalDeq ... 9-11
SignalEnq ... 9-13
SignalJam ... 9-14
WaitForSignal .. 9-15

Default Handler for VXI Signal Functions... 9-17
DefaultSignalHandler ... 9-17

Chapter 10

VXI Interrupt Functions ... 10-1

Programming Considerations.. 10-2
ROAK Versus RORA VXI Interrupters ... 10-2

Functional Overview .. 10-3
RouteVXIint (controller, Sroute).. 10-3
EnableVXItoSignalInt (controller, levels).. 10-3

Contents

NI-VXI Software Reference Manual for C x © National Instruments Corporation

DisableVXItoSignalInt (controller, levels) .. 10-4
EnableVXIint (controller, levels) ... 10-4
DisableVXIint (controller, levels) .. 10-4
VXIintAcknowledgeMode (controller, modes).. 10-4
SetVXIintHandler (levels, func) .. 10-4
GetVXIintHandler (level) .. 10-5
DefaultVXIintHandler (controller, level, statusId) .. 10-5
AssertVXIint (controller, level, statusId) ... 10-5
DeAssertVXIint (controller, level) ... 10-5
AcknowledgeVXIint (controller, level, statusId) ... 10-5

Function Descriptions ... 10-6
AcknowledgeVXIint .. 10-6
AssertVXIint .. 10-7
DeAssertVXIint .. 10-8
DisableVXIint .. 10-9
DisableVXItoSignalInt ... 10-10
EnableVXIint.. 10-11
EnableVXItoSignalInt .. 10-12
GetVXIintHandler .. 10-13
RouteVXIint ... 10-14
SetVXIintHandler ... 10-15
VXIintAcknowledgeMode ... 10-16

Default Handler for VXI Interrupt Functions ... 10-17
DefaultVXIintHandler .. 10-17

Chapter 11

VXI Trigger Functions .. 11-1

Capabilities of the National Instruments Triggering Hardware.. 11-2
External Controller/VXI-MXI Trigger Capabilities (without TIC Chip) 11-2
Embedded Controller Trigger Capabilities (without TIC Chip) .. 11-3
Embedded and External Controller Trigger Capabilities (with TIC Chip) 11-3

Sourcing ... 11-6
Accepting ... 11-8
Mapping/Conditioning ... 11-8
Setup/Configuration Options ... 11-9
Combination Options ... 11-9

Functional Overview .. 11-10
Source Trigger Functions ... 11-10

SrcTrig (controller, line, prot, timeout).. 11-10
SetTrigHandler (lines, func) .. 11-10
GetTrigHandler (line) .. 11-10
DefaultTrigHandler (controller, line, type).. 11-10
DefaultTrigHandler2 (controller, line, type) .. 11-11

Acceptor Trigger Functions.. 11-11
EnableTrigSense (controller, line, prot) ... 11-11
DisableTrigSense (controller, line) .. 11-11
SetTrigHandler (lines, func) .. 11-11
GetTrigHandler (line) .. 11-11
DefaultTrigHandler (controller, line, type).. 11-12
DefaultTrigHandler2 (controller, line, type) .. 11-12
AcknowledgeTrig (controller, line) ... 11-12
WaitForTrig (controller, line, timeout) .. 11-12

Map Trigger Functions ... 11-12
MapTrigToTrig (controller, srcTrig, destTrig, mode) ... 11-13
UnMapTrigToTrig (controller, srcTrig, destTrig) ... 11-13

Trigger Configuration Functions.. 11-13
TrigAssertConfig (controller, trigline, mode).. 11-13
TrigExtConfig (controller, extline, mode) ... 11-13

Contents

© National Instruments Corporation xi NI-VXI Software Reference Manual for C

TrigCntrConfig (controller, mode, source, count) ... 11-14
TrigTickConfig (controller, mode, source, tcount1, tcount2)...................................... 11-14

Function Descriptions ... 11-15
AcknowledgeTrig ... 11-15
DisableTrigSense.. 11-17
EnableTrigSense... 11-18
GetTrigHandler .. 11-20
MapTrigToTrig .. 11-21
SetTrigHandler ... 11-23
SrcTrig.. 11-24
TrigAssertConfig.. 11-26
TrigCntrConfig ... 11-28
TrigExtConfig .. 11-30
TrigTickConfig... 11-32
UnMapTrigToTrig.. 11-34
WaitForTrig.. 11-35

Default Handlers for VXI Trigger Functions.. 11-36
DefaultTrigHandler .. 11-36
DefaultTrigHandler2 .. 11-37

Chapter 12

System Interrupt Handler Functions ... 12-1

Functional Overview .. 12-1
EnableSysfail (controller) .. 12-1
DisableSysfail (controller).. 12-1
SetSysfailHandler (func) .. 12-1
GetSysfailHandler () .. 12-2
DefaultSysfailHandler (controller) ... 12-2
EnableACfail (controller) ... 12-2
DisableACfail (controller) .. 12-2
SetACfailHandler (func) .. 12-2
GetACfailHandler () ... 12-2
DefaultACfailHandler (controller) ... 12-3
EnableSoftReset () .. 12-3
DisableSoftReset () .. 12-3
SetSoftResetHandler (func).. 12-3
GetSoftResetHandler () .. 12-3
DefaultSoftResetHandler () .. 12-4
EnableSysreset (controller) .. 12-4
DisableSysreset (controller) ... 12-4
AssertSysreset (controller, mode) .. 12-4
SetSysresetHandler (func) .. 12-4
GetSysresetHandler () .. 12-4
DefaultSysresetHandler (controller) .. 12-4
SetBusErrorHandler (func) .. 12-5
GetBusErrorHandler () ... 12-5
DefaultBusErrorHandler () ... 12-5

Function Descriptions ... 12-6
AssertSysreset .. 12-6
DisableACfail ... 12-7
DisableSoftReset .. 12-8
DisableSysfail ... 12-9
DisableSysreset .. 12-10
EnableACfail .. 12-11
EnableSoftReset ... 12-12
EnableSysfail .. 12-13
EnableSysreset.. 12-14
GetACfailHandler .. 12-15

Contents

NI-VXI Software Reference Manual for C xii © National Instruments Corporation

GetBusErrorHandler ... 12-16
GetSoftResetHandler .. 12-17
GetSysfailHandler .. 12-18
GetSysresetHandler .. 12-19
SetACfailHandler ... 12-20
SetBusErrorHandler ... 12-21
SetSoftResetHandler .. 12-22
SetSysfailHandler ... 12-23
SetSysresetHandler ... 12-24

Default Handlers for the System Interrupt Handler Functions ... 12-25
DefaultACfailHandler .. 12-25
DefaultBusErrorHandler .. 12-25
DefaultSoftResetHandler.. 12-25
DefaultSysfailHandler .. 12-26
DefaultSysresetHandler .. 12-26

Chapter 13

VXIbus Extender Functions .. 13-1

Functional Overview .. 13-1
MapECLtrig (extender, lines, directions) ... 13-1
MapTTLtrig (extender, lines, directions) ... 13-1
MapUtilBus (extender, modes) .. 13-1
MapVXIint (extender, levels, directions) ... 13-2

Function Descriptions ... 13-3
MapECLtrig.. 13-3
MapTTLtrig.. 13-4
MapUtilBus .. 13-5
MapVXIint ... 13-6

Appendix

Customer Communication ... A-1

Glossary .. G-1

Index ... I-1

Figures

Figure 1-1. VXI Configuration Registers ... 1-1
Figure 1-2. VXI Software Protocols ... 1-2

Figure 2-1. Embedded Versus External CPU Configurations .. 2-4
Figure 2-2. Extender Versus Controller Parameters ... 2-5
Figure 2-3. External CPU Configuration with Multiple Extended Controllers.. 2-6

Figure 4-1. Non-Preemptive Word Serial Mutual Exclusion (Per Logical Address) 4-3
Figure 4-2. Preemptive Word Serial Mutual Exclusion (Per Logical Address) ... 4-4

Figure 5-1. NI-VXI Servant Word Serial Model .. 5-2

Figure 9-1. NI-VXI VXI Interrupt and Signal Model .. 9-2

Figure 10-1. NI-VXI VXI Interrupt and Signal Model .. 10-2

Figure 11-1. TIC Chip Block Diagram ... 11-4
Figure 11-2. Trigger Module Block Diagram... 11-5

© National Instruments Corporation xiii NI-VXI Software Reference Manual for C

About This Manual

This manual describes in detail the features of the NI-VXI software and the VXI function calls in C language.

Organization of This Manual

The NI-VXI Software Reference Manual for C is organized as follows:

• Chapter 1, Introduction to VXI, introduces you to the concepts of VXI and MXI, and to the NI-VXI software.

• Chapter 2, Introduction to the NI-VXI Functions, introduces you to the NI-VXI functions and their capabilities,
discusses the use of function parameters, describes application environments for which the functions are
designed, and concludes with an overview on using NI-VXI.

• Chapter 3, System Configuration Functions, describes the C syntax and use of the VXI system configuration
functions. These functions copy all of the Resource Manager table information into data structures at startup so
that you can find device names or logical addresses by specifying certain attributes of the device for
identification purposes. This chapter defines the parameters and shows examples of the use of each function.

• Chapter 4, Commander Word Serial Protocol Functions , describes the C syntax and use of the VXI Commander
Word Serial Protocol functions. Word serial communication is the minimal mode of communication between
VXI Message-Based devices within the VXI Commander/Servant hierarchy. Commander Word Serial
functions let the local CPU (the CPU on which the NI-VXI interface resides) perform VXI Message-Based
Commander Word Serial communication with its Servants. This chapter defines the parameters and shows
examples of the use of each function.

• Chapter 5, Servant Word Serial Protocol Functions , describes the C syntax and use of the VXI Servant Word
Serial Protocol functions and default handlers. Word serial communication is the minimal mode of
communication between VXI Message-Based devices within the VXI Commander/Servant hierarchy. The local
CPU (the CPU on which the NI-VXI interface resides) uses the Servant Word Serial functions to perform VXI
Message-Based Servant Word Serial communication with its Commander. This chapter defines the parameters
and shows examples of the use of each function.

• Chapter 6, Low-Level VXIbus Access Functions, describes the C syntax and use of the VXI low-level VXIbus
access functions. Low-level VXIbus access is the fastest access method for directly reading from or writing to
any of the VXIbus address spaces. This chapter defines the parameters and shows examples of the use of each
function.

• Chapter 7, High-Level VXIbus Access Functions, describes the C syntax and use of the VXI high-level VXIbus
access functions. With high-level VXIbus access functions, you have direct access to the VXIbus address
spaces. You can use these functions to read, write, and move blocks of data between any of the VXIbus address
spaces. When execution speed is not a critical issue, these functions provide an easy-to-use interface. This
chapter defines the parameters and shows examples of the use of each function.

• Chapter 8, Local Resource Access Functions , describes the C syntax and use of the VXI local resource access
functions. With these functions, you have access to miscellaneous local resources such as the local CPU VXI
register set, Slot 0 MODID operations, and the local CPU VXI Shared RAM. These functions are useful for
shared memory type communication, non-Resource Manager operation, and debugging purposes. This chapter
defines the parameters and shows examples of the use of each function.

• Chapter 9, VXI Signal Functions, describes the C syntax and use of the VXI signal functions and default
handler. With these functions, VXI bus master devices can interrupt another device. VXI signal functions can
specify the signal routing, manipulate the global signal queue, and wait for a particular signal value (or set of
values) to be received. This chapter defines the parameters and shows examples of the use of each function.

About This Manual

NI-VXI Software Reference Manual for C xiv © National Instruments Corporation

• Chapter 10, VXI Interrupt Functions , describes the C syntax and use of the VXI interrupt functions and default
handler. VXI interrupts are a basic form of asynchronous communication used by VXI devices with VXI
interrupter support. These functions can specify the status/ID processing method, install interrupt service
routines, and assert specified VXI interrupt lines with a specified status/ID value. This chapter defines the
parameters and shows examples of the use of each function.

• Chapter 11, VXI Trigger Functions, describes the C syntax and use of the VXI trigger functions and default
handlers. These functions provide a standard interface to source and accept any of the VXIbus TTL or ECL
trigger lines. VXI trigger functions support all VXI-defined trigger protocols, with the actual capabilities
dependent on the specific hardware platform. This chapter defines the parameters and shows examples of the
use of each function.

• Chapter 12, System Interrupt Handler Functions , describes the C syntax and use of the VXI system interrupt
handler functions and default handlers. With these functions, you can handle miscellaneous system conditions
that can occur in the VXI environment. This chapter defines the parameters and shows examples of the use of
each function.

• Chapter 13, VXIbus Extender Functions , describes the C syntax and use of the VXI extender functions. These
functions can be used to dynamically reconfigure multi-mainframe transparent mapping of the VXI interrupt
and trigger lines and utility bus signals. This chapter defines the parameters and shows examples of the use of
each function.

• The appendix, Customer Communication, directs you where you can find forms you can use to request help
from National Instruments or to comment on our products and manuals.

• The Glossary contains an alphabetical list and description of terms used in this manual, including abbreviations,
acronyms, and metric prefixes.

• The Index contains an alphabetical list of key terms and topics used in this manual, including the page where
each one can be found.

Conventions Used in This Manual

Throughout this manual, the following conventions are used to distinguish elements of text:

italic Italic text denotes emphasis, a cross reference, or an introduction to a key concept. In
this manual, italics are also used to denote Word Serial commands, queries, and signals.

monospace Text in this font denotes the names of all VXI function calls, sections of code, function
syntax, parameter names, console responses, and syntax examples.

bold italic Text in this font denotes an important note.

Numbers in this manual are base 10 unless noted as follows:

• Binary numbers are indicated by a -b suffix (for example, 11010101b).

• Octal numbers are indicated by an -o suffix (for example, 325o).

• Hexadecimal numbers are indicated by an -h suffix (for example, D5h).

• ASCII character and string values are indicated by double quotation marks (for example, "This is a string").

• Long values are indicated by an L suffix (for example, 0x1111L).

Terminology that is specific to a chapter or section is defined at its first occurrence.

About This Manual

© National Instruments Corporation xv NI-VXI Software Reference Manual for C

Related Documentation

The following documents contain information that you may find helpful as you read this manual:

• IEEE Standard for a Versatile Backplane Bus: VMEbus , ANSI/IEEE Standard 1014-1987

• Multisystem Extension Interface Bus Specification, Version 1.2

• VXI-1, VXIbus System Specification, Revision 1.4, VXIbus Consortium

• VXI-6, VXIbus Mainframe Extender Specification , Revision 1.0, VXIbus Consortium

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We are interested in the
applications you develop with our products, and we want to help if you have problems with them. To make it easy
for you to contact us, this manual and your Getting Started manual contain comment and configuration forms for
you to complete. These forms are in the appendix, Customer Communication, at the end of our manuals.

© National Instruments Corporation 1-1 NI-VXI Software Reference Manual for C

Chapter 1
Introduction to VXI

This chapter introduces you to the concepts of VXI (VME eXtensions for Instrumentation) and MXI (Multisystem
eXtension Interface), and to the NI-VXI software.

About the NI-VXI Functions

The comprehensive functions for programming the VXIbus that are included with the NI-VXI software are available
for a variety of controller platforms and operating systems. Among the compatible platforms are the National
Instruments line of embedded controllers and external computers that have a MXIbus interface.

This manual describes the NI-VXI functions in groups based on their functionality. Chapter 2, Introduction to the
NI-VXI Functions, describes these groups and explains when the functions within a group are normally used.
Chapters 3 through 13 completely define each function within a group.

VXIbus Overview

This section introduces some of the concepts of the VXIbus specification.

VXI Devices

A VXI device has a unique logical address, which serves as a means of accessing the device in the VXI system.
This logical address is analogous to a GPIB device address. VXI uses an 8-bit logical address, allowing for up to
256 VXI devices in a VXI system.

Each VXI device must have a specific set of registers, called configuration registers (Figure 1-1). These registers
are located in the upper 16 KB of the 64 KB A16 VME address space. The logical address of a VXI device
determines the location of the device's configuration registers in the 16 KB area reserved by VXI.

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

A32 Pointer

A24 Pointer

Data Low

Data High

Response/Data
Extended

Protocol/Signal

Offset

Status/Control

Device Type

ID Register

VXI Configuration
Space

Offset

3F

20

IE

1C

1A

18

16

14

12
10

0E

0C

0A

08

06

04

02

00

• Upper 16 KB of A16
 space reserved for
 VXI configuration space

• 64 bytes per device

• 8-bit logical
 address specifies
 base address for
 each device

• 256 devices per
 VXI system

Device
Dependent
Registers

Reserved
by VXIbus
Specification

Communication
Registers
Required for VXI
Message-Based
Devices

Configuration
Registers
Required for all
VXI Devices

Figure 1-1. VXI Configuration Registers

Introduction to VXI Chapter 1

NI-VXI Software Reference Manual for C 1-2 © National Instruments Corporation

Register-Based Devices

Through the use of the VXI configuration registers, which are required for all VXI devices, the system can identify
each VXI device, its type, model and manufacturer, address space, and memory requirements. VXIbus devices with
only this minimum level of capability are called register-based devices. With this common set of configuration
registers, the centralized Resource Manager (RM), essentially a software module, can perform automatic system and
memory configuration when the system is initialized.

Message-Based Devices

In addition to register-based devices, the VXIbus specification also defines message-based devices, which are
required to have communication registers as well as the configuration registers. All message-based VXIbus devices,
regardless of the manufacturer, can communicate at a minimum level using the VXI-specified Word Serial Protocol,
as shown in Figure 1-2. In addition, you can establish higher-performance communication channels, such as shared-
memory channels, to take advantage of the VXIbus bandwidth capabilities.

Device-

Specific

Protocols

Device-

Specific

Protocols

Shared-
Memory
Protocol

488-VXIbus
Protocol

Device-

Specific

Protocols

488.2
Syntax

Word Serial Protocol

Communication Registers

Configuration Registers

Device-

Specific

Protocols

Figure 1-2. VXI Software Protocols

Word Serial Protocol

The VXIbus Word Serial Protocol is a standardized message-passing protocol. This protocol is functionally very
similar to the IEEE 488 protocol, which transfers data messages to and from devices one byte (or word) at a time.
Thus, VXI message-based devices communicate in a fashion very similar to IEEE 488 instruments. In general,
Message-based devices typically contain some level of local intelligence that uses or requires a high level of
communication. In addition, Word Serial Protocol has messages for configuring message-based devices and the
system resources.

Chapter 1 Introduction to VXI

© National Instruments Corporation 1-3 NI-VXI Software Reference Manual for C

All VXI message-based devices are required to use Word Serial Protocol and communicate in a standard way. The
protocol is called word serial , because if you want to communicate with a message-based device, you do so by
writing and reading 16-bit words one at a time to and from the Data In (write Data Low) and Data Out (read Data
Low) hardware registers located on the device itself. Word serial communication is paced by bits in the device's
response register that indicate whether the Data In register is empty and whether the Data Out register is full. This
operation is very similar to Universal Asynchronous Receiver Transmitter (UART) on a serial port.

Commander/Servant Hierarchies

The VXIbus specification defines a Commander/Servant communication protocol you can use to construct
hierarchical systems using conceptual layers of VXI devices. This structure is like an inverted tree. A Commander
is any device in the hierarchy with one or more associated lower-level devices, or Servants. A Servant is any device
in the subtree of a Commander. A device can be both a Commander and a Servant in a multiple-level hierarchy.

A Commander has exclusive control of its immediate Servants’ (one or more) communication and configuration
registers. Any VXI module has one and only one Commander. Commanders use Word Serial Protocol to
communicate with Servants through the Servants’ communication registers. Servants communicate with their
Commander, responding to the Word Serial commands and queries from their Commander. Servants can also
communicate asynchronous status and events to their Commander through hardware interrupts, or by writing
specific messages directly to their Commander’s Signal register.

Interrupts and Asynchronous Events

Servants can communicate asynchronous status and events to their Commander through hardware interrupts or by
writing specific messages (signals) directly to their Commander's hardware Signal register. Devices that do not have
bus master capability always transmit such information via interrupts, whereas devices that do have bus master
capability can use either interrupts or send signals. Some devices can receive only signals, some only interrupts,
while some others can receive both signals and interrupts.

The VXIbus specification defines Word Serial commands so that a Commander can understand the capabilities of its
Servants and configure them to generate interrupts or signals in a particular way. For example, a Commander can
instruct its Servants to use a particular interrupt line, to send signals rather than generate interrupts, or configure the
reporting of only certain status or error conditions.

Although the Word Serial Protocol is reserved for Commander/Servant communications, you can establish peer-to-
peer communication between two VXI devices through a specified shared-memory protocol or simply by writing
specific messages directly to the device's Signal register.

MXIbus Overview

The MXIbus is a high-performance communication link that interconnects devices using round, flexible cables.
MXI operates like modern backplane computer buses, but is a cabled communication link for very high-speed
communication between physically separate devices. The emergence of the VXIbus inspired MXI. National
Instruments, a member of the VXIbus Consortium, recognized that VXI requires a new generation of connectivity
for the instrumentation systems of the future. National Instruments developed the MXIbus specification over a
period of two years and announced it in April 1989 as an open industry standard.

National Instruments offers MXI interface products for a variety of platforms, including the VXIbus and VMEbus
backplane systems, and the PC AT, EISA, PS/2, Sun SPARCstation, Macintosh, DECstation 5000, and IBM RISC
System/6000 computer systems. These MXI products directly and transparently couple these industry-standard
computers to the VXIbus and the VMEbus backplanes. They also transparently extend VXI/VME across multiple
mainframes, and seamlessly integrate external devices that cannot physically fit on a plug-in module into a
VXI/VME system.

© National Instruments Corporation 2-1 NI-VXI Software Reference Manual for C

Chapter 2
Introduction to the NI-VXI Functions

This chapter introduces you to the NI-VXI functions and their capabilities, discusses the use of function parameters,
describes application environments for which the functions are designed, and concludes with an overview on using
NI-VXI. You can find additional summaries on each class of function at the beginning of the function description
chapters.

The NI-VXI functions are a set of C language functions you can use to perform operations in the VXI environment.
The NI-VXI C language interface is independent of the hardware platform and the operating system environment.

The NI-VXI functions are divided into the following groups:

• System Configuration Functions
The system configuration functions provide the lowest level initialization of the NI-VXI interface.
In addition, the system configuration functions can retrieve or modify device configuration
information.

• Commander Word Serial Protocol Functions
Word Serial is the minimal mode of communication between VXI message-based devices.
Commander Word Serial functions give you the necessary capabilities to communicate with a
message-based Servant device using the Word Serial, Longword Serial, or Extended Longword
Serial protocols. These capabilities include command/query sending and buffer reads/writes.

• Servant Word Serial Protocol Functions
Servant Word Serial functions give you the necessary capabilities to communicate with the
message-based Commander of the local CPU (the device on which the NI-VXI interface resides)
using the Word Serial, Longword Serial, or Extended Longword Serial protocols. These capabilities
include command/query handling and buffer reads/writes.

• Low-Level VXIbus Access Functions
Low-level VXIbus access is the fastest access method for directly reading from or writing to any of
the VXIbus address spaces. You can use these functions to obtain a pointer that is directly mapped
to a particular VXIbus address. Then you use the pointer with the low-level VXIbus access
functions to read from or write to the VXIbus address space. When using these functions in your
application, you need to consider certain programming constraints and error conditions such as bus
errors (BERR*).

• High-Level VXIbus Access Functions
Similar to the low-level VXIbus access functions, the high-level VXIbus access functions give you
direct access to the VXIbus address spaces. You can use these functions to read, write, and move
blocks of data between any of the VXIbus address spaces. You can specify any VXIbus privilege
mode or byte order. The functions trap and report bus errors. When the execution speed is not a
critical issue, the high-level VXIbus access functions provide an easy-to-use interface.

• Local Resource Access Functions
Local resource access functions let you access miscellaneous local resources such as the local CPU
VXI register set, Slot 0 MODID operations (when the local device is configured for Slot 0
operation), and the local CPU VXI Shared RAM. These functions are useful for shared memory
type communication, for non-Resource Manager operation (when the local CPU is not the Resource
Manager), and for debugging purposes.

• VXI Signal Functions
VXI signals are a method for VXI bus masters to interrupt another device. The value written to a
device's Signal register has the same format as the status/ID value returned during a VXI interrupt

Introduction to the NI-VXI Functions Chapter 2

NI-VXI Software Reference Manual for C 2-2 © National Instruments Corporation

acknowledge cycle. You can route VXI signals to a handler or queue them on a global signal queue.
You can use these functions to specify the signal routing, install handlers, manipulate the global
signal queue, and wait for a particular signal value (or set of values) to be received.

• VXI Interrupt Functions
VXI interrupt functions let you process individual VXI interrupt status/IDs as VME status/IDs, VXI
status/IDs, or VXI signals. By default, status/IDs are processed as VXI signals (either with a handler
or by queuing on the global signal queue). VXI interrupt functions can specify the status/ID
processing method and install interrupt service routines. In addition, VXI interrupt functions can
assert specified VXI interrupt lines with a specified status/ID value.

• VXI Trigger Functions
The VXI trigger functions are a standard interface for sourcing and accepting any of the VXIbus
TTL or ECL trigger lines. The VXI trigger functions work with all VXI-defined trigger protocols.
The actual capabilities depend on the specific hardware platform. The VXI trigger functions can
install handlers for various trigger interrupt conditions.

• System Interrupt Handler Functions
The system interrupt handler functions let you install handlers for the system interrupt conditions.
These conditions include Sysfail, ACfail, bus error, and soft reset interrupts.

• VXIbus Extender Functions
The VXIbus extender functions can dynamically reconfigure multiple-mainframe transparent
mapping of the VXI interrupt lines, TTL triggers, ECL triggers, and utility bus signals. The National
Instruments Resource Manager configures the mainframe extenders with settings based on user-
modifiable configuration files.

Calling Syntax

This manual uses a generic syntax to describe each function and its arguments. The function syntaxes used are C
programming language specific. The C language interface is the same regardless of the development environment
or the operating system used. Great care has been taken to accommodate all types of operating systems with the
same functional interface (C source level-compatible), whether it is non-multitasking (for example, MS-DOS),
pseudo multitasking (such as MS Windows or Macintosh OS), multitasking (for example, UNIX or OS/2), or real-
time (such as LynxOS or VxWorks). The NI-VXI interface includes most of the mutual exclusion necessary for a
multitasking environment. Each individual platform has been optimized within the boundaries of the particular
hardware and operating system environment.

LabWindows®/CVI

You can use the functions described in this manual with LabWindows/CVI. LabWindows/CVI is a complete,
full -function integrated development environment for building instrumentation applications using the ANSI C
programming language. You can use LabWindows/CVI with Microsoft Windows on PC-compatible computers or
with Solaris on Sun SPARCstations, and the applications you develop are portable across either platform.

National Instruments offers VXI development systems for these two platforms that link the NI-VXI driver software
into LabWindows/CVI to control VXI instruments from either embedded VXI controllers or external computers
equipped with a MXI interface. All of the NI-VXI functions described in this manual are completely compatible
with LabWindows/CVI.

Chapter 2 Introduction to the NI-VXI Functions

© National Instruments Corporation 2-3 NI-VXI Software Reference Manual for C

Type Definitions

The following parameter types are used for all the NI-VXI functions in the following chapters and in the actual
NI-VXI libraries function definitions. NI-VXI uses this list of parameter types as an independent method for
specifying data type sizes among the various operating systems and target CPUs of the NI-VXI software interface.

typedef char INT8; /* 8-bit signed integer */
typedef unsigned char UINT8; /* 8-bit unsigned integer */
typedef short INT16; /* 16-bit signed integer */
typedef unsigned short UINT16; /* 16-bit unsigned integer */
typedef long INT32; /* 32-bit signed integer */
typedef unsigned long UINT32; /* 32-bit unsigned integer */

Input Versus Output Parameters

Because all C function calls pass function parameters by value (not by reference), you must specify the address of
the parameter when the parameter is an output parameter. The C "&" operator accomplishes this task.

For example: ret = VXIinReg (la, reg, &value);

Because value is an output parameter, &value is sent to the function instead of just value . la and reg would
be considered input parameters.

Return Parameters and System Errors

All NI-VXI functions return a status indicating a degree of success or failure. The return code of 0x8000 is reserved
as a return status value for any function to signify that a system error occurred during the function call. This return
value usually occurs only when an operating system IOCTL call to the driver fails, but could occur because of
system errors as well. This error is specific to the operating system on which the NI-VXI interface is running. If
your system is configured correctly and does not conflict with other operating system drivers, this error should never
occur. On systems in which NI-VXI is a linkable library, this error code is never returned.

Multiple Mainframe Support

The NI-VXI functions described in this manual fully support multiple mainframes both in external CPU
configurations and embedded CPU configurations. The Startup Resource Manager supports one or more mainframe
extenders and configures a single- or multiple-mainframe VXI system. Refer to VXIbus Mainframe Extender
Specification, Revision 1.3 or later, for more details on multiple mainframe systems.

If you have a multiple-mainframe VXI system, please continue with the following sections in this chapter. If you
have a single-mainframe system, you can proceed to the other chapters in this manual.

Embedded Versus External and Extended Controllers

The two basic types of multiple-mainframe configurations are the embedded CPU (controller) configuration and the
external CPU (controller) configuration. The embedded CPU configuration is an intelligent CPU interface directly
plugged into the VXI backplane. The embedded CPU must have all of its required VXI interface capabilities built
onto the embedded CPU itself. An embedded CPU has direct access to the VXIbus backplane for which it is
installed. Access to other mainframes is done through the use of mainframe extenders.

Introduction to the NI-VXI Functions Chapter 2

NI-VXI Software Reference Manual for C 2-4 © National Instruments Corporation

The external CPU configuration involves plugging an interface board into an existing computer that connects the
external CPU to VXI mainframes via one or more VXIbus extended controllers. An extended controller is a
mainframe extender with additional VXIbus Controller capabilities.

Figure 2-1 illustrates the embedded and external CPU configurations.

bus

 NATIONAL

INS TRUM
ENT

S ®

MXI Cable

 N
ATIO

NAL

IN
S TRUM

ENT
S

®

bus

VXIpc Embedded CPU

bus

 NATIONAL

INS TRUM
ENT

S ®

bus

 NATIONAL

INS TRUM
ENT

S ®

 N
ATIO

NAL

IN
S TRUM

ENT
S

®

bus

External CPU Extended Controller

MXIbus Interface

a. Embedded CPU

Configuration

b. External CPU

Configuration

Sub Frames

Sub Frames

Root Frame

Root Frame

bus

 NATIONAL

INS TRUM
ENT

S ®

Figure 2-1. Embedded Versus External CPU Configurations

Special features outside of the scope of the VXIbus Mainframe Extender Specification have been added to National
Instruments MXIbus mainframe extender products for more complete support of the VXIbus capabilities. These
features give the external CPU all of the features of an embedded CPU, including VXI interrupt, TTL trigger, ECL
trigger, Sysfail, ACfail, and Sysreset support for VXI systems. The external computer uses these features to
interrupt on, sense, and/or assert these backplane signals. The specific capabilities of the MXIbus mainframe
extender are dependent upon the specific product and configuration.

Extended controllers exist only on the first level of mainframe hierarchy, as Figure 2-1 illustrates. The first level of
hierarchy for the embedded CPU is always the local mainframe. Because of this, the embedded CPU will never
have any extended controllers. An external CPU along with an extended controller is functionally equivalent to an
embedded CPU configuration. An external CPU with more than one extended controller is a superset of the
embedded CPU configuration. If the application requires the local CPU (external or embedded) to receive VXI
interrupts, triggers, and utility signals from below the first level of mainframe hierarchy, you should extend these
VXIbus signals using the transparent VXIbus extender method (requiring INTX support on MXI extender products)
via the Resource Manager configuration or VXIbus extender functions.

Chapter 2 Introduction to the NI-VXI Functions

© National Instruments Corporation 2-5 NI-VXI Software Reference Manual for C

The Extender Versus Controller Parameters

This document uses the extender and controller parameters to specify the VXI mainframe to which a
particular function applies. In general, the value of the extender or controller parameter is either the local
CPU or the logical address of the VXI mainframe extender device that is used to access the particular mainframe
(for example, a VXI-MXI or VME-MXI). Figure 2-2 shows an example of mainframe extenders used with the
extender and/or controller parameters.

bus

 NATIONAL

INS TRUM
ENT

S ¤

bus

 NATIONAL

INS TRUM
ENT

S ¤

 N
ATIO

NAL

IN
S TRUM

ENT
S

¤

bus

bus

 NATIONAL

INS TRUM
ENT

S ¤

bus

 NATIONAL

INS TRUM
ENT

S ¤

 N
ATIO

NAL

IN
S TRUM

ENT
S

¤

bus

Controller

and

Extender

Controller

Only

b. Embedded CPU

Configuration

a. External CPU

 Configuration

Extender

Only

Controller

Only

Extender

Only

bus

 NATIONAL

INS TRUM
ENT

S ¤

Figure 2-2. Extender Versus Controller Parameters

You can use the extender parameter only with the VXIbus extender functions, which are fully described in
Chapter 13, VXIbus Extender Functions . With these functions, you can reconfigure the transparent mainframe
extension configured by the Resource Manager. The extensions included are VXI interrupts, TTL and ECL triggers,
and utility bus (Sysfail, ACfail, and Sysreset). The capabilities of the VXIbus extender functions are mapped
directly onto the capabilities of the individual mapping registers of the standard VXIbus mainframe extender.
Because the Resource Manager configures the mainframe extenders with settings based on user-modifiable
configuration files, your application probably will never need the VXIbus extender functions.

You will find the controller parameter only in NI-VXI functions that apply to embedded or extended controller
capabilities. These capabilities include VXI interrupt, ACfail, Sysfail, and TTL/ECL trigger services. In embedded
CPU configurations, you must always use a -1 or local CPU logical address for the controller parameter to
specify the local resources of the embedded CPU. For external CPU configurations, a -1 or local CPU logical
address specifies the first extended controller (mainframe extender with the lowest logical address).

You can use other values in external CPU configurations that have more than one extended controller. In this case,
the controller parameter value is the logical address of the particular extended controller for which the
functions should apply. As a result, you can use different sets of VXIbus resources within individual first-level
mainframes (for example, different interrupt levels handled on a per-mainframe basis). Notice that having more
than one extended controller is not directly portable to the embedded CPU configuration.

Introduction to the NI-VXI Functions Chapter 2

NI-VXI Software Reference Manual for C 2-6 © National Instruments Corporation

NI-VXI Multiple Mainframe Portability

You should aim to achieve full portability between an external CPU configuration and an embedded CPU
configuration in any multiple-platform application. Assuming that the extended controller and the embedded
CPU have the required hardware support, single-mainframe systems have no configuration portability problems.
Single-mainframe systems do not require functions that use the extender parameter for multiple-mainframe
extension, and functions that use the controller parameter always specify the single extended controller or
embedded CPU by default.

However, for direct portability of a multiple-mainframe configuration, you should probably not use multiple
mainframes (extended controllers) on the first level of the hierarchy. Because the first link into VXI for an
embedded CPU is a single VXI backplane interface (and not multiple backplane interfaces), there is no functional
equivalent to the external CPU multiple extended controller configuration. Figure 2-3 shows an example of this
type of configuration.

bus

 NATIONAL

INS TRUM
ENT

S ®

bus

 NATIONAL

INS TRUM
ENT

S ®

 N
ATIO

NAL

IN
S TRUM

ENT
S

®

bus

MXIbus

External Controller

Extended Controllers

Figure 2-3. External CPU Configuration with Multiple Extended Controllers

While this configuration may be advantageous for certain applications, it is not directly portable to an embedded
CPU configuration (the embedded CPU configuration is more restrictive). For external CPU configurations, the
only equivalent configuration is one extended controller on the first link from the external CPU. You should extend
any additional mainframes out of the first (root) frame. Figure 2-1 illustrates this type of configuration. When
looking for portability problems between the two types of configurations, always consider the combination of the
external CPU and its associated mainframe extender as equivalent to an embedded CPU. The special features of the
MXI mainframe extenders give the external CPU the extended VXIbus capabilities of an embedded CPU (on a
per-mainframe basis). The NI-VXI interface treats the combination of the external CPU and the MXI mainframe
extenders (extended controllers) as equivalent to an embedded CPU.

It is possible to change the external CPU configuration shown in Figure 2-1 into a multiple first-level mainframe
configuration. Figure 2-3 shows how you could arrange the three mainframes. Notice that the first (root)
mainframe has two mainframe extenders in Figure 2-1 in order to make a two-level mainframe hierarchy, whereas
the configuration in Figure 2-3 has only one. The multiple first-level case always saves one mainframe extender
interface. This savings may overcome the portability advantages for your application.

On the other hand, it is possible to make a multiple mainframe configuration such as the system in Figure 2-3 fully
compatible with the embedded CPU configuration in Figure 2-1. Multiple mainframes on the first level in an
external CPU situation are not software compatible with the embedded CPU situation for one reason. Any functions
that use the controller parameter with values other than -1 or the local CPU logical address would cause error
codes to be returned when used in the embedded CPU configuration. Using these controller parameter values
implies that more than one extended controller has VXI interrupts, triggers, Sysfail, and/or ACfail conditions
controlled directly by the external CPU. For full portability, you need to avoid this situation. You can do so by

Chapter 2 Introduction to the NI-VXI Functions

© National Instruments Corporation 2-7 NI-VXI Software Reference Manual for C

using the transparent mapping of the Resource Manager and the VXIbus extender functions (requiring INTX support
for MXIbus mainframe extenders). Map all first-level mainframe VXI interrupts, triggers, Sysfails, and ACfails into
the first-level mainframe with the lowest logical address (the default extended controller). From this point, the only
value of the controller parameter required is -1 or the local CPU logical address. You can then achieve
transparent operation of the controller parameter functions and direct portability to the embedded CPU
configuration.

Using NI-VXI

This manual is designed as a reference for looking up specific information about a function or a class of functions
(such as high-level VXIbus access or Commander Word Serial). Each section assumes a certain amount of
knowledge on how to use these functions in your program. In contrast, this section presents a general overview
of the more commonly used class of functions available in NI-VXI, summarizes how you can use them to perform
certain tasks, and describes a general structure of programming using NI-VXI. For more information, please see the
reference chapters on these functions, and review the example programs and README file that came with your
driver. You can also contact National Instruments for a list of application notes available on VXI.

Variable Types

Although nivxi.h is the only header file you need to include in your program for NI-VXI, the software
distribution actually includes several additional header files along with nivxi.h . Some of these files have type
definitions and macros that can make using NI-VXI easier, and make the code more portable across different
platforms. The three main files of interest are datasize.h , busacc.h , and devinfo.h .

The datasize.h File

The datasize.h file defines the integer types for use in your program. For example, INT16 is defined as a
16-bit signed integer, and UINT32 is defined as a 32-bit unsigned integer. Using these types benefits you by letting
you apply specific type sizes across platforms. Using undefined types can cause problems when porting your
application between platforms. For example, an int in DOS is a 16-bit number but a 32-bit number in Solaris or
LabWindows/CVI.

In addition to the integers, datasize.h defines several types for other uses such as interrupt handlers. For
example, NIVXI_HVXIINT is an interrupt handler type. Merely defining a variable with this type is sufficient
to create the function prototype necessary for your interrupt handler. Also, different platforms require different
flags for use with interrupt handlers. To simplify this problem, datasize.h defines NIVXI_HQUAL and
NIVXI_HSPEC, which are used in the handler definition and take care of the platform dependencies. See the
Interrupts and Signals section later in this chapter and your README file for more information. In addition,
refer to Chapter 10, VXI Interrupt Functions , and Chapter 12, System Interrupt Handler Functions .

The busacc.h File

The busacc.h file defines constants and macros for use with the high/low-level and slave memory access
functions (see the Master Memory Access and Slave Memory Access sections later in this chapter). To make the
code more readable, busacc.h defines such elements as memory space, privilege mode, and byte order as
constants, and it defines macros to combine these constants into the necessary access parameters. Examine the
header file for more information on the available macros and constants. You can see these tools in use by reviewing
the example programs on memory accesses that appear later in this chapter and also the example programs included
with your software.

Introduction to the NI-VXI Functions Chapter 2

NI-VXI Software Reference Manual for C 2-8 © National Instruments Corporation

The devinfo.h File

The devinfo.h file contains a data type that is used with the GetDevInfo()function described in the Useful
Tools section. The purpose of this function is to return various information about the system. GetDevInfo()can
return the information either a piece at a time, or in one large data structure. The header file devinfo.h contains
the type UserLAEntry , which defines the data structure that the function uses. Refer to the header file for the
exact definition of the data structure.

The Beginning and End

The most important functions used in any NI-VXI program are InitVXIlibrary() and
CloseVXIlibrary() . The first function creates the internal structure needed to make the NI-VXI interface
operational. When InitVXIlibrary completes its initialization procedures, other functions can access
information obtained by RESMAN , the VXIbus Resource Manager, as well as use other NI-VXI features such as
interrupt handlers and windows for memory access. The second function destroys this structure and frees the
associated memory. All programs using NI-VXI must call InitVXIlibrary() before any other NI-VXI
function. In addition, your program should include a call to CloseVXIlibrary() before exiting.

An important note about these two functions is that the internal structure maintains a record of the number of calls
to InitVXIlibrary() and CloseVXIlibrary() . Although InitVXIlibrary() needs to be called
only once, the structure of your program may cause the function to be called multiple times. A successful call to
InitVXIlibrary() returns either a zero or a one. A zero indicates that the structure has been created, and a one
indicates that the structure was created by an earlier call so no action was taken (other than incrementing the count
of the number of InitVXIlibrary() calls). When CloseVXIlibrary() returns a successful code, it also
returns either a zero or a one. A zero indicates that the structure has been successfully destroyed, and a one indicates
that there are still outstanding calls to InitVXIlibrary() that must be closed before the structure is destroyed.
The outcome of all of this is that when exiting a program, you should call CloseVXIlibrary() the same
number of times that you have called InitVXIlibrary() .

Caution: In environments where all applications share NI-VXI, and hence the internal structure (such as
Microsoft Windows), it can be dangerous for any one application to call CloseVXIlibrary()
until it returns zero because this can close out the structure from under another application. It is
vital to keep track of the number of times you have called InitVXIlibrary() .

Useful Tools

Chapter 3, System Configuration Functions, describes several functions that a program can use to access information
about the system, obtained either through configuration information or from information obtained by RESMAN .
Armed with these functions, a program can be more flexible to changes within the system.

For example, all VXI devices have at least one logical address by which they can be accessed. However, it is simple
to change the logical address of most devices. Therefore, any program that uses a constant as a logical address of a
particular device can fail if that device is reassigned to a different logical address. Programmers can use the NI-VXI
function FindDevLA() to input information about the device—such as the manufacturer ID and model code—and
receive the device's current logical address.

Consider the case of wanting to locate a device with manufacturer’s code ABC hex and model number 123 hex.
You could use the following code to determine the logical address.

Note: In the examples in this section, most of the return codes from the functions are not checked for either
warnings nor errors. This step is omitted only to simplify the example programs. We strongly
recommend that your own programs include error checking.

Chapter 2 Introduction to the NI-VXI Functions

© National Instruments Corporation 2-9 NI-VXI Software Reference Manual for C

main() {
INT16 ret, la;

ret = InitVXIlibrary();

/* -1 and empty quotes are used for don’t cares */
ret = FindDevLA(””, 0xABC, 0x123, -1, -1, -1, -1, &la);
if (la < 0)

printf(“No such device found.\n”);
else

printf(“The logical address is %d\n”, la);
ret = CloseVXIlibrary();

}

In a similar fashion, the function GetDevInfo() can return a wide assortment of information on a device, such as
the manufacturer name and number, the base and size of A24/32 memory, and the protocols that the device supports.
This information can be returned in either a piecemeal fashion or in one large data structure. Notice that this data
structure is a user-defined type, UserLAEntry , which is defined in the devinfo.h header file.

Word Serial Communication

When communicating with message-based Devices (MBD) in VXI, the protocol for string passing is known as Word
Serial . The term is derived from the fact that all commands are 16 bits in length (word length), and that strings are
sent serially, or one byte at a time. VXI also accommodates Long Word Serial (32-bit commands), and Extended
Long Word Serial (48-bit commands). However, as of VXIbus specification 1.4, only Word Serial commands have
been defined.

Word Serial Protocol is based on a Commander writing 16-bit commands to a Servant register (See Chapter 4,
Commander Word Serial Protocol Functions , and Chapter 5, Servant Word Serial Protocol Functions , for more
information on the protocol). The VXIbus specification has defined several commands, such as Byte Available , Byte
Request , and Clear . The bit patterns for Word Serial commands have been laid out in the VXIbus specification, and
your application can send these commands to a Servant via the WScmd() function. However, because string
communication is the most common use for Word Serial Protocol, the functions WSwrt() and WSrd() use the
Word Serial commands Byte Available (for sending a byte to a servant) and Byte Request (for retrieving a byte from
a Servant) repetitively to send or receive strings as defined by the Word Serial Protocol. In addition, other common
commands such as Clear have been encapsulated in their own functions, such as WSclr() .

Chapter 4 describes all NI-VXI functions pertaining to message-based communication for the Commander.
However, there are times when you want the controller to operate as a Word Serial Servant. NI-VXI allows for the
controller to accept Word Serial commands from a Commander. Chapter 5 describes a different set of functions that
a Servant uses for message-based communication with its Commander.

For example, WSSrd() (Word Serial Servant Read) sets up the controller to accept the Byte Request commands
from a controller and respond with the string specified in the function. In a similar fashion, the WSSwrt() function
programs the controller to accept Byte Available commands. National Instruments strongly recommends that if you
want to program the controller as a Servant, you should aim to become familiar with the Word Serial Protocol in
detail, and implement as much of the protocol as possible to simplify the debugging and operation of the program.

Master Memory Access

You can access VXIbus memory directly through the NI-VXI high-level and low-level VXIbus access functions,
within the capabilities of the controller. The main difference between the high-level and low-level access functions
is in the amount of encapsulation given by NI-VXI.

The high-level VXIbus access functions include functions such as VXIin() and VXImove() that you can use to
access memory in the VXI system without dealing with such details as memory-mapping windows, status checking,

Introduction to the NI-VXI Functions Chapter 2

NI-VXI Software Reference Manual for C 2-10 © National Instruments Corporation

and recovering from bus timeouts. Although these functions tend to have more overhead associated with them than
the low-level functions, they are much simpler to use and typically require less debugging. We recommend that
beginner programmers in VXI rely on the high-level functions until they are familiar with VXI memory accesses.

You can use the low-level VXIbus access functions if you want to access VXI memory with as little overhead as
possible. Although you now have to perform such actions as bus error handling and mapping—which are handled
automatically by the high-level functions—you can experience a performance gain if you optimize for the particular
accesses you are performing. Consider the following sample code, which performs a memory access using the low-
level functions. Notice that there is no bus error handler installed by the program (See the Interrupts and Signals
section). Instead, the program uses the NI-VXI default bus error handler. This handler automatically increments the
BusErrorRecv global variable (See the description of DefaultBusErrorHandler() in Chapter 12).

#include <nivxi.h>/* BusErrorRecv defined in nivxi.h */
#include <stdio.h>

main() {
INT16 ret;
UINT16 *addrptr, svalue;
UINT32 addr, window1;
INT32 timeout;
void *addptr1;

/* Start all programs with this function */
ret = InitVXIlibrary();
BusErrorRecv = 0; /* Reset global variable */

/* The following code maps the A16 space with the Access Only */
/* access in order to access the A16 space directly. */
addr = 0xc000L; /* Map upper 16 KB of the A16 space */
timeout = 2000L; /* 2 seconds */

/* Notice the use of the macros for defining the access */
/* parameters. These can be found in the NI-VXI header files */
addrptr1 = (UINT32) MapVXIAddress(AccessP_Space(A16_SPACE) |

AccessP_Priv(NonPriv_DATA) |
AccessP_BO(MOTOROLA_ORDER) |
AccessP_Owner(0),
addr, timeout, &window1, &ret);

if (ret == 0) /** MapVXIAddress call is successful **/
{

/* The following code reads the ID register of a device */
/* at logical address 10. */
la = 10;
addrptr = (UINT16 *)((UINT32) addrptr1 + 64 * la);
VXIpeek(addrptr,2, &svalue));
if (BusErrorRecv)

printf(“Bus Error has occurred.\n”);
else

printf(“Value read was %d.\n”, svalue));

ret = UnMapVXIAddress(window1);
} else

printf(“Unable to access window.\n”);

/* Close library when done */
ret = CloseVXIlibrary();

}

Chapter 2 Introduction to the NI-VXI Functions

© National Instruments Corporation 2-11 NI-VXI Software Reference Manual for C

Notice that the return variable for the MapVXIAddress() function is a pointer. You can dereference this pointer
directly on some platforms—for example, by writing *addrptr = 0 rather than VXIpoke(addrptr, 2, 0) .
This applies currently to any of the embedded computers and the SB-MXI. We recommend that you do not
dereference the pointer directly on any other platform; due to various hardware or software constraints, NI-VXI
cannot guarantee the success of the I/O operation.

Note: The AT-MXI and VXIpc-486 embedded computers have a compiler option known as binary
compatibility, available on certain operating systems. With this feature, object code can use the most
efficient methods for VXIpeek() and VXIpoke() depending on the platform—either a function call
or a pointer dereference. Please see the README file with these platforms for more information.

Slave Memory Access

It is possible to share local resources such as RAM and port I/O space with the VXIbus. You can accomplish this
functionality by setting the appropriate fields in the VXIedit or VXItedit program to instruct the controller to
respond to bus accesses as a slave. What address space is used is dependent on the settings in the VXIedit or
VXItedit program. However, the actual VXIbus memory addresses are assigned by RESMAN and should be read
by the program through the GetDevInfo() function. See the Useful Tools section for more information on
GetDevInfo() .

Keep in mind that when the controller shares its resources, it does not allocate them from the local system first.
For example, if you instruct the system to share 1 MB of RAM, the controller will map VXI addresses (as defined
by RESMAN) to 1 MB of local memory. However, at no point has the controller prevented the local system from
also using this space. For example, on a IBM compatible PC, the first 1 MB of address space contains not only user
RAM, but also the interrupt vector table, video memory, BIOS, and so on. Therefore, it is important that you first
use VXImemAlloc() to reserve a portion of the shared memory, and then communicate this address to the remote
master that will be accessing the slave memory. For example, assume that the following code will run on a
controller that has shared 1 MB of local RAM.

main() {
INT16 ret;
UINT32 *useraddr, vxiaddr;
void *bufaddr;

/* Initialize and allocate 4 KB of memory */
ret = InitVXIlibrary();
ret = VXImemAlloc(4096, &useraddr, &vxiaddr);

/* Put code here to communicate vxiaddr */
/* returned by VXImemAlloc */

/* At this point, the remote master can perform */
/* I/O on the shared, allocated space. In addition, */
/* the program can use the local address to perform */
/* I/O on the same space, such as reading back a block */
/* of data */
bufaddr = malloc (4096);
ret = VXImemCopy (useraddr, bufaddr, 4096, 0);

/* Return memory to local system */
ret = VXImemFree(useraddr);
ret = CloseVXIlibrary();

}

Introduction to the NI-VXI Functions Chapter 2

NI-VXI Software Reference Manual for C 2-12 © National Instruments Corporation

Interrupts and Signals

In NI-VXI, you can set up your controller to function as both an interrupt handler and an interrupter. You can
also have your controller respond to writes to its signal register, if present. Signaling another device requires the
high-level or low-level VXIbus access functions, as discussed earlier. In addition, NI-VXI lets you configure both
interrupts and signals to be handled either through handlers or through the signal queue. Chapter 9, VXI Signal
Functions , goes into greater detail on the signal queue, but for now you can look upon it as a FIFO (first-in, first-
out) queue that you can access via the signal queue management functions, such as SignalDeq() . Both the
signal queue and the interrupt handler will provide the status/ID obtained from the interrupt acknowledge or from
the signal register. You can use this value to determine which device generated the interrupt/signal as well as the
cause of the event. See Chapter 10, VXI Interrupt Functions , for more information.

Handling either signals or interrupts through the signal queue is very straightforward. You can use the
RouteVXIint() and RouteSignal() functions to specify that the events (signals and/or interrupts) should
be handled by the signal queue (the default for signals is the signal queue). After you have enabled the event
handler through either the EnableSignalInt() or the EnableVXItoSignalInt() call, the event is placed
on the queue when it occurs. You can use the SignalDeq() function to retrieve the event from the queue.

Note: RESMAN allocates interrupt lines and devices should use only those interrupt lines allocated to them.
Again, you can use GetDevInfo() to determine what interrupts lines have been allocated to the
controller.

Alternatively, you can choose to handle either signals or interrupts with an interrupt handler. You can use
RouteSignal() to specify that the events (signals and/or interrupts) should be handled by the interrupt handlers
rather than the signal queue. (RouteVXIint() is not necessary because the default for VXI interrupts is interrupt
handlers). After you have enabled the event handler through either the EnableSignalInt() or the
EnableVXIint() call, the callback function will be invoked when the event occurs. Installing and using
interrupt handlers is very simple with NI-VXI because all of the operating system interaction is handled for you.
The following section of code gives an example of using an interrupt handler.

#define VXI_INT_LEVEL 1 /* this sample only interested in level 1 */

/* NIVXI_HVXIINT is a type defined for interrupt handlers */
NIVXI_HVXIINT *OldVXIintHandler; /* pointer to save the old handler */
NIVXI_HVXIINT UserVXIintHandler; /* function declr for new handler */

main () {
INT16 ret, controller;

/* Always begin by initializing the NI-VXI library */
ret = InitVXIlibrary ();
controller = -1; /* local controller */

/* Get address of the old handler */
OldVXIintHandler = GetVXIintHandler (VXI_INT_LEVEL);

/* Set interrupt handler to new user-defined procedure */
ret = DisableVXIint (controller, 1<<(VXI_INT_LEVEL-1));
ret = SetVXIintHandler (1<<(VXI_INT_LEVEL-1), UserVXIintHandler);
ret = EnableVXIint (controller, 1<<(VXI_INT_LEVEL-1));

/**/
/* user code */
/**/

/* Restore interrupt handler to what it was before we changed it */
ret = DisableVXIint (controller, 1<<(VXI_INT_LEVEL-1));
SetVXIintHandler (1<<(VXI_INT_LEVEL-1), OldVXIintHandler);

Chapter 2 Introduction to the NI-VXI Functions

© National Instruments Corporation 2-13 NI-VXI Software Reference Manual for C

ret = EnableVXIint (controller, 1<<(VXI_INT_LEVEL-1));

/* Always close the NI-VXI library before exiting */
CloseVXIlibrary ();

}

/* The NIVXI_HQUAL and NIVXI_HSPEC should bracket */
/* every interrupt handler as shown below. */
NIVXI_HQUAL void NIVXI_HSPEC UserVXIintHandler (INT16 controller,

UINT16 level, UINT32 statusID)
{

/* user code for processing statusID */
}

Note: Although NI-VXI simplifies the installation and use of interrupt handlers, it cannot affect how the
system handles interrupts. It is the programmer's responsibility to follow programming guidelines set by
the operating system being used, such as use of reentrant code only, and/or timing restrictions, and on
Macintosh computers, regaining access to global variables.

Triggers

The addition of trigger lines to the VMEbus is one of the improvements the VXIbus has over VME in the field of
instrumentation. To take advantage of this feature, NI-VXI has a wide selection of functions you can use to set up
your controller to both source and acknowledge trigger lines. In addition, certain platforms contain the Trigger
Interface Chip, or TIC. The TIC is a National Instruments ASIC (Application Specific Integrated Circuit) that gives
you the capability to map trigger lines to trigger lines as well as to external lines, use special counter/timers, and
monitor multiple trigger lines simultaneously.

Using NI-VXI to source or acknowledge triggers is very simple. The SrcTrig() function can generate any of the
VXIbus-defined trigger protocols, and AcknowledgeTrig() can perform the acknowledgment to the ASYNC
and SEMI-SYNC protocols if you do not want NI-VXI to acknowledge automatically for you. In addition, you can
generate interrupts on certain trigger conditions to promote a faster response to triggers. The use of these interrupts
is the same as described in the previous section, except that you would use the GetTrigHandler() and
SetTrigHandler() functions to install and remove the interrupt handlers, respectively. Please refer to Chapter
11, VXI Trigger Functions, for more information on triggering with NI-VXI and the TIC chip.

© National Instruments Corporation 3-1 NI-VXI Software Reference Manual for C

Chapter 3
System Configuration Functions

This chapter describes the C syntax and use of the VXI system configuration functions. These functions copy all of
the Resource Manager (RM) table information into data structures at startup so that you can find device names or
logical addresses by specifying certain attributes of the device for identification purposes.

Initializing and closing the NI-VXI software interface, and getting information about devices in the system are among
the most important aspects of the NI-VXI software. All applications need to use the system configuration functions at
one level or another. When the NI-VXI RM runs, it logs the system configuration information in the RM table file,
resman.tbl . The InitVXIlibrary function reads the information from resman.tbl into data structures
accessible from the GetDevInfo and SetDevInfo functions. From this point on, you can retrieve any device-
related information from the entry in the table. Only in very special cases should you modify the information in the
table, which you can do using one of the SetDevInfo functions. In this manner, both the application and the driver
functions have direct access to all the necessary VXI system information. Your application must call the
CloseVXIlibrary function upon exit to free all data structures and disable interrupts.

Functional Overview

The following paragraphs describe the system configuration functions. The descriptions are presented at a functional
level describing the operation of each of the functions. The functions are grouped by area of functionality.

InitVXIlibrary ()

InitVXIlibrary is the application startup initialization routine. An application must call InitVXIlibrary at
application startup. InitVXIlibrary performs all necessary installation and initialization procedures to make the
NI-VXI interface functional. This includes copying all of the RM device information into the data structures in the
NI-VXI library. This function configures all hardware interrupt sources (but leaves them disabled) and installs the
corresponding default handlers. It also creates and initializes any other data structures required internally by the
NI-VXI interface. When your application completes (or is aborted), it must call CloseVXIlibrary to free data
structures and disable all of the interrupt sources.

CloseVXIlibrary ()

CloseVXIlibrary is the application termination routine, which must be included at the end (or abort) of any
application. CloseVXIlibrary disables interrupts and frees dynamic memory allocated for the internal RM table
and other structures. You must include a call to CloseVXIlibrary at the termination of your application (for
whatever reason) to free all data structures allocated by InitVXIlibrary and disable interrupts. Failure to call
CloseVXIlibrary when terminating your application can cause unpredictable and undesirable results. If your
application can be aborted from some operating system abort routine (such as a break key or a process kill signal), be
certain to install an abort/close routine to call CloseVXIlibrary .

System Configuration Functions Chapter 3

NI-VXI Software Reference Manual for C 3-2 © National Instruments Corporation

FindDevLA (namepat, manid, modelcode, devclass, slot, mainframe, cmdrla, la)

FindDevLA scans the RM table information for a device with the specified attributes and returns its VXI logical
address. You can use any combination of attributes to specify a device. A -1 (negative one) or "" specifies to ignore
the corresponding field in the attribute comparison. After finding the VXI logical address, you can use one of the
DevInfo functions to get any information about the specified device.

GetDevInfo (la, field, fieldvalue)

GetDevInfo returns information about the specified device from the NI-VXI RM table. The field parameter
specifies the attribute of the information to retrieve. Possible fields include the device name, Commander's logical
address, mainframe number, slot, manufacturer ID number, model code, model name, device class, VXI address
space/base/size allocated, VXI interrupt lines/handlers allocated, protocols supported, and so on. A field value of
zero (0) specifies to return a structure containing all possible information about the specified device.

GetDevInfoShort (la, field, shortvalue)

GetDevInfoShort returns information about the specified device from the NI-VXI RM table. The field
parameter specifies the attribute of the information to retrieve. GetDevInfoShort is a function layered on top
of GetDevInfo for languages (such as BASIC) that cannot typecast the fieldvalues of GetDevInfo .
GetDevInfoShort returns only the fields of GetDevInfo that are 16-bit integers . Possible fields include
the Commander's logical address, mainframe number, slot, manufacturer ID number, manufacturer name, model code,
device class, VXI address space allocated, VXI interrupt lines/handlers allocated, protocols supported, and so on.

GetDevInfoLong (la, field, longvalue)

GetDevInfoLong returns information about the specified device from the NI-VXI RM table. The field
parameter specifies the attribute of the information to retrieve. GetDevInfoLong is a function layered on top of
GetDevInfo for languages (such as BASIC) that cannot typecast the fieldvalues of GetDevInfo .
GetDevInfoLong returns only the fields of GetDevInfo that are 32-bit integers . Possible fields include the
VXI address base and size allocated to the device by the RM.

GetDevInfoStr (la, field, stringvalue)

GetDevInfoStr returns information about the specified device from the NI-VXI RM table. The field parameter
specifies the attribute of the information to retrieve. GetDevInfoStr is a function layered on top of GetDevInfo
for languages (such as BASIC) that cannot typecast the fieldvalues of GetDevInfo . GetDevInfoStr returns
only the fields of GetDevInfo that are character strings . Possible fields include the device name,
manufacturer name, and model name.

SetDevInfo (la, field, fieldvalue)

SetDevInfo changes information about the specified device in the NI-VXI RM table. The field parameter
specifies the attribute of the information to change. Possible fields include the device name, Commander's logical
address, mainframe number, slot, manufacturer ID number, manufacturer name, model code, model name, device
class, VXI address space/base/size allocated, VXI interrupt lines/handlers allocated, protocols supported, and so on. A
field value of zero (0) specifies to change the specified entry with the supplied structure containing all possible
information about the specified device. You should use this function only in very special situations, because it updates
information in the NI-VXI interface and can affect execution. At the startup of your application, InitVXIlibrary
completely initializes the RM table according to how the RM configured the VXI system. No initial changes are
necessary for VXI devices.

Chapter 3 System Configuration Functions

© National Instruments Corporation 3-3 NI-VXI Software Reference Manual for C

SetDevInfoShort (la, field, shortvalue)

SetDevInfoShort changes information about the specified device in the NI-VXI RM table. The field
parameter specifies the attribute of the information to change. SetDevInfoShort is a function layered on top of
SetDevInfo for languages (such as BASIC) that cannot typecast the fieldvalues of SetDevInfo .
SetDevInfoShort changes only the fields of SetDevInfo that are 16-bit integers . Possible fields include
the Commander's logical address, mainframe number, slot, manufacturer ID number, model code, device class, VXI
address space allocated, VXI interrupt lines/handlers allocated, protocols supported, and so on. You should use this
function only in very special situations, because it updates information in the NI-VXI interface and can affect
execution. At the startup of your application, InitVXIlibrary completely initializes the RM table to how the RM
configured the VXI system. No initial changes are necessary for VXI devices.

SetDevInfoLong (la, field, longvalue)

SetDevInfoLong changes information about the specified device in the NI-VXI RM table. The field parameter
specifies the attribute of the information to change. SetDevInfoLong is a function layered on top of
SetDevInfo for languages (such as BASIC) that cannot typecast the fieldvalues of SetDevInfo .
SetDevInfoLong returns only the fields of SetDevInfo that are 32-bit integers . Possible fields include the
VXI address base and size allocated to the device by the RM. You should use this function only in very special
situations, because it updates information in the NI-VXI interface and can affect execution. At the startup of your
application, InitVXIlibrary completely initializes the RM table to how the RM configured the VXI system. No
initial changes are necessary for VXI devices.

SetDevInfoStr (la, field, stringvalue)

SetDevInfoStr changes information about the specified device in the NI-VXI RM table. The field parameter
specifies the attribute of the information to change. SetDevInfoStr is a function layered on top of SetDevInfo
for languages (such as BASIC) that cannot typecast the fieldvalues of SetDevInfo . SetDevInfoStr returns
only the fields of SetDevInfo that are character strings . Possible fields include the device name,
manufacturer name, and model name. You should use this function only in very special situations, because it updates
information in the NI-VXI interface and can affect execution. At the startup of your application, InitVXIlibrary
completely initializes the RM table to how the RM configured the VXI system. No initial changes are necessary for
VXI devices.

CreateDevInfo (la)

CreateDevInfo creates a new entry in the NI-VXI RM table for the specified logical address. It installs default
NULL values into the entry. You must use one of the DevInfo functions after this point to change any of the device
information as needed. Use this function only in very special situations. At the startup of your application,
InitVXIlibrary completely initializes the RM table to how the RM configured the VXI system. No initial
changes/creations are necessary for VXI devices. You can use CreateDevInfo to add non-VXI devices or pseudo
devices (future expansion).

System Configuration Functions Chapter 3

NI-VXI Software Reference Manual for C 3-4 © National Instruments Corporation

Function Descriptions

The following paragraphs describe the system configuration functions. The descriptions are explained at the C syntax
level and are listed in alphabetical order.

CloseVXIlibrary

Syntax: ret = CloseVXIlibrary ()

Action: Disables interrupts and frees dynamic memory allocated for the internal device information table.
This function should be called before the application is exited.

Remarks: Parameters:

none

Return value:

ret INT16 Return Status

1 = Successful; previous InitVXIlibrary calls still
 pending

0 = NI-VXI library closed successfully
-1 = NI-VXI library was not open

Example: /* Close the NI-VXI library. */

main()
{

INT16 ret;

ret = InitVXIlibrary();
if (ret < 0)

/* RM table memory allocation or file open failed. */;

/*
Application-specific program.

*/

ret = CloseVXIlibrary();
}

Chapter 3 System Configuration Functions

© National Instruments Corporation 3-5 NI-VXI Software Reference Manual for C

CreateDevInfo

Syntax: ret = CreateDevInfo (la)

Action: Allocates space in the device information table for a new entry with logical address la . It sets the
fields in the device information table for the entry to default values (NULL or unasserted values).

Remarks: Input parameters:

la INT16 Logical address of device for which to create entry

Return value:

ret INT16 Return Status

0 = Entry successfully created
-1 = la already exists
-2 = la out of range 0 to 511
-3 = Dynamic memory allocation failure

Example: /* Create a new entry for pseudo logical address 298. */

INT16 ret;
INT16 la;

la = 298;
ret = CreateDevInfo (la);
if (ret < 0)

/* An error occurred creating new entry. */;

System Configuration Functions Chapter 3

NI-VXI Software Reference Manual for C 3-6 © National Instruments Corporation

FindDevLA

Syntax: ret = FindDevLA (namepat, manid, modelcode, devclass, slot,
mainframe, cmdrla, la)

Action: Finds a VXI device with the specified attributes in the device information table and returns its
logical address. If the namepat parameter is "" or any other attribute is -1, that attribute is
not used in the matching algorithm. For namepat , it accepts a partial name (for example, for
GPIB-VXI it will accept GPI). If two or more devices match, the function returns the logical
address of the first device found.

Remarks: Input parameters:

namepat INT8[14] Name Pattern

manid INT16 VXI Manufacturer ID number

modelcode INT16 Manufacturer's 12-bit model number

devclass INT16 Device class of the device

-1 = Any
0 = Memory Class Device
1 = Extended Class Device
2 = Message-Based Device
3 = Register-Based Device

slot INT16 Slot location of the device

mainframe INT16 Mainframe location of device (logical address of
 extender)

cmdrla INT16 Commander's logical address

Output parameter:

la INT16* Logical address of the device found

Return value:

ret INT16 Return Status

 0 = A device matching the specification was found
-1 = No device matching the specification was found

Chapter 3 System Configuration Functions

© National Instruments Corporation 3-7 NI-VXI Software Reference Manual for C

Example: /* Find the logical address of a device with manid = 0xff6
(National Instruments) and modelcode = 0xff (GPIB-VXI). */

INT16 ret;
INT8 *namepat;
INT16 manid;
INT16 modelcode;
INT16 devclass;
INT16 slot;
INT16 mainframe;
INT16 cmdrla;
INT16 la;

namepat = "";
manid = 0xff6;
modelcode = 0xff;
devclass = -1;
slot = -1;
mainframe = -1;
cmdrla = -1;
ret = FindDevLA (namepat, manid, modelcode, devclass, slot,
mainframe, cmdrla, &la);
if (ret != 0)

/* No device with manid = 0xff6 and modelcode = 0xff was
found. */;

else
/* Device was found; logical address in la. */;

System Configuration Functions Chapter 3

NI-VXI Software Reference Manual for C 3-8 © National Instruments Corporation

GetDevInfo

Syntax: ret = GetDevInfo (la, field, fieldvalue)

Action: Gets device information about a specified device.

Remarks: Input parameters:

la INT16 Logical address of device to get information about

field UINT16 Field identification number

 Field Type Description

0 UserLaEntry Retrieve entire RM table entry for the
 specified device (structure of all of the

 following)
1 INT8[14] Device name
2 INT16 Commander's logical address
3 INT16 Mainframe
4 INT16 Slot
5 UINT16 Manufacturer identification number
6 INT8[14] Manufacturer name
7 UINT16 Model code
8 INT8[14] Model name
9 UINT16 Device class

10 UINT16 Extended subclass (if extended class device)
 11 UINT16 Address space used

12 UINT32 Base of A24/A32 memory
13 UINT32 Size of A24/A32 memory
14 UINT16 Memory type and access time
15 UINT16 Bit vector list of VXI interrupter lines
16 UINT16 Bit vector list of VXI interrupt handler lines
17 UINT16 Mainframe extender, controller information

 Bits Description

15 to 13 Reserved
12 1 = Child side extender

0 = Parent side extender
11 1 = Frame extender

0 = Not frame extender
10 1 = Extended controller
9 1 = Embedded controller
8 1 = External controller

7 to 0 Frame extender towards root frame

18 UINT16 Asynchronous mode control state
19 UINT16 Response enable state
20 UINT16 Protocols supported
21 UINT16 Capability/status flags
22 UINT16 Status state (Pass/Fail, Ready/Not Ready)

Output parameter:

fieldvalue void* Information for that field (size dependent on field)

Chapter 3 System Configuration Functions

© National Instruments Corporation 3-9 NI-VXI Software Reference Manual for C

Return value:

ret INT16 Return Status

0 = The specified information was returned
-1 = Device not found
-2 = Invalid field specified

Example: /* Get the model code of a device at Logical Address 4. */

INT16 ret;
INT16 la;
UINT16 field;
UINT16 fieldvalue;

la = 4;
field = 7;
ret = GetDevInfo (la, field, &fieldvalue);
if (ret != 0)

/* Invalid logical address or field specified. */;

System Configuration Functions Chapter 3

NI-VXI Software Reference Manual for C 3-10 © National Instruments Corporation

GetDevInfoLong

Syntax: ret = GetDevInfoLong (la, field, longvalue)

Action: Gets information about a specified device from the device information table. This function is
layered on top of GetDevInfo and returns only those fields that are 32-bit integers.

Remarks: Input parameters:

la INT16 Logical address of device to get information about

field UINT16 Field identification number

 Field Description

12 Base of A24/A32 memory
13 Size of A24/A32 memory

Output parameter:

longvalue UINT32* Information for that field

Return value:

ret INT16 Return Status

0 = The specified information was returned
-1 = Device not found
-2 = Invalid field

Example: /* Get the A24 base of a device at Logical Address 4. */

INT16 ret;
INT16 la;
UINT16 field;
UINT32 longvalue;

la = 4;
field = 12;
ret = GetDevInfoLong (la, field, &longvalue);
if (ret != 0)

/* Invalid logical address or field specified. */;

Chapter 3 System Configuration Functions

© National Instruments Corporation 3-11 NI-VXI Software Reference Manual for C

GetDevInfoShort

Syntax: ret = GetDevInfoShort (la, field, shortvalue)

Action: Gets information about a specified device from the device information table. This function is
layered on top of GetDevInfo and returns only those fields that are 16-bit integers.

Remarks: Input parameters:

la INT16 Logical address of device to get information about

field UINT16 Field identification number

field UINT16 Field identification number

 Field Description

2 Commander's logical address
3 Mainframe
4 Slot
5 Manufacturer identification number
7 Model code
9 Device class

10 Extended subclass (if extended class device)
 11 Address space used

14 Memory type and access time
15 Bit vector list of VXI interrupter lines
16 Bit vector list of VXI interrupt handler lines
17 Mainframe extender and controller information

 Bits Description

15 to 13 Reserved
12 1 = Child side extender

0 = Parent side extender
11 1 = Frame extender

0 = Not frame extender
10 1 = Extended controller
9 1 = Embedded controller
8 1 = External controller

7 to 0 Frame extender towards root frame

18 Asynchronous mode control state
19 Response enable state
20 Protocols supported
21 Capability/status flags
22 Status state (Passed/Failed, Ready/Not Ready)

Output parameter:

shortvalue UINT16* Information for that field

Return value:

ret INT16 Return Status

0 = The specified information was returned
-1 = Device not found
-2 = Invalid field

System Configuration Functions Chapter 3

NI-VXI Software Reference Manual for C 3-12 © National Instruments Corporation

Example: /* Get the model code of a device at Logical Address 4. */

INT16 ret;
INT16 la;
UINT16 field;
UINT16 shortvalue;

la = 4;
field = 7;
ret = GetDevInfoShort (la, field, &shortvalue);
if (ret != 0)

/* Invalid logical address or field specified. */;

Chapter 3 System Configuration Functions

© National Instruments Corporation 3-13 NI-VXI Software Reference Manual for C

GetDevInfoStr

Syntax: ret = GetDevInfoStr (la, field, stringvalue)

Action: Gets information about a specified device from the device information table. This function is
layered on top of GetDevInfo and returns only those fields that are character strings.

Remarks: Input parameters:

la INT16 Logical address of device to get information about

field UINT16 Field identification number

 Field Description

1 Device name
6 Manufacturer name
8 Model name

Output parameter:

stringvalue UINT8* Buffer to receive information for that field

Return value:

ret INT16 Return Status

0 = The specified information was returned
-1 = Device not found
-2 = Invalid field

Example: /* Get the model name of a device at Logical Address 4. */

INT16 ret;
INT16 la;
UINT16 field;
UINT8 stringvalue[14];

la = 4;
field = 8;
ret = GetDevInfoStr (la, field, stringvalue);
if (ret != 0)

/* Invalid logical address or field specified. */;

System Configuration Functions Chapter 3

NI-VXI Software Reference Manual for C 3-14 © National Instruments Corporation

InitVXIlibrary

Syntax: ret = InitVXIlibrary ()

Action: Allocates and initializes the data structures required by the NI-VXI library functions. This function
reads the RM table file and copies all of the device information into data structures in local memory.
It also performs other initialization operations, such as installing the default interrupt handlers and
initializing their associated global variables.

Remarks: Parameters:

none

Return value:

ret INT16 Return Status

1 = NI-VXI library already initialized (repeat call)
0 = NI-VXI library initialized

-1 = RM table memory allocation failed

Example: /* Initialize for using the library functions. */

main()
{

INT16 ret;

ret = InitVXIlibrary();
if (ret < 0)

/* RM table memory allocation or file open failed. */;

/*
Application-specific program.

*/

ret = CloseVXIlibrary();
}

Chapter 3 System Configuration Functions

© National Instruments Corporation 3-15 NI-VXI Software Reference Manual for C

SetDevInfo

Syntax: ret = SetDevInfo (la, field, fieldvalue)

Action: Sets information about a specified device in the device information table.

Remarks: Input parameters:

la INT16 Logical address of device to set information for

field UINT16 Field identification number

 Field Type Description

0 UserLaEntry Retrieve entire RM table entry for the
 specified device (structure of all of the

 following)
1 INT8[14] Device name
2 INT16 Commander's logical address
3 INT16 Mainframe
4 INT16 Slot
5 UINT16 Manufacturer identification number
6 INT8[14] Manufacturer name
7 UINT16 Model code
8 INT8[14] Model name
9 UINT16 Device class

10 UINT16 Extended subclass (if extended class device)
 11 UINT16 Address space used

12 UINT32 Base of A24/A32 memory
13 UINT32 Size of A24/A32 memory
14 UINT16 Memory type and access time
15 UINT16 Bit vector list of VXI interrupter lines
16 UINT16 Bit vector list of VXI interrupt handler lines
17 UINT16 Mainframe extender, controller information

 Bits Description

15 to 13 Reserved
12 1 = Child side extender

0 = Parent side extender
11 1 = Frame extender

0 = Not frame extender
10 1 = Extended controller
9 1 = Embedded controller
8 1 = External controller

7 to 0 Frame extender towards root frame

18 UINT16 Asynchronous mode control state
19 UINT16 Response enable state
20 UINT16 Protocols supported
21 UINT16 Capability/status flags
22 UINT16 Status state (Pass/Fail, Ready/Not Ready)

fieldvalue void* Information for that field (size dependent on field)

Output parameters:

none

System Configuration Functions Chapter 3

NI-VXI Software Reference Manual for C 3-16 © National Instruments Corporation

Return value:

ret INT16 Return Status

0 = The specified information was returned
-1 = Device not found
-2 = Invalid field specified

Example: /* Set the model code of a device at Logical Address 4. */

INT16 ret;
INT16 la;
UINT16 field;
UINT32 fieldvalue;

la = 4;
field = 7;
fieldvalue = 0xffffL;
ret = SetDevInfo (la, field, &fieldvalue);
if (ret != 0)

/* Invalid logical address or field specified. */;

Chapter 3 System Configuration Functions

© National Instruments Corporation 3-17 NI-VXI Software Reference Manual for C

SetDevInfoLong

Syntax: ret = SetDevInfoLong (la, field, longvalue)

Action: Sets information about a specified device in the device information table. This function is layered
on top of SetDevInfo and changes only those fields that are 32-bit integers.

Remarks: Input parameters:

la INT16 Logical address of device to set information for

field UINT16 Field identification number

 Field Description

12 Base of A24/A32 memory
13 Size of A24/A32 memory

longvalue UINT32 Information for that field

Output parameters:

none

Return value:

ret INT16 Return Status

0 = The specified information was returned
-1 = Device not found
-2 = Invalid field

Example: /* Set the A24 base of a device at Logical Address 4. */

INT16 ret;
INT16 la;
UINT16 field;
UINT32 longvalue;

la = 4;
field = 12;
longvalue = 0x200000L;
ret = SetDevInfoLong (la, field, longvalue);
if (ret != 0)

/* Invalid logical address or field specified. */;

System Configuration Functions Chapter 3

NI-VXI Software Reference Manual for C 3-18 © National Instruments Corporation

SetDevInfoShort

Syntax: ret = SetDevInfoShort (la, field, shortvalue)

Action: Sets information about a specified device in the device information table. This function is layered
on top of SetDevInfo and changes only those fields that are 16-bit integers.

Remarks: Input parameters:

la INT16 Logical address of device to set information for

field UINT16 Field identification number

 Field Description

2 Commander's logical address
3 Mainframe
4 Slot
5 Manufacturer identification number
7 Model code
9 Device class

10 Extended subclass (if extended class device)
 11 Address space used

14 Memory type and access time
15 Bit vector list of VXI interrupter lines
16 Bit vector list of VXI interrupt handler lines
17 Mainframe extender and controller information

 Bits Description

15 to 13 Reserved
12 1 = Child side extender

0 = Parent side extender
11 1 = Frame extender

0 = Not frame extender
10 1 = Extended controller
9 1 = Embedded controller
8 1 = External controller

7 to 0 Frame extender towards root frame

18 Asynchronous mode control state
19 Response enable state
20 Protocols supported
21 Capability/status flags
22 Status state (Passed/Failed, Ready/Not Ready)

shortvalue UINT16 Information for that field

Output parameters:

none

Return value:

ret INT16 Return Status

0 = The specified information was returned
-1 = Device not found
-2 = Invalid field

Chapter 3 System Configuration Functions

© National Instruments Corporation 3-19 NI-VXI Software Reference Manual for C

Example: /* Set the model code of a device at Logical Address 4. */

INT16 ret;
INT16 la;
UINT16 field;
UINT16 shortvalue;

la = 4;
field = 7;
shortvalue = 0xffff;
ret = SetDevInfoShort (la, field, shortvalue);
if (ret != 0)

/* Invalid logical address or field specified. */;

System Configuration Functions Chapter 3

NI-VXI Software Reference Manual for C 3-20 © National Instruments Corporation

SetDevInfoStr

Syntax: ret = SetDevInfoStr (la, field, stringvalue)

Action: Sets information about a specified device in the device information table. This function is layered
on top of SetDevInfo and changes only those fields that are character strings.

Remarks: Input parameters:

la INT16 Logical address of device to set information for

field UINT16 Field identification number

 Field Description

1 Device name
6 Manufacturer name
8 Model name

stringvalue UINT8* Buffer to receive information for that field

Output parameters:

none

Return value:

ret INT16 Return Status

0 = The specified information was returned
-1 = Device not found
-2 = Invalid field

Example: /* Set the model name of a device at Logical Address 4. */

INT16 ret;
INT16 la;
UINT16 field;
UINT8 stringvalue[14];

la = 4;
field = 8;
strcpy (stringvalue, "DMM0");
ret = SetDevInfoStr (la, field, stringvalue);
if (ret != 0)

/* Invalid logical address or field specified. */;

© National Instruments Corporation 4-1 NI-VXI Software Reference Manual for C

Chapter 4
Commander Word Serial Protocol Functions

This chapter describes the C syntax and use of the VXI Commander Word Serial Protocol functions. Word Serial
communication is the minimal mode of communication between VXI Message-Based devices within the VXI
Commander/Servant hierarchy. The Commander Word Serial functions let the local CPU (the CPU on which the
NI-VXI interface resides) perform VXI Message-Based Commander Word Serial communication with its Servants.
The four basic types of Commander Word Serial transfers are as follows:

• Command sending

• Query sending

• Buffer writes

• Buffer reads

Word Serial Protocol is a simple 16-bit transfer protocol between a Commander and its Servants. The Commander
polls specific bits in the Servant's VXI Response register to determine when it can write a command , when it can
read a response from the Data Low register, and when a Word Serial protocol error occurs. Before a Commander
can send a Word Serial command to a Servant, it must first poll the Write Ready (WR) bit until it is asserted (set to
1). The Commander can then write the command to the Data Low register. If the Commander is sending a query, it
first sends the query in the same manner as sending a command, but then continues by polling the Read Ready (RR)
bit until it is asserted. It then reads the response from the Data Low register. A buffer write simply involves
sending a series of Byte Available (BAV) Word Serial commands to the Servant, with the additional constraint that
the Data In Ready (DIR) bit as well as the WR bit must be asserted before sending the Byte Available . The lower 8
bits (bits 0 to 7) of the 16-bit command contain a single byte of data (bit 8 is the END bit). Therefore, one Byte
Available is sent for each data byte in the buffer written. A buffer read simply involves sending a series of Byte
Request (BREQ) Word Serial queries to the Servant, with the additional constraint that the Data Out Ready (DOR)
bit as well as the WR bit must be asserted before sending the Byte Request . The lower 8 bits (bits 0 to 7) of the 16-
bit response contain a single byte of data (bit 8 is the END bit). Therefore, one Byte Request is sent for each data
byte in the buffer read.

In addition to the WR, RR, DIR, and DOR bits that get polled during various Word Serial transfers, the functions
also check the ERR* bit. The ERR* bit indicates when a Word Serial Protocol error occurs. The Word Serial
Protocol error can be Unsupported Command, Multiple Query Error (MQE), DIR Violation, DOR Violation, RR
Violation, or WR Violation. After the Servant asserts the ERR* bit, the application can determine the actual error
that occurred by sending a Read Protocol Error query to the Servant. The NI-VXI Word Serial functions query the
Servant automatically and return the appropriate error codes to the caller, at which time the Servant deasserts the
ERR* bit.

In addition to the four basic types of Word Serial transfers, there are two special cases: the Word Serial Clear and
Trigger commands. The Word Serial Clear command must ignore the ERR* bit. One of the functions of the Clear
command is to clear a pending protocol error condition. If the ERR* bit was polled during the transfer, the Clear
would not succeed. The Word Serial Trigger command requires polling the DIR bit as well as the WR bit (similar
to the buffer write) before writing the Trigger to the Data Low register. The VXIbus specification requires polling
the DIR bit for the Word Serial Trigger to keep the write and trigger model consistent with IEEE 488.2.

The Longword Serial and Extended Longword Serial Protocols are similar to the Word Serial Protocol, but involve
32-bit and 48-bit command transfers, respectively, instead of the 16-bit transfers of the Word Serial Protocol. The
VXIbus specification, however, provides no common command usages for these protocols. The commands are
either VXI Reserved or User-Defined. The NI-VXI interface gives you the ability to send any one of these
commands.

Commander Word Serial Protocol Functions Chapter 4

NI-VXI Software Reference Manual for C 4-2 © National Instruments Corporation

Programming Considerations

The Commander Word Serial functions provide a flexible and very easy-to-use interface. Depending upon the
hardware and software platforms involved in your system, however, certain issues need to be taken into account.

Interrupt Service Routine Support

If portability between operating systems is essential (or a single-tasking/real-time operating system is used), the
Word Serial Protocol functions should not be called from an interrupt service routine. Only for operating systems in
which the user-installed handlers are run at process level (most UNIX and OS/2 systems) is it possible to initiate a
Word Serial operation. The Commander Word Serial functions require operating system support only provided at
the application (process) level of execution. Calling these functions from CPU interrupt level will have
undetermined results. The WSabort function is the only exception to this. WSabort is used to abort various
Word Serial transfers in progress and will usually be called from an interrupt service routine (although it is not
limited to interrupt service routines). The most common example of this is with the Unrecognized Command events
from devices implementing Word Serial to VXIbus specification 1.2. When an Unrecognized Command event is
received by the NI-VXI VXI interrupt or Signal interrupt handler, WSabort must be called to abort the current
Word Serial command transfer in progress that caused the generation of the Unrecognized Command event.

Single-Tasking Operating System Support

The Word Serial Protocol functions have no asynchronous or multiple call support for a single (non-multitasking)
operating system. Because the Word Serial Protocol functions are polled I/O functions that do not return to the
caller until the entire operation is complete, only one call can be pending for the application-level code. No Word
Serial Protocol functions, other than WSabort , can be called at interrupt service routine time. If a Word Serial
operation is underway and an interrupt service routine invokes another Word Serial operation, the polling
mechanism may become inconsistent with the state of the Servant's communication registers. This could result in
invalid data being transferred, protocol errors occurring, or a timeout. The WSabort function is used to
asynchronously abort Word Serial operations in progress and can be used at interrupt service routine time.

Multitasking Support (Non-Preemptive Operating System)

The Word Serial Protocol functions have extensive mutual exclusion support when running in non-preemptive
multitasking operating systems. In a non-preemptive operating system, an operating system call may not be
forcefully suspended (preempted) by a higher level process. Once an operating system call has been initiated, it will
run to completion unless the call itself decides to give up the processor. The Commander Word Serial functions
allow read and write or trigger calls to be made at the same time. Command transfers will automatically suspend a
read, write, or trigger call in progress. Figure 4-1 gives a precise description of how this exclusion works. If the
application is to be compatible with IEEE 488.2, the application must perform trigger and write calls in sequential
order. Notice that this exclusion is on a per logical address basis. Any number of logical addresses can have Word
Serial transfers in progress without conflict. For each logical address, however, the restriction in the model
presented in Figure 4-1 must be followed. When this model is followed exactly, its effectiveness is limited by the
non-preemptive nature of the operating system. Switches between different processes (Word Serial function calls)
will only occur when the function currently executing willfully relinquishes the processor. This happens only at
regular designated points in the Word Serial operation.

The Commander Word Serial functions are fully reentrant and preemptive on a per logical address basis. Because of
the nature of a non-preemptive operating system, the number of calls pending will be very limited. Any number of
logical addresses can have Commander Word Serial functions in progress without conflict. A higher level process
may make a Commander Word Serial call when others are already in progress as long as the restrictions in Figure
4-1 are followed. Again, however, the preemptive nature of the operating system will greatly reduce the ability of
the application to initiate multiple Word Serial operations.

Chapter 4 Commander Word Serial Protocol Functions

© National Instruments Corporation 4-3 NI-VXI Software Reference Manual for C

Because Commander Word Serial is a protocol involving extensive polling, support has been added for round
robining of Commander Word Serial function calls with other processes. If a particular logical address takes more
than one millisecond to accept or respond to a particular Word Serial command or query, the process is suspended
and another process (possibly with a different Commander Word Serial call in progress) can continue to execute.
The amount of time for which the process is suspended is dependent upon the operating system (usually 10 to 40
ms). When the process is resumed, the polling will continue. The polling will continue until the transfer is complete
or a timeout occurs. This support also keeps a hung device from hanging the operating system on the local CPU.

WSwrt, WSwrtf WStrg WSrd, WSrdf

Wrt and Trg Exclusion
Rd/Wrt/Trg Operation

Command Priority Override
WScmd, WSclr,

WSLcmd, WSEcmd

Local CPU VXI A16 Window

VXIbus

Remote Word Serial Hardware

All Word Serial command functions have priority over the read

and write functions. If a command call is underway, all read

and write calls will be suspended until the command transfer

is complete. If a read or write call is already underway when

a command call is made, the command call will cause the read

or write call to suspend before the next individual read or write

command/query is sent (Byte Available for WSwrt, WSwrtf, or

Byte Request for WSrd, WSrdf). When the command transfer is

complete, the read or write call will continue exactly from where

it was suspended. No mutual exclusion is done between multiple

command calls. The application must guarantee that only one

command call is pending at one time.

A read and write or trigger operation may be

underway at the same time. No mutual exclusion

is done between multiple reads or multiple writes

and triggers. No more than one read or write/trigger

(one of each) call may be pending at any one time

(per logical address).

Write and trigger ordering for IEEE 488.2

compatible operation must be done by the

application. No attempt is made to order or

perform mutual exclusion between write and

trigger calls. In addition, no mutual exclusion

is done between multiple writes or multiple

triggers. No more than one write or trigger

call may be pending at any one time (per

logical address).

Figure 4-1. Non-Preemptive Word Serial Mutual Exclusion (Per Logical Address)

Real-Time Multitasking Support (Preemptive Operating System)

The Word Serial Protocol functions have extensive mutual exclusion support when running on a preemptive multi-
tasking operating system (most real-time operating systems). A two-level mutual exclusion algorithm is used to
allow read and write or trigger calls to be made at the same time. Command transfers will automatically suspend a
read, write, or trigger call in progress. Figure 4-2 gives a precise description of this two-level mutual exclusion
algorithm. Notice that this mutual exclusion is on a per logical address basis. Any number of logical addresses can
have Word Serial transfers in progress without conflict. For each logical address, however, the restriction presented
in Figure 4-1 must be followed. If the application is to be compatible with IEEE 488.2, the application must
perform trigger and write calls in sequential order.

The Commander Word Serial Functions are fully reentrant and preemptive on a per logical address basis. Any
number of logical addresses can have Commander Word Serial functions in progress without conflict. A higher
level process can make a Commander Word Serial call when others are already in progress so long as the restrictions
in Figure 4-1 are followed.

Commander Word Serial Protocol Functions Chapter 4

NI-VXI Software Reference Manual for C 4-4 © National Instruments Corporation

Because Commander Word Serial is a protocol involving extensive polling, support has been added for round
robining of Commander Word Serial function calls with other processes. If a particular logical address takes more
than one millisecond to accept or respond to a particular Word Serial command or query, the process is suspended
and another process (possibly with a different Commander Word Serial call in progress) can continue to execute.
The amount of time for which the process is suspended is dependent upon the operating system (usually 10 to 40
ms). When the process is resumed, the polling will continue. The polling will continue until the transfer is complete
or a timeout occurs. This support also keeps a hung device from hanging the operating system on the local CPU.

WSwrt, WSwrtf WStrg WSrd, WSrdf

Wrt and Trg Exclusion
Write and trigger ordering for IEEE 488.2

compatible operation must be done by the

application. No attempt is made to order or

perform mutual exclusion between write and

trigger calls. In addition, no mutual exclusion

is done between multiple writes or multiple

triggers. No more than one write or trigger

call may be pending at any one time (per

logical address).

Local CPU VXI A16 Window

VXIbus

Remote Word Serial Hardware

WScmd, WSclr,

WSLcmd, WSEcmd

Rd/Wrt/Trg Exclusion

Command Priority Override
All Word Serial command functions have priority over the read

and write functions. If a command call is underway, all read

and write calls will be suspended until the command transfer

is complete. If a read or write call is already underway when

a command call is made, the command call will cause the read

or write call to suspend before the next individual read or write

command/query is sent (Byte Available for WSwrt, WSwrtf, or

Byte Request for WSrd, WSrdf). When the command transfer is

complete, the read or write call will continue exactly from where

it was suspended. No mutual exclusion is done between multiple

command calls. The application must guarantee that only one

command call is pending at one time.

Read held off if write or trigger underway. Write

and trigger held off if read underway. No mutual

exclusion is done between multiple reads or

multiple writes and triggers. No more than one read

call may be pending at any one time (per logical

address). No more than one write or trigger call

may be pending at any one time (per logical

address).

Figure 4-2. Preemptive Word Serial Mutual Exclusion (Per Logical Address)

Chapter 4 Commander Word Serial Protocol Functions

© National Instruments Corporation 4-5 NI-VXI Software Reference Manual for C

Functional Overview

The following paragraphs describe the Commander Word Serial, Longword Serial, and Extended Longword Serial
Protocol functions. The descriptions are grouped by functionality and are presented at a functional level describing
the operation of each of the functions.

WSrd (la, buf, count, mode, retcount)

WSrd is the buffer read function. WSrd reads a specified number of bytes from a Servant device into a local
memory buffer, using the VXIbus Byte Transfer Protocol. The process involves sending a series of Byte Request
(BREQ) Word Serial queries and reading the responses. Each response contains a data byte in the lower 8 bits and
the END bit in bit 8. Before sending the BREQ command, WSrd polls both Response register bits–Data Out Ready
(DOR) and Write Ready (WR). It polls the Response register Read Ready (RR) bit before reading the response
from the Data Low register. The read terminates when it receives a maximum number of bytes or if it encounters an
END bit, a carriage return (CR), a line feed (LF), or a user-specified termination character.

WSrdf (la, filename, count, mode, retcount)

This function is an extension of the WSrd function. WSrdf reads a specified number of bytes from a Servant device
into the specified file, using the VXIbus Byte Transfer Protocol. The process involves calling the function WSrd
(possibly many times) to read in a block of data and writing the data to the specified file. The read terminates when
it receives a maximum number of bytes or if it encounters an END bit, a carriage return (CR), a line feed (LF), or a
user-specified termination character.

WSwrt (la, buf, count, mode, retcount)

This function is the buffer write function. WSwrt writes a specified number of bytes from a memory buffer to a
Message-Based Servant using the VXIbus Byte Transfer Protocol. The process involves sending a series of Byte
Available (BAV) Word Serial commands with a single byte in the lower 8 bits of the command. Before sending the
BAV command, WSwrt polls both Response register bits–Data In Ready (DIR) and Write Ready (WR)–until
asserted. The modevalue parameter in the call specifies whether to send BAV only or BAV with END for the last
byte of the transfer.

WSwrtf (la, filename, count, mode, retcount)

This function is an extension of the WSwrt function. WSwrtf writes a specified number of bytes from the
specified file to a Message-Based Servant using the VXIbus Byte Transfer Protocol. The process involves calling
the WSwrt function (possibly many times) to write out a block of data read from the specified file. The
modevalue parameter in the call specifies whether to send BAV only or BAV with END for the last byte of the
transfer.

WScmd (la, cmd, respflag, response)

WScmd sends a Word Serial command or query to a Message-Based Servant. It polls the WR bit before sending the
command, and polls the RR bit before reading the response (if applicable) from the Data Low register. WScmd polls
the WR bit after either sending the command (for a command) or reading the response (for a query), to guarantee
that no protocol errors occurred during the transfer. Under the VXIbus specification, the ERR* bit can be asserted at
any time prior to reasserting the WR bit. Do not use this function to send the Word Serial commands Byte Available
(BAV), Byte Request (BREQ), Trigger , or Clear . All of these Word Serial commands require different Response
register polling techniques.

Commander Word Serial Protocol Functions Chapter 4

NI-VXI Software Reference Manual for C 4-6 © National Instruments Corporation

WSresp (la, response)

WSresp retrieves a response to a previously sent Word Serial Protocol query from a VXI Message-Based Servant.

Note: This function is intended for debugging purposes only.

Normally, you would use the WScmd function to send Word Serial queries with the response automatically read
(specified with respflag). In cases when you need to inspect the Word Serial transfer at a lower level, however,
you can break up the query sending and query response retrieval by using the WScmd function to send the query as a
command and using the WSresp function to retrieve the response. During the interim period between sending the
WScmd and WSresp functions, you can check register values and other hardware conditions. WSresp polls the RR
bit before reading the response from the Data Low register. After reading the response, it polls the Response
register until the WR bit is asserted.

WStrg (la)

WStrg sends the Word Serial Trigger command to a Message-Based Servant. Before sending the Trigger
command (by writing to the Data Low register), WStrg polls both Response register bits–Data In Ready (DIR) and
Write Ready (WR)–until asserted. You cannot use the WScmd function to send the Word Serial Trigger command
(WScmd polls only for WR before sending the command). WStrg polls the WR bit until asserted again after
sending the Trigger command to guarantee that no protocol errors occurred during the transfer.

WSclr (la)

WSclr sends the Word Serial Clear command to a Message-Based Servant. The Clear command clears any
pending protocol error on the receiving device. The ERR* bit is ignored during the transfer so as not to generate a
protocol error. The WR bit is polled until asserted after the Clear command is sent to verify that the command
executed properly.

WSabort (la, abortop)

WSabort aborts the Commander Word Serial operation (s) in progress with a particular device. This function does
not perform any Word Serial transfers. Instead, it aborts any Word Serial operation already in progress. The
abortop parameter specifies the type of abort to perform. The ForcedAbort operation aborts read, write, and
trigger operations with the specified device. The UnSupCom operation performs an Unsupported Command abort
of the current Word Serial, Longword Serial, or Extended Longword Serial command in progress. The UnSupCom
operation is called when an Unrecognized Command Event is received by DefaultSignalHandler .

WSLcmd (la, cmd, respflag, response)

WSLcmd sends a Longword Serial command or query to a Message-Based Servant. It polls the WR bit before
sending the command. WSLcmd sends the command by writing the Data High register first with the upper 16 bits of
the 32-bit command, and then writing the Data Low register with the lower 16 bits of the 32-bit command. It then
polls the RR bit before reading the 32-bit response from the Data Low and Data High registers. WSLcmd polls the
WR bit after either sending the command (for a command) or reading the response (for a query), to guarantee that no
protocol errors occurred during the transfer.

Chapter 4 Commander Word Serial Protocol Functions

© National Instruments Corporation 4-7 NI-VXI Software Reference Manual for C

WSLresp (la, response)

WSLresp retrieves a response to a previously sent Longword Serial Protocol query from a VXI Message-Based
Servant.

Note: This function is intended for debugging purposes only.

Normally, you would use the WSLcmd function to send Longword Serial queries with the response automatically
read (specified with respflag). In cases when you need to inspect the Longword Serial transfer at a lower level,
however, you can break up the query sending and query response retrieval by using the WSLcmd function to send
the query as a command, and using the WSLresp function to retrieve the response. WSLresp polls the RR bit
before reading the response from the Data High and Data Low registers to form the 32-bit response. After reading
the response, it polls the Response register until the WR bit is asserted to guarantee that no protocol errors occurred
during the transfer.

WSEcmd (la, cmdExt, cmd, respflag, response)

WSEcmd sends an Extended Word Serial command or query to a Message-Based Servant. It polls the WR bit before
sending the 48-bit command. WSEcmd sends the command by writing the Data Extended register first with the
upper 16 bits of the command (cmdExt), followed by the Data High register with the middle 16 bits of the
command (upper 16 bits of cmd), and concluding with the Data Low register with the lower 16 bits of the command
(lower 16 bits of cmd). It then polls the RR bit before reading the 32-bit response from the Data Low and Data High
registers (there are no 48-bit responses for Extended Longword Serial). WSEcmd polls the WR bit after either
sending the command (for a command) or reading the response (for a query), to guarantee that no protocol errors
occurred during the transfer.

WSsetTmo (timo, actualtimo)

WSsetTmo sets the timeout period for all of the Commander Word Serial Protocol functions. It sets the timeout
value in milliseconds to the nearest resolution of the host CPU. When a timeout occurs during a Commander Word
Serial Protocol function, the function terminates with a corresponding error code.

WSgetTmo (actualtimo)

WSgetTmo retrieves the current timeout period for all of the Commander Word Serial Protocol functions. It
retrieves the current timeout value in milliseconds to the nearest resolution of the host CPU.

Commander Word Serial Protocol Functions Chapter 4

NI-VXI Software Reference Manual for C 4-8 © National Instruments Corporation

Function Descriptions

The following paragraphs describe the Commander Word Serial, Longword Serial, and Extended Longword Serial
Protocol functions. The descriptions are explained at the C syntax level and are listed in alphabetical order.

WSabort

Syntax: ret = WSabort (la, abortop)

Action: Performs a Forced or Unrecognized (Unsupported) Command abort of a Commander Word Serial
operation(s) in progress.

Remarks: Input parameters:

la INT16 Logical address of the Message-Based device

abortop UINT16 The operation to abort

1 = Forced Abort : aborts WSwrt , WSrd , and
WStrg

2 = UnSupCom : aborts WScmd , WSLcmd , and WSEcmd
3 = Forced Abort : aborts WScmd , WSLcmd , and

WSEcmd
4 = Forced Abort : aborts all Word Serial operations
5 = Async Abort : aborts all Word Serial operations

immediately. Be careful when using this option.
During a Word Serial query, the Servant may be
left in an invalid state if the operation is aborted
after writing the query and before reading the
response register. When using this option, the
Word Serial operation aborts immediately as
compared to using options 1, 3, and 4, where the
operation does not abort until reading the
response.

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successfully aborted
-1 = Invalid la
-2 = Invalid abortop

Example: /* Perform Unsupported Command abort on Logical Address 5. */

INT16 ret;
INT16 la;
UINT16 abortop;

la = 5;
abortop = 2;
ret = WSabort (la, abortop);
if (ret < 0)

/* An error occurred during WSabort. */;

Chapter 4 Commander Word Serial Protocol Functions

© National Instruments Corporation 4-9 NI-VXI Software Reference Manual for C

WSclr

Syntax: ret = WSclr (la)

Action: Sends the Word Serial Clear command to a Message-Based device.

Remarks: Input parameter:

la INT16 Logical address of the Message-Based device

Output parameters:

none

Return value:

ret INT16 Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)

7 BERR Bus error occurred during transfer
5 InvalidLA Invalid la specified
2 TIMO_DONE Timed out before WR set (clear complete)
1 TIMO_SEND Timed out before able to send Clear

 Successful Transfer (Bit 15 = 0)

0 IODONE Command transfer successfully completed

Example: /* Send Clear command to Logical Address 5. */

INT16 ret;
INT16 la;

la = 5;
ret = WSclr (la);
if (ret < 0)

/* An error occurred during the command transfer. */;

Commander Word Serial Protocol Functions Chapter 4

NI-VXI Software Reference Manual for C 4-10 © National Instruments Corporation

WScmd

Syntax: ret = WScmd (la, cmd, respflag, response)

Action: Sends a Word Serial command or query to a Message-Based device.

Remarks: Input parameters:

la INT16 Logical address of the Message-Based device

cmd UINT16 Word Serial command value

respflag UINT16 Non-0 = Get a response (query)
0 = Do not get a response

Output parameter:

response UINT16* 16-bit location to store response

Return value:

ret INT16 Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)

14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device did not recognize the command
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
2 TIMO_RES Timed out before response received
1 TIMO_SEND Timed out before able to send command

 Successful Transfer (Bit 15 = 0)

0 IODONE Command transfer successfully completed

Example: /* Send the Word Serial command Read STB to a device at Logical
Address 5, and get the response. */

INT16 ret;
INT16 la;
UINT16 cmd;
UINT16 respflag;
UINT16 response;

la = 5;
cmd = 0xcfff;
respflag = 1;
ret = WScmd (la, cmd, respflag, &response);
if (ret < 0)

/* An error occurred during WS command transfer. */;

Chapter 4 Commander Word Serial Protocol Functions

© National Instruments Corporation 4-11 NI-VXI Software Reference Manual for C

WSEcmd

Syntax: ret = WSEcmd (la, cmdExt, cmd, respflag, response)

Action: Sends an Extended Longword Serial command or query to a Message-Based device.

Remarks: Input parameters:

la INT16 Logical address of the Message-Based device

cmdExt UINT16 Upper 16 bits of 48-bit Extended Longword Serial
command value

cmd UINT32 Lower 32 bits of 48-bit Extended Longword Serial
command value

respflag UINT16 Non-0 = Get a response (query)
0 = Do not get a response

Output parameter:

response UINT32* 32-bit location to store response

Return value:

ret INT16 Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)

14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device did not recognize the command
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
2 TIMO_RES Timed out before response received
1 TIMO_SEND Timed out before able to send command

 Successful Transfer (Bit 15 = 0)

0 IODONE Command transfer successfully completed

Commander Word Serial Protocol Functions Chapter 4

NI-VXI Software Reference Manual for C 4-12 © National Instruments Corporation

Example: /* Send the Extended Longword Serial command FFFCFFFDFFFE hex to a
device at Logical Address 5, and get the response. */

INT16 ret;
INT16 la;
UINT16 cmdExt;
UINT32 cmd;
UINT16 respflag;
UINT32 response;

la = 5;
cmdExt = 0xfffc;
cmd = 0xfffdfffeL;
respflag = 1;
ret = WSEcmd (la, cmdExt, cmd, respflag, &response);
if (ret < 0)

/* An error occurred during command transfer. */;

Chapter 4 Commander Word Serial Protocol Functions

© National Instruments Corporation 4-13 NI-VXI Software Reference Manual for C

WSgetTmo

Syntax: ret = WSgetTmo(actualtimo)

Action: Gets the actual time period to wait before aborting a Word Serial, Longword Serial, or Extended
Longword Serial Protocol transfer.

Remarks: Input parameters:

none

Output parameter:

actualtimo INT32* Timeout period in milliseconds

Return value:

ret INT16 0 = Successful

Example: /* Get the timeout period. */

INT16 ret;
INT32 actualtimo;

ret = WSgetTmo(&actualtimo);

Commander Word Serial Protocol Functions Chapter 4

NI-VXI Software Reference Manual for C 4-14 © National Instruments Corporation

WSLcmd

Syntax: ret = WSLcmd (la, cmd, respflag, response)

Action: Sends a Longword Serial command or query to a Message-Based device.

Remarks: Input parameters:

la INT16 Logical address of the Message-Based device

cmd UINT32 Longword Serial command value

respflag UINT16 Non-0 = Get a response (query)
0 = Do not get a response

Output parameter:

response UINT32* 32-bit location to store response

Return value:

ret INT16 Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)

14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device did not recognize the command
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
2 TIMO_RES Timed out before response received
1 TIMO_SEND Timed out before able to send command

 Successful Transfer (Bit 15 = 0)

0 IODONE Command transfer successfully completed

Example: /* Send the Longword Serial command 0xfffcfffd to a device at
Logical Address 5, and get the response. */

INT16 ret;
INT16 la;
UINT32 cmd;
UINT16 respflag;
UINT32 response;

la = 5;
cmd = 0xfffcfffdL;
respflag = 1;
ret = WSLcmd (la, cmd, respflag, &response);
if (ret < 0)

/* An error occurred during command transfer. */;

Chapter 4 Commander Word Serial Protocol Functions

© National Instruments Corporation 4-15 NI-VXI Software Reference Manual for C

WSLresp

Syntax: ret = WSLresp (la, response)

Action: Retrieves a response to a previously sent Longword Serial Protocol query from a VXI Message-
Based device. WSLcmd can send a query and automatically read a response. However, if it is
necessary to break up the sending of the query and the reading of the response, you can use
WSLcmd to send the query without reading the response and use WSLresp to read the response.

Note: This function is intended for debugging use only.

Remarks: Input parameter:

la INT16 Logical address of the Message-Based device

Output parameter:

response UINT32* 32-bit location to store response

Return value:

ret INT16 Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)

14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device did not recognize the command
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
2 TIMO_RES Timed out before response received

 Successful Transfer (Bit 15 = 0)

0 IODONE Command transfer successfully completed

Example: /* Retrieve a response for a previously sent Longword Serial query
from Logical Address 5. */

INT16 ret;
INT16 la;
UINT32 response;

la = 5;
ret = WSLresp (la, &response);
if (ret < 0)

/* An error occurred during response retrieval. */;

Commander Word Serial Protocol Functions Chapter 4

NI-VXI Software Reference Manual for C 4-16 © National Instruments Corporation

WSrd

Syntax: ret = WSrd (la, buf, count, mode, retcount)

Action: Transfers the specified number of data bytes from a Message-Based device into a specified local
memory buffer, using the VXIbus Byte Transfer Protocol.

Remarks: Input parameters:

la INT16 Logical address to read buffer from

count UINT32 Maximum number of bytes to transfer

mode UINT16 Transfer mode bit vector

 Bit Description

0 Not DOR
0 = Abort if not DOR
1 = Poll till DOR

1 END bit termination suppression
0 = Terminate transfer on END bit
1 = Do not terminate transfer on END

2 LF character termination
1 = Terminate transfer on LF bit
0 = Do not terminate transfer on LF

3 CR character termination
1 = Terminate transfer on CR bit
0 = Do not terminate transfer on CR

4 EOS character termination
1 = Terminate transfer on EOS bit
0 = Do not terminate transfer on EOS

8 to 15 EOS character (valid if EOS termination)

Output parameters:

buf UINT8* Read buffer

retcount UINT32* Number of bytes actually transferred

Return value:

ret INT16 Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)

14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device does not support the command
8 TIMO Timeout
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
4 ForcedAbort User abort occurred during I/O

Chapter 4 Commander Word Serial Protocol Functions

© National Instruments Corporation 4-17 NI-VXI Software Reference Manual for C

 Successful Transfer (Bit 15 = 0)

3 DirDorAbort Transfer aborted–Device not DOR
2 TC All bytes received
1 END Any one of the termination received
0 IODONE Successful transfer

Example: /* Read up to 30 bytes from a device at Logical Address 5. Poll
until device is DOR. Terminate transfer on END bit only. */

INT16 ret;
INT16 la;
UINT8 buf[100];
UINT32 count;
UINT16 mode;
UINT32 retcount;

la = 5;
count = 30L;
mode = 0x0001; /* Poll until DOR, terminate transfer on END. */
ret = WSrd (la, buf, count, mode, &retcount);
if (ret < 0)

/* An error occurred during the buffer read. */;

Commander Word Serial Protocol Functions Chapter 4

NI-VXI Software Reference Manual for C 4-18 © National Instruments Corporation

WSrdf

Syntax: ret = WSrdf (la, filename, count, mode, retcount)

Action: Reads the specified number of data bytes from a Message-Based device and writes them to the
specified file, using the VXIbus Byte Transfer Protocol and standard file I/O.

Remarks: Input parameters:

la INT16 Logical address to read buffer from

filename INT8* Name of the file to read data into

count UINT32 Maximum number of bytes to transfer

mode UINT16 Transfer mode bit vector

 Bit Description

0 Not DOR
0 = Abort if not DOR
1 = Poll till DOR

1 END bit termination suppression
0 = Terminate transfer on END bit
1 = Do not terminate transfer on END

2 LF character termination
1 = Terminate transfer on LF bit
0 = Do not terminate transfer on LF

3 CR character termination
1 = Terminate transfer on CR bit
0 = Do not terminate transfer on CR

4 EOS character termination
1 = Terminate transfer on EOS bit
0 = Do not terminate transfer on EOS

8 to 15 EOS character (valid if EOS termination)

Output parameter:

retcount UINT32* Number of bytes actually transferred

Return value:

ret INT16 Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)

14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device does not support the command
8 TIMO Timeout
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
4 ForcedAbort User abort occurred during I/O
1 FIOerr Error reading or writing file
0 FOPENerr Error opening file

Chapter 4 Commander Word Serial Protocol Functions

© National Instruments Corporation 4-19 NI-VXI Software Reference Manual for C

 Successful Transfer (Bit 15 = 0)

3 DirDorAbort Transfer aborted–Device not DOR
2 TC All bytes received
1 END Any one of the termination received
0 IODONE Successful transfer

Example: /* Read 16 kilobytes (0x4000) from a device at Logical Address 5
into a file called "rdfile.dat." Poll until device is DOR.
Terminate the transfer on END bit or line feed (LF). */

INT16 ret;
INT8 *filename;
INT16 la;
UINT32 count;
UINT16 mode;
UINT32 retcount;

la = 5;
filename = "rdfile.dat";
count = 0x4000L;
mode = 0x0005; /* Poll until DOR, terminate on END or LF. */
ret = WSrdf (la, filename, count, mode, &retcount);
if (ret < 0)

/* An error occurred during the buffer read into the file. */

Commander Word Serial Protocol Functions Chapter 4

NI-VXI Software Reference Manual for C 4-20 © National Instruments Corporation

WSresp

Syntax: ret = WSresp (la, response)

Action: Retrieves a response to a previously sent Word Serial Protocol query from a VXI Message-Based
device. WScmd can send a query and automatically read a response. However, if it is necessary to
break up the sending of the query and the reading of the response, you can use WScmd to send the
query without reading the response and use WSresp to read the response.

Note: This function is intended for debugging use only.

Remarks: Input parameter:

la INT16 Logical address of the Message-Based device

Output parameter:

response UINT16* 16-bit location to store response

Return value:

ret INT16 Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)

14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device does not support the command
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
2 TIMO_RES Timed out before response received

 Successful Transfer (Bit 15 = 0)

0 IODONE Command transfer successfully completed

Example: /* Send Read STB as a command and retrieve the response later. */

INT16 ret;
INT16 la;
UINT16 cmd;
UINT16 respflag;
UINT16 response;

la = 5;
cmd = 0xcfff;
respflag = 0; /* Do NOT read response. */
ret = WScmd (la, cmd, respflag, &response);
if (ret < 0)

/* An error occurred during WS command transfer. */;
else (

ret = WSresp (la, &response);
if (ret < 0)

/* An error occurred during response retrieval. */;
}

Chapter 4 Commander Word Serial Protocol Functions

© National Instruments Corporation 4-21 NI-VXI Software Reference Manual for C

WSsetTmo

Syntax: ret = WSsetTmo (timo, actualtimo)

Action: Sets the time period to wait before aborting a Word Serial, Longword Serial, or Extended
Longword Serial Protocol transfer. It returns the actual timeout value set (the nearest timeout
period possible greater than or equal to the timeout period specified).

Remarks: Input parameter:

timo INT32 Timeout period in milliseconds

Output parameter:

actualtimo INT32* Actual timeout period set in milliseconds

Return value:

ret INT16 0 = Successful

Example: /* Set the timeout period to 2 seconds. */

INT16 ret;
INT32 timo;
INT32 actualtimo;

timeout = 2000L;
ret = WSsetTmo (timo, &actualtimo);

Commander Word Serial Protocol Functions Chapter 4

NI-VXI Software Reference Manual for C 4-22 © National Instruments Corporation

WStrg

Syntax: ret = WStrg (la)

Action: Sends the Word Serial Trigger command to a Message-Based device.

Remarks: Input parameter:

la INT16 Logical address of the Message-Based device.

Output parameters:

none

Return value:

ret INT16 Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)

14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device did not recognize the command
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
4 ForcedAbort User abort occurred during I/O
1 TIMO_SEND Timed out before able to send command

 Successful Transfer (Bit 15 = 0)

0 IODONE Command transfer successfully completed

Example: /* Send Trigger command to Logical Address 5. */

INT16 ret;
INT16 la;

la = 5;
ret = WStrg (la);
if (ret < 0)

/* An error occurred during the command transfer. */;

Chapter 4 Commander Word Serial Protocol Functions

© National Instruments Corporation 4-23 NI-VXI Software Reference Manual for C

WSwrt

Syntax: ret = WSwrt (la, buf, count, mode, retcount)

Action: Transfers the specified number of data bytes from a specified local memory buffer to a
Message-Based device, using the VXIbus Byte Transfer Protocol.

Remarks: Input parameters:

la INT16 VXI logical address to write buffer to

buf UINT8* Write buffer

count UINT32 Maximum number of bytes to transfer

mode UINT16 Mode of transfer (bit vector)

 Bit Description

0 0 = Abort if device is not DIR
1 = Poll until device is DIR

1 1 = Set END bit on the last byte of transfer
0 = Clear END bit on the last byte of transfer

Output parameter:

retcount UINT32* Number of bytes actually transferred

Return value:

ret INT16 Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)

14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device does not support the command
8 TIMO Timeout
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
4 ForcedAbort User abort occurred during I/O

 Successful Transfer (Bit 15 = 0)

3 DirDorAbort Transfer aborted–Device not DIR
2 TC All bytes sent
1 END The END bit was sent
0 IODONE Successful transfer

Commander Word Serial Protocol Functions Chapter 4

NI-VXI Software Reference Manual for C 4-24 © National Instruments Corporation

Example: /* Write the 14-byte ASCII command "VXI:CONF:NUMB?" to a device at
Logical Address 5. Poll until device is DIR, and send END with
the last byte. */

INT16 ret;
INT16 la;
UINT8 *buf;
UINT32 count;
UINT16 mode;
UINT32 retcount;

la = 5;
buf = "VXI:CONF:NUMB?";
count = strlen(buf);
mode = 0x0003; /* Poll until DIR; send END with last byte. */
ret = WSwrt (la, buf, count, mode, &retcount);
if (ret < 0)

/* An error occurred during the buffer write. */;

Chapter 4 Commander Word Serial Protocol Functions

© National Instruments Corporation 4-25 NI-VXI Software Reference Manual for C

WSwrtf

Syntax: ret = WSwrtf (la, filename, count, mode, retcount)

Action: Transfers up to the specified number of data bytes from the specified file to a Message-Based
device, using the VXIbus Byte Transfer Protocol and standard file I/O.

Remarks: Input parameters:

la INT16 VXI logical address to write buffer to

filename INT8* Name of the file to write data from

count UINT32 Maximum number of bytes to transfer

mode UINT16 Mode of transfer (bit vector)

 Bit Description

0 0 = Abort if device is not DIR
1 = Poll until device is DIR

1 1 = Set END bit on the last byte of transfer
0 = Clear END bit on the last byte of transfer

Output parameter:

retcount UINT32* Number of bytes actually transferred

Return value:

ret INT16 Return status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)

14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
10 RdProtErr Read protocol error
9 UnSupCom Device does not support the command
8 TIMO Timeout
7 BERR Bus error occurred during transfer
6 MQE Multiple query error occurred during transfer
5 InvalidLA Invalid la specified
4 ForcedAbort User abort occurred during I/O
1 FIOerr Error reading or writing file
0 FOPENerr Error opening file

 Successful Transfer (Bit 15 = 0)

3 DirDorAbort Transfer aborted–Device not DIR
2 TC All bytes sent
1 END The END bit was sent
0 IODONE Successful transfer

Commander Word Serial Protocol Functions Chapter 4

NI-VXI Software Reference Manual for C 4-26 © National Instruments Corporation

Example: /* Write 16 kilobytes (0x4000) to a device at Logical Address 5
from the file, "wrtfile.dat." Poll until device is DIR, and
send END with the last byte. */

INT16 ret;
INT8 *filename;
INT16 la;
UINT32 count;
UINT16 mode;
UINT32 retcount;

la = 5;
filename = "wrtfile.dat";
count = 0x4000L;
mode = 0x0003; /* Send END, wait until DIR if not

 already DIR. */
ret = WSwrtf (la, filename, count, mode, &retcount);
if (ret < 0)

/* An error occurred during the buffer write. */;

© National Instruments Corporation 5-1 NI-VXI Software Reference Manual for C

Chapter 5
Servant Word Serial Protocol Functions

This chapter describes the C syntax and use of the VXI Servant Word Serial Protocol functions. Word Serial
communication is the minimal mode of communication between VXI Message-Based devices within the VXI
Commander/Servant hierarchy. The local CPU (the CPU on which the NI-VXI functions are running) uses the
Servant Word Serial functions to perform VXI Message-Based Servant Word Serial communication with its
Commander. These functions are needed only in the case where the local CPU is not a top-level Commander
(probably not the Resource Manager), such as in a multiple CPU situation. In a multiple CPU situation, the local
CPU must allow the Resource Manager device to configure the local CPU and can optionally implement some basic
message-transfer Word Serial communication with its Commander. The four basic types of Servant Word Serial
functions are as follows:

• Receiving commands

• Receiving and responding to queries

• Responding to requests to send buffers

• Receiving buffers

Word Serial Protocol is a simple 16-bit transfer protocol between a Commander and its Servants. The Commander
polls specific bits in the Servant's VXI Response register to determine when it can write a command or read a
response from the Data Low register. It also determines when a Word Serial protocol error occurs. Before a
Commander can send a Word Serial command to a Servant, it must first poll the Write Ready (WR) bit until it is
asserted (set to 1). The Commander can then write the command to the Data Low register. If the Commander is
sending a query, it first sends the query in the same manner as sending a command, but then continues by polling
the Read Ready (RR) bit until it is asserted. It then reads the response from the Data Low register.

A buffer write is simply a series of Byte Available Word Serial commands sent to the Servant, with the additional
constraint that the Data In Ready (DIR) bit as well as the WR bit must be asserted before sending the Byte Available
command. The lower 8 bits (bits 0 to 7) of the 16-bit command contain a single byte of data (bit 8 is the END bit).
Therefore, one Byte Available is sent for each data byte in the buffer written. A buffer read is simply a series of Byte
Request Word Serial queries sent to the Servant, with the additional constraint that the Data Out Ready (DOR) bit as
well as the WR bit must be asserted before sending the Byte Request . The lower 8 bits (bits 0 to 7) of the 16-bit
response contain a single byte of data (bit 8 is the END bit). Therefore, one Byte Request is sent for each data byte
in the buffer read.

In addition to polling the WR, RR, DIR, and DOR bits during various Word Serial transfers, the functions also
check the ERR* bit. The ERR* bit indicates when a Word Serial Protocol error occurs. The Word Serial Protocol
error can be Unsupported Command, Multiple Query Error (MQE), DIR Violation, DOR Violation, RR Violation,
or WR Violation. The Servant Word Serial Protocol functions let the local CPU generate any of the Word Serial
Protocol errors and respond to the Read Protocol Error Word Serial query with the corresponding protocol error.
The functions automatically handle asserting and deasserting of the ERR* bit.

The Longword Serial and Extended Longword Serial Protocols are similar to the Word Serial Protocol, but involve
32-bit and 48-bit command transfers, respectively, instead of the 16-bit transfers of the Word Serial Protocol. The
VXI specification, however, provides no common command usages for these protocols. The commands are either
VXI Reserved or User-Defined. The NI-VXI interface gives you the ability to receive and process any one of these
commands.

Servant Word Serial Protocol Functions Chapter 5

NI-VXI Software Reference Manual for C 5-2 © National Instruments Corporation

Programming Considerations

Most of the Servant Word Serial functions require an interrupt handler. The commands must be parsed (and
responded to) within the appropriate interrupt handler. Word Serial commands Byte Available (BAV) and Byte
Request (BREQ) are handled as a special case for reads and writes. For reads and writes, a user-supplied handler is
notified only that the transfer is complete. Asserting and unasserting of all Response register bits (DIR, DOR, WR,
RR, and ERR*) are done automatically within the functions as required. Figure 5-1 provides a graphical overview
of the Servant Word Serial functions.

ERROR

Hardware

WSScmdHandler

NI-VXI base Interrupt Service Routine (ISR)
WSSenable()

WSSdisable()

SetWSScmdHandler()
GetWSScmdHandler()
DefaultWSScmdHandler()

Read Command

WSSLcmdHandlerWSSrdHandler WSSEcmdHandlerWSSwrtHandler

SetWSSwrtHandler()
GetWSSwrtHandler()
DefaultWSSwrtHandler()

SetWSSrdHandler()
GetWSSrdHandler()
DefaultWSSrdHandler()

SetWSSLcmdHandler()
GetWSSLcmdHandler()
DefaultWSSLcmdHandler()

SetWSSLcmdHandler()
GetWSSLcmdHandler()
DefaultWSSLcmdHandler()

WSS? WSSL? WSSE?

if write pending and cmd is
 BREQ respond with next byte
 if done
 call WSSwrtHandler with
 status set WR and exit
else if read pending and cmd
 is BAV store byte in buffer
 if done
 call WSSrdHandler with
 status set WR and exit
else call WSScmdHandler

Local VXI Communication Registers

Write Data

Low High Ext

Read Data

Low High

Response

WR RR ERR*

WSSsendResp()
WSSLsendResp()

WSSwrt()

WSSrd()

NI-VXI

Software

User
Application

User

ISRs

Word Serial
Processor

RespProtError()

GenProtError()

(
u
i
n
t
1
6
)
c
m
d

(
u
i
n
t
1
6
)
c
m
d

(uint32)cmd

(uint16)cmdExt, (uint32)cmd

(
i
n
t
1
6
)
s
t
a
t
u
s
,

(
u
i
n
t
3
2
)
c
o
u
n
t

(
i
n
t
1
6
)
s
t
a
t
u
s
,

(
u
i
n
t
3
2
)
c
o
u
n
t

WSSnoResp()
WSSLnoResp()

Figure 5-1. NI-VXI Servant Word Serial Model

Chapter 5 Servant Word Serial Protocol Functions

© National Instruments Corporation 5-3 NI-VXI Software Reference Manual for C

Functional Overview

The following paragraphs describe the Servant Word Serial, Longword Serial, and Extended Longword Serial
Protocol functions. The descriptions are grouped by functionality and are presented at a functional level describing
the operation of each of the functions.

WSSenable ()

WSSenable enables all Servant Word Serial functions. More precisely, this function sensitizes the local CPU
to interrupts generated when writing a Word Serial command to the Data Low register or reading a response
from the Data Low register. By default, the Servant Word Serial functions are disabled. At any time after
InitVXIlibrary initializes the NI-VXI software, you can call WSSenable to set up processing of Servant
Word Serial commands and queries.

WSSdisable ()

WSSdisable disables all Servant Word Serial functions from being used. More precisely, this function
desensitizes the local CPU to interrupts generated when writing a Word Serial command to the Data Low register
or reading a response from the Data Low register.

WSSrd (buf, count, mode)

WSSrd is the buffer read function. WSSrd receives a specified number of bytes from a VXI Message-Based
Commander device and places the bytes into a memory buffer, using the VXIbus Byte Transfer Protocol. The
process involves setting the DIR and WR bits on the local CPU Response register and building a buffer out of data
bytes received via a series of Byte Available (BAV) Word Serial commands. When WSSrd reaches the specified
count or an END bit, or an error occurs, it calls the WSSrd interrupt handler with the status of the call. It clears the
DIR bit before setting the WR on the last byte of transfer.

SetWSSrdHandler (func)

SetWSSrdHandler replaces the current WSSrd interrupt handler with an alternate handler. When WSSrd
reaches the specified count or an END bit, or an error occurs, it calls the WSSrd interrupt handler with the status of
the call. A default handler, DefaultWSSrdHandler , is automatically installed when InitVXIlibrary is
called. The default handler simply puts the status and read count in a global variable and flags the operation
complete.

GetWSSrdHandler ()

GetWSSrdHandler returns the address of the current WSSrd interrupt handler function. When WSSrd reaches
the specified count or an END bit, or an error occurs, it calls the WSSrd interrupt handler with the status of the call.

Servant Word Serial Protocol Functions Chapter 5

NI-VXI Software Reference Manual for C 5-4 © National Instruments Corporation

DefaultWSSrdHandler (status, count)

DefaultWSSrdHandler is the sample handler for the WSSrd interrupt, which InitVXIlibrary
automatically installs as a default handler when it initializes the NI-VXI software. When WSSrd reaches the
specified count or an END bit, or an error occurs, it calls the WSSrd interrupt handler with the status of the call.
The default handler simply sets the global variables WSSrdDone , WSSrdDoneStatus , and WSSrdDoneCount .
You can use the variable WSSrdDone to poll until the operation is complete. Afterwards, you can inspect
WSSrdDoneStatus and WSSrdDoneCount to see the outcome of the call. If you want, you can use the
SetWSSrdHandler function to install an alternate handler.

WSSwrt (buf, count, mode)

WSSwrt sends a specified number of bytes to a VXI Message-Based Commander device, using the VXIbus Byte
Transfer Protocol. The process involves setting the DOR and WR bits in the local Response register and responding
to a series of Byte Request (BREQ) Word Serial commands. When the data output completes or an error occurs,
WSSwrt calls its interrupt handler with the status of the call. Before responding to the last byte of the write, it
clears DOR to prevent another BREQ from being sent before the application is able to handle the BREQ properly.

SetWSSwrtHandler (func)

SetWSSwrtHandler replaces the current WSSwrt interrupt handler with an alternate handler. When WSSwrt
reaches the specified count or an error occurs, it calls the WSSwrt interrupt handler with the status of the call. The
DOR bit will be cleared before WR is set on the last byte of transfer. InitVXIlibrary automatically installs a
default handler, DefaultWSSwrtHandler , when it initializes the NI-VXI software. The default handler simply
puts the status and read count in a global variable and flags the operation complete.

GetWSSwrtHandler ()

GetWSSwrtHandler returns the address of the current WSSwrt interrupt handler function. When WSSwrt
reaches the specified count or an error occurs, it calls the WSSwrt interrupt handler with the status of the call.

DefaultWSSwrtHandler (status, count)

DefaultWSSwrtHandler is the sample handler for the WSSwrt interrupt, which InitVXIlibrary
automatically installs as a default handler when it initializes the NI-VXI software. When WSSwrt reaches the
specified count or an error occurs, it calls the WSSwrt interrupt handler with the status of the call. The default
handler simply sets the global variables WSSwrtDone , WSSwrtDoneStatus , and WSSwrtDoneCount .
You can use the variable WSSwrtDone to poll until the operation is complete. Afterwards, you can inspect
WSSwrtDoneStatus and WSSwrtDoneCount to see the outcome of the call. If you want, you can use the
SetWSSwrtHandler function to install an alternate handler.

SetWSScmdHandler (func)

SetWSScmdHandler replaces the current WSScmd interrupt handler with an alternate handler. While Word
Serial operations are enabled, the WSScmd interrupt handler is called whenever a Word Serial command is received
(other than BAV if a WSSrd call is pending, or BREQ if a WSSwrt call is pending). A default handler,
DefaultWSScmdHandler , is supplied in source code as an example, and is automatically installed when
InitVXIlibrary is called. The default handler provides examples of how to parse commands, respond to
queries, and generate protocol errors.

Chapter 5 Servant Word Serial Protocol Functions

© National Instruments Corporation 5-5 NI-VXI Software Reference Manual for C

GetWSScmdHandler ()

GetWSScmdHandler returns the address of the current WSScmd interrupt handler function. While Word Serial
operations are enabled, the WSScmd interrupt handler is called whenever a Word Serial command (other than BREQ
and BAV) is received.

DefaultWSScmdHandler (cmd)

DefaultWSScmdHandler is the sample Word Serial command handler, which InitVXIlibrary
automatically installs as a default handler when it initializes the NI-VXI software. The current WSScmdHandler
is called whenever the local CPU Commander sends any Word Serial Protocol command or query (other than BAV
or BREQ). While Word Serial operations are enabled, the WSScmd interrupt handler is called every time a Word
Serial command is received (other than BAV if a WSSrd call is pending, or BREQ if a WSSwrt call is pending).
DefaultWSScmdHandler parses the commands and takes appropriate action. If it is a query, it returns a
response using the WSSsendResp function. If it is a command, it calls the WSSnoResp function to acknowledge
it. If either a BREQ or BAV command is received via this handler, it calls GenProtError with the corresponding
protocol error code (DOR violation or DIR violation). For unsupported commands, the protocol error code sent to
GenProtError is UnSupCom .

WSSsendResp (response)

WSSsendResp responds to a Word Serial Protocol query from a VXI Message-Based Commander device. The
WSScmd interrupt handler calls this function to respond to a Word Serial query. If a previous response has not been
read yet, a WSSsendResp call generates a Multiple Query Error (MQE). Otherwise, it writes a response value to
the Data Low register and sets the RR bit is. It also sets the WR bit so that it is ready to accept any further Word
Serial commands.

WSSnoResp ()

WSSnoResp sets the WR bit so that it is ready to accept any further Word Serial commands. The WSScmd
interrupt handler should call WSSnoResp after processing a Word Serial command (it calls WSSsendResp for
a Word Serial query, which requires a response).

SetWSSLcmdHandler (func)

SetWSSLcmdHandler replaces the current WSSLcmd interrupt handler with an alternate handler. While Word
Serial operations are enabled, the WSSLcmd interrupt handler is called whenever a Longword Serial command is
received. A default handler, DefaultWSSLcmdHandler , is supplied in source code as an example, and is
automatically installed when InitVXIlibrary initializes the NI-VXI software.

GetWSSLcmdHandler ()

GetWSSLcmdHandler returns the address of the current WSSLcmd interrupt handler function. While Word
Serial operations are enabled, the WSSLcmd interrupt handler is called whenever a Longword Serial command is
received.

Servant Word Serial Protocol Functions Chapter 5

NI-VXI Software Reference Manual for C 5-6 © National Instruments Corporation

DefaultWSSLcmdHandler (cmd)

DefaultWSSLcmdHandler is the sample Word Longword Serial command handler, which InitVXIlibrary
automatically installs as a default handler when it initializes the NI-VXI software. The current WSSLcmdHandler
is called whenever the local CPU Commander sends any Longword Serial Protocol command or query. While
Word Serial operations are enabled, the WSSLcmdHandler is called whenever a Longword Serial command is
received. The WSSLcmdHandler must parse the commands and take the appropriate action. Because the VXI
specification does not define any Longword Serial commands, DefaultWSSLcmdHandler calls
GenProtError with a protocol error code of UnSupCom for every Longword Serial command received.

WSSLsendResp (response)

WSSLsendResp responds to a Longword Serial Protocol query from a VXI Message-Based Commander device.
The WSSLcmd interrupt handler calls this function to respond to a Longword Serial query. If a previous response
has not been read yet, a WSSLsendResp call generates a Multiple Query Error (MQE). Otherwise, it writes a
response value to the Data High and Data Low registers and sets the RR bit. It also sets the WR bit so that it is
ready to accept any further Word Serial commands.

WSSLnoResp ()

WSSLnoResp sets the WR bit so that it is ready to accept any further Longword Serial commands. The WSSLcmd
interrupt handler should call WSSLnoResp after processing a Longword Serial command (it calls WSSLsendResp
for Longword Serial queries).

SetWSSEcmdHandler (func)

SetWSSEcmdHandler replaces the current WSSEcmd interrupt handler with an alternate handler. While Word
Serial operations are enabled, the WSSEcmd interrupt handler is called whenever an Extended Longword Serial
command is received. A default handler, DefaultWSSEcmdHandler , is supplied in source code as an example,
and is automatically installed when InitVXIlibrary is called.

GetWSSEcmdHandler ()

GetWSSEcmdHandler returns the address of the current WSSEcmd interrupt handler function. While Word
Serial operations are enabled, the WSSEcmd interrupt handler will be called every time an Extended Longword
Serial command is received.

DefaultWSSEcmdHandler (cmdExt, cmd)

DefaultWSSEcmdHandler is the sample Word Extended Longword Serial command handler, which
InitVXIlibrary automatically installs as a default handler when it initializes the NI-VXI software. The current
WSSEcmdHandler is called whenever the local CPU Commander sends any Extended Longword Serial Protocol
command or query. While Word Serial operations are enabled, the WSSEcmdHandler is called whenever a
Longword Serial command is received. WSSEcmdHandler must parse the commands and take the appropriate
action. Because the VXI specification does not define any Extended Longword Serial commands,
DefaultWSSEcmdHandler calls GenProtError with a protocol error code of UnSupCom for every
Extended Longword Serial command received.

Chapter 5 Servant Word Serial Protocol Functions

© National Instruments Corporation 5-7 NI-VXI Software Reference Manual for C

WSSabort (abortop)

WSSabort aborts the Servant Word Serial operation(s) in progress. It returns an error code of ForcedAbort
to the WSSrd or WSSwrt interrupt handlers in response to the corresponding pending functions. This may be
necessary if the application needs to abort for some application-specific reason, or if the Commander of this device
sends a Word Serial Clear , End Normal Operation , or Abort command.

GenProtError (proterr)

In response to a Word Serial Protocol Error, the application should call GenProtError to generate the error.
Generating the error consists of preparing the response to a future Read Protocol Error query (saving the value in a
global variable) and setting the ERR* bit in the local Response register. The RespProtError function actually
generates the response when the Read Protocol Error query is received later.

RespProtError ()

When the Word Serial Read Protocol Error query is received, RespProtError places the saved error response in
the Data Low register, sets the saved error response to ffffh (no error), unasserts ERR*, and sets RR. If no previous
error is pending, the value ffffh (no error) is returned.

Servant Word Serial Protocol Functions Chapter 5

NI-VXI Software Reference Manual for C 5-8 © National Instruments Corporation

Function Descriptions

The following paragraphs describe the Servant Word Serial, Longword Serial, and Extended Longword Serial
Protocol functions. The descriptions are explained at the C syntax level and are listed in alphabetical order.

GenProtError

Syntax: ret = GenProtError (proterr)

Action: Generates a Word Serial protocol error if one is not already pending. It asserts the Response
register bit ERR* if the value of the protocol error, proterr , is not -1. If proterr is -1, it
deasserts the ERR* bit. If no previous error existed, it saves the proterr value for response to
a future Read Protocol Error query via the function RespProtError . If a previous error does
exist, the ERR* bit remains asserted but the protocol error specified by proterr is ignored.

Remarks: Input parameter:

proterr UINT16 Protocol error to generate

 Value Protocol Error Description

ffffh Clear any protocol error condition
fffdh Multiple Query Error (MQE)
fffch Unsupported Command (UnSupCom)
fffbh Data In Ready violation (DIRviol)
fffah Data Out Ready violation (DORviol)
fff9h Read Ready violation (RRviol)
fff8h Write Ready violation (WRviol)
others Reserved

Output parameters:

none

Return value:

ret INT16 Return Status
1 = Successful, but error will be ignored because a

 previous error is pending
0 = Successful

-1 = Servant Word Serial functions not supported

Example: /* Generate a protocol error of DORviol. */

INT16 ret;
UINT16 proterr;

proterr = 0xfffa;
ret = GenProtError (proterr);
if (ret < 0)

/* An error occurred in GenProtError. */;

Chapter 5 Servant Word Serial Protocol Functions

© National Instruments Corporation 5-9 NI-VXI Software Reference Manual for C

GetWSScmdHandler

Syntax: func = GetWSScmdHandler()

Action: Returns the address of the current WSScmd interrupt handler.

Remarks: Parameters:

none

Return value:

func NIVXI_HWSSCMD* Pointer to the current WSScmd interrupt handler

Example: /* Get the address of the WSScmd handler. */

NIVXI_HWSSCMD *func;

func = GetWSScmdHandler();

Servant Word Serial Protocol Functions Chapter 5

NI-VXI Software Reference Manual for C 5-10 © National Instruments Corporation

GetWSSEcmdHandler

Syntax: func = GetWSSEcmdHandler()

Action: Returns the address of the current WSSEcmd interrupt handler.

Remarks: Parameters:

none

Return value:

func NIVXI_HWSSECMD* Pointer to the current WSSEcmd interrupt handler

Example: /* Get the address of the WSSEcmd handler. */

NIVXI_HWSSECMD *func;

func = GetWSSEcmdHandler();

Chapter 5 Servant Word Serial Protocol Functions

© National Instruments Corporation 5-11 NI-VXI Software Reference Manual for C

GetWSSLcmdHandler

Syntax: func = GetWSSLcmdHandler()

Action: Returns the address of the current WSSLcmd interrupt handler.

Remarks: Parameters:

none

Return value:

func NIVXI_HWSSLCMD* Pointer to the current WSSLcmd interrupt handler

Example: /* Get the address of the WSSLcmd handler. */

NIVXI_HWSSLCMD *func;

func = GetWSSLcmdHandler();

Servant Word Serial Protocol Functions Chapter 5

NI-VXI Software Reference Manual for C 5-12 © National Instruments Corporation

GetWSSrdHandler

Syntax: func = GetWSSrdHandler()

Action: Returns the address of the current WSSrd done notification interrupt handler.

Remarks: Parameters:

none

Return value:

func NIVXI_HWSSRD* Pointer to the current WSSrd done notification
 interrupt handler

Example: /* Get the address of the WSSrd done notification handler. */

NIVXI_HWSSRD*func;

func = GetWSSrdHandler();

Chapter 5 Servant Word Serial Protocol Functions

© National Instruments Corporation 5-13 NI-VXI Software Reference Manual for C

GetWSSwrtHandler

Syntax: func = GetWSSwrtHandler()

Action: Returns the address of the current WSSwrt done notification interrupt handler.

Remarks: Parameters:

none

Return value:

func NIVXI_HWSSWRT* Pointer to the current WSSwrt done notification
 interrupt handler

Example: /* Get the address of the WSSwrt done notification handler. */

NIVXI_HWSSWRT *func;

func = GetWSSwrtHandler();

Servant Word Serial Protocol Functions Chapter 5

NI-VXI Software Reference Manual for C 5-14 © National Instruments Corporation

RespProtError

Syntax: ret = RespProtError ()

Action: Responds to the Word Serial Read Protocol Error query with the last protocol error generated via
the GenProtError function, and then unasserts the ERR* bit.

Remarks: Parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Servant Word Serial functions not supported
-2 = Response is still pending and a multiple query

 error is generated

Example: /* Respond to the Word Serial Read Protocol Error query. */

INT16 ret;

ret = RespProtError ();
if (ret < 0)

/* An error occurred in RespProtError. */;

Chapter 5 Servant Word Serial Protocol Functions

© National Instruments Corporation 5-15 NI-VXI Software Reference Manual for C

SetWSScmdHandler

Syntax: ret = SetWSScmdHandler (func)

Action: Replaces the current WSScmd interrupt handler with a specified handler.

Remarks: Input parameter:

func NIVXI_HWSSCMD* Pointer to the new WSScmd interrupt handler
(NULL = DefaultWSScmdHandler)

Output parameters:

none

Return value:

ret INT16 Return Status
0 = Successful

-1 = Servant Word Serial functions not supported

Example: /* Set the WSScmd interrupt handler. */

NIVXI_HWSSCMD func;
INT16 ret;

ret = SetWSScmdHandler(func);
if (ret < 0)

/* An error occurred in SetWSScmdHandler. */;

/* Example handler */
NIVXI_HQUAL void NIVXI_HSPEC func (UINT16 cmd)
{
}

Servant Word Serial Protocol Functions Chapter 5

NI-VXI Software Reference Manual for C 5-16 © National Instruments Corporation

SetWSSEcmdHandler

Syntax: ret = SetWSSEcmdHandler (func)

Action: Replaces the current WSSEcmd interrupt handler with a specified handler.

Remarks: Input parameter:

func NIVXI_HWSSECMD* Pointer to the new WSSEcmd interrupt handler
(NULL = DefaultWSSEcmdHandler)

Output parameters:

none

Return value:

ret INT16 Return Status
0 = Successful

-1 = Servant Word Serial functions not supported

Example: /* Set the WSSEcmd interrupt handler. */

NIVXI_HWSSECMD func;
INT16 ret;

ret = SetWSSEcmdHandler(func);
if (ret < 0)

/* An error occurred in SetWSSEcmdHandler. */;

/* Example handler */
NIVXI_HQUAL void NIVXI_HSPEC func (UINT16 cmdExt, UINT32 cmd)
{
}

Chapter 5 Servant Word Serial Protocol Functions

© National Instruments Corporation 5-17 NI-VXI Software Reference Manual for C

SetWSSLcmdHandler

Syntax: ret = SetWSSLcmdHandler (func)

Action: Replaces the current WSSLcmd interrupt handler with a specified handler.

Remarks: Input parameter:

func NIVXI_HWSSLCMD* Pointer to the new WSSLcmd interrupt handler
(NULL = DefaultWSSLcmdHandler)

Output parameters:

none

Return value:

ret INT16 Return Status
0 = Successful

-1 = Servant Word Serial functions not supported

Example: /* Set the WSSLcmd interrupt handler. */

NIVXI_HWSSLCMD func;
INT16 ret;

ret = SetWSSLcmdHandler(func);
if (ret < 0)

/* An error occurred in SetWSSLcmdHandler. */;

/* Example handler */
NIVXI_HQUAL void NIVXI_HSPEC func (UINT32 cmd)
{
}

Servant Word Serial Protocol Functions Chapter 5

NI-VXI Software Reference Manual for C 5-18 © National Instruments Corporation

SetWSSrdHandler

Syntax: ret = SetWSSrdHandler (func)

Action: Replaces the current WSSrd done notification interrupt handler with a specified handler.

Remarks: Input parameter:

func NIVXI_HWSSRD* Pointer to the new WSSrd done notification handler
(NULL = DefaultWSSrdHandler)

Output parameters:

none

Return value:

ret INT16 Return Status
0 = Successful

-1 = Servant Word Serial functions not supported

Example: /* Set the WSSrd done notification interrupt handler. */

NIVXI_HWSSRD func;
INT16 ret;

ret = SetWSSrdHandler(func);
if (ret < 0)

/* An error occurred in SetWSSrdHandler. */;

/* Example handler */
NIVXI_HQUAL void NIVXI_HSPEC func (INT16 status, UINT32 count)
{
}

Chapter 5 Servant Word Serial Protocol Functions

© National Instruments Corporation 5-19 NI-VXI Software Reference Manual for C

SetWSSwrtHandler

Syntax: ret = SetWSSwrtHandler (func)

Action: Replaces the current WSSwrt done notification interrupt handler with a specified handler.

Remarks: Input parameter:

func NIVXI_HWSSWRT* Pointer to the new WSSwrt done notification handler
(NULL = DefaultWSSwrtHandler)

Output parameters:

none

Return value:

ret INT16 Return Status
0 = Successful

-1 = Servant Word Serial functions not supported

Example: /* Set the WSSwrt done notification interrupt handler. */

NIVXI_HWSSWRT func;
INT16 ret;

ret = SetWSSwrtHandler(func);
if (ret < 0)

/* An error occurred in SetWSSwrtHandler. */;

/* Example handler */
NIVXI_HQUAL void NIVXI_HSPEC func (INT16 status, UINT32 count)
{
}

Servant Word Serial Protocol Functions Chapter 5

NI-VXI Software Reference Manual for C 5-20 © National Instruments Corporation

WSSabort

Syntax: ret = WSSabort (abortop)

Action: Aborts the Servant Word Serial operation(s) in progress.

Remarks: Input parameter:

abortop UINT16 The operation to abort, bit vector

 Bit Description

0 Abort WSSwrt
1 Abort WSSrd
2 Abort WSSsendResp

15 Initialize Word Serial Servant hardware. This includes
aborting all Word Serial operations, clearing out
errors, removing all pending Word Serial Servant
interrupts, and disabling the interrupts.

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successfully aborted
-1 = Servant Word Serial functions not supported
-2 = Unable to abort

Example: /* Abort WSSwrt. */

INT16 ret;
UINT16 abortop;

abortop = (1<<0);
ret = WSSabort (abortop);
if (ret < 0)

/* An error occurred during WSSabort. */;

Chapter 5 Servant Word Serial Protocol Functions

© National Instruments Corporation 5-21 NI-VXI Software Reference Manual for C

WSSdisable

Syntax: ret = WSSdisable ()

Action: Desensitizes the local CPU to interrupts generated when a Word Serial command is written to the
Data Low register or when a response is read from the Data Low register.

Remarks: Parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Servant Word Serial functions not supported

Example: /* Disable all the Servant Word Serial functions. */

INT16 ret;

ret = WSSdisable();
if (ret < 0)

/* An error occurred during WSSdisable. */;

Servant Word Serial Protocol Functions Chapter 5

NI-VXI Software Reference Manual for C 5-22 © National Instruments Corporation

WSSenable

Syntax: ret = WSSenable ()

Action: Sensitizes the local CPU to interrupts generated when a Word Serial command is written to the
Data Low register or when a response is read from the Data Low register.

Remarks: Parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Servant Word Serial functions not supported

Example: /* Enable all the Servant Word Serial functions. */

INT16 ret;

ret = WSSenable();
if (ret < 0)

/* An error occurred during WSSenable. */;

Chapter 5 Servant Word Serial Protocol Functions

© National Instruments Corporation 5-23 NI-VXI Software Reference Manual for C

WSSLnoResp

Syntax: ret = WSSLnoResp ()

Action: Acknowledges a received Longword Serial Protocol command that has no response and asserts the
Write Ready (WR) bit in the local CPU Response register. This function must be called after the
processing of a Longword Serial Protocol command (queries are responded to with
WSSLsendResp).

Remarks: Parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Servant Word Serial functions not supported

Example: /* Acknowledge the reception of a Longword Serial Protocol command
that has no response. */

INT16 ret;

ret = WSSLnoResp ();
if (ret < 0)

/* An error occurred during WSSLnoResp. */;

Servant Word Serial Protocol Functions Chapter 5

NI-VXI Software Reference Manual for C 5-24 © National Instruments Corporation

WSSLsendResp

Syntax: ret = WSSLsendResp (response)

Action: Responds to a received Longword Serial Protocol query with a response and asserts the WR bit (in
addition to the RR bit) in the local CPU Response register. This function must be called after
processing a Longword Serial Protocol query (commands are acknowledged with WSSLnoResp).

Remarks: Input parameter:

response UINT32 32-bit response

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Servant Word Serial functions not supported
-2 = Response still pending (MQE generated)

Example: /* Respond to a received Longword Serial Protocol query. */

INT16 ret;
UINT32 response;

response = 0xfffcfffdL;
ret = WSSLsendResp (response);
if (ret < 0)

/* An error occurred during WSSLsendResp. */;

Chapter 5 Servant Word Serial Protocol Functions

© National Instruments Corporation 5-25 NI-VXI Software Reference Manual for C

WSSnoResp

Syntax: ret = WSSnoResp ()

Action: Acknowledges a received Word Serial Protocol command that has no response and asserts the WR
bit in the local CPU Response register. This function must be called after the processing of a
Word Serial Protocol command (queries are responded to with WSSsendResp).

Remarks: Parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Servant Word Serial functions not supported

Example: /* Acknowledge the reception of a Word Serial Protocol command
that has no response. */

INT16 ret;

ret = WSSnoResp ();
if (ret < 0)

/* An error occurred during WSSnoResp. */;

Servant Word Serial Protocol Functions Chapter 5

NI-VXI Software Reference Manual for C 5-26 © National Instruments Corporation

WSSrd

Syntax: ret = WSSrd (buf, count, mode)

Action: Posts a read operation to begin receiving the specified number of data bytes from a Message-
Based Commander into a specified memory buffer, using the VXIbus Byte Transfer Protocol.

Remarks: Input parameters:

count UINT32 Maximum number of bytes to transfer

mode UINT16 Transfer mode bit vector

 Bit Description

0 DIR signal mode to Commander
0 = Do not send DIR signal to Commander
1 = Send DIR signal to Commander

15 to 1 Reserved (0)

Output parameter:

buf UINT8* Read buffer

Return value:

ret INT16 Return Status

1 = Posted successfully; will begin after a
 WSSenable()

0 = Posted successfully
-1 = Servant Word Serial functions not supported
-2 = WSSrd already in progress

Example: /* Read 10 bytes from the Commander. */

INT16 ret;
UINT8 buf[100];
UINT32 count;
UINT16 mode;

count = 10L;
mode = 0x0000; /* Do not send DIR signal to Commander. */
ret = WSSrd (buf, count, mode);
if (ret < 0)

/* An error occurred during WSSrd. */;

Chapter 5 Servant Word Serial Protocol Functions

© National Instruments Corporation 5-27 NI-VXI Software Reference Manual for C

WSSsendResp

Syntax: ret = WSSsendResp (response)

Action: Responds to a received Word Serial Protocol query with a response and asserts the WR bit (in
addition to the RR bit) in the local CPU Response register. This function must be called after
processing a Word Serial Protocol query (commands are acknowledged with WSSnoResp).

Remarks: Input parameter:

response UINT16 16-bit response

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Servant Word Serial functions not supported
-2 = Response still pending (MQE generated)

Example: /* Respond with 0x1234 to a received Word Serial Protocol
query. */

INT16 ret;
UINT16 response;

response = 0x1234L;
ret = WSSsendResp (response);
if (ret < 0)

/* An error occurred during WSSsendResp. */;

Servant Word Serial Protocol Functions Chapter 5

NI-VXI Software Reference Manual for C 5-28 © National Instruments Corporation

WSSwrt

Syntax: ret = WSSwrt (buf, count, mode)

Action: Posts the write operation to transfer the specified number of data bytes from a specified memory
buffer to the Message-Based Commander, using the VXIbus Byte Transfer Protocol.

Remarks: Input parameters:

buf UINT8* Write buffer

count UINT32 Maximum number of bytes to transfer

mode UINT16 Mode of transfer (bit vector)

 Bit Description

0 DOR signal mode to Commander (if enabled)
0 = Do not send DOR signal to Commander
1 = Send DOR signal to Commander

1 END bit termination with last byte
0 = Do not send END with the last byte
1 = Send END with the last byte

Output parameters:

none

Return value:

ret INT16 Return Status

1 = Posted successfully; will begin after a
 WSSenable()

0 = Posted successfully
-1 = Servant Word Serial functions not supported
-2 = WSSwrt already in progress

Example: /* Write 6 bytes to the Commander. */

INT16 ret;
UINT8 *buf;
UINT32 count;
UINT16 mode;

buf = "1.0422";
count = 6L;
mode = 0x0002; /* Send END with the last byte. */
ret = WSSwrt (buf, count, mode);
if (ret < 0)

/* An error occurred during WSSwrt. */;

Chapter 5 Servant Word Serial Protocol Functions

© National Instruments Corporation 5-29 NI-VXI Software Reference Manual for C

Default Handlers for the Servant Word Serial Functions

The NI-VXI software provides the following default handlers for the Servant Word Serial functions. These are
sample handlers that InitVXIlibrary installs when it initializes the software at the beginning of the application
program. Default handlers give you the minimal and most common functionality required for a VXI system. They
are given in source code form on your NI-VXI distribution media to be used as examples/prototypes for extending
their functionality to a particular application.

• DefaultWSScmdHandler

• DefaultWSSEcmdHandler

• DefaultWSSLcmdHandler

• DefaultWSSrdHandler

• DefaultWSSwrtHandler

DefaultWSScmdHandler

Syntax: DefaultWSScmdHandler (cmd)

Action: Handles any Word Serial Protocol command or query received from a VXI Message-Based
Commander. Uses global variables to handle many of the Word Serial commands. Implements
all commands required for Servant operation.

Remarks: Input parameter:

cmd UINT16 16-bit Word Serial command received

Output parameters:

none

Return value:

none

Servant Word Serial Protocol Functions Chapter 5

NI-VXI Software Reference Manual for C 5-30 © National Instruments Corporation

DefaultWSSEcmdHandler

Syntax: DefaultWSSEcmdHandler (cmdExt, cmd)

Action: Handles Extended Longword Serial Protocol commands or queries received from a VXI Message-
Based Commander. Returns an Unsupported Command protocol error for all commands and
queries because the VXI specification does not define any Extended Longword Serial commands.

Remarks: Input parameters:

cmdExt UINT16 Upper 16 bits of 48-bit Extended Longword Serial
 command received

cmd UINT32 Lower 32 bits of 48-bit Extended Longword Serial
 command received

Output parameters:

none

Return value:

none

Chapter 5 Servant Word Serial Protocol Functions

© National Instruments Corporation 5-31 NI-VXI Software Reference Manual for C

DefaultWSSLcmdHandler

Syntax: DefaultWSSLcmdHandler (cmd)

Action: Handles Longword Serial Protocol commands or queries received from a VXI Message-Based
Commander. Returns an Unsupported Command protocol error for all commands and queries
because the VXI specification does not define any Longword Serial commands.

Remarks: Input parameter:

cmd UINT32 32-bit Longword Serial command received

Output parameters:

none

Return value:

none

DefaultWSSrdHandler

Syntax: DefaultWSSrdHandler (status, count)

Action: Handles the termination of a Servant Word Serial read operation started with WSSrd . Sets the
global variable WSSrdDone to 1, the WSSrdDoneStatus variable to status , and the
WSSrdDoneCount global variable to count .

Remarks: Input parameters:

status INT16 Status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)

14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
4 ForcedAbort WSSabort called to force abort

 Successful Transfer (Bit 15 = 0)

2 TC All bytes received
1 END END received with last byte
0 IODONE Transfer successfully completed

count UINT32 Actual number of bytes received

Output parameters:

none

Return value:

none

Servant Word Serial Protocol Functions Chapter 5

NI-VXI Software Reference Manual for C 5-32 © National Instruments Corporation

DefaultWSSwrtHandler

Syntax: DefaultWSSwrtHandler (status, count)

Action: Handles the termination of a Servant Word Serial write operation started with WSSwrt . Sets the
global variable WSSwrtDone to 1, the WSSwrtDoneStatus variable to status , and the
WSSwrtDoneCount variable to count .

Remarks: Input parameters:

status INT16 Status bit vector

The following table gives the meaning of each bit that is set to one (1).

 Bit Name Description

 Error Conditions (Bit 15 = 1)

14 WRviol Write Ready protocol violation during transfer
13 RRviol Read Ready protocol violation during transfer
12 DORviol Data Out Ready protocol violation
11 DIRviol Data In Ready protocol violation
4 ForcedAbort WSSabort called to force abort

 Successful Transfer (Bit 15 = 0)

2 TC All bytes sent
1 END END sent with last byte
0 IODONE Transfer successfully completed

count UINT32 Actual number of bytes sent

Output parameters:

none

Return value:

none

© National Instruments Corporation 6-1 NI-VXI Software Reference Manual for C

Chapter 6
Low-Level VXIbus Access Functions

This chapter describes the C syntax and use of the low-level VXIbus access functions. You can use both low-level
and high-level VXIbus access functions to directly read or write to VXIbus addresses. Some of the situations that
require direct reads and writes to the different VXIbus address spaces include the following:

• Register-Based device/instrument drivers

• Non-VXI/VME device/instrument drivers

• Accessing device-dependent registers on any type of VXI/VME device

• Implementing shared memory protocols

Low-level and high-level access to the VXIbus, as the NI-VXI interface defines them, are very similar in nature.
Both sets of functions can perform direct reads of and writes to any VXIbus address space with any privilege state or
byte order. However, the two interfaces have different emphases with respect to user protection, error checking, and
access speed.

Low-level VXIbus access is the fastest access method (in terms of overall throughput to the device) for directly
reading or writing to/from any of the VXIbus address spaces. As such, however, it is more detailed and leaves more
issues for the application to resolve. You can use these functions to obtain pointers that are directly mapped to a
particular VXIbus address with a particular VXI access privilege and byte ordering. You need to consider a number
of issues when using the direct pointers:

• You need to determine bounds for the pointers.

• Based on the methods in which a particular hardware platform sets up access to VXI address spaces, using
more than one pointer can also result in conflicts.

• Your application must check error conditions such as Bus Error (BERR*) separately.

High-level VXIbus access functions need not take into account any of the considerations that are required by the
low-level VXIbus access functions. The high-level VXIbus access functions have all necessary information for
accessing a particular VXIbus address wholly contained within the function parameters. The parameters prescribe
the address space, privilege state, byte order, and offset within the address space. High-level VXIbus access
functions automatically trap bus errors and return an appropriate error status. Using the high-level VXIbus access
functions involves more overhead, but if overall throughput of a particular access (for example, configuration or
small number of accesses) is not the primary concern, the high-level VXIbus access functions act as an easy-to-use
interface that can do any VXIbus accesses necessary for an application. For more information, refer to Chapter 7,
High-Level VXIbus Access Functions.

Programming Considerations

All accesses to the VXIbus address spaces are performed by reads and writes to particular offsets within the local
CPU address space, which are made to correspond to addresses on the VXIbus (using a complex hardware
interface). The areas where the address space of the local CPU is mapped onto the VXIbus are referred to as
windows. The sizes and numbers of windows present vary depending on the hardware being used. The size of the
window is always a power of two, where a multiple of the size of the window would encompass an entire VXIbus
address space. The multiple for which a window currently can access is determined by modifying a window base
register. The constraints of a particular hardware platform lead to restrictions on the area of address space reserved
for windows into VXIbus address spaces. Be sure to take into account the number and size of the windows provided
by a particular platform. If mapping a pointer requires the use of the same window as another pointer already in
existence, the window context must be saved and restored. If a mapped pointer is to be incremented or

Low-Level VXIbus Access Functions Chapter 6

NI-VXI Software Reference Manual for C 6-2 © National Instruments Corporation

decremented, the bounds for accessing within a particular address space must be tested before accessing within the
space. Based on your knowledge of the platform, you can make assumptions about the sizes of windows. If you are
more concerned with portability of code, however, you should base your assumptions on the minimal support all of
the target platforms. Not all platforms support all access modes (for example, 680X0 platforms do not support Intel
byte ordering).

Note: It is strongly recommended that all your devices have the same access privileges and byte orders. The
VXIbus specification, for example, requires that VXI devices respond to nonprivileged data privilege
state (address modifier codes) with Motorola byte order. Following this principle will greatly increase
overall throughput of the program. Otherwise, the application must keep saving and restoring the
state of the windows into VXIbus address spaces.

NI-VXI uses a term within this chapter called the hardware (or window) context . The hardware context for window
to VXI consists of the VXI address space being accessed, the base offset into the address space, the access privilege,
and the byte order for the accesses through the window. Before accessing a particular address, you must set up the
window with the appropriate hardware context. You can use the MapVXIAddress function for this purpose. This
function returns a pointer that you can use for subsequent accesses to the window with the VXIpeek and VXIpoke
functions. On most systems, VXIpeek and VXIpoke are really C macros (#defines) that simply de-reference
the pointer. It is highly recommended to use these functions instead of performing the direct de-reference within the
application. If your application does not use VXIpeek and VXIpoke , it might not be portable between different
platforms. In addition, VXIpeek and VXIpoke allow for compatibility between C language and other languages
such as BASIC.

Multiple Pointer Access for a Window

Application programmers can encounter a potential problem when the application requires different privilege states,
byte orders, and/or base addresses within the same window. If the hardware context changes due to a subsequent
call to MapVXIAddress or other calls such as SetPrivilege or SetByteOrder , previously mapped pointers
would not have their intended access parameters. This problem is greater in a multitasking system, where
independent and conflicting processes can change the hardware context. Two types of access privileges to a
window are available to aid in solving this problem: Owner Privilege, and Access Only Privilege. These two
privileges define which caller of the MapVXIAddress function can change the settings of the corresponding
window.

Owner Privilege

A caller can obtain Owner Privilege to a window by requesting owner privilege in the MapVXIAddress call (via
the accessparms parameter). This call will not succeed if another process already has either Owner Privilege or
Access Only Privilege to that window. If the call succeeds, the function returns a valid pointer and a non-negative
return value. The 32-bit windowId output parameter returned from the MapVXIAddress call associates the C
pointer returned from the function with a particular window and also signifies Owner Privilege to that window.
Owner Privilege access is complete and exclusive. The caller can use SetPrivilege , SetByteOrder , and
SetContext with this windowId to dynamically change the access privileges. Notice that if the call to
MapVXIAddress succeeds for either Owner Privilege or Access Only Privilege, the pointer remains valid in both
cases until an explicit UnMapVXIAddress call is made for the corresponding window. The pointer is guaranteed
to be a valid pointer in either multitasking systems or nonmultitasking systems. The advantage with Owner
Privilege is that it gives complete and exclusive access for that window to the caller, so you can dynamically change
the access privileges. Because no other callers can succeed, there is no problem with either destroying another
caller's access state or having an inconsistent pointer environment.

Chapter 6 Low-Level VXIbus Access Functions

© National Instruments Corporation 6-3 NI-VXI Software Reference Manual for C

Access Only Privilege

A process can obtain Access Only Privilege by requesting access only privileges in the MapVXIAddress call.
With this privilege mode, you can have multiple pointers in the same process or over multiple processes to access a
particular window simultaneously, while still guaranteeing that the hardware context does not change between
accesses. The call succeeds under either of the following conditions:

1. No processes are mapped for the window (first caller for Access Only Privilege for this window). The
hardware context is set as requested in the call. The call returns a successful status and a valid C pointer and
windowId for Access Only Privilege.

2. No process currently has Owner Privilege to the required window. There are processes with Access Only
Privilege, but they are using the same hardware context (privilege state, byte order, address range) for their
accesses to the window. Because the hardware context is compatible, it does not need to be changed. The call
returns a successful status and a valid C pointer and windowId for Access Only Privilege.

The successful call returns a valid pointer and a non-negative return value. The 32-bit window number signifies that
the access privileges to the window are Access Only Privilege.

With Access Only Privilege, you cannot use the SetPrivilege , SetByteOrder , and SetContext calls in
your application to dynamically change the hardware context. No Access Only accessor can change the state of the
window. The initial Access Only call sets the hardware context for the window, which cannot be changed until all
Access Only accessors have called UnMapVXIAddress to free the window. The functions GetPrivilege ,
GetByteOrder , and GetContext will succeed regardless of whether the caller has Owner Privilege or Access
Only Privilege.

Owner and Access Only Privilege Versus Interrupt Service Routines

Regardless of whether a window has Owner Privilege or Access Only Privilege, you may find it necessary to
temporarily control a particular window for a period of time. An interrupt service routine is a good example of this
type of situation. Because an interrupt service routine cannot wait for an UnMapVXIAddress call, the interrupt
service routine must be able to temporarily take control of a particular window. To accomplish this task, you can
use the SaveContext and RestoreContext functions. SaveContext logs the current settings of the
windows and RestoreContext returns the windows to their old settings. Because an interrupt service routine
can be suspended only by a higher level interrupt service routine, SaveContext and RestoreContext can be
used safely in interrupt service routines, but not outside interrupt service routines.

Functional Overview

The following paragraphs describe the low-level VXIbus access functions. The descriptions are presented at a
functional level describing the operation of each of the functions. The functions are grouped by area of
functionality.

MapVXIAddress (accessparms, address, timo, window, ret)

MapVXIAddress sets up a window into one of the VXI address spaces and returns a pointer to a local address that
will access the specified VXI address. The accessparms parameter specifies Owner Privilege/Access Only
Privilege, the VXI address space, the VXI access privilege, and the byte ordering. The value of the timo parameter
gives the time (in milliseconds) that the process will wait checking for window availability. The function returns
immediately if the window is already available, or if the timo value is 0. The timo field is ignored in a uniprocess
(nonmultitasking) system. The return value in window gives a unique window identifier that various calls such as
GetWindowRange or GetContext use to get window settings. When a request for Owner Privilege is granted,
you can also use this window identifier with calls such as SetContext or SetPrivilege to change the
hardware context for that window.

Low-Level VXIbus Access Functions Chapter 6

NI-VXI Software Reference Manual for C 6-4 © National Instruments Corporation

UnMapVXIAddress (window)

UnMapVXIAddress deallocates the window mapped using the MapVXIAddress function. If the caller is an
Owner Privilege accessor (only one is permitted), the window is free to be remapped. If the caller is an Access Only
Privilege accessor, the window can be remapped only if the caller is the last Access Only accessor. After a call is
made to UnMapVXIAddress , the pointer obtained from MapVXIAddress is no longer valid. You should no
longer use the pointer because a subsequent call may have changed the settings for the particular window, or the
window may no longer be accessible at all.

GetWindowRange (window, windowbase, windowend)

GetWindowRange retrieves the range of addresses that a particular VXIbus window can currently access within
a particular VXIbus address space. The windowbase and windowend output parameters are based on VXI
addresses (not local CPU addresses). The window parameter value should be the value returned from a
MapVXIAddress call. The VXI address space being accessed is inherent in the window parameter.

Note: Take into account that the Resource Manager assigns all VXI devices VXI addresses based on a power
of two, and that all windows are based on a power of two. The application can reduce or altogether
exclude overhead for testing window bounds by keeping this in mind.

VXIpeek (addressptr, width, value)

VXIpeek reads a single byte, word, or longword from a particular address obtained by MapVXIAddress . On
most embedded CPU systems using C language interfaces, VXIpeek is simply a macro to de-reference a C pointer.
It is recommended, however, that you use VXIpeek instead of a direct de-reference, as it supports portability
between different platforms and programming languages.

VXIpoke (addressptr, width, value)

VXIpoke writes a single byte, word, or longword to a particular address obtained by MapVXIAddress . On most
embedded CPU systems using C language interfaces, VXIpoke is simply a macro to de-reference a C pointer. It is
recommended, however, that you use VXIpoke instead of a direct de-reference, as it supports portability between
different platforms and programming languages.

SaveContext (contextlist)

SaveContext retrieves the hardware interface settings (context) for all VXI windows and unlocks all windows,
effectively making it appear as if there are no Owner Privilege or Access Only Privilege accessors using any
windows. In some applications, especially within an interrupt service routine, the application cannot wait for a
process to unmap a particular window. You can use SaveContext along with RestoreContext to globally
save and restore the hardware context for all the windows, while guaranteeing access to a particular VXI window.
RestoreContext restores the window settings to what they were before the interrupt service routine was called
(from the point in which SaveContext was called). Use SaveContext and RestoreContext only in
interrupt service routines or code segments that are not pre-emptible. Otherwise you risk inconsistent and
indeterminate results.

Chapter 6 Low-Level VXIbus Access Functions

© National Instruments Corporation 6-5 NI-VXI Software Reference Manual for C

RestoreContext (contextlist)

RestoreContext restores the hardware interface settings (context) for all VXI windows from a previously saved
context (via SaveContext). In some applications, especially within an interrupt service routine, the application
cannot wait for a process to unmap a particular window. You can use SaveContext along with
RestoreContext to globally save and restore the hardware context for all the windows, while guaranteeing
access to a particular VXI window. Use SaveContext and RestoreContext only in interrupt service routines
or code segments that are not pre-emptible. Otherwise you risk inconsistent and indeterminate results.

SetContext (window, context)

SetContext sets all of the hardware interface settings (context) for a particular VXI window. The application
must have Owner Access Privilege to the applicable window for this function to execute successfully. Any
application can use GetContext along with SetContext to save and restore the VXI interface hardware state
(context) for a particular window. As a result, the application can set the hardware context associated with a
particular pointer into VXI address spaces (obtained from MapVXIAddress). After making a MapVXIAddress
call for Owner Access to a particular window (and possibly calls to SetPrivilege and SetByteOrder), you
can call GetContext to save this context for later restoration by SetContext .

GetContext (window, context)

GetContext retrieves all of the hardware interface settings (context) for a particular VXI window. The
application can have either Owner Access Privilege or Access Only Privilege to the applicable window for this
function to execute successfully. Any application can use GetContext along with SetContext to save and
restore the VXI interface hardware state (context) for a particular window.

SetPrivilege (window, priv)

SetPrivilege sets the VXIbus windowing hardware to access the specified window with the specified VXIbus
access privilege. The possible privileges include Nonprivileged Data, Supervisory Data, Nonprivileged Program,
Supervisory Program, Nonprivileged Block, and Supervisory Block access. The application must have Owner
Access Privilege to the applicable window for this function to execute successfully. Notice that some platforms may
not support all of the privilege states. This is reflected in the return code of the call to SetPrivilege .
Nonprivileged Data transfers must be supported within the VXI environment, and are supported on all hardware
platforms.

GetPrivilege (window, priv)

GetPrivilege retrieves the current windowing hardware VXIbus access privileges for the specified window.
The possible privileges include Nonprivileged Data, Supervisory Data, Nonprivileged Program, Supervisory
Program, Nonprivileged Block, and Supervisory Block access. The application can have either Owner Access
Privilege or Access Only Privilege to the applicable window for this function to execute successfully.

SetByteOrder (window, ordermode)

SetByteOrder sets the byte/word order of data transferred into or out of the specified window. The two possible
settings are Motorola (most significant byte/word first) or Intel (least significant byte/word first). The application
must have Owner Access Privilege to the applicable window for this function to execute successfully. Notice that
some hardware platforms do not allow you to change the byte order of a window, which is reflected in the return
code of the call to SetByteOrder . Most Intel processor-based hardware platforms support both byte order

Low-Level VXIbus Access Functions Chapter 6

NI-VXI Software Reference Manual for C 6-6 © National Instruments Corporation

modes. Most Motorola processor-based hardware platforms support only the Motorola byte order mode, because the
VXIbus is based on Motorola byte order.

GetByteOrder (window, ordermode)

GetByteOrder retrieves the byte/word order of data transferred into or out of the specified window. The two
possible settings are Motorola (most significant byte/word first) or Intel (least significant byte/word first). The
application can have either Owner Access Privilege or Access Only Privilege to the applicable window for this
function to execute successfully.

GetVXIbusStatus (controller, status)

GetVXIbusStatus retrieves information about the current state of the VXIbus.

Note: This function is for debugging purposes only.

The information that is returned includes the state of the Sysfail, ACfail, VXI interrupt, TTL trigger, and ECL
trigger lines as well as the number of VXI signals on the global signal queue. This information returns in a
C structure containing all of the known information. An individual hardware platform might not support all of the
different hardware signals polled. In this case, a value of -1 is returned for the corresponding field in the structure.
Interrupt service routines can automatically handle all of the conditions retrieved from this function, if enabled to do
so. You can use this function for simple polled operations.

GetVXIbusStatusInd (controller, field, status)

GetVXIbusStatusInd retrieves information about the current state of the VXIbus.

Note: This function is for debugging purposes only.

The information that can be returned includes the state of the Sysfail, ACfail, VXI interrupt, TTL trigger, or ECL
trigger lines as well as the number of VXI signals on the global signal queue. The specified information returns in a
single integer value. The field parameter specifies the particular VXIbus information to be returned. An
individual hardware platform might not support the specified hardware signals polled. In this case, a value of -1 is
returned in status . Interrupt service routines can automatically handle all of the conditions retrieved from this
function, if enabled to do so. You can use this function for simple polled operations.

Chapter 6 Low-Level VXIbus Access Functions

© National Instruments Corporation 6-7 NI-VXI Software Reference Manual for C

Function Descriptions

The following paragraphs describe the low-level VXIbus access functions. The descriptions are explained at the C
syntax level and are listed in alphabetical order.

GetByteOrder

Syntax: ret = GetByteOrder (window, ordermode)

Action: Gets the byte/word order of data transferred into or out of the specified window.

Remarks: Input parameter:

window UINT32 Window number as returned from MapVXIAddress

Output parameter:

ordermode UINT16* Contains the byte/word ordering

0 = Motorola byte ordering
1 = Intel byte ordering

Return value:

ret INT16 Return Status

1 = Byte order returned successfully; same for all
0 = Successful

-1 = Invalid window

Example: /* Get the byte order for the specified window. */

INT16 ret;
UINT32 window;
UINT16 ordermode;

/* Window value is set in MapVXIAddress. */

ret = GetByteOrder (window, &ordermode);

Low-Level VXIbus Access Functions Chapter 6

NI-VXI Software Reference Manual for C 6-8 © National Instruments Corporation

GetContext

Syntax: ret = GetContext (window, context)

Action: Gets the current hardware interface settings (context) for the specified window.

Remarks: Input parameter:

window UINT32 Window number as returned from MapVXIAddress

Output parameter:

context UINT32* Returned VXI hardware access context

Return value:

ret INT16 Return Status

 0 = Successful
-1 = Invalid window

Example: /* Get or set the context for a window. */

INT16 ret;
UINT32 window;
UINT32 context;

/* Window ID set in MapVXIAddress call. */

ret = GetContext (window, &context);

/* Change window settings as needed. */

ret = SetContext (window, context);

Chapter 6 Low-Level VXIbus Access Functions

© National Instruments Corporation 6-9 NI-VXI Software Reference Manual for C

GetPrivilege

Syntax: ret = GetPrivilege (window, priv)

Action: Gets the current VXI/VME access privilege for the specified window.

Remarks: Input parameter:

window UINT32 Window number as returned from MapVXIAddress

Output parameter:

priv UINT16* Access Privilege

0 = Nonprivileged data access
1 = Supervisory data access
2 = Nonprivileged program access
3 = Supervisory program access
4 = Nonprivileged block access
5 = Supervisory block access

Return value:

ret INT16 Return Status

0 = Successful
-1 = Invalid window

Example: /* Get the privilege for a window. */

INT16 ret;
UINT32 window;
UINT16 priv;

/* Window value is returned from MapVXIAddress. */

ret = GetPrivilege (window, &priv);
if (ret < 0)

/* An error occurred in GetPrivilege. */;

Low-Level VXIbus Access Functions Chapter 6

NI-VXI Software Reference Manual for C 6-10 © National Instruments Corporation

GetVXIbusStatus

Syntax: ret = GetVXIbusStatus (controller, status)

Action: Gets information about the state of the VXIbus in a specified controller (either an embedded CPU
or an extended controller).

Remarks: Input parameter:

controller INT16 Controller to get status from (-2 = OR of all)

Output parameter:

status BusStat Structure containing VXIbus status

Structure is as follows:

typedef struct BusStat {
INT16 BusError; /* 1 = Last access BERRed */
INT16 Sysfail; /* 1 = SYSFAIL* asserted */
INT16 ACfail; /* 1 = ACFAIL* asserted */
INT16 SignalIn; /* Number of signals queued */
INT16 VXIints; /* Bit vector 1 = interrupt asserted */
INT16 ECLtrigs; /* Bit vector 1 = trigger asserted */
INT16 TTLtrigs; /* Bit vector 1 = trigger asserted */
} BusStat;

A value of -1 returned in any of the fields signifies that there is no
hardware support to retrieve information for that particular VXIbus
state.

Return value:

ret INT16 Return Status

0 = Status information received successfully
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller

Example: /* Get the VXIbus status from local (or first) controller. */

INT16 ret;
INT16 controller;
BusStat status;

controller = -1;
ret = GetVXIbusStatus (controller, &status);
if (ret < 0)

/* An error occurred in GetVXIbusStatus. */;

Chapter 6 Low-Level VXIbus Access Functions

© National Instruments Corporation 6-11 NI-VXI Software Reference Manual for C

GetVXIbusStatusInd

Syntax: ret = GetVXIbusStatusInd (controller, field, status)

Action: Gets information about the state of the VXIbus for the specified field in a particular controller.

Remarks: Input parameters:

controller INT16 Controller to get status from (-2 = OR of all)

field UINT16 Number of field to return information on

1 BusError; /* 1 = Last access BERRed */
2 Sysfail; /* 1 = SYSFAIL* asserted */
3 ACfail; /* 1 = ACFAIL* asserted */
4 SignalIn; /* Number of signals queued */
5 VXIints; /* Bit vector 1 = interrupt asserted */
6 ECLtrigs; /* Bit vector 1 = trigger asserted */
7 TTLtrigs; /* Bit vector 1 = trigger asserted */

Output parameter:

status INT16* VXIbus Status

A value of -1 in any of the fields means that there is no
hardware support for that particular state.

Return value:

ret INT16 Return Status

0 = Status information received successfully
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid field

Example: /* Get the VXIbus status for Sysfail on local (or first)
controller. */

INT16 ret;
INT16 controller;
UINT16 field;
INT16 status;

controller = -1;
field = 2;
ret = GetVXIbusStatusInd (controller, field, &status);
if (ret < 0)

/* An error occurred in GetVXIbusStatusInd. */;

Low-Level VXIbus Access Functions Chapter 6

NI-VXI Software Reference Manual for C 6-12 © National Instruments Corporation

GetWindowRange

Syntax: ret = GetWindowRange (window, windowbase, windowend)

Action: Gets the range of addresses that a particular window, allocated with the MapVXIAddress
function, can currently access within a particular VXIbus address space.

Remarks: Input parameter:

window UINT32 Window number obtained from MapVXIAddress

Output parameters:

windowbase UINT32* Base VXI Address

windowend UINT32* End VXI Address

Return value:

ret INT16 Return Status

0 = Successful
-1 = Invalid window

Example: /* Get the range for the window obtained from MapVXIAddress. */

UINT16 accessparms;
UINT32 address;
INT32 timo;
UINT32 window;
UINT32 windowbase;
UINT32 windowend;
INT16 ret;
void *addr;

accessparms = 1;
address = 0xc100L;
timo = 0L;
addr = MapVXIAddress (accessparms, address, timo, &window, &ret);
if (ret < 0)
{ /* Map failed; handle error. */;
}

ret = GetWindowRange (window, &windowbase, &windowend);

Chapter 6 Low-Level VXIbus Access Functions

© National Instruments Corporation 6-13 NI-VXI Software Reference Manual for C

MapVXIAddress

Syntax: addr = MapVXIAddress (accessparms, address, timo, window, ret)

Action: Sets up a window into one of the VXI address spaces according to the access parameters specified,
and returns a pointer to a local CPU address that accesses the specified VXI address. This
function also returns the window ID associated with the window, which is used with all other
low-level VXIbus access functions.

Remarks: Input parameters:

accessparms UINT16 (Bits 0 to 1) VXI Address Space
1 = A16
2 = A24
3 = A32

(Bits 2 to 4) Access Privilege
0 = Nonprivileged data access
1 = Supervisory data access
2 = Nonprivileged program access
3 = Supervisory program access
4 = Nonprivileged block access
5 = Supervisory block access

(Bit 5)
0

(Bit 6) Access Mode
0 = Access Only
1 = Owner Access

(Bit 7) Byte Order
0 = Motorola
1 = Intel

(Bits 8 to 15)
0

address UINT32 Address within A16, A24, or A32

timo INT32 Timeout (in milliseconds)

Output parameters:

window UINT32 Window number for use with other functions

ret INT16 Return Status

0 = Map successful
-2 = Invalid/unsupported accessparms
-3 = Invalid address
-5 = Byte order not supported
-6 = Offset not accessible with this hardware
-7 = Privilege not supported
-8 = Window still in use; must use

 UnMapVXIAddress

Return value:

addr void* Pointer to local address for specified VXI address;
 0 if unable to get pointer.

Note: To maintain compatibility and portability, the pointer obtained by calling this
function should be used only with the functions VXIpeek and VXIpoke.

Low-Level VXIbus Access Functions Chapter 6

NI-VXI Software Reference Manual for C 6-14 © National Instruments Corporation

Example: /* Get the local address pointer for address 0xc100 in the A16
space (base of Logical Address 4's VXI registers) with
nonprivileged data and Motorola byte order. Wait up to 5
seconds to get "Access Only" access to the window. */

UINT16 accessparms;
UINT32 address;
INT32 timo;
UINT32 window;
INT16 ret;
void *addr;

accessparms = 1;
address = 0xc100L;
timo = 5000L;
addr = MapVXIAddress (accessparms, address, timo, &window, &ret);
if (ret < 0)

/* Unable to get the pointer. */;

Chapter 6 Low-Level VXIbus Access Functions

© National Instruments Corporation 6-15 NI-VXI Software Reference Manual for C

RestoreContext

Syntax: ret = RestoreContext (contextlist)

Action: Restores hardware context for all of the VXI windows. The contextlist parameter should
contain values set within the function SaveContext .

Remarks: Input parameters:

none

Output parameter:

contextlist ContextStruct* Pointer to structure created by
 SaveContext

Return value:

ret INT16 Return Status

0 = Successful
-2 = NULL contextlist pointer

Example: /* Restore the context for all the windows. */

INT16 ret;
ContextStruct contextlist;

ret = SaveContext (&contextlist);

/*
Interrupt service routine code.

*/

ret = RestoreContext (&contextlist);

Low-Level VXIbus Access Functions Chapter 6

NI-VXI Software Reference Manual for C 6-16 © National Instruments Corporation

SaveContext

Syntax: ret = SaveContext (contextlist)

Action: Saves the hardware context for all of the VXI windows. The contextlist parameter will be
filled with a list of the contexts for all of the VXI windows. This function is recommended for use
only within interrupt service routines to guarantee access to a particular VXI window.

Remarks: Input parameters:

none

Output parameter:

contextlist ContextStruct* Pointer to allocated structure to hold all
 contexts

Return value:

ret INT16 Return Status

0 = Successful
-2 = NULL contextlist pointer

Example: /* Save the context for all the windows. */

INT16 ret;
ContextStruct contextlist;

ret = SaveContext (&contextlist);

/*
Interrupt service routine code.

*/

ret = RestoreContext (&contextlist);

Chapter 6 Low-Level VXIbus Access Functions

© National Instruments Corporation 6-17 NI-VXI Software Reference Manual for C

SetByteOrder

Syntax: ret = SetByteOrder (window, ordermode)

Action: Sets the byte/word order of data transferred into or out of the specified window.

Remarks: Input parameters:

window UINT32 Window number as returned from MapVXIAddress

ordermode UINT16 Sets the byte/word ordering

0 = Motorola byte ordering
1 = Intel byte ordering

Output parameters:

none

Return value:

ret INT16 Return Status

1 = Successful; byte order set for all windows
0 = Successful; byte order set for specific window only

-1 = Invalid window
-2 = Invalid ordermode
-5 = ordermode not supported
-9 = window is not Owner Access

Example: /* Set the byte order to Motorola for a window. */

INT16 ret;
UINT32 window;
UINT16 ordermode;

/* Window set in call to MapVXIAddress(). */
ordermode = 0;
ret = SetByteOrder (window, ordermode);
if (ret <0)
 /* An error occurred in SetByteOrder. */;

Low-Level VXIbus Access Functions Chapter 6

NI-VXI Software Reference Manual for C 6-18 © National Instruments Corporation

SetContext

Syntax: ret = SetContext (window, context)

Action: Sets the current hardware interface settings (context) for the specified window. The value for
context should have been set previously by the function GetContext .

Remarks: Input parameters:

window UINT32 Window number as returned from MapVXIAddress

context UINT32 VXI hardware context to install (context returned from
 GetContext)

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Invalid window
-2 = Invalid/unsupported context
-9 = window is not Owner Access

-10 = Base address change is not supported

Example: /* Get or set the context for a window. */

INT16 ret;
UINT32 window;
UINT32 context;

/* Window ID set in MapVXIAddress call. */
ret = GetContext (window, &context);

/* Change window settings as needed. */

ret = SetContext (window, context);
if (ret <0)
 /* An error occurred in SetContext. */;

Chapter 6 Low-Level VXIbus Access Functions

© National Instruments Corporation 6-19 NI-VXI Software Reference Manual for C

SetPrivilege

Syntax: ret = SetPrivilege (window, priv)

Action: Sets the VXI/VME access privilege for the specified window to the specified privilege state.

Remarks: Input parameters:

window UINT32 Window number as returned from MapVXIAddress

priv UINT16 Access Privilege

0 = Nonprivileged data access
1 = Supervisory data access
2 = Nonprivileged program access
3 = Supervisory program access
4 = Nonprivileged block access
5 = Supervisory block access

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Invalid window
-2 = Invalid priv
-7 = priv not supported
-9 = window is not Owner Access

Example: /* Set nonprivileged data access for a window. */

INT16 ret;
UINT32 window;
UINT16 priv;

/* Window ID set in MapVXIAddress call. */
priv = 0;
ret = SetPrivilege (window, priv);
if (ret < 0)

/* An error occurred in SetPrivilege. */;

Low-Level VXIbus Access Functions Chapter 6

NI-VXI Software Reference Manual for C 6-20 © National Instruments Corporation

UnMapVXIAddress

Syntax: ret = UnMapVXIAddress (window)

Action: Deallocates a window that was allocated using the MapVXIAddress function.

Remarks: Input parameter:

window UINT32 Window number obtained from MapVXIAddress

Output parameters:

none

Return value:

ret INT16 Return Status

1 = Access Only released (accessors remain)
0 = window successfully unmapped

-1 = Invalid window

Example: /* Unmap the window obtained from MapVXIAddress. */

UINT16 accessparms;
UINT32 address;
INT32 timo;
UINT32 window;
INT16 ret;
void *addr;

accessparms = 1;
address = 0xc100L;
timo = 0L;
addr = MapVXIAddress (accessparms, address, timo, &window, &ret);
if (addr != NULL)
{

/**
Use the pointer here.

**/
ret = UnMapVXIAddress (window);
if (ret >= 0)

/** Unmap successful. **/
}

Chapter 6 Low-Level VXIbus Access Functions

© National Instruments Corporation 6-21 NI-VXI Software Reference Manual for C

VXIpeek

Syntax: VXIpeek (addressptr, width, value)

Action: Reads a single byte, word, or longword from a specified VXI address by de-referencing a C
pointer obtained from MapVXIAddress.

Remarks: Input parameters:

addressptr void* Address pointer obtained from MapVXIAddress

width UINT16 Byte, word, or longword

1 = Byte
2 = Word
4 = Longword

Output parameter:

value void* Data value read (UINT8 , UINT16 , or UINT32)

Return value:

none

Example: /* Read the value from the Offset register of the device at
Logical Address 4. */

UINT16 accessparms;
UINT32 window;
INT16 ret;
UINT16 *addressptr;
UINT16 value;

accessparms = 1;
addressptr =

(UINT16 *)MapVXIAddress(accessparms,(UINT32)0xc106,
(INT32)0x7fffffff, &window, &ret);

if (ret >= 0) /* If a valid pointer was returned. */
{

VXIpeek (addressptr, 2, &value);
}

Low-Level VXIbus Access Functions Chapter 6

NI-VXI Software Reference Manual for C 6-22 © National Instruments Corporation

VXIpoke

Syntax: VXIpoke (addressptr, width, value)

Action: Writes a single byte, word, or longword to a specified VXI address by de-referencing a C pointer
obtained from MapVXIAddress.

Remarks: Input parameters:

addressptr void* Address pointer obtained from MapVXIAddress

width UINT16 Byte, word, or longword

1 = Byte
2 = Word
4 = Longword

value UINT32 Data value to write

Output parameters:

none

Return value:

none

Example: /* Write the value 0x2000 to the Offset register of the device at
Logical Address 4. */

UINT16 accessparms;
UINT32 window;
INT16 ret;
UINT16 *addressptr;
UINT32 value;

accessparms = 1;
addressptr =

(UINT16 *)MapVXIAddress(accessparms,(UINT32)0xc106,
(INT32)0x7fffffff, &window, &ret);

if (ret >= 0) /* If a valid pointer was returned. */
{

value = 0x2000L;
VXIpoke (addressptr, 2, value);

}

© National Instruments Corporation 7-1 NI-VXI Software Reference Manual for C

Chapter 7
High-Level VXIbus Access Functions

This chapter describes the C syntax and use of the high-level VXIbus access functions. You can use both low-level
and high-level VXIbus access functions to directly read or write to VXIbus addresses. Direct reads and writes to the
different VXIbus address spaces are required in many situations, including the following:

• Register-Based device/instrument drivers

• Non-VXI/VME device/instrument drivers

• Accessing device-dependent registers on any type of VXI/VXI device

• Implementing shared memory protocols

Low-level and high-level access to the VXIbus, as the NI-VXI interface defines them, are very similar in nature.
Both sets of functions can perform direct reads of and writes to any VXIbus address space with any privilege state or
byte order. However, the two interfaces have different emphases with respect to user protection, error checking, and
access speed.

Low-level VXIbus access is the fastest access method (in terms of overall throughput to the device) for directly
reading or writing to/from any of the VXIbus address spaces. As such, however, it is more detailed and leaves more
issues for the application to resolve. You can use these functions to obtain pointers that are directly mapped to a
particular VXIbus address with a particular VXI access privilege and byte ordering. How the C pointers are used is at
the discretion of the application. You need to consider a number of issues when using the direct pointers:

• Byte, word, or longword accesses are made based on the de-reference of the C pointer.

• You need to determine bounds for the pointers.

• Based on the methods in which a particular hardware platform sets up access to VXI address spaces, using
more than one pointer can also result in conflicts.

• Your application must check error conditions such as Bus Error (BERR*) separately.

For more information, refer to Chapter 4, Low-Level VXIbus Access Functions .

High-level VXIbus access functions need not take into account any of the considerations that are required by the low-
level VXIbus access functions. The high-level VXIbus access functions have all necessary information for accessing
a particular VXIbus address wholly contained within the function parameters. The parameters prescribe the address
space, privilege state, byte order, and offset within the address space. High-level VXIbus access functions
automatically trap bus errors and return an appropriate error status. Using the high-level VXIbus access functions
involves more overhead, but if overall throughput of a particular access (for example, configuration or small number
of accesses) is not the primary concern, the high-level VXIbus access functions act as an easy-to-use interface that
can do any VXIbus accesses necessary for an application.

Programming Considerations for High-Level VXIbus Access
Functions

All accesses to the VXIbus address spaces performed by use of the high-level VXIbus access functions are fully
protected. The hardware interface settings (context) for the applicable window are saved on entry to the function and
restored upon exit. No other functions in the NI-VXI interface, including the low-level VXIbus access functions, will
conflict with the high-level VXIbus access functions. You can use both high-level and low-level VXIbus access
functions at the same time.

High-Level VXIbus Access Functions Chapter 7

NI-VXI Software Reference Manual for C 7-2 © National Instruments Corporation

Functional Overview

The following paragraphs describe the high-level VXIbus access functions. The descriptions are presented at a
functional level describing the operation of each of the functions. The functions are grouped by area of functionality.

VXIin (accessparms, address, width, value)

VXIin reads a single byte, word, or longword from a particular VXI address in one of the VXI address spaces. The
parameter accessparms specifies the VXI address space, the VXI privilege access, and the byte order to use with
the access. The address parameter specifies the offset within the particular VXI address space. The width
parameter selects either byte, word, or longword transfers. The value read from the VXIbus returns in the output
parameter value . If the VXI address selected has no device residing at the address and a bus error occurs, VXIin
traps the bus error condition and returns a corresponding return status.

VXIout (accessparms, address, width, value)

VXIout writes a single byte, word, or longword to a particular VXI address in one of the VXI address spaces. The
parameter accessparms specifies the VXI address space, the VXI privilege access, and the byte order to use with
the access. The address parameter specifies the offset within the particular VXI address space. The width
parameter selects either byte, word, or longword transfers. If the VXI address selected has no device residing at the
address and a bus error occurs, VXIout traps the bus error condition and returns a corresponding return status.

VXIinReg (la, reg, value)

VXIinReg reads a single word from a particular VXI device's VXI registers within the logical address space (the
upper 16 KB of VXI A16 address space). The function sets the VXI access privilege to Nonprivileged Data and the
byte order to Motorola. If the VXI address selected has no device residing at the address and a bus error occurs,
VXIinReg traps the bus error condition and returns a corresponding return status. This function is mainly for
convenience and is simply a layer on top of VXIinLR and VXIin . If the la specified is the local CPU logical
address, it calls the VXIinLR function. Otherwise, it calculates the A16 address of the VXI device's register and
calls VXIin .

VXIoutReg (la, reg, value)

VXIoutReg writes a single word to a particular VXI device's VXI registers within the logical address space (the
upper 16 KB of VXI A16 address space). The function sets the VXI access privilege to Nonprivileged Data and the
byte order to Motorola. If the VXI address selected has no device residing at the address and a bus error occurs,
VXIinReg traps the bus error condition and returns a corresponding return status. This function is mainly for
convenience and is simply a layer on top of VXIoutLR and VXIout . If the la specified is the local CPU logical
address, it calls the VXIoutLR function. Otherwise, it calculates the A16 address of the VXI device's register and
calls VXIout .

VXImove (srcparms, srcaddr, destparms, destaddr, length, width)

VXImove moves a block of bytes, words, or longwords from a particular address in one of the available address
spaces (local, A16, A24, A32) to any other address in any one of the address spaces. The parameters srcparms and
destparms specify the address space, the privilege access, and the byte order used to perform the access for the
source address and the destination address, respectively. The srcaddr and destaddr parameters specify the
offset within the particular address space for the source and destination, respectively. The width parameter selects

Chapter 7 High-Level VXIbus Access Functions

© National Instruments Corporation 7-3 NI-VXI Software Reference Manual for C

either byte, word, or longword transfers. If one of the addresses selected has no device residing at the address and a
bus error occurs, VXImove traps the bus error condition and returns a corresponding return status.

Function Descriptions

The following paragraphs describe the high-level VXIbus access functions. The descriptions are explained at the C
syntax level and are listed in alphabetical order.

VXIin

Syntax: ret = VXIin (accessparms, address, width, value)

Action: Reads a single byte, word, or longword from a specified VXI address with the specified byte order
and privilege state.

Remarks: Input parameters:

accessparms UINT16 (Bits 0, 1) VXI Address Space
1 = A16
2 = A24
3 = A32

(Bits 2 to 4) Access Privilege
0 = Nonprivileged data access
1 = Supervisory data access
2 = Nonprivileged program access
3 = Supervisory program access
4 = Nonprivileged block access
5 = Supervisory block access

(Bits 5, 6) Reserved (should be 0)

(Bit 7) Byte Order
0 = Motorola
1 = Intel

(Bits 8 to 15) Reserved (should be 0)

address UINT32 VXI address within specified space

width UINT16 Read Width

1 = Byte
2 = Word
4 = Longword

Output parameter:

value void* Value read (UINT8 , UINT16 , or UINT32)

High-Level VXIbus Access Functions Chapter 7

NI-VXI Software Reference Manual for C 7-4 © National Instruments Corporation

Return value:

ret INT16 Return Status

0 = Read completed successfully
-1 = Bus error occurred during transfer
-2 = Invalid parms
-3 = Invalid address
-4 = Invalid width
-5 = Byte order not supported
-6 = address not accessible with this hardware
-7 = Privilege not supported
-9 = width not supported

Example: /* Read ID register of the device at Logical Address 4. */

INT16 ret;
UINT16 accessparms;
UINT32 address;
UINT16 width;
UINT16 value;

accessparms = 1;
address = 0xc100L;
width = 2;
ret = VXIin (accessparms, address, width, &value);
if (ret < 0)

/* An error occurred during read. */;

Chapter 7 High-Level VXIbus Access Functions

© National Instruments Corporation 7-5 NI-VXI Software Reference Manual for C

VXIinReg

Syntax: ret = VXIinReg (la, reg, value)

Action: Reads a single word from a specified VXI register offset on the specified VXI device. The register
is read in Motorola byte order and as nonprivileged data.

Remarks: Input parameters:

la INT16 Logical address of the device to read from

reg UINT16 Offset within VXI logical address registers

Output parameter:

value UINT16* Value read from device's VXI register

Return value:

ret INT16 Return Status

0 = Read completed successfully
-1 = Bus error occurred during transfer
-3 = Invalid reg specified

Example: /* Read ID register of the device at Logical Address 4. */

INT16 ret;
INT16 la;
UINT16 reg;
UINT16 value;

la = 4;
reg = 0;
ret = VXIinReg (la, reg, &value);
if (ret < 0)

/* An error occurred during read. */;

High-Level VXIbus Access Functions Chapter 7

NI-VXI Software Reference Manual for C 7-6 © National Instruments Corporation

VXImove

Syntax: ret = VXImove (srcparms, srcaddr, destparms, destaddr, length,
width)

Action: Copies a block of memory from a specified source location in any address space (local, A16, A24,
A32) to a specified destination in any address space.

Remarks: Input parameters:

srcparms UINT16 (Bits 0, 1) Source Address Space
0 = Local (bits 2, 3, 4, and 7 should be 0)
1 = A16
2 = A24
3 = A32

(Bits 2 to 4) Access Privilege
0 = Nonprivileged data access
1 = Supervisory data access
2 = Nonprivileged program access
3 = Supervisory program access
4 = Nonprivileged block access
5 = Supervisory block access

(Bits 5, 6) Reserved (should be 0)

(Bit 7) Byte Order
0 = Motorola
1 = Intel

(Bits 8 to 15) Reserved (should be 0)

srcaddr UINT32 Address within source address space. This address is
 a long integer value if it represents a VXI space
 (1, 2, 3) or an array address for a local address space (0).

destparms UINT16 (Bits 0, 1) Destination Address Space
0 = Local (bits 2, 3, 4, and 7 should be 0)
1 = A16
2 = A24
3 = A32

(Bits 2 to 4) Access Privilege
0 = Nonprivileged data access
1 = Supervisory data access
2 = Nonprivileged program access
3 = Supervisory program access
4 = Nonprivileged block access
5 = Supervisory block access

(Bits 5, 6) Reserved (should be 0)

(Bit 7) Byte Order
0 = Motorola
1 = Intel

(Bits 8 to 15) Reserved (should be 0)

destaddr UINT32 Address within destination address space. This address is
 a long integer value if it represents a VXI space
 (1, 2, 3) or an array address for a local address space (0).

Chapter 7 High-Level VXIbus Access Functions

© National Instruments Corporation 7-7 NI-VXI Software Reference Manual for C

length UINT32 Number of elements to transfer

width UINT16 Byte, word, or longword

1 = Byte
2 = Word
4 = Longword

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Transfer completed successfully
-1 = Bus error occurred
-2 = Invalid srcparms or destparms
-3 = Invalid srcaddr or destaddr
-4 = Invalid width
-5 = Byte order not supported
-6 = Address not accessible with this hardware
-7 = Privilege not supported
-8 = Timeout, DMA aborted (if applicable)
-9 = width not supported

Example: /* Move 1 kilobyte from A24 space at 0x200000 to a local
buffer. */

INT16 ret;
UINT16 srcparms;
UINT32 srcaddr;
UINT16 destparms;
UINT32 destaddr;
UINT32 length;
UINT16 width;

srcparms = 2; /* A24, nonprivileged data, Motorola */
srcaddr = 0x200000L;
destparms = 0; /* Local space. */
length = 0x200L; /* 512 elements. */
width = 2; /* Transfer as words. */
destaddr = (UINT32)malloc(length * width);/* Allocate local

buffer. */
ret = VXImove (srcparms, srcaddr, destparms, destaddr, length,
width);
if (ret < 0)

/* An error occurred during VXImove. */;

High-Level VXIbus Access Functions Chapter 7

NI-VXI Software Reference Manual for C 7-8 © National Instruments Corporation

VXIout

Syntax: ret = VXIout (accessparms, address, width, value)

Action: Writes a single byte, word, or longword to a specified VXI address with the specified byte order
and privilege state.

Remarks: Input parameters:

accessparms UINT16 (Bits 0, 1) VXI Address Space
1 = A16
2 = A24
3 = A32

(Bits 2 to 4) Access Privilege
0 = Nonprivileged data access
1 = Supervisory data access
2 = Nonprivileged program access
3 = Supervisory program access
4 = Nonprivileged block access
5 = Supervisory block access

(Bits 5, 6) Reserved (should be 0)

(Bit 7) Byte Order
0 = Motorola
1 = Intel

(Bits 8 to 15) Reserved (should be 0)

address UINT32 VXI address within specified address space

width UINT16 Byte, word, or longword

1 = Byte
2 = Word
4 = Longword

value UINT32 Data value to write

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Write completed successfully
-1 = Bus error occurred during transfer
-2 = Invalid accessparms
-3 = Invalid address
-4 = Invalid width
-5 = Byte order not supported
-6 = Address not accessible with this hardware
-7 = Privilege not supported
-9 = width not supported

Chapter 7 High-Level VXIbus Access Functions

© National Instruments Corporation 7-9 NI-VXI Software Reference Manual for C

Example: /* Write the value 0x2000 to the Offset register of the device at
Logical Address 4. */

INT16 ret;
UINT16 accessparms;
UINT32 address;
UINT16 width;
UINT32 value;

accessparms = 1;
address = 0xc10aL;
width = 2;
value = 0x2000L;
ret = VXIout (accessparms, address, width, value);
if (ret < 0)

/* An error occurred during write. */;

High-Level VXIbus Access Functions Chapter 7

NI-VXI Software Reference Manual for C 7-10 © National Instruments Corporation

VXIoutReg

Syntax: ret = VXIoutReg (la, reg, value)

Action: Writes a single word to a specified VXI register offset on the specified VXI device. The register is
written in Motorola byte ordering and as nonprivileged data.

Remarks: Input parameters:

la INT16 Logical address of the device to write to

reg UINT16 Offset within VXI logical address registers

value UINT16 Value written to device's VXI register

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Write completed successfully
-1 = Bus error occurred during transfer
-3 = Invalid reg specified

Example: /* Write Signal register of the device at Logical Address 10 with
the value 0xfd0a (REQT). */

INT16 ret;
UINT16 la;
UINT16 reg;
UINT16 value;

la = 10;
reg = 8;
value = 0xfd0a;
ret = VXIoutReg (la, reg, value);
if (ret < 0)

/* An error occurred during write. */;

© National Instruments Corporation 8-1 NI-VXI Software Reference Manual for C

Chapter 8
Local Resource Access Functions

This chapter describes the C syntax and use of the VXI local resource access functions. Local resources are
hardware and/or software capabilities that are reserved for the local CPU (the CPU on which the NI-VXI interface
resides). You can use these functions to gain access to miscellaneous local resources such as the local CPU register
set and the local CPU Shared RAM. These functions are useful for shared memory type communication, non-
Resource Manager operation, and debugging purposes.

Access to the local CPU logical address is required for sending correct VXI signal values to other devices.
Reading local VXI registers is required for retrieving configuration information. Writing to the A24 and A32
pointer registers is required for use under the Shared Memory Protocol of the VXIbus specification, Revision 1.2.
Exercising the local CPU MODID capabilities (if the local CPU is a VXI Slot 0 device) can be helpful for
debugging a prototype VXI device's slot association (MODID) capability.

Functional Overview

The following paragraphs describe the local resource access functions. The descriptions are presented at a
functional level describing the operation of each of the functions. The functions are grouped by area of
functionality.

GetMyLA ()

GetMyLA retrieves the logical address of the local VXI device. The local CPU VXI logical address is required for
retrieving configuration information with one of the GetDevInfo functions. The local CPU VXI logical address
is also required for creating correct VXI signal values to send to other devices.

VXIinLR (reg, width, value)

VXIinLR reads a single byte, word, or longword from the local CPU VXI registers. On many CPUs, the local
CPU VXI registers cannot be accessed from the local CPU in the VXI A16 address space window (due to hardware
limitations). Another area in the local CPU address space is reserved for accessing the local CPU VXI registers.
VXIinLR is designed to read these local VXI registers. The VXI access privilege is not applicable but can be
assumed to be Nonprivileged Data. The byte order is Motorola. Unless otherwise specified, reads should always be
performed as words. This function can be used to read configuration information (manufacturer, model code, and so
on) for the local CPU.

VXIoutLR (reg, width, value)

VXIoutLR writes a single byte, word, or longword to the local CPU VXI registers. On many CPUs, the local
CPU VXI registers cannot be accessed from the local CPU in the VXI A16 address space window (due to hardware
limitations). Another area in the local CPU address space is reserved for accessing the local CPU VXI registers.
VXIoutLR is designed to write to these local VXI registers. The VXI access privilege is not applicable but can be
assumed to be Nonprivileged Data. The byte order is Motorola. Unless otherwise specified, writes should always
be performed as words. This function can be used to write application specific registers (A24 pointer register, A32
pointer register, and so on) for the local CPU.

Local Resource Access Functions Chapter 8

NI-VXI Software Reference Manual for C 8-2 © National Instruments Corporation

SetMODID (enable, modid)

SetMODID controls the MODID line drivers of the local CPU when configured as a VXI Slot 0 device. The
enable parameter enables the MODID drivers for all the slots. The modid parameter specifies which slots should
have their corresponding MODID lines asserted.

ReadMODID (modid)

ReadMODID senses the MODID line drivers of the local CPU when configured as a VXI Slot 0 device. The
modid output parameter returns the polarity of each of the slot's MODID lines.

VXImemAlloc (size, useraddr, vxiaddr)

VXImemAlloc allocates physical RAM from the operating system's dynamic memory pool. This RAM will reside
in the VXI Shared RAM region of the local CPU. VXImemAlloc returns not only the user address that the
application uses, but also the VXI address that a remote device would use to access this RAM. This function is very
helpful on virtual memory systems, which require contiguous, locked-down blocks of virtual-to-physical RAM. On
non-virtual memory systems, this function is simply a malloc (standard C dynamic allocation routine) and an
address translation. When the application is finished using the memory, it should make a call to VXImemFree to
return the memory to the operating system's dynamic memory pool.

VXImemCopy (useraddr, bufaddr, size, dir)

VXImemCopy copies blocks of memory to or from the local user's address space into the local shared memory
region. On some interfaces, your application cannot directly access local shared memory. VXImemCopy gives you
fast access to this local shared memory.

VXImemFree (useraddr)

VXImemFree deallocates physical RAM from the operating system's dynamic memory pool allocated using
VXImemAlloc . VXImemAlloc returns not only the user address that the application uses, but also the VXI
address that a remote device would use to access this RAM. When the application is through using the memory, it
should make a call to VXImemFree (with the user address) to return the memory to the operating system's dynamic
memory pool.

Chapter 8 Local Resource Access Functions

© National Instruments Corporation 8-3 NI-VXI Software Reference Manual for C

Function Descriptions

The following paragraphs describe the local resource access functions. The descriptions are explained at the C
syntax level and are listed in alphabetical order.

GetMyLA

Syntax: la = GetMyLA ()

Action: Gets the logical address of the local VXI device (the VXI device on which this copy of the NI-
VXI software is running).

Remarks: Parameters:

none

Return value:

la INT16 Logical address of the local device

Example: /* Get my logical address. */

INT16 la;

la = GetMyLA();

Local Resource Access Functions Chapter 8

NI-VXI Software Reference Manual for C 8-4 © National Instruments Corporation

ReadMODID

Syntax: ret = ReadMODID (modid)

Action: Senses the MODID lines of the VXIbus backplane. This function only applies to the local device,
which must be a Slot 0 device.

Remarks: Input parameters:

none

Output parameter:

modid UINT16* Bit vector as follows:

 Bits Description

12-0 MODID lines 12 to 0, respectively
13 MODID enable bit

Return value:

ret INT16 Return Status

0 = Successfully read MODID lines
-1 = Not a Slot 0 device

Example: /* Read all the MODID lines 0 to 12. */

INT16 ret;
UINT16 modid;

ret = ReadMODID (&modid);
if (ret < 0)

/* An error occurred in ReadMODID. */;

Chapter 8 Local Resource Access Functions

© National Instruments Corporation 8-5 NI-VXI Software Reference Manual for C

SetMODID

Syntax: ret = SetMODID (enable, modid)

Action: Controls the assertion of the MODID lines of the VXIbus backplane. This function only applies to
the local device, which must be a Slot 0 device.

Remarks: Input parameters:

enable UINT16 1 = Set MODID enable bit
0 = Clear MODID enable bit

modid UINT16 Bit vector for Bits 0 to 12, corresponding to Slots 0 to 12

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successfully set MODID lines
-1 = Not a Slot 0 device

Example: /* Set all the MODID lines 0 to 12. */

INT16 ret;
UINT16 enable;
UINT16 modid;

enable = 1;
modid = 0x1fff; /* Bit vector (Bits 0 to 12). */

ret = SetMODID (enable, modid);
if (ret < 0)

/* An error occurred in SetMODID. */;

Local Resource Access Functions Chapter 8

NI-VXI Software Reference Manual for C 8-6 © National Instruments Corporation

VXIinLR

Syntax: ret = VXIinLR (reg, width, value)

Action: Reads a single byte, word, or longword from a particular VXI register on the local VXI device.
The register is read in Motorola byte order and as nonprivileged data.

Remarks: Input parameters:

reg UINT16 Offset within VXI logical address registers

width UINT16 Byte, word, or longword

1 = Byte
2 = Word
4 = Longword

Output parameter:

value void* Data value read (UINT8 , UINT16 , or UINT32)

Return value:

ret INT16 Return Status

0 = Successful
-1 = Bus error
-3 = Invalid reg
-4 = Invalid width
-9 = width not supported

Example: /* Read the value of the local Offset register. */

INT16 ret;
UINT16 reg;
UINT16 width;
UINT16 value;

reg = 6; /* Offset register offset within registers. */
width = 2; /* Read word register. */
ret = VXIinLR (reg, width, &value);
if (ret < 0)

/* An error occurred in VXIinLR. */;

Chapter 8 Local Resource Access Functions

© National Instruments Corporation 8-7 NI-VXI Software Reference Manual for C

VXImemAlloc

Syntax: ret = VXImemAlloc (size, useraddr, vxiaddr)

Action: Allocates dynamic system RAM from the VXI Shared RAM area of the local CPU and returns
both the local and remote VXI addresses. The VXI address space is the same as the space for
which the local device is dual porting memory. You can use this function for setting up shared
memory transfers.

Remarks: Input parameter:

size UINT32 Number of bytes to allocate

Output parameters:

useraddr void** Returned application memory buffer address

vxiaddr UINT32* Returned remote VXI memory buffer address

Return value:

ret INT16 Return Status

0 = Successful, memory can be accessed directly
1 = Successful, memory must be accessed using

 VXImemCopy
-1 = Memory allocation failed
-2 = Local CPU is A16 only

Example: /* Allocate, use, and free 32 kilobytes of VXI Shared system
RAM. */

UINT32 size;
void *useraddr;
UINT32 vxiaddr;
INT16 ret;

size = 0x8000; /* 32 kilobytes */
ret = VXImemAlloc (size, &useraddr, &vxiaddr);
if (ret < 0)

/* An error occurred in VXImemAlloc. */;

/*
Use buffer.

*/

ret = VXImemFree (useraddr);
if (ret < 0)

/* An error occurred in VXImemFree. */;

Local Resource Access Functions Chapter 8

NI-VXI Software Reference Manual for C 8-8 © National Instruments Corporation

VXImemCopy

Syntax: ret = VXImemCopy (useraddr, bufaddr, size, dir)

Action: Copies an application buffer to or from the local shared memory. On some systems, local shared
memory cannot be accessed directly by an application. VXImemCopy provides a fast access
method to local shared memory.

Remarks: Input parameter:

useraddr void* VXI shared memory buffer address

bufaddr void* Address of application buffer to copy into or out of

size UINT32 Number of bytes to copy

dir UINT16 Copy direction

1 = Copy from bufaddr to useraddr
0 = Copy from useraddr to bufaddr

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Copy failed
-5 = Invalid dir

Chapter 8 Local Resource Access Functions

© National Instruments Corporation 8-9 NI-VXI Software Reference Manual for C

Example: /* Allocate, copy, use, and free 32 kilobytes of VXI Shared
system RAM. */

UINT32 size;
void *useraddr;
UINT32 *vxiaddr;
INT16 ret;
void *bufaddr;

size = 0x8000; /* 32 kilobytes. */
ret = VXImemAlloc (size, &useraddr, &vxiaddr);
if (ret < 0)

/* An error occurred in VXImemAlloc. */;

/*
Tell remote bus master to copy 32 kilobytes to local
shared memory by writing to VXI address "vxiaddr."

*/

/* Copy to application. */
bufaddr = malloc(size);
VXImemCopy (useraddr, bufaddr, size, 0);

/*
Use buffer.

*/

ret = VXImemFree (useraddr);
if (ret < 0)

/* An error occurred in VXImemFree. */;

Local Resource Access Functions Chapter 8

NI-VXI Software Reference Manual for C 8-10 © National Instruments Corporation

VXImemFree

Syntax: ret = VXImemFree (useraddr)

Action: Deallocates dynamic system RAM from the VXI Shared RAM area of the local CPU that was
allocated using the VXImemAlloc function.

Remarks: Input parameter:

useraddr void* Application memory buffer address to free

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Memory deallocation failed

Example: /* Allocate, use, and free 32 kilobytes of VXI Shared system
RAM. */

UINT32 size;
void *useraddr;
UINT32 vxiaddr;
INT16 ret;

size = 0x8000; /* 32 kilobytes. */
ret = VXImemAlloc (size, &useraddr, &vxiaddr);
if (ret < 0)

/* An error occurred in VXImemAlloc. */;

/*
Use buffer.

*/

ret = VXImemFree (useraddr);
if (ret < 0)

/* An error occurred in VXImemFree. */;

Chapter 8 Local Resource Access Functions

© National Instruments Corporation 8-11 NI-VXI Software Reference Manual for C

VXIoutLR

Syntax: ret = VXIoutLR (reg, width, value)

Action: Writes a single byte, word, or longword to a particular VXI register on the local VXI device. The
register is written in Motorola byte order and as nonprivileged data.

Remarks: Input parameters:

reg UINT16 Offset within VXI logical address registers

width UINT16 Byte, word, or longword

1 = Byte
2 = Word
4 = Longword

value UINT32 Data value to write

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Bus error
-3 = Invalid reg
-4 = Invalid width
-9 = width not supported

Example: /* Write the value of 0xfd00 (REQT) to the local Signal
register. */

INT16 ret;
UINT16 reg;
UINT16 width;
UINT32 value;

reg = 8; /* Register offset for Signal register. */
width = 2; /* Word register. */
value = 0xfd00L;
ret = VXIoutLR (reg, width, value);
if (ret < 0)

/* An error occurred in VXIoutLR. */;

© National Instruments Corporation 9-1 NI-VXI Software Reference Manual for C

Chapter 9
VXI Signal Functions

This chapter describes the C syntax and use of the VXI signal functions and default handler. With these functions,
VXI bus master devices can interrupt another device. VXI signal functions can specify the signal routing,
manipulate the global signal queue, and wait for a particular signal value (or set of values) to be received.

VXI signals are a basic form of asynchronous communication used by VXI bus master devices. A VXI signal is a
16-bit value written to the Signal register of a VXI Message-Based device. Normally, the write to the Signal register
generates a local CPU interrupt, and the local CPU then acquires the signal value in some device-specific manner.
All National Instruments hardware platforms have a hardware FIFO to accumulate signal values while waiting for
the local CPU to retrieve them. The format of the 16-bit signal value is defined by the VXIbus specification and
is the same as the format used for the VXI interrupt status/ID word that is returned during a VXI interrupt
acknowledge cycle. All VXI signals and status/ID values contain the VXI logical address of the sending device
in the lower 8 bits of the VXI signal or status/ID value. The upper 8 bits of the 16-bit value depends on the VXI
device type.

VXI signals from Message-Based devices can be one of two types: Response signals and Event signals (bit 15
distinguishes between the two). Response signals are used to report changes in Word Serial communication status
between a Servant and its Commander. Event signals are used to inform another device of other asynchronous
changes. The four Event signals currently defined by the VXIbus specification (other than Shared Memory Events)
are No Cause Given , Request for Service True (REQT), Request for Service False (REQF), and Unrecognized
Command. REQT and REQF are used to manipulate the SRQ condition (RSV bit assertion in the IEEE 488/488.2
status byte) while Unrecognized Command is used to report unsupported Word Serial commands (only in VXIbus
specification, Revision 1.2). If the sender of a signal (or VXI interrupt status/ID) value is a Register-Based device,
the upper 8 bits are device-dependent. Consult your device manual for definitions of these values.

Two methods are available to handle VXI signals under the NI-VXI software interface. Signals can be handled
either by calling a handler or by queueing on a global signal queue. The RouteSignal function specifies which
types of signals are handled by the handlers, and which are queued onto the global signal queue for each VXI logical
address. A separate handler can be installed for each VXI logical address present (see the description of
SetSignalHandler). The InitVXIlibrary function automatically installs a default handler,
DefaultSignalHandler , for every VXI logical address. If signals are queued, the application can use the
SignalDeq function to selectively retrieve a signal off a global signal queue by VXI logical address and/or type of
signal.

In another method for handling signals (and VXI interrupts routed to signals) other than the two previous methods,
you can use the function WaitForSignal . This function can suspend a process/function until a particular signal
(or one of a set of signals) arrives. A multitasking operating system lets you have any number of
WaitForSignal calls pending, even for the same logical address. A non-multitasking operating system permits
only one pending WaitForSignal call.

Programming Considerations for Signal Queuing

The global signal queue used to hold signal values is of a finite length. If the application is not handling signals
fast enough, it is theoretically possible to fill the global signal queue. If the global signal queue becomes full,
DisableSignalInt is called to inhibit more signals from being received. Under the VXIbus specification, if the
local CPU signal FIFO becomes full (in which case a signal be lost if another signal is written), the local CPU must
return a bus error on any subsequent writes to its Signal register. This bus error condition notifies the sending CPU
that the signal transfer needs to be retried. This guarantees the application that, even if the global signal queue
becomes full, no signals will be lost.

VXI Signal Functions Chapter 9

NI-VXI Software Reference Manual for C 9-2 © National Instruments Corporation

In addition to DisableSignalInt , the DisableVXItoSignalInt function is also called to disable VXI
interrupts from occurring on levels that are routed to the signal Processor. When SignalDeq is called to remove
a signal from the global signal queue, the interrupts for the Signal register and the VXI interrupt levels routed to
the signal handler are automatically re-enabled. If signals received never get dequeued, the global signal queue
eventually becomes full and the interrupts will be disabled forever. If the signals were routed to the
DefaultSignalHandler , all except Unrecognized Command Events from Message-Based devices perform
no operation. Unrecognized Command Events must call the function WSabort to abort the current Word Serial
operation in progress.

RouteVXIint()

VXI Interrupts 1-7Hardware

NI-VXI

Software

User
Application

VXIintHandlers SignalHandlers

NI-VXI base Interrupt Service Routines (ISR)

Local VXI Signals

EnableSignalInt()
DisableSignalInt()

RouteSignal()

EnableVXIint()
DisableVXIint()

EnableVXItoSignalInt()
DisableVXItoSignalInt()

SetVXIintHandler()
GetVXIintHandler()
DefaultVXIintHandler()

SignalEnq()

User

ISRs (1 per VXI interrupt level) (1 per logical address)

SetSignalHandler()
GetSignalHandler()
DefaultSignalHandler()

Signal Processor

S
ig

na
l Q

ue
ue

WaitForSignal
 monitor

WaitForSignal()

If signal not on queue
 enable monitor
 block till received
else
 SignalDeq()
return signal, mask

SignalDeq()

(
u
i
n
t
1
6
)
s
i
g
n
a
l

SignalEnq()
SignalDeq()
SignalJam()

(uint16)statusId

WaitForSignal()

(
u
i
n
t
1
6
)
l
e
v
e
l
,

(
u
i
n
t
3
2
)
s
t
a
t
u
s
I
d

(uint16)signal

(
u
i
n
t
1
6
)
s
i
g
n
a
l

Get SignalGet Status/Id
VXIintAcknowledgeMode()

Figure 9-1. NI-VXI VXI Interrupt and Signal Model

WaitForSignal Considerations

The function WaitForSignal can be used to suspend a process/function until a particular VXI signal (or one
of a set of signals) arrives. Any signals to be waited on should be routed to the global signal queue. If the
RouteSignal function has specified for the signal to be handled by the interrupt service routine and the signal
is received before the WaitForSignal call has been initiated, the WaitForSignal call will not detect that the
signal was previously received and the process/function may block until a timeout. WaitForSignal attempts to
dequeue a signal of the specified type before the process/function is suspended. If an appropriate signal can be
dequeued, the signal is returned immediately to the caller and the process/function is not suspended.

Chapter 9 VXI Signal Functions

© National Instruments Corporation 9-3 NI-VXI Software Reference Manual for C

Functional Overview

The following paragraphs describe the VXI signal functions and default handler. The descriptions are presented at a
functional level describing the operation of each of the functions. The functions are grouped by area of
functionality.

RouteSignal (la, modemask)

RouteSignal specifies how to route VXI signals for the application. Two methods are available to handle VXI
signals. You can handle the signals either at interrupt service routine time or by queueing on a global signal queue.
For each VXI logical address, the RouteSignal function specifies which types of signals should be handled by
the handlers, and which should be queued on the global signal queue. A separate handler can be installed for each
VXI logical address present (see the description of SetSignalHandler). The InitVXIlibrary function
automatically installs a default handler, DefaultSignalHandler , for every VXI logical address. If signals are
queued, the application can use the SignalDeq function to selectively return a signal off a global signal queue by
VXI logical address and/or type of signal. The default for RouteSignal is to have all signals routed to interrupt
service routines.

EnableSignalInt ()

EnableSignalInt sensitizes the application to local signal interrupts. When signal interrupts are enabled, any
write to the local CPU VXI Signal register causes an interrupt on the local CPU. The internal signal router then
routes the signal value to the handler or to the global signal queue, as specified by the RouteSignal function.
EnableSignalInt must be called after InitVXIlibrary to begin the reception of signals. Calls to
RouteSignal and/or SetSignalHandler must be made before the signal interrupt is enabled to guarantee
proper signal routing of the first signals.

DisableSignalInt ()

DisableSignalInt desensitizes the application to local signal interrupts. While signal interrupts are disabled,
a write to the local CPU VXI Signal register does not cause an interrupt on the local CPU; instead, the local CPU
hardware signal FIFO begins to fill up. If the hardware FIFO becomes full, bus errors will occur on subsequent
writes to the Signal register. This function is automatically called when the global signal queue becomes full, and is
automatically re-enabled on a call to SignalDeq . DisableSignalInt along with EnableSignalInt can
be used to temporarily suspend the generation of signal interrupts.

SetSignalHandler (la, func)

SetSignalHandler replaces the current signal handler for the specified VXI logical address with an alternate
handler. If signal interrupts are enabled (via EnableSignalInt), the signal handler for a specific logical address
is called if the RouteSignal function has been set up to route signals to the handler (as opposed to the global
signal queue). The InitVXIlibrary function automatically installs a default handler,
DefaultSignalHandler , for every VXI logical address. The logical address (la) value of -2 is a special case
and is provided to specify a handler to capture signals from devices not known to the device information table. This
should occur only when the local CPU is not the Resource Manager. Support is not provided to handle these signals
via the global signal queue or the WaitForSignal function.

VXI Signal Functions Chapter 9

NI-VXI Software Reference Manual for C 9-4 © National Instruments Corporation

GetSignalHandler (la)

GetSignalHandler returns the address of the current signal handler for the specified VXI logical address. If
signal interrupts are enabled (via EnableSignalInt), the signal handler for a specific logical address is called if
the RouteSignal function has been set up to route signals to the handler (as opposed to the global signal queue).
The InitVXIlibrary function automatically installs a default handler, DefaultSignalHandler , for every
VXI logical address.

DefaultSignalHandler (signal)

DefaultSignalHandler is the sample handler for VXI signals that is installed when the InitVXIlibrary
function is called for every applicable VXI logical address. The default handler performs no action on the signals
except when Unrecognized Command Events are received. For these events, it calls the function WSabort with an
abortop of UnSupCom to abort the current Word Serial transfer in progress.

SignalDeq (la, signalmask, signal)

SignalDeq retrieves signals from the global signal queue. Two methods are available to handle VXI signals.
You can handle the signals either by handlers or by queueing on a global signal queue. The RouteSignal
function specifies which types of signals should be handled by which of the two methods for each VXI logical
address. You can use SignalDeq to selectively dequeue a signal off of the global signal queue. The signal
specified by signalmask for the specified logical address (la) is dequeued and returned in the output parameter
signal .

SignalEnq (signal)

SignalEnq places signals at the end of the global signal queue. You can use SignalEnq within a signal handler
to queue a signal or to simulate the reception of a signal by placing a value on the global signal queue that was not
actually received as a signal.

SignalJam (signal)

SignalJam places signals at the front of the global signal queue. SignalJam can be used to simulate the
reception of a signal by placing a value on the global signal queue that was not actually received as a signal.
Because SignalJam places signal values on the front of the global signal queue, the signal is guaranteed to be the
first of its type to be dequeued.

Note: This function is intended for debug purposes only.

WaitForSignal (la, signalmask, timeout, retsignal, retsignalmask)

WaitForSignal waits for the specified maximum amount of time for a particular signal (or class of signals) to be
received. Signalmask defines the type(s) of signals that the application program waits for. The timeout value
specifies the maximum amount of time (in milliseconds) to wait until the signal occurs. The signal that unblocks the
WaitForSignal call returns in the output parameter retsignal . You should use the WaitForSignal
function only when signals are queued. A multitasking operating system lets you have any number of
WaitForSignal calls pending, even for the same logical address. A non-multitasking operating system permits
only one pending WaitForSignal call (because non-multitasking systems can only have one application/process
running at a time).

Chapter 9 VXI Signal Functions

© National Instruments Corporation 9-5 NI-VXI Software Reference Manual for C

Function Descriptions

The following paragraphs describe the VXI signal functions and default handler. The descriptions are explained at
the C syntax level and are listed in alphabetical order.

DisableSignalInt

Syntax: ret = DisableSignalInt ()

Action: Desensitizes the local CPU to interrupts generated by writes to the local VXI Signal register.
While disabled, no VXI signals are processed. If the local VXI hardware Signal register is
implemented as a FIFO, signals are held in the FIFO until the signal interrupt is enabled via the
EnableSignalInt function. When the FIFO is full, the remote VXI device will get a Bus
Error in response to a write to the Signal register.

Remarks : Parameters:

none

Return value:

ret INT16 Return Status

0 = Signal interrupts successfully disabled

Example: /* Disable the signal interrupt. */

INT16 ret;

ret = DisableSignalInt ();

VXI Signal Functions Chapter 9

NI-VXI Software Reference Manual for C 9-6 © National Instruments Corporation

EnableSignalInt

Syntax: ret = EnableSignalInt ()

Action: Sensitizes the local CPU to interrupts generated by writes to the local VXI Signal register.

Remarks : Parameters:

none

Return value:

ret INT16 Return Status

1 = Signal queue full; will enable after dequeuing
 a signal

0 = Signal interrupts successfully enabled

Example: /* Enable the signal interrupt. */

INT16 ret;

ret = EnableSignalInt ();

Chapter 9 VXI Signal Functions

© National Instruments Corporation 9-7 NI-VXI Software Reference Manual for C

GetSignalHandler

Syntax: func = GetSignalHandler (la)

Action: Returns the address of the current signal handler for a specified logical address.

Remarks: Input parameter:

la INT16 Logical address for which to find address of signal
handler
 -2 = Unknown la (miscellaneous)

Output parameters:

none

Return value:

func NIVXI_HSIGNAL* Pointer to the current signal handler for the
specified logical address (NULL = invalid la)

Example: /* Get the address of the signal handler for Logical Address
5. */

NIVXI_HSIGNAL *func;
INT16 la;

la = 5;
func = GetSignalHandler (la);

VXI Signal Functions Chapter 9

NI-VXI Software Reference Manual for C 9-8 © National Instruments Corporation

RouteSignal

Syntax: ret = RouteSignal (la, modemask)

Action: Specifies how each type of signal is to be processed for each logical address. A signal can be
enqueued on a global signal queue (for later dequeuing via SignalDeq) or handled by an
installed signal handler for the specified logical address.

Remarks : Input parameters:

la INT16 Logical address to set handler for (-1 = any known la)

modemask UINT32 A bit vector that specifies whether each type of signal is
enqueued or handled by the signal handler. A zero in any
bit position causes signals of the associated type to be
queued on the global signal queue. All other signals are
handled by the signal handler.

If la is a Message-Based device:

 Bit Event Signal

14 User-Defined events
13 VXI Reserved events
12 Shared Memory events
11 Unrecognized Command events
10 Request False (REQF) events
9 Request True (REQT) events
8 No Cause Given events

 Bit Response Signal

7 Unused
6 B14 (Reserved for future definition)
5 Data Out Ready (DOR)
4 Data In Ready (DIR)
3 Protocol Error (ERR)
2 Read Ready (RR)
1 Write Ready (WR)
0 Fast Handshake (FHS)

If la is not a Message-Based device:

 Bit Type of Signal (status/ID) values

15 to 8 Active high bit (if 1 in bits 15 to 8,
respectively)

7 to 0 Active low bit (if 0 in bits 15 to 8,
respectively)

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Invalid la

Chapter 9 VXI Signal Functions

© National Instruments Corporation 9-9 NI-VXI Software Reference Manual for C

Example 1: /* Route signals for Logical Address 4 so that only REQT and REQF
signals are enqueued on the signal queue, and the rest of the
signals are handled by the signal handler. */

INT16 la;
UINT32 modemask;
INT16 ret;

la = 4;
modemask = 0xf9ffL;
ret = RouteSignal (la, modemask);

Example 2: /* Route Register-Based status/ID values for Logical Address 7 so
that all status/IDs with a 0 in bits 15 to 12 are queued and
all status/IDs with a 1 in bits 11 to 8 are handled by the
signal handler. */

INT16 la;
UINT32 modemask;
INT16 ret;

la = 7;
modemask = 0x0ff0L;
ret = RouteSignal (la, modemask);

VXI Signal Functions Chapter 9

NI-VXI Software Reference Manual for C 9-10 © National Instruments Corporation

SetSignalHandler

Syntax: ret = SetSignalHandler (la, func)

Action: Replaces the current signal handler for a logical address with a specified handler.

Remarks: Input parameters:

la INT16 Logical address to set the handler
-1 = All known la 's
-2 = Unknown la (miscellaneous) signal handler

func NIVXI_HSIGNAL* Pointer to the new signal handler
NULL = DefaultSignalHandler

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Invalid la

Example: /* Set the signal handler for Logical Address 5. */

NIVXI_HSIGNAL func;
INT16 la;
INT16 ret;

la = 5;
ret = SetSignalHandler (la, func);
if (ret < 0)

/* An error occurred in SetSignalHandler . */;

/* This is a sample VXI signal handler. */
NIVXI_HQUAL void NIVXI_HSPEC func (UINT16 signal)
{
}

Chapter 9 VXI Signal Functions

© National Instruments Corporation 9-11 NI-VXI Software Reference Manual for C

SignalDeq

Syntax: ret = SignalDeq (la, signalmask, signal)

Action: Gets a signal specified by the signalmask from the signal queue for the specified logical address.

Remarks: Input parameters:

la INT16 Logical address to dequeue signal from
(255 = VME; -1 = any known la)

signalmask UINT32 A bit vector indicating the type of signal to dequeue; a
one in any bit position causes the subroutine to dequeue
signals of the associated type, as follows:

If la is a Message-Based device:

 Bit Event Signal

14 User-Defined events
13 VXI Reserved events
12 Shared Memory events
11 Unrecognized Command events
10 Request False (REQF) events
9 Request True (REQT) events
8 No Cause Given events

 Bit Response Signal

7 Unused
6 B14 (Reserved for future definition)
5 Data Out Ready (DOR)
4 Data In Ready (DIR)
3 Protocol error (ERR)
2 Read Ready (RR)
1 Write Ready (WR)
0 Fast Handshake (FHS)

If la is not a Message-Based device,
or if la = 255 (VME status/ID):

 Bit Type of Signal (status/ID) values

15 to 8 Active high bit (if 1 in bits 15 to 8,
respectively)

7 to 0 Active low bit (if 0 in bits 15 to 8,
respectively)

Output parameter:

signal UINT16* Signal value dequeued from the signal queue

Return value:

ret INT16 Return Status

0 = A signal was returned in signal
-1 = The signal queue is empty or no match

VXI Signal Functions Chapter 9

NI-VXI Software Reference Manual for C 9-12 © National Instruments Corporation

Example: /* Dequeue any type of signal from the signal queue for Logical
Address 10. */

INT16 ret;
INT16 la;
UINT16 signal;
UINT32 signalmask;

la = 10;
signalmask = 0xffffL;
ret = SignalDeq (la, signalmask, &signal);
if (ret != 0)

/* Empty signal queue for Logical Address 10. */;

Chapter 9 VXI Signal Functions

© National Instruments Corporation 9-13 NI-VXI Software Reference Manual for C

SignalEnq

Syntax: ret = SignalEnq (signal)

Action: Puts a signal on the tail of the signal queue.

Remarks: Input parameter:

signal UINT16 Value to enqueue at the tail of the signal queue

Output parameters:

none

Return value:

ret INT16 Return Status

0 = signal was queued
-1 = signal was not queued because the signal queue

is full
-2 = signal was not queued because the logical

address is invalid

Example: /* Enqueue signal 0xfd02 (REQT for Logical Address 2) at the tail
of the signal queue. */

INT16 ret;
UINT16 signal;

signal = 0xfd02;
ret = SignalEnq (signal);
if (ret != 0)

/* Signal queue is full. */;

VXI Signal Functions Chapter 9

NI-VXI Software Reference Manual for C 9-14 © National Instruments Corporation

SignalJam

Syntax: ret = SignalJam (signal)

Action: Puts a signal on the head of the signal queue.

Note: This function is intended for debug purposes only.

Remarks: Input parameter:

signal UINT16 Signal value to put on the head of the queue

Output parameters:

none

Return value:

ret INT16 Return Status

0 = signal was queued
-1 = signal was not queued because the signal queue

is full
-2 = signal was not queued because the logical

address is invalid

Example: /* Put signal 0xfd02 (REQT for Logical Address 2) on the head of
the signal queue. */

INT16 ret;
UINT16 signal;

signal = 0xfd02;
ret = SignalJam (signal);
if (ret != 0)

/* Signal queue is full. */;

Chapter 9 VXI Signal Functions

© National Instruments Corporation 9-15 NI-VXI Software Reference Manual for C

WaitForSignal

Syntax: ret = WaitForSignal (la, signalmask, timeout, retsignal,
retsignalmask)

Action: Waits for a specified type(s) of signal or status/ID to be received from a specified logical address.

Remarks: Input parameters:

la INT16 Logical address of device sourcing the signal
(255 = VME; -1 = any known la)

signalmask UINT32 A bit vector indicating the type(s) of signals that the
application will wait for; a one in any bit position will
cause the subroutine to detect signals of the associated
type, as follows:

If la is a Message-Based device:

 Bit Event Signal

14 User-Defined events
13 VXI Reserved events
12 Shared Memory events
11 Unrecognized Command events
10 Request False (REQF) events
9 Request True (REQT) events
8 No Cause Given events

 Bit Response Signal

7 Unused
6 B14 (Reserved for future definition)
5 Data Out Ready (DOR)
4 Data In Ready (DIR)
3 Protocol Error (ERR)
2 Read Ready (RR)
1 Write Ready (WR)
0 Fast Handshake (FHS)

If la is not a Message-Based device
or if la = 255 (VME status/ID):

 Bit Type of Signal (status/ID) values

15 to 8 Active high bit (if 1 in bits 15 to 8,
respectively)

7 to 0 Active low bit (if 0 in bits 15 to 8,
respectively)

timeout INT32 Time to wait until signal occurs

Output parameters:

retsignal UINT16* Signal received

retsignalmask UINT32* A bit vector indicating the type(s) of signals that the
application received. The bits have the same meaning as
that of the input signalmask .

VXI Signal Functions Chapter 9

NI-VXI Software Reference Manual for C 9-16 © National Instruments Corporation

Return value:

ret INT16 Return Status

0 = One of the specified signals was received
-1 = Invalid la
-2 = Timeout occurred while waiting for the specified

 signal(s)

Example: /* Wait 2 seconds for REQT signal from Logical Address 5. */

INT16 ret;
INT16 la;
UINT32 signalmask;
INT32 timeout;
UINT16 retsignal;
UINT32 retsignalmask;

la = 5;
signalmask = 0x0200L;
timeout = 2000L;
ret = WaitForSignal (la, signalmask, timeout, &retsignal,

&retsignalmask);
if (ret == 0)

/* Signal received within specified waiting period. */;

Chapter 9 VXI Signal Functions

© National Instruments Corporation 9-17 NI-VXI Software Reference Manual for C

Default Handler for VXI Signal Functions

The NI-VXI software provides the following default handler for the VXI signals. This is a sample handler that
InitVXIlibrary installs when it initializes the software at the beginning of the application program. Default
handlers give you the minimal and most common functionality required for a VXI system. They are given in source
code form on your NI-VXI distribution media to be used as examples/prototypes for extending their functionality to
a particular application.

DefaultSignalHandler

Syntax: DefaultSignalHandler (signal)

Action: Handles the VXI signals. It does nothing with the signals, with the exception of the VXIbus
specification 1.2 Event signal Unrecognized Command . It calls WSabort if the Unrecognized
Command Event is received.

Remarks: Input parameter:

signal UINT16 Actual 16-bit VXI signal

Output parameters:

none

Return value:

none

© National Instruments Corporation 10-1 NI-VXI Software Reference Manual for C

Chapter 10
VXI Interrupt Functions

This chapter describes the C syntax and use of the VXI interrupt functions and default handler. VXI interrupts are a
basic form of asynchronous communication used by VXI devices with VXI interrupter support. In VME, a device
asserts a VME interrupt line and the VME interrupt handler device acknowledges the interrupt. During the VME
interrupt acknowledge cycle, an 8-bit status/ID value is returned. Most 680X0-based VME CPUs use this 8-bit
value as a local interrupt vector value routed directly to the 680X0 processor. This value specifies which interrupt
service routine to invoke.

In VXI systems, however, the VXI interrupt acknowledge cycle returns (at a minimum) a 16-bit status/ID value.
This 16-bit status/ID value is data, not a vector base location. The definition of the 16-bit vector is specified by the
VXIbus specification and is the same as for the VXI signal. The lower 8 bits of the status/ID value form the VXI
logical address of the interrupting device, while the upper 8 bits specify the reason for interrupting.

VXI status/ID values from Message-Based devices can be one of two types: Response status/IDs and Event
status/IDs (bit 15 distinguishes between the two). Response status/IDs are used to report changes in Word Serial
communication status between a Servant and its Commander. Event status/IDs are used to inform another device of
other asynchronous changes. The four Event status/IDs currently defined by the VXIbus specification (other than
Shared Memory Events) are No Cause Given , Request for Service True (REQT), Request for Service False (REQF),
and Unrecognized Command . REQT and REQF are used to manipulate the SRQ condition (RSV bit assertion in the
IEEE 488/488.2 status byte), while Unrecognized Command is used to report unsupported Word Serial commands
(only in VXIbus specification, Revision 1.2). If the VXI interrupt status/ID value is from a Register-Based device,
the upper 8 bits are device-dependent. Consult your device manual for definitions of these values.

Because the VXI interrupt status/ID has the same format as the VXI signal, your application can handle VXI
interrupts as VXI signals. However, because VME interrupters may be present in a VXI system, the VXI/VME
interrupt handler functions are included with the NI-VXI software. The RouteVXIint function specifies whether
the status/ID value should be handled as a signal or handled by a VXI/VME interrupt handler. Two methods are
available to handle VXI signals. Signals can be handled either by calling a signal handler, or by queueing
on a global signal queue. The RouteSignal function specifies which types of signals are handled by signal
handlers, and which are queued onto the global signal queue for each VXI logical address. A separate handler can
be installed for each VXI logical address present (refer to the description for SetSignalHandler). A default
handler, DefaultSignalHandler , is automatically installed when InitVXIlibrary is called from the
application for every VXI logical address. If signals are queued, the application can use the SignalDeq function
to selectively return a signal off a global signal queue by VXI logical address and/or type of signal.

Another method for handling signals (and VXI interrupts routed to signals) can be used instead of the two previous
methods, and involves using the WaitForSignal function. WaitForSignal can be used to suspend a
process/function until a particular signal (or one of a set of signals) arrives. In a multitasking operating system,
any number of WaitForSignal calls can be pending, even for the same logical address. In a nonmultitasking
operating system, only one WaitForSignal call can be pending.

If the RouteVXIint has specified that a status/ID value should be handled by the VXI interrupt handler and not
by the signal handler, the specified VXI interrupt handler is invoked. The main use for the VXI interrupt handler
is to handle VME interrupters and Register-Based VXI interrupters. The VXI interrupt handler for a particular
level is called with the VXI interrupt level and the status/ID without any interpretation of the status/ID value. The
VXI interrupt handler can do whatever is necessary with the status/ID value. The SetVXIintHandler function
can be called to change the current VXI interrupt handler for a particular level. A default handler,
DefaultVXIintHandler , is given in source code as an example, and is automatically installed with a
call to InitVXIlibrary at the start of the application. EnableVXIint and DisableVXIint are used
to sensitize and desensitize the application to VXI interrupts routed to the VXI interrupt handlers.
EnableVXItoSignalInt and DisableVXItoSignalInt are used to sensitize and desensitize the
application to VXI interrupts routed to be processed as VXI signals.

VXI Interrupt Functions Chapter 10

NI-VXI Software Reference Manual for C 10-2 © National Instruments Corporation

When you are testing VXI interrupt handlers or creating a Message-Based interrupter, you must assert a VXIbus
interrupt line and present a valid status/ID value. The AssertVXIint function asserts an interrupt on the local
CPU or on the specified extended controller. DeAssertVXIint can be used to unassert a VXI interrupt that was
asserted using the AssertVXIint function. AcknowledgeVXIint can be used to acknowledge VXI interrupts
that the local CPU is not enabled to automatically handle via EnableVXIint or EnableVXItoSignalInt .
Both DeAssertVXIint and AcknowledgeVXIint are intended for debugging purposes only.

Programming Considerations

The following is a graphical overview of the NI-VXI interrupt and signal model.

RouteVXIint()

VXI Interrupts 1-7Hardware

NI-VXI

Software

User
Application

VXIintHandlers SignalHandlers

NI-VXI base Interrupt Service Routines (ISR)

Local VXI Signals

EnableSignalInt()
DisableSignalInt()

RouteSignal()

EnableVXIint()
DisableVXIint()

EnableVXItoSignalInt()
DisableVXItoSignalInt()

SetVXIintHandler()
GetVXIintHandler()
DefaultVXIintHandler()

SignalEnq()

User

ISRs (1 per VXI interrupt level) (1 per logical address)

SetSignalHandler()
GetSignalHandler()
DefaultSignalHandler()

Signal Processor
S

ig
na

l Q
ue

ue

WaitForSignal
 monitor

WaitForSignal()

If signal not on queue
 enable monitor
 block till received
else
 SignalDeq()
return signal, mask

SignalDeq()

(
u
i
n
t
1
6
)
s
i
g
n
a
l

SignalEnq()
SignalDeq()
SignalJam()

(uint16)statusId

WaitForSignal()

(
u
i
n
t
1
6
)
l
e
v
e
l
,

(
u
i
n
t
3
2
)
s
t
a
t
u
s
I
d

(uint16)signal

(
u
i
n
t
1
6
)
s
i
g
n
a
l

Get SignalGet Status/Id
VXIintAcknowledgeMode()

Figure 10-1. NI-VXI VXI Interrupt and Signal Model

ROAK Versus RORA VXI Interrupters

In VXI, there are two types of interrupters. The Release On Acknowledge (ROAK) interrupter is the more common.
A ROAK interrupter automatically unasserts the VXI interrupt line it is asserting when an interrupt acknowledge
cycle on the VXI backplane occurs on the corresponding level. The VXIbus specification requires that all Message-
Based devices be ROAK interrupters. It is recommended that all other types of VXI devices also be ROAK
interrupters. The Release On Register Access (RORA) interrupt is the second type of VXI interrupter. The RORA
interrupter continues to assert the VXI interrupt line after the interrupt acknowledge cycle is complete. The RORA
interrupter will unassert the VXI interrupt only when some device-specific interaction is performed. There is no

Chapter 10 VXI Interrupt Functions

© National Instruments Corporation 10-3 NI-VXI Software Reference Manual for C

standard method to cause a RORA interrupter to unassert its interrupt line. Because a RORA interrupt remains
asserted on the VXI backplane, the local CPU interrupt generation must be inhibited until the device-dependent
acknowledgment is complete. The function VXIintAcknowledgeMode specifies that a VXI interrupt level for
a particular controller (embedded or extended) be handled as a RORA or ROAK interrupt. If the VXI interrupt is
specified to be handled as a RORA interrupt, the local CPU automatically inhibits VXI interrupt generation for the
corresponding controller and levels whenever the corresponding VXI interrupt occurs. After the application has
handled and caused the RORA interrupter to unassert the interrupt line, either EnableVXIint or
EnableVXItoSignalInt must be called to re-enable local CPU interrupt generation.

Functional Overview

The following paragraphs describe the VXI interrupt functions and default handler. The descriptions are presented
at a functional level describing the operation of each of the functions. The functions are grouped by area of
functionality.

RouteVXIint (controller, Sroute)

RouteVXIint specifies whether status/ID values returned from a VXI/VME interrupt acknowledge cycle are
routed to a VXI interrupt handler or to the VXI signal processing routine. Because VME interrupters may be
present in a VXI system, the VXI interrupt handler functions can be used to directly handle VME interrupts. The
function RouteVXIint specifies whether the status/ID value should be handled as a signal or handled locally by a
VXI interrupt handler. Two methods are available to handle VXI signals. Signals can be handled either by signal
handlers (as signals) or by queueing on a global signal queue. The RouteSignal function specifies which types
of signals should be handled by signal handlers, and which should be queued on the global signal queue for each
VXI logical address. If the VXI interrupt status/IDs are specified to be handled by a VXI interrupt handler, the
level and status/ID value is sent to the appropriate VXI interrupt handler when a VXI interrupt occurs. An
individual handler can be installed for each of the seven VXI interrupt levels. EnableVXIint and
EnableVXItoSignalInt must be used to sensitize the local CPU to interrupts generated by VXI interrupts.
Only the levels routed to the appropriate handlers (VXI/VME interrupts or VXI signals) via the RouteVXIint
function are enabled.

EnableVXItoSignalInt (controller, levels)

EnableVXItoSignalInt is used to sensitize the application to specified VXI interrupt levels being processed
as VXI signals. After calling InitVXIlibrary , the application can sensitize itself to interrupt levels for which
it is configured to handle. RouteVXIint specifies whether VXI interrupts are to be handled as VXI/VME
interrupts or as VXI signals (the default is VXI signals). An EnableVXItoSignalInt call enables VXI
interrupt levels that are routed to VXI signals. Use DisableVXItoSignalInt to disable these VXI interrupts.
Use EnableVXIint to enable VXI interrupts not routed to VXI signals. A -1 (negative one) or local logical
address in the controller parameter specifies the local embedded controller or the first extended controller (in
an external controller situation). If a RouteVXIint call has specified to route a particular VXI interrupt level to
the VXI signal processing routine and the global signal queue becomes full, DisableVXItoSignalInt is
automatically called to inhibit these VXI interrupts from being received from the appropriate levels.
EnableVXItoSignalInt is automatically called to enable VXI interrupt reception when SignalDeq is called.

VXI Interrupt Functions Chapter 10

NI-VXI Software Reference Manual for C 10-4 © National Instruments Corporation

DisableVXItoSignalInt (controller, levels)

DisableVXItoSignalInt desensitizes the application to specified VXI interrupt levels being processed as VXI
signals. An EnableVXItoSignalInt call enables VXI interrupt levels that are routed to VXI signals. Use
DisableVXItoSignalInt to disable these VXI interrupts. Use EnableVXIint to enable VXI interrupts not
routed to VXI signals. A -1 (negative one) or local logical address in the controller parameter specifies the
local frame (for an embedded CPU) or the first extended controller (in an external CPU situation). If a
RouteVXIint call has specified to route a particular VXI interrupt level to the VXI signal processing routine and
the global signal queue becomes full, DisableVXItoSignalInt is automatically called to inhibit these VXI
interrupts from being received from the appropriate levels. EnableVXItoSignalInt is automatically called to
enable VXI interrupt reception when SignalDeq is called.

EnableVXIint (controller, levels)

EnableVXIint sensitizes the application to specified VXI interrupt levels being processed as VXI/VME
interrupts (not as VXI signals). After calling InitVXIlibrary , the application can sensitize itself to interrupt
levels for which it is configured to handle. RouteVXIint specifies whether VXI interrupts are to be handled as
VXI/VME interrupts or as VXI signals (the default is VXI signals). You must then call EnableVXIint to enable
VXI interrupts to be handled as VXI/VME interrupts (not as VXI signals). A -1 (negative one) or local logical
address in the controller parameter specifies the local frame (for an embedded CPU) or the first extended
controller (in an external CPU situation).

DisableVXIint (controller, levels)

DisableVXIint desensitizes the application to specified VXI interrupt levels being processed as VXI/VME
interrupts (not as VXI signals). EnableVXIint enables VXI interrupts to be handled as VXI/VME interrupts
(not as VXI signals). A -1 (negative one) or local logical address in the controller parameter specifies the local
frame (for an embedded CPU) or the first extended controller (in an external CPU situation).

VXIintAcknowledgeMode (controller, modes)

VXIintAcknowledgeMode specifies whether to handle the VXI interrupt acknowledge cycle for the specified
controller (embedded or extended) for the specified levels as ROAK VXI interrupts or as RORA interrupts. If the
VXI interrupt level is handled as a RORA VXI interrupt, the local interrupt generation is automatically inhibited
during the VXI interrupt acknowledgement. After device-specific interaction has caused the deassertion of the VXI
interrupt on the VXI backplane, your application must call EnableVXIint to re-enable the appropriate VXI
interrupt level.

SetVXIintHandler (levels, func)

SetVXIintHandler replaces the current VXI interrupt handler for the specified VXI interrupt levels with an
alternate VXI interrupt handler. If VXI interrupts are enabled (via EnableVXIint), the VXI interrupt handler
for a specific logical address is called. The RouteVXIint function must first be called to route VXI interrupts
to the VXI interrupt handler (as opposed to the signal processing routine). A default handler,
DefaultVXIintHandler is automatically installed when the InitVXIlibrary function is called for
every applicable VXI interrupt level. You can use SetVXIintHandler to install a new VXI interrupt handler.

Chapter 10 VXI Interrupt Functions

© National Instruments Corporation 10-5 NI-VXI Software Reference Manual for C

GetVXIintHandler (level)

GetVXIintHandler returns the address of the current VXI interrupt handler routine for the specified VXI
interrupt level. If VXI interrupts are enabled (via EnableVXIint), the VXI interrupt handler for a specific
logical address is called. You must first call RouteVXIint to route VXI interrupts to the VXI interrupt handler
(as opposed to the signal processing routine). A default handler, DefaultVXIintHandler , is automatically
installed for every applicable VXI interrupt level when the InitVXIlibrary function is called.

DefaultVXIintHandler (controller, level, statusId)

DefaultVXIintHandler is the sample handler for VXI interrupts, which is installed when the function
InitVXIlibrary is called. If VXI interrupts are enabled (via EnableVXIint), the VXI interrupt handler for
a specific logical address is called. You must first call RouteVXIint to route VXI interrupts to the VXI interrupt
handler (as opposed to the signal processing routine). DefaultVXIintHandler sets the global variables
VXIintController , VXIintLevel , and VXIintStatusId . You can leave this default handler installed
or install a completely new VXI interrupt handler using SetVXIintHandler .

AssertVXIint (controller, level, statusId)

AssertVXIint asserts a particular VXI interrupt level on a specified controller (embedded or extended) and
returns the specified status/ID value when acknowledged. You can use AssertVXIint to send any status/ID
value to the VXI interrupt handler configured for the specified VXI interrupt level. AssertVXIinterrupt
returns immediately (that is, it does not wait for the VXI interrupt to be acknowledged). You can call
GetVXIbusStatus to detect if the VXI interrupt has been serviced. Use DeAssertVXIint to unassert
a VXI interrupt that had been asserted using AssertVXIint but has not yet been acknowledged.

DeAssertVXIint (controller, level)

DeAssertVXIint unasserts the VXI interrupt level on a given controller that was previously asserted using the
AssertVXIint function. You can use AssertVXIint to send any status/ID value to the VXI interrupt handler
configured for the specified VXI interrupt level. You can call GetVXIbusStatus to detect if the VXI interrupt
has been serviced. Use DeAssertVXIint can be called to unassert a VXI interrupt that had been asserted using
AssertVXIint but has not yet been acknowledged.

Note: Unasserting a VXI interrupt may violate the VME and VXIbus specifications if the interrupt has not
yet been acknowledged by the interrupt handler.

AcknowledgeVXIint (controller, level, statusId)

AcknowledgeVXIint performs an VXI interrupt acknowledge (IACK cycle) on the VXIbus backplane in the
specified controller and VXI interrupt level.

Note: This function is for debugging purposes only.

Normally, VXI interrupts are automatically acknowledged when enabled via the function EnableVXIint .
However, if the VXI interrupts are not enabled and the assertion of an interrupt is detected through some method
(such as GetVXIbusStatus), you can use AcknowledgeVXIint to acknowledge an interrupt and return the
status/ID value. If the controller parameter specifies an extended controller, AcknowledgeVXIint specifies
hardware on the VXI frame extender (if present) to acknowledge the specified interrupt.

VXI Interrupt Functions Chapter 10

NI-VXI Software Reference Manual for C 10-6 © National Instruments Corporation

Function Descriptions

The following paragraphs describe the VXI interrupt functions and default handler. The descriptions are explained
at the C syntax level and are listed in alphabetical order.

AcknowledgeVXIint

Syntax: ret = AcknowledgeVXIint (controller, level, statusId)

Action: Performs an IACK cycle on the VXIbus on the specified controller (either an embedded CPU or
an extended controller) for a particular VXI interrupt level. VXI interrupts are automatically
acknowledged when enabled by EnableVXItoSignalInt and EnableVXIint . Use this
function to manually acknowledge VXI interrupts that the local device is not enabled to receive.

Note: This function is for debugging purposes only.

Remarks: Input parameters:

controller INT16 Controller on which to acknowledge interrupt

level UINT16 Interrupt level to acknowledge

Output parameter:

statusId UINT32* Status/ID obtained during IACK cycle

Return value:

ret INT16 Return Status

0 = IACK cycle completed successfully
-1 = Unsupportable function (no hardware support for

 IACK)
-2 = Invalid controller
-3 = Invalid level
-4 = Bus error occurred during IACK cycle

Example: /* Acknowledge Interrupt 4 on the local CPU (or first extended
controller). */

INT16 controller;
UINT16 level;
UINT32 statusId;
INT16 ret;

controller = -1;
level = 4;
ret = AcknowledgeVXIint (controller, level, &statusId);

Chapter 10 VXI Interrupt Functions

© National Instruments Corporation 10-7 NI-VXI Software Reference Manual for C

AssertVXIint

Syntax: ret = AssertVXIint (controller, level, statusId)

Action: Asserts a VXI interrupt line on the specified controller (either an embedded CPU or an extended
controller). When the VXI interrupt is acknowledged (a VXI IACK cycle occurs), the specified
status/ID is passed to the device that acknowledges the VXI interrupt.

Remarks: Input parameters:

controller INT16 Controller on which to assert interrupt

level UINT16 Interrupt level to assert

statusId UINT32 Status/ID to present during IACK cycle

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Interrupt line asserted successfully
-1 = Unsupportable function (no hardware support for

 VXI interrupter)
-2 = Invalid controller
-3 = Invalid level
-5 = VXI interrupt still pending from previous

 AssertVXIint

Example: /* Assert Interrupt 4 on the local CPU (or first extended
controller) with status/ID of 0x1111. */

INT16 ret;
INT16 controller;
UINT16 level;
UINT32 statusId;

controller = -1;
level = 4;
statusId = 0x1111L;
ret = AssertVXIint (controller, level, statusId);

VXI Interrupt Functions Chapter 10

NI-VXI Software Reference Manual for C 10-8 © National Instruments Corporation

DeAssertVXIint

Syntax: ret = DeAssertVXIint (controller, level)

Action: Asynchronously unasserts a VXI interrupt line on the specified controller (either an embedded
CPU or an extended controller) previously asserted by the function AssertVXIint .

Note: This function is for debugging purposes only. Unasserting a VXI interrupt can cause a
violation of the VME and VXIbus specifications.

Remarks: Input parameters:

controller INT16 Controller on which to deassert interrupt

level UINT16 Interrupt level to deassert

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Interrupt line deasserted successfully
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid level

Example: /* Unassert Interrupt 4 on the local CPU (or first extended
controller). */

INT16 controller;
UINT16 level;
INT16 ret;

controller = -1;
level = 4;
ret = DeAssertVXIint (controller, level);

Chapter 10 VXI Interrupt Functions

© National Instruments Corporation 10-9 NI-VXI Software Reference Manual for C

DisableVXIint

Syntax: ret = DisableVXIint (controller, levels)

Action: Desensitizes the local CPU to specified VXI interrupts generated in the specified controller, which
the RouteVXIint function routed to be handled as VXI interrupts (not as VXI signals). The
RM assigns the interrupt levels automatically. GetDevInfo can be used to retrieve the assigned
levels.

Remarks: Input parameters:

controller INT16 Controller (embedded or extended) to disable interrupts

levels UINT16 Vector of VXI interrupt levels to disable. Bits 6 to 0
 correspond to VXI interrupt levels 7 to 1, respectively.

1 = Disable for appropriate level
0 = Leave at current setting

Output parameters:

none

Return value:

ret INT16 Return Status

0 = VXI interrupt disabled
-1 = No hardware support
-2 = Invalid controller

Example: /* Disable VXI Interrupt 4 on the local CPU (or first extended
controller). */

INT16 controller;
UINT16 levels;
INT16 ret;

controller = -1; /** Local CPU or first frame. **/
levels = (UINT16)(1<<3); /** Interrupt level 4. **/
ret = DisableVXIint (controller, levels);

VXI Interrupt Functions Chapter 10

NI-VXI Software Reference Manual for C 10-10 © National Instruments Corporation

DisableVXItoSignalInt

Syntax: ret = DisableVXItoSignalInt (controller, levels)

Action: Desensitizes the local CPU to specified VXI interrupts generated in the specified controller, which
the RouteVXIint function routed to be handled as VXI signals.

Remarks: Input parameters:

controller INT16 Controller (embedded or extended) to disable interrupts

levels UINT16 Vector of VXI interrupt levels to disable. Bits 6 to 0
 correspond to VXI interrupt levels 7 to 1, respectively.

1 = Disable for appropriate level
0 = Leave at current setting

Output parameters:

none

Return value:

ret INT16 Return Status

0 = VXI interrupt disabled
-1 = No hardware support
-2 = Invalid controller

Example: /* Disable VXI Interrupt 6 on the local CPU (or first extended
controller). */

INT16 controller;
UINT16 levels;
INT16 ret;

controller = -1; /** Local CPU or first frame. **/
levels = (UINT16)(1<<5); /** Interrupt level 6. **/
ret = DisableVXItoSignalInt (controller, levels);

Chapter 10 VXI Interrupt Functions

© National Instruments Corporation 10-11 NI-VXI Software Reference Manual for C

EnableVXIint

Syntax: ret = EnableVXIint (controller, levels)

Action: Sensitizes the local CPU to specified VXI interrupts generated in the specified controller, which
the RouteVXIint function routed to be handled as VXI interrupts (not as VXI signals). The
RM assigns the interrupt levels automatically. Use the GetDevInfo functions to retrieve the
assigned levels. Notice that each VXI interrupt is physically enabled only if the RouteVXIint
function has specified that the VXI interrupt be routed to be handled as a VME/VXI interrupt (not
as a VXI signal).

Remarks: Input parameters:

controller INT16 Controller (embedded or extended) to enable interrupts

levels UINT16 Vector of VXI interrupt levels to enable. Bits 6 to 0
 correspond to VXI interrupt levels 7 to 1, respectively.

1 = Enable for appropriate level
0 = Leave at current setting

Output parameters:

none

Return value:

ret INT16 Return Status

0 = VXI interrupt enabled
-1 = No hardware support
-2 = Invalid controller

Example: /* Enable VXI Interrupt 4 on the local CPU (or first extended
controller). */

INT16 controller;
UINT16 levels;
INT16 ret;

controller = -1; /** Local CPU or first frame. **/
levels = (UINT16)(1<<3); /** Interrupt level 4. **/
ret = EnableVXIint (controller, levels);

VXI Interrupt Functions Chapter 10

NI-VXI Software Reference Manual for C 10-12 © National Instruments Corporation

EnableVXItoSignalInt

Syntax: ret = EnableVXItoSignalInt (controller, levels)

Action: Sensitizes the local CPU to specified VXI interrupts generated in the specified controller, which
the RouteVXIint function routed to be handled as VXI signals. The RM assigns the interrupt
levels automatically. Use the GetDevInfo functions to retrieve the assigned levels. Notice that
each VXI interrupt is physically enabled only if the RouteVXIint function has specified that
the VXI interrupt be routed to be handled as a VXI signal.

Remarks: Input parameters:

controller INT16 Controller (embedded or extended) to enable interrupts

levels UINT16 Vector of VXI interrupt levels to enable. Bits 6 to 0
 correspond to VXI interrupt levels 7 to 1, respectively.

1 = Enable for appropriate level
0 = Leave at current setting

Output parameters:

none

Return value:

ret INT16 Return Status

1 = Signal queue full, will enable after a
 SignalDeq()

0 = VXI interrupt enabled
-1 = No hardware support
-2 = Invalid controller

Example: /* Enable VXI Interrupt 6 on the local CPU (or first extended
controller). */

INT16 controller;
UINT16 levels;
INT16 ret;

controller = -1; /** Local CPU or first frame. **/
levels = (UINT16)(1<<5); /** Interrupt level 6. **/
ret = EnableVXItoSignalInt (controller, levels);

Chapter 10 VXI Interrupt Functions

© National Instruments Corporation 10-13 NI-VXI Software Reference Manual for C

GetVXIintHandler

Syntax: func = GetVXIintHandler (level)

Action: Returns the address of the current VXI interrupt handler for a specified VXIbus interrupt level.

Remarks: Input parameter:

level UINT16 VXI interrupt level associated with the handler

Output parameters:

none

Return value:

func NIVXI_HVXIINT* Pointer to the current interrupt handler for a specified
VXIbus interrupt level

(NULL = invalid level or no hardware support)

Example: /* Get the address of the VXI interrupt handler for VXI interrupt
level 4. */

NIVXI_HVXIINT *func;
UINT16 level;

level = 4;
func = GetVXIintHandler (level);

VXI Interrupt Functions Chapter 10

NI-VXI Software Reference Manual for C 10-14 © National Instruments Corporation

RouteVXIint

Syntax: ret = RouteVXIint (controller, Sroute)

Action: Specifies whether to route the status/ID value retrieved from a VXI interrupt acknowledge cycle to
the VXI interrupt handler or to the signal processing routine. RouteVXIint dynamically
enables and disables the appropriate VXI interrupts based on the current settings from calls to
EnableVXIint and EnableVXItoSignalInt .

Remarks : Input parameters:

controller INT16 Controller (embedded or extended) to specify route for

Sroute UINT16 A bit vector that specifies whether to handle a VXI/VME
interrupt as a signal or route it to the VXI/VME interrupt
handler routine.

Bits 6 to 0 correspond to VXI interrupt levels 7 to 1,
respectively.

1 = Handle VXI interrupt for this level as a signal
0 = Handle VXI interrupt as a VXI interrupt

Bits 14 to 8 correspond to VXI interrupt levels 7 to 1,
respectively.

1 = Route as 8-bit VME status/ID
0 = Route as 16-bit VXI status/ID

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = No hardware support
-2 = Invalid controller

Example: /* Route VXI interrupts for level 4 (on the local controller) to the VXI
signal processor. */

INT16 controller;
UINT16 Sroute;
INT16 ret;

controller = -1;
Sroute = ~(1<<3);
ret = RouteVXIint (controller, Sroute);

Chapter 10 VXI Interrupt Functions

© National Instruments Corporation 10-15 NI-VXI Software Reference Manual for C

SetVXIintHandler

Syntax: ret = SetVXIintHandler (levels, func)

Action: Replaces the current VXI interrupt handler for the specified VXIbus interrupt levels with a
specified VXI interrupt handler.

Remarks: Input parameters:

levels UINT16 Bit vector of VXI interrupt levels. Bits 6 to 0 correspond
to VXI interrupt levels 7 to 1, respectively.

1 = Set
0 = Do not set handler

func NIVXI_HVXIINT* Pointer to the new VXI interrupt handler
(NULL = DefaultVXIintHandler)

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = No hardware support

Example: /* Set the VXI interrupt handler for VXI interrupt level 4. */

NIVXI_HVXIINT func;
UINT16 levels;
INT16 ret;

levels = (UINT16)(1<<3);
ret = SetVXIintHandler (levels, func);
if (ret < 0)

/* An error occurred in SetVXIintHandler. */;

/* This is a sample VXI interrupt handler. */
NIVXI_HQUAL void NIVXI_HSPEC func (INT16 controller, UINT16 level,
UINT32 statusId)
{
}

VXI Interrupt Functions Chapter 10

NI-VXI Software Reference Manual for C 10-16 © National Instruments Corporation

VXIintAcknowledgeMode

Syntax: ret = VXIintAcknowledgeMode (controller, modes)

Action: Specifies whether the VXI interrupt acknowledge cycle for the specified controller (embedded
or extended) for the specified levels should be handled as Release On AcKnowledge (ROAK)
interrupts or as Release On Register Access (RORA) interrupts. If the VXI interrupt level is
handled as a RORA VXI interrupt, the local interrupt generation is automatically inhibited when
the VXI interrupt acknowledge is performed. EnableVXIint or EnableVXItoSignalInt
must be called to re-enable the appropriate VXI interrupt level whenever a RORA VXI interrupt
occurs.

Remarks : Input parameters:

controller INT16 Controller (embedded or extended) for which to specify
interrupt acknowledge

modes UINT16 Vector of VXI interrupt levels to set to RORA/ROAK
interrupt acknowledge mode. Bits 6 to 0 correspond to

VXI interrupt levels 7 to 1, respectively.

0 = Set to ROAK VXI interrupt for corresponding level
1 = Set to RORA VXI interrupt for corresponding level

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = No hardware support
-2 = Invalid controller

Example: /* Set VXI Interrupt levels 2 and 3 on the local CPU (or first
extended controller) to be RORA interrupters--set reset to
ROAK. */

INT16 controller;
UINT16 modes;
INT16 ret;

controller = -1; /** Local CPU or first frame. **/
/** Levels 2 and 3 are RORA mode. **/

modes = (UINT16)((1<<1) | (1<<2));
ret = RORAint (controller, modes);

Chapter 10 VXI Interrupt Functions

© National Instruments Corporation 10-17 NI-VXI Software Reference Manual for C

Default Handler for VXI Interrupt Functions

The NI-VXI software provides the following default handler for the VXI interrupts. This is a sample handler that
InitVXIlibrary installs when it initializes the software at the beginning of the application program. Default
handlers give you the minimal and most common functionality required for a VXI system. They are given in source
code form on your NI-VXI distribution media to be used as examples/prototypes for extending their functionality to
a particular application.

DefaultVXIintHandler

Syntax: DefaultVXIintHandler (controller, level, statusId)

Action: Handles the VXI interrupts. The global variable VXIintController is set to controller .
VXIintLevel is set to level . VXIintStatusId is set to statusId .

Remarks: Input parameters:

controller INT16 Controller (embedded or extended) that interrupted

level UINT16 The received VXI interrupt level

statusId UINT32 Status/ID obtained during IACK cycle (if it is a 16-bit
VXI IACK value, it may be equivalent to a VXI signal)

Output parameters:

none

Return value:

none

© National Instruments Corporation 11-1 NI-VXI Software Reference Manual for C

Chapter 11
VXI Trigger Functions

This chapter describes the C syntax and use of the VXI trigger functions. VXI triggers are a backplane feature that
VXI added to the VME standard. Tight timing and signaling is important between many types of controllers and/or
instruments. In the past, clumsy cables of specified length had to be connected between controllers and/or
instruments to get the required timing. For many systems, phase shifting and propagation delays had to be
calculated precisely, based on the instrument connection scheme. This limited the architecture of many systems.
In VXI however, every VXI board with a P2 connector has access to eight 10 MHz TTL trigger lines. If the VXI
board has a P3 connector, it has access to six 100 MHz ECL trigger lines. The phase shifting and propagation
delays can be held to a known maximum, based on the VXIbus specification's rigid requirement on backplanes.
The VXIbus specification does not currently prescribe an allocation method for TTL or ECL trigger lines. The
application must decide how to allocate any use any of the trigger lines it requires. The VXIbus specification
specifies several trigger protocols that can be supported, thereby promoting compatibility among the various VXI
devices. The following is a description of the four basic protocols.

• SYNC
The most basic protocol is SYNC protocol. SYNC protocol is simply a pulse of a minimum time
(30 ns on TTL, 8 ns on ECL) on any one of the trigger lines.

• ASYNC
ASYNC is a two-device, two-line handshake protocol. ASYNC uses two consecutive even/odd
trigger lines (a source/acceptor line and an acknowledge line, respectively). The sourcing device
sources a trigger pulse (30 ns TTL, 8 ns ECL minimum) on the even trigger line (TTL0, TTL2,
TTL4, TTL6, ECL0, ECL2, or ECL4) and waits for the acknowledge pulse on the next highest
odd trigger line (TTL1, TTL3, TTL5, TTL7, ECL1, ECL3, or ECL5). The acceptor waits for the
sourced pulse on the even trigger line. Sometime after the source pulse is sensed (no maximum
time is specified), the acceptor sends an acknowledge pulse back on the next highest odd trigger
line to complete the handshake.

• SEMI-SYNC
SEMI-SYNC is a one-line, open collector, multiple-device handshake protocol. The sourcing
device sources a trigger pulse (50 ns TTL, 20 ns ECL minimum) on any one of the trigger lines.
The accepting device(s) must begin to assert the same trigger line upon reception (within 40 ns
TTL, 15 ns ECL maximum time from source assertion edge). The accepting device(s) can later
unassert the trigger line (no maximum time is specified) to complete the handshake.

• START/STOP
START/STOP is a one-line, multiple-device protocol. START/STOP can be sourced only by the
VXI Slot 0 device and sensed by any other devices on the VXI backplane. The START/STOP
protocol is synchronized with the backplane clock (CLK10 for TTL, CLK100 and SYNC100 for
ECL) onto any one of the trigger lines. A START condition is generated on the assertion edge on
the trigger line, and a STOP condition is generated on the unassertion edge of the trigger line.

You can use these four protocols in any way that your application requires. You can use them for device
synchronization, for stepping through tests, or for a command path. The NI-VXI trigger functions have been
designed to accommodate all trigger lines and the four protocols for all appropriate TTL and ECL VXI trigger
lines (SYNC, ASYNC, SEMI-SYNC, and START/STOP).

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-2 © National Instruments Corporation

The VXI trigger functions have been grouped into the following four categories:

• Source trigger functions

• Acceptor trigger functions

• Map trigger functions

• Trigger configuration functions

The actual capabilities of specific systems are based on the triggering capabilities of the hardware devices involved
(both the sourcing and accepting devices). All of the NI-VXI functions have appropriate error response for
unsupported capabilities.

Capabilities of the National Instruments Triggering
Hardware

The NI-VXI trigger functions are a general purpose interface designed to accommodate most uses of VXI triggers.
The actual capabilities of a particular platform will always be a subset of these capabilities. In general, however,
National Instruments hardware has only four current hardware capability categories:

• Trigger control used on a VXI-MXI frame extender when used as an extended controller (under direct
control of a root-level MXI controller interface) that does not have the National Instruments Trigger
Interface Chip (TIC) on it

• An embedded controller without the National Instruments TIC

• Trigger control used on a VXI-MXI frame extender when used as an extended controller (under direct
control of a root-level MXI controller interface) that does have the National Instruments TIC on it

• An embedded controller with the National Instruments TIC

External Controller/VXI-MXI Trigger Capabilities (without TIC Chip)

All National Instruments external controllers connected to VXI-MXI frame extenders without the TIC chip have the
same basic trigger capabilities:

• Source a single TTL or ECL (0 and 1 only) trigger using any protocol on any one of the backplane
TTL trigger lines.

• Accept a single backplane TTL or ECL (0 and 1 only) trigger using any protocol (as long as it does not
source SEMI-SYNC and ASYNC protocols at the same time.

• Map a front panel In connector to a TTL or ECL (0 or 1 only) trigger line (sourcing will be disabled).

• Source a TTL or ECL (0 or 1 only) trigger out the front panel.

• Map a TTL or ECL (0 or 1 only) trigger line from the backplane out the front panel Out connector
(accepting disabled). (Some platforms do not have this capability.)

The following capabilities are not supported:

• Multiple-line support

• Crosspoint switching

• Signal conditioning

• External connections other than the front panel In/Out

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-3 NI-VXI Software Reference Manual for C

Embedded Controller Trigger Capabilities (without TIC Chip)

All National Instruments embedded controllers without the TIC chip have the same basic trigger capabilities:

• Source a single TTL trigger using any protocol on any one of the backplane TTL trigger lines.

• Accept a single backplane TTL trigger using any protocol (as long as it does not source SEMI-SYNC
and ASYNC protocols at the same time.

• Map a front panel In connector to a TTL trigger line (sourcing will be disabled).

• Source a TTL trigger out the front panel.

• Map a TTL trigger line from the backplane out the front panel Out connector (accepting disabled).
(Some platforms do not have this capability).

The following capabilities are not supported:

• ECL triggers

• Multiple-line support

• Crosspoint switching

• Signal conditioning

• External connections other than the front panel In/Out

Embedded and External Controller Trigger Capabilities (with TIC Chip)

National Instruments has developed a highly functional ASIC specifically designed for use within the VXIbus
triggering environment. This ASIC is the Trigger Interface Chip (TIC).

The TIC chip has access to all of the eight VXI TTL trigger lines, two ECL trigger lines (ECL0 and ECL1), and ten
external or General Purpose Input/Output (GPIO) connections. The TIC chip also contains a 16-bit counter and a
dual 5-bit scaler tick timer. It contains a full crosspoint switch for routing trigger lines and GPIOs (as well as the
counter and the tick timers) between one another.

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-4 © National Instruments Corporation

Figure 11-1 is a block diagram showing the general capabilities of the TIC chip. Figures 11-2 and 11-3 are block
diagrams of the trigger module and GPIO module, respectively.

GPIO

Module

GPIN1

GPIN0

GPIN9

TRGIN0

TRGIN0-9

TRGIN0-9

ScalerCPU Interface
TRIGIN[0-9]

Counter

GPIO

Module

GPIO

Module

Crosspoint Switch

GPIN0-9

TRGIN0

TRGIN1

TRGIN9
Trigger

Module

Trigger

Module

Trigger

Module

GPIN0-9

GPIN0-9

External

GPIO0

External

GPIO1

External

GPIO9 ECL1

TTL1

TTL0

C
N

T
R

O
U

T

T
IC

K
1

T
IC

K
2

Figure 11-1. TIC Chip Block Diagram

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-5 NI-VXI Software Reference Manual for C

Figure 11-2 is a second-level block diagram of the trigger module within the TIC chip.

1 of 13

GPIN0

GPIN9

ASSERT

D Q

QN

D Q

QN

CLK10

TSYNC

SEMI-SYNC

ACK HW

Assertion Edge

Detector

SWSSARM

Unassertion Edge

Detector

Trigger

Pad

Trigger Module

One Per TTL or ECL Trigger Line

Synchronized

Asynchronous 1clk

Synchronous 1clk

PSOVER

TRIGIN

CLK10
EXTCLK
ICLKSEL

UOVER

AOVER

CLK10*

OCLKSEL

Trigger

Asserted

HWSSARM

TCNTR
TICK1OUT
TICK2OUT

HWIN TRIGOUT

Figure 11-2. Trigger Module Block Diagram

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-6 © National Instruments Corporation

Figure 11-3 is a second-level block diagram of the GPIO module within the TIC chip.

GPIO

Pad

Output

Enable

POLIN

POLOUT

GPIN

TRIGIN0

TRIGIN9
GCNTR

Feedback

Select

ASSERT

1

0

TICK2OUT

General Purpose I/O Module

One Per GPIO Line
Feedback

Select

ASSERT

Figure 11-3. GPIO Module Block Diagram

All National Instruments embedded controllers with the TIC chip have the same basic trigger capabilities. Minor
differences reside only with the external or GPIO connections. The following sections list these capabilities.

Sourcing

• TTL/ECL lines (any line, all lines at the same time)

– START (continuous ON)

– STOP (continuous OFF)

– SYNC

– SEMI-SYNC (with interrupt when acknowledged)

– SEMI-SYNC (wait to be acknowledged)
• Automatic detection of unassertion edge overrun errors

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-7 NI-VXI Software Reference Manual for C

• TTL/ECL lines (even/odd pairs of lines, all pairs at the same time)

– ASYNC (with interrupt when acknowledged)
• Automatic acknowledge overrun detection provided (will detect if more than one pulse

received on acknowledge line)

– ASYNC (wait to be acknowledged)

• GPIO lines

– START (continuous ON)

– STOP (continuous OFF)

– SYNC

• Counter (one 16-bit counter only)

– Interrupt when counter has counted down regardless of mapping or protocol

– Map counter finished signal (GCNTR) to any GPIO line

– Multiple SYNC sourcing
• 100 ns pulse sourced 0 to 65535 times at a particular frequency with a minimum gap of

200 ns between pulses (3.3 MHz)
• Frequency source may be:

CLK10: 3.33 MHz time period (100 ns pulse, 200 ns gap)
EXTCLK: Configured frequency (100 ns pulse on each clock edge)
TTL/ECL trigger: Configured frequency (100 ns pulse on each clock edge)

– Multiple SEMI-SYNC sourcing 0 to 65535 times
• Uses trigger line as source to counter to wait for acknowledge (unassertion) and generates

next pulse (100 ns delay before next pulse)

• TICK timers (count source to power of 2 only from 20 to 232)

– Interrupt when TICK1 has counted down regardless of configuration.

– TICK2 may be interrupted on only if routed to a trigger line.
(refer to the Mapping/Conditioning section later in this chapter)

– Use as a square wave (not as 100 ns pulse) counter: no tick rollover selected.
• Source may be any GPIO, CLK10, or EXTCLK.
• TICK1 specifies length total count.
• TICK2 specifies frequency to tick for TICK1 period of time.

Note: This works up until the last TICK2 count (when TICK1 is going to zero).
A 0 to 20 ns glitch on TICK2 happens on the last tick.

– Use as a continuous tick timer and/or scaled trigger output: rollover mode
• Source can be any GPIO, CLK10, or EXTCLK.
• TICK1 specifies timer interrupt/trigger pulse duration.
• TICK2 specifies scaled length trigger output of source.

- TICK2 output may be mapped to any GPIO; if a GPIO is externally (off chip) routed to
EXTCLK, any EXTCLK may be configured based on TICK2 output. You can use this
EXTCLK for signal conditioning (refer to the Mapping/Conditioning section later in this
chapter).

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-8 © National Instruments Corporation

Accepting

• TTL/ECL lines (any line, all lines at the same time)

– START (continuous ON)

– STOP (continuous OFF)

– SYNC

– SEMI-SYNC (with function call acknowledge)

– All protocols can call a handler when trigger occurs, or they can wait until the trigger occurs.
In addition, automatic detection of assertion and unassertion overruns is provided.

• TTL/ECL lines (even/odd pairs of lines, all pairs at the same time)

– ASYNC with function call acknowledge

– ASYNC can either have a handler called when trigger occurs, or wait until the trigger occurs.
In addition, automatic detection of assertion edge overruns is provided.

• Counter (one 16-bit counter only)

– Interrupt when counter has counted down regardless of mapping or protocol

– Multiple SYNC accepting
• Detect assertion edges 0 to 65535 times.
• Detection source can be any number of the following: CLK10, EXTCLK (configured frequency), or a

TTL/ECL trigger line. Normal operation would use one source (simultaneous sourcing on two sources
will be detected as one clock.

– Multiple SEMI-SYNC accepting
• Detect assertion edges 0 to 65535 times participating in the SEMI-SYNC acknowledge protocol.
• Uses trigger line as source to counter to wait for assertion of each trigger and generates proper

acknowledge; last count is left unacknowledged so that software can take action before
acknowledging.

• Detection source can be any number of the following: CLK10, EXTCLK (configured frequency), or a
TTL/ECL trigger line. Normal operation would use one source (simultaneous sourcing on two sources
will be detected as one clock.

• TICK timers (count source to power of 2 only from 20 to 232) as described previously in the Sourcing
section earlier in this chapter

Mapping/Conditioning

• To TTL/ECL lines (any line, all lines at the same time)

– Map any one external input (GPIO) to trigger line.

– Map CNTR pulse output to trigger line.

– Map TICK1 square wave output to trigger line.

– Map TICK2 square wave output to trigger line.

• To external (GPIO) lines (any line, all lines at the same time)

– Map any one TTL/ECL trigger line to GPIO.

– Map CNTR terminated continuous output to GPIO line.

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-9 NI-VXI Software Reference Manual for C

– Map TICK2 square wave output to GPIO line.

– Signal condition any of the above sources before entering the GPIO.
• Invert the polarity of the source.
• Synchronize the pulse to the next clock edge.
• Pulse stretch for one clock period (synchronous or nonsynchronous).

- Pulse stretch overrun errors (new pulse received before stretching completed) automatically
enabled if sensing source. Can call EnableTrigSense with a special protocol to monitor
only pulse stretch overrun errors.

• Select clock source (CLK10 or EXTCLK) to synchronize/pulse stretch from.

Setup/Configuration Options

• Configure external (GPIO) lines (any line, all lines at the same time).

– Make mapping to GPIO go out the chip or feed it back for crosspoint.

– Can invert the polarity of the source mapped to a GPIO (regardless of whether routed out the chip
or fed back).

– If external (off chip) input, can configure to invert polarity.

– If I/O or fed back, can configure to be high, low, or tristated (unconfigured). Must be tristated to
be used in sourcing START/STOP/SYNC out a GPIO. If configured to be high or low, source
cannot have another source mapped as an input.

• Configure trigger assertion method (any line, all lines at the same time).

– Have the output driver for a particular trigger line (re-)synchronize the trigger to CLK10. (You
can globally select for all trigger lines whether to synchronize to the rising or falling edge of
CLK10.)

– Specify that an automatic hardware SEMI-SYNC acknowledge assertion happen on any trigger
input assertion. This acknowledgment can be released either by an external line (GPIO) mapped
to the trigger line or from a software acknowledgment call.

Combination Options

• Sourcing and accepting

– You can source and accept on all TTL/ECL trigger lines for all protocols at the same time. You
can also enable both acknowledge and sensing interrupts at the same time. This should help you
debug and test your code as well as part of a possible configuration (you could use SrcTrig to
abort a pending WaitForTrig).

– You can source and accept on all protocols regardless of the crosspoint switch mapping. (For
example, you could have a trigger line mapped to a GPIO and back to a different trigger line and
still assert the GPIO or assert/sense both trigger lines.) This gives you maximum flexibility for
system configuration and debugging purposes.

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-10 © National Instruments Corporation

Functional Overview

The following paragraphs describe the VXI trigger functions and default handlers. The descriptions are explained
at a functional level describing the operation of each of the functions. The functions are grouped by area of
functionality.

Source Trigger Functions

The NI-VXI source trigger functions act as a standard interface for asserting (sourcing) TTL and ECL triggers, as
well as for detecting acknowledgments from accepting devices. These functions can source any of the VXI-defined
trigger protocols from the local embedded controller or external extended controller(s). You can use the SrcTrig
function to initiate any of the trigger protocols. If the protocol requires an acknowledgment and your application is
required to know when the acknowledgment occurs, you must use the SetTrigHandler function to install an
interrupt handler for the specified trigger line. A default handler, DefaultTrigHandler , is supplied in C source
code and is installed for each one of the trigger lines when InitVXIlibrary is called. You can use the
SetTrigHandler function at any time to replace the default handlers.

SrcTrig (controller, line, prot, timeout)

Use SrcTrig to source any one of the VXI-defined trigger protocols from the local CPU or from any remote frame
extender device that supports trigger assertion. For protocols that require an acknowledgment from the accepting
device (ASYNC or SEMI-SYNC), you need to specify whether to wait for an acknowledgment (with a timeout) or
return immediately and let the trigger interrupt handler get called when the acknowledgment is received. Another
option is available in which you can simply assert or unassert any of the trigger lines continuously, or have an
external trigger (possibly from the front panel) routed to the VXIbus backplane.

SetTrigHandler (lines, func)

SetTrigHandler replaces the current trigger handler for the specified VXI trigger lines with an alternate
handler. When waiting for an acknowledgment of the ASYNC or SEMI-SYNC protocols after a SrcTrig call, the
trigger handler for a specific trigger line is called when the accepting device(s) returns an acknowledgment. A
default handler, DefaultTrigHandler , is automatically installed for every applicable trigger line when the
InitVXIlibrary function is called.

GetTrigHandler (line)

GetTrigHandler returns the address of the current trigger handler for the specified VXI trigger line. When
waiting for an acknowledgment of the ASYNC or SEMI-SYNC protocols after a SrcTrig call, the trigger handler
for a specific trigger line is called when the accepting device(s) returns an acknowledgment. A default handler,
DefaultTrigHandler , is automatically installed for every applicable trigger line when the InitVXIlibrary
function is called.

DefaultTrigHandler (controller, line, type)

DefaultTrigHandler is the sample handler for the receiving acknowledges and sensing triggers, and is
automatically installed when the InitVXIlibrary function is called. When waiting for an acknowledgment
of the ASYNC or SEMI-SYNC protocols after a SrcTrig call, the trigger handler for a specific trigger line is
called when the accepting device(s) returns an acknowledgment. DefaultTrigHandler calls the
AcknowledgeTrig function if the type parameter specifies that an acknowledge interrupt occurred. Otherwise,
DefaultTrigHandler performs no operations.

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-11 NI-VXI Software Reference Manual for C

DefaultTrigHandler2 (controller, line, type)

DefaultTrigHandler2 is a sample handler for receiving trigger interrupt sources similar to
DefaultTrigHandler . DefaultTrigHandler2 performs no operations. Any required acknowledgments
must be performed by the application.

Acceptor Trigger Functions

The NI-VXI acceptor trigger functions act as a standard interface for sensing (accepting) TTL and ECL triggers,
as well as for sending acknowledgments back to the sourcing device. These functions can sense any of the
VXI-defined trigger protocols on the local embedded controller or external extended controller(s). Use the
EnableTrigSense function to prepare for the sensing of any of the trigger protocols. If the protocol
requires an acknowledgment, you should call the AcknowledgeTrig function when appropriate. You can
use SetTrigHandler to install an interrupt handler for the specified trigger line. A default handler,
DefaultTrigHandler , is installed for each one of the trigger lines when InitVXIlibrary is called.
You can use the SetTrigHandler function at any time to replace the default handlers. In addition, you can
use the WaitForTrig function to accommodate applications that do not want to install interrupt handlers.

EnableTrigSense (controller, line, prot)

EnableTrigSense configures and sensitizes the triggering hardware to generate interrupts when the specified
VXI-defined trigger protocol is sensed on the specified trigger line. When EnableTrigSense has configured
and enabled the triggering hardware to generate interrupts, and the specified trigger protocol is sensed, a local
CPU interrupt is generated. The trigger handler installed is automatically called when a trigger interrupt occurs.
If the trigger protocol requires an acknowledgment (either ASYNC or SEMI-SYNC), you should call
AcknowledgeTrig when it is appropriate to acknowledge the interrupt. AcknowledgeTrig will acknowledge
the trigger protocol accordingly. A default handler, DefaultTrigHandler , is automatically installed when the
InitVXIlibrary function is called. You can use SetTrigHandler to install a new handler.

DisableTrigSense (controller, line)

DisableTrigSense unconfigures and desensitizes the triggering hardware that was enabled by the
EnableTrigSense function to generate interrupts when any VXI-defined trigger protocol is sensed on the
specified trigger line.

SetTrigHandler (lines, func)

SetTrigHandler replaces the current trigger handler for the specified VXI trigger lines with an alternate
handler. After a call to EnableTrigSense for a particular VXI trigger line protocol, the trigger handler for
a specific trigger line is called when the sourced trigger is sensed from the sourcing device. If the configured
VXI trigger protocol requires an acknowledgment (either ASYNC or SEMI-SYNC), you can call the
AcknowledgeTrig function to perform the acknowledgment. A default handler, DefaultTrigHandler ,
is automatically installed when the InitVXIlibrary function is called for every applicable trigger line.

GetTrigHandler (line)

GetTrigHandler returns the address of the current trigger handler for the specified VXI trigger line. After a call
to EnableTrigSense for a particular VXI trigger line protocol, the trigger handler for a specific trigger line is
called when the sourced trigger is sensed from the sourcing device. If the configured VXI trigger protocol requires
an acknowledgment (either ASYNC or SEMI-SYNC), you can call the AcknowledgeTrig function to perform
the acknowledgment. A default handler, DefaultTrigHandler , is automatically installed when the
InitVXIlibrary function is called for every applicable trigger line.

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-12 © National Instruments Corporation

DefaultTrigHandler (controller, line, type)

DefaultTrigHandler is the sample handler for the receiving acknowledges and sensing triggers, and is
automatically installed after a call to InitVXIlibrary . After a call to EnableTrigSense for a particular
VXI trigger line protocol, the trigger handler for a specific trigger line is called when the sourced trigger is sensed
from the sourcing device. If the configured VXI trigger protocol requires an acknowledgment (either ASYNC
or SEMI-SYNC), you must call the AcknowledgeTrig function to perform the acknowledgment.
DefaultTrigHandler calls the AcknowledgeTrig function if the type parameter specifies that
an acknowledge interrupt occurred. Otherwise, DefaultTrigHandler performs no operations.

DefaultTrigHandler2 (controller, line, type)

DefaultTrigHandler2 is a sample handler for receiving trigger interrupt sources similar to
DefaultTrigHandler . DefaultTrigHandler2 performs no operations. Any required acknowledgments
must be performed by the application.

AcknowledgeTrig (controller, line)

AcknowledgeTrig performs the required trigger acknowledgments for the ASYNC or SEMI-SYNC VXI-
defined protocol, as configured via the EnableTrigSense function. After a call to EnableTrigSense for a
particular VXI trigger line protocol, the trigger handler for a specific trigger line is called when the sourced trigger
is sensed from the sourcing device. If the configured VXI trigger protocol requires an acknowledgment (either
ASYNC or SEMI-SYNC), you must call the AcknowledgeTrig function to perform the acknowledgment. A
default handler, DefaultTrigHandler , is automatically installed for every applicable trigger line when the
InitVXIlibrary function is called. You can use SetTrigHandler to install a new handler.

WaitForTrig (controller, line, timeout)

You can use the WaitForTrig function to suspend operation until it receives a trigger configured by the
EnableTrigSense function. After a call to EnableTrigSense for a particular VXI trigger line protocol, the
trigger handler for a specific trigger line is called when the sourced trigger is sensed from the sourcing device. You
can use WaitForTrig as an alternate method for receiving sensed triggers by having the caller wait until the
trigger occurs instead of installing an interrupt handler. The current trigger interrupt handler is invoked regardless
of whether a WaitForTrig call is pending. If the configured VXI trigger protocol requires an acknowledgment
(either ASYNC or SEMI-SYNC), you can call the AcknowledgeTrig to perform the acknowledgment.

Map Trigger Functions

You can use the NI-VXI map trigger functions as configuration tools for multiframe and local support for VXI
triggers. You can configure the triggering hardware to route specified source trigger locations to destination trigger
locations by using the MapTrigToTrig and UnMapTrigToTrig functions. The possible values for source or
destination locations are the TTL trigger lines, ECL trigger lines, Star X lines, Star Y lines, or miscellaneous
external sources. Miscellaneous external sources include front panel trigger ins, front panel trigger outs, local
clocks, and crosspoint switch locations. The external source locations are dependent on the particular hardware
platforms capabilities. In this way, you can use MapTrigToTrig as a simple map from an external source to a
trigger line, or as a complex crosspoint switch configurator (depending on the hardware capabilities of the specified
device).

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-13 NI-VXI Software Reference Manual for C

MapTrigToTrig (controller, srcTrig, destTrig, mode)

MapTrigToTrig configures triggering hardware to route specified source trigger locations to destination trigger
locations with some possible signal conditioning. The possible values for source or destination locations are the
TTL trigger lines, ECL trigger lines, Star X lines, Star Y lines, or miscellaneous external sources. Miscellaneous
external sources include front panel trigger ins, front panel trigger outs, local clocks, and crosspoint switch
locations. The mode parameter specifies how the line is to be routed to the destination. You can manipulate the
line in various ways, including inverting it, synchronizing it with the CLK10, or stretching it to a minimum time. In
this way, MapTrigToTrig can be used as a simple map from an external source to a trigger line, or as a complex
crosspoint switch configurator (depending on the hardware capabilities of the applicable device).

UnMapTrigToTrig (controller, srcTrig, destTrig)

UnMapTrigToTrig unconfigures triggering hardware that was configured by the MapTrigToTrig function to
route specified source trigger locations to destination trigger locations.

Trigger Configuration Functions

You can use the NI-VXI trigger configuration functions to configure not only the general settings of the trigger
inputs and outputs, but also the TIC counter and tick timers.

TrigAssertConfig (controller, trigline, mode)

TrigAssertConfig configures the local triggering generation method for the TTL/ECL triggers. You can
decide on an individual basis whether to synchronize the triggers to CLK10. You can globally select the
synchronization to be the rising or falling edge of CLK10. In addition, you can specify the trigger line to partake
in automatic external SEMI-SYNC acknowledgment. In this mode, when a trigger is sensed on the line, the line is
asserted until an external (GPIO) trigger line which is mapped to the corresponding trigger line is pulsed. You can
also use AcknowledgeTrig to manually acknowledge a pending SEMI-SYNC trigger configured in this fashion.

TrigExtConfig (controller, extline, mode)

TrigExtConfig configures the way the external trigger sources (General Purpose Inputs and Outputs, or GPIOs)
are configured. The TIC chip has 10 GPIO lines. GPIO0 is connected to the front panel In connector. GPIO 1 is
connected to the front panel Out connector. GPIO 2 is connected to a direct ECL bypass from the front panel.
GPIO 3 is fed back in as the EXTCLK signal used for signal conditioning modes with MapTrigToTrig . The six
remaining GPIOs are dependent upon the hardware platform. Consult the documentation for your specific platform
for further information. Regardless of the sources connected to the GPIOs, TrigExtConfig configures several
aspects of the connection. You can disconnect and feed back the connection for use as a crosspoint switch. You
can also choose whether to invert the external input. In addition, you can configure the GPIO to be asserted high
or low continuously. In this configuration, no input mapping is possible (that is, no trigger line can be mapped to
the GPIO).

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-14 © National Instruments Corporation

TrigCntrConfig (controller, mode, source, count)

TrigCntrConfig configures the TIC chip’s 16-bit counter. You can use this function to initialize, reload, or
disable the current counter settings. If the counter is initialized, you must call either SrcTrig or
EnableTrigSense to actually start the counter. You can use any trigger line, CLK10, or EXTCLK as the source
of the counter. The count range is 1 to 65535. You can use the counter to source multiple sync or multiple semi-
sync triggers to one or more trigger lines. You can also use it to accept multiple sync or multiple semi-sync triggers
from one trigger line. The counter has two outputs: TCNTR and GCNTR. The TCNTR signal pulses for 100 ns
every time a source pulse occurs. You can use MapTrigToTrig to map the TCNTR signal to one or more trigger
lines. The GCNTR signal stays unasserted until the counter goes from 1 to 0. It then becomes asserted until the
counter is disabled. You can use the MapTrigToTrig function to directly map the GCNTR signal to one or more
GPIO lines.

TrigTickConfig (controller, mode, source, tcount1, tcount2)

TrigTickConfig configures the TIC chip’s dual 5-bit tick timers. This function can initialize with auto reload,
initialize with manual reload, do a manual reload, or disable the current tick timer settings. If the tick timer is
initialized, you must call either EnableTrigSense or SrcTrig to start the tick timer. You can use any GPIO
line, CLK10, or EXTCLK as the source of the tick timer. Both tick timers–TICK1 and TICK2–count independently
from the same internal counter. The range for each tick timer is specified as a power of two from 0 to 31. If you did
not select auto reload, the timer stops when TICK1 has counted to zero. You can use MapTrigToTrig to map the
TICK1 output signal to one or more trigger lines, or to map the TICK2 output signal to one or more trigger lines or
GPIO lines. Both TICK1 and TICK2 outputs are square wave outputs. The signal is asserted for the duration of the
corresponding tick count and then unasserted for the duration of the count.

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-15 NI-VXI Software Reference Manual for C

Function Descriptions

The following paragraphs describe the VXI trigger functions and default handlers. The descriptions are explained at
the C syntax level and are listed in alphabetical order.

AcknowledgeTrig

Note: This function call may not exist on some platforms that do not have the TIC chip. If this is the
case, you can achieve the same functionality by using the name AcknowledgeTTLtrig or
AcknowledgeECLtrig with the same parameters as described below.

Syntax: ret = AcknowledgeTrig (controller, line)

Action: Acknowledges the specified TTL/ECL or external (GPIO) trigger on the specified controller.
The TTL/ECL trigger interrupt handler is called after an TTL/ECL trigger is sensed. If the sensed
protocol requires an acknowledge (ASYNC or SEMI-SYNC protocols), the application should
call AcknowledgeTrig after performing any device-dependent operations. If you configured
a trigger line using the TrigAssertConfig function to participate in external (GPIO)
SEMI-SYNC acknowledging, you can use AcknowledgeTrig to manually acknowledge a
pending external SEMI-SYNC trigger.

Remarks: Input parameters:

controller INT16 Controller on which to acknowledge trigger interrupt

line UINT16 TTL, ECL, or external trigger line to acknowledge

 Value Trigger Line

0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5

40 to 49 External source/destination (GPIOs 0 to 9)

Output parameters:

none

Return value:

ret INT16 Return Status

1 = Successful, protocol has no need to acknowledge
0 = Successful

-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid line
-4 = line not supported

-12 = line not configured for sensing
-17 = No trigger sensed
-18 = line not configured for external SEMI-SYNC

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-16 © National Instruments Corporation

Example: /* Acknowledge a trigger interrupt for TTL line 4 on the local CPU
(or the first extended controller). */

INT16 controller;
UINT16 line;
INT16 ret;

controller = -1;
line = 4;
ret = AcknowledgeTrig (controller, line);

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-17 NI-VXI Software Reference Manual for C

DisableTrigSense

Note: This function call may not exist on some platforms that do not have the TIC chip. If this is the
case, you can achieve the same functionality by using the name DisableTTLsense or
DisableECLsense with the same parameters as described below.

Syntax: ret = DisableTrigSense (controller, line)

Action: Disables the sensing of the specified TTL/ECL trigger line, counter, or tick timer that was enabled
by EnableTrigSense .

Remarks: Input parameters:

controller INT16 Controller on which to disable sensing

line UINT16 Trigger line to disable sensing

 Value Trigger Line

0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5

50 TIC counter
60 TIC tick timers

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid line
-4 = line not supported

-12 = line not configured for sensing

Example: /* Disable sensing of TTL line 4 on the local CPU (or the first
extended controller). */

INT16 ret;
INT16 controller;
UINT16 line;

controller = -1;
line = 4;
ret = DisableTrigSense (controller, line);

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-18 © National Instruments Corporation

EnableTrigSense

Note: This function call may not exist on some platforms that do not have the TIC chip. If this is the
case, you can achieve the same functionality by using the name EnableTTLsense or
EnableECLsense with the same parameters as described below.

Syntax: ret = EnableTrigSense (controller, line, prot)

Action: Enables the sensing of the specified TTL/ECL trigger line or starts up the counter or tick timer
for the specified protocol. When the protocol is sensed, the corresponding trigger interrupt
handler is invoked. In order to start up the counter or tick timers, you must first call either the
TrigCntrConfig or the TrigTickConfig function, respectively.

Remarks: Input parameters:

controller INT16 Controller on which to enable sensing

line UINT16 Trigger line to enable sensing

 Value Trigger Line

0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5

50 TIC counter
60 TIC tick timers

prot UINT16 Protocol to use

0 = ON
1 = OFF
2 = START
3 = STOP
4 = SYNC
5 = SEMI-SYNC
6 = ASYNC

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid line or prot
-4 = line not supported
-5 = prot not supported
-7 = line already in use

-12 = line not configured for use in sensing
-15 = Previous operation incomplete

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-19 NI-VXI Software Reference Manual for C

Example: /* Enable sensing of TTL line 4 on the local CPU (or the first
extended controller) for SEMI-SYNC protocol. */

INT16 ret;
INT16 controller;
UINT16 line;
UINT16 prot;

controller = -1;
line = 4;
prot = 5;
ret = EnableTrigSense (controller, line, prot);

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-20 © National Instruments Corporation

GetTrigHandler

Note: This function call may not exist on some platforms that do not have the TIC chip. If this is the
case, you can achieve the same functionality by using the name GetTTLtrigHandler or
GetECLtrigHandler with the same parameters as described below.

Syntax: func = GetTrigHandler (line)

Action: Returns the address of the current TTL/ECL trigger, counter, or tick timer interrupt handler for a
specified trigger source.

Remarks: Input parameter:

line UINT16 TTL, ECL trigger line or counter/tick

 Value Trigger Line

0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5

50 TIC counter
60 TIC TICK1 tick timer

Output parameters:

none

Return value:

func NIVXI_HTRIG* Pointer to the current trigger interrupt handler for a
specified trigger line

NULL = Invalid line or no hardware support

Example: /* Get the address of the trigger interrupt handler for TTL
trigger line 4. */

NIVXI_HTRIG *func;
UINT16 line;

line = 4;
func = GetTrigHandler (line);

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-21 NI-VXI Software Reference Manual for C

MapTrigToTrig

Syntax: ret = MapTrigToTrig (controller, srcTrig, destTrig, mode)

Action: Maps the specified TTL, ECL, Star X, Star Y, external connection (GPIO), or miscellaneous
signal line to another. The support actually present is completely hardware dependent and is
reflected in the error status and in hardware-specific documentation.

Remarks: Input parameters:

controller INT16 Controller on which to map signal lines

srcTrig UINT16 Source line to map to destination

destTrig UINT16 Destination line to map from source

 Value Source or Destination Line

0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5

14 to 26 Star X lines 0 to 12 *
27 to 39 Star Y lines 0 to 12 *
40 to 49 External source/destination (GPIOs 0 to 9)

40 Front panel In (connector 1)
41 Front panel Out (connector 2)
42 ECL bypass from front panel
43 Connection to EXTCLK input pin

44 to 49 Hardware-dependent GPIOs 4 to 9
50 TIC counter pulse output (TCNTR)
51 TIC counter finished output (GCNTR)
60 TIC TICK1 tick timer output
61 TIC TICK2 tick timer output

mode UINT16 Signal conditioning mode (0 = no conditioning)

 Bit Conditioning Effect

0 Synchronize with next CLK edge
1 Invert signal polarity
2 Pulse stretch to one CLK minimum
3 Use EXTCLK (not CLK10) for conditioning

All other values are reserved for future expansion.

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Unsupported function, no mapping capability
-2 = Invalid controller
-8 = Unsupported srcTrig
-9 = Unsupported destTrig

-10 = Unsupported mode
-11 = Already mapped, must use UnMapTrigToTrig

*Note : Star X and Star Y are not currently supported lines.

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-22 © National Instruments Corporation

Example: /* Map TTL line 4 on the local CPU (or first extended controller)
to go out of the front panel with no signal conditioning. */

INT16 controller;
UINT16 srcTrig;
UINT16 destTrig;
UINT16 mode;
INT16 ret;

controller = -1; /* Local CPU */
src = 4; /* TTL line 4. **/
dest = 41; /* Front panel out connector. **/
mode = 0; /* No conditioning. */
ret = MapTrigToTrig (controller, srcTrig, destTrig, mode);

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-23 NI-VXI Software Reference Manual for C

SetTrigHandler

Note: This function call may not exist on some platforms that do not have the TIC chip. If this is the
case, you can achieve the same functionality by using the name SetTTLtrigHandler or
SetECLtrigHandler with the same parameters as described below.

Syntax: ret = SetTrigHandler (lines, func)

Action: Replaces the current TTL/ECL trigger, counter, or tick timer interrupt handler for a specified
trigger source with the specified function, func .

Remarks: Input parameters:

lines UINT16 Bit vector of trigger lines (1 = set, 0 = do not set)

 Value Trigger Line(s) to Set

0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5

14 TIC counter
15 TIC tick timers

func NIVXI_HTRIG* Pointer to the new trigger interrupt handler

0 = DefaultTrigHandler
1 = DefaultTrigHandler2

Other = Address of new trigger interrupt handler

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = No hardware support

Example: /* Set a trigger interrupt handler for TTL trigger line 4. */

NIVXI_HTRIG func;
UINT16 lines;
INT16 ret;

lines = (UINT16)(1<<4);
ret = SetTrigHandler (lines, func);
if (ret < 0)

/* An error occurred in SetTrigHandler . */;

/* Example handler */
NIVXI_HQUAL void NIVXI_HSPEC func (INT16 controller, UINT16 line,
UINT16 type)
{
}

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-24 © National Instruments Corporation

SrcTrig

Note: This function call may not exist on some platforms that do not have the TIC chip. If this is the
case, you can achieve the same functionality by using the name SrcTTLtrig or SrcECLtrig with
the same parameters as described below.

Syntax: ret = SrcTrig (controller, line, prot, timeout)

Action: Sources the specified protocol on the specified TTL, ECL, or external trigger line on the specified
controller.

Remarks: Input parameters:

controller INT16 Controller on which to source trigger line

line UINT16 Trigger line to source

 Value Trigger Line

0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5

40 to 49 External source/destination (GPIOs 0 to 9) *
50 TIC counter **
60 TIC TICK timers **

prot UINT16 Protocol to use

0 = ON
1 = OFF
2 = START
3 = STOP
4 = SYNC
5 = SEMI-SYNC
6 = ASYNC
7 = SEMI-SYNC and wait for acknowledge
8 = ASYNC and wait for acknowledge

ffffh = Abort previous acknowledge pending (5 and 6)

timeout INT32 Timeout value in milliseconds

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid line or prot
-4 = line not supported
-5 = prot not supported
-6 = Timeout occurred waiting for acknowledge
-7 = line already in use

-12 = line not configured for use in sourcing
-15 = Previous operation incomplete
-16 = Previous acknowledge still pending

* Supports ON, OFF, START, STOP, and SYNC protocols only
** Supports SYNC and SEMI-SYNC protocols only

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-25 NI-VXI Software Reference Manual for C

Example: /* Source TTL line 4 on the local CPU (or the first extended
controller) for SEMI-SYNC protocol. */

INT16 ret;
INT16 controller;
UINT16 line;
UINT16 prot;
INT32 timeout;

controller = -1;
line = 4;
prot = 5;
timeout = 0L;
ret = SrcTrig (controller, line, prot, timeout);

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-26 © National Instruments Corporation

TrigAssertConfig

Syntax: ret = TrigAssertConfig (controller, line, mode)

Action: Configures the specified TTL/ECL trigger line assertion method. You can (re-)synchronize
TTL/ECL triggers to CLK10 on a per-line basis. You can globally select on all TTL/ECL trigger
lines whether to synchronize to the rising or falling edge of CLK10. In addition, you can specify a
trigger line to partake in SEMI-SYNC accepting with external acknowledge.

Remarks: Input parameters:

controller INT16 Controller on which to configure assertion mode

line UINT16 Trigger line to configure

 Value Trigger Line

0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5
ffffh General assertion configuration (all lines)

mode UINT16 Configuration mode

 Bit Specific Line Configuration Modes

0 1 = Synchronize falling edge of CLK10
 0 = Synchronize rising edge of CLK10

 Bit General Configuration Modes

1 1 = Pass trigger through asynchronously
0 = Synchronize with next CLK10 edge

2 1 = Participate in SEMI-SYNC with external trigger
acknowledge protocol

0 = Do not participate

All other values are reserved for future expansion.

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid line
-4 = line not supported

-10 = Invalid configuration mode

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-27 NI-VXI Software Reference Manual for C

Example 1: /* Configure all TTL/ECL trigger lines generally to synchronize to
the falling edge of CLK10 (as opposed to the rising edge). */

INT16 ret;
INT16 controller;
UINT16 line;
UINT16 mode;

controller = -1;
line = 0xFFFF;
mode = (1<<0);
ret = TrigAssertConfig (controller, line, mode);

Example 2: /* Configure TTL trigger line 4 to synchronize to CLK10 for any
assertion method and do not participate in SEMI-SYNC. */

INT16 ret;
INT16 controller;
UINT16 line;
UINT16 mode;

controller = -1;
line = 4;
mode = 0;
ret = TrigAssertConfig (controller, line, mode);

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-28 © National Instruments Corporation

TrigCntrConfig

Syntax: ret = TrigCntrConfig (controller, mode, source, count)

Action: Configures TIC chip internal 16-bit counter. Call SrcTrig or EnableTrigSense to actually
start the counter. The input can be any trigger line, CLK10, or the EXTCLK connection. The
counter has two outputs: TCNTR (one 100 ns pulse per input edge) and GCNTR (unasserted until
count goes from 1 to 0, then asserted until counter reloaded or reset). You can use
MapTrigToTrig to map TCNTR to any number of the TTL or ECL trigger lines, and to
map GCNTR to any number of the external (GPIO) lines.

Remarks: Input parameters:

controller INT16 Controller on which to configure the TIC counter

mode UINT16 Configuration mode

 Value Configuration Mode

0 Initialize the counter
2 Reload the counter leaving enabled
3 Disable/abort any count in progress

source UINT16 Trigger line to configure as input to counter

 Value Trigger Line

0 to 7 TTL trigger l ines 0 to 7
8 to 13 ECL trigger lines 0 to 5

70 CLK10
71 EXTCLK connection

count UINT16 Number of input pulses to count before terminating

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid source line

-10 = Invalid configuration mode
-12 = Counter not initialized
-15 = Previous count incomplete

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-29 NI-VXI Software Reference Manual for C

Example: /* Configure the counter to count 25 assertions on TTL trigger
line 5 (the prot parameter when calling EnableTrigSense will
determine whether the counter accepts SYNC or SEMI-SYNC
assertions). */

INT16 ret;
INT16 controller;
UINT16 mode;
UINT16 source;
UINT16 count;

controller = -1;
mode = 0; /* Initialize the counter */
source = 5;
count = 25;
ret = TrigCntrConfig (controller, mode, source, count);

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-30 © National Instruments Corporation

TrigExtConfig

Syntax: ret = TrigExtConfig (controller, extline, mode)

Action: Configures the external trigger (GPIO) lines. You can feed back the external trigger lines for use
in the crosspoint switch output. You can assert the external trigger lines high or low or leave them
unconfigured (tristated) for use as a crosspoint switch input. If you do not feed the external input
back, you can invert it before mapping it to a trigger line.

Remarks: Input parameters:

controller INT16 Controller on which to configure the external connection

extline UINT16 Trigger line to configure

 Value Trigger Line

40 to 49 External source/destination (GPIOs 0 to 9)
40 Front panel In (connector 1)
41 Front panel Out (connector 2)
42 ECL bypass from front panel
43 EXTCLK

44 to 49 Hardware-dependent GPIOs 4 to 9

mode UINT16 Configuration mode

 Bit Configuration Modes

0 1 = Feed back any line mapped as input into the
crosspoint switch

 0 = Drive input to external (GPIO) pin
1 1 = Assert input (regardless of feedback)
 0 = Leave input unconfigured
2 1 = If assertion selected, assert low
 0 = If assertion selected, assert high
3 1 = Invert external input (not feedback)
 0 = Pass external input unchanged

All other values are reserved for future expansion.

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid extline

-10 = Invalid configuration mode

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-31 NI-VXI Software Reference Manual for C

Example 1: /* Configure external line 41 (front panel Out) to not be fed back
and left tristated for use as a mapped output via
MapTrigToTrig. */

INT16 ret;
INT16 controller;
UINT16 extline;
UINT16 mode;

controller = -1;
extline = 41;
mode = 0;
ret = TrigExtConfig (controller, extline, mode);

Example 2: /* Configure external line 40 (front panel In) to not be fed back
and left tristated for use as a mapped input via MapTrigToTrig.
Invert the front panel In signal. */

INT16 ret;
INT16 controller;
UINT16 extline;
UINT16 mode;

controller = -1;
extline = 40;
mode = (1<<3);
ret = TrigExtConfig (controller, line, mode);

Example 3: /* Configure external line 48 (GPIO 8) to be fed back for use as a
crosspoint switch input and output via MapTrigToTrig. */

INT16 ret;
INT16 controller;
UINT16 extline;
UINT16 mode;

controller = -1;
extline = 48;
mode = (1<<0);
ret = TrigExtConfig (controller, line, mode);

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-32 © National Instruments Corporation

TrigTickConfig

Syntax: ret = TrigTickConfig (controller, mode, source, tcount1, tcount2)

Action: Configures TIC chip internal dual 5-bit tick timers. Call SrcTrig or EnableTrigSense to
actually start the tick timers. SrcTrig inhibits the TICK1 output from generating tick timer
interrupts. EnableTrigSense enables the TICK1 output to generate tick timer interrupts. The
input can be any external (GPIO) line, CLK10, or the EXTCLK connection. You can map the two
tick timer outputs TICK1 and TICK2 to any number of TTL/ECL trigger lines. In addition, you
can map the TICK2 output to any number of external (GPIO) lines.

Remarks: Input parameters:

controller INT16 Controller on which to configure the TIC chip dual
 5-bit tick timers

mode UINT16 Configuration mode

 Value Configuration Mode

0 Initialize the tick timers (rollover mode)
1 Initialize the tick timers (non-rollover mode)
2 Reload the tick timers leaving enabled
3 Disable/abort any count in progress

source UINT16 Trigger line to configure as input to counter

 Value Trigger Line

40 to 49 External source/destination (GPIOs 0 to 9)
70 CLK10
71 EXTCLK connection

tcount1 UINT16 Number of input pulses (as a power of two) to count
before asserting TICK1 output (and terminating the
tick timer if configured for non-rollover mode)

tcount2 UINT16 Number of input pulses (as a power of two) to count
before asserting TICK2 output

Output parameters:

none

Return value:

ret INT16 Return Status

3 = Successful disable of the tick timers
2 = Successful reload of the tick timers
1 = Successful initialization of non-rollover mode
0 = Successful initialization of rollover mode

-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid source line

-10 = Invalid mode
-13 = Invalid tcount1 or tcount2
-15 = Previous tick configured and enabled

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-33 NI-VXI Software Reference Manual for C

Example 1: /* Configure the tick timers to interrupt every 6.55 milliseconds
by dividing down CLK10 as an input. Call EnableTrigSense to
start the tick timers and enable interrupts. */

INT16 ret;
INT16 controller;
UINT16 mode;
UINT16 source;
UINT16 tcount1, tcount2;

controller = -1;
mode = 0; /* Initialize with rollover */
source = 70; /* CLK10 */
tcount1 = 16; /* Divide down by 65536 (2^16) */
tcount2 = 0; /* Does not matter */
ret = TrigTickConfig (controller, mode, source, tcount1, tcount2);

Example 2: /* Configure the tick timers to output a continuous 9.765 kHz
square wave on TICK1 output and a 1.25 MHz clock on TICK2
output by dividing down CLK10 as an input. Call SrcTrig to
start the tick timers. */

INT16 ret;
INT16 controller;
UINT16 mode;
UINT16 source;
UINT16 tcount1, tcount2;

controller = -1;
mode = 0; /* Initialize with rollover */
source = 70; /* CLK10 */
tcount1 = 10; /* Divide down by 1024 (2^10) */
tcount2 = 3; /* Divide down by 8 (2^3)*/
ret = TrigTickConfig (controller, mode, source, tcount1, tcount2);

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-34 © National Instruments Corporation

UnMapTrigToTrig

Syntax: ret = UnMapTrigToTrig (controller, srcTrig, destTrig)

Action: Unmaps the specified TTL, ECL, Star X, Star Y, external connection (GPIO), or miscellaneous
signal line that was mapped to another line using the MapTrigToTrig function.

Remarks: Input parameters:

controller INT16 Controller on which to unmap signal lines

srcTrig UINT16 Source line to unmap from destination

destTrig UINT16 Destination line mapped from source

 Value Source or Destination

0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5

14 to 26 Star X lines 0 to 12 *
27 to 39 Star Y lines 0 to 12 *
40 to 49 External source/destination (GPIOs 0 to 9)

40 Front panel In (connector 1)
41 Front panel Out (connector 2)
42 ECL bypass from front panel
43 Connection to EXTCLK input pin

44 to 49 Hardware-dependent GPIOs 4 to 9
50 TIC counter pulse output (TCNTR)
51 TIC counter finished output (GCNTR)
60 TIC TICK1 tick timer output
61 TIC TICK2 tick timer output

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Unsupported function, no mapping capability
-2 = Invalid controller

-12 = Not previously mapped

*Note : Star X and Star Y are not currently supported lines.

Example: /* Unmap route of TTL line 4 on the local CPU (or first extended
controller) to go out of the front panel as mapped by
MapTrigToTrig(). */

INT16 controller;
UINT16 srcTrig;
UINT16 destTrig;
INT16 ret;

controller = -1; /* Local CPU. */
src = 4; /* TTL line 4. */
dest = 49; /* Front panel out connector. */
ret = UnMapTrigToTrig (controller, srcTrig, destTrig);

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-35 NI-VXI Software Reference Manual for C

WaitForTrig

Note: This function call may not exist on some platforms that do not have the TIC chip. If this is the
case, you can achieve the same functionality by using the name WaitForTTLtrig or
WaitForECLtrig with the same parameters as described below.

Syntax: ret = WaitForTrig (controller, line, timeout)

Action: Waits for the specified trigger line to be sensed on the specified controller for the specified time.
EnableTrigSense must be called to sensitize the hardware to the particular trigger protocol to
be sensed.

Remarks: Input parameters:

controller INT16 Controller on which to wait for trigger

line UINT16 Trigger line to wait on

 Value Trigger Line

0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5

50 TIC counter
60 TIC TICK1 tick timer

timeout INT32 Timeout value in milliseconds

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid controller
-3 = Invalid line
-4 = line not supported
-6 = Timeout occurred

-12 = line not configured for sensing

Example: /* Wait up to 10 seconds for TTL line 4 on the local CPU (or the
first extended controller) to be encountered. */

INT16 ret;
INT16 controller;
UINT16 line;
INT32 timeout;

controller = -1;
line = 4;
timeout = 10000L;
ret = WaitForTrig (controller, line, timeout);

VXI Trigger Functions Chapter 11

NI-VXI Software Reference Manual for C 11-36 © National Instruments Corporation

Default Handlers for VXI Trigger Functions

The NI-VXI software provides the following default handlers for the VXI trigger functions. These are sample
handlers that InitVXIlibrary installs when it initializes the software at the beginning of the application
program. Default handlers give you the minimal and most common functionality required for a VXI system. They
are given in source code form on your NI-VXI distribution media to be used as examples/prototypes for extending
their functionality to a particular application.

DefaultTrigHandler

Note: This function call may not exist on some platforms that do not have the TIC chip. If this is the
case, you can achieve the same functionality by using the name DefaultTTLtrigHandler or
DefaultECLtrigHandler with the same parameters as described below.

Syntax: DefaultTrigHandler (controller, line, type)

Action: Handles the VXI triggers on specified trigger lines. Calls the AcknowledgeTrig function to
acknowledge the trigger interrupt if the type parameter specifies trigger sensed. Otherwise, the
interrupt is ignored.

Remarks: Input parameters:

controller INT16 Controller from which the trigger interrupt is received

line UINT16 Trigger line interrupt received on

 Value Trigger Line

0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5

50 TIC counter
60 TIC TICK1 tick timer

type UINT16 Conditioning Effect

 Bit Conditioning Effect

0 0 = Sourced trigger acknowledged
1 = Trigger sensed

2 1 = Assertion edge overrun occurred
3 1 = Unassertion edge overrun occurred
4 1 = Pulse stretch overrun occurred

15 1 = Error summary (2, 3, 4 = 1)

Output parameters:

none

Return value:

none

Chapter 11 VXI Trigger Functions

© National Instruments Corporation 11-37 NI-VXI Software Reference Manual for C

DefaultTrigHandler2

Syntax: DefaultTrigHandler2 (controller, line, type)

Action: Handles the VXI triggers on specified trigger lines. This trigger interrupt handler performs no
operations. Any triggers that require acknowledgments must be acknowledged at the application
level.

Remarks: Input parameters:

controller INT16 Controller from which the trigger interrupt is received

line UINT16 Trigger line interrupt received on

 Value Trigger Line

0 to 7 TTL trigger lines 0 to 7
8 to 13 ECL trigger lines 0 to 5

50 TIC counter
60 TIC TICK1 tick timer

type UINT16 Conditioning Effect

 Bit Conditioning Effect

0 0 = Sourced trigger acknowledged
1 = Trigger sensed

2 1 = Assertion edge overrun occurred
3 1 = Unassertion edge overrun occurred
4 1 = Pulse stretch overrun occurred

15 1 = Error summary (2, 3, 4 = 1)

Output parameters:

none

Return value:

none

© National Instruments Corporation 12-1 NI-VXI Software Reference Manual for C

Chapter 12
System Interrupt Handler Functions

This chapter describes the C syntax and use of the VXI system interrupt handler functions and default handlers.
With these functions, you can handle miscellaneous system conditions that can occur in the VXI environment, such
as Sysfail, ACfail, Sysreset, Bus Error, and/or Soft Reset interrupts. The NI-VXI software interface can handle all
of these system conditions for the application through the use of interrupt service routines. The NI-VXI software
handles all system interrupt handlers in the same manner. Each type of interrupt has its own specified default
handler, which is installed when InitVXIlibrary initializes the NI-VXI software. If your application program
requires a different interrupt handling algorithm, it can call the appropriate SetHandler function to install a new
interrupt handler. All system interrupt handlers are initially disabled (except for Bus Error). The corresponding
enable function for each handler must be called in order to invoke the default or user-installed handler.

Functional Overview

The following paragraphs describe the system interrupt handler functions and default handlers. The descriptions are
presented at a functional level describing the operation of each of the functions. The functions are grouped by area
of functionality.

EnableSysfail (controller)

EnableSysfail sensitizes the application to Sysfail interrupts from embedded controller or extended
controller(s) Sysfail conditions (dependent on the hardware platform and configuration). The VXIbus specification
requires that all VXI Commanders monitor the PASSed or FAILed state of their VXI Servants. When a VXIbus
device is in the FAILed state, the failed device clears its PASS bit (in its Status register) and asserts the SYSFAIL*
signal on the VXIbus backplane. When a Sysfail condition is detected on the local CPU, an interrupt is generated,
and the current Sysfail interrupt handler is called. The failed Servant device must be forced offline or brought back
online in an orderly fashion.

DisableSysfail (controller)

DisableSysfail desensitizes the application to Sysfail interrupts from embedded controller or extended
controller(s) Sysfail conditions (dependent on the hardware platform). The VXIbus specification requires that all
VXI Commanders monitor the PASSed or FAILed state of their VXI Servants. When a VXIbus device is in the
FAILed state, the failed device clears its PASS bit (in its Status register) and asserts the SYSFAIL* signal on the
VXIbus backplane.

SetSysfailHandler (func)

SetSysfailHandler replaces the current Sysfail interrupt handler with an alternate handler. A Sysfail
condition detected on the local CPU generates an interrupt that calls the current Sysfail interrupt handler. A default
handler, DefaultSysfailHandler , is automatically installed when InitVXIlibrary initializes the NI-VXI
software. EnableSysfail must be called to enable Sysfail interrupts after the InitVXIlibrary call.

System Interrupt Handler Functions Chapter 12

NI-VXI Software Reference Manual for C 12-2 © National Instruments Corporation

GetSysfailHandler ()

GetSysfailHandler returns the address of the current Sysfail interrupt handler. A Sysfail condition detected
on the local CPU generates an interrupt that calls the current Sysfail interrupt handler. A default handler,
DefaultSysfailHandler , is automatically installed when InitVXIlibrary initializes the NI-VXI
software.

DefaultSysfailHandler (controller)

DefaultSysfailHandler is the sample handler for the Sysfail interrupt, and is installed as a default handler
when InitVXIlibrary initializes the NI-VXI software. The VXIbus specification requires that all VXI
Commanders monitor the PASSed or FAILed state of their VXI Servants. When a VXIbus device is in the FAILed
state, the failed device clears its PASS bit (in its Status register) and asserts the SYSFAIL* signal on the VXIbus
backplane. A Sysfail condition detected on the local CPU generates an interrupt that calls the current Sysfail
interrupt handler. The failed Servant device must be forced offline or brought back online in an orderly fashion.
DefaultSysfailHandler scans the local CPU Servants and if a Servant is detected to have failed, the
Servant's Sysfail Inhibit bit in its Control register is set. In addition, the global variable SysfailRecv is
incremented.

EnableACfail (controller)

EnableACfail sensitizes the application to ACfail interrupts from embedded controller or extended controller(s)
ACfail conditions (dependent on the hardware platform). The VXIbus specification allows for a minimum amount
of time after a power failure condition occurs for the system to remain operational. The detection of the power
failure asserts the VXIbus backplane signal ACFAIL*. An ACfail condition detected on the local CPU generates an
interrupt that calls the current ACfail interrupt handler. Your application can take any appropriate action within the
allotted time period before complete power failure.

DisableACfail (controller)

DisableACfail desensitizes the application to ACfail interrupts from embedded controller or extended
controller(s) ACfail conditions (dependent on the hardware platform). The VXIbus specification allows for a
minimum amount of time after a power failure condition occurs for the system to remain operational. The detection
of the power failure asserts the VXIbus backplane signal ACFAIL*. An ACfail condition detected on the local CPU
generates an interrupt that calls the current ACfail interrupt handler. Your application can take any appropriate
action within the allotted time period before complete power failure.

SetACfailHandler (func)

SetACfailHandler replaces the current ACfail interrupt handler with an alternate handler. An ACfail condition
detected on the local CPU generates an interrupt that calls the current ACfail interrupt handler. Your application can
take any appropriate action within the allotted time period before complete power failure. The InitVXIlibrary
function automatically installs a default handler, DefaultACfailHandler , when it initializes the NI-VXI
software. Your application must then call EnableACfail to enable ACfail interrupts.

GetACfailHandler ()

GetACfailHandler returns the address of the current ACfail interrupt handler. An ACfail condition detected on
the local CPU generates an interrupt that calls the current ACfail interrupt handler. Your application can take any
appropriate action within the allotted time period before complete power failure. The InitVXIlibrary function
automatically installs a default handler, DefaultACfailHandler , when it initializes the NI-VXI software.

Chapter 12 System Interrupt Handler Functions

© National Instruments Corporation 12-3 NI-VXI Software Reference Manual for C

DefaultACfailHandler (controller)

DefaultACfailHandler is the sample handler for the ACfail interrupt, and is installed as a default handler
when InitVXIlibrary initializes the NI-VXI software. It simply increments the global variable ACfailRecv .
The VXIbus specification allows for a minimum amount of time after a power failure condition occurs for the
system to remain operational. The detection of a power failure in a VME system asserts the backplane signal
ACFAIL*. An ACfail condition detected on the local CPU generates an interrupt that calls the current ACfail
interrupt handler. Your application can take any appropriate action within the allotted time period before complete
power failure. Your application must then call EnableACfail to enable ACfail interrupts after the
InitVXIlibrary call.

EnableSoftReset ()

EnableSoftReset sensitizes the application to Soft Reset conditions on the local CPU. When the Reset bit in
the VXI Control register of the local CPU is written, the VXI interface (if an embedded CPU) and the VXI register
sets are reset (VXI logical address and address base are retained). The write to the Reset bit causes an interrupt on
the local CPU, which can be handled in any appropriate manner. The CPU cannot restart operation until the Reset
bit is cleared. After the Reset bit is cleared, the local CPU can go through a reinitialization process or simply reboot
altogether. If the local CPU is the Resource Manager (and top-level Commander), the Reset bit should never be
written. Writing the Reset bit of any device should be reserved for the Commander of the device.

DisableSoftReset ()

DisableSoftReset desensitizes the application to Soft Reset conditions on the local CPU. When the Reset bit
in the VXI Control register of the local CPU is written, the VXI interface (if an embedded CPU) and the VXI
register sets are reset (VXI logical address and address base are retained). The write to the Reset bit causes an
interrupt on the local CPU, which can be handled in any appropriate manner. The CPU cannot restart operation until
the Reset bit is cleared. After the Reset bit is cleared, the local CPU can go through a reinitialization process or
simply reboot altogether. If the local CPU is the Resource Manager (and top-level Commander), the Reset bit
should never be written. Writing the Reset bit of any device should be reserved for the Commander of the device.

SetSoftResetHandler (func)

SetSoftResetHandler replaces the current Soft Reset interrupt handler with an alternate handler. A default
handler, DefaultSoftResetHandler , is automatically installed when InitVXIlibrary initializes the NI-
VXI software. EnableSoftReset must be called to enable writes to the Reset bit to generate interrupts to the
local CPU after the InitVXIlibrary call.

GetSoftResetHandler ()

GetSoftResetHandler returns the address of the current Soft Reset interrupt handler. A default handler,
DefaultSoftResetHandler , is automatically installed when InitVXIlibrary initializes the NI-VXI
software.

System Interrupt Handler Functions Chapter 12

NI-VXI Software Reference Manual for C 12-4 © National Instruments Corporation

DefaultSoftResetHandler ()

DefaultSoftResetHandler is the sample handler for the Soft Reset interrupt, and is installed as a default
handler when InitVXIlibrary initializes the NI-VXI software. It simply increments the global variable
SoftResetRecv . When the Reset bit in the VXI Control register of the local CPU is written, the VXI interface
(if an embedded CPU) and the VXI register sets are reset (VXI logical address and address base are retained). The
write to the Reset bit causes an interrupt on the local CPU, which can be handled in any appropriate manner. The
CPU cannot restart operation until the Reset bit is cleared. After the Reset bit is cleared, the local CPU can go
through a reinitialization process or simply reboot altogether. If the local CPU is the Resource Manager (and top-
level Commander), the Reset bit should never be written. Writing the Reset bit of any device should be reserved for
the Commander of the device. EnableSoftReset must be called to enable writes to the Reset bit to generate
interrupts to the local CPU after the InitVXIlibrary call.

EnableSysreset (controller)

EnableSysreset sensitizes the application to Sysreset interrupts from embedded or extended controller(s)
(dependent on the hardware platform). Notice that if the local CPU is configured to be reset by Sysreset conditions
on the backplane, the interrupt handler will not get invoked (the CPU will reboot).

DisableSysreset (controller)

DisableSysreset desensitizes the application to Sysreset interrupts from embedded or extended controller(s)
(dependent on the hardware platform).

AssertSysreset (controller, mode)

AssertSysreset asserts the SYSRESET* signal on the specified controller. You can use this function to reset
the local CPU, individual mainframes, all mainframes, or the entire system. If you reset the system but not the local
CPU, you will need to re-execute all device configuration programs.

SetSysresetHandler (func)

SetSysresetHandler replaces the current SYSRESET* interrupt handler with an alternate handler. The
InitVXIlibrary function automatically installs a default handler, DefaultSysresetHandler , when it
initializes the NI-VXI software. Your application must then call EnableSysreset to enable writes to the Reset
bit to generate interrupts to the local CPU.

GetSysresetHandler ()

GetSysresetHandler returns the address of the current Sysreset interrupt handler. The InitVXIlibrary
function automatically installs a default handler, DefaultSysresetHandler , when it initializes the NI-VXI
software.

DefaultSysresetHandler (controller)

DefaultSysresetHandler is the sample handler for the Sysreset interrupt, and is installed as a default handler
when InitVXIlibrary initializes the NI-VXI software. It simply increments the global variable
SysresetRecv .

Chapter 12 System Interrupt Handler Functions

© National Instruments Corporation 12-5 NI-VXI Software Reference Manual for C

SetBusErrorHandler (func)

SetBusErrorHandler replaces the current Bus Error interrupt handler with an alternate handler. During an
access to the VXIbus, the BERR* signal (Bus Error) is asserted to end the bus cycle if the address or mode of
access is determined to be invalid. The Bus Error exception condition generates an exception on the local CPU,
which can be trapped by the Bus Error handler. Your application should include a retry mechanism if it is possible
for a particular access to generate Bus Errors at times and valid results at other times. The InitVXIlibrary
function automatically installs a default handler, DefaultBusErrorHandler , when it initializes the NI-VXI
software. Because Bus Errors can occur at any time, a corresponding enable and disable function is not possible.

GetBusErrorHandler ()

GetBusErrorHandler returns the address of the current Bus Error interrupt handler. During an access to
the VXIbus, the BERR* signal (Bus Error) is asserted to end the bus cycle if the address or mode of access is
determined to be invalid. The Bus Error exception condition generates an exception on the local CPU, which
can be trapped by the Bus Error handler. Your application should include a retry mechanism if it is possible for a
particular access to generate Bus Errors at times and valid results at other times. The InitVXIlibrary function
automatically installs a default handler, DefaultBusErrorHandler , when it initializes the NI-VXI software.
It simply increments the global variable BusErrorRecv . Because Bus Errors can occur at any time, a
corresponding enable and disable function is not possible.

DefaultBusErrorHandler ()

DefaultBusErrorHandler is the sample handler for the Bus Error exception, and is installed as a default
handler when InitVXIlibrary initializes the NI-VXI software. During an access to the VXIbus, the BERR*
signal (Bus Error) is asserted to end the bus cycle if the address or mode of access is determined to be invalid. The
Bus Error exception condition generates an exception on the local CPU, which can be trapped by the Bus Error
handler. Your application should include a retry mechanism if it is possible for a particular access to generate Bus
Errors at times and valid results at other times. Because Bus Errors can occur at any time, a corresponding enable
and disable function is not possible.

System Interrupt Handler Functions Chapter 12

NI-VXI Software Reference Manual for C 12-6 © National Instruments Corporation

Function Descriptions

The following paragraphs describe the system interrupt handler functions and default handlers. The descriptions are
explained at the C syntax level and are listed in alphabetical order.

AssertSysreset

Syntax: ret = AssertSysreset (controller, mode)

Action: Asserts the SYSRESET* signal in the mainframe specified by controller .

Remarks : Input parameter:

controller INT16 Logical address of mainframe extender on which to
 assert SYSRESET*

-1 = From the local CPU or first extended controller
-2 = All extenders

mode UINT16 Mode of execution

0 = Do not disturb original configuration
1 = Force link between SYSRESET* and local

 reset (SYSRESET* resets local CPU)
2 = Break link between SYSRESET* and local

 reset (SYSRESET* does not reset local CPU)

Output parameters:

none

Return value:

ret INT16 Return Status

0 = SYSRESET* signal successfully asserted
-1 = AssertSysreset not supported
-2 = Invalid controller

Example: /* Assert SYSRESET* on the first extended controller (or local
CPU) without changing the current configuration. */

INT16 controller;
UINT16 mode;
INT16 ret;

controller = -1;
mode = 0;
ret = AssertSysreset (controller, mode);

Chapter 12 System Interrupt Handler Functions

© National Instruments Corporation 12-7 NI-VXI Software Reference Manual for C

DisableACfail

Syntax: ret = DisableACfail (controller)

Action: Desensitizes the local CPU from interrupts generated from ACfail conditions on the embedded
CPU VXIbus backplane or from the specified extended controller VXI backplane (if external
CPU).

Remarks : Input parameter:

controller INT16 Logical address of mainframe extender to disable

Output parameters:

none

Return value:

ret INT16 Return Status

0 = ACfail interrupt successfully disabled
-1 = ACfail interrupts not supported
-2 = Invalid controller

Example: /* Disable the ACfail interrupt on the first frame (or local
CPU). */

INT16 controller;
INT16 ret;

controller = -1;
ret = DisableACfail (controller);

System Interrupt Handler Functions Chapter 12

NI-VXI Software Reference Manual for C 12-8 © National Instruments Corporation

DisableSoftReset

Syntax: ret = DisableSoftReset ()

Action: Disables the local Soft Reset interrupt being generated from a write to the Reset bit of the local
CPU Control register.

Remarks : Parameters:

none

Return value:

ret INT16 Return Status

0 = Soft Reset interrupt successfully disabled
-1 = Soft Reset interrupts not supported

Example: /* Disable the Soft Reset interrupt. */

INT16 ret;

ret = DisableSoftReset ();

Chapter 12 System Interrupt Handler Functions

© National Instruments Corporation 12-9 NI-VXI Software Reference Manual for C

DisableSysfail

Syntax: ret = DisableSysfail(controller)

Action: Desensitizes the local CPU from interrupts generated from Sysfail conditions on the embedded
CPU VXIbus backplane or from the specified extended controller VXI backplane (if external
CPU).

Remarks : Input parameter:

controller INT16 Logical address of mainframe extender to disable

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Sysfail interrupt successfully disabled
-1 = Sysfail interrupts not supported
-2 = Invalid controller

Example: /* Disable the Sysfail interrupt. */

INT16 controller;
INT16 ret;

controller = -1;
ret = DisableSysfail();

System Interrupt Handler Functions Chapter 12

NI-VXI Software Reference Manual for C 12-10 © National Instruments Corporation

DisableSysreset

Syntax: ret = DisableSysreset(controller)

Action: Desensitizes the application from Sysreset interrupts from the embedded CPU VXIbus backplane
or from the specified extended controller VXI backplane (if external CPU).

Remarks : Input parameter:

controller INT16 Logical address of mainframe extender to disable

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Sysreset interrupt successfully disabled
-1 = Sysreset interrupts not supported
-2 = Invalid controller

Example: /* Disable the Sysreset interrupt. */

INT16 controller;
INT16 ret;

controller = -1;
ret = DisableSysreset(controller);

Chapter 12 System Interrupt Handler Functions

© National Instruments Corporation 12-11 NI-VXI Software Reference Manual for C

EnableACfail

Syntax: ret = EnableACfail (controller)

Action: Sensitizes the local CPU to interrupts generated from ACfail conditions on the embedded CPU
VXIbus backplane or from the specified extended controller VXI backplane (if external CPU).

Remarks: Input parameter:

controller INT16 Logical address of mainframe extender to enable

Output parameters:

none

Return value:

ret INT16 Return Status

0 = ACfail interrupt successfully enabled
-1 = ACfail interrupts not supported
-2 = Invalid controller

Example: /* Enable the ACfail interrupt on the first frame (or local
CPU). */

INT16 controller;
INT16 ret;

controller = -1;
ret = EnableACfail (controller);

System Interrupt Handler Functions Chapter 12

NI-VXI Software Reference Manual for C 12-12 © National Instruments Corporation

EnableSoftReset

Syntax: ret = EnableSoftReset ()

Action: Enables the local Soft Reset interrupt being generated from a write to the Reset bit of the local
CPU Control register.

Remarks: Parameters:

none

Return value:

ret INT16 Return Status

0 = Soft Reset interrupt successfully enabled
-1 = Soft Reset interrupts not supported

Example: /* Enable the Soft Reset interrupt. */

INT16 ret;

ret = EnableSoftReset ();

Chapter 12 System Interrupt Handler Functions

© National Instruments Corporation 12-13 NI-VXI Software Reference Manual for C

EnableSysfail

Syntax: ret = EnableSysfail (controller)

Action: Sensitizes the local CPU to interrupts generated from Sysfail conditions on the embedded CPU
VXIbus backplane or from the specified extended controller VXI backplane (if external CPU).

Remarks: Input parameter:

controller INT16 Logical address of mainframe extender to enable

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Sysfail interrupt successfully enabled
-1 = Sysfail interrupts not supported
-2 = Invalid controller

Example: /* Enable the Sysfail interrupt in the local CPU (or first
frame). */

INT16 controller;
INT16 ret;

controller = -1;
ret = EnableSysfail (controller);

System Interrupt Handler Functions Chapter 12

NI-VXI Software Reference Manual for C 12-14 © National Instruments Corporation

EnableSysreset

Syntax: ret = EnableSysreset (controller)

Action: Sensitizes the application to Sysreset interrupts from the embedded CPU's VXIbus backplane or
from the specified extended controller's VXI backplane (if external CPU).

Remarks: Input parameter:

controller INT16 Logical address of mainframe extender to enable

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Sysreset interrupt successfully enabled
-1 = Sysreset interrupts not supported
-2 = Invalid controller

Example: /* Enable the Sysreset interrupt in the local CPU (or first
frame). */

INT16 controller;
INT16 ret;

controller = -1;
ret = EnableSysreset (controller);

Chapter 12 System Interrupt Handler Functions

© National Instruments Corporation 12-15 NI-VXI Software Reference Manual for C

GetACfailHandler

Syntax: func = GetACfailHandler ()

Action: Returns the address of the current ACfail interrupt handler.

Remarks: Parameters:

none

Return value:

func NIVXI_HACFAIL* Pointer to the current ACfail interrupt handler
NULL = ACfail interrupt not supported

Example: /* Get the address of the ACfail handler. */

NIVXI_HACFAIL *func;

func = GetACfailHandler();

System Interrupt Handler Functions Chapter 12

NI-VXI Software Reference Manual for C 12-16 © National Instruments Corporation

GetBusErrorHandler

Syntax: func = GetBusErrorHandler()

Action: Returns the address of the current user Bus Error interrupt handler.

Remarks: Parameters:

none

Return value:

func NIVXI_HBUSERROR* Pointer to the current Bus Error interrupt handler

Example: /* Get the address of the Bus Error handler. */

NIVXI_HBUSERROR *func;

func = GetBusErrorHandler();

Chapter 12 System Interrupt Handler Functions

© National Instruments Corporation 12-17 NI-VXI Software Reference Manual for C

GetSoftResetHandler

Syntax: func = GetSoftResetHandler ()

Action: Returns the address of the current Soft Reset interrupt handler.

Remarks: Parameters:

none

Return value:

func NIVXI_HSOFTRESET* Pointer to the current Soft Reset interrupt handler
NULL = Soft Reset interrupt not supported

Example: /* Get the address of the Soft Reset handler. */

NIVXI_HSOFTRESET *func;

func = GetSoftResetHandler();

System Interrupt Handler Functions Chapter 12

NI-VXI Software Reference Manual for C 12-18 © National Instruments Corporation

GetSysfailHandler

Syntax: func = GetSysfailHandler ()

Action: Returns the address of the current Sysfail interrupt handler.

Remarks: Parameters:

none

Return value:

func NIVXI_HSYSFAIL* Pointer to the current Sysfail interrupt handler
NULL = Sysfail interrupt not supported

Example: /* Get the address of the Sysfail handler. */

NIVXI_HSYSFAIL *func;

func = GetSysfailHandler ();

Chapter 12 System Interrupt Handler Functions

© National Instruments Corporation 12-19 NI-VXI Software Reference Manual for C

GetSysresetHandler

Syntax: func = GetSysresetHandler ()

Action: Returns the address of the current SYSRESET* interrupt handler.

Remarks: Parameters:

none

Return value:

func NIVXI_HSYSRESET* Pointer to the current SYSRESET* interrupt handler
NULL = SYSRESET* interrupt not supported

Example: /* Get the address of the SYSRESET* handler. */

NIVXI_HSYSRESET *func;

func = GetSysresetHandler();

System Interrupt Handler Functions Chapter 12

NI-VXI Software Reference Manual for C 12-20 © National Instruments Corporation

SetACfailHandler

Syntax: ret = SetACfailHandler (func)

Action: Replaces the current ACfail interrupt handler with a specified handler.

Remarks: Input parameter:

func NIVXI_HACFAIL* Pointer to the new ACfail interrupt handler
NULL = DefaultACfailHandler

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = ACfail interrupt not supported

Example: /* Set the ACfail handler. */

NIVXI_HACFAIL func;
INT16 ret;

ret = SetACfailHandler (func);
if (ret < 0)

/* An error occurred in SetACfailHandler. */;

/* Example handler */
NIVXI_HQUAL void NIVXI_HSPEC func (INT16 controller)
{
}

Chapter 12 System Interrupt Handler Functions

© National Instruments Corporation 12-21 NI-VXI Software Reference Manual for C

SetBusErrorHandler

Syntax: ret = SetBusErrorHandler(func)

Action: Replaces the current Bus Error handler with a specified handler.

Remarks: Input parameter:

func NIVXI_HBUSERROR* Pointer to the new Bus Error interrupt handler
NULL = DefaultBusErrorHandler

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful

Example: /* Set the Bus Error handler. */

NIVXI_HBUSERROR func;
INT16 ret;

ret = SetBusErrorHandler(func);
if (ret < 0)

/* An error occurred in SetBusErrorHandler. */;

/* Example handler */
NIVXI_HQUAL void NIVXI_HSPEC func ()
{
}

System Interrupt Handler Functions Chapter 12

NI-VXI Software Reference Manual for C 12-22 © National Instruments Corporation

SetSoftResetHandler

Syntax: ret = SetSoftResetHandler (func)

Action: Replaces the current Soft Reset interrupt handler with a specified handler.

Remarks: Input parameter:

func NIVXI_HSOFTRESET* Pointer to the new Soft Reset interrupt handler
 NULL = DefaultSoftResetHandler

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Soft Reset interrupt not supported

Example: /* Set the Soft Reset handler. */

NIVXI_HSOFTRESET func;
INT16 ret;

ret = SetSoftResetHandler (func);
if (ret < 0)

/* An error occurred in SetSoftResetHandler. */;

/* Example handler */
NIVXI_HQUAL void NIVXI_HSPEC func ()
{
}

Chapter 12 System Interrupt Handler Functions

© National Instruments Corporation 12-23 NI-VXI Software Reference Manual for C

SetSysfailHandler

Syntax: ret = SetSysfailHandler (func)

Action: Replaces the current Sysfail interrupt handler with a specified handler.

Remarks: Input parameter:

func NIVXI_HSYSFAIL* Pointer to the new Sysfail interrupt handler
NULL = DefaultSysfailHandler

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Sysfail interrupt not supported

Example: /* Set the Sysfail handler. */

NIVXI_HSYSFAIL func;
INT16 ret;

ret = SetSysfailHandler (func);
if (ret < 0)

/* An error occurred in SetSysfailHandler. */;

/* Example handler */
NIVXI_HQUAL void NIVXI_HSPEC func (INT16 controller)
{
}

System Interrupt Handler Functions Chapter 12

NI-VXI Software Reference Manual for C 12-24 © National Instruments Corporation

SetSysresetHandler

Syntax: ret = SetSysresetHandler (func)

Action: Replaces the current SYSRESET* interrupt handler with a specified handler.

Remarks: Input parameter:

func NIVXI_HSYSRESET* Pointer to the new SYSRESET* interrupt handler
NULL = DefaultSysresetHandler

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = SYSRESET* interrupt not supported

Example: /* Set the SYSRESET* handler. */

NIVXI_HSYSRESET func;
INT16 ret;

ret = SetSysresetHandler (func);
if (ret < 0)

/* An error occurred in SetSysresetHandler. */;

/* Example handler */
NIVXI_HQUAL void NIVXI_HSPEC func (INT16 controller)
{
}

Chapter 12 System Interrupt Handler Functions

© National Instruments Corporation 12-25 NI-VXI Software Reference Manual for C

Default Handlers for the System Interrupt Handler
Functions

The NI-VXI software provides the following default handlers for the system interrupt handler functions. These are
sample handlers that InitVXIlibrary installs when it initializes the software at the beginning of the application
program. Default handlers give you the minimal and most common functionality required for a VXI system. They
are given in source code form on your NI-VXI distribution media to be used as examples/prototypes for extending
their functionality to a particular application.

DefaultACfailHandler

Syntax: DefaultACfailHandler (controller)

Action: This default handler simply increments the global variable ACfailRecv .

Remarks: Input parameter:
controller INT16 Logical address of controller interrupting

Output parameters:
none

Return value:
none

DefaultBusErrorHandler

Syntax: DefaultBusErrorHandler ()

Action: This default handler simply increments the global variable BusErrorRecv .

Remarks: Parameters:
none

Return value:
none

DefaultSoftResetHandler

Syntax: DefaultSoftResetHandler ()

Action: This default handler simply increments the global variable SoftResetRecv .

Remarks: Parameters:
none

Return value:
none

System Interrupt Handler Functions Chapter 12

NI-VXI Software Reference Manual for C 12-26 © National Instruments Corporation

DefaultSysfailHandler

Syntax: DefaultSysfailHandler (controller)

Action: Handles the interrupt generated when the SYSFAIL* signal on the VXI backplane is asserted. If
a Servant is detected to have failed (as indicated when its PASS bit is cleared), the default Sysfail
handler sets that Servant's Sysfail Inhibit bit and optionally sets its Reset bit. In addition, the
global variable SysfailRecv is incremented.

Remarks: Input parameter:
controller INT16 Logical address of controller interrupting

Output parameters:
none

Return value:
none

DefaultSysresetHandler

Syntax: DefaultSysresetHandler (controller)

Action: Handles the interrupt generated when the SYSRESET* signal on the VXI backplane is asserted
(and the local CPU is not configured to be reset itself). This default handler simply increments the
global variable SysresetRecv .

Remarks: Input parameter:
controller INT16 Logical address of controller interrupting

Output parameters:
none

Return value:
none

© National Instruments Corporation 13-1 NI-VXI Software Reference Manual for C

Chapter 13
VXIbus Extender Functions

This chapter describes the C syntax and use of the VXIbus extender functions. The NI-VXI software interface fully
supports the standard VXIbus extension method presented in the VXIbus Mainframe Extender Specification . When
the National Instruments Resource Manager (RM) completes its configuration, all default transparent extensions are
complete. The transparent extensions include extensions of VXI interrupt, TTL trigger, ECL trigger, Sysfail,
ACfail, and Sysreset VXIbus signals. The VXIbus extender functions are used to dynamically change the default
RM settings if the application has such a requirement. Usually, the application never needs to change the default
settings. Consult your utilities manual on how to use vxiedit or vxitedit to change the default extender
settings.

Functional Overview

The following paragraphs describe the VXIbus extender functions. The descriptions are presented at a functional
level describing the operation of each of the functions. The functions are grouped by area of functionality.

MapECLtrig (extender, lines, directions)

MapECLtrig configures mainframe extender triggering hardware to map the specified ECL triggers for the
specified mainframe in the specified direction (into or out of the mainframe). If the specified frame extender can
extend VXI ECL triggers between the mainframes, you can use MapECLtrig to configure the mainframe-to-
mainframe mapping. The NI-VXI Resource Manager automatically configures a default mapping based on the user-
modifiable configuration files. The MapECLtrig function can dynamically reconfigure the ECL trigger mapping.
Only special circumstances should require any changes to the default configuration.

MapTTLtrig (extender, lines, directions)

MapTTLtrig configures mainframe extender triggering hardware to map the specified TTL triggers for the
specified mainframe in the specified direction (into or out of the mainframe). If the specified frame extender can
extend VXI TTL triggers between the mainframes, you can use MapTTLtrig to configure the mainframe-to-
mainframe mapping. The NI-VXI Resource Manager automatically configures a default mapping based on the user-
modifiable configuration files. The MapTTLtrig function can dynamically reconfigure the TTL trigger mapping.
Only special circumstances should require any changes to the default configuration.

MapUtilBus (extender, modes)

MapUtilBus configures mainframe extender utility bus hardware to map Sysfail, ACfail, and/or Sysreset for the
specified mainframe into and/or out of the mainframe. If the specified frame extender can extend the VXI utility
signals between mainframes, you can use MapUtilBus to configure the mainframe-to-mainframe mapping. The
NI-VXI Resource Manager automatically configures a default mapping based on user-modifiable configuration files.
The MapUtilBus function can dynamically reconfigure the utility bus mapping. Only special circumstances
should require any changes to the default configuration.

VXIbus Extender Functions Chapter 13

NI-VXI Software Reference Manual for C 13-2 © National Instruments Corporation

MapVXIint (extender, levels, directions)

MapVXIint changes the VXI interrupt extension configuration in multiple mainframe configurations. If the
specified frame extender can extend the VXI interrupts between mainframes, you can use MapVXIint to configure
the mainframe-to-mainframe mapping. The NI-VXI Resource Manager automatically configures a default mapping
based on user-modifiable configuration files. The MapVXIint function can dynamically reconfigure the utility bus
mapping. Only special circumstances should require any changes to the default configuration.

Chapter 13 VXIbus Extender Functions

© National Instruments Corporation 13-3 NI-VXI Software Reference Manual for C

Function Descriptions

The following paragraphs describe the system configuration functions. The descriptions are explained at the C
syntax level and are listed in alphabetical order.

MapECLtrig

Syntax: ret = MapECLtrig (extender, lines, directions)

Action: Maps the specified ECL trigger lines for the specified mainframe in the specified direction (into or
out of the mainframe).

Remarks: Input parameters:

extender INT16 Mainframe extender for which to map ECL lines

lines UINT16 Bit vector of ECL trigger lines. Bits 5 to 0 correspond
to ECL lines 5 to 0, respectively.

1 = Enable for appropriate line
0 = Disable for appropriate line

directions UINT16 Bit vector of directions for ECL lines. Bits 5 to 0
correspond to ECL lines 5 to 0, respectively.

1 = Into the mainframe
0 = Out of the mainframe

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid extender

Example: /* Map ECL lines 0 and 1 on the mainframe extender at Logical
Address 5 to go into the mainframe. */

INT16 extender;
UINT16 lines;
UINT16 directions;
INT16 ret;

extender = 5;
lines = (UINT16)((1<<0) | (1<<1)); /** ECL lines 0 and 1. **/
directions = (UINT16)((1<<0) | (1<<1));
ret = MapECLtrig (extender, lines, directions);

VXIbus Extender Functions Chapter 13

NI-VXI Software Reference Manual for C 13-4 © National Instruments Corporation

MapTTLtrig

Syntax: ret = MapTTLtrig (extender, lines, directions)

Action: Maps the specified TTL trigger lines for the specified mainframe in the specified direction (into or
out of the mainframe).

Remarks: Input parameters:

extender INT16 Mainframe extender for which to map TTL lines

lines UINT16 Bit vector of TTL trigger lines. Bits 7 to 0 correspond
to TTL lines 7 to 0, respectively.

1 = Enable for appropriate line
0 = Disable for appropriate line

directions UINT16 Bit vector of directions for TTL lines. Bits 7 to 0
correspond to TTL lines 7 to 0, respectively.

1 = Into the mainframe
0 = Out of the mainframe

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid extender

Example: /* Map TTL lines 4 and 5 on the mainframe extender at Logical
Address 5 to go out of the mainframe. */

INT16 extender;
UINT16 lines;
UINT16 directions;
INT16 ret;

extender = 5;
lines = (UINT16)((1<<4) | (1<<5)); /** TTL lines 4, 5. **/
directions = (UINT16)0x0000;
ret = MapTTLtrig (extender, lines, directions);

Chapter 13 VXIbus Extender Functions

© National Instruments Corporation 13-5 NI-VXI Software Reference Manual for C

MapUtilBus

Syntax: ret = MapUtilBus (extender, modes)

Action: Maps the specified VXI utility bus signal for the specified mainframe into and/or out of the
mainframe. The utility bus signals include Sysfail, ACfail, and Sysreset.

Remarks: Input parameters:

extender INT16 Chassis extender for which to map utility bus signals

modes UINT16 Bit vector of utility bus signals corresponding to the
 utility bus signals.

1 = Enable for corresponding signal and direction
0 = Disable for corresponding signal and direction

 Bit Utility Bus Signal and Direction

5 ACfail into the chassis
4 ACfail out of the chassis
3 Sysfail into the chassis
2 Sysfail out of the chassis
1 Sysreset into the chassis
0 Sysreset out of the chassis

Output parameters:
none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid extender

Example: /* Map Sysfail into Mainframe 5. Map Sysreset into and out of
Mainframe 5. Do not map ACfail at all. */

INT16 extender;
UINT16 modes;
INT16 ret;

extender = 5;
modes = (UINT16)((1<<3) | (1<<1) | (1<<0));
ret = MapUtilBus (extender, modes);

VXIbus Extender Functions Chapter 13

NI-VXI Software Reference Manual for C 13-6 © National Instruments Corporation

MapVXIint

Syntax: ret = MapVXIint (extender, levels, directions)

Action: Maps the specified VXI interrupt levels for the specified mainframe in the specified direction (into
or out of the mainframe).

Remarks: Input parameters:

extender INT16 Mainframe extender for which to map VXI interrupt
levels

levels UINT16 Bit vector of VXI interrupt levels. Bits 6 to 0 correspond
to VXI interrupt levels 7 to 1 respectively.

1 = Enable for appropriate level
0 = Disable for appropriate level

directions UINT16 Bit vector of directions for VXI interrupt levels. Bits 6 to
0 correspond to VXI interrupt levels 7 to 1, respectively.

1 = Into the mainframe
0 = Out of the mainframe

Output parameters:

none

Return value:

ret INT16 Return Status

0 = Successful
-1 = Unsupportable function (no hardware support)
-2 = Invalid extender

Example: /* Map VXI interrupt levels 4 and 7 on the mainframe extender at
Logical Address 5 to go out of the mainframe. Map VXI
interrupt level 1 to go into the mainframe. */

INT16 extender;
UINT16 levels;
UINT16 directions;
INT16 ret;

extender = 5;
levels = (UINT16)((1<<0) | (1<<3) | (1<<6)); /** Levels 1, 4, 7. **/
directions = (UINT16)(1<<0); /* Level 1 only one in. */
ret = MapVXIint (extender, levels, directions);

© National Instruments Corporation A-1 NI-VXI Software Reference Manual for C

Appendix
Customer Communication

For your convenience, this appendix and your Getting Started manual contain forms to help you gather the
information necessary to help us solve technical problems you might have as well as a form you can use to comment
on the product documentation. Filling out a copy of the Technical Support Form from your Getting Started manual
before contacting National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S. and Canada,
applications engineers are available Monday through Friday from 8:00 a.m. to 6:00 p.m. (central time). In other
countries, contact the nearest branch office. You may fax questions to us at any time.

Corporate Headquarters
(512) 795-8248
Technical support fax: (800) 328-2203

(512) 794-5678

Branch Offices Phone Number Fax Number
Australia (03) 879 9422 (03) 879 9179
Austria (0662) 435986 (0662) 437010-19
Belgium 02/757.00.20 02/757.03.11
Denmark 45 76 26 00 45 76 71 11
Finland (90) 527 2321 (90) 502 2930
France (1) 48 14 24 00 (1) 48 14 24 14
Germany 089/741 31 30 089/714 60 35
Italy 02/48301892 02/48301915
Japan (03) 3788-1921 (03) 3788-1923
Mexico 95 800 010 0793 95 800 010 0793
Netherlands 03480-33466 03480-30673
Norway 32-848400 32-848600
Singapore 2265886 2265887
Spain (91) 640 0085 (91) 640 0533
Sweden 08-730 49 70 08-730 43 70
Switzerland 056/20 51 51 056/20 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 0635 523545 0635 523154

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our products. This
information helps us provide quality products to meet your needs.

Title: NI-VXI™ Software Reference Manual for C

Edition Date: October 1994

Part Number: 371693A-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway, MS 53-02 MS 53-02
Austin, TX 78730-5039 (512) 794-5678

© National Instruments Corporation G-1 NI-VXI Software Reference Manual for C

Glossary

Prefix Meaning Value

n- nano- 10-9

m- milli- 10-3

K- kilo- 103

M- mega- 106

G- giga- 109

A

A16 space One of the VXIbus address spaces. Equivalent to the VME 64 KB short address space.
In VXI, the upper 16 KB of A16 space is allocated for use by VXI devices configuration
registers. This 16 KB region is referred to as VXI configuration space.

A24 space One of the VXIbus address spaces. Equivalent to the VME 16 MB standard address
space.

A32 space One of the VXIbus address spaces. Equivalent to the VME 4 GB extended address
space.

ACFAIL* A VMEbus backplane signal that is asserted when a power failure has occurred (either
AC line source or power supply malfunction), or if it is necessary to disable the power
supply (such as for a high temperature condition).

address Character code that identifies a specific location (or series of locations) in memory.

address modifier One of six signals in the VMEbus specification used by VMEbus masters to indicate the
address space and mode (supervisory/nonprivileged, data/program/block) in which a data
transfer is to take place.

address space A set of 2n memory locations differentiated from other such sets in VXI/VMEbus
systems by six signal lines known as address modifiers. n is the number of address lines
required to uniquely specify a byte location in a given space. Valid numbers for n are 16,
24, and 32.

address window A range of address space that can be accessed from the application program.

ANSI American National Standards Institute

ASCII American Standard Code for Information Interchange. A 7-bit standard code adopted to
facilitate the interchange of data among various types of data processing and data
communications equipment.

ASIC Application-Specific Integrated Circuit (a custom chip)

asserted A signal in its active true state.

asynchronous Not synchronized; not controlled by periodic time signals, and therefore unpredictable
with regard to the timing of execution of commands.

Glossary

NI-VXI Software Reference Manual for C G-2 © National Instruments Corporation

ASYNC Protocol A two-device, two-line handshake trigger protocol using two consecutive even/odd
trigger lines (a source/acceptor line and an acknowledge line).

B

backplane An assembly, typically a PCB, with 96-pin connectors and signal paths that bus the
connector pins. A C-size VXIbus system will have two sets of bused connectors called
the J1 and J2 backplanes. A D-size VXIbus system will have three sets of bused
connectors called the J1, J2, and J3 backplane.

base address A specified address that is combined with a relative address (or offset) to determine the
absolute address of a data location. All VXI address windows have an associated base
address for their assigned VXI address spaces.

BAV Word Serial Byte Available command. Used to transfer 8 bits of data from a Commander
to its Servant under the Word Serial Protocol.

BERR* Bus Error signal. This signal is asserted by either a slave device or the BTO unit when an
incorrect transfer is made on the Data Transfer Bus (DTB). The BERR* signal is also
used in VXI for certain protocol implementations such as writes to a full Signal register
and synchronization under the Fast Handshake Word Serial Protocol.

binary A numbering system with a base of 2.

bit Binary digit. The smallest possible unit of data: a two-state, yes/no, 0/1 alternative. The
building block of binary coding and numbering systems. Several bits make up a byte .

bit vector A string of related bits in which each bit has a specific meaning.

BREQ Word Serial Byte Request query. Used to transfer 8 bits of data from a Servant to its
Commander under the Word Serial Protocol.

BTO See Bus Timeout Unit .

buffer Temporary memory/storage location for holding data before it can be transmitted
elsewhere.

bus master A device that is capable of requesting the Data Transfer Bus (DTB) for the purpose of
accessing a slave device.

bus timeout unit A VMEbus functional module that times the duration of each data transfer on the Data
Transfer Bus (DTB) and terminates the DTB cycle if the duration is excessive. Without
the termination capability of this module, a bus master could attempt to access a
nonexistent slave, resulting in an indefinitely long wait for a slave response.

byte A grouping of adjacent binary digits operated on by the computer as a single unit. In
VXI systems, a byte consists of 8 bits.

byte order How bytes are arranged within a word or how words are arranged within a longword.
Motorola ordering stores the most significant byte (MSB) or word first, followed by the
least significant byte (LSB) or word. Intel ordering stores the LSB or word first,
followed by the MSB or word.

Glossary

© National Instruments Corporation G-3 NI-VXI Software Reference Manual for C

C

clearing Replacing the information in a register, storage location, or storage unit with zeros or
blanks.

CLK10 A 10 MHz, ± 100 ppm, individually buffered (to each module slot), differential ECL
system clock that is sourced from Slot 0 and distributed to Slots 1 through 12 on P2. It is
distributed to each slot as a single-source, single-destination signal with a matched delay
of under 8 ns.

command A directive to a device. In VXI, three types of commands are as follows:
In Word Serial Protocol, a 16-bit imperative to a servant from its Commander (written to
the Data Low register);
In Shared Memory Protocol, a 16-bit imperative from a client to a server, or vice versa
(written to the Signal register);
In Instrument devices, an ASCII-coded, multi-byte directive.

Commander A Message-Based device which is also a bus master and can control one or more
Servants.

communications In Message-Based devices, a set of registers that are accessible to the device's
registers Commander and are used for performing Word Serial Protocol communications.

configuration registers A set of registers through which the system can identify a module device type, model,
manufacturer, address space, and memory requirements. In order to support automatic
system and memory configuration, the VXIbus specification requires that all VXIbus
devices have a set of such registers.

controller An intelligent device (usually involving a CPU) that is capable of controlling other
devices.

CR Carriage Return; the ASCII character 0Dh.

D

Data Transfer Bus One of four buses on the VMEbus backplane. The DTB is used by a bus master to
transfer binary data between itself and a slave device.

decimal Numbering system based upon the ten digits 0 to 9. Also known as base 10.

de-referencing Accessing the contents of the address location pointed to by a pointer.

default handler Automatically installed at startup to handle associated interrupt conditions; the software
can then replace it with a specified handler.

DIR Data In Ready

DIRviol Data In Ready violation

DOR Data Out Ready

DORviol Data Out Ready violation

DRAM Dynamic RAM (Random Access Memory); storage that the computer must refresh at
frequent intervals.

DTB See Data Transfer Bus.

Glossary

NI-VXI Software Reference Manual for C G-4 © National Instruments Corporation

E

ECL Emitter-Coupled Logic

embedded controller An intelligent CPU (controller) interface plugged directly into the VXI backplane, giving
it direct access to the VXIbus. It must have all of its required VXI interface capabilities
built in.

END Signals the end of a data string.

EOS End Of String; a character sent to designate the last byte of a data message.

ERR Protocol error

Event signal A 16-bit value written to a Message-Based device's Signal register in which the most
significant bit (bit 15) is a 1, designating an Event (as opposed to a Response signal).
The VXI specification reserves half of the Event values for definition by the VXI
Consortium. The other half are user defined.

Extended Class device A class of VXIbus device defined for future expansion of the VXIbus specification.
These devices have a subclass register within their configuration space that defines the
type of extended device.

Extended Longword A form of Word Serial communication in which Commanders and Servants communicate
Serial Protocol with 48-bit data transfers.

extended controller A mainframe extender with additional VXIbus controller capabilities.

external controller In this configuration, a plug-in interface board in a computer is connected to the VXI
mainframe via one or more VXIbus extended controllers. The computer then exerts
overall control over VXIbus system operations.

F

FHS Fast Handshake; a mode of the Word Serial Protocol which uses the VXIbus signals
DTACK* and BERR* for synchronization instead of the Response register bits.

FIFO First In-First Out; a method of data storage in which the first element stored is the first
one retrieved.

G

GPIB General Purpose Interface Bus; the industry-standard IEEE 488 bus.

GPIO General Purpose Input Output, a module within the National Instruments TIC chip which
is used for two purposes. First, GPIOs are used for connecting external signals to the TIC
chip for routing/conditioning to the VXIbus trigger lines. Second, GPIOs are used as part
of a crosspoint switch matrix.

H

handshaking A type of protocol that makes it possible for two devices to synchronize operations.

hardware context The hardware setting for address space, access privilege, and byte ordering.

Glossary

© National Instruments Corporation G-5 NI-VXI Software Reference Manual for C

hex Hexadecimal; the numbering system with base 16, using the digits 0 to 9 and letters A
to F.

high-level Programming with instructions in a notation more familiar to the user than machine code.
Each high-level statement corresponds to several low-level machine code instructions and
is machine-independent, meaning that it is portable across many platforms.

Hz Hertz; a measure of cycles per second.

I

IACK Interrupt Acknowledge

IEEE Institute of Electrical and Electronics Engineers

IEEE 1014 The VME specification.

IEEE 488 Standard 488-1978, which defines the GPIB. Its full title is IEEE Standard Digital
Interface for Programmable Instrumentation . Also referred to as IEEE 488.1 since the
adoption of IEEE 488.2.

IEEE 488.2 A supplemental standard for GPIB. Its full title is Codes, Formats, Protocols and
Common Commands .

I/O Input/output; the techniques, media, or devices used to achieve communication between
entities.

INT8 An 8-bit signed integer; may also be called a char.

INT16 A 16-bit signed integer; may also be called a short integer or word .

INT32 A 32-bit signed integer; may also be called a long or longword.

interrupt A means for a device to notify another device that an event occurred.

interrupt handler A functional module that detects interrupt requests generated by interrupters and
performs appropriate actions.

interrupter A device capable of asserting interrupts and responding to an interrupt acknowledge
cycle.

INTX Interrupt and Timing Extension; a daughter card option for MXI mainframe extenders
that extends interrupt lines and reset signals on VME boards. On VXI boards it also
extends trigger lines and the VXIbus CLK10 signal.

K

KB 1,024 or 210

kilobyte A thousand bytes.

L

LF Linefeed; the ASCII character 0Ah.

Glossary

NI-VXI Software Reference Manual for C G-6 © National Instruments Corporation

logical address An 8-bit number that uniquely identifies the location of each VXIbus device's
configuration registers in a system. The A16 register address of a device is
C000h + Logical Address * 40h.

longword Data type of 32-bit integers.

Longword Serial A form of Word Serial communication in which Commanders and Servants communicate
Protocol with 32-bit data transfers instead of 16-bit data transfers as in the normal Word Serial

Protocol.

low-level Programming at the system level with machine-dependent commands.

M

MB 1,048,576 or 220

mapping Establishing a range of address space for a one-to-one correspondence between each
address in the window and an address in VXIbus memory.

master A functional part of a MXI/VME/VXIbus device that initiates data transfers on the
backplane. A transfer can be either a read or a write.

megabyte A million bytes.

Message-Based device An intelligent device that implements the defined VXIbus registers and communication
protocols. These devices are able to use Word Serial Protocol to communicate with one
another through communication registers.

Memory Class device A VXIbus device that, in addition to configuration registers, has memory in VME A24 or
A32 space that is accessible through addresses on the VME/VXI data transfer bus.

MODID A set of 13 signal lines on the VXI backplane that VXI systems use to identify which
modules are located in which slots in the mainframe.

MQE Multiple Query Error; a type of Word Serial Protocol error. If a Commander sends two
Word Serial queries to a Servant without reading the response to the first query before
sending the second query, a MQE is generated.

multitasking The ability of a computer to perform two or more functions simultaneously without
interference from one another. In operating system terms, it is the ability of the operating
system to execute multiple applications/processes by time-sharing the available CPU
resources.

MXIbus Multisystem eXtension Interface Bus; a high-performance communication link that
interconnects devices using round, flexible cables.

N

NI-VXI The National Instruments bus interface software for VME/VXIbus systems.

nonprivileged access One of the defined types of VMEbus data transfers; indicated by certain address modifier
codes. Each of the defined VMEbus address spaces has a defined nonprivileged access
mode.

NULL A special value to denote that the contents (usually of a pointer) are invalid or zero.

Glossary

© National Instruments Corporation G-7 NI-VXI Software Reference Manual for C

O

octal Numbering system with base 8, using numerals 0 to 7.

P

parse The act of interpreting a string of data elements as a command to perform a device-
specific action.

peek To read the contents.

pointer A data structure that contains an address or other indication of storage location.

poke To write a value.

privileged access See Supervisory Access.

propagation Passing of signal through a computer system.

protocol Set of rules or conventions governing the exchange of information between computer
systems.

Q

query Like command, causes a device to take some action, but requires a response containing
data or other information. A command does not require a response.

queue A group of items waiting to be acted upon by the computer. The arrangement of the
items determines their processing priority. Queues are usually accessed in a FIFO
fashion.

R

read To get information from any input device or file storage media.

register A high-speed device used in a CPU for temporary storage of small amounts of data or
intermediate results during processing.

Register-Based device A Servant-only device that supports only the four basic VXIbus configuration registers.
Register-Based devices are typically controlled by Message-Based devices via device-
dependent register reads and writes.

REQF Request False; a VXI Event condition transferred using either VXI signals or VXI
interrupts, indicating that a Servant no longer has a need for service.

REQT Request True; a VXI Event condition transferred using either VXI signals or VXI
interrupts, indicating that a Servant has a need for service.

resman The name of the National Instruments Resource Manager application in the NI-VXI bus
interface software. See Resource Manager.

Resource Manager A Message-Based Commander located at Logical Address 0, which provides
configuration management services such as address map configuration, Commander and
Servant mappings, and self-test and diagnostic management.

Glossary

NI-VXI Software Reference Manual for C G-8 © National Instruments Corporation

Response signal Used to report changes in Word Serial communication status between a Servant and its
Commander.

ret Return value.

RM See Resource Manager.

ROAK Release On Acknowledge; a type of VXI interrupter which always deasserts its interrupt
line in response to an IACK cycle on the VXIbus. All Message-Based VXI interrupters
must be ROAK interrupters.

ROR Release On Request; a type of VME bus arbitration where the current VMEbus master
relinquishes control of the bus only when another bus master requests the VMEbus.

RORA Release On Register Access; a type of VXI/VME interrupter which does not deassert its
interrupt line in response to an IACK cycle on the VXIbus. A device-specific register
access is required to remove the interrupt condition from the VXIbus. The VXI
specification recommends that VXI interrupters be only ROAK interrupters.

RR Read Ready; a bit in the Response register of a Message-Based device used in Word
Serial Protocol indicating that a response to a previously sent query is pending.

RRviol Read Ready protocol violation; a type of Word Serial Protocol error. If a Commander
attempts to read a response from the Data Low register when the device is not Read
Ready (does not have a response pending), a Read Ready violation may be generated.

rsv Request Service; a bit in the status byte of an IEEE 488.1 and 488.2 device indicating a
need for service. In VXI, whenever a new need for service arises, the rsv bit should be
set and the REQT signal sent to the Commander. The rsv bit should be automatically
deasserted when the Word Serial Read Status Byte query is sent.

S

s Seconds

SEMI-SYNC Protocol A one-line, open collector, multiple-device handshake trigger protocol.

Servant A device controlled by a Commander.

setting To place a binary cell into the 1 (non-zero) state.

Shared Memory Protocol A communications protocol for Message-Based devices that uses a block of memory that
is accessible to both a client and a server. The memory block acts as the medium for the
protocol transmission.

short integer Data type of 16 bits, same as word .

signal Any communication between Message-Based devices consisting of a write to a Signal
register. Sending a signal requires that the sending device have VMEbus master
capability.

signed integer n bit pattern, interpreted such that the range is from -2(n-1) to +2(n-1) -1.

slave A functional part of a MXI/VME/VXIbus device that detects data transfer cycles initiated
by a VMEbus master and responds to the transfers when the address specifies one of the
device's registers.

Glossary

© National Instruments Corporation G-9 NI-VXI Software Reference Manual for C

SMP See Shared Memory Protocol .

SRQ Service Request

status/ID A value returned during an IACK cycle. In VME, usually an 8-bit value which is either a
status/data value or a vector/ID value used by the processor to determine the source. In
VXI, a 16-bit value used as a data; the lower 8 bits form the VXI logical address of the
interrupting device and the upper 8 bits specify the reason for interrupting.

STST START/STOP trigger protocol; a one-line, multiple-device protocol which can be
sourced only by the VXI Slot 0 device and sensed by any other device on the VXI
backplane.

supervisory access One of the defined types of VMEbus data transfers; indicated by certain address modifier
codes.

synchronous A communications system that follows the command/response cycle model. In this
communications model, a device issues a command to another device; the second device executes the

command and then returns a response. Synchronous commands are executed in the order
they are received.

SYNC Protocol The most basic trigger protocol, simply a pulse of a minimum duration on any one of the
trigger lines.

SYSFAIL* A VMEbus signal that is used by a device to indicate an internal failure. A failed device
asserts this line. In VXI, a device that fails also clears its PASSed bit in its Status
register.

SYSRESET* A VMEbus signal that is used by a device to indicate a system reset or power-up
condition.

system clock driver A VMEbus functional module that provides a 16 MHz timing signal on the utility bus.

System Controller A functional module that has arbiter, daisy-chain driver, and MXIbus cycle timeout
responsibility. Always the first device in the MXIbus daisy-chain.

system hierarchy The tree structure of the Commander/Servant relationships of all devices in the system at
a given time. In the VXIbus structure, each Servant has a Commander. A Commander
can in turn be a Servant to another Commander.

T

TIC Trigger Interface Chip; a proprietary National Instruments ASIC used for direct access to
the VXI trigger lines. The TIC contains a 16-bit counter, a dual 5-bit tick timer, and a
full crosspoint switch.

tick The smallest unit of time as measured by an operating system.

trigger Either TTL or ECL lines used for intermodule communication.

tristated Defines logic that can have one of three states: low, high, and high-impedance.

TTL Transistor-Transistor Logic

Glossary

NI-VXI Software Reference Manual for C G-10 © National Instruments Corporation

U

unasserted A signal in its inactive false state.

UINT8 An 8-bit unsigned integer; may also be called an unsigned char .

UINT16 A 16-bit unsigned integer; may also be called an unsigned short or word .

UINT32 A 32-bit unsigned integer; may also be called an unsigned long or longword.

unsigned integer n bit pattern interpreted such that the range is from 0 to 2n -1.

UnSupCom Unsupported Command; a type of Word Serial Protocol error. If a Commander sends a
command or query to a Servant which the Servant does not know how to interpret, an
Unsupported Command protocol error is generated.

V

VME Versa Module Eurocard or IEEE 1014

VMEbus Class device Also called non-VXIbus or foreign devices when found in VXIbus systems. They lack
the configuration registers required to make them VXIbus devices.

VIC VXI Interactive Control program, a part of the NI-VXI bus interface software package.
Used to program VXI devices, and develop and debug VXI application programs. Called
VICtext when used on text-based platforms.

void In the C language, a generic data type that can be cast to any specific data type.

VXIbus VMEbus Extensions for Instrumentation

vxiedit VXI Resource Editor program, a part of the NI-VXI bus interface software package.
Used to configure the system, edit the manufacturer name and ID numbers, edit the
model names of VXI and non-VXI devices in the system, as well as the system interrupt
configuration information, and display the system configuration information generated by
the Resource Manager. Called vxitedit when used on text-based platforms.

W

Word Serial Protocol The simplest required communication protocol supported by Message-Based devices in
the VXIbus system. It utilizes the A16 communication registers to perform 16-bit data
transfers using a simple polling handshake method.

word A data quantity consisting of 16 bits.

write Copying data to a storage device.

WR Write Ready; a bit in the Response register of a Message-Based device used in Word
Serial Protocol indicating the ability for a Servant to receive a single command/query
written to its Data Low register.

WRviol Write Ready protocol violation; a type of Word Serial Protocol error. If a Commander
attempts to write a command or query to a Servant that is not Write Ready (already has a
command or query pending), a Write Ready protocol violation may be generated.

WSP See Word Serial Protocol.

© National Instruments Corporation I-1 NI-VXI Software Reference Manual for C

Index

A

accepting capabilities, TIC chip, 11-8

acceptor trigger functions. See VXI trigger functions.

access privileges

Access Only Privilege, 6-3

access privilege vs. interrupt service routines, 6-3

GetPrivilege function, 6-5, 6-9

Owner Privilege, 6-2

SetPrivilege function, 6-5, 6-19

AcknowledgeTrig function

description of, 11-15

functional overview, 11-12

AcknowledgeVXIint function

description of, 10-6

functional overview, 10-5

AssertSysreset function

description of, 12-6

functional overview, 12-4

AssertVXIint function

description of, 10-7

functional overview, 10-5

ASYNC trigger protocol, 11-1

asynchronous events and interrupts, 1-3

B

beginning and end, 2-8. See also CloseVXIlibrary,

InitVXIlibrary.

binary compatibility, 2-7

busacc.h file, 2-7

byte/word order functions

GetByteOrder, 6-6, 6-7

SetByteOrder, 6-5, 6-17

C

calling syntax, 2-2

CloseVXIlibrary function. See also beginning and end.

description of, 3-4

functional overview, 3-1

combination options, TIC chip, 11-9

Commander

Commander/Servant hierarchies, 1-3

interrupts and asynchronous events, 1-3

Commander Word Serial Protocol functions

overview, 2-1, 2-9, 4-1

programming considerations

interrupt service routine support, 4-2

multitasking support (non-preemptive),

4-2 to 4-3

real-time multitasking support (preemptive),

4-3 to 4-4

single-tasking operating system support, 4-2

special types of transfers, 4-1

types of transfers, 4-1

WSabort

description of, 4-8

functional overview, 4-6

WSclr

description of, 4-9

functional overview, 4-6

WScmd

description of, 4-10

functional overview, 4-5

WSEcmd

description of, 4-11

functional overview, 4-7

WSgetTmo

description of, 4-13

functional overview, 4-7

WSLcmd

description of, 4-14

functional overview, 4-6

WSLresp

description of, 4-15

functional overview, 4-7

WSrd

description of, 4-16 to 4-17

functional overview, 4-5

WSrdf

description of, 4-18 to 4-19

functional overview, 4-5

WSresp

description of, 4-20

functional overview, 4-6

WSsetTmo

description of, 4-21

functional overview, 4-7

WStrg

description of, 4-22

functional overview, 4-6

Index

NI-VXI Software Reference Manual for C I-2 © National Instruments Corporation

WSwrt

description of, 4-23 to 4-24

functional overview, 4-5

WSwrtf

description of, 4-25 to 4-26

functional overview, 4-5

communication protocols

Commander/Servant hierarchies, 1-3

IEEE 488 protocol, 1-2 to 1-3

interrupts and asynchronous events, 1-3

Word Serial Protocol, 1-2 to 1-3

configuration functions. See system configuration

functions.

configuration options, TIC chip, 11-9

configuration registers for VXI, 1-1

context functions. See low-level VXIbus access

functions.

controller parameters, 2-5

CreateDevInfo function

description of, 3-5

functional overview, 3-3

customer communication, xv , A-1

D

datasize.h file, 2-7

DeAssertVXIint function

description of, 10-8

functional overview, 10-5

debug functions

WSLresp function, 4-7, 4-15

WSresp function, 4-6, 4-20

DefaultACfailHandler function

description of, 12-25

functional overview, 12-3

DefaultBusErrorHandler function

description of, 12-25

functional overview, 12-5

DefaultSignalHandler function

description of, 9-17

functional overview, 9-4

DefaultSoftResetHandler function

description of, 12-25

functional overview, 12-4

DefaultSysfailHandler function

description of, 12-26

functional overview, 12-2

DefaultSysresetHandler function

description of, 12-26

functional overview, 12-4

DefaultTrigHandler function

description of, 11-36

functional overview, 11-10, 11-12

DefaultTrigHandler2 function

description of, 11-37

functional overview, 11-11, 11-12

DefaultVXIintHandler function

description of, 10-17

functional overview, 10-5

DefaultWSScmdHandler function

description of, 5-29

functional overview, 5-5

DefaultWSSEcmdHandler function

description of, 5-30

functional overview, 5-6

DefaultWSSLcmdHandler function

description of, 5-31

functional overview, 5-5

DefaultWSSrdHandler function

description of, 5-31

functional overview, 5-4

DefaultWSSwrtHandler function

description of, 5-32

functional overview, 5-4

device information functions. See system configuration

functions.

devinfo.h file, 2-7, 2-8

DisableACfail function

description of, 12-7

functional overview, 12-2

DisableSignalInt function

description of, 9-5

functional overview, 9-3

DisableSoftReset function

description of, 12-8

functional overview, 12-3

DisableSysfail function

description of, 12-9

functional overview, 12-1

DisableSysreset function

description of, 12-10

functional overview, 12-4

DisableTrigSense function

description of, 11-17

functional overview, 11-11

DisableVXIint function

description of, 10-9

functional overview, 10-4

DisableVXItoSignalInt function

description of, 10-10

functional overview, 10-4

documentation

conventions used in the manual, xiv

Index

© National Instruments Corporation I-3 NI-VXI Software Reference Manual for C

organization of manual, xiii -xiv

related documentation, xv

E

embedded and external controller (with TIC chip),

11-3 to 11-9

accepting, 11-8

combination options, 11-9

General Purpose I/O (GPIO) module block

diagram, 11-6

mapping/conditioning, 11-8 to 11-9

setup/configuration options, 11-9

sourcing, 11-6 to 11-7

TIC chip block diagram, 11-4

trigger module block diagram, 11-5

embedded controller trigger capabilities (without TIC

chip), 11-3

embedded CPU (controller) mainframe configuration,

2-3 to 2-4

EnableACfail function

description of, 12-11

functional overview, 12-2

EnableSignalInt function

functional overview, 9-3

description of, 9-6

EnableSoftReset function

description of, 12-12

functional overview, 12-3

EnableSysfail function

description of, 12-13

functional overview, 12-1

EnableSysreset function

description of, 12-14

functional overview, 12-4

EnableTrigSense function

description of, 11-18

functional overview, 11-11

EnableVXIint function

description of, 10-11

functional overview, 10-4

EnableVXItoSignalInt function

description of, 10-12

functional overview, 10-3

error functions

GenProtError, 5-7, 5-8

RespProtError, 5-7, 5-14

errors

return parameters and system errors, 2-3

Word Serial Protocol errors, 4-1

extended CPU (controller) mainframe configuration

embedded vs. external and extended controllers,

2-3 to 2-4

extender vs. controller parameters, 2-5

Extended Longword Serial protocol, 2-9, 4-1, 5-1

extender functions. See VXIbus functions.

external controller/VXI-MXI trigger capabilities

(without TIC chip), 11-2

external CPU (controller) mainframe configuration,

2-3 to 2-4

F

FindDevLA function. See also useful tools.

description of, 3-6 to 3-7

functional overview, 3-2

functions. See also Commander Word Serial Protocol

functions; high-level VXIbus access functions;

local resource access functions; low-level VXIbus

access functions; Servant Word Serial Protocol

functions; system configuration functions; system

interrupt handler functions; VXI interrupt

functions; VXI signal functions; VXI trigger

functions; VXIbus extender functions.

calling syntax, 2-2

input vs. output parameters, 2-3

multiple mainframes

embedded vs. external and extended controllers,

2-3 to 2-4

extender vs. controller parameters, 2-5

NI-VXI portability, 2-6

support for, 2-3

overview of functions, 2-1 to 2-2

return parameters and system errors, 2-3

type definitions, 2-3

G

general purpose I/O (GPIO) module block

diagram, 11-6

GenProtError function

description of, 5-8

functional overview, 5-7

GetACfailHandler function

description of, 12-15

functional overview, 12-2

GetBusErrorHandler function

description of, 12-16

functional overview, 12-5

GetByteOrder function

description of, 6-7

functional overview, 6-6

Index

NI-VXI Software Reference Manual for C I-4 © National Instruments Corporation

GetContext function

description of, 6-8

functional overview, 6-5

GetDevInfo function

description of, 3-8 to 3-9

functional overview, 3-2

GetDevInfoLong function

description of, 3-10

functional overview, 3-2

GetDevInfoShort function

description of, 3-11 to 3-12

functional overview, 3-2

GetDevInfoStr function

description of, 3-13

functional overview, 3-2

GetMyLA function

description of, 8-3

functional overview, 8-1

GetPrivilege function

description of, 6-9

functional overview, 6-5

GetSignalHandler function

description of, 9-7

functional overview, 9-4

GetSoftResetHandler function

description of, 12-17

functional overview, 12-3

GetSysfailHandler function

description of, 12-18

functional overview, 12-2

GetSysresetHandler function

description of, 12-19

functional overview, 12-4

GetTrigHandler function

description of, 11-20

functional overview, 11-10, 11-11

GetVXIbusStatus function

description of, 6-10

functional overview, 6-6

GetVXIbusStatusInd function

description of, 6-11

functional overview, 6-6

GetVXIintHandler function

description of, 10-13

functional overview, 10-5

GetWindowRange function

description of, 6-12

functional overview, 6-4

GetWSScmdHandler function

description of, 5-9

functional overview, 5-5

GetWSSEcmdHandler function

description of, 5-10

functional overview, 5-6

GetWSSLcmdHandler function

description of, 5-11

functional overview, 5-5

GetWSSrdHandler function

description of, 5-12

functional overview, 5-4

GetWSSwrtHandler function

description of, 5-13

functional overview, 5-4

GPIO (general purpose I/O module) block

diagram, 11-6

H

hardware capabilities. See triggering hardware

capabilities.

hardware (window) context, 6-2

high-level VXIbus access functions. See also busacc.h

file; master memory access.

compared with low-level VXIbus access functions,

6-1, 7-1

constants and macros for, 2-7

overview, 2-1, 7-1

programming considerations, 7-1

VXIin

description of, 7-3 to 7-4

functional overview, 7-2

VXIinReg

description of, 7-5

functional overview, 7-2

VXImove

description of, 7-6 to 7-7

functional overview, 7-2

VXIout

description of, 7-8 to 7-9

functional overview, 7-2

VXIoutReg

description of, 7-10

functional overview, 7-2

I

InitVXIlibrary function. See also beginning and end.

description of, 3-14

functional overview, 3-1

input vs. output parameters, 2-3

interrupt functions. See system interrupt handler

functions; VXI interrupt functions.

interrupts

Commander Word Serial Protocol functions and,

4-2

Index

© National Instruments Corporation I-5 NI-VXI Software Reference Manual for C

compared with signals, 2-12, 10-1

interrupt service routines, 6-3

interrupts and asynchronous events, 1-3

methods for handling, 10-1

NI-VXI VXI interrupt and signal model, 9-2, 10-2

ROAK versus RORA VXI interrupters,

10-2 to 10-3

L

LabWindows/CVI, 2-2

local resource access functions. See also slave memory

access.

definition of, 8-1

GetMyLA

description of, 8-3

functional overview, 8-1

overview, 2-1

ReadMODID

description of, 8-4

functional overview, 8-2

SetMODID

description of, 8-5

functional overview, 8-2

VXIinLR

description of, 8-6

functional overview, 8-1

VXImemAlloc

description of, 8-7

functional overview, 8-2

VXImemCopy

description of, 8-8 to 8-9

functional overview, 8-2

VXImemFree

description of, 8-10

functional overview, 8-2

VXIoutLR

description of, 8-11

functional overview, 8-1

Longword Serial protocol, 2-9, 4-1, 5-1

low-level VXIbus access functions. See also busacc.h

file, master memory access.

compared with high-level VXIbus access

functions, 6-1, 7-1

constants and macros for, 2-7

GetByteOrder

description of, 6-7

functional overview, 6-6

GetContext

description of, 6-8

functional overview, 6-5

GetPrivilege

description of, 6-9

functional overview, 6-5

GetVXIbusStatus

description of, 6-10

functional overview, 6-6

GetVXIbusStatusInd

description of, 6-11

functional overview, 6-6

GetWindowRange

description of, 6-12

functional overview, 6-4

MapVXIAddress

description of, 6-13 to 6-14

functional overview, 6-3

overview, 2-1, 6-1

programming considerations, 6-1 to 6-3

Access Only Privilege, 6-3

access privileges vs. interrupt service routines,

6-3

multiple pointer access for windows, 6-2

Owner Privilege, 6-2

RestoreContext

description of, 6-15

functional overview, 6-5

SaveContext

description of, 6-16

functional overview, 6-4

SetByteOrder

description of, 6-17

functional overview, 6-5

SetContext

description of, 6-18

functional overview, 6-5

SetPrivilege

description of, 6-19

functional overview, 6-5

UnMapVXIAddress

description of, 6-20

functional overview, 6-4

VXIpeek

description of, 6-21

functional overview, 6-4

VXIpoke

description of, 6-22

functional overview, 6-4

M

mainframe support. See multiple mainframes.

map trigger functions. See VXI trigger functions.

Index

NI-VXI Software Reference Manual for C I-6 © National Instruments Corporation

MapECLtrig function

description of, 13-3

functional overview, 13-1

mapping/conditioning, TIC chip, 11-8 to 11-9

MapTrigToTrig function

description of, 11-21 to 11-22

functional overview, 11-13

MapTTLtrig function

description of, 13-4

functional overview, 13-1

MapUtilBus function

description of, 13-5

functional overview, 13-1

MapVXIAddress function

description of, 6-13 to 6-14

functional overview, 6-3

MapVXIint function

description of, 13-6

functional overview, 13-2

master memory access, 2-9 to 2-11. See also high-level

VXIbus access functions; low-level VXIbus access

functions.

memory access functions. See high-level VXIbus access

functions; low-level VXIbus access functions.

memory resource functions. See local resource access

functions.

Message-Based devices

definition and overview, 1-2

types of VXI signals, 9-1

types of VXI status/ID values, 10-1

multiple mainframes

embedded vs. external and extended controllers,

2-3 to 2-4

extender vs. controller parameters, 2-5

NI-VXI function support of, 2-3

portability of configurations, 2-6

multiple pointer access for windows, 6-2 to 6-3

Multisystem eXtension Interface (MXIbus) 1-3

multitasking support

non-preemptive operating systems, 4-2 to 4-3

real-time multitasking support (preemptive),

4-3 to 4-4

MXIbus, 1-3

N

National Instruments triggering hardware.

See triggering hardware capabilities.

NI-VXI functions. See functions.

non-preemptive operating system support, 4-2 to 4-3

P

parameters

extender vs. controller parameters, 2-5

input vs. output parameters, 2-3

return parameters and system errors, 2-3

type definitions, 2-3

peer-to-peer communication, 1-3

portability of NI-VXI mainframe configurations,

2-6

preemptive operating system support, 4-3 to 4-4

privileges. See access privileges.

programming considerations

beginning and end, 2-8

Commander Word Serial Protocol functions,

4-2 to 4-4

high-level VXIbus access functions, 7-1

low-level VXIbus access functions, 6-1 to 6-3

Servant Word Serial Protocol functions, 5-2

VXI interrupt functions, 10-2 to 10-3

VXI signal functions, 9-1 to 9-2

protocols. See communication protocols; trigger

protocols.

R

readme file, 2-7

ReadMODID function

description of, 8-4

functional overview, 8-2

real-time multitasking support (preemptive operating

system), 4-3 to 4-4

Register-Based devices, 1-2

Release On Acknowledge (ROAK) interrupters,

10-2 to 10-3

Release On Register Access (RORA) interrupters,

10-2 to 10-3

resource functions. See local resource access functions.

RespProtError function

description of, 5-14

functional overview, 5-7

RestoreContext function

description of, 6-15

functional overview, 6-5

return parameters and system errors, 2-3

ROAK and RORA VXI interrupters, 10-2 to 10-3

round robining of Commander Word Serial function calls,

4-3, 4-4

RouteSignal function

description of, 9-8 to 9-9

functional overview, 9-3

Index

© National Instruments Corporation I-7 NI-VXI Software Reference Manual for C

RouteVXIint function

description of, 10-14

functional overview, 10-3

S

SaveContext function

description of, 6-16

functional overview, 6-4

SEMI-SYNC trigger protocol, 11-1

Servant Word Serial Protocol functions

DefaultWSScmdHandler

description of, 5-28

functional overview, 5-5

DefaultWSSEcmdHandler

description of, 5-30

functional overview, 5-6

DefaultWSSLcmdHandler

description of, 5-31

functional overview, 5-5

DefaultWSSrdHandler

description of, 5-31

functional overview, 5-4

DefaultWSSwrtHandler

description of, 5-32

functional overview, 5-4

GenProtError

description of, 5-8

functional overview, 5-7

GetWSScmdHandler

description of, 5-9

functional overview, 5-5

GetWSSEcmdHandler

description of, 5-10

functional overview, 5-6

GetWSSLcmdHandler

description of, 5-11

functional overview, 5-5

GetWSSrdHandler

description of, 5-12

functional overview, 5-3

GetWSSwrtHandler

description of, 5-13

functional overview, 5-4

overview, 2-1, 2-9, 5-1

programming considerations, 5-2

RespProtError

description of, 5-14

functional overview, 5-7

SetWSScmdHandler

description of, 5-15

functional overview, 5-4

SetWSSEcmdHandler

description of, 5-16

functional overview, 5-6

SetWSSLcmdHandler

description of, 5-17

functional overview, 5-5

SetWSSrdHandler

description of, 5-18

functional overview, 5-3

SetWSSwrtHandler

description of, 5-19

functional overview, 5-4

types of functions, 5-1

WSSabort

description of, 5-20

functional overview, 5-7

WSSdisable

description of, 5-21

functional overview, 5-3

WSSenable

description of, 5-22

functional overview, 5-3

WSSLnoResp

description of, 5-23

functional overview, 5-6

WSSLsendResp

description of, 5-24

functional overview, 5-6

WSSnoResp

description of, 5-25

functional overview, 5-5

WSSrd

description of, 5-26

functional overview, 5-3

WSSsendResp

description of, 5-27

functional overview, 5-5

WSSwrt

description of, 5-28

functional overview, 5-4

Servants

Commander/Servant hierarchies, 1-3

interrupts and asynchronous events, 1-3

SetACfailHandler function

description of, 12-20

functional overview, 12-2

SetBusErrorHandler function

description of, 12-21

functional overview, 12-5

SetByteOrder function

description of, 6-17

functional overview, 6-5

Index

NI-VXI Software Reference Manual for C I-8 © National Instruments Corporation

SetContext function

description of, 6-18

functional overview, 6-5

SetDevInfo function

description of, 3-15 to 3-16

functional overview, 3-2

SetDevInfoLong function

description of, 3-17

functional overview, 3-3

SetDevInfoShort function

description of, 3-18 to 3-19

functional overview, 3-3

SetDevInfoStr function

description of, 3-20

functional overview, 3-3

SetMODID function

description of, 8-5

functional overview, 8-2

SetPrivilege function

description of, 6-19

functional overview, 6-5

SetSignalHandler function

description of, 9-10

functional overview, 9-3

SetSoftResetHandler function

description of, 12-22

functional overview, 12-3

SetSysfailHandler function

description of, 12-23

functional overview, 12-1

SetSysresetHandler function

description of, 12-24

functional overview, 12-4

SetTrigHandler function

description of, 11-23

functional overview, 11-10, 11-11

setup/configuration options, TIC chip, 11-9

SetVXIintHandler function

description of, 10-15

functional overview, 10-4

SetWSScmdHandler function

description of, 5-15

functional overview, 5-4

SetWSSEcmdHandler function

description of, 5-16

functional overview, 5-6

SetWSSLcmdHandler function

description of, 5-17

functional overview, 5-5

SetWSSrdHandler function

description of, 5-18

functional overview, 5-3

SetWSSwrtHandler function

description of, 5-19

functional overview, 5-4

sharing resources, 2-11

signal functions. See VXI signal functions.

SignalDeq function

description of, 9-11 to 9-12

functional overview, 9-4

SignalEnq function

description of, 9-13

functional overview, 9-4

SignalJam function

description of, 9-14

functional overview, 9-4

signals

compared with interrupts, 2-12, 10-1

signal functions. See VXI signal functions.

signal queuing, 9-1 to 9-2

single-tasking operating system support, 4-2

slave memory access, 2-11

source trigger functions. See VXI trigger functions.

sourcing of TIC chip, 11-6 to 11-7

SrcTrig function

description of, 11-24 to 11-25

functional overview, 11-10

START/STOP trigger protocol, 11-1

SYNC trigger protocol, 11-1

system configuration functions

CloseVXIlibrary

description of, 3-4

functional overview, 3-1

CreateDevInfo

description of, 3-5

functional overview, 3-3

FindDevLA

description of, 3-6 to 3-7

functional overview, 3-2

GetDevInfo

description of, 3-8 to 3-9

functional overview, 3-2

GetDevInfoLong

description of, 3-10

functional overview, 3-2

GetDevInfoShort

description of, 3-11 to 3-12

functional overview, 3-2

GetDevInfoStr

description of, 3-13

functional overview, 3-2

InitVXIlibrary

description of, 3-14

functional overview, 3-1

overview, 2-1. See also devinfo.h file; beginning and

end; useful tools.

Index

© National Instruments Corporation I-9 NI-VXI Software Reference Manual for C

SetDevInfo

description of, 3-15 to 3-16

functional overview, 3-2

SetDevInfoLong

description of, 3-17

functional overview, 3-3

SetDevInfoShort

description of, 3-18 to 3-19

functional overview, 3-3

SetDevInfoStr

description of, 3-20

functional overview, 3-3

system errors, 2-3

system interrupt handler functions

AssertSysreset

description of, 12-6

functional overview, 12-4

DefaultACfailHandler

description of, 12-25

functional overview, 12-3

DefaultBusErrorHandler

description of, 12-25

functional overview, 12-5

DefaultSoftResetHandler

description of, 12-25

functional overview, 12-4

DefaultSysfailHandler

description of, 12-26

functional overview, 12-2

DefaultSysresetHandler

description of, 12-26

functional overview, 12-4

DisableACfail

description of, 12-7

functional overview, 12-2

DisableSoftReset

description of, 12-8

functional overview, 12-3

DisableSysfail

description of, 12-9

functional overview, 12-1

DisableSysreset

description of, 12-10

functional overview, 12-4

EnableACfail

description of, 12-11

functional overview, 12-2

EnableSoftReset

description of, 12-12

functional overview, 12-3

EnableSysfail

description of, 12-13

functional overview, 12-1

EnableSysreset

description of, 12-14

functional overview, 12-4

GetACfailHandler

description of, 12-15

functional overview, 12-2

GetBusErrorHandler

description of, 12-16

functional overview, 12-5

GetSoftResetHandler

description of, 12-17

functional overview, 12-3

GetSysfailHandler

description of, 12-18

functional overview, 12-2

GetSysresetHandler

description of, 12-19

functional overview, 12-4

overview, 2-2

SetACfailHandler

description of, 12-20

functional overview, 12-2

SetBusErrorHandler

description of, 12-21

functional overview, 12-5

SetSoftResetHandler

description of, 12-22

functional overview, 12-3

SetSysfailHandler

description of, 12-23

functional overview, 12-1

SetSysresetHandler

description of, 12-24

functional overview, 12-4

T

technical support, A-1

TIC chip. See Trigger Interface Chip (TIC).

TrigAssertConfig function

description of, 11-26 to 11-27

functional overview, 11-13

TrigCntrConfig function

description of, 11-28 to 11-29

functional overview, 11-14

TrigExtConfig function

description of, 11-30 to 11-31

functional overview, 11-13

trigger configuration functions. See VXI trigger

functions.

trigger functions. See VXI trigger functions.

Trigger Interface Chip (TIC)

Index

NI-VXI Software Reference Manual for C I-10 © National Instruments Corporation

accepting, 11-8

block diagram, 11-4

combination options, 11-9

definition of, 2-13, 11-3

general purpose I/O (GPIO) module block

diagram, 11-6

mapping/conditioning, 11-8 to 11-9

setup/configuration options, 11-9

sourcing, 11-6 to 11-7

trigger module block diagram, 11-5

trigger protocols

ASYNC, 11-1

SEMI-SYNC, 11-1

START/STOP, 11-1

SYNC, 11-1

triggering hardware capabilities, 11-2 to 11-9

embedded and external controller (with TIC chip),

11-3 to 11-9

accepting, 11-8

combination options, 11-9

General Purpose I/O (GPIO) module block

diagram, 11-6

mapping/conditioning, 11-8 to 11-9

setup/configuration options, 11-9

sourcing, 11-6 to 11-7

TIC chip block diagram, 11-4

trigger module block diagram, 11-5

embedded controller (without TIC chip), 11-3

external controller (without TIC chip), 11-2

overview, 2-13, 11-2

TrigTickConfig function

description of, 11-32 to 11-34

functional overview, 11-14

type definitions, 2-2, 2-7. See also datasize.h file.

U

UnMapTrigToTrig function

description of, 11-34

functional overview, 11-13

UnMapVXIAddress function

description of, 6-20

functional overview, 6-4

Using NI-VXI, 2-7 to 2-13

V

variable types, 2-7

VXI interrupt functions

AcknowledgeVXIint

description of, 10-6

functional overview, 10-5

AssertVXIint

description of, 10-7

functional overview, 10-5

DeAssertVXIint

description of, 10-8

functional overview, 10-5

DefaultVXIintHandler

description of, 10-17

functional overview, 10-5

DisableVXIint

description of, 10-9

functional overview, 10-4

DisableVXItoSignalInt

description of, 10-10

functional overview, 10-4

EnableVXIint

description of, 10-11

functional overview, 10-4

EnableVXItoSignalInt

description of, 10-12

functional overview, 10-3

GetVXIintHandler

description of, 10-13

functional overview, 10-5

overview, 2-2, 2-12, 10-1 to 10-2

programming considerations, 2-12, 10-2 to 10-3

RouteVXIint

description of, 10-14

functional overview, 10-3

SetVXIintHandler

description of, 10-15

functional overview, 10-4

VXIintAcknowledgeMode

description of, 10-16

functional overview, 10-4

VXI signal functions

DefaultSignalHandler

description of, 9-17

functional overview, 9-4

DisableSignalInt

description of, 9-5

functional overview, 9-3

EnableSignalInt

description of, 9-6

functional overview, 9-3

GetSignalHandler

description of, 9-7

functional overview, 9-4

overview, 2-1, 2-12, 9-1

programming considerations, 2-12, 9-1 to 9-2

RouteSignal

description of, 9-8 to 9-9

functional overview, 9-3

Index

© National Instruments Corporation I-11 NI-VXI Software Reference Manual for C

SetSignalHandler

description of, 9-10

functional overview, 9-3

SignalDeq

description of, 9-11 to 9-12

functional overview, 9-4

SignalEnq

description of, 9-13

functional overview, 9-4

SignalJam

description of, 9-14

functional overview, 9-4

WaitForSignal

description of, 9-15 to 9-16

functional overview, 9-4

VXI trigger functions

acceptor trigger functions, 11-11 to 11-12

AcknowledgeTrig

description of, 11-15 to 11-16

functional overview, 11-12

DefaultTrigHandler

description of, 11-36

functional overview, 11-10, 11-12

DefaultTrigHandler2

description of, 11-37

functional overview, 11-11, 11-12

DisableTrigSense

description of, 11-17

functional overview, 11-11

EnableTrigSense

description of, 11-18 to 11-19

functional overview, 11-11

GetTrigHandler

description of, 11-20

functional overview, 11-10, 11-11

map trigger functions, 11-12 to 11-13

MapTrigToTrig

description of, 11-21 to 11-22

functional overview, 11-13

National Instruments hardware capabilities,

11-2 to 11-9

embedded and external controller (with TIC

chip), 11-3 to 11-9

embedded controller (without TIC chip), 11-3

external controller (without TIC chip), 11-2

overview, 2-2, 11-1 to 11-2

protocols for

ASYNC, 11-1

SEMI-SYNC, 11-1

START/STOP, 11-1

SYNC, 11-1

SetTrigHandler

description of, 11-23

functional overview, 11-10, 11-11

source trigger functions, 11-10 to 11-11

SrcTrig

description of, 11-24 to 11-25

functional overview, 11-10

TrigAssertConfig

description of, 11-26 to 11-27

functional overview, 11-13

TrigCntrConfig

description of, 11-28 to 11-29

functional overview, 11-14

TrigExtConfig

description of, 11-30 to 11-31

functional overview, 11-13

trigger configuration functions, 11-13 to 11-14

TrigTickConfig

description of, 11-32 to 11-33

functional overview, 11-14

UnMapTrigToTrig

description of, 11-34

functional overview, 11-13

WaitForTrig

description of, 11-35

functional overview, 11-12

VXIbus

Commander/Servant hierarchies, 1-3

interrupts and asynchronous events, 1-3

Message-Based devices, 1-2

overview, 1-1 to 1-3

platforms supported, 1-1

Register-Based devices, 1-2

VXI devices, 1-1

Word Serial Protocol, 1-2 to 1-3

VXIbus extender functions

extender vs. controller parameters, 2-5

MapECLtrig

description of, 13-3

functional overview, 13-1

MapTTLtrig

description of, 13-4

functional overview, 13-1

MapUtilBus

description of, 13-5

functional overview, 13-1

MapVXIint

description of, 13-6

functional overview, 13-2

overview, 2-2

VXIin function

description of, 7-3 to 7-4

functional overview, 7-2

VXIinLR function

description of, 8-6

functional overview, 8-1

Index

NI-VXI Software Reference Manual for C I-12 © National Instruments Corporation

VXIinReg function

description of, 7-5

functional overview, 7-2

VXIintAcknowledgeMode function

description of, 10-16

functional overview, 10-4

VXImemAlloc function

description of, 8-7

functional overview, 8-2

VXImemCopy function

description of, 8-8

functional overview, 8-2

VXImemFree function

description of, 8-10

functional overview, 8-2

VXImove function

description of, 7-6 to 7-7

functional overview, 7-2

VXIout function

description of, 7-8 to 7-9

functional overview, 7-2

VXIoutLR function

description of, 8-11

functional overview, 8-1

VXIoutReg function

description of, 7-10

functional overview, 7-2

VXIpeek function

description of, 6-21

functional overview, 6-4

VXIpoke function

description of, 6-22

functional overview, 6-4

W

WaitForSignal function

description of, 9-15 to 9-16

functional overview, 9-4

programming considerations, 9-2

WaitForTrig function

description of, 11-35

functional overview, 11-12

window functions. See low-level VXIbus access

functions.

windows

access privileges, 6-3

definition of, 6-1

hardware (window) context, 6-2

multiple pointer access, 6-2 to 6-3

programming considerations, 6-1 to 6-2

window-base register, 6-1

Word Serial Protocol. See also Commander Word

Serial Protocol functions; Servant Word Serial

Protocol functions.

Commander/Servant communication, 1-3, 2-9

definition of, 1-2 to 1-3

interrupts and asynchronous events, 1-3

WSabort function

description of, 4-8

functional overview, 4-6

WSclr function

description of, 4-9

functional overview, 4-6

WScmd function

description of, 4-10

functional overview, 4-5

WSEcmd function

description of, 4-11 to 4-12

functional overview, 4-7

WSgetTmo function

description of, 4-13

functional overview, 4-7

WSLcmd function

description of, 4-14

functional overview, 4-6

WSLresp function

description of, 4-15

functional overview, 4-7

WSrd function

description of, 4-16 to 4-17

functional overview, 4-5

WSrdf function

description of, 4-18 to 4-19

functional overview, 4-5

WSresp function

description of, 4-20

functional overview, 4-6

WSSabort function

description of, 5-20

functional overview, 5-7

WSSdisable function

description of, 5-21

functional overview, 5-3

WSSenable function

description of, 5-22

functional overview, 5-3

WSsetTmo function

description of, 4-21

functional overview, 4-7

WSSLnoResp function

description of, 5-23

functional overview, 5-6

WSSLsendResp function

description of, 5-24

functional overview, 5-6

Index

© National Instruments Corporation I-13 NI-VXI Software Reference Manual for C

WSSnoResp function

description of, 5-25

functional overview, 5-5

WSSrd function

description of, 5-26

functional overview, 5-3

WSSsendResp function

description of, 5-27

functional overview, 5-5

WSSwrt function

description of, 5-28

functional overview, 5-4

WStrg function

description of, 4-22

functional overview, 4-6

WSwrt function

description of, 4-23 to 4-24

functional overview, 4-5

WSwrtf function

description of, 4-25 to 4-26

functional overview, 4-5

	NI-VXI ™Software Reference Manual for C
	Limited Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction to VXI
	About the NI-VXI Functions
	VXIbus Overview
	VXI Devices
	Register-Based Devices
	Message-Based Devices
	Word Serial Protocol
	Commander/Servant Hierarchies
	Interrupts and Asynchronous Events
	MXIbus Overview

	Chapter 2 Introduction to the NI-VXI Functions
	Calling Syntax
	LabWindows ®/CVI
	Type Definitions
	Input Versus Output Parameters
	Return Parameters and System Errors
	Multiple Mainframe Support
	Embedded Versus External and Extended Controllers
	The Extender Versus Controller Parameters
	NI-VXI Multiple Mainframe Portability
	Using NI-VXI
	Variable Types
	The datasize.h File
	The busacc.h File
	The devinfo.h File
	The Beginning and End
	Useful Tools
	Word Serial Communication
	Master Memory Access
	Slave Memory Access
	Interrupts and Signals
	Triggers

	Chapter 3 System Configuration Functions
	Functional Overview
	InitVXIlibrary ()
	CloseVXIlibrary ()
	FindDevLA (namepat, manid, modelcode, devclass, slot, mainframe, cmdrla, la)
	GetDevInfo (la, field, fieldvalue)
	GetDevInfoShort (la, field, shortvalue)
	GetDevInfoLong (la, field, longvalue)
	GetDevInfoStr (la, field, stringvalue)
	SetDevInfo (la, field, fieldvalue)
	SetDevInfoShort (la, field, shortvalue)
	SetDevInfoLong (la, field, longvalue)
	SetDevInfoStr (la, field, stringvalue)
	CreateDevInfo (la)
	Function Descriptions
	CloseVXIlibrary
	CreateDevInfo
	FindDevLA
	GetDevInfo
	GetDevInfoLong
	GetDevInfoShort
	GetDevInfoStr
	InitVXIlibrary
	SetDevInfo
	SetDevInfoLong
	SetDevInfoShort
	SetDevInfoStr

	Chapter 4 Commander Word Serial Protocol Functions
	Programming Considerations
	Interrupt Service Routine Support
	Single-Tasking Operating System Support
	Multitasking Support (Non-Preemptive Operating System)
	Real-Time Multitasking Support (Preemptive Operating System)
	Functional Overview
	WSrd (la, buf, count, mode, retcount)
	WSrdf (la, filename, count, mode, retcount)
	WSwrt (la, buf, count, mode, retcount)
	WSwrtf (la, filename, count, mode, retcount)
	WScmd (la, cmd, respflag, response)
	WSresp (la, response)
	WStrg (la)
	WSclr (la)
	WSabort (la, abortop)
	WSLcmd (la, cmd, respflag, response)
	WSLresp (la, response)
	WSEcmd (la, cmdExt, cmd, respflag, response)
	WSsetTmo (timo, actualtimo)
	WSgetTmo (actualtimo)
	Function Descriptions
	WSabort
	WSclr
	WScmd
	WSEcmd
	WSgetTmo
	WSLcmd
	WSLresp
	WSrd
	WSrdf
	WSresp
	WSsetTmo
	WStrg
	WSwrt
	WSwrtf

	Chapter 5 Servant Word Serial Protocol Functions
	Programming Considerations
	Functional Overview
	WSSenable ()
	WSSdisable ()
	WSSrd (buf, count, mode)
	SetWSSrdHandler (func)
	GetWSSrdHandler ()
	DefaultWSSrdHandler (status, count)
	WSSwrt (buf, count, mode)
	SetWSSwrtHandler (func)
	GetWSSwrtHandler ()
	DefaultWSSwrtHandler (status, count)
	SetWSScmdHandler (func)
	GetWSScmdHandler ()
	DefaultWSScmdHandler (cmd)
	WSSsendResp (response)
	WSSnoResp ()
	SetWSSLcmdHandler (func)
	GetWSSLcmdHandler ()
	DefaultWSSLcmdHandler (cmd)
	WSSLsendResp (response)
	WSSLnoResp ()
	SetWSSEcmdHandler (func)
	GetWSSEcmdHandler ()
	DefaultWSSEcmdHandler (cmdExt, cmd)
	WSSabort (abortop)
	GenProtError (proterr)
	RespProtError ()
	Function Descriptions
	GenProtError
	GetWSScmdHandler
	GetWSSEcmdHandler
	GetWSSLcmdHandler
	GetWSSrdHandler
	GetWSSwrtHandler
	RespProtError
	SetWSScmdHandler
	SetWSSEcmdHandler
	SetWSSLcmdHandler
	SetWSSrdHandler
	SetWSSwrtHandler
	WSSabort
	WSSdisable
	WSSenable
	WSSLnoResp
	WSSLsendResp
	WSSnoResp
	WSSrd
	WSSsendResp
	WSSwrt
	Default Handlers for the Servant Word Serial Functions
	DefaultWSScmdHandler
	DefaultWSSEcmdHandler
	DefaultWSSLcmdHandler
	DefaultWSSrdHandler
	DefaultWSSwrtHandler

	Chapter 6 Low-Level VXIbus Access Functions
	Programming Considerations
	Multiple Pointer Access for a Window
	Owner Privilege
	Access Only Privilege
	Owner and Access Only Privilege Versus Interrupt Service Routines
	Functional Overview
	MapVXIAddress (accessparms, address, timo, window, ret)
	UnMapVXIAddress (window)
	GetWindowRange (window, windowbase, windowend)
	VXIpeek (addressptr, width, value)
	VXIpoke (addressptr, width, value)
	SaveContext (contextlist)
	RestoreContext (contextlist)
	SetContext (window, context)
	GetContext (window, context)
	SetPrivilege (window, priv)
	GetPrivilege (window, priv)
	SetByteOrder (window, ordermode)
	GetByteOrder (window, ordermode)
	GetVXIbusStatus (controller, status)
	GetVXIbusStatusInd (controller, field, status)
	Function Descriptions
	GetByteOrder
	GetContext
	GetPrivilege
	GetVXIbusStatus
	GetVXIbusStatusInd
	GetWindowRange
	MapVXIAddress
	RestoreContext
	SaveContext
	SetByteOrder
	SetContext
	SetPrivilege
	UnMapVXIAddress
	VXIpeek
	VXIpoke

	Chapter 7 High-Level VXIbus Access Functions
	Programming Considerations for High-Level VXIbus Access Functions
	Functional Overview
	VXIin (accessparms, address, width, value)
	VXIout (accessparms, address, width, value)
	VXIinReg (la, reg, value)
	VXIoutReg (la, reg, value)
	VXImove (srcparms, srcaddr, destparms, destaddr, length, width)
	Function Descriptions
	VXIin
	VXIinReg
	VXImove
	VXIout
	VXIoutReg

	Chapter 8 Local Resource Access Functions
	Functional Overview
	GetMyLA ()
	VXIinLR (reg, width, value)
	VXIoutLR (reg, width, value)
	SetMODID (enable, modid)
	ReadMODID (modid)
	VXImemAlloc (size, useraddr, vxiaddr)
	VXImemCopy (useraddr, bufaddr, size, dir)
	VXImemFree (useraddr)
	Function Descriptions
	GetMyLA
	ReadMODID
	SetMODID
	VXIinLR
	VXImemAlloc
	VXImemCopy
	VXImemFree
	VXIoutLR

	Chapter 9 VXI Signal Functions
	Programming Considerations for Signal Queuing
	WaitForSignal Considerations
	Functional Overview
	RouteSignal (la, modemask)
	EnableSignalInt ()
	DisableSignalInt ()
	SetSignalHandler (la, func)
	GetSignalHandler (la)
	DefaultSignalHandler (signal)
	SignalDeq (la, signalmask, signal)
	SignalEnq (signal)
	SignalJam (signal)
	WaitForSignal (la, signalmask, timeout, retsignal, retsignalmask)
	Function Descriptions
	DisableSignalInt
	EnableSignalInt
	GetSignalHandler
	RouteSignal
	SetSignalHandler
	SignalDeq
	SignalEnq
	SignalJam
	WaitForSignal
	Default Handler for VXI Signal Functions
	DefaultSignalHandler

	Chapter 10 VXI Interrupt Functions
	Programming Considerations
	ROAK Versus RORA VXI Interrupters
	Functional Overview
	RouteVXIint (controller, Sroute)
	EnableVXItoSignalInt (controller, levels)
	DisableVXItoSignalInt (controller, levels)
	EnableVXIint (controller, levels)
	DisableVXIint (controller, levels)
	VXIintAcknowledgeMode (controller, modes)
	SetVXIintHandler (levels, func)
	GetVXIintHandler (level)
	DefaultVXIintHandler (controller, level, statusId)
	AssertVXIint (controller, level, statusId)
	DeAssertVXIint (controller, level)
	AcknowledgeVXIint (controller, level, statusId)
	Function Descriptions
	AcknowledgeVXIint
	AssertVXIint
	DeAssertVXIint
	DisableVXIint
	DisableVXItoSignalInt
	EnableVXIint
	EnableVXItoSignalInt
	GetVXIintHandler
	RouteVXIint
	SetVXIintHandler
	VXIintAcknowledgeMode
	Default Handler for VXI Interrupt Functions
	DefaultVXIintHandler

	Chapter 11 VXI Trigger Functions
	Capabilities of the National Instruments Triggering Hardware
	External Controller/VXI-MXI Trigger Capabilities (without TIC Chip)
	Embedded Controller Trigger Capabilities (without TIC Chip)
	Embedded and External Controller Trigger Capabilities (with TIC Chip)
	Sourcing
	Accepting
	Mapping/Conditioning
	Setup/Configuration Options
	Combination Options
	Functional Overview
	Source Trigger Functions
	SrcTrig (controller, line, prot, timeout)
	SetTrigHandler (lines, func)
	GetTrigHandler (line)
	DefaultTrigHandler (controller, line, type)
	DefaultTrigHandler2 (controller, line, type)
	Acceptor Trigger Functions
	EnableTrigSense (controller, line, prot)
	DisableTrigSense (controller, line)
	SetTrigHandler (lines, func)
	GetTrigHandler (line)
	DefaultTrigHandler (controller, line, type)
	DefaultTrigHandler2 (controller, line, type)
	AcknowledgeTrig (controller, line)
	WaitForTrig (controller, line, timeout)
	Map Trigger Functions
	MapTrigToTrig (controller, srcTrig, destTrig, mode)
	UnMapTrigToTrig (controller, srcTrig, destTrig)
	Trigger Configuration Functions
	TrigAssertConfig (controller, trigline, mode)
	TrigExtConfig (controller, extline, mode)
	TrigCntrConfig (controller, mode, source, count)
	TrigTickConfig (controller, mode, source, tcount1, tcount2)
	Function Descriptions
	AcknowledgeTrig
	DisableTrigSense
	EnableTrigSense
	GetTrigHandler
	MapTrigToTrig
	SetTrigHandler
	SrcTrig
	TrigAssertConfig
	TrigCntrConfig
	TrigExtConfig
	TrigTickConfig
	UnMapTrigToTrig
	WaitForTrig
	Default Handlers for VXI Trigger Functions
	DefaultTrigHandler
	DefaultTrigHandler2

	Chapter 12 System Interrupt Handler Functions
	Functional Overview
	EnableSysfail (controller)
	DisableSysfail (controller)
	SetSysfailHandler (func)
	GetSysfailHandler ()
	DefaultSysfailHandler (controller)
	EnableACfail (controller)
	DisableACfail (controller)
	SetACfailHandler (func)
	GetACfailHandler ()
	DefaultACfailHandler (controller)
	EnableSoftReset ()
	DisableSoftReset ()
	SetSoftResetHandler (func)
	GetSoftResetHandler ()
	DefaultSoftResetHandler ()
	EnableSysreset (controller)
	DisableSysreset (controller)
	AssertSysreset (controller, mode)
	SetSysresetHandler (func)
	GetSysresetHandler ()
	DefaultSysresetHandler (controller)
	SetBusErrorHandler (func)
	GetBusErrorHandler ()
	DefaultBusErrorHandler ()
	Function Descriptions
	AssertSysreset
	DisableACfail
	DisableSoftReset
	DisableSysfail
	DisableSysreset
	EnableACfail
	EnableSoftReset
	EnableSysfail
	EnableSysreset
	GetACfailHandler
	GetBusErrorHandler
	GetSoftResetHandler
	GetSysfailHandler
	GetSysresetHandler
	SetACfailHandler
	SetBusErrorHandler
	SetSoftResetHandler
	SetSysfailHandler
	SetSysresetHandler
	Default Handlers for the System Interrupt Handler Functions
	DefaultACfailHandler
	DefaultBusErrorHandler
	DefaultSoftResetHandler
	DefaultSysfailHandler
	DefaultSysresetHandler

	Chapter 13 VXIbus Extender Functions
	Functional Overview
	MapECLtrig (extender, lines, directions)
	MapTTLtrig (extender, lines, directions)
	MapUtilBus (extender, modes)
	MapVXIint (extender, levels, directions)
	Function Descriptions
	MapECLtrig
	MapTTLtrig
	MapUtilBus
	MapVXIint

	Appendix Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1. VXI Configuration Registers
	Figure 1-2. VXI Software Protocols
	Figure 2-1. Embedded Versus External CPU Configurations
	Figure 2-2. Extender Versus Controller Parameters
	Figure 2-3. External CPU Configuration with Multiple Extended Controllers
	Figure 4-1. Non-Preemptive Word Serial Mutual Exclusion (Per Logical Address)
	Figure 4-2. Preemptive Word Serial Mutual Exclusion (Per Logical Address)
	Figure 5-1. NI-VXI Servant Word Serial Model
	Figure 9-1. NI-VXI VXI Interrupt and Signal Model
	Figure 10-1. NI-VXI VXI Interrupt and Signal Model
	Figure 11-1. TIC Chip Block Diagram
	Figure 11-2. Trigger Module Block Diagram
	Figure 11-3. GPIO Module Block Diagram

