
 
 SC-2042-RTD

https://www.apexwaves.com/modular-systems/national-instruments/sc-series/SC-2042-RTD?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/sc-series/SC-2042-RTD?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/sc-series/SC-2042-RTD?aw_referrer=pdf


NI-DAQ
®

Software Reference Manual
for Macintosh

Version 4.8

Data Acquisition Software for the Macintosh

February 1996 Edition

Part Number 371345A-01

© Copyright 1991, 1996 National Instruments Corporation.
All Rights Reserved.



National Instruments Corporate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 794-0100
Technical support fax:  (512) 418-1111

Branch Offices:
Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Canada (Ontario) 519 622 9310,
Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 90 527 2321, France 1 48 14 24 24,
Germany 089 741 31 30, Hong Kong 2645 3186, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456,
Mexico 95 800 010 0793, Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545



Limited Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as
evidenced by receipts or other documentation.  National Instruments will, at its option, repair or replace software
media that do not execute programming instructions if National Instruments receives notice of such defects during
the warranty period.  National Instruments does not warrant that the operation of the software shall be uninterrupted
or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the
outside of the package before any equipment will be accepted for warranty work.  National Instruments will pay the
shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate.  The document has been carefully
reviewed for technical accuracy.  In the event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition.  The reader should consult National Instruments if errors are suspected.  In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED,
AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE.  CUSTOMER   'S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART

OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER.
NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS,
USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY

THEREOF.  This limitation of the liability of National Instruments will apply regardless of the form of action,
whether in contract or tort, including negligence.  Any action against National Instruments must be brought within
one year after the cause of action accrues.  National Instruments shall not be liable for any delay in performance due
to causes beyond its reasonable control.  The warranty provided herein does not cover damages, defects,
malfunctions, or service failures caused by owner's failure to follow the National Instruments installation, operation,
or maintenance instructions; owner's modification of the product; owner's abuse, misuse, or negligent acts; and
power failure or surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or
in part, without the prior written consent of National Instruments Corporation.

Trademarks

LabVIEW®, NI-488®, NI-DAQ®, RTSI®, and DAQCard™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.



WARNING REGARDING MEDICAL AND CLINICAL USE
OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans.  Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the
part of the user or application designer.  Any use or application of National Instruments products for or involving
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all
traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent
serious injury or death should always continue to be used when National Instruments products are being used.
National Instruments products are NOT intended to be a substitute for any form of established process, procedure, or
equipment used to monitor or safeguard human health and safety in medical or clinical treatment.



Contents
                                                                                                        

About This Manual ..................................................................................................................................xvii

Assumption of Previous Knowledge ........................................................................................................xvii
Organization of This Manual ....................................................................................................................xvii
Conventions Used in This Manual............................................................................................................xviii
About the National Instruments Documentation Set ................................................................................xix
Customer Communication ........................................................................................................................xix

Chapter 1
Getting Started ............................................................................................................................................1-1

NI-DAQ for Macintosh Overview ............................................................................................................1-3
NI-DAQ for Macintosh Hardware Compatibility ......................................................................1-3
NI-DAQ for Macintosh Clones ..................................................................................................1-3
NI-DAQ for Macintosh Function Summary ..............................................................................1-4

Installing the NI-DAQ Software for Use with LabVIEW ........................................................................1-4
Installing Your National Instruments Hardware....................................................................................... 1-5

Installing Your SCXI Hardware................................................................................................. 1-5
Installing the NI-DAQ for Macintosh Software ....................................................................................... 1-6
Using the NI-DAQ Control Panel to Configure Your Hardware ............................................................. 1-7

Devices ....................................................................................................................................... 1-7
Device Configuration ................................................................................................................. 1-8
SCXI Configuration....................................................................................................................1-9

Using the NI-DAQ for Macintosh Language Interfaces........................................................................... 1-11
Libraries......................................................................................................................................1-11
Include Files ............................................................................................................................... 1-12
Data Types ..................................................................................................................................1-13
Error Codes ................................................................................................................................1-13
Using NI-DAQ for Macintosh with C/C++................................................................................1-13
Using NI-DAQ for Macintosh with Pascal ................................................................................1-14
Using NI-DAQ for Macintosh with BASIC............................................................................... 1-15

Chapter 2
Board-Specific Functions ....................................................................................................................2-1

Board-Specific Functions..........................................................................................................................2-1
A2000_Calibrate ........................................................................................................................2-2
A2000_Config ............................................................................................................................2-3
A2100_Calibrate ........................................................................................................................2-4
A2100_Config ............................................................................................................................2-5
A2150_Config ............................................................................................................................2-6
Board_ID ....................................................................................................................................2-7
Board_Reset ............................................................................................................................... 2-8
Calibrate_1200 ........................................................................................................................... 2-12
Calibrate_E_Series ..................................................................................................................... 2-14
Get_DAQ_Device_Info..............................................................................................................2-17
Master_Slave_Config ................................................................................................................. 2-18
MIO_16X_Config ......................................................................................................................2-19
MIO_Config ............................................................................................................................... 2-20
SC_2040_Config ........................................................................................................................2-20
Select_Signal ..............................................................................................................................2-21
Set_DAQ_Device_Info ..............................................................................................................2-29

© National Instruments Corporation v NI-DAQ Software Reference Manual for Macintosh



Contents

Chapter 3
Analog Input Functions ........................................................................................................................3-1

Single-Channel Analog Input ................................................................................................................... 3-1
NB-MIO-16 Analog Input ..........................................................................................................3-1
NB-MIO-16X Analog Input ....................................................................................................... 3-1
Lab and 1200 Series Analog Input ............................................................................................. 3-2
DAQCard-500 and DAQCard-700 Analog Input ......................................................................3-3
SCXI Analog Input..................................................................................................................... 3-3

Single-Channel Analog Input Function Summary....................................................................................3-3
AI_Check....................................................................................................................................3-5
AI_Clear ..................................................................................................................................... 3-5
AI_Configure..............................................................................................................................3-6
AI_Mux_Config ......................................................................................................................... 3-7
AI_Read......................................................................................................................................3-8
AI_Read_Scan ............................................................................................................................3-9
AI_Setup..................................................................................................................................... 3-9
AI-VScale ................................................................................................................................... 3-10

Multiple-Channel Analog Input (MAI) ....................................................................................................3-11
NB-A2000 Analog Input ............................................................................................................3-11
NB-A2100 Analog Input ............................................................................................................3-11
NB-A2150 Analog Input ............................................................................................................3-12

Multiple-Channel Analog Input Function Summary ................................................................................3-12
Multiple-Channel Analog Input Application Hints ....................................................................3-13

Typical Multiple-Channel Analog Input Function Usage............................................3-13
Buffered Analog Input................................................................................... 3-14
Externally Clocked Analog Input (NB-A2000) ............................................3-14

MAI_Arm................................................................................................................................... 3-15
MAI_Clear..................................................................................................................................3-16
MAI_Coupling ........................................................................................................................... 3-16
MAI_Read ..................................................................................................................................3-17
MAI_Scale..................................................................................................................................3-18
MAI_Setup ................................................................................................................................. 3-19

Chapter 4
Analog Output Functions ....................................................................................................................4-1

Analog Output ..........................................................................................................................................4-1
NB-A2100 Analog Output ......................................................................................................... 4-2

Analog Output Function Summary........................................................................................................... 4-2
Analog Output Application Hints ..............................................................................................4-2
AO_Change_Parameter ..............................................................................................................4-3
AO_Setup ................................................................................................................................... 4-4
AO_Update................................................................................................................................. 4-6
AO_VScale................................................................................................................................. 4-6
AO_Write ................................................................................................................................... 4-7

Chapter 5
Digital I/O Functions ..............................................................................................................................5-1

NB-DIO-24, DAQCard-DIO-24, NB-PRL, and Lab and 1200 Series Digital I/O................................... 5-2
NB-DIO-24, DAQCard-DIO-24, NB-PRL, and Lab and 1200 Series Groups ..........................5-3

NB-DIO-32F Digital I/O ..........................................................................................................................5-3
NB-DIO-32F Groups ..................................................................................................................5-3

NB-DIO-96 and PCI-DIO-96 Digital I/O ................................................................................................. 5-4
NB-DIO-96 and PCI-DIO-96 Groups ........................................................................................5-5

NB-MIO-16 and NB-MIO-16X Digital I/O ............................................................................................. 5-5
PCI-MIO-16XE-50 Digital I/O................................................................................................................. 5-5
NB-TIO-10 Digital I/O ............................................................................................................................. 5-5
DAQCard-AO-2DC Digital I/O................................................................................................................5-6
DAQCard-500 and DAQCard-700 Digital I/O......................................................................................... 5-6

NI-DAQ Software Reference Manual for Macintosh vi © National Instruments Corporation



Contents

SCXI Signal Conditioning Hardware ....................................................................................................... 5-6
Digital I/O Function Summary ................................................................................................................. 5-7

Digital I/O Application Hints ..................................................................................................... 5-8
Nonlatched Digital I/O................................................................................................. 5-8
Latched Digital I/O with the NB-DIO-96, PCI-DIO-96, NB-DIO-24,
DAQCard-DIO-24, NB-PRL, and Lab and 1200 Series ..............................................5-8
Latched Digital I/O with the NB-DIO-32F ..................................................................5-8
Buffered Digital I/O with the NB-DIO-96, PCI-DIO-96, NB-DIO-24,
DAQCard-DIO-24, NB-PRL, and Lab and 1200 Series ..............................................5-9
Buffered Digital I/O with the NB-DIO-32F ................................................................5-9

DIG_Blk_Check ......................................................................................................................... 5-10
DIG_Blk_Clear ..........................................................................................................................5-10
DIG_Blk_Start ............................................................................................................................5-11
DIG_Grp_Config........................................................................................................................5-13
DIG_Grp_Mode ......................................................................................................................... 5-14
DIG_Grp_Status ......................................................................................................................... 5-15
DIG_In_Group ........................................................................................................................... 5-16
DIG_In_Line ..............................................................................................................................5-17
DIG_In_Port ............................................................................................................................... 5-17
DIG_Line_Config ......................................................................................................................5-18
DIG_Out_Group......................................................................................................................... 5-19
DIG_Out_Line............................................................................................................................5-20
DIG_Out_Port ............................................................................................................................5-20
DIG_Prt_Config ......................................................................................................................... 5-21
DIG_Prt_Status ..........................................................................................................................5-22
DIG_Scan_Setup ........................................................................................................................5-23

Chapter 6
Data Acquisition Functions................................................................................................................6-1

Data Acquisition Hardware ......................................................................................................................6-1
NB-MIO-16 and NB-MIO-16X Data Acquisition ..................................................................... 6-2

NB-MIO-16 and NB-MIO-16X Data Acquisition Timing ..........................................6-3
NB-MIO-16 Data Acquisition Rates............................................................................6-3

NB-MIO-16X Data Acquisition Rates ..........................................................6-4
Lab and 1200 Series Data Acquisition ....................................................................................... 6-5

Lab and 1200 Series Data Acquisition Timing ............................................................6-6
Lab and 1200 Series Counter/Timer Signals ............................................................... 6-6
Lab and 1200 Series Data Acquisition Rates............................................................... 6-7

DAQCard-500 and DAQCard-700 Data Acquisition ................................................................6-8
DAQCard-500 and DAQCard-700 Data Acquisition Timing ..................................... 6-8
DAQCard-500 and DAQCard-700 Counter/Timers ....................................................6-8

E Series Data Acquisition ..........................................................................................................6-9
MIO E Series Data Acquisition Timing....................................................................... 6-9
MIO E Series Data Acquisition Rates..........................................................................6-10

SCXI Data Acquisition Rates ..................................................................................................... 6-11
Single-Buffered Data Acquisition Function Summary............................................................................. 6-11

Single-Buffered Data Acquisition Application Hints ................................................................6-12
Single-Channel Data Acquisition ................................................................................6-12
Multiple-Channel (Scanned) Data Acquisition ............................................................6-12
Using the NB-MIO-16X in Unipolar Mode with Pascal ............................................. 6-13

DAQ_Check ............................................................................................................................... 6-14
DAQ_Clear................................................................................................................................. 6-15
DAQ_Config ..............................................................................................................................6-15

NB-MIO-16 or NB-MIO-16X Configuration ..............................................................6-16
Lab and 1200 Series Configuration ............................................................................. 6-16

DAQ_PreTrig ............................................................................................................................. 6-18
DAQ_Start ..................................................................................................................................6-19

Starting a Single-Buffered Acquisition with DAQ_Start ............................................6-21
Starting a Double-Buffered Acquisition with DAQ_Start ........................................... 6-21

© National Instruments Corporation vii NI-DAQ Software Reference Manual for Macintosh



Contents

Using DAQ_Start to Start a Trigger Acquisition Using Single-Buffered Mode ......... 6-21
Using DAQ_Start to Start a Trigger Acquisition Using Double-Buffered Mode........6-21
Using the AMUX-64T with DAQ_Start ......................................................................6-22
NuBus DMA ................................................................................................................6-22

DAQ_Trigger ............................................................................................................................. 6-22
DAQ_VScale ..............................................................................................................................6-24
Lab_ISCAN_Check....................................................................................................................6-25
Lab_ISCAN_Start ......................................................................................................................6-27
SCAN_Check ............................................................................................................................. 6-29
SCAN_Demux............................................................................................................................6-30
SCAN_IntStart ........................................................................................................................... 6-32

Starting a Single-Buffered Acquisition with SCAN_IntStart ......................................6-35
Starting a Double-Buffered Acquisition with SCAN_IntStart ....................................6-35
Using SCAN_IntStart to Start a Trigger Acquisition Using
Single-Buffered Mode..................................................................................................6-35
Using SCAN_IntStart to Start a Trigger Acquisition Using
Double-Buffered Mode ................................................................................................6-36
Interval Scanning with the NB-MIO-16 ......................................................................6-36

SCAN_Setup ..............................................................................................................................6-36
SCAN_Start ................................................................................................................................6-38

Starting a Single-Buffered Acquisition with SCAN_Start ..........................................6-40
Starting a Double-Buffered Acquisition with SCAN_Start ......................................... 6-40
Using SCAN_Start to Start a Trigger Acquisition Using Single-Buffered Mode ....... 6-40
Using SCAN_Start to Start a Trigger Acquisition Using Double-Buffered Mode......6-41

Double-Buffered Data Acquisition Function Summary ........................................................................... 6-41
Double-Buffered Data Acquisition Application Hints ............................................................... 6-42

Initializing Double-Buffered Data Acquisition............................................................6-42
Retrieving Acquired Data ............................................................................................6-43
Using Double-Buffered Data Acquisition with Analog Triggering ............................6-47

DAQ2Clear................................................................................................................................. 6-47
DAQ2Config ..............................................................................................................................6-48
DAQ2Get....................................................................................................................................6-49
DAQ2TGet ................................................................................................................................. 6-49
DAQ2MemConfig ......................................................................................................................6-51
DAQ2Tap ................................................................................................................................... 6-53
DAQ2TTap................................................................................................................................. 6-53

Multiple-Channel Data Acquisition (MDAQ) ..........................................................................................6-55
NB-A2000 Data Acquisition ......................................................................................................6-55

NB-A2000 Data Acquisition Timing........................................................................... 6-56
NB-A2000 Data Acquisition Rates ..............................................................................6-56

NB-A2100 Data Acquisition ......................................................................................................6-56
NB-A2150 Data Acquisition ......................................................................................................6-57

Multiple-Channel Data Acquisition Function Summary ..........................................................................6-57
Multiple-Channel Data Acquisition Application Hints ..............................................................6-58

Frame-Oriented and Scan-Oriented Data Acquisition ................................................. 6-58
Configuring the Trigger Conditions............................................................................. 6-59
NB-A2100 and NB-A2150 Triggering ........................................................................6-59
Stopping Data Acquisition ........................................................................................... 6-60
Typical Multiple-Channel Data Acquisition Function Usage......................................6-60

MDAQ_Check............................................................................................................................6-63
MDAQ_Clear ............................................................................................................................. 6-64
MDAQ_Get ................................................................................................................................6-64
MDAQ_ScanRate....................................................................................................................... 6-66
MDAQ_Setup............................................................................................................................. 6-68
MDAQ_Start ..............................................................................................................................6-70
MDAQ_Stop ..............................................................................................................................6-71
MDAQ_Trig_Config ..................................................................................................................6-72
MDAQ_Trig_Delay ................................................................................................................... 6-74

NI-DAQ Software Reference Manual for Macintosh viii © National Instruments Corporation



Contents

Chapter 7
SCXI Functions ..........................................................................................................................................7-1

SCXI Installation and Configuration ........................................................................................................7-2
Using SCXI Modules with the NI-DAQ Functions ..................................................................................7-3
SCXI Operating Modes ............................................................................................................................7-3

Multiplexed Mode for Analog Input Modules ........................................................................... 7-3
Multiplexed Mode for Digital and Relay Modules ....................................................................7-3
Multiplexed Mode for Analog Output Modules ........................................................................7-4
Parallel Mode for Analog Input Modules ..................................................................................7-4
Parallel Mode for Digital Modules............................................................................................. 7-4

SCXI Modules and Compatible Data Acquisition Boards ....................................................................... 7-4
The SCXI-1100 ..........................................................................................................................7-5
The SCXI-1102 ..........................................................................................................................7-5
The SCXI-1120 and the SCXI-1121 ..........................................................................................7-5
The SCXI-1122 ..........................................................................................................................7-6
The SCXI-1124 ..........................................................................................................................7-7
The SCXI-1140 ..........................................................................................................................7-7
The SCXI-1141 ..........................................................................................................................7-8
The SCXI-1160 and the SCXI-1161 ..........................................................................................7-8
The SCXI-1162 and SCXI-1162HV ..........................................................................................7-9
The SCXI-1163 and SCXI-1163R..............................................................................................7-9
The MIO Boards......................................................................................................................... 7-9
The DIO-32F ..............................................................................................................................7-10
The DIO-24 and the DIO-96 ......................................................................................................7-11
The DAQCard-700 and the Lab and 1200 Series Boards ..........................................................7-11

SCXI Function Summary..........................................................................................................................7-12
SCXI Applications ....................................................................................................................................7-14

Analog Input Applications ......................................................................................................... 7-15
Building Analog Input Applications in Multiplexed Mode ......................................... 7-15
Building Analog Input Applications in Parallel Mode ................................................7-21

Analog Output Applications....................................................................................................... 7-24
Digital Applications....................................................................................................................7-24
Transducer Conversions ............................................................................................................. 7-24
SCXI_AO_Write ........................................................................................................................7-25
SCXI_Cal_Constants..................................................................................................................7-27
SCXI_Calibrate_Setup ............................................................................................................... 7-31
SCXI_Change_Chan ..................................................................................................................7-32
SCXI_Configure_Filter ..............................................................................................................7-33
SCXI_Get_Chassis_Info ............................................................................................................7-34
SCXI_Get_Module_Info ............................................................................................................7-35
SCXI_Get_State ......................................................................................................................... 7-36
SCXI_Get_Status ....................................................................................................................... 7-37
SCXI_Load_Config....................................................................................................................7-38
SCXI_MuxCtr_Setup ................................................................................................................. 7-38
SCXI_Reset ................................................................................................................................7-40
SCXI_Scale ................................................................................................................................7-41
SCXI_SCAN_Setup ................................................................................................................... 7-43
SCXI_Set_Config....................................................................................................................... 7-44
SCXI_Set_Gain ..........................................................................................................................7-46
SCXI_Set_Input_Mode ..............................................................................................................7-46
SCXI_Set_State ..........................................................................................................................7-47
SCXI_Single_Chan_Setup ......................................................................................................... 7-48
SCXI_Track_Hold_Control ....................................................................................................... 7-49
SCXI_Track_Hold_Setup ..........................................................................................................7-49

© National Instruments Corporation ix NI-DAQ Software Reference Manual for Macintosh



Contents

Chapter 8
Counter/Timer Functions ................................................................................................................... 8-1

Counter/Timer Operations (CTR Functions) ............................................................................................8-1
Programmable Frequency Output Operation ............................................................................................8-3

NB-MIO-16 Counter/Timers ......................................................................................................8-4
NB-MIO-16X Counter/Timers ................................................................................................... 8-5
NB-DMA-8-G and NB-DMA2800 Counter/Timers ..................................................................8-6
NB-A2000 Counter/Timers ........................................................................................................8-6
NB-TIO-10 Counter/Timers ....................................................................................................... 8-7

Counter/Timer Function Summary ........................................................................................................... 8-9
Counter/Timer Function Application Hints................................................................................8-9

Event Counting ............................................................................................................8-9
Timing Signal Generation ............................................................................................8-9

CTR_Config ............................................................................................................................... 8-10
CTR_EvCount ............................................................................................................................8-11
CTR_EvRead..............................................................................................................................8-12

Special Considerations for Overflow Detection ..........................................................8-13
Event-Counting Applications ..................................................................................................... 8-13
Period Measurements Applications ............................................................................................8-15
CTR_FOUT_Config................................................................................................................... 8-15
CTR_Period ................................................................................................................................8-17
CTR_Pulse..................................................................................................................................8-18

Pulse Generation Timing Considerations ....................................................................8-19
CTR_Reset ................................................................................................................................. 8-20
CTR_Restart ............................................................................................................................... 8-21
CTR_Square ............................................................................................................................... 8-21

Square Wave Generation Timing Considerations ........................................................8-23
CTR_State ..................................................................................................................................8-23
CTR_Stop ................................................................................................................................... 8-24

Interval Counter/Timer Operation (ICTR Functions)............................................................................... 8-24
Interval Counter/Timer Function Summary..............................................................................................8-25

Interval Counting Function Application Hints ........................................................................... 8-25
Lab and 1200 Series ..................................................................................................... 8-25
DAQCard-500 and DAQCard-700 ..............................................................................8-26

ICTR_Read................................................................................................................................. 8-27
ICTR_Reset ................................................................................................................................8-28
ICTR_Setup ................................................................................................................................8-28

General-Purpose Counter/Timer Function Summary ............................................................................... 8-31
General-Purpose Function Application Hints ............................................................................8-31
GPCTR_Change_Parameter....................................................................................................... 8-31
GPCTR_Config_Buffer..............................................................................................................8-34
GPCTR_Control ......................................................................................................................... 8-35
GPCTR_Set_Application ........................................................................................................... 8-36
GPCTR_Watch........................................................................................................................... 8-57

Chapter 9
RTSI Bus Trigger Functions ............................................................................................................9-1

The RTSI Bus ........................................................................................................................................... 9-1
NB-MIO-16 RTSI Connections ................................................................................................................9-1
NB-MIO-16X RTSI Connections ............................................................................................................. 9-2
E Series Boards RTSI Connections ..........................................................................................................9-2
NB-DMA-8-G and NB-DMA2800 RTSI Connections ............................................................................9-3
NB-DIO-32F RTSI Connections ..............................................................................................................9-3
NB-AO-6 RTSI Connections ....................................................................................................................9-4
NB-A2000 RTSI Connections ..................................................................................................................9-4
NB-A2100 RTSI Connections ..................................................................................................................9-5
NB-A2150 RTSI Connections ..................................................................................................................9-6
NB-TIO-10 RTSI Connections ................................................................................................................. 9-7

NI-DAQ Software Reference Manual for Macintosh x © National Instruments Corporation



Contents

RTSI Bus Trigger Function Summary ......................................................................................................9-8
RTSI Bus Trigger Function Application Hints ..........................................................................9-8
RTSI_Clear................................................................................................................................. 9-8
RTSI_Conn................................................................................................................................. 9-9

Rules for RTSI Bus Connections ................................................................................. 9-9
RTSI_DisConn ........................................................................................................................... 9-10

Chapter 10
Waveform Generation Functions ..................................................................................................10-1

Waveform Generation Hardware ..............................................................................................................10-1
System Timing for Waveform Generation ................................................................................. 10-1

Waveform Generation Using DMA............................................................................. 10-1
Waveform Generation Without DMA ......................................................................... 10-2

Synchronous Waveform Generation ..........................................................................................10-2
Asynchronous Waveform Generation ........................................................................................10-2
Synchronous Versus Asynchronous Waveform Generation ......................................................10-2
NB-MIO-16 Waveform Generation ........................................................................................... 10-3
NB-MIO-16X Waveform Generation ........................................................................................10-3
PCI-MIO-16XE-50 Waveform Generation ................................................................................10-4
NB-AO-6 Waveform Generation ............................................................................................... 10-4
Lab and 1200 Series Waveform Generation ..............................................................................10-5

Lab and 1200 Series Counter/Timer Signals ............................................................... 10-5
NB-A2100 Waveform Generation ............................................................................................. 10-5

Synchronous and Asynchronous Waveform Generation Function Summary ..........................................10-6
Asynchronous Waveform Generation Functions ....................................................................... 10-6
Synchronous Waveform Generation Functions..........................................................................10-6
Waveform Generation Application Hints ..................................................................................10-7

Fundamental Frequency............................................................................................... 10-7
Minimum Update Interval ............................................................................................10-7
Minimum Buffer Size ..................................................................................................10-8
Asynchronous Waveform Generation Call Sequences ................................................10-8
Synchronous Waveform Generation Call Sequences ..................................................10-9
Double-Buffered Waveform Generation Using WF_DBLoad ....................................10-10
Externally Timed Waveform Generation..................................................................... 10-12

WF_Check ..................................................................................................................................10-12
WF_DBLoad ..............................................................................................................................10-13
WF_Load ....................................................................................................................................10-13
WF_Grp_Reset ........................................................................................................................... 10-17
WF_Grp_Setup........................................................................................................................... 10-17
WF_Grp_Start ............................................................................................................................10-19
WF_Grp_Stop ............................................................................................................................10-19
WF_Offset ..................................................................................................................................10-20
WF_Reset ................................................................................................................................... 10-21
WF_Setup ................................................................................................................................... 10-21
WF_Start ....................................................................................................................................10-22
WF_Stop..................................................................................................................................... 10-23

Buffered Waveform Generation Function Summary................................................................................10-23
Buffered Waveform Generation Terminology ........................................................................... 10-24
Buffered Waveform Generation Application Hints ................................................................... 10-24

Buffered Waveform Generation Call Sequence ..........................................................10-24
Initializing Buffered Waveform Generation ................................................................10-25
Updating Waveform Output During Waveform Generation ....................................... 10-26

Block Update of the Output Waveform......................................................... 10-26
Sequential Block Update ................................................................. 10-27
Selected Block Update ....................................................................10-27

Immediate Update of the Output Waveform ................................................. 10-27
Writing a Stream-from-Disk Application ....................................................................10-27
Writing a Function Generator Application ..................................................................10-29

BWF_BlkLoad ........................................................................................................................... 10-30

© National Instruments Corporation xi NI-DAQ Software Reference Manual for Macintosh



Contents

BWF_BufLoad ........................................................................................................................... 10-31
BWF_Check ............................................................................................................................... 10-33
BWF_Clear................................................................................................................................. 10-35
BWF_Rate ..................................................................................................................................10-35
BWF_Resume ............................................................................................................................10-36
BWF_Start ..................................................................................................................................10-37
BWF_Stop ..................................................................................................................................10-38

Chapter 11
NI-DAQ for Macintosh Examples ................................................................................................11-1

NI-DAQ for Macintosh Examples ............................................................................................................11-1
OneShotScope(1ch) ....................................................................................................................11-1
OneShotScope(2ch) ....................................................................................................................11-1
Lab-OneShotScope(2ch) ............................................................................................................11-1
Oscilloscope ............................................................................................................................... 11-1
StreamToDisk(1ch) ....................................................................................................................11-2
StreamToDisk(4ch) ....................................................................................................................11-2
AsyncFuncGenerator ..................................................................................................................11-2
SyncFuncGenerator ....................................................................................................................11-2
SampleAndGenerate................................................................................................................... 11-2
PreTrig_Interval_Scan................................................................................................................11-3
Digital_Blk_Transfer..................................................................................................................11-3
SqWaveGenerator ......................................................................................................................11-3
MultiChannelDVM ....................................................................................................................11-3
GetFramesAndGraph..................................................................................................................11-3
MDAQ_OpExample................................................................................................................... 11-3
MDAQ_Op................................................................................................................................. 11-3
StreamToDisk(MDAQ) ..............................................................................................................11-4
StreamFromDisk ........................................................................................................................11-4
PeriodMeasurement ....................................................................................................................11-4

Appendix A
NI-DAQ for Macintosh Function and Board Compatibility ..................................... A-1

Appendix B
Error Codes ................................................................................................................................................... B-1

Appendix C
Using an External Multiplexer ........................................................................................................C-1

Scanning Order Using the AMUX-64T ....................................................................................................C-2

Appendix D
Transducer Conversion Routines..................................................................................................D-1

Thermocouple_Convert ..............................................................................................................D-2
Thermocouple_Buf_Convert ......................................................................................................D-2
RTD_Convert ............................................................................................................................. D-3
RTD_Buf_Convert ..................................................................................................................... D-3
Strain_Convert ............................................................................................................................D-4
Strain_Buf_Convert ....................................................................................................................D-4
Thermistor_Convert ................................................................................................................... D-7
Thermistor_Buf_Convert ........................................................................................................... D-7

NI-DAQ Software Reference Manual for Macintosh xii © National Instruments Corporation



Contents

Appendix E
Analog Input Channel and Gain Settings and Voltage Calculation ....................E-1

DAQ Device Analog Input Channel Settings ........................................................................................... E-1
Voltage Calculation ..................................................................................................................................E-2
Offset and Gain Measurement ..................................................................................................................E-3

Measurement of Offset ............................................................................................................... E-3
Measurement of Gain Adjustment..............................................................................................E-3

Appendix F
Customer Communication ................................................................................................................. F-1

Glossary ................................................................................................................................................Glossary-1

Index ............................................................................................................................................................ Index-1

© National Instruments Corporation xiii NI-DAQ Software Reference Manual for Macintosh



Contents

Figures

Figure 1-1. Steps to Begin Using NI-DAQ ......................................................................................................1-2
Figure 1-2. The NI-DAQ Control Panel ........................................................................................................... 1-7
Figure 1-3. Selecting Device Configuration in NI-DAQ Control Panel ..........................................................1-8
Figure 1-4. The NI-DAQ Device Configuration Window................................................................................1-9
Figure 1-5. Selecting the NI-DAQ SCXI Configuration Window ................................................................... 1-10
Figure 1-6. The NI-DAQ SCXI Configuration Window ..................................................................................1-11

Figure 3-1. Flowchart for Analog Input Readings ............................................................................................3-4
Figure 3-2. Flowchart for Externally Clocked Analog Input Readings ............................................................3-4
Figure 3-3. Flowchart for Multiple-Channel Analog Input Readings ..............................................................3-14
Figure 3-4. Flowchart for Externally Clocked Multiple-Channel Analog Input ..............................................3-15

Figure 4-1. Immediate Update Analog Output Flowchart ................................................................................4-2
Figure 4-2. Delayed Update Analog Output Flowchart ....................................................................................4-3

Figure 5-1. Flowchart for Latched Digital Group Input ................................................................................... 5-8
Figure 5-2. Flowchart for Latched Digital Group Output ................................................................................5-9
Figure 5-3. Digital Scanning Input Group Handshaking Connections ............................................................. 5-24
Figure 5-4. Digital Scanning Output Group Handshaking Connections ..........................................................5-25

Figure 6-1. NB-MIO-16X Interval Scanning ................................................................................................... 6-2
Figure 6-2. SCAN_Demux Buffer Translation for the NB-MIO-16 and NB-MIO-16X ................................. 6-31
Figure 6-3. SCAN_Demux Buffer Translation for the Lab and 1200 Series ................................................... 6-31
Figure 6-4. Scan and Sample Intervals ............................................................................................................. 6-34
Figure 6-5. Double-Buffered Acquisition Buffer and Blocks ..........................................................................6-43
Figure 6-6. First Execution of DAQ2Get and DAQ2Tap................................................................................. 6-44
Figure 6-7. Second Execution of DAQ2Get and DAQ2Tap ............................................................................6-44
Figure 6-8. Executing DAQ2Get and DAQ2Tap when Overwrite Occurred ..................................................6-45
Figure 6-9. Single-Channel, Double-Buffered Acquisition ..............................................................................6-45
Figure 6-10. Multiple-Channel, Double-Buffered Acquisition (MIO Boards) ..................................................6-46
Figure 6-11. Multiple-Channel, Double-Buffered Acquisition (Lab and 1200 Series) ......................................6-46
Figure 6-12. Minimum Function Flowchart for Multiple-Channel Data Acquisition ........................................6-61
Figure 6-13. Multiple-Channel Data Acquisition with Optional Coupling and Triggering Configuration ........6-62

Figure 7-1. The SCXI System ..........................................................................................................................7-1
Figure 7-2. General SCXIbus Application ....................................................................................................... 7-14
Figure 7-3. Single-Channel or Software-Scanning Operation Using the SCXI-1100, SCXI-1102,

SCXI-1120, SCXI-1121, SCXI-1122, or SCXI-1141 in Multiplexed Mode ................................7-16
Figure 7-4. Single-Channel or Software-Scanning Operation Using the SCXI-1140 in Multiplexed Mode ... 7-18
Figure 7-5. Channel-Scanning Operation Using Modules in Multiplexed Mode ............................................7-20
Figure 7-6. Single Channel or Software-Scanning Operation Using the SCXI-1140 in Parallel Mode ..........7-22
Figure 7-7. Channel-Scanning Operation Using the SCXI-1140 in Parallel Mode..........................................7-23

Figure 8-1. Counter Block Diagram ................................................................................................................. 8-1
Figure 8-2. Counter Timing and Output Types ................................................................................................8-3
Figure 8-3. NB-MIO-16 Counter/Timer Signal Connections........................................................................... 8-4
Figure 8-4. NB-MIO-16X Counter/Timer Signal Connections ........................................................................8-5
Figure 8-5. NB-DMA-8-G and NB-DMA2800 Counter/Timer Signal Connections ....................................... 8-6
Figure 8-6. NB-A2000 Counter/Timer Signal Connections ............................................................................. 8-7
Figure 8-7. NB-TIO-10 Counter/Timer Signal Connections ............................................................................8-8
Figure 8-8. Pulse Generation Timing ............................................................................................................... 8-19
Figure 8-9. Pulse Timing for pulse_width = 0 ..................................................................................................8-20
Figure 8-10. Square Wave Timing ..................................................................................................................... 8-23
Figure 8-11. Interval Counter Block Diagram ....................................................................................................8-25
Figure 8-12. Lab and 1200 Series Counter/Timer Signal Connections ..............................................................8-26
Figure 8-13. DAQCard-500 and DAQCard-700 I/O Counter/Timer Signal Connections ................................. 8-27
Figure 8-14. Mode 0 Timing Diagram................................................................................................................8-29
Figure 8-15. Mode 1 Timing Diagram................................................................................................................8-29

NI-DAQ Software Reference Manual for Macintosh xiv © National Instruments Corporation



Contents

Figure 8-16. Mode 2 Timing Diagram................................................................................................................8-30
Figure 8-17. Mode 3 Timing Diagram................................................................................................................8-30
Figure 8-18. Mode 4 Timing Diagram................................................................................................................8-30
Figure 8-19. Mode 5 Timing Diagram................................................................................................................8-30
Figure 8-20. Simple Event Counting ..................................................................................................................8-38
Figure 8-21. Single Period Measurement ........................................................................................................... 8-39
Figure 8-22. Single Pulse-Width Measurement ..................................................................................................8-41
Figure 8-23. Single Triggered Pulse Width Measurement ................................................................................. 8-43
Figure 8-24. Single Pulse Generation ................................................................................................................. 8-45
Figure 8-25. Single Triggered Pulse Generation ................................................................................................8-46
Figure 8-26. Retriggerable Pulse Generation......................................................................................................8-47
Figure 8-27. Pulse Train Generation ..................................................................................................................8-49
Figure 8-28. Frequency Shift Keying ................................................................................................................. 8-50
Figure 8-29. Buffered Event Counting ............................................................................................................... 8-51
Figure 8-30. Buffered Period Measurement ....................................................................................................... 8-53
Figure 8-31. Buffered Semi-Period Measurement ..............................................................................................8-54
Figure 8-32. Buffered Pulse Width Measurement ..............................................................................................8-56

Figure 10-1. Asynchronous Waveform Generation Flowchart ..........................................................................10-9
Figure 10-2. Synchronous Waveform Generation Flowchart............................................................................. 10-10
Figure 10-3. Double-Buffered Waveform Generation Flowchart ......................................................................10-11
Figure 10-4. Waveform Master Buffer Scheme ................................................................................................. 10-15
Figure 10-5. BWF Function Flowchart ..............................................................................................................10-25
Figure 10-6. Circular Waveform Buffer and Blocks ..........................................................................................10-26
Figure 10-7. Streaming from Disk Application Hints ........................................................................................10-28
Figure 10-8. Function Generator Application Hints ........................................................................................... 10-29

Figure D-1. Strain Gauge Bridge Configurations ..............................................................................................D-6
Figure D-2. Circuit Diagram of a Thermistor in a Voltage Divider ..................................................................D-8

© National Instruments Corporation xv NI-DAQ Software Reference Manual for Macintosh



Contents

Tables

Table 1-1. NI-DAQ for Macintosh Hardware Compatibility ..........................................................................1-3

Table 2-1. E Series Signal Name Equivalencies ............................................................................................. 2-29

Table 3-1. Analog Input Ranges ......................................................................................................................3-2
Table 3-2. Valid channelCount and channels Settings for the NB-A2000 and the NB-A2150 ......................3-19
Table 3-3. Valid channelCount and channels Settings for the NB-A2100......................................................3-19

Table 4-1. Analog Output Characteristics Summary ......................................................................................4-1

Table 6-1. Hardware Characteristics ............................................................................................................... 6-1
Table 6-2. Maximum Data Acquisition Rates for Single Channels on the NB-MIO-16 ................................6-3
Table 6-3. Recommended Settling Time Versus Gain for the NB-MIO-16 ................................................... 6-4
Table 6-4. Maximum Data Acquisition Rates for Multiple Channels on the NB-MIO-16............................. 6-4
Table 6-5. Maximum Data Acquisition Rates for Single Channels on the NB-MIO-16X ............................. 6-5
Table 6-6. Recommended Settling Time Versus Gain for the NB-MIO-16X ................................................6-5
Table 6-7. Maximum Data Acquisition Rates for Multiple Channels on the NB-MIO-16X ..........................6-5
Table 6-8. Recommended Settling Time Versus Gain for the Lab and 1200 Series ......................................6-7
Table 6-9. Maximum Data Acquisition Rates for Multiple Channels on the Lab and 1200 Series ................6-7
Table 6-10. Maximum SCXI Data Acquisition Rates....................................................................................... 6-11
Table 6-11. Maximum NB-A2000 Data Acquisition Rates ..............................................................................6-56
Table 6-12. Minimum Scan Rate Values on the NB-A2000............................................................................. 6-67
Table 6-13. Valid Combinations of MDAQ_Setup Parameters ........................................................................6-69

Table 9-1. NB-MIO-16 RTSI Bus Signals ......................................................................................................9-1
Table 9-2. NB-MIO-16X RTSI Bus Signals ................................................................................................... 9-2
Table 9-3. NB-DMA-8-G and NB-DMA2800 RTSI Bus Signals ..................................................................9-3
Table 9-4. NB-DIO-32F RTSI Bus Signals ....................................................................................................9-4
Table 9-5. NB-AO-6 RTSI Bus Signals ..........................................................................................................9-4
Table 9-6. NB-A2000 RTSI Bus Signals ........................................................................................................9-4
Table 9-7. NB-A2100 RTSI Bus Signals ........................................................................................................9-6
Table 9-8. NB-A2150 RTSI Bus Signals ........................................................................................................9-6
Table 9-9. NB-TIO-10 RTSI Bus Signals ....................................................................................................... 9-7

Table 10-1. Waveform Generation DMA Requirements ..................................................................................10-1
Table 10-2. Conditions When You Can Use Double-Buffered Waveform Generation ....................................10-10
Table 10-3. Conditions When You Can Use Double-Buffered Waveform Generation ....................................10-13

Table A-1. NI-DAQ for Macintosh Function and Device Support ..................................................................A-1
Table A-2. SCXI Function and Hardware Support ..........................................................................................A-7

Table B-1. NI-DAQ Error Codes ..................................................................................................................... B-1

Table C-1. Analog Input Channel Range ......................................................................................................... C-1
Table C-2. External Multiplexer Channels ......................................................................................................C-1
Table C-3. AMUX-64T Scanning Order for Each MIO Board Input Channel................................................C-3

Table D-1. Valid Thermocouple Temperature Ranges and Accuracies........................................................... D-3

Table E-1. Valid Analog Input Channel Settings ............................................................................................E-1
Table E-2. Valid Return Values....................................................................................................................... E-2
Table E-3. The Values of maxReading and maxVolt ......................................................................................E-2

NI-DAQ Software Reference Manual for Macintosh xvi © National Instruments Corporation



About This Manual
                                                                                                        

The NI-DAQ Software Reference Manual for Macintosh is for users of the NI-DAQ software for Macintosh
version 4.8, which contains low-level interfaces for developing data acquisition applications with the National
Instruments data acquisition devices.  This manual describes how to configure the data acquisition interface boards
for use with this software, how to install the NI-DAQ software for Macintosh, and how to communicate with the
device drivers using C, Pascal, or FutureBASIC.

Assumption of Previous Knowledge

The material in this manual is for users who are familiar with Macintosh computers.

Organization of This Manual

The NI-DAQ Software Reference Manual for Macintosh is organized as follows:

• Chapter 1, Getting Started, will help you get started using NI-DAQ for Macintosh to build your data acquisition
application for National Instruments DAQ hardware.

• Chapter 2, Board-Specific Functions, describes the functions for configuring and calibrating the boards.

• Chapter 3, Analog Input Functions, describes the functions for single A/D conversions.

• Chapter 4, Analog Output Functions, describes the functions for single D/A conversions.

• Chapter 5, Digital I/O Functions, describes the functions used to read from and write to digital ports, which can
be addressed as a single entity or as individual digital lines.

• Chapter 6, Data Acquisition Functions, explains the functions used for performing data acquisition operations.
Single-channel acquisition, multiple-channel scan acquisition, interval scanning, pretrigger mode, posttrigger
mode, double-buffered mode, and AMUX-64T multiplexer mode are all documented.

• Chapter 7, SCXI Functions, describes functions used to configure and communicate with SCXI modules and
chassis.

• Chapter 8, Counter/Timer Functions, describes the functions that perform timing I/O and counter operations
such as pulse generation, frequency generation, and event counting.

• Chapter 9, RTSI Bus Trigger Functions, describes the functions used to connect and disconnect signals over the
RTSI bus trigger lines for the NB Series boards.

• Chapter 10, Waveform Generation Functions, describes the functions for generating analog waveform signals at
the analog output channels for the NB Series boards.

• Chapter 11, NI-DAQ for Macintosh Examples, describes the examples included in the NI-DAQ for Macintosh
software.  These examples show you how you can use various NI-DAQ for Macintosh functions in actual
applications.

• Appendix A, NI-DAQ for Macintosh Function and Board Compatibility, contains a table of the National
Instruments boards that work with NI-DAQ for Macintosh and the functions that work with each board, as well
as a table of National Instruments SCXI chassis and modules that work with NI-DAQ for Macintosh and the
functions that work with each element of SCXI hardware.

© National Instruments Corporation xvii NI-DAQ Software Reference Manual for Macintosh



About This Manual

• Appendix B, Error Codes, lists the error codes NI-DAQ for Macintosh returns, including the error number,
name, and description.  Each function returns an error code that indicates whether the function was performed
successfully.

• Appendix C, Using an External Multiplexer, contains information on using the AMUX-64T.

• Appendix D, Transducer Conversion Routines, describes the transducer conversion routines included in
NI-DAQ for Macintosh.  You can use these routines to convert analog input voltages read from thermocouples,
RTDs, and strain gauges into units of temperature or strain.

• Appendix E, Analog Input Channel and Gain Settings and Voltage Calculation, lists the valid channel and gain
settings for DAQ boards, describes how NI-DAQ calculates voltage, and describes the measurement of offset
and gain measurement.

• Appendix F, Customer Communication, contains forms you can use to request help from National Instruments
or to comment on our products and manuals.

• The Glossary contains an alphabetical list and description of terms used in this manual, including abbreviations,
acronyms, metric prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics used in this manual, including the page where
each one can be found.

Each chapter is introduced with a list of the National Instruments boards that you can use for the operations under
discussion and a brief description of individual board features.  This introduction is followed by a list of the
functions that perform these operations.  The remainder of each chapter contains a detailed description of each
function.

Conventions Used in This Manual

The following conventions are used in this manual.

bold Denotes menus, menu items, options, parameters, or data types.

bold italic Denotes a note, caution, or warning.

DIO boards Refers to the DAQCard-DIO-24, NB-DIO-24, NB-DIO-96, NB-DIO-32F, and
PCI-DIO-96.

DMA board Refers to the NB-DMA-8-G or NB-DMA2800.

E Series device Refers to the PCI-MIO-16XE-50.

italic Denotes emphasis, a cross reference, or an introduction to a key concept.

Lab and 1200 boards Refers to the Lab-NB, Lab-LC, PCI-1200, and DAQCard 1200.

MIO boards Refers to the NB-MIO-16, NB-MIO-16X, and PCI-MIO-16XE-50.

monospace Text in this font denotes text or characters that are to be literally input from the keyboard,
sections of code, programming examples, and syntax examples.  This font is also used for
the proper names of disk drives, paths, directories, programs, subprograms, subroutines,
device names, functions, variables, filenames, and extensions, and for statements and
comments taken from program code.

italic monospace Italic text in this font denotes that you must supply the appropriate words or values in the
place of these items.

NI-DAQ Software Reference Manual for Macintosh xviii © National Instruments Corporation



About This Manual

< > Angle brackets enclose the name of a key on the keyboard–for example, <enter>.

<enter> Key names are lowercase.

Macintosh Macintosh refers to all Macintosh II, Macintosh Quadra, Macintosh Centris, Macintosh
LC, and Power Macintosh computers.

NI-DAQ NI-DAQ refers to the NI-DAQ software for Macintosh.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and terms are listed in the Glossary.

About the National Instruments Documentation Set

The NI-DAQ Software Reference Manual for Macintosh is one piece of the documentation set for your data
acquisition system.  You could have any of several types of manuals, depending on the hardware and software in
your system.  Use the manuals you have as follows:

• Getting Started with SCXI—If you are using SCXI, this is the first manual you should read.  It gives an
overview of the SCXI system and contains the most commonly needed information for the modules, chassis,
and software.

• Your SCXI user manuals—If you are using SCXI, read these manuals for detailed information about signal
connections and module configuration.  They also explain in greater detail how the module works and contain
application hints.

• Your DAQ hardware user manuals—These manuals have detailed information about the DAQ hardware that
plugs into your computer.  Use these manuals for hardware installation and configuration instructions,
specification information about your DAQ hardware, and application hints.

• Software manuals—Examples of software manuals you may have are the LabVIEW manual sets and the
NI-DAQ manual.  After you set up your hardware system, use either the application software (LabVIEW)
manuals or the NI-DAQ manual to help you write your application.  If you have a large and complicated
system, it is worthwhile to look through the software manuals before you configure your hardware.

• Accessory installation guides or manuals—If you are using accessory products, read the terminal block and
cable assembly installation guides or accessory board user manuals.  These are the terminal block and cable
assembly installation guides.  They explain how to physically connect the relevant pieces of the system.
Consult these guides when you are making your connections.

• SCXI chassis manuals—If you are using SCXI, read these manuals for maintenance information on the chassis
and installation instructions.

Customer Communication

National Instruments wants to receive your comments on our products and manuals.  We are interested in the
applications you develop with our products, and we want to help if you have problems with them.  To make it easy
for you to contact us, this manual contains comment and configuration forms for you to complete.  These forms are
in Appendix F, Customer Communication, at the end of this manual.

© National Instruments Corporation xix NI-DAQ Software Reference Manual for Macintosh



Chapter 1
Getting Started
                                                                                                        

This chapter will help you get started using NI-DAQ for Macintosh to build your data acquisition application for
National Instruments DAQ hardware.  NI-DAQ for Macintosh contains programming language interfaces for the
following environments:

• MPW C/C++ for Macintosh

• MPW C/C++ for Power Macintosh

• THINK C/Symantec C++ for Macintosh

• Symantec C/C++ for Power Macintosh

• Metrowerks C/C++ for Macintosh

• Metrowerks C/C++ for Power Macintosh

• MPW Pascal for Macintosh

• THINK Pascal for Macintosh

• Metrowerks Pascal for Macintosh

• Metrowerks Pascal for Power Macintosh

• Zedcor FutureBASIC for Macintosh

Figure 1-1 shows the steps to install your hardware and software, configure your hardware, and begin using
NI-DAQ in your application programs.

If you will be accessing the NI-DAQ device drivers through LabVIEW, you should read the NI-DAQ Installation for
LabVIEW section, then use your LabVIEW Data Acquisition VI Reference Manual to help you get started using the
data acquisition VIs in LabVIEW.

© National Instruments Corporation 1-1 NI-DAQ Software Reference Manual for Macintosh



Getting Started Chapter 1

Figure 1-1.  Steps to Begin Using NI-DAQ

NI-DAQ Software Reference Manual for Macintosh 1-2 © National Instruments Corporation



Chapter 1 Getting Started

NI-DAQ for Macintosh Overview

NI-DAQ for Macintosh Hardware Compatibility

Table 1-1.  NI-DAQ for Macintosh Hardware Compatibility

Plug-in Boards External Devices SCXI

DAQCard-500 AMUX-64T SCXI-1000

DAQCard-700 SC-2040 SCXI-1001

DAQCard-1200 SC-2042 SCXI-1100

DAQCard-DIO-24 SC-2043 SCXI-1102

DAQCard-AO-2DC SC-2070 SCXI-1120

Lab-LC SC-2071 SCXI-1121

Lab-NB SCXI-1122

NB-A2000 SCXI-1124

NB-A2100 SCXI-1140

NB-A2150 SCXI-1141

NB-AO-6 SCXI-1160

NB-DIO-24 SCXI-1161

NB-DIO-32F SCXI-1162

NB-DIO-96 SCXI-1162HV

NB-DMA-8-G SCXI-1163

NB-DMA2800 SCXI-1163R

NB-MIO-16

NB-MIO-16X

NB-PRL

NB-TIO-10

PCI-1200

PCI-DIO-96

PCI-MIO-16XE-50

NI-DAQ for Macintosh also works with all Second Wave Expansion Chassis that support NuBus-to-NuBus or PCI-
to-NuBus conversion.  Furthermore, NI-DAQ for Macintosh supports the Newer Technology NuBus-to-PC Card or
PCI-to-PC Card expansion modules.

NI-DAQ for Macintosh Clones

In order for NI-DAQ to identify the NuBus devices installed in your computer, the NI-DAQ NuBus interface
requires information about the computer.  By default, NI-DAQ may not recognize the presence of the NuBus on
certain Macintosh clone machines.  However, you can configure NI-DAQ to request the needed information from
your Macintosh clone.  To activate the configuration sequence, install NI-DAQ, disconnect all expansion chassis,
restart your computer, and press and hold <command> <+> or <command> <shift> <=> until the boot sequence is
complete. Once the boot sequence is complete, you will see your NuBus devices in the control panel.

© National Instruments Corporation 1-3 NI-DAQ Software Reference Manual for Macintosh



Getting Started Chapter 1

NI-DAQ for Macintosh Function Summary

The NI-DAQ for Macintosh software contains the following groups of functions:

• Board-Specific

• Analog Input

• Analog Output

• Digital I/O

• Data Acquisition

• SCXI

• Counter/Timer

• RTSI Bus Trigger

• Waveform Generation

An overview of the individual functions within each group is at the beginning of chapters 2 through 10.

NI-DAQ for Macintosh can use only non-GPIB functions; that is, NI-DAQ for Macintosh does not work with the
NB-GPIB board or the GPIB interface on the NB-DMA-8-G and NB-DMA2800 boards.  The National Instruments
NI-488 or LabVIEW software have GPIB functions; if you use GPIB functions, you can install the NI-488 software
in addition to NI-DAQ for Macintosh.  These two packages run cooperatively on Macintosh computers.

Installing the NI-DAQ Software for Use with LabVIEW

The LabVIEW installation program installs the NI-DAQ software for you.  However, the NI-DAQ software that is
included with your DAQ hardware may be a more recent version than the NI-DAQ software that LabVIEW
installed.

To ensure that the correct NI-DAQ version is installed, follow these steps:

1. If you had a previous version of NI-DAQ or LabVIEW installed, and you had configuration information entered
in the NI-DAQ Config, NI-DAQ Utilities, or NI-DAQ control panel, open that control panel and
record your configuration information.  You will have to enter that information again once you have installed
the new software.

Any new versions of NI-DAQ after version 4.8 will have the ability to read configuration information from the
previous control panel; you will not have to enter the configuration information again after you have entered it
in NI-DAQ version 4.8.

2. Install LabVIEW first.  Follow the LabVIEW installation instructions that came with your LabVIEW package.

3. Insert the NI-DAQ for Macintosh disk 1 into your disk drive.  There is one file on that disk–the NI-DAQ
Installer.  Open the NI-DAQ Installer by double-clicking on its icon.

4. Click on the Read Me button; it will display important late-breaking information that is not included in this
manual.  The Read Me information may also contain important installation instructions.  If the instructions
there differ from the instructions here, you should follow the instructions displayed by the Read Me button.

5. Drag the NI-DAQ icon to your startup drive to update NI-DAQ.

NI-DAQ Software Reference Manual for Macintosh 1-4 © National Instruments Corporation



Chapter 1 Getting Started

6. The NI-DAQ Installer will check the NI-DAQ version that was installed by LabVIEW.  If LabVIEW
installed a newer NI-DAQ version than the one included with this package, the NI-DAQ Installer will not
install anything.  Remove the NI-DAQ for Macintosh disk and restart your machine to load the NI-DAQ drivers
if you have not already done so after the LabVIEW installation.  Continue by reading the LabVIEW for
Macintosh Data Acquisition VI Reference Manual.  You no longer need this manual.

7. If the NI-DAQ version included with this package is newer than the one installed by LabVIEW, the NI-DAQ
Installer will install the new NI-DAQ version and remove the old version.

The NI-DAQ Installer will install two files:

• The NI-DAQ file in the Control Panels folder contains all of the data acquisition and SCXI drivers that are
required to run your DAQ hardware.

• The NI-DMA/DSP file in the Extensions folder contains DMA and DSP drivers that are shared by
NI-DAQ, NI-488, and NI-DSP.

You should continue by reading your LabVIEW for Macintosh Data Acquisition VI Reference Manual.  If that
manual makes reference to the NI-DAQ Utilities control panel, use the NI-DAQ control panel instead.
To open the NI-DAQ control panel, double-click on the NI-DAQ icon.

Installing Your National Instruments Hardware

1. Turn off your Macintosh computer.

2. Check the user manuals that came with your plug-in boards to determine if you need to change any jumper
settings.  Some DAQ boards have jumpers to set analog input polarity, input mode, analog output reference, and
so on.  Be sure to record any jumper settings you change so that you can enter the information correctly in the
configuration utility later.

3. Insert your plug-in DAQ boards and your DMA board, if any, into your Macintosh computer.

4. If you have a DMA board (NB-DMA-8-G or NB-DMA2800) you must connect it to your other DAQ boards
using a RTSI cable.  NI-DAQ will detect the DMA board automatically and will attempt to use DMA for data
transfers if possible.  The DMA operation will not function properly if you do not connect your boards with the
RTSI cable.  If you are using a Second Wave expansion chassis and/or two or more DMA boards, you can use
the NI-DAQ control panel to help you cable your RTSI buses properly.  See the Devices section later in this
chapter for more information.

If your DAQ board does not support DMA (it does not have a RTSI connector) or if you do not have a DMA
board in your system, NI-DAQ will use interrupts for data transfers instead of DMA.

5. If you have SCXI hardware, read the next section for SCXI installation instructions.  If you do not have SCXI
hardware, turn on your computer and go to the Installing the NI-DAQ for Macintosh Software section.

Installing Your SCXI Hardware

The Getting Started with SCXI manual that came with your SCXI hardware contains step-by-step detailed
instructions for assembling your SCXI system, including module jumper settings, cable assemblies, and terminal
blocks. The basic steps are as follows:

1. Check the jumpers on your modules. You should almost always leave the jumpers in their default positions. The
Getting Started with SCXI manual has a section for each module type that lists the cases where you may want to
change the jumper settings. The SCXI-1120, SCXI-1121, and SCXI-1140 modules have jumper-selectable
gains for each channel.

© National Instruments Corporation 1-5 NI-DAQ Software Reference Manual for Macintosh



Getting Started Chapter 1

2. Make sure the chassis power is turned off. Plug your modules in through the front of the chassis. You can put
the modules in any slot; for simplicity start with slot 1 on the left side of the chassis and move right with
additional modules. Be sure to screw the modules tightly into the chassis frame.

3. If you are using an SCXI-1180 feedthrough panel, you must install the SCXI-1180 in the slot immediately to the
right of the module that you will cable to the DAQ board. Otherwise, the cable connectors may not fit together
conveniently.

4. Plug the appropriate terminal blocks into the front of each module and screw them tightly into the chassis frame.

5. If you have more than one chassis, select a unique jumpered address for each additional chassis by using the
jumpers directly behind the front panel of the chassis.

6. Connect the mounting bracket of the SCXI-134x cable assembly to the back of one of the modules and screw it
into the chassis frame. Connect the other end of the cable to a DAQ board in your computer. In Multiplexed
mode, you need to cable only one module to the DAQ board, and in most cases it does not matter which
module. There are two special cases:

• If you are using SCXI-1140 modules along with other types of modules, you need to cable one of the
SCXI-1140 modules to a DAQ board.

• If you are using analog input modules along with other types of modules, you need to cable one of the
analog input modules to a DAQ board.

Refer to the Getting Started with SCXI manual if you need more in-depth information on related topics, such as
multichassis cabling.

7. Turn on your chassis power.

8. Turn on your computer.

Installing the NI-DAQ for Macintosh Software

Warning: Do not use the NI-DAQ for Macintosh 4.8 language interface and examples with earlier versions of
NI-DAQ for Macintosh or NB LabDriver installed, and vice versa.  To use applications created with
earlier versions of NI-DAQ for Macintosh or NB LabDriver, make sure to replace the language
interfaces from the earlier version with the NI-DAQ for Macintosh 4.8 language interfaces.

Follow these steps to install your new NI-DAQ for Macintosh software:

1. If you had a previous version of NI-DAQ installed, and you had configuration information entered in the
NI-DAQ Config, NI-DAQ Utilities, or NI-DAQ control panel, open that control panel and record your
configuration information.  You will have to enter that information again once you have installed the new
software.

Any new versions of NI-DAQ after version 4.8 will have the ability to read configuration information from the
previous control panel; you will not have to enter the configuration information again after you have entered it
in NI-DAQ version 4.8.

2. Insert the NI-DAQ for Macintosh disk 1 into your disk drive.  There is one file on that disk–the NI-DAQ
Installer.  Open the NI-DAQ Installer by double-clicking on its icon.

3. Click on the Read Me button; it will display important late-breaking information that is not included in this
manual.  The Read Me information may also contain important installation instructions.  If the instructions
there differ from the instructions here, you should follow the instructions displayed by the Read Me button.

4. Drag the NI-DAQ icon to your startup drive to install or update NI-DAQ.

NI-DAQ Software Reference Manual for Macintosh 1-6 © National Instruments Corporation



Chapter 1 Getting Started

5. After the NI-DAQ driver installation is complete, you can install one or more language interfaces by clicking on
the Show Other Installations button in the top left corner of the installer window, selecting one or more
interface icons, and dragging them to the desired disk.

6. If you have not done so already, restart your computer to install your device drivers.

7. The NI-DAQ Installer will install two files:

• The NI-DAQ file in the Control Panel folder contains all of the data acquisition and SCXI drivers that are
required to run your DAQ hardware.

• The NI-DMA/DSP file in the Extensions folder contains DMA and DSP drivers that are shared by
NI-DAQ, NI-488, and NI-DSP.

Using the NI-DAQ Control Panel to Configure Your
Hardware

Double-click on the NI-DAQ icon in the Control Panels folder.  Upon opening, the NI-DAQ Control Panel displays
a list of all the devices in your Macintosh.

Devices

Once you have restarted your computer and NI-DAQ has installed successfully, you can use the NI-DAQ control
panel to view information associated with the devices in your computer, as shown in Figure 1-2.

Figure 1-2. The NI-DAQ Control Panel

 When the Devices portion of the control panel is active, you will see a document that provides the following
information for each device:

• device—The logical device number associated with the device. Use this number in your function calls or in
LabVIEW.

• name—The name of the device.

© National Instruments Corporation 1-7 NI-DAQ Software Reference Manual for Macintosh



Getting Started Chapter 1

• type—The value returned by Board_ID or Get_DAQ_Device_Info.

• bus—The bus the device belongs to.

• socket—The name of the socket or slot in which the device is installed.

• address—The base address of the device. This field may not be accurate if the device is not a National
Instruments device.

• DMA socket (NuBus only)—The location of the DMA device that will service this device.

• RTSI bus (NuBus only)—The number of the RTSI bus for this device. This value is not important unless you
are using a Second Wave Expansion Chassis and/or two or more DMA devices. In either of these cases, cable
together all devices with the same RTSI bus number, and make sure to use separate cables for each distinctly
numbered bus.

Device Configuration

Select the Device Configuration option from the menu shown in Figure 1-3.

Figure 1-3.  Selecting Device Configuration in the NI-DAQ Control Panel

From the Device Configuration window, you can enter any jumper settings you changed when you installed your
board.  For example, if you changed the jumper for analog input polarity on your NB-MIO-16 board, select the
appropriate setting from the Polarity menu.  You can also edit the default settings for any parameters shown that are
software configurable.  If you are using an accessory board with your DAQ board, choose the appropriate setting in
the Accessories menu.

Click on the device name to display the I/O connector pinout for the device, as shown in Figure 1-4. Click in the
display window to return to the control panel.

Use the I/O Subsystem menu to select which functional section of the board you are editing (ADC, DAC, DIO port,
and so on).

Figure 1-4 shows the NI-DAQ device configuration window.

NI-DAQ Software Reference Manual for Macintosh 1-8 © National Instruments Corporation



Chapter 1 Getting Started

=

Figure 1-4.  The NI-DAQ Device Configuration Window

Note: NI-DAQ contains function calls that you can use to change any of these parameters programmatically
from your application.

If you have SCXI hardware, follow the instructions in the next section to configure your SCXI system with the
NI-DAQ Control Panel.

If you do not have SCXI hardware, continue by reading the appropriate sections in the Using the NI-DAQ for
Macintosh Language Interfaces section later in this chapter.

SCXI Configuration

To use SCXI with NI-DAQ, you must enter the configuration for each SCXI chassis using the NI-DAQ Control
Panel. Select the SCXI Configuration window from the menu shown in Figure 1-5.

© National Instruments Corporation 1-9 NI-DAQ Software Reference Manual for Macintosh



Getting Started Chapter 1

Figure 1-5.  Selecting the NI-DAQ SCXI Configuration Window

1. Leave the Chassis set to one.  You will use this number to access the SCXI chassis from your application.  If
you have multiple chassis, advance the Chassis to configure the next chassis after you finish configuring the
first chassis.

2. Select the appropriate chassis type for your chassis; this enables the remaining fields on the panel.

3. If you have additional chassis, you need to select a unique hardware-jumpered address for each chassis and
enter it in the Address field.  If you have only one chassis, leave this field and the address jumpers on your
chassis set to zero.

4. Leave the Method set to Serial, which means that NI-DAQ communicates with the chassis serially using a DIO
port of the plug-in DAQ board.  The Path automatically sets itself to the device number of the appropriate DAQ
board when you enter the Cabled Device information in step 5b.

5. Enter the configuration for each slot in the chassis.  The fields in the bottom two sections of the window reflect
the settings for the selected Module number.  For each SCXI module you install, you must set the following
fields:

a. Module Type–Select the correct module type for the module that is installed in the current slot.  If the
current slot has no module in it, leave this field set to None and advance the Module number to the next
slot.

b. Cabled Device–If the module in the current slot is directly cabled to a DAQ board in your computer, set
this field to the device number of that DAQ board.  Leave the Cabled Device field at None if the module in
the current slot is not directly cabled to a DAQ board.  If you are operating your modules in Multiplexed
mode, you need to cable only one module in each chassis to your plug-in DAQ board.  If you are not using
Multiplexed mode, refer to the operating modes discussion in Chapter 7, SCXI Functions, for instructions
about module cabling and the Cabled Device field.

c. Operating Mode–Multiplexed mode is the default operating mode—it is recommended for almost all
SCXI applications.  The operating modes available for each SCXI module type are discussed in Chapter 7,
SCXI Functions.

d. NI-DAQ does not use the menus in the bottom section of the window, the module configuration settings.
Only LabVIEW 3.0 and higher uses those settings.  You can, however, use this section to record your

NI-DAQ Software Reference Manual for Macintosh 1-10 © National Instruments Corporation



Chapter 1 Getting Started

settings for easy reference.  You must set and keep track of your SCXI gain and filter settings using the
SCXI functions in your NI-DAQ application.

You can command-click on any input field to pop up a help window.  You can also refer to Chapter 7, SCXI
Functions, if you need more detailed information on alternative SCXI configurations.  Figure 1-6 shows the
NI-DAQ Control Panel with the SCXI Configuration window selected.

Figure 1-6.  The NI-DAQ SCXI Configuration Window

Continue by reading the appropriate sections from the following Using NI-DAQ for Macintosh Language Interfaces
section.

Using the NI-DAQ for Macintosh Language Interfaces

This section presents an introduction to the NI-DAQ for Macintosh Language Interface portion of this manual. The
following sections discuss the various libraries used by the compiler environments, the organization of the include
files, the various data types NI-DAQ uses, and the changes in the error-handling scheme. The final section details
language-specific information.

Libraries

The NI-DAQ language-interface libraries are organized in the following hierarchy:

• 680x0 Libraries

– Apple

– Metrowerks

– National Instruments

• LabVIEW 3.1.x

• LabVIEW 4.0.0

– shared

© National Instruments Corporation 1-11 NI-DAQ Software Reference Manual for Macintosh



Getting Started Chapter 1

– Symantec

• C/C++

• Pascal

– Zedcor

• PowerPC Libraries

– National Instruments

• LabVIEW 3.1.x

• LabVIEW 4.0.0

– shared

– static

The National Instruments libraries are updated versions of the DAQ VI libraries for LabVIEW 3.1.x and
LabVIEW 4. If you need to upgrade your LabVIEW 3.1.x or LabVIEW 4 installation, install the NI-DAQ interfaces
and use the Finder to move the entire contents of the appropriate library folder to the DAQ folder in LabVIEW’s
vi.lib folder.

To use the shared libraries for 680x0-based Macintoshes, you must have CFM-68K installed (these libraries are
included in the shared folder); to install the libraries, use the Finder to move the contents of the shared folder to
the System Folder»Extensions folder on your startup disk.

To use the shared libraries for PowerPC-based Macintoshes, use the Finder to move the contents of the shared
folder to the System Folder»Extensions folder on your startup disk.

Whether you use the shared libraries or any of the static libraries, you will need to link the libraries with your object
code. For PowerPC-based Macintoshes, select the library you want. For 680x0-based Macintoshes, if you use a
static library with the Metrowerks, Symantec, or Zedcor environments, you will need to choose between A5-relative
and A4-relative libraries; use A5-relative libraries for applications, and A4-relative libraries for all other cases. In
the Metrowerks and Symantec environments, you need to initialize A4 yourself when you use A4-relative libraries;
consult your development environment manuals for information on how to configure A4.

Include Files

The NI-DAQ language-interface include files are located in the following folders:

• preferred headers

• shared headers

• compatibility headers

If you are doing new development, you should use the files in the preferred headers folder. If you are
updating older code, you will probably want to use the files in the compatibility headers folder. In either
case, you will also need to use the files in the shared headers folder.

If you are using C or C+, it is very important that you use the new header files because the libraries have been
converted to use Pascal calling conventions.

NI-DAQ Software Reference Manual for Macintosh 1-12 © National Instruments Corporation



Chapter 1 Getting Started

If you are using Pascal or BASIC, you will need to call the function setSourceLanguage with the constant
appropriate to your language; consult the header files for prototypes and language-selector constants. If you do not
call this function, certain functions that deal with 8-bit data will not work properly.

Data Types

The NI-DAQ interface libraries and headers now use the following types:

• signed, 8-bit integer data

• unsigned, 8-bit integer data

• signed, 16-bit integer data

• unsigned, 16-bit integer data

• signed, 32-bit integer data

• unsigned, 32-bit integer data

• 32-bit floating-point data

• 64-bit floating-point data

• 32-byte string data

Consult the language-specific sections for more information on which types are supported in your environment.

Error Codes

NI-DAQ now returns platform-independent error codes. If you are upgrading older programs, you may need to
change any values you searched for with hardwired values; in other words, if you did not use the error constants
defined in the interface headers, you will need to modify your source code. However, if you did use the constants
defined in the interface headers, you can use the compatibility headers to help you reduce the number of
modifications you need to make to your source code.

Also, the entry points for NI-DAQ no longer return system errors. Consequently, the global variable LDSysError
no longer exists.

Using NI-DAQ for Macintosh with C/C++

To use NI-DAQ with C/C++, include one of two files in your source file.  If you are updating an existing program,
use ni_daq_mac.h.  If you are writing a new program, include nidaq.h.

The data types used by NI-DAQ are defined in the file platform.h.  The following types are used:

• i8 signed, 8-bit integer data

• u8 unsigned, 8-bit integer data

• i16 signed, 16-bit integer data

• u16 unsigned, 16-bit integer data

© National Instruments Corporation 1-13 NI-DAQ Software Reference Manual for Macintosh



Getting Started Chapter 1

• i32 signed, 32-bit integer data

• u32 unsigned, 32-bit integer data

• f32 32-bit floating-point data

• f64 64-bit floating-point data

• string32 32-byte string data

If you are using Metrowerks for 68K or THINK C, you must configure your project to use 8-byte doubles, or the
format of the f64 type will not be correct.  In the THINK C environment, you may find it necessary to recompile
certain standard libraries in order to use 8-byte doubles.

The prototype for each NI-DAQ function is shown in the following chapters.  As an example, consider the following
prototype:

locus i32 DAQ_VScale(u32 deviceNumber, u32 channel, u32 gain,

f64 gainAdjust, f64 offset, u32 count, i16 *readings,

f64 *voltages);

Notice the qualifier locus, which means location or place of origin.  This qualifier shows a very important point—all
NI-DAQ functions now use Pascal calling conventions because we now provide unified libraries that you can use
with C/C++, Pascal, and BASIC.  It is very important that you always include the NI-DAQ header files in your
source code—never use an NI-DAQ function without a prototype.  If you are using THINK C, you must configure
your project to use THINK C language extensions in order for the pascal keyword to operate.

Also, notice that all parameters except readings and voltages are passed by value.  In this case, both readings and
voltages are arrays; however, other functions may pass scalar values by reference.  Consult the chapters that follow
for more information concerning the actual type of a pass-by-reference parameter.  You can use the C/C++ operator
& to generate a pointer to a scalar or array item.

Using NI-DAQ for Macintosh with Pascal

To use NI-DAQ with Pascal, include the file nidaq.p in your source or project.  Before using any of the NI-DAQ
functions, you should call the function setSourceLanguage with a value of kSourceIsPascal; this
function is not discussed in the chapters that follow, but its prototype can be found in nidaq.p, as can a definition
for kSourceIsPascal.  The purpose of this function is to inform the library that the calling language is Pascal so
that strings are placed in Pascal format and 8-bit arrays are manipulated properly (because Pascal does not support 8-
bit data types).

The data types used by NI-DAQ are defined in the file nidaq.p.  The following types are used:

• i16 signed, 16-bit integer data

• pi16 a pointer to an i16

• ppi16 a pointer to a pointer to an i16

• i32 signed, 32-bit integer data

• pi32 a pointer to an i32

• f32 32-bit floating-point data

• pf32 a pointer to an f32

NI-DAQ Software Reference Manual for Macintosh 1-14 © National Instruments Corporation



Chapter 1 Getting Started

• f64 64-bit floating-point data

• pf64 a pointer to an f64

• string32 32-byte string data

The prototype for each NI-DAQ function is shown in the following chapters.  As an example, consider the following
prototype:

function DAQ_VScale(deviceNumber : i32; channel : i32; gain : i32;

gainAdjust : f64; offset : f64; count : i32; readings : pi16;

voltages : pf64) : i32;

Notice that all parameters except readings and voltages are scalars.  In this case, both readings and voltages are
arrays that are passed by value using a pointer; however, other functions may pass scalar or array values by
reference.  You can use the Pascal operator @ to generate a pointer to a scalar or array item.

Using NI-DAQ for Macintosh with BASIC

To use NI-DAQ with BASIC, specifically, FutureBASIC, include the file nidaq.bas in your project.  Before
using any of the NI-DAQ functions, you should call the function setSourceLanguage with a value of
kSourceIsBASIC; this function is not discussed in the chapters that follow, but its interface can be found in
nidaq.bas, as can a definition for kSourceIsBASIC.  The prototype for this function is as follows:

FN setSourceLanguage(languageType&)

This function informs the library that the calling language is BASIC so that strings are placed in BASIC format and
8-bit arrays are manipulated properly (because BASIC does not support 8-bit data types).

The following types are used:

• % signed, 16-bit integer data

• & signed, 32-bit integer data

• ! 32-bit floating-point data

• # 64-bit floating-point data

• $ 32-byte string data

• & a pointer to %, &, !, or #

You must configure your project to use six significant digits for single-precision floating-point data and 12
significant digits for double-precision floating-point data; if you use any other size, the NI-DAQ interface will not
function properly.

The prototype for each NI-DAQ function is shown in the following chapters.  As an example, consider the following
prototype:

FN DAQ_VScale(deviceNumber&, channel&, gain&, gainAdjust#,

offset#, count&, readings&, voltages&)

For this function, all parameters except readings and voltages are passed by value.  However, because of the
manner in which BASIC passes parameters, it is not intuitive that readings and voltages are arrays.  Because the
parameter types for BASIC are very similar to those used by Pascal, you can use the Pascal prototype to help you

© National Instruments Corporation 1-15 NI-DAQ Software Reference Manual for Macintosh



Getting Started Chapter 1

discern the actual type of a parameter.  You can use the BASIC operator @ to generate a pointer to a scalar or array
item.

NI-DAQ Software Reference Manual for Macintosh 1-16 © National Instruments Corporation



Chapter 2
Board-Specific Functions
                                                                                                        

This chapter describes the functions for configuring and calibrating the boards.

Board-Specific Functions

The Board-Specific functions are used for configuring and calibrating boards.

A2000_Calibrate Calibrates the NB-A2000 A/D gain and offset values or restores them to the original
factory-set values.  The gain and offset values calculated during calibration adjust the
accuracy of the readings from the four analog input channels.

A2000_Config Configures some special NB-A2000 features:  selects the source of the sample clock
and whether or not to drive the SAMPCLK* line, chooses whether or not to add
dithering to the input signal, and chooses whether or not to use block-mode transfers
with the NB-A2000.

A2100_Calibrate Selects the desired calibration reference and performs an offset calibration cycle on
the ADCs on the NB-A2100 or the NB-A2150.

A2100_Config Selects the signal source used to provide data to the DACs and lets you configure the
external digital trigger so that it is shared both by data acquisition and waveform
generation operations on the NB-A2100.

A2150_Config Selects whether or not an internally generated trigger should be driven to the I/O
connector.  Also determines whether the board’s sampling clock signal should be
driven over the RTSI bus to other boards for multiple-board synchronized data
acquisition.

Board_ID Returns the National Instruments-assigned board ID for the selected board.

Board_Reset Stops any ongoing operation and resets the board in the specified slot to its system
startup default configuration.

Calibrate_1200 Calibrates the gain and offset values for the DAQCard-1200 and PCI-1200 ADCs and
DACs. You can perform a new calibration or use an existing set of calibration
constants by copying the constants from their storage location in the onboard
EEPROM. You can store up to six sets of calibration constants. NI-DAQ
automatically loads the calibration constants stored in EEPROM user area 5 the first
time you call a function pertaining to the device.

Calibrate_E_Series Use this function to calibrate your E Series device and to select a set of calibration
constants for NI-DAQ to use.

Get_DAQ_Device_Info Retrieves parameters pertaining to the device operation.

Master_Slave_Config Configures one board as a master board and one or more other boards as slave boards.
Currently used only by the NB-A2000 and the NB-A2150, this function ensures that,
in a multiple frame acquisition, the slave boards are always re-enabled before the
master board.

MIO_Config Turns dithering (the addition of Gaussian noise to the analog input signal) on and off,
for an E Series device (except the PCI-MIO-16XE-50), PCI-1200, and
DAQCard-1200.

© National Instruments Corporation 2-1 NI-DAQ Software Reference Manual for Macintosh



Board-Specific Functions Chapter 2

MIO_16X_Config Configures the oscillator frequency for the ADC selected when using external timing
sources on the NB-MIO-16X.

SC_2040_Config Informs NI-DAQ that an SC-2040 Track-and-Hold accessory is attached to the device
and communicates to NI-DAQ gain settings for one or all channels.

Select_Signal Chooses the source and polarity of a signal that the board uses (E Series devices only).

Set_DAQ_Device_Info This function can be used to change the data transfer mode (interrupts and DMA) for
certain classes of data acquisition operations, some settings for an SC-2040 Track-
and-Hold accessory and an SC-2043-SG strain-gauge accessory, as well as the
source for the CLK1 signal on the DAQCard-700.

A2000_Calibrate

Function
Calibrates the NB-A2000 A/D gain and offset values or restores them to the original factory-set values.  The
gain and offset values calculated during calibration adjust the accuracy of the readings from the four analog
input channels.

Warning: Read the calibration chapter in the NB-A2000 User Manual before using A2000_Calibrate.

Synopsis

C Syntax locus i32 A2000_Calibrate(u32 deviceNumber, u32 saveNewValues, u32

calibrationMethod, u32 channel, f64 extRefVoltage);

Pascal Syntax function A2000_Calibrate(deviceNumber : i32; saveNewValues : i32;

calibrationMethod : i32; channel : i32; extRefVoltage :

f64) : i32;

BASIC Syntax FN A2000_Calibrate(deviceNumber&, saveNewValues&,

calibrationMethod&, channel&, extRefVoltage#)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

saveNewValues selects the values used for calibration.  The gain and offset calibration values are stored in an
EEPROM on the NB-A2000 board, which does not lose its data even when there is no power to the board.
These values are read from the EEPROM and loaded into the NB-A2000 calibration circuitry when the board is
initialized (at power-up) or reset (Board_Reset) and saved for use during data acquisition.  When you
calibrate the NB-A2000, you can choose to replace the permanent copies of the gain and offset values in the
EEPROM and use the new values until the next calibration, even if the board is re-initialized, or you can elect
not to replace the EEPROM values but use the new values until the next calibration or initialization.

Set saveNewValues as follows:
0:  do not write new values to EEPROM.
1:  do write new values to EEPROM.

For example, if you get consistently inaccurate readings from one or more input channels, even after resetting
the board, you can calibrate and save the new gain and offset calibration values as permanent copies in the
EEPROM.  However, if acquisition results are accurate after initialization but start to drift after a few hours of
operation when the board's temperature has increased, you can calibrate the board at this operating temperature,
but retain the current EEPROM values to use after the next initialization.

calibrationMethod selects the method for calibration as follows:
0:  use internal reference to calibrate.
1:  use external reference to calibrate.
2:  reload factory calibration values.

NI-DAQ Software Reference Manual for Macintosh 2-2 © National Instruments Corporation



Chapter 2 Board-Specific Functions

channel determines the input channel connected to the external reference source.  For greatest accuracy in the
calibration, connect the reference to more than one channel, and set channel to -1.  All channels with input
values close to the given extRefVoltage are averaged to find the reference voltage.  If you have the reference
voltage connected to only one input channel, set the channel to that channel number.  The channel settings are
given as follows:

-1:  Source channels are determined automatically and values averaged.
0:  channel 0.
1:  channel 1.
2:  channel 2.
3:  channel 3.

extRefVoltage is the voltage of the external reference.

                                                                                                                                                                                             

A2000_Config

Function
Configures some special NB-A2000 features:  selects the source of the sample clock and whether or not to drive
the SAMPCLK* line, chooses whether or not to add dithering to the input signal, and chooses whether or not to
use block-mode transfers with the NB-A2000.

Synopsis

C Syntax locus i32 A2000_Config(u32 deviceNumber, u32 sClockSource, u32

sClockDrive, u32 dither, u32 memoryType);

Pascal Syntax function A2000_Config(deviceNumber : i32; sClockSource : i32;

sClockDrive : i32; dither : i32; memoryType : i32) : i32;

BASIC Syntax FN A2000_Config(deviceNumber&, sClockSource&, sClockDrive&, dither&,

memoryType&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

sClockSource sets the sampling timing to be controlled either by the onboard sample clock or by the external
signal at the SAMPCLK* input.

0:  Onboard sample clock.
1:  External sample clock.

By setting sClockSource to 1, the NB-A2000 can receive the sample clock from the external SAMPCLK* line
or from the CLOCKI line of the RTSI bus.  To receive the sample clock from the RTSI CLOCKI line, call
RTSI_Conn (see Chapter 9, RTSI Bus Trigger Functions).

sClockDrive sets the sample clock signal to drive or not drive the SAMPCLK* line.
0:  Sample clock signal does not drive SAMPCLK* line.
1:  Sample clock signal drives SAMPCLK* line.

It is not possible to receive the sample clock from the SAMPCLK* line and drive it at the same time.

dither determines whether or not to add approximately 0.5 LSB RMS of white Gaussian noise to the input
signal.  This is useful for applications that involve averaging to increase the resolution of the NB-A2000 to
more than 12 bits.  For high-speed applications that do not involve averaging, dithering is not recommended and
should be disabled.

0:  Dither disabled.
1:  Dither enabled.

© National Instruments Corporation 2-3 NI-DAQ Software Reference Manual for Macintosh



Board-Specific Functions Chapter 2

memoryType determines whether the memory allocated for the acquisition buffer is capable of performing
block-mode transfers.  If the acquisition buffer is on a memory-expansion board or in main memory that is
capable of performing block-mode transfers and you are using an NB-DMA2800, faster DMA performance can
be achieved by setting memoryType to 1.  If the memory allocated for the acquisition buffer is not capable of
performing block-mode transfers, or if you are not using an NB-DMA2800, set memoryType to 0.

0:  no block-mode capability.
1:  block-mode capability.

After system startup, the NB-A2000 is configured for the following:
sClockSource = 0:  onboard sample clock.
sClockDrive = 0:  sample clock signal does not drive SAMPCLK* line.
dither = 0:  dither disabled.
memoryType = 0:  no block mode capability.

As mentioned in the description of sClockDrive, it is not possible to receive the sample clock signal from the
SAMPCLK* line and drive the SAMPCLK*  line simultaneously.  However, because setting sClockSource to
1 indicates that the sample clock is received from an external source that can be either the SAMPCLK* line or
the RTSI bus, conflicts are detected by MAI_Arm and MDAQ_Start when the source of the sample clock is
known.

                                                                                                                                                                                             

A2100_Calibrate

Function
Selects the desired calibration reference and performs an offset calibration cycle on the ADCs on the NB-A2100
or the NB-A2150.

Synopsis

C Syntax locus i32 A2100_Calibrate(u32 deviceNumber, u32 adcGroup, u32

reference);

Pascal Syntax function A2100_Calibrate(deviceNumber : i32; adcGroup : i32;

reference : i32) : i32;

BASIC Syntax FN A2100_Calibrate(deviceNumber&, adcGroup&, reference&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

adcGroup selects the A/D channels that should be calibrated.
Valid values for the NB-A2100:  0.  On the NB-A2100, both the A/D channels, channel 0 and channel 1,
belong to adcGroup 0.

Valid values for the NB-A2150:  0, 1, 2.  On the NB-A2150, all four A/D channels belong to adcGroup 0,
A/D channels 0 and 1 belong to adcGroup 1, and A/D channels 2 and 3 belong to adcGroup 2.

reference selects the calibration reference to be used during the offset calibration cycle.
0: calibrate the channels using the analog input ground as the reference for each channel.
1: calibrate the channels using the external signal connected to each channel as the reference for that

channel.

The two A/D channels are calibrated using the analog input ground as the reference for each channel when the
computer is powered up.

                                                                                                                                                                                             

NI-DAQ Software Reference Manual for Macintosh 2-4 © National Instruments Corporation



Chapter 2 Board-Specific Functions

A2100_Config

Function
Selects the signal source used to provide data to the DACs and lets you configure the external digital trigger so
that it is shared both by data acquisition and waveform generation operations on the NB-A2100.

Synopsis

C Syntax locus i32 A2100_Config(u32 deviceNumber, u32 dacSource, u32

triggerMode);

Pascal Syntax function A2100_Config(deviceNumber : i32; dacSource : i32;

triggerMode : i32) : i32;

BASIC Syntax FN A2100_Config(deviceNumber&, dacSource&, triggerMode&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

dacSource selects the source to be used to supply data to the DACs.
0: use the data in the D/A FIFO.  This is the default setting at startup.
1: use the data being sampled by the ADCs.  With this setting, you can send the data sampled by the

ADCs directly to the DACs.

triggerMode disables or enables subsequent data acquisition and waveform generation operations to share the
external digital trigger.

0: disable subsequent data acquisition and waveform generation operations to share the external trigger.
This indicates that MDAQ and BWF Functions should execute independently of each other.

1: enable subsequent data acquisition and waveform generation operations to share the external trigger.
This indicates that the software should recognize the external trigger when both data acquisition and
waveform generation operations are ready to receive the trigger.  In other words, any trigger applied
when only one operation has been initiated is ignored, and any trigger applied when both operations
have been initiated are simultaneously accepted by both operations.  After the shared trigger is enabled,
any subsequent calls to MDAQ_Start and BWF_Start must be made with the external trigger
enabled for the operation being initiated.  A typical function sequence to use shared trigger would be as
follows:

A2100_Config to enabled shared trigger
MDAQ_Setup to set up acquisition buffer
MDAQ_Trig_Config to enable external trigger
MDAQ_Start to start data acquisition
BWF_BufLoad to set up waveform buffer
BWF_Start to start waveform generation

The last BWF_Start call in this case would enable the recognition of the external trigger.

If multiple data acquisition frames are being acquired and multiple waveform cycles are being generated with a
trigger required at the beginning of each cycle, then the recognition of the external trigger is synchronized so
that each trigger simultaneously initiates the acquisition of the next data frame and the output of the next
waveform cycle.

                                                                                                                                                                                                                                           

© National Instruments Corporation 2-5 NI-DAQ Software Reference Manual for Macintosh



Board-Specific Functions Chapter 2

A2150_Config

Function
Selects whether or not an internally generated trigger should be driven to the I/O connector.  Also determines
whether the board's sampling clock signal should be driven over the RTSI bus to other boards for multiple-
board synchronized data acquisition.

Synopsis

C Syntax locus i32 A2150_Config(u32 deviceNumber, u32 triggerDrive, u32

masterClock, u32 slaveCount, u16 *slaveList);

Pascal Syntax function A2150_Config(deviceNumber : i32; triggerDrive : i32;

masterClock : i32; slaveCount : i32; slaveList : pi16) :

i32;

BASIC Syntax FN A2150_Config(deviceNumber&, triggerDrive&, masterClock&,

slaveCount&, slaveList&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

triggerDrive selects whether the trigger signal received over the RTSI bus or the internally generated analog
level trigger signal should be connected to EXTTRIG* line at the I/O connector.

0: do not drive the EXTTRIG* line at the I/O connector.
1: drive the EXTTRIG* line a the I/O connector.

masterClock selects whether or not the sampling clock signal of the selected deviceNumber should be
configured to be driven over the RTSI bus to other NB-A2150 boards.

0: do not change the configuration of the sampling clock drive circuitry.
1: configure the sampling clock circuitry according to the given slaveList.

slaveCount selects the number of slave boards to be configured and the number of elements in slaveList.

slaveList is an array that contains the slot numbers of the boards that should accept the sampling clock signal
over the RTSI bus from deviceNumber.  slaveList is ignored if masterClock is 0 or if slaveCount is 0.

You should enable triggerDrive only if you have executed RTSI_Conn to receive the RTSITRIG* signal over
the RTSI bus or if you have executed MDAQ_Trig_Config to enable the analog level trigger.  In these cases,
after you execute MDAQ_Start, you can monitor the signal being sent to the A/D trigger circuitry at the
EXTTRIG* line of the I/O connector.  A high-to-low edge of the signal triggers the data acquisition.

The NB-A2150 uses signals over the RTSI bus for sampling clock synchronization between two or more
NB-A2150 boards.  The sampling clock synchronization circuitry makes simultaneous sampling possible on
more than four channels using additional NB-A2150 boards.  If masterClock is 1, slaveList should contain the
list of boards in slaveList that will accept the sampling clock from deviceNumber.  After you execute
A2150_Config with masterClock as 1 and slaveCount greater than zero, MDAQ_ScanRate ignores the
parameters for boards in slaveList until you execute A2150_Config again on deviceNumber with
masterClock as 1 and slaveCount as 0.  Executing A2150_Config with masterClock as 1 and slaveCount
as 0 deconfigures the boards previously in the slaveList and sets them up to use their own sampling clock
signal.

                                                                                                                                                                                           

NI-DAQ Software Reference Manual for Macintosh 2-6 © National Instruments Corporation



Chapter 2 Board-Specific Functions

Board_ID

Function
Returns the National Instruments-assigned board ID for the selected device.

Synopsis

C Syntax locus i32 Board_ID(u32 deviceNumber, i16 *deviceType);

Pascal Syntax function Board_ID(deviceNumber : i32; var deviceType : i16) : i32;

BASIC Syntax FN Board_ID(deviceNumber&, deviceType&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

deviceType returns the board ID used by NI-DAQ.  A return value of negative one (-1) indicates that the slot
corresponding to the selected deviceNumber is either empty or does not contain a device NI-DAQ recognizes.

Board_ID can be executed to find out programmatically which board exists at the slot position of the selected
deviceNumber.  This information can then be used to determine if a particular operation on a board is possible.
The following are the decimal values of the devices recognized by NI-DAQ for Macintosh.

DAQCard-500: 49
DAQCard-700: 31
DAQCard-1200: 48
DAQCard-DIO-24: 35
DAQCard-AO-2DC: 47
Lab-LC: 110
Lab-NB: 111
NB-A2000: 112
NB-A2100: 118
NB-A2150C: 115
NB-A2150F: 116
NB-A2150S: 117
NB-AO-6: 114
NB-DIO-24: 107
NB-DIO-32F: 108
NB-DIO-96: 109
NB-DMA-8-G: 266
NB-DMA2800: 458
NB-DSP2300 125
NB-DSP2301 126
NB-DSP2305 127
NB-MIO-16H-9: 104
NB-MIO-16H-15: 105
NB-MIO-16H-25: 106
NB-MIO-16L-9: 100
NB-MIO-16L-15: 101
NB-MIO-16L-25: 102
NB-MIO-16XH-18: 121
NB-MIO-16XH-42: 122
NB-MIO-16XL-18: 119
NB-MIO-16XL-42: 120
NB-PRL: 107
NB-TIO-10: 113
PCI-1200: 353
PCI-DIO-96: 352
PCI-MIO-16XE-50: 354

                                                                                                                                                                                                                                                                           

© National Instruments Corporation 2-7 NI-DAQ Software Reference Manual for Macintosh



Board-Specific Functions Chapter 2

Board_Reset

Function
Stops any ongoing operation and resets the specified board to its system startup default configuration.

Synopsis

C Syntax locus i32 Board_Reset(u32 deviceNumber);

Pascal Syntax function Board_Reset(deviceNumber : i32) : i32;

BASIC Syntax FN Board_Reset(deviceNumber&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

Board_Reset stops any ongoing operation on the board specified by deviceNumber and reinitializes the
board to its system startup default state.

If any board resources have been reserved for SCXI use when a call to Board_Reset is made, those resources
will still be reserved after the function call is made.  The only exception is the Mux Counter (Counter 1) on the
NB-MIO-16 or NB-MIO-16X; after Board_Reset is called, Counter 1 is unreserved.  Please refer to
Chapter 7, SCXI Functions, for listings of the different board resources that may be reserved for SCXI.

• The default state for the NB-MIO-16 and the NB-MIO-16X is as follows:

Analog Input:
number of channels: 8
input mode: differential
polarity: bipolar
input range: -10 V to 10 V
gains: 1 for all channels
multiplexer: internal
external gate: disabled
A/D timing: onboard
external trigger: disabled
pretrigger: disabled

Analog Output:
number of channels: 2
output mode: bipolar
output range: 10 V
group configuration: disabled

Digital I/O:
number of lines: 8
input channels: all 8 channels
latching: disabled

Counters:
number of channels: 3
counter channels: 1, 2, 5
output state: high impedance
latching: disabled

4-Bit Programmable Frequency:
number of channels: 1
output frequency: disabled

NI-DAQ Software Reference Manual for Macintosh 2-8 © National Instruments Corporation



Chapter 2 Board-Specific Functions

• The default state for the NB-DMA-8-G and the NB-DMA2800 is as follows:

Counters:
number of channels: 5
counter channels: 1 through 5
output state: high impedance

4-Bit Programmable Frequency:
number of channels: 1
output frequency: 6.25 kHz

RTSI Lines: clear

DMA Channels: all available

• The default state for the NB-DIO-24 is as follows:

Digital I/O:
number of lines: 24
latching: disabled

• The default state for the NB-DIO-96 is as follows:

Digital I/O:
number of lines: 96
latching: disabled

• The default state for the NB-DIO-32F is as follows:

Digital I/O:
number of lines: 32
latching: disabled
group configuration: disabled

• The default state for the NB-AO-6 is as follows:

Analog Output:
number of channels: 6
output mode: bipolar
output range: 10 volts
update mode: immediate update
group configuration: disabled
external update edge: falling edge

• The default state for the Lab and 1200 series is as follows:

ADCs:
number of channels: 8
input mode: single-ended
gains: 1 for all channels
polarity: bipolar
input range: -5 V to 5 V
A/D timing: onboard
triggering: software trigger

DACs:
number of channels: 2
output mode: bipolar
output range: -5 V to 5 V
update mode: immediate update
group configuration: disabled

© National Instruments Corporation 2-9 NI-DAQ Software Reference Manual for Macintosh



Board-Specific Functions Chapter 2

• The default state for the NB-A2000 is as follows:

Analog Input:
number of channels: 4
input channels: 0, 1, 2, 3
sample clock source: onboard
trigger mode: posttrigger
analog trigger: disabled
digital trigger: disabled
coupling: all channels AC coupled
dithering: disabled

Note: Board_Reset clears the previously defined master slave configuration.  If Board_Reset is
called on a master board or a slave board that is the only slave to its master, the whole master
slave configuration is cleared.  Otherwise, only the board on which Board_Reset is called is
taken out of the master slave configuration.  Board_Reset also reads the current user values
from the EEPROM and loads them into the NB-A2000 calibration circuitry.

• The default state for the NB-A2100 is as follows:

Analog Input:
number of channels: 2
input channels: 0, 1
sample clock frequency: 48 kHz
trigger mode: posttrigger
analog trigger: disabled
digital trigger: disabled
coupling: both channels DC coupled

Note: Board_Reset does not calibrate the ADC on the NB-A2100.

Analog Output:
output data source: D/A FIFO
update clock frequency: 48 kHz
digital trigger: disabled
coupling: jumper dependent

• The default state for the NB-A2150 is as follows:

Analog Input:
number of channels: 4
input channels: 0, 1, 2, 3
sample clock frequency: 51.2 kHz for NB-A2150F

48 kHz for NB-A2150C
24 kHz for NB-A2150S

trigger mode: posttrigger
analog trigger: disabled
digital trigger: disabled
coupling: all channels DC coupled

• The default state for the NB-TIO-10 is as follows:

Digital I/O:
number of lines: 16
input channels: all 16 channels
latching: disabled

Counters:
number of counters: 10
counter channels: 1 through 10
output state: high impedance

4-Bit Programmable Frequency:
number of channels: 2
output frequency: disabled

NI-DAQ Software Reference Manual for Macintosh 2-10 © National Instruments Corporation



Chapter 2 Board-Specific Functions

• The default state for the DAQCard-500 is as follows:

Analog Input:
number of channels: 8
input mode: single-ended
gains: 1 for all channels
input range: -5 to +5 V
polarity: bipolar
A/D timing: onboard
triggering: software trigger

Digital I/O:
number of output lines: 4
number of input lines: 4
latching: disabled

• The default state for the DAQCard-700 is as follows:

Analog Input:
number of channels: 16
input mode: single-ended
gains: 1 for all channels
input range: -5 to +5 V
polarity: bipolar
A/D timing: onboard
triggering: software trigger

Digital I/O:
number of output lines: 8
number of input lines: 8
latching: disabled

• The default state for the DAQCard-AO-2DC is as follows:

Analog Output:
number of channels: 2
output mode: unipolar
output range: 10 V

Digital I/O:
number of lines: 16
input channels: all 16 channels
latching: disabled

• The default state for the PCI-DIO-96 is as follows:

Digital I/O:
number of lines: 96
power-on state: high

• The default state for the PCI-MIO-16XE-50 is as follows:

Analog Output:
number of channels: 2
output mode: bipolar
output range: 10 V
group configuration: disabled

© National Instruments Corporation 2-11 NI-DAQ Software Reference Manual for Macintosh



Board-Specific Functions Chapter 2

Calibrate_1200

Function
The PCI-1200 and DAQCard-1200 come fully equipped with accurate factory calibration constants. However, if
you feel that the device is not performing either analog input or output accurately and suspect the device
calibration to be in error, you can use Calibrate_1200 to obtain a user defined set of new calibration
constants.

A complete set of calibration constants consists of ADC constants for all gains at one polarity plus DAC
constants for both DACs, again at the same polarity setting. It is important to understand the polarity rules. The
polarity your device was in when a set of calibration constants was created must match the polarity your device
is in when those calibration constants are used. For example, calibration constants created when your ADC is in
unipolar must only be used for data acquisition when your ADC is also in unipolar.

You can store up to six sets of user defined calibration constants. These are stored in the EEPROM on your
device in places called user calibration areas. You may also at any time use the calibration constants created at
the factory. These are stored in write protected places in the EEPROM called factory calibration areas. There
are two of these. One holds constants for bipolar operation and the other for unipolar. One additional area in the
EEPROM important to calibration is called the default load table. This table contains four pointers to sets of
calibration constants; one pointer each for ADC unipolar constants, ADC bipolar constants, DAC unipolar and
DAC bipolar. This table is used by NI-DAQ for calibration constant loading.

It is important to understand the calibration constant loading rules. The first time a function requiring use of the
ADC or DAC is called in an application, NI-DAQ automatically loads a set of calibration constants. At that time
the polarities of your ADC and DACs are examined and the appropriate pointers in the default load table are
used.

Synopsis

C Syntax locus i32 Calibrate_1200(u32 deviceNumber, u32 calOp, u32

saveNewCal, u32 EEPROMloc, u32 calRefChan, u32

groundRefChan, u32 DAQ0chan, u32 DAQ1chan, f64

calRefVolts, f64 gain);

Pascal Syntax function Calibrate_1200(deviceNumber : i32; calOp : i32;

saveNewCal : i32; EEPROMloc : i32; calRefChan : i32;

groundRefChan : i32; DAQ0chan : i32; DAQ1chan : i32;

calRefVolts : f64; gain : f64) : i32;

BASIC Syntax FN Calibrate_1200(deviceNumber&, calOp&, saveNewCal&, EEPROMloc&,

calRefChan&, groundRefChan&, DAQ0chan&, DAQ1chan&, calRefVolts#,

gain#)

Warning: Read the calibration chapter in your device user manual before using Calibrate_1200.

Description
calOp determines the operation to be performed.

1: Load calibration constants from EEPROMloc. If EEPROMloc is 0, the default load table is used and
NI-DAQ will ensure that the constants loaded will be appropriate for the current polarity settings. If
EEPROMloc is any other value you must ensure that the polarity of your device matches those of the
calibration constants.

2: Calibrate the ADC using DC reference voltage calRefVolts connected to calRefChan. To calibrate the
ADC, you must ground one input channel (groundRefChan) and connect a voltage reference between
any other channel and AGND (pin 11). Please remember that the ADC must be in referenced single-
ended mode for successful calibration of the ADC. After calibration, the calibration constants that were
obtained during the process will remain in use by the ADC until the device is initialized again.

3: Calibrate the DACS. DAC0chan and DAC1chan are the analog input channels to which DAC0 and
DAC1 are connected, respectively. To calibrate the DACs, you must wrap-back the DAC0 output (pin

NI-DAQ Software Reference Manual for Macintosh 2-12 © National Instruments Corporation



Chapter 2 Board-Specific Functions

10) and DAC1 out (pin 12) to any two analog input channels. Please remember that the ADC must be
in referenced single-ended and bipolar mode and fully calibrated (using calOp=2) for successful
calibration of the DACs. After calibration, the calibration constants that were obtained during the
process will remain in use by the DACs until the device is initialized again.

4: invalid.
5: Edit the default load table so that the set of constants in the area identified by EEPROMloc (1-6, 9 or

10) become the default calibration constants for the ADC. NI-DAQ will change either the unipolar or
bipolar pointer in the default load table depending on the polarity those constants are intended for. The
factory default for the ADC unipolar pointer is EEPROMloc=9. The factory default for the ADC
bipolar pointer is EEPROMloc=10. You can specify any user area in EEPROMloc after you have run
a calibration on the ADC and saved the calibration constants to that user area. Or you can specify
EEPROMloc=9 or 10 to reset the default load table to the factory calibration for unipolar and bipolar
mode respectively.

6: Edit the default load table so that the set of constants in the area identified by EEPROMloc (1-6, 9 or
10) become the default calibration constants for the DACs. NI-DAQ’s behavior for calOp=6 is
identical to that for calOp=5. Just substitute DAC everywhere you see ADC.

saveNewCal is only valid when calOp is 2 or 3.
0: Do not save new calibration constants. Even though not permanently saved in the EEPROM,

calibration constants created after a successful calibration will remain in use by your device until your
device is initialized again.

1: Save new calibration constants in EEPROMloc (1-6).

EEPROMloc selects the storage location in the onboard EEPROM to be used. Different sets of calibration
constants can be used to compensate for configuration or environmental changes.

0: Use the default load table (only valid if calOp = 1).
1: User calibration area 1.
2: User calibration area 2.
3: User calibration area 3.
4: User calibration area 4.
5: User calibration area 5.
6: User calibration area 6.
7: Invalid.
8: Invalid.
9: Factory calibration area for unipolar (write protected).
10: Factory calibration area for bipolar (write protected).

Notice that the user cannot write into EEPROMloc 9 and 10.

calRefChan is the analog input channel connected to the calibration voltage of calRefVolts when calOp is 2.
Range: 0 through 7.

groundRefChan is the analog input channel connected to ground when calOp is 2.
Range: 0 through 7.

DAC0chan is the analog input channel connected to DAC0 when calOp is 3.
Range: 0 through 7.

DAC1chan is the analog input channel connected to DAC1 when calOp is 3.
Range: 0 through 7.

calRefVolts is the value of the DC calibration voltage connected to calRefChan when calOp = 2. If you are
calibrating at a gain other than 1, make sure you apply a voltage so that calRefVolts * gain is within the upper
limits of the analog input range of the device.

gain is the device gain setting you want to calibrate at. When you perform an analog input operation, a
calibration constant for that gain must be available. When you run the Calibrate_1200 function at a
particular gain, the device can only be used to collect data accurately at that gain. If you are creating a set of

© National Instruments Corporation 2-13 NI-DAQ Software Reference Manual for Macintosh



Board-Specific Functions Chapter 2

calibration constants that you intend to use then you must be sure to calibrate at all gains that you intend to
sample at.

Range: 1, 2, 5, 10, 50, or 100.

A calibration performed in bipolar mode is not valid for unipolar and vice versa. Calibrate_1200 performs
a bipolar or unipolar calibration, or loads the bipolar or unipolar constants (calOp=1, EEPROMloc=0),
depending on the value of the polarity parameter in the last call to AI_Configure and AO_Configure. If
analog input measurements are taken with the wrong set of calibration constants loaded, you may get erroneous
data.

Calibrate for a particular gain if you plan to acquire at that gain. If you calibrate the device yourself make sure
you calibrate at a gain that you are likely to use. Each gain has a different calibration constant. When you switch
gains, NI-DAQ will automatically load the calibration constant for that particular gain. If you have not
calibrated for that gain and saved the constant earlier, an incorrect value will be used.

How do you set up your own calibration constants in the user area for both unipolar and bipolar configuration?
You want to create and store both unipolar and bipolar ADC calibration constants. And you want to modify the
default load table so that NI-DAQ will automatically load your constants instead of the factory constants.

Change the polarity of your device to unipolar (you can use the AI_Configure call). Call
Calibrate_1200 to perform an ADC calibration (calOp=2) with saveNewCal=1 (save) and EEPROMloc
set to any user area you prefer (say, 1). Next call the function with calOp=5 and EEPROMloc=1. NI-DAQ will
automatically modify the ADC unipolar pointer in the default load table to point to user area 1.

Now, change the polarity of your device to bipolar. Call Calibrate_1200 to perform another ADC
calibration (calOp=2) with saveNewCal=1 (save) and EEPROMloc set to a different user area (say, 2). Next
call the function with calOp=5 and EEPROMloc=2. NI-DAQ will automatically modify the ADC bipolar
pointer in the default load table to point to user area 2. At this point, you have set up user area 1 to be your
default load area when you operate the device in unipolar mode and user area 2 to be your default load area
when you operate the device in bipolar mode. The loading of the appropriate constants will be handled
automatically by NI-DAQ.

Failed calibrations leave your device in an incorrectly calibrated state. If you run this function with calOp=2
or 3 and receive an error, you must reload a valid set of calibration constants. If you have a valid set of user
defined constants in one of the user areas you can load them. Otherwise you should reload the factory constants.

                                                                                                                                                                                           

Calibrate_E_Series

Function
Use this function to calibrate your E Series device and to select a set of calibration constants to be used by
NI-DAQ.

Warning: Read the calibration chapter in your device user manual before using
Calibrate_E_Series.

Synopsis

C Syntax locus i32 Calibrate_E_Series(u32 deviceNumber, u32 calOp, u32

setOfCalConstants, f64 calRefVolts);

Pascal Syntax function Calibrate_E_Series(deviceNumber : i32; calOp : i32;

setOfCalConstants : i32; calRefVolts : f64) : i32;

BASIC Syntax FN Calibrate_E_Series(deviceNumber&, calOp&, setOfCalConstants&,

calRefVolts#)

NI-DAQ Software Reference Manual for Macintosh 2-14 © National Instruments Corporation



Chapter 2 Board-Specific Functions

Description
The legal ranges for the calOp and setOfCalConstants parameters are given in terms of constants that are
defined in a header file. The header file you should use depends on the language you are using:

• C programmers—nidaqcns.h

• Pascal programmers—nidaq.p

• BASIC programmers—nidaq.bas

calOp determines the operation to be performed.
Range:
ND_SET_DEFAULT_LOAD_AREA: Make setOfCalConstants the default load area; do not

perform calibration.
ND_SELF_CALIBRATE: Perform self-calibration of the device.
ND_EXTERNAL_CALIBRATE: Perform external calibration of the device.

setOfCalConstants selects the set of calibration constants to be used by NI-DAQ. These calibration constants
reside in the onboard EEPROM or are maintained by NI-DAQ.
Range:
ND_FACTORY_EEPROM_AREA: Factory calibration area of the EEPROM. You cannot modify

this area, so you can set setOfCalConstants to
ND_FACTORY_EEPROM_AREA only when calOp is set to
ND_SET_DEFAULT_LOAD_AREA.

ND_NI_DAQ_SW_AREA: NI-DAQ maintains calibration constants internally; no writing
into the EEPROM occurs. You cannot use this setting when
calOp is set to ND_SET_DEFAULT_LOAD_AREA. This
setting is useful if you want to calibrate your device repeatedly
during your program, and you do not want to store the
calibration constants in the EEPROM.

ND_USER_EEPROM_AREA: For the user calibration area of the EEPROM. If calOp is set
to ND_SELF_CALIBRATE or
ND_EXTERNAL_CALIBRATE, the new calibration constants
will be written into this area, and this area will become the
new default load area. You can use this setting if you want to
run several NI-DAQ applications during one measurement
session conducted at same temperature, and you do not want to
recalibrate your device in each application.

calRefVolts is the value of the DC calibration voltage connected to analog input channel 0 when calOp is
ND_EXTERNAL_CALIBRATE. This parameter is ignored when calOp is ND_SET_DEFAULT_LOAD_AREA
or ND_SELF_CALIBRATE.
Range:

+6.0 to +9.999 V

Your device contains calibration D/A converters (calDACs) that are used for fine-tuning the analog circuitry.
The calDACs must be programmed (loaded) with certain numbers called calibration constants. Those constants
are stored in non-volatile memory (EEPROM) on your device or are maintained by NI-DAQ. To achieve
specification accuracy, you should perform an internal calibration of your device just before a measurement
session but after your computer and the device have been powered on and allowed to warm up for at least 15
minutes. Frequent calibration produces the most stable and repeatable measurement performance. The device is
not harmed in any way if you recalibrate it as often as you like.

Two sets of calibration constants can reside in two load areas inside the EEPROM; one set is programmed at
the factory, and the other is left for the user. One load area in the EEPROM corresponds to one set of constants.
The load area NI-DAQ uses for loading calDACs with calibration constants is called the default load area.
When you get the device from the factory, the default load area is the area that contains the calibration constants
obtained by calibrating the device in the factory. NI-DAQ automatically loads the relevant calibration constants

© National Instruments Corporation 2-15 NI-DAQ Software Reference Manual for Macintosh



Board-Specific Functions Chapter 2

stored in the load area the first time you call a function (an AI, AO, DAQ, SCAN, and WFM function) that
requires them. NI-DAQ also automatically reloads calibration constants whenever appropriate; see the
Calibration Constant Loading by NI-DAQ section later in this function for details. When you call the
Calibrate_E_Series function with setOfCalConstants set to ND_NI_DAQ_SW_AREA, NI-DAQ uses a
set of constants it maintains in a load area that does not reside inside the EEPROM.

Note: Calibration of your MIO device takes some time. Do not be alarmed if the
Calibrate_E_Series function takes several seconds to execute.

Note: After powering on your computer, you should wait for some time (typically 15 minutes) for the
entire system to warm up before performing the calibration. You should allow the same warm-
up time before any measurement session that will take advantage of the calibration constants
determined by using the Calibrate_E_Series function.

Warning: When you call the Calibrate_E_Series function with calOp set to
ND_SELF_CALIBRATE or ND_EXTERNAL_CALIBRATE, NI-DAQ will abort any ongoing
operations the device is performing and set all configurations to defaults. Therefore we
recommend that you call Calibrate_E_Series before calling other NI-DAQ functions
(except USE functions) or when no other operations are going on.

Explanations about using this function for different purposes (with different values of calOp) are given in the
following sections.

Changing the Default Load Area
Set calOp to ND_SET_DEFAULT_LOAD_AREA if you want to change the area used for calibration constant
loading. The storage location selected by setOfCalConstants becomes the new default load area.

Example:

You want to make the factory area of the EEPROM default load area. You should make the following call:

Calibrate_E_Series(deviceNumber, ND_SET_DEFAULT_LOAD_AREA,

ND_FACTORY_EEPROM_AREA, 0.0)

Performing Self-Calibration of the Board
Set calOp to ND_SELF_CALIBRATE if you want to perform self-calibration of your device. The storage
location selected by setOfCalConstants becomes the new default load area.

Example:

You want to perform self-calibration of your device and you want to store the new set of calibration constants in
the user area of the EEPROM. You should make the following call:

Calibrate_E_Series(deviceNumber, ND_SELF_CALIBRATE, ND_USER_EEPROM_AREA,

0.0)

The EEPROM user area will become the default load area.

Performing External Calibration of the Board
Set calOp to ND_EXTERNAL_CALIBRATE if you want to perform external calibration of your device. The
storage location selected by setOfCalConstants becomes the new default load area.

Make the following connections before calling the Calibrate_E_Series function:

1. Connect the positive output of your reference voltage source to analog input channel 0.

2. Connect the negative output of your reference voltage source to analog input channel 8.

NI-DAQ Software Reference Manual for Macintosh 2-16 © National Instruments Corporation



Chapter 2 Board-Specific Functions

By performing these first two connections, you supply the reference voltage to analog input channel 0,
which is configured for differential operation.

3. If your reference voltage source and your computer are floating with respect to each other, connect the
negative output of your reference voltage source to the AIGND line as well as to analog input channel 8.

Example:

You want to perform an external calibration of your device using an external reference voltage source with a
precise 7.0500 V reference, and you want NI-DAQ to maintain a new set of calibration constants without
storing them in the EEPROM. You should make the following call:

Calibrate_E_Series (deviceNumber, ND_EXTERNAL_CALIBRATE, ND_NI_DAQ_SW_AREA,

7.0500)

The internal NI-DAQ area will become the default load area, and the calibration constants will be lost when
your application ends.

Calibration Constant Loading by NI-DAQ
NI-DAQ automatically loads calibration constants into calDACs whenever you call functions that depend on
them (AI, AO, DAQ, SCAN, and WFM functions). The following conditions apply:

• Calibration constants required by the E Series devices for unipolar analog input channels are different from
those for bipolar analog input channels. If you are acquiring data from one channel, or if all of the channels
you are acquiring data from are configured for the same polarity, NI-DAQ selects the appropriate set of
calibration constants for you. If you are scanning several channels, and you mix channels configured for
unipolar and bipolar mode in your scan list, NI-DAQ loads the calibration constants appropriate for the
polarity that analog input channel 0 is configured for.

• Analog output channels on the PCI-MIO-16XE-50 can only be configured for bipolar operation. Therefore,
NI-DAQ always uses the same constants for the analog output channels.

                                                                                                                                                                                           

Get_DAQ_Device_Info

Function
Retrieves parameters pertaining to the device operation.

Synopsis

C Syntax locus i32 Get_DAQ_Device_Info(u32 deviceNumber, u32 infoType, u32

*infoValue);

Pascal Syntax function Get_DAQ_Device_Info(deviceNumber : i32; infoType : i32;

var infoValue : i32) : i32;

BASIC Syntax FN Get_DAQ_Device_Info(deviceNumber&, infoType&, infoValue&)

Description
The legal range for the infoType is given in terms of constants that are defined in a header file. The header file
you should use depends on the language you are using:

• C programmers—nidaqcns.h

• Pascal programmers—nidaq.p

• BASIC programmers—nidaq.bas

© National Instruments Corporation 2-17 NI-DAQ Software Reference Manual for Macintosh



Board-Specific Functions Chapter 2

Use infoType to let NI-DAQ know which parameter you want to retrieve. infoValue will reflect the value of
the parameter.   infoValue will be given either in terms of constants from the header file or as numbers, as
appropriate.

infoType can be one of the following:

infoType Description

ND_BASE_ADDRESS Base address, in hexadecimal, of the device
specified by deviceNumber.

ND_DATA_XFER_MODE_AI

ND_DATA_XFER_MODE_AO_GR1

ND_DATA_XFER_MODE_AO_GR2

ND_DATA_XFER_MODE_GPCTR0

ND_DATA_XFER_MODE_GPCTR1

ND_DATA_XFER_MODE_DIO_GR1

ND_DATA_XFER_MODE_DIO_GR2

See the Set_DAQ_Device_Info function for
details. ND_NOT_APPLICABLE if not relevant
to the device.

ND_DEVICE_TYPE_CODE Type of the device specified by deviceNumber.
See Init_DA_Brds for a list of device type
codes.

ND_DMA_A_LEVEL

ND_DMA_B_LEVEL

ND_DMA_C_LEVEL

Level of the DMA channel assigned to the device
as channel A, B, and C.
ND_NOT_APPLICABLE if not relevant or
disabled.

ND_INTERRUPT_A_LEVEL

ND_INTERRUPT_B_LEVEL
Level of the interrupt assigned to the device as
interrupt A and B. ND_NOT_APPLICABLE if
not relevant or disabled.

ND_COUNTER_1_SOURCE See the Set_DAQ_Device_Info function for
details. ND_NOT_APPLICABLE if not relevant
to the device.

Note to C Programmers: infoValue is a pass-by-reference parameter.

                                                                                                                                                                                           

Master_Slave_Config

Function
Configures one board as a master board and one or more other boards as slave boards.  Currently used only by
the NB-A2000 and the NB-A2150, this function ensures that, in a multiple frame acquisition, the slave boards
are always re-enabled before the master board.

Synopsis

C Syntax locus i32 Master_Slave_Config(u32 deviceNumber, u32 slaveCount, u16

*slaveList);

Pascal Syntax function Master_Slave_Config(deviceNumber : i32; slaveCount : i32;

slaveList : pi16) : i32;

BASIC Syntax FN Master_Slave_Config(deviceNumber&, slaveCount&, slaveList&)

NI-DAQ Software Reference Manual for Macintosh 2-18 © National Instruments Corporation



Chapter 2 Board-Specific Functions

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

slaveCount selects the number of slave boards to be configured and the number of elements in slaveList.

slaveList is an array that contains the device numbers of the slave boards. The values of the elements in
slaveList can range from 1 to 14.

On the NB-A2000, a board is considered a master board if it is sending its TRIGGER*, START*, or CLOCKO
signal to another board (see Chapter 9, RTSI Bus Trigger Functions, for more information on these signals).  On
the NB-A2150, a board is considered a master board if it is sending its RTSITRIG*, SWSTART*, or the A/D
sampling clock signal to another board (see the description for A2150_Config earlier in this chapter and
Chapter 9, RTSI Bus Trigger Functions, for more information on these signals).  The board receiving these
signals is considered a slave board because sampling is controlled by signals sent from the master board.  In a
multiple frame acquisition, for a slave board to always be able to respond to a master signal, the slave board
must be enabled before the master board is enabled.  If the master board is enabled first, it can send its signal to
the slave boards before they are capable of responding.  The initial start-up order is the responsibility of the
application you are using.  The master board should always be started last.  The purpose of
Master_Slave_Config is to ensure that the master is also started last for each subsequent frame acquired
during a multiple frame acquisition.

                                                                                                                                                                                             

MIO_16X_Config

Function
Configures the oscillator frequency for the ADC selected when using external timing sources on the
NB-MIO-16X.

Synopsis

C Syntax locus i32 MIO_16X_Config(u32 deviceNumber, u32 adcType);

Pascal Syntax function MIO_16X_Config(deviceNumber : i32; adcType : i32) : i32;

BASIC Syntax FN MIO_16X_Config(deviceNumber&, adcType&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

adcType indicates the minimum sample interval of the ADC.  adcType has the following possible values:
0:  42 µs minimum sample interval (NB-MIO-16X-42).
1:  18 µs minimum sample interval (NB-MIO-16X-18).

The ADC used on the NB-MIO-16X has an oscillator frequency input in addition to the sampling frequency
used for data acquisition.  The ADC must use the correct oscillator frequency to operate correctly.  You should
use the value for adcType that corresponds with your version of the NB-MIO-16X.

MIO_16X_Config must be called when using an external timebase (the SOURCE5 input) or an external clock
to control sampling.  NI-DAQ for Macintosh defaults to an oscillator frequency that is compatible with both the
NB-MIO-16X-42 and NB-MIO-16X-18, but sample intervals faster than 42 µs with the
NB-MIO-16X-18 produces data that is not correct to 16 bits.  If the internal sample clock is used, then NI-DAQ
for Macintosh picks the appropriate oscillator input based on the sample interval supplied, and
MIO_16X_Config does not have to be called.

                                                                                                                                                                                             

© National Instruments Corporation 2-19 NI-DAQ Software Reference Manual for Macintosh



Board-Specific Functions Chapter 2

MIO_Config

Function
Turns dithering (the addition of Gaussian noise to the analog input signal) on and off, for an E Series device
(except the PCI-MIO-16XE-50), PCI-1200, and DAQCard-1200.

Synopsis

C Syntax locus i32 MIO_Config(u32 deviceNumber, u32 dither, u32 useAMUX);

Pascal Syntax function MIO_Config(deviceNumber : i32; dither : i32; useAMUX :

i32) : i32;

BASIC Syntax FN MIO_Config(deviceNumber&, dither&, useAMUX&)

Description
dither indicates whether to add approximately 0.5 LSB rms of white Gaussian noise to the input signal. This is
useful for applications that involve averaging to increase the effective resolution of a device. For high-speed
applications that do not involve averaging, dithering is not recommended and should be disabled.

0: Disable dithering.
1: Enable dithering.

This parameter is ignored for the PCI-MIO-16XE-50. Dithering is always enabled on this device.

useAMUX does not apply to any of these devices and is ignored.

                                                                                                                                                                                           

SC_2040_Config

Function
Informs NI-DAQ that an SC-2040 Track-and-Hold accessory is attached to the device and communicates to
NI-DAQ gain settings for one or all channels.

Synopsis

C Syntax locus i32 SC_2040_Config(u32 deviceNumber, u32 channel, u32

sc2040gain);

Pascal Syntax function SC_2040_Config(deviceNumber : i32; channel : i32;

sc2040gain : i32) : i32;

BASIC Syntax FN SC_2040_Config(deviceNumber&, channel&, sc2040gain&)

Description
channel allows you to specify an individual channel on the SC-2040 or all SC-2040 channels.

Range: -1 for all channels and 0 through 7 for individual channels.

sc2040gain allows you to indicate the gain you have selected with your SC-2040 jumpers.
Range: 1, 10, 100, 200, 300, 500, 600, 700, 800.

You must use this function before any analog input function that uses the SC-2040.

This function reserves the PFI 7 line on your E Series device for use by NI-DAQ and the SC-2040. This line is
configured for output, and the output is a signal that indicates when a scan is in progress.

Warning: Do not attempt to drive the PFI 7 line after calling this function. If you do, you may damage
your SC-2040, your E Series device, and your equipment.

NI-DAQ Software Reference Manual for Macintosh 2-20 © National Instruments Corporation



Chapter 2 Board-Specific Functions

Example 1:

You have set the jumper for a gain of 100 for all your SC-2040 channels. You should call SC_2040_Config
as follows:

SC_2040_Config(deviceNumber, -1, 100)

Example 2:

You have set the jumper for a gain of 100 for channels 0, 3, 4, 5, and 6 on your SC-2040, gain 200 for channels
1 and 2, and gain 500 for channel 7. You should call function SC_2040_Config several times as follows:

SC_2040_Config(deviceNumber, -1, 100)

SC_2040_Config(deviceNumber, 1, 200)

SC_2040_Config(deviceNumber, 2, 200)

SC_2040_Config(deviceNumber, 7, 500)

                                                                                                                                                                                             

Select_Signal

Function
Chooses the source and polarity of a signal that the device uses (E Series devices only).

Synopsis

C Syntax locus i32 Select_Signal(u32 deviceNumber, u32 signal, u32 source,

u32 sourceSpec);

Pascal Syntax function Select_Signal(deviceNumber : i32; signal : i32; source :

i32; sourceSpec : i32) : i32;

BASIC Syntax FN Select_Signal(deviceNumber&, signal&, source&, sourceSpec&)

Description
You can use the onboard DAQ-STC to select among many sources for various signals.

Use the signal parameter to specify the signal whose source you want to select. The following table shows the
possible values for signal.

© National Instruments Corporation 2-21 NI-DAQ Software Reference Manual for Macintosh



Board-Specific Functions Chapter 2

Group signal Description

ND_IN_START_TRIGGER Start trigger for the DAQ and SCAN

functions
ND_IN_STOP_TRIGGER Stop trigger for the DAQ and SCAN

functions
ND_IN_SCAN_CLOCK_TIMEBASE Scan clock timebase for the SCAN

functions
Timing and

Control Signals

ND_IN_CHANNEL_CLOCK_TIMEBASE Channel clock timebase for the DAQ and

SCAN functions

Used
Internally

ND_IN_CONVERT Convert signal for the AI, DAQ and SCAN
functions

by the Onboard
DAQ-STC

ND_IN_SCAN_START Start scan signal for the SCAN functions

ND_IN_EXTERNAL_GATE External gate signal for the DAQ and

SCAN functions
ND_OUT_START_TRIGGER Start trigger for the WFM functions
ND_OUT_UPDATE Update signal for the AO and WFM

functions
ND_OUT_UPDATE_CLOCK_TIMEBASE Update clock timebase for the WFM

functions

ND_PFI_0 through PFI_9 Signal present at the I/O connector pin
PFI0 through PFI9.

I/O Connector

ND_GPCTR0_OUTPUT Signal present at the I/O connector pin
GPCTR0_OUTPUT

Pins ND_GPCTR1_OUTPUT Signal present at the I/O connector pin
GPCTR1_OUTPUT

ND_FREQ_OUT Signal present at the FREQ_OUT output
pin on the I/O connector.

ND_RTSI_0 through ND_RTSI_6 Signal present at the RTSI bus trigger
line 0 through 7.

RTSI Bus
Signals

ND_RTSI_CLOCK Enable the device to drive the RTSI clock
line or prevent it from doing it.

ND_BOARD_CLOCK Enable the device to receive the clock
signal from the RTSI clock line or stop it
from doing so.

Legal values for source and sourceSpec depend on the signal and are shown in the following tables:

signal = ND_IN_START_TRIGGER

source sourceSpec

ND_PFI_0 through ND_PFI_9 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_RTSI_0 through ND_RTSI_6 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_GPCTR0_OUTPUT ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_AUTOMATIC ND_DONT_CARE

Use ND_IN_START_TRIGGER to initiate a data acquisition sequence. You can use an external signal or
output of general-purpose counter 0 as a source for this signal, or you can specify that NI-DAQ generates it
(corresponds to source  =  ND_AUTOMATIC).

If you do not call this function with signal = ND_IN_START_TRIGGER, NI-DAQ uses the default values,
source = ND_AUTOMATIC and sourceSpec = ND_LOW_TO_HIGH.

NI-DAQ Software Reference Manual for Macintosh 2-22 © National Instruments Corporation



Chapter 2 Board-Specific Functions

If you call DAQ_Config with startTrig = 1, NI-DAQ calls Select_Signal with signal  = 
ND_IN_START_TRIGGER, source = ND_PFI_0, and sourceSpec = ND_HIGH_TO_LOW.

If you call DAQ_Config with startTrig = 0, NI-DAQ calls Select_Signal with signal  = 
ND_IN_START_TRIGGER, source = ND_AUTOMATIC, and sourceSpec = ND_DONT_CARE.

signal = ND_IN_STOP_TRIGGER

source sourceSpec

ND_PFI_0 through ND_PFI_9 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_RTSI_0 through ND_RTSI_6 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

Use ND_IN_STOP_TRIGGER for data acquisition in the pretriggered mode. The selected transition on the
signal line indicates to the device that it should acquire a specified number of scans after the trigger and
stop.

If you do not call this function with signal = ND_IN_STOP_TRIGGER, NI-DAQ uses the default values,
source = ND_PFI_1 and sourceSpec = ND_HIGH_TO_LOW. By default, ND_IN_STOP_TRIGGER is
not used because the pretriggered mode is disabled.

If you call DAQ_StopTrigger_Config with startTrig = 1, NI-DAQ calls Select_Signal with
signal = ND_IN_STOP_TRIGGER, source = ND_PFI_1, and sourceSpec = ND_HIGH_TO_LOW.
Therefore, if you want to use different selection for ND_IN_STOP_TRIGGER, you need to call the
Select_Signal function after DAQ_StopTrigger_Config.

signal = ND_IN_EXTERNAL_GATE

source sourceSpec

ND_PFI_0 through ND_PFI_9 ND_PAUSE_ON_HIGH and ND_PAUSE_ON_LOW

ND_RTSI_0 through ND_RTSI_6 ND_PAUSE_ON_HIGH and ND_PAUSE_ON_LOW

ND_NONE ND_DONT_CARE

Use ND_IN_EXTERNAL_GATE for gating the data acquisition. For example, if you call this function with
signal  =  ND_IN_EXTERNAL_GATE, source = ND_PFI_9, and sourceSpec = PAUSE_ON_HIGH, the
data acquisition will be paused whenever the PFI 9 is at the high level. The pausing is performed on a per
scan basis, so no scans are split by the external gate.

If you do not call this function with signal = ND_IN_EXTERNAL_GATE, NI-DAQ uses the default values,
source = ND_NONE and sourceSpec = ND_DONT_CARE; therefore, by default, the data acquisition is not
gated.

signal = ND_IN_SCAN_START

source sourceSpec

ND_PFI_0 through ND_PFI_9 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_RTSI_0 through ND_RTSI_6 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_GPCTR0_OUTPUT ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_INTERNAL_TIMER ND_LOW_TO_HIGH

Use this signal for scan timing. You can use a DAQ-STC timer for timing the scans, or you can use an
external signal. You can also use the output of the general-purpose counter 0 for scan timing. This can be
useful for applications such as Equivalent Time Sampling (ETS).

© National Instruments Corporation 2-23 NI-DAQ Software Reference Manual for Macintosh



Board-Specific Functions Chapter 2

If you do not call this function with signal = ND_IN_SCAN_START, NI-DAQ uses the default values,
source = ND_INTERNAL_TIMER and sourceSpec = ND_LOW_TO_HIGH.

If you call DAQ_Config with extConv = 2 or 3, NI-DAQ calls Select_Signal with
signal  =  ND_IN_SCAN_START, source = ND_PFI_7, and sourceSpec = ND_HIGH_TO_LOW.

If you call DAQ_Config with extConv = 0 or 1, NI-DAQ calls Select_Signal with
signal  =  ND_IN_SCAN_START, source = ND_INTERNAL_TIMER, and
sourceSpec  =  ND_LOW_TO_HIGH.

signal = ND_IN_CONVERT

source sourceSpec

ND_PFI_0 through ND_PFI_9 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_RTSI_0 through ND_RTSI_6 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_GPCTR0_OUTPUT ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_INTERNAL_TIMER ND_LOW_TO_HIGH

Use ND_IN_CONVERT for sample (channel interval) timing. This signal controls the onboard ADC. You
can use a DAQ-STC timer for timing the samples, or you can use an external signal. You can also use
output of the general-purpose counter 0 for sample timing.

If you do not call this function with signal = ND_IN_CONVERT, NI-DAQ uses the default values,
source  =  ND_INTERNAL_TIMER and sourceSpec = ND_LOW_TO_HIGH.

If you call DAQ_Config with extConv = 1 or 3, NI-DAQ calls Select_Signal with
signal  =  ND_IN_CONVERT, source = ND_PFI_2, and sourceSpec = ND_HIGH_TO_LOW.

If you call DAQ_Config with extConv = 0 or 2, NI-DAQ calls Select_Signal with
signal  =  ND_IN_CONVERT, source = ND_INTERNAL_TIMER, and sourceSpec  = 
ND_LOW_TO_HIGH.

signal = ND_IN_SCAN_CLOCK_TIMEBASE

source sourceSpec

ND_PFI_0 through ND_PFI_9 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_RTSI_0 through ND_RTSI_6 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_INTERNAL_20_MHZ ND_LOW_TO_HIGH

ND_INTERNAL_100_KHZ ND_LOW_TO_HIGH

Use ND_IN_SCAN_CLOCK_TIMEBASE as an input into the DAQ-STC scan timer. The scan timer
generates timing by counting the signal at its input, and producing an IN_START_SCAN signal after the
specified number of occurrences of the ND_IN_SCAN_CLOCK_TIMEBASE signal transitions.

If you do not call this function with signal = ND_IN_SCAN_CLOCK_TIMEBASE, NI-DAQ uses the
default values, source = ND_INTERNAL_20_MHZ and sourceSpec  =  ND_LOW_TO_HIGH.

NI-DAQ Software Reference Manual for Macintosh 2-24 © National Instruments Corporation



Chapter 2 Board-Specific Functions

signal = ND_IN_CHANNEL_CLOCK_TIMEBASE

source sourceSpec

ND_PFI_0 through ND_PFI_9 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_RTSI_0 through ND_RTSI_6 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_INTERNAL_20_MHZ ND_LOW_TO_HIGH

ND_INTERNAL_100_KHZ ND_LOW_TO_HIGH

Use ND_IN_CHANNEL_CLOCK_TIMEBASE as an input into the DAQ-STC sample (channel interval)
timer. The sample timer generates timing by counting the signal at its input, and producing an
ND_IN_CONVERT signal after the specified number of occurrences of the
ND_IN_CHANNEL_CLOCK_TIMEBASE signal transitions.

If you do not call this function with signal = ND_IN_SCAN_CLOCK_TIMEBASE, NI-DAQ uses the
default values, source = ND_INTERNAL_20_MHZ and sourceSpec  =  ND_LOW_TO_HIGH.

signal = ND_OUT_START_TRIGGER

source sourceSpec

ND_PFI_0 through ND_PFI_9 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_RTSI_0 through ND_RTSI_6 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_IN_START_TRIGGER ND_LOW_TO_HIGH

ND_AUTOMATIC ND_LOW_TO_HIGH

Use ND_OUT_START_TRIGGER to initiate a waveform generation sequence. You can use an external
signal or the signal used as the ND_IN_START_TRIGGER, or NI-DAQ can generate it. Setting source to
ND_IN_START_TRIGGER is useful for synchronizing waveform generation with data acquisition.

If you do not call this function with signal = ND_OUT_START_TRIGGER, NI-DAQ uses the default
values, source = ND_AUTOMATIC and sourceSpec = ND_LOW_TO_HIGH.

signal = ND_OUT_UPDATE

source sourceSpec

ND_PFI_0 through ND_PFI_9 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_RTSI_0 through ND_RTSI_6 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_GPCTR1_OUTPUT ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_INTERNAL_TIMER ND_LOW_TO_HIGH

Use this signal for update timing. You can use a DAQ-STC timer for timing the updates, or you can use an
external signal. You can also use output of the general-purpose counter 1 for update timing.

If you do not call this function with signal = ND_OUT_UPDATE, NI-DAQ uses the default values,
source = ND_INTERNAL_TIMER and sourceSpec = ND_LOW_TO_HIGH.

© National Instruments Corporation 2-25 NI-DAQ Software Reference Manual for Macintosh



Board-Specific Functions Chapter 2

signal = ND_OUT_UPDATE_CLOCK_TIMEBASE

source sourceSpec

ND_PFI_0 through ND_PFI_9 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_RTSI_0 through ND_RTSI_6 ND_LOW_TO_HIGH and ND_HIGH_TO_LOW

ND_INTERNAL_20_MHZ ND_LOW_TO_HIGH

ND_INTERNAL_100_KHZ ND_LOW_TO_HIGH

Use this signal as an input into the DAQ-STC update timer. The update timer generates timing by counting
the signal at its input and producing an ND_OUT_UPDATE signal after the specified number of occurrences
of the ND_OUT_UPDATE_CLOCK_TIMEBASE signal transitions.

If you do not call this function with signal = ND_OUT_UPDATE_CLOCK_TIMEBASE, NI-DAQ uses the
default values, source = ND_INTERNAL_20_MHZ and sourceSpec = ND_LOW_TO_HIGH.

signal = ND_PFI_0 through ND_PFI_9

The following table summarizes all the signals and source for the I/O connector pins PFI0 through PFI9.

signal source sourceSpec

ND_PFI_0 through ND_PFI_9 ND_NONE ND_DONT_CARE

ND_PFI_0 ND_IN_START_TRIGGER ND_LOW_TO_HIGH

ND_PFI_1 ND_IN_STOP_TRIGGER ND_LOW_TO_HIGH

ND_PFI_2 ND_IN_CONVERT ND_HIGH_TO_LOW

ND_PFI_3 ND_GPCTR1_SOURCE ND_LOW_TO_HIGH

ND_PFI_4 ND_GPCTR1_GATE ND_POSITIVE

ND_PFI_5 ND_OUT_UPDATE ND_HIGH_TO_LOW

ND_PFI_6 ND_OUT_START_TRIGGER ND_LOW_TO_HIGH

ND_PFI_7 ND_IN_SCAN_START ND_LOW_TO_HIGH

ND_PFI_7 ND_IN_SCAN_IN_PROG ND_LOW_TO_HIGH

ND_PFI_8 ND_GPCTR0_SOURCE ND_LOW_TO_HIGH

ND_PFI_9 ND_GPCTR0_GATE ND_POSITIVE

Use ND_NONE to disable output on the pin.

signal = ND_GPCTR0_OUTPUT

source sourceSpec

ND_NONE ND_DONT_CARE

ND_GPCTR0_OUTPUT ND_LOW_TO_HIGH

ND_RTSI_0 through ND_RTSI_6 ND_LOW_TO_HIGH

Use ND_NONE to disable output on the pin. When you disable output on this pin, you can use the pin as an
input pin, and you can attach an external signal to it. This is useful because it enables you to communicate a
signal from the I/O connector to the RTSI bus.

When you enable this pin for output, you can program it to output the signal present at any one of the RTSI
bus trigger lines or the general-purpose counter 0 output. The RTSI selections are useful because they
enable you to communicate a signal from the RTSI bus to the I/O connector.

NI-DAQ Software Reference Manual for Macintosh 2-26 © National Instruments Corporation



Chapter 2 Board-Specific Functions

signal = ND_GPCTR1_OUTPUT

source sourceSpec

ND_NONE ND_DONT_CARE

ND_GPCTR1_OUTPUT ND_LOW_TO_HIGH

ND_RESERVED ND_DONT_CARE

Use ND_NONE to disable the output on the pin, in other words, do place the pin in high impedance state.

NI-DAQ may use ND_RESERVED when you use this device with some of the SCXI modules. In this case,
you can use general-purpose counter 1, but the output will not be available on the I/O connector because the
pin is used for device-to-SCXI communication. Currently, there are no SCXI modules that require this.

signal = ND_FREQ_OUT

source sourceSpec

ND_NONE ND_DONT_CARE

ND_INTERNAL_10_MHZ 1 through 16

ND_INTERNAL_100_KHZ 1 through 16

Use ND_NONE to disable the output on the pin.

The signal present on the FREQ_OUT pin of the I/O connector is the divided-down version of one of the
two internal timebases. Use sourceSpec to specify the divide-down factor.

signal = ND_RTSI_0 through ND_RTSI_6

source sourceSpec

ND_NONE ND_DONT_CARE

ND_IN_START_TRIGGER ND_LOW_TO_HIGH

ND_IN_STOP_TRIGGER ND_LOW_TO_HIGH

ND_IN_CONVERT ND_HIGH_TO_LOW

ND_OUT_UPDATE ND_HIGH_TO_LOW

ND_OUT_START_TRIGGER ND_LOW_TO_HIGH

ND_GPCTR0_SOURCE ND_LOW_TO_HIGH

ND_GPCTR0_GATE ND_POSITIVE

ND_GPCTR0_OUTPUT ND_DONT_CARE

Use ND_NONE to disable output on the RTSI line.

You can use the GPCTR0_OUTPUT pin on the I/O connector in two ways—as an output pin or an input
pin. When you configure the pin as an output pin, you can program the pin to output a signal from a RTSI
line or the general-purpose counter 0 output (see signal = ND_GPCTR0_OUTPUT in this function for
details). When you configure the pin as an input pin, you can attach an external signal to the pin. When
signal is one of the RTSI lines, and source  =  ND_GPCTR0_OUTPUT, the signal on the RTSI line will be
the signal present at the GPCTR0_OUTPUT pin on the I/O connector, which is not always the output of the
general-purpose counter 0.

© National Instruments Corporation 2-27 NI-DAQ Software Reference Manual for Macintosh



Board-Specific Functions Chapter 2

signal = ND_RTSI_CLOCK

source sourceSpec

ND_NONE ND_DONT_CARE

ND_BOARD_CLOCK ND_DONT_CARE

Use source = ND_NONE to stop the device from driving the RTSI clock line.

When source = ND_BOARD_CLOCK, this device drives the signal on the RTSI clock line.

signal = ND_BOARD_CLOCK

source sourceSpec

ND_BOARD_CLOCK ND_DONT_CARE

ND_RTSI_CLOCK ND_DONT_CARE

Use source = ND_BOARD_CLOCK to stop the device from receiving the clock signal from the RTSI clock
line.

Use source = ND_RTSI_CLOCK to program the device to receive the clock signal from the RTSI clock
line.

If you have selected a signal that is not an I/O connector pin or a RTSI bus line, Select_Signal saves the
parameters in the configuration tables for future operations. Functions which initiate data acquisition
(DAQ_Start and SCAN_Start) and waveform generation operations use the configuration tables to set the
device circuitry to the correct timing modes.

You do not need to call this function if you are satisfied with the default settings for the signals.

If you have selected a signal that is an I/O connector or a RTSI bus signal, Select_Signal performs signal
routing and enables or disables output on a pin or a RTSI line.

Example: Sending a signal from your E Series device to the RTSI bus

To send a signal from your E Series device to the RTSI bus, set signal to the appropriate RTSI bus line and
source to indicate the signal from your device. If you want to send the analog input start trigger on to RTSI line
3, use the following call:

Select_Signal(deviceNumber, ND_RTSI_3, ND_IN_START_TRIGGER, ND_LOW_TO_HIGH)

Example: Receiving a signal from the RTSI bus on your E Series device

To receive a signal from the RTSI bus and use it as a signal on your E Series device, set signal to indicate the
appropriate E Series device signal and source to the appropriate RTSI line. If you want to use low-to-high
transitions of the signal present on the RTSI line 4 as your scan clock, use the following call:

Select_Signal(deviceNumber, ND_IN_SCAN_START, ND_RTSI_4, ND_LOW_TO_HIGH)

Signal Name Equivalencies: For a variety of reasons, some timing signals are given different names in the
hardware documentation and the software and its documentation. The following table lists the equivalencies
between the two sets of signal names.

NI-DAQ Software Reference Manual for Macintosh 2-28 © National Instruments Corporation



Chapter 2 Board-Specific Functions

Table 2-1.  E Series Signal Name Equivalencies

Hardware Name Software Name

AI-Related Signals TRIG1 ND_IN_START_TRIGGER

TRIG2 ND_IN_STOP_TRIGGER

STARTSCAN ND_IN_SCAN_START

SISOURCE ND_IN_SCAN_CLOCK_TIMEBASE

CONVERT* ND_IN_CONVERT

AIGATE ND_IN_EXTERNAL_GATE

SI2SOURCE ND_IN_CHANNEL_CLOCK_TIMEBASE

AO-Related Signals WFTRIG ND_OUT_START_TRIGGER

UPDATE* ND_OUT_UPDATE

AOGATE ND_OUT_EXTERNAL_GATE

UISOURCE ND_OUT_UPDATE_CLOCK_TIMEBASE

AO2GATE —

UI2SOURCE —

                                                                                                                                                                                             

Set_DAQ_Device_Info

Function
This function can be used to change the data transfer mode (interrupts and DMA) for certain classes of data
acquisition operations, some settings for an SC-2040 Track-and-Hold accessory and an SC-2043-SG strain-
gauge accessory, as well as the source for the CLK1 signal on the DAQCard-700.

Synopsis

C Syntax locus i32 Set_DAQ_Device_Info(u32 deviceNumber, u32 infoType, u32

infoValue);

Pascal Syntax function Set_DAQ_Device_Info(deviceNumber : i32; infoType : i32;

infoValue : i32) : i32;

BASIC Syntax FN Set_DAQ_Device_Info(deviceNumber&, infoType&, infoValue&)

Description
Legal ranges for the infoType and infoValue are given in terms of constants that are defined in a header file.
The header file you should use depends on the language you are using:

• C programmers—nidaqcns.h

• Pascal programmers—nidaq.p

• BASIC programmers—nidaq.bas

 
Use infoType to let NI-DAQ know which parameter you want to change. Use infoValue to specify the
corresponding new value.

Values that infoType accepts depend on the device you are using. The legal range for infoValue depends on the
device you are using and infoType.

© National Instruments Corporation 2-29 NI-DAQ Software Reference Manual for Macintosh



Board-Specific Functions Chapter 2

infoType can be one of the following:

infoType Description

ND_DATA_XFER_MODE_AI Method NI-DAQ will use for data transfers when
performing the DAQ, MDAQ, and SCAN
operations.

ND_DATA_XFER_MODE_AO_GR1

ND_DATA_XFER_MODE_AO_GR2
Method NI-DAQ will use for data transfers when
performing the waveform operations which require
buffers from the computer memory.

ND_DATA_XFER_MODE_GPCTR0

ND_DATA_XFER_MODE_GPCTR1
Method NI-DAQ will use for buffered data transfers
when using GPCTR operations with the general
purpose counter.

ND_DATA_XFER_MODE_DIO_GR1

ND_DATA_XFER_MODE_DIO_GR2
Method NI-DAQ will use for data transfers for
digital input and output operations.

ND_SC_2040_MODE Used to enable or disable the track-and-hold
circuitry on the SC-2040.

ND_SC_2043_MODE Used to enable or disable the SC-2043-SG
accessory.

ND_COUNTER_1_SOURCE Used to select a source for counter 1 on the
DAQCard-700.

NI-DAQ Software Reference Manual for Macintosh 2-30 © National Instruments Corporation



Chapter 2 Board-Specific Functions

infoValue can be one of the following:

infoValue Description

ND_INTERRUPTS NI-DAQ will use interrupts for data transfers.

ND_UP_TO_1_DMA_CHANNEL NI-DAQ will use one DMA channel, if possible; if
the DMA channel is not available, NI-DAQ will
report an error and it will not perform the
operation.

ND_NO_TRACK_AND_HOLD Disables use of the track-and-hold circuitry on the
SC-2040.1

ND_TRACK_AND_HOLD Re-enables the track-and-hold circuitry on an
SC-2040 if you have previously disabled it.2

ND_NONE Cancels the effects of having accidentally called
the SC_2040_Config function.

ND_STRAIN_GAUGE Enables the SC-2043-SG accessory for strain-
gauge measurements (no excitation on channel 0).

ND_STRAIN_GAUGE_EX0 Enables the SC-2043-SG accessory with excitation
on channel 0.

ND_NO_STRAIN_GAUGE Disables the SC-2043-SG accessory.

ND_INTERNAL_TIMER Counter 1 will use the internal timer as the source
for its CLK1 source.

ND_IO_CONNECTOR Counter 1 will use the CLK1 signal from the I/O
connector as the source for its CLK1 signal.

1You should use this setting if you want to use the SC-2040 only as a preamplifier, without using track and
hold.

2with ND_NO_TRACK_AND_HOLD.

You can use this function to select the data transfer method for a given operation on a particular device. If you
do not use this function, NI-DAQ will decide on the data transfer method that will typically take maximum
advantage of available resources.

© National Instruments Corporation 2-31 NI-DAQ Software Reference Manual for Macintosh



Board-Specific Functions Chapter 2

All possible data transfer methods for the devices supported by NI-DAQ are listed in the following table. If your
device is not listed, none of the data transfer modes are applicable. An asterisk is placed next to the default data
transfer mode for each device.

Device Type infoType infoValue

NB-A2150 ND_DATA_XFER_MODE_AI ND_INTERRUPTS

ND_UP_TO_1_DMA_CHANNEL*

NB-AO-6 ND_DATA_XFER_MODE_AO_GR1

ND_DATA_XFER_MODE_AO_GR2

ND_UP_TO_1_DMA_CHANNEL*

ND_UP_TO_1_DMA_CHANNEL*

NB-DIO-32F ND_DATA_XFER_MODE_DIO_GR1 ND_INTERRUPTS

ND_UP_TO_1_DMA_CHANNEL*

ND_DATA_XFER_MODE_DIO_GR2 ND_INTERRUPTS

ND_UP_TO_1_DMA_CHANNEL*

NB-A2100 ND_DATA_XFER_MODE_AI ND_INTERRUPTS

ND_UP_TO_1_DMA_CHANNEL*

ND_DATA_XFER_MODE_AO_GR1 ND_INTERRUPTS

ND_UP_TO_1_DMA_CHANNEL*

NB-MIO-16 ND_DATA_XFER_MODE_AI ND_INTERRUPTS

ND_UP_TO_1_DMA_CHANNEL*

ND_DATA_XFER_MODE_AO_GR1

ND_DATA_XFER_MODE_AO_GR2

ND_UP_TO_1_DMA_CHANNEL*

ND_UP_TO_1_DMA_CHANNEL*

NB-MIO-16X ND_DATA_XFER_MODE_AI ND_INTERRUPTS

ND_UP_TO_1_DMA_CHANNEL*

ND_DATA_XFER_MODE_AO_GR1 ND_INTERRUPTS

ND_UP_TO_1_DMA_CHANNEL*

PCI-MIO-16XE-50 ND_DATA_XFER_MODE_AI

ND_DATA_XFER_MODE_AO_GR1

ND_DATA_XFER_MODE_GPCTR0

ND_DATA_XFER_MODE_GPCTR1

ND_INTERRUPTS*

ND_INTERRUPTS*

ND_INTERRUPTS*

ND_INTERRUPTS*

DAQCard-500
DAQCard-700

ND_DATA_XFER_MODE_AI ND_INTERRUPTS*

NB-A2000 ND_DATA_XFER_MODE_AI ND_INTERRUPTS

UP_TO_1_DMA_CHANNEL*

DAQCard-1200
Lab-LC
Lab-NB
PCI-1200

DATA_XFER_MODE_AI

DATA_XFER_MODE_AO_GR1

ND_INTERRUPTS*

ND_INTERRUPTS*

NI-DAQ uses interrupts and DMA channels for data transfers. The DMA data transfers are typically faster, so
you may want to take advantage of them. Note that the data transfer mode ND_UP_TO_1_DMA_CHANNEL
does not reserve the DMA channel or channels for a particular operation; it just authorizes NI-DAQ to use it, if
it is available.

NI-DAQ Software Reference Manual for Macintosh 2-32 © National Instruments Corporation



Chapter 3
Analog Input Functions
                                                                                                        

This chapter describes the functions for single A/D conversions.  The chapter is divided into two sections to describe
the Single-Channel Analog Input (AI) and Multiple-Channel Analog Input (MAI) functions used with the National
Instruments boards for the Macintosh family of computers.

Single-Channel Analog Input functions cover single A/D conversions on one channel.  The Multiple-Channel
Analog Input functions cover single A/D conversions simultaneously sampled on a group of channels.  See
Appendix A, NI-DAQ for Macintosh Function and Board Compatibility, to determine which set works with your
board.

Multiple A/D conversion functions are performed by the Data Acquisition functions (see Chapter 6, Data
Acquisition Functions).

If you are using SCXI analog input modules, you need to program the SCXI hardware first using the SCXI functions
in Chapter 7, SCXI Functions, before using the Analog Input functions.

Single-Channel Analog Input

NB-MIO-16 Analog Input

The NB-MIO-16 contains 16 single-ended analog input channels numbered 0 through 15.  These inputs can also be
configured as eight differential analog input channels, in which case the channels are numbered 0 through 7.  The
analog input channels are multiplexed into a single programmable gain stage and 12-bit ADC.  The NB-MIO-16 has
four gains.  The NB-MIO-16L has gains of 1, 10, 100, and 500.  The NB-MIO-16H has gains of 1, 2, 4, and 8.

Analog input on the NB-MIO-16 can be hardware jumpered for three different input ranges:

• 0 to +10 V (unipolar)

• -5 to +5 V (bipolar)

• -10 to +10 V (bipolar)

The NB-MIO-16 is shipped from the factory configured for an input range of -10 to +10 V.

A/D conversions can be initiated through software or by applying active low pulses to the EXTCONV* input on the
NB-MIO-16 I/O connector.  A 16-word-deep FIFO memory on the board stores up to 16 A/D conversion results.

NB-MIO-16X Analog Input

The NB-MIO-16X contains 16 single-ended analog input channels numbered 0 through 15.  These inputs can also be
configured as eight differential analog input channels, in which case the channels are numbered 0 through 7.  The
analog input channels are multiplexed into a single programmable gain stage and 16-bit ADC.  Both versions of the
NB-MIO-16X have four gains.  The NB-MIO-16XL provides gains of 1, 10, 100, and 500.  The NB-MIO-16XH
provides gains of 1, 2, 4, and 8.

© National Instruments Corporation 3-1 NI-DAQ Software Reference Manual for Macintosh



Analog Input Functions Chapter 3

Analog input on the NB-MIO-16X can be hardware jumpered for four different input ranges:

• 0 to +10 V (unipolar)

• 0 to +5 V (unipolar)

• -5 to +5 V (bipolar)

• -10 to +10 V (bipolar)

The NB-MIO-16X is shipped from the factory jumpered for an input range of -10 to +10 V.

A/D conversions can be initiated through software or by applying active low pulses to the EXTCONV* input on the
NB-MIO-16X I/O connector.  A 16-word deep FIFO on the board stores up to 16 A/D conversion results.

Lab and 1200 Series Analog Input

The Lab and 1200 series contain eight single-ended analog input channels numbered 0 through 7.  The analog input
channels are multiplexed into a single programmable gain state and 12-bit ADC.  Seven gains are provided—1, 2, 5,
10, 20, 50, and 100.  The PCI-1200 and DAQCard-1200 also allow differential configuration of input channels 0, 1,
2, and 3.

Analog input on the Lab-NB and Lab-LC can be hardware jumper-configured for two different input ranges:

• 0 to +10 V (unipolar)

• -5 to +5 V (bipolar)

Table 3-1 gives the nominal input ranges for all combinations of polarity and gain.  The Lab-NB and Lab-LC are
shipped from the factory jumpered for the bipolar input range of -5 V to +5 V.

Table 3-1.  Analog Input Ranges

Polarity Gain Input Range

Unipolar 1
2
5

10
20
50

100

0 to +10 V
0 to +5 V
0 to +2 V
0 to +1 V
0 to +0.5 V
0 to +0.2 V
0 to +0.1 V

Bipolar 1
2
5

10
20
50

100

-5 to +5 V
-2.5 to +2.5 V
-1 to +1 V
-0.5 to +0.5 V
-0.25 to +0.25 V
-0.1 to +0.1 V
-0.05 to +0.05 V

NI-DAQ Software Reference Manual for Macintosh 3-2 © National Instruments Corporation



Chapter 3 Analog Input Functions

DAQCard-500 and DAQCard-700 Analog Input

The DAQCard-500 provides 8 single-ended analog input channels. The DAQCard-700 provides 16 single-ended or
eight differential analog input channels. The analog input channels for both are driven into a 12-bit ADC. Neither
device has gains on the analog input.

You can configure the DAQCard-700 analog input for three different bipolar input ranges:

• -2.5 to +2.5 V

• -5 to +5 V

• -10 to +10 V

You can configure the DAQCard-500 for only the -5 to +5 V range.

You can initiate A/D conversions through software or by applying active low pulses to the EXTCONV* input on the
device I/O connector. A 512-word-deep FIFO memory on the DAQCard-700 stores up to 512 A/D conversion
results. On the DAQCard-500, a 16-word-deep FIFO stores up to 16 A/D conversion results.

SCXI Analog Input

SCXI modules can be used as a data acquisition front end for the boards described above to provide signal
conditioning for the input signals and channel multiplexing.  The SCXI functions described in Chapter 7 set up the
SCXI modules for analog input operations to be performed by the DAQCard-700, MIO devices, and Lab and 1200
series devices using the functions described as follows.

Single-Channel Analog Input Function Summary

The following functions are for analog input operations:

AI_Configure Informs NI-DAQ of the input mode (single-ended or differential), input range, and input
polarity selected for the device. Use this function if you have changed the jumpers affecting
the analog input configuration from their factory settings. For the E Series devices, PCI-1200,
DAQCard-1200, DAQCard-500, and DAQCard-700, which have no jumpers for analog input
configuration, this function programs the device for the settings you want.

AI_Read Reads the specified analog input channel (initiates an A/D conversion on an analog input
channel and returns the result).

AI_Read_Scan Returns readings for all analog input channels selected by SCAN_Setup (E Series devices
only, with or without the SC-2040 accessory).

AI_VScale Converts the binary result from an AI_Read call to the actual input voltage.

The following functions are for conversion operations triggered externally via the EXTCONV* input:

AI_Check Returns the status of the analog input circuitry and an analog input reading, if available.

AI_Clear Clears the analog input circuitry and A/D FIFO memory.

AI_Setup Selects an analog input channel and gain setting for externally pulsed conversion operations.

© National Instruments Corporation 3-3 NI-DAQ Software Reference Manual for Macintosh



Analog Input Functions Chapter 3

The following function configures one or more external multiplexer boards:

AI_Mux_Config Configures the number of multiplexer (AMUX-64T) boards connected to an MIO board.

For most purposes, AI_Read is the only function required to perform single analog input readings.  AI_VScale
can then be used to convert the binary value returned to a voltage value, if desired.

If the jumper settings on the Lab-NB, Lab-LC, NB-MIO-16, or NB-MIO-16X analog input circuitry have been
changed from the factory settings, you need to use AI_Configure to update the analog input configuration
information for the drivers.  This update needs to be made only once per system startup or board reset per board.
Figure 3-1 shows the call sequence for performing single analog input readings.  Read the AI_Configure
description to double check your configuration.

AI_Read

AI_Config

AI_Scale

Figure 3-1.  Flowchart for Analog Input Readings

AI_Setup, AI_Check, and AI_Clear are useful for externally triggered conversions as shown in Figure 3-2.
See AI_Check for a description of this application.

AI_Setup

AI_Clear

AI_Check

AI_Scale

external sample

clock pulse(s)

Figure 3-2.  Flowchart for Externally Clocked Analog Input Readings

AI_Mux_Config is used to configure the number of multiplexer (AMUX-64T) boards connected to an MIO board
to expand the number of signals up to 256 single-ended (128 differential).  For more detailed information, see
Appendix C, Using an External Multiplexer.

Note: Buffered analog input is implemented via the Data Acquisition functions presented in Chapter 6, Data
Acquisition Functions.

                                                                                                                                                                                             

NI-DAQ Software Reference Manual for Macintosh 3-4 © National Instruments Corporation



Chapter 3 Analog Input Functions

AI_Check

Function
Returns the status of the analog input circuitry and an analog input reading, if available.

Synopsis

C Syntax locus i32 AI_Check(u32 deviceNumber, u16 *status, i16 *reading);

Pascal Syntax function AI_Check(deviceNumber : i32; var status : i16; var

reading : i16) : i32;

BASIC Syntax FN AI_Check(deviceNumber&, status&, reading&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

status is the indicator in which the status of the analog input circuitry is returned.  If status is 1, then an A/D
conversion result is returned in reading.  If status is 0, no A/D conversion result is available.

reading is the indicator in which the result of an A/D conversion is returned.  The valid return values are listed
in the Appendix E, Analog Input Channel and Gain Settings and Voltage Calculation.

AI_Check checks the status of the analog input circuitry.  If an A/D conversion has occurred, AI_Check
returns status = 1 and the A/D conversion result.  Otherwise, AI_Check returns status = 0.

AI_Setup, in conjunction with AI_Check and AI_Clear, is useful for externally timed A/D conversions.
When AI_Setup is called, AI_Clear can be called to clear out the A/D FIFO of any previous conversion
results.  A conversion is then performed each time a pulse is received at the EXTCONV* input pin.
AI_Check can be called to check for and return available conversion results.

                                                                                                                                                                                           

AI_Clear

Function
Clears the analog input circuitry and A/D FIFO memory.

Synopsis

C Syntax locus i32 AI_Clear(u32 deviceNumber);

Pascal Syntax function AI_Clear(deviceNumber : i32) : i32;

BASIC Syntax FN AI_Clear(deviceNumber&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

AI_Clear clears the analog input circuitry and empties the analog input FIFO.  AI_Clear also clears any
analog input error conditions.  AI_Clear should be called to clear out the A/D FIFO before any externally
triggered conversion begins.

                                                                                                                                                                                             

© National Instruments Corporation 3-5 NI-DAQ Software Reference Manual for Macintosh



Analog Input Functions Chapter 3

AI_Configure

Function
Informs NI-DAQ of the input mode (single-ended or differential), input range, and input polarity selected for
the device. Use this function if you have changed the jumpers affecting the analog input configuration from
their factory settings. For the E Series devices, PCI-1200, DAQCard-1200, DAQCard-500, and DAQCard-700,
which have no jumpers for analog input configuration, this function programs the device for the settings you
want.

For the E Series devices, you can configure the input mode and polarity on a per-channel basis.

Synopsis

C Syntax locus i32 AI_Configure(u32 deviceNumber, u32 channel, u32 inputMode,

u32 inputRange, u32 inputPolarity, u32 driveAIS);

Pascal Syntax function AI_Configure(deviceNumber : i32; channel : i32; inputMode

: i32; inputRange : i32; inputPolarity : i32; driveAIS :

i32) : i32;

BASIC Syntax FN AI_Configure(deviceNumber&, channel&, inputMode&, inputRange&,

inputPolarity&, driveAIS&)

Description
channel is the analog input channel to be configured. Except for the E Series devices, you must set channel to
-1 because the same analog input configuration applies to all of the channels. For the E Series devices, channel
specifies the channel to be configured. If you want all of the channels to be configured identically, set channel
to -1.

inputMode indicates whether the analog input channels are configured for single-ended or differential
operation:

0: Differential (DIFF) configuration (default).
1: Referenced Single-Ended (RSE) configuration (used when the input signal does not have its own

ground reference. The negative (-) input of the instrumentation amplifier is tied to the instrumentation
amplifier signal ground to provide one).

2: Nonreferenced Single-Ended (NRSE) configuration (used when the input signal has its own ground
reference. The input signal’s ground reference is connected to AISENSE, which is tied to the negative
(-) input of the instrumentation amplifier)

inputRange is the voltage range of the analog input channels.

inputPolarity indicates whether the ADC is configured for unipolar or bipolar operation:
0: Bipolar operation (default value).
1: Unipolar operation.

NI-DAQ Software Reference Manual for Macintosh 3-6 © National Instruments Corporation



Chapter 3 Analog Input Functions

The following table shows all possible settings for inputMode, inputRange, and inputPolarity, with the
default settings in italics. inputMode is independent of inputRange and inputPolarity.

Device Possible
Values for

inputMode*

Analog Input Range Software
Configurable

inputRange* inputPolarity
*

Resulting
Analog Input

Range

PCI-MIO-16XE-50 0, 1, 2 ignored unipolar 0 to +10 V yes

ignored bipolar -10 to +10V

PCI-1200, 0, 1 ignored unipolar 0 to +10 V yes

DAQCard-1200 ignored bipolar -5 to +5 V

DAQCard-500 1 10 bipolar -5 to 5 V n/a

DAQCard-700 0, 1 5 bipolar -2.5 to +2.5 V yes

10 bipolar -5 to +5 V

20 bipolar -10 to +10 V

 * Italics indicates default settings.

Note: If a device is software configurable, the inputMode, inputRange, and inputPolarity parameters
are used to program the device for the configuration you want. If a device is not software
configurable, this function uses these parameters to inform NI-DAQ of the device
configuration, which you must set using hardware jumpers. If your device is software
configurable and you have changed the analog input settings, you do not have to use
AI_Configure, although it is good practice to do so in case you inadvertently change the
configuration file.

driveAIS indicates whether to drive AISENSE to onboard ground or not. This parameter is ignored for all
devices on the Macintosh.

0: Do not drive AISENSE to ground.
1: Drive AISENSE to ground.

When you attach an SC-2040 or SC-2042-RTD to your DAQ device, you must configure channels 0 through 7
for differential mode. When you attach an SC-2043-SG to your DAQ device, you must configure these channels
for nonreferenced single-ended mode.

See the Calibrate_E_Series function description for information about calibration constant loading on
the E Series devices.

                                                                                                                                                                                           

AI_Mux_Config

Function
Configures the number of multiplexer (AMUX-64T) boards connected to an MIO board.

© National Instruments Corporation 3-7 NI-DAQ Software Reference Manual for Macintosh



Analog Input Functions Chapter 3

Synopsis

C Syntax locus i32 AI_Mux_Config(u32 deviceNumber, u32 muxNumber);

Pascal Syntax function AI_Mux_Config(deviceNumber : i32; muxNumber : i32) : i32;

BASIC Syntax FN AI_Mux_Config(deviceNumber&, muxNumber&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

muxNumber is the number of multiplexer (AMUX-64T) boards (0, 1, 2, or 4) connected to an MIO board. This
input should be 0 if no external AMUX-64T boards are present.  The default is 0.

An external multiplexer board (AMUX-64T) can be used to expand the number of analog input signals
measured.  The AMUX-64T has 16 separate four-to-one analog multiplexer circuits.  One AMUX-64T board
can multiplex up to 64 single-ended (32 differential) analog input signals.  Four AMUX-64T boards can be
cascaded to permit up to 256 single-ended (128 differential) signals to be multiplexed by one MIO board.

AI_Mux_Config configures the number of multiplexer boards connected to the MIO board.  Input channels
are then referenced in subsequent analog input calls (AI_Read, AI_Setup, and DAQ_Start) with respect to
the external AMUX-64T analog input channel numbers rather than the MIO board onboard channel numbers.
The call to AI_Mux_Config needs to be executed only once per board per system startup.  See Appendix C,
Using an External Multiplexer, for more information about using the AMUX-64T.

This function is not for use with SCXI.

                                                                                                                                                                                           

AI_Read

Function
Reads the specified analog input channel (initiates an A/D conversion on an analog input channel and returns
the result).

Synopsis

C Syntax locus i32 AI_Read(u32 deviceNumber, u32 channel, u32 gain, i16

*reading);

Pascal Syntax function AI_Read(deviceNumber : i32; channel : i32; gain : i32;

var reading : i16) : i32;

BASIC Syntax FN AI_Read(deviceNumber&, channel&, gain&, reading&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

channel is the analog input channel number.  If SCXI is being used, you must use the appropriate analog input
channel on the DAQ board that corresponds to the desired SCXI channel.  Please refer to Chapter 7, SCXI
Functions, for more information on SCXI channel assignments.

Range:  0 through n-1, where n is the number of analog input channels available.

gain is the gain setting to be used for the selected channel.  This gain setting applies only to the DAQ board; if
SCXI is used, any gain desired at the SCXI module must be established either by setting jumpers on the module

NI-DAQ Software Reference Manual for Macintosh 3-8 © National Instruments Corporation



Chapter 3 Analog Input Functions

or by calling SCXI_Set_Gain.  See Appendix E, Analog Input Channel and Gain Settings and Voltage
Calculation, for the valid gain ranges for your hardware.  The DAQCard-500 and DAQCard-700 ignore gain.

reading is the indicator in which the 12-bit (NB-MIO-16, Lab and 1200 series, DAQCard-500, or
DAQCard-700) or 16-bit (NB-MIO-16X) result of the A/D conversion is returned.  The valid return values are
listed in Appendix E, Analog Input Channel and Gain Settings and Voltage Calculation.

Pascal Note: If you are using an NB-MIO-16X in unipolar mode, reading is returned as a 16-bit unsigned
integer.  Because Pascal does not support unsigned representation, the values in the range
32,768 through 65,535 are treated as negative numbers in Pascal.  You can use the UToL
conversion function to convert reading to a Pascal long integer.  Notice that reading should
be passed to AI_Scale without conversion.  (See Chapter 11, NI-DAQ for Macintosh
Examples, for a complete description of the UToL function.)

AI_Read addresses the specified analog input channel, changes the input gain to the specified gain setting, and
initiates an A/D conversion.  AI_Read waits for the conversion to complete and returns the result.

                                                                                                                                                                                           

AI_Read_Scan

Function
Returns readings for all analog input channels selected by SCAN_Setup (E Series devices only, with or
without the SC-2040 accessory).

Synopsis

C Syntax locus i32 AI_Read_Scan(u32 deviceNumber, i16 *reading);

Pascal Syntax function AI_Read_Scan(deviceNumber : i32; var reading : i16) :

i32;

BASIC Syntax FN AI_Read_Scan(deviceNumber&, reading&)

Description
reading is an array of readings from each sampled analog input channel. The length of the reading array is
equal to the number of channels selected in the SCAN_Setup numChans parameter. Range of elements in
reading depends on your device A/D converter resolution and the unipolar/bipolar selection you make for a
given channel.

AI_Read_Scan samples the analog input channels selected by SCAN_Setup at half the maximum rate
permitted by your hardware.

                                                                                                                                                                                           

AI_Setup

Function
Selects an analog input channel and gain setting for externally pulsed conversion operations.

© National Instruments Corporation 3-9 NI-DAQ Software Reference Manual for Macintosh



Analog Input Functions Chapter 3

Synopsis

C Syntax locus i32 AI_Setup(u32 deviceNumber, u32 channel, u32 gain);

Pascal Syntax function AI_Setup(deviceNumber : i32; channel : i32; gain : i32) :

i32;

BASIC Syntax FN AI_Setup(deviceNumber&, channel&, gain&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

channel is the analog input channel number.  If SCXI is being used, you must use the appropriate analog input
channel on the DAQ board that corresponds to the desired SCXI channel.  Please refer to Chapter 7, SCXI
Functions, for more information on SCXI channel assignments.

Range:  0 through n-1, where n is the number of analog input channels available.

gain is the gain setting to be used for the selected channel.  This gain setting applies only to the DAQ board; if
SCXI is used, any gain desired at the SCXI module must be established either by setting jumpers on the module
or by calling SCXI_Set_Gain.  See Appendix E, Analog Input Channel and Gain Settings and Voltage
Calculation, for the valid gain settings for your hardware.  The DAQCard-500 and DAQCard-700 ignore gain.

AI_Setup addresses the specified analog input channel and changes the input gain to the specified gain
setting.  AI_Setup, in conjunction with AI_Check and AI_Clear, is useful for externally timed A/D
conversions.

If your application calls AI_Read after calling AI_Setup and either of the channel or gain parameters in the
AI_Read call differ from those in the AI_Setup call, then AI_Setup must be called again if AI_Check is
to work properly.  On an E Series board, if your application calls AI_Read, after calling AI_Setup , your
application must call AI_Setup again for AI_Check to work properly.

                                                                                                                                                                                           

AI_VScale

Function
Converts the binary result from an AI_Read call to the actual input voltage.

Synopsis

C Syntax locus i32 AI_VScale(u32 deviceNumber, u32 channel, u32 gain, f64

gainAdjust, f64 offset, i32 reading, f64 *voltage);

Pascal Syntax function AI_VScale(deviceNumber : i32; channel : i32; gain : i32;

gainAdjust : f64; offset : f64; reading : i32; var

voltage : f64) : i32;

BASIC Syntax FN AI_VScale(deviceNumber&, channel&, gain&, gainAdjust#, offset#,

reading&, voltage&)

Description
channel is the onboard channel or AMUX channel on which NI-DAQ took the binary reading using AI_Read.
For devices other than the E Series devices, this parameter is ignored because the scaling calculation is the same
for all of the channels. However, you are encouraged to pass the correct channel number.

NI-DAQ Software Reference Manual for Macintosh 3-10 © National Instruments Corporation



Chapter 3 Analog Input Functions

gain is the gain setting that you used to take the analog input reading. If you used SCXI to take the reading, this
gain parameter should be the product of the gain on the SCXI module channel and the gain that the DAQ device
used. Refer to Appendix E, Analog Input Channel and Gain Settings and Voltage Calculation, for valid gain
settings. Use of invalid gain settings causes NI-DAQ to return an error unless you are using SCXI. If you call
AI_VScale for the DAQCard-500, NI-DAQ always ignores the gain; if you call AI_VScale for the
DAQCard-700, NI-DAQ ignores the gain unless you are using SCXI.

gainAdjust is the multiplying factor to adjust the gain. Refer to Appendix E, Analog Input Channel and Gain
Settings and Voltage Calculation, for the procedure for determining gainAdjust. If you do not want to do any
gain adjustment—for example, use the ideal gain as specified by the gain parameter—set gainAdjust to 1.

offset is the binary offset that needs to be subtracted from the reading. Refer to Appendix E, Analog Input
Channel and Gain Settings and Voltage Calculation, for the procedure for determining offset. If you do not
want to do any offset compensation, set offset to 0.

reading is the result of the A/D conversion returned by AI_Read.

voltage is the variable in which NI-DAQ returns the input voltage converted from reading.

Note to C Programmers—voltage is a pass-by-reference parameter.

Refer to Appendix E, Analog Input Channel and Gain Settings and Voltage Calculation, for the formula
AI_VScale uses to calculate voltage from reading.

If your device polarity and range settings differ from the default settings shown in the Init_DA_Brds
function, be sure to call AI_Configure to inform the driver of the correct polarity and range before using this
function.

You must use the SCAN_Setup function prior to invoking this function.

You cannot use external signals to control A/D conversion timing and use this function at the same time.

                                                                                                                                                                                           

Multiple-Channel Analog Input (MAI)

The remainder of this chapter describes the Multiple-Channel Analog Input functions used with the NB-A2000,
NB-A2100, and NB-A2150 boards for Macintosh computers.  The Multiple-Channel Analog Input functions cover
single A/D conversions simultaneously sampled on a group of channels.

NB-A2000 Analog Input

The NB-A2000 contains four simultaneously sampled, single-ended analog input channels numbered 0 through 3.
These input channels are multiplexed into a single unity gain stage followed by a 1-µs conversion time, 12-bit
resolution, ADC.

The signal range of each input channel is ±5 V when DC coupling is selected and ±5 V peak AC with ± 25 VDC
offset when AC coupling is selected.

A/D conversions can be initiated through software or by applying active-low pulses to the SAMPCLK* input on the
NB-A2000 I/O connector or active high pulses to the CLOCKI RTSI bus input.  The 1024-word deep FIFO memory
on the board stores up to 1024 A/D conversion results.

NB-A2100 Analog Input

The NB-A2100 contains two simultaneously sampled analog input channels numbered 0 and 1.  These 16-bit
resolution A/D channels have 64-times oversampling delta-sigma modulating ADCs and digital anti-aliasing filters

© National Instruments Corporation 3-11 NI-DAQ Software Reference Manual for Macintosh



Analog Input Functions Chapter 3

for extremely high-accuracy data acquisition.  The input also has a software-programmed switch for AC or DC
coupling of the input signals.

The signal range for each input channel is ±2.828 V (2 Vrms) with a maximum input voltage rating of ±10 V
powered on or off.

The ADCs can be run at 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, or 48 kHz conversion rates.  A 32-bits wide, 16
words deep FIFO memory on the board stores up to 32 A/D conversion results if one channel is being sampled, or
16 A/D conversion results for each channel if both analog input channels are being sampled.

The A/D conversion data can be sent serially over the RTSI bus to other National Instruments boards, such as the
NB-DSP2300 digital signal processing board.

NB-A2150 Analog Input

The NB-A2150 contains four simultaneously sampled analog input channels numbered 0 through 3.  These 16-bit
resolution A/D channels have 64-times oversampling delta-sigma modulating ADCs and digital anti-aliasing filters
for extremely high-accuracy data acquisition.  The input also has a software-programmed switch for AC or DC
coupling of the input signals.

The signal range for each input channel is ±2.828 V (2 Vrms) with a maximum input voltage rating of ±10 V
powered on or off.

The ADCs can be run at four timebases and each of these timebases is divided by 1, 2, 4, or 8 to produce 16 sample
rates from which to choose.  The timebase values are as follows:

NB-A2150F: 51.2 kHz, 48 kHz, 32 kHz, and 30.72 kHz
NB-A2150C: 48 kHz, 44.1 kHz, 32 kHz, and Fu
NB-A2150S: 24 kHz, 20 kHz, 16 kHz, and Fu

Fu is a user-defined sample rate and is obtained by dividing the custom installed crystal frequency by 384.

Multiple-Channel Analog Input Function Summary

Use the following functions for multiple-channel analog input operations on the NB-A2000, NB-A2100, and the
NB-A2150:

MAI_Arm Enables/disables the NB-A2000 to take a sample of selected input channels whenever an
external pulse on the sample clock input is received.  If external pulses are used, data is then
stored in the board's A/D FIFO for later retrieval by MAI_Read (NB-A2000 only).

MAI_Clear Clears the A/D FIFO and related analog input circuitry (NB-A2000 only).

MAI_Coupling Selects coupling for all channels with programmable coupling.

MAI_Read Returns a reading for all of the selected analog input channels.  If an external sample clock is
being used and MAI_Arm has been called, samples generated by previous sample clock
pulses are returned; otherwise, the inputs are read when the call is made.

MAI_Scale Given an array of acquired data, converts the values in the array to the actual voltage values
measured.

MAI_Setup Selects the analog input channels read, sets the gain per channel, and sets the multiplexing rate
between channels for all analog input operations–affects single read multiple-channel analog
input (MAI functions) and multiple-channel data acquisition operations (MDAQ functions).

NI-DAQ Software Reference Manual for Macintosh 3-12 © National Instruments Corporation



Chapter 3 Analog Input Functions

Multiple-Channel Analog Input Application Hints

For most operations, MAI_Read is the only function required to perform a single scan of all the analog input
channels.  The NB-A2000 reads all four analog input channels by default.  The NB-A2100 reads both analog input
channels by default.  The NB-A2150 reads all four analog input channels by default.  MAI_Scale can subsequently
be used to convert the binary values to voltage values.  If you want to change the analog input channels monitored,
use MAI_Setup.  MAI_Coupling is used to select AC or DC coupling on the NB-A2000, NB-A2100, or
NB-A2150 analog input channels.  The NB-A2000 is configured for AC coupling by default, and the NB-A2100 and
NB-A2150 are configured for DC coupling by default.

The default settings for NB-A2000 analog input are as follows:

• AC coupling on all input channels

• Four analog input channels (channels 0 through 3) selected

• Internal, onboard sample clock used

The default settings for NB-A2100 analog input are as follows:

• DC coupling on both input channels

• Both analog input channels (channels 0 and 1) selected

The default settings for NB-A2150 analog input are as follows:

• DC coupling on all four input channels

• All analog input channels (channels 0 through 3) selected

Note: The defaults shown are the default values after system startup or a Board_Reset call.

Typical Multiple-Channel Analog Input Function Usage

Figure 3-3 shows the typical order for using the multiple-channel Analog Input functions, with an optional scale
step, to take multiple readings.  The boxes represent steps that are optional or only necessary if the current settings
need to be changed.

Note: The defaults shown are the default values after power up or a Board_Reset call.

© National Instruments Corporation 3-13 NI-DAQ Software Reference Manual for Macintosh



Analog Input Functions Chapter 3

MAI_Setup

default:

   all channels selected for scanning

MAI_Read

MAI_Scale

MAI_Coupling

Figure 3-3.  Flowchart for Multiple-Channel Analog Input Readings

After system startup or a board reset, the MAI_Read function returns a reading from all four of the NB-A2000 or
NB-A2150 channels or both of the NB-A2100 channels.  The MAI_Setup step is only necessary if an application
needs to scan less than the default number of channels.  The MAI_Scale step is shown as optional, although many
applications perform this step for every MAI_Read done to convert the reading to the actual voltage values
measured.

Buffered Analog Input

Buffered, multiple-channel analog input is implemented by the multiple-channel Data Acquisition functions
presented in Chapter 6, Data Acquisition Functions.  MAI_Coupling, MAI_Setup, and MAI_Scale are also
used with the multiple-channel Data Acquisition functions.

Externally Clocked Analog Input (NB-A2000)

MAI_Arm and MAI_Clear are only used for externally clocked sampling.  Use A2000_Config to select external
sample clock, and use MAI_Arm to enable the NB-A2000 to sample its inputs and save the readings in the A/D
FIFO whenever a sample clock edge is received.  Call MAI_Read to retrieve the readings.  MAI_Read returns the
earliest sample in the A/D FIFO for the channels selected, or an error if no readings are present.  MAI_Clear can
be used at any time to clear the A/D FIFO or error conditions.  MAI_Arm can be used again to disable externally
clocked analog input.

NI-DAQ Software Reference Manual for Macintosh 3-14 © National Instruments Corporation



Chapter 3 Analog Input Functions

MAI_Coupling

defaults:

    AC coupling on all channels

MAI_Setup

defaults:

   all four channels selected for scanning

MAI_Read

MAI_Scale

A2000_Config

external sample

clock pulse(s)

MAI_Armm

Figure 3-4.  Flowchart for Externally Clocked Multiple-Channel Analog Input

                                                                                                                                                                                           

MAI_Arm

Function
Enables/disables the NB-A2000 to take a sample of selected input channels whenever an external pulse on the
sample clock input is received.  If external pulses are used, data is then stored in the board's A/D FIFO for later
retrieval by MAI_Read (NB-A2000 only).

Synopsis

C Syntax locus i32 MAI_Arm(u32 deviceNumber, u32 mode);

Pascal Syntax function MAI_Arm(deviceNumber : i32; mode : i32) : i32;

BASIC Syntax FN MAI_Arm(deviceNumber&, mode&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

mode indicates whether external pulses are used.
0:  arm the board to convert on external conversion pulses.
1:  disarm the board to convert on external conversion pulses.

© National Instruments Corporation 3-15 NI-DAQ Software Reference Manual for Macintosh



Analog Input Functions Chapter 3

When MAI_Arm is called, the A/D FIFO is cleared and the input signals are sampled whenever a rising edge is
received on the SAMPCLK* input on the NB-A2000 I/O connector or a falling edge is received on the
CLOCKI RTSI bus input.  To retrieve these values, call MAI_Read.

A2000_Config must be called before MAI_Arm to select external sample clock for external conversions.  A
RTSI_Conn call must be made if the CLOCKI RTSI bus input is used (see Chapter 9, RTSI Bus Trigger
Functions).  After calling MAI_Arm to disarm, be sure to call A2000_Config to reset to the internal sample
clock.

                                                                                                                                                                                           

MAI_Clear

Function
Clears the A/D FIFO and related analog input circuitry (NB-A2000 only).

Synopsis

C Syntax locus i32 MAI_Clear(u32 deviceNumber);

Pascal Syntax function MAI_Clear(deviceNumber : i32) : i32;

BASIC Syntax FN MAI_Clear(deviceNumber&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

MAI_Clear clears any analog input error conditions and unwanted samples from the A/D FIFO on the
NB-A2000.

                                                                                                                                                                                             

MAI_Coupling

Function
Selects coupling for all channels with programmable coupling.

Synopsis

C Syntax locus i32 MAI_Coupling(u32 deviceNumber, u32 channelCount, u16

*coupling);

Pascal Syntax function MAI_Coupling(deviceNumber : i32; channelCount : i32;

coupling : pi16) : i32;

BASIC Syntax FN MAI_Coupling(deviceNumber&, channelCount&, coupling&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

channelCount is the number of channels on the board that have programmable coupling settings.
5 for the NB-A2000 channels:  ACH0, ACH1, ACH2, ACH3, and ATRIG.

2 for the NB-A2100 channels:  ACH0, ACH1.
4 for the NB-A2150 channels:  ACH0, ACH1, ACH2, and ACH3.

NI-DAQ Software Reference Manual for Macintosh 3-16 © National Instruments Corporation



Chapter 3 Analog Input Functions

coupling is an array of length channelCount that selects AC or DC coupling for each analog input channel.
Each value in the coupling array selects the setting for each channel as follows:
coupling[i] = 0:  AC coupling.
coupling[i] = 1:  DC coupling.

coupling[i] = 2:  GND coupling.  This selection grounds the input channel.

For the NB-A2000, the elements in coupling are interpreted as follows:
coupling[0]:  coupling setting for ACH0.
coupling[1]:  coupling setting for ACH1.
coupling[2]:  coupling setting for ACH2.
coupling[3]:  coupling setting for ACH3.
coupling[4]:  coupling setting for ATRIG.
The GND coupling option is not available on the NB-A2000.

For the NB-A2100, the elements in coupling are interpreted as follows:
coupling[0]:  coupling setting for ACH0.
coupling[1]:  coupling setting for ACH1.

The coupling setting on both ACH0 and ACH1 must be the same on the NB-A2100.

For the NB-A2150, the elements in coupling are interpreted as follows:
coupling[0]:  coupling setting for ACH0.
coupling[1]:  coupling setting for ACH1.
coupling[2]:  coupling setting for ACH2.
coupling[3]:  coupling setting for ACH3.
The coupling setting on ACH0 must be the same as the coupling setting on ACH1, and the coupling setting
on ACH2 must be the same as the coupling setting on ACH3 on the NB-A2150.

Note: All programmable channels must have a setting in the coupling array when MAI_Coupling is
called.

MAI_Coupling sets each NB-A2000, NB-A2100, or NB-A2150 analog input to the selected coupling.  After
system startup or a Board_Reset function call, the coupling of all programmable channels defaults to AC
coupling on the NB-A2000 and DC coupling on the NB-A2100 and NB-A2150.

                                                                                                                                                                                           

MAI_Read

Function
Returns a reading for all of the selected analog input channels.  If an external sample clock is being used on the
NB-A2000 and MAI_Arm has been called, samples generated by previous sample clock pulses are returned;
otherwise, the inputs are read when the call is made.

Synopsis

C Syntax locus i32 MAI_Read(u32 deviceNumber, i16 *reading);

Pascal Syntax function MAI_Read(deviceNumber : i32; var reading : i16) : i32;

BASIC Syntax FN MAI_Read(deviceNumber&, reading&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

reading is an array of readings from each sampled analog input channel.  The length of the reading array is
equal to the number of channels selected in the MAI_Setup channelCount parameter.  On the NB-A2000, the

© National Instruments Corporation 3-17 NI-DAQ Software Reference Manual for Macintosh



Analog Input Functions Chapter 3

elements of reading are 12-bit sign extended integers which range from -2,048 to +2,047.  On the NB-A2100
and the NB-A2150, the elements of reading are 16-bit integers which range from -32,768 to +32,767.

MAI_Read samples the selected analog input channels selected by MAI_Setup.  By default, all four
NB-A2000 and NB-A2150 analog input channels and both NB-A2100 analog input channels are sampled.
MAI_Read samples all selected input channels when the call is made unless the external sample clock is used.

If the external sample clock is used on the NB-A2000 and MAI_Arm has been called, MAI_Read returns the
earliest reading stored in the A/D FIFO for the selected channels.  An error is returned if no readings are stored.
MAI_Clear can be used at any time to clear the A/D FIFO or overflow error conditions.  If the NB-A2000 is
configured to sample a single analog input channel (channelCount = 1 in MAI_Setup) with the external
sample clock, two clock pulses must be received, because the NB-A2000 only stores samples in pairs.  On
return from MAI_Read reading contains two values with reading[0] holding the earlier sample.

                                                                                                                                                                                           

MAI_Scale

Function
Given an array of acquired data, converts the values in the array to the actual voltage values measured.

Synopsis

C Syntax locus i32 MAI_Scale(u32 deviceNumber, u32 count, i16 *readings, f32

*voltages);

Pascal Syntax function MAI_Scale(deviceNumber : i32; count : i32; readings :

pi16; voltages : pf32) : i32;

BASIC Syntax FN MAI_Scale(deviceNumber&, count&, readings&, voltages&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

count is the total number of scans in the values array.

readings is an array of acquired 12-bit or 16-bit binary data.

voltages is an array of 32-bit floating point values that is returned corresponding to the actual input voltages
measured.

MAI_Scale calculates voltages from readings as follows:
For the NB-A2000:  voltages[i] = readings[i] * 5 / 2,048.

For the NB-A2100 and NB-A2150:  voltages[i] = readings[i] * 2.828/ 32,768.

Note: MAI_Scale assumes that all the settings that were in effect during the data acquisition are the
same settings that are in effect when the data is being scaled.  If data is logged to disk and then read
later for scaling, the MAI_Setup function needs to be called before scaling if the settings have been
changed.

                                                                                                                                                                                                                

NI-DAQ Software Reference Manual for Macintosh 3-18 © National Instruments Corporation



Chapter 3 Analog Input Functions

MAI_Setup

Function
Selects the analog input channels read, sets the gain per channel, and sets the multiplexing rate between
channels for all analog input operations–affects single read multiple-channel analog input (MAI functions) and
multiple-channel data acquisition operations (MDAQ functions).

Synopsis

C Syntax locus i32 MAI_Setup(u32 deviceNumber, u32 channelCount, u16

*channels, u16 *gains, u32 muxInterval, u32 timebase, u32

muxMode);

Pascal Syntax function MAI_Setup(deviceNumber : i32; channelCount : i32;

channels : pi16; gains : pi16; muxInterval : i32;

timebase : i32; muxMode : i32) : i32;

BASIC Syntax FN MAI_Setup(deviceNumber&, channelCount&, channels&, gains&,

muxInterval&, timebase&, muxMode&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

channelCount is the number of onboard channels to be scanned when sampling the analog input.
Valid values for the NB-A2000 and the NB-A2150:

1, 2, 4.
The following values of channelCount are valid for the NB-A2100:

1, 2.

channels is an integer array of length channelCount that contains a listing of the analog input channels to be
scanned.  Tables 3-3 and 3-4 outline the valid combinations and ordering of channels.

Table 3-2.  Valid channelCount and channels Settings for the NB-A2000 and the NB-A2150

channelCount channels entries

1 channels[0] = 0 or 1 or 2 or 3 samples a single analog input

2 channels[0] = 0, channels[1] = 1, or
channels[0] = 2, channels[1] = 3

samples two analog inputs

4 channels[0] = 0, channels[1] = 1,
channels[2] = 2, channels[3] = 3

samples all analog inputs
(default setting)

Table 3-3.  Valid channelCount and channels Settings for the NB-A2100

channelCount channels entries

1 channels[0] = 0 or 1 samples a single analog input

2 channels[0] = 0, channels[1] = 1, or
channels[0] = 1, channels[1] = 0

samples both analog inputs
(default setting)

gains is an integer array of length channelCount that contains a gain setting for each channel selected in
channels.  The NB-A2000, NB-A2100, and NB-A2150 have a fixed gain of 1; therefore, the gains value is
ignored for these boards.

© National Instruments Corporation 3-19 NI-DAQ Software Reference Manual for Macintosh



Analog Input Functions Chapter 3

muxInterval is the input multiplexer switching time interval, that is, the time lapse between when each
successive channel in channels is sampled.  The multiplexer switching time interval is a function of the
timebase resolution selected by timebase.  The actual interval in seconds is determined by the following
formula:

muxInterval * (timebase resolution)

For the NB-A2000, NB-A2100, and NB-A2150, set muxInterval to 0 because these boards simultaneously
sample their input channels.

timebase is the resolution to use for the multiplexer switching interval.  Because muxInterval is always set to 0
for the NB-A2000, NB-A2100, and NB-A2150, timebase is ignored.

muxMode indicates the number of external multiplexer boards connected to the board.  For the NB-A2000,
NB-A2100, and NB-A2150, set muxMode to 0 since the boards do not use an external multiplexer board.

The NB-A2000 and NB-A2150 are initially configured at system startup to sample all four input channels as
shown in the last row of Table 3-2.  The NB-A2100 is initially configured at system startup to sample both input
channels as shown in the last row of Table 3-3.  MAI_Setup is only needed if you want to sample fewer
channels or the configured input channels have been changed.

                                                                                                                                                                                           

NI-DAQ Software Reference Manual for Macintosh 3-20 © National Instruments Corporation



Chapter 4
Analog Output Functions
                                                                                                        

This chapter describes the functions for single D/A conversions.

The Analog Output functions cover single D/A conversions.  Multiple D/A operations functions can be performed
with the Waveform Generation functions (see Chapter 10, Waveform Generation Functions).  See Appendix A to
determine what functions your board supports.

If you are using the SCXI-1124 analog output module, you need to use the SCXI functions described in Chapter 7,
SCXI Functions, instead of the Analog Output Functions.

Analog Output

Table 4-1 summarizes the analog output characteristics of the data acquisition boards.

Table 4-1. Analog Output Characteristics Summary

Board Analog
Output

Channels

DAC Hardware Configuration for
Analog Output Channels

Onboard
Voltage

References

Can Be Driven
by External
Reference

Voltage Signal

NB-AO-61 0–5 Double-
buffered
12-bit

unipolar voltage
bipolar voltage
current output

+10 or +2.5 V
drives the analog
output channels

yes

NB-MIO-16
NB-MIO-16X

0–1 12-bit unipolar voltage
bipolar voltage

+10 V drives the
analog output
channels

yes

Lab and 1200 Series 0–1 12-bit unipolar voltage (0 to +10 V)
bipolar voltage (-5 to +5 V)

— no

DAQCard-AO-2DC 0–1 12-bit unipolar current (0 to 20 mA)
unipolar voltage (0 to +10 V)
bipolar voltage (-5 to +5 V)

— no

PCI-MIO-16XE-50 0–1 12-bit bipolar (-10 to +10 V) +10 V drives the
analog output
channels

no

1On the NB-AO-6, each analog output channel can be immediately updated when written to, or all channels on the
NB-AO-6 can be simultaneously updated at a later time by either an external update pulse or a software
command (see AO_Update).

© National Instruments Corporation 4-1 NI-DAQ Software Reference Manual for Macintosh



Analog Output Functions Chapter 4

NB-A2100 Analog Output

The NB-A2100 contains two simultaneously updated analog output channels numbered 0 and 1.  These 16-bit
resolution D/A channels use 8-times oversampling digital anti-imaging filters for extremely high fidelity data output.
Each channel also has a jumper to select AC or DC coupling.

The output range for each channel is ±3 V (or about 2.12 Vrms).

The DACs can be run at 16, 22.05, 24, 32, 44.1, or 48 kHz conversion rates.  A 32-bit-wide, 16-word-deep FIFO
memory on the board serves as a buffer to the DAC and can store 32 conversion values if one channel is being
output or 16 conversion values for each channel if both channels are being output.

The D/A conversion data can be received serially over the RTSI bus from other National Instruments boards such as
the NB-DSP2300 digital signal processing board.

Analog Output Function Summary

The following functions are used for analog output:

AO_Change_Parameter Selects parameter settings for analog output.

AO_Setup Configures each analog output channel.

AO_Update Updates all analog output channels on the board to new voltage/current values.

AO_VScale Converts voltage into a binary value to use with the AO_Write function to
generate that voltage.

AO_Write Writes a binary value to the analog output channel to change output current or
voltage.

Analog Output Application Hints

For most purposes, AO_Write is the only function required to generate single analog output voltages.  If needed,
you can use AO_VScale to convert a voltage or current value to the binary value to be output.

AO_VScale

AO_Write

AO_Setup
update mode = 0

AO_Change_Parameter

Figure 4-1.  Immediate Update Analog Output Flowchart

NI-DAQ Software Reference Manual for Macintosh 4-2 © National Instruments Corporation



Chapter 4 Analog Output Functions

The NB-AO-6 also supplies current outputs for each channel.  For the current outputs, 0 V corresponds to 4 mA and
10 V corresponds to 20 mA when using the onboard 10 V reference.

If the jumper settings on the Lab-NB, Lab-LC, NB-MIO-16, NB-MIO-16X, or NB-AO-6 analog output circuitry
have been changed  from the factory settings, you need to use AO_Setup to update the analog output configuration
information for the drivers.  This update needs to be made only once per system startup.  Read the AO_Setup
description to double-check your configuration.

With AO_Setup you can also select whether to use delayed update on the Lab and 1200 series, NB-AO-6,
PCI-MIO-16XE-50, or NB-MIO-16X (this feature is not available on the NB-MIO-16).  With delayed update, you
can use AO_Write to write to one or more analog output channels without changing the state of the analog outputs.
You can then simultaneously change the state of all analog outputs at a later time by executing AO_Update or by
applying an external update pulse.

(for number of channels

 to update)
AO_Writem

AO_Updatem

(update_mode = 1)

AO_VScaleM

AO_SetupM

update mode = 1AO_Change_Parameter

AO_Setup
update mode = 1

Figure 4-2.  Delayed Update Analog Output Flowchart

The NB-A2100 always immediately updates the selected analog output channels with a bipolar value when
AO_Write is called.  So, the functions AO_Setup and AO_Update are not supported on the NB-A2100.

AO_Change_Parameter

Function
Selects a specific parameter setting for the analog output section of the device or an analog output channel. You
can select parameters related to analog output not listed here through the AO_Setup function.

Synopsis

C Syntax locus i32 AO_Change_Parameter(u32 deviceNumber, u32 channel, u32

paramID, u32 paramValue);

Pascal Syntax function AO_Change_Parameter(deviceNumber : i32; channel : i32;

paramID : i32; paramValue : i32) : i32;

BASIC Syntax FN AO_Change_Parameter(deviceNumber&, channel&, paramID&,

paramValue&)

© National Instruments Corporation 4-3 NI-DAQ Software Reference Manual for Macintosh



Analog Output Functions Chapter 4

Description
Legal ranges for paramID and paramValue are given in terms of constants defined in a header file. The header
file you should use depends on the language you are using:

• C programmers—NIDAQCNS.H

• Pascal programmers—NIDAQCNS.PAS

Legal values for channel depend on the type of device you are using; analog output channels are labeled 0
through n-1, where n is the number of analog output channels on your device. You can set channel to -1 to
indicate that you want the same parameter selection for all channels. You must set channel to -1 if you want to
change a parameter you cannot change on per-channel basis.

Legal values for paramValue depend on paramID. The following paragraphs list features you can configure
along with legal values for paramID with explanations and corresponding legal values for paramValue.

Voltage or Current Output
Some devices require separate calibration constants for voltage and current outputs. Setting the output type to
voltage or current for these devices causes the driver to use the correct calibration constants and to interpret the
input data correctly in AO_VScale. To change the output type, set paramID to ND_OUTPUT_TYPE.

Device Type Per-Channel
Selection
Possible

Legal Range for
paramValue

Default Setting for
paramValue

DAQCard-AO-2DC Yes ND_CURRENT_OUTPUT

and
ND_VOLTAGE_OUTPUT

ND_VOLTAGE_OUTPUT

This function lets you customize the behavior of the analog output section of your device. You should call this
function before calling NI-DAQ functions that cause output on the analog output channels. You can call this
function as often as you need.

                                                                                                                                                                                           

AO_Setup

Function
Configures the specified analog output channel.

Synopsis

C Syntax locus i32 AO_Setup(u32 deviceNumber, u32 channel, u32 outputMode,

f64 outputRange, u32 updateMode, u32 updateSignal, u32

updateEdge);

Pascal Syntax function AO_Setup(deviceNumber : i32; channel : i32; outputMode :

i32; outputRange : f64; updateMode : i32; updateSignal :

i32; updateEdge : i32) : i32;

BASIC Syntax FN AO_Setup(deviceNumber&, channel&, outputMode&, outputRange#,

updateMode&, updateSignal&, updateEdge&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

NI-DAQ Software Reference Manual for Macintosh 4-4 © National Instruments Corporation



Chapter 4 Analog Output Functions

channel is the analog output channel number.
Range:  0 through n-1, where n is the number of analog output channels on the board.

outputMode selects whether the analog output channel is configured for unipolar or bipolar operation:
1:  unipolar operation.
0:  bipolar operation.

outputRange is the analog output channel voltage reference value.  This parameter is ignored for the
DAQCard-AO-2DC, Lab, and 1200 series boards since the outputMode determines their output range.

updateMode indicates whether a double-buffered analog output channel is updated when written to:
0:  immediate update.
1:  not updated when written to.

updateSignal indicates which signal is used to update the double-buffered analog output channel:
0:  internal (default).
1:  external.

updateEdge indicates whether the falling edge or rising edge is used (NB-AO-6 only) to update the double-
buffered analog output channels:

0:  falling.
1:  rising.

Note: On the NB-AO-6, the double-buffered analog output channels are updated by the specified edge of
the EXT.UPD signal; for group operations, the last channel configured specifies the appropriate
setting for updateEdge.

Only the following combinations of updateMode, updateSignal, and updateEdge are valid on the
NB-MIO-16X, Lab and 1200 series, and MIO E Series devices.  An x indicates the value is ignored for that
combination.

updateMode updateSignal updateEdge Description

0 x x Analog output channels are updated as soon as
AO_Write is executed.

1 1 x For the NB-MIO-16X and all Lab and 1200 series
devices except the Lab-LC , the analog output
channels are updated when a low level is detected
on EXTUPDATE*.  For the Lab-LC, the analog
output channels are updated when a high-to-low
edge is detected on the EXTUPDATE* pin.  For
MIO E Series devices, the analog output channels
are updated on an active low pulse applied to the
PFI5 pin.  To alter the pin and polarity, you can call
the Select_Signal function.

1 0 x Analog output channels are updated when
AO_Update is executed.

AO_Setup stores information about the specified analog output channel on the specified board in the
configuration table for that analog channel.  After system startup, the analog output channel configuration tables
default to the following:

outputMode = 0:  bipolar (unipolar on the DAQCard-AO-2DC).
outputRange = 10 V (-5 to +5 V on the Lab and 1200 series).
updateMode = 0:  immediate update.

© National Instruments Corporation 4-5 NI-DAQ Software Reference Manual for Macintosh



Analog Output Functions Chapter 4

If the physical configuration of the analog output channels on your board differs from these defaults, you must
call AO_Setup with the actual configuration information in order for the remaining Analog Output functions to
operate properly.

With AO_Setup you can also select whether to use delayed update on the NB-AO-6, Lab and 1200 series,
MIO E Series, or NB-MIO-16X (this feature is not available on the NB-MIO-16).  Delayed update is configured
by setting updateMode to 1.  You can use delayed update to use AO_Write to write to one or more analog
output channels without changing the state of the analog outputs and then to simultaneously change the state of
all analog outputs at a later time by executing AO_Update or by applying an external update pulse.

Note: AO_Setup replaces the AO_Config function used in previous versions of NI-DAQ for Macintosh.
                                                                                                                                                                                           

AO_Update

Function
Updates all analog output channels on the specified board to new voltage/current values.

Synopsis

C Syntax locus i32 AO_Update(u32 deviceNumber);

Pascal Syntax function AO_Update(deviceNumber : i32) : i32;

BASIC Syntax FN AO_Update(deviceNumber&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

AO_Update issues an update pulse to all analog output channels on the specified board.  All analog output
channel voltages/currents are then simultaneously changed to the last value written.  This type of delayed update
is provided for the NB-AO-6, Lab and 1200 series, MIO E Series, or NB-MIO-16X only.

                                                                                                                                                                                           

AO_VScale

Function
Converts a floating point number to the appropriate binary value to use with the AO_Write function to
generate that voltage or current.

Synopsis

C Syntax locus i32 AO_VScale(u32 deviceNumber, u32 channel, f64 voltage, i16

*value);

Pascal Syntax function AO_VScale(deviceNumber : i32; channel : i32; voltage :

f64; var value : i16) : i32;

BASIC Syntax FN AO_VScale(deviceNumber&, channel&, voltage#, value&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

NI-DAQ Software Reference Manual for Macintosh 4-6 © National Instruments Corporation



Chapter 4 Analog Output Functions

channel is the analog output channel number.
Range:  0 through n-1, where n is the number of analog output channels on the board.

voltage is the voltage, in volts, or current, in amps, to be converted to a binary value.

value is the converted binary value returned.

Using the following formula, AO_VScale calculates the binary value to be written to the specified analog
output channel to generate an output voltage or current corresponding to voltage.

value = (voltage/outputRange)  *  maxBinVal

For voltages the  values of outputRange and maxBinVal are listed in the following table:

Device Unipolar Bipolar

outputRange maxBinVal outputRange maxBinVal

Most devices * 4,096 * 2,048

Lab and 1200
series, AO-2DC

10.0 4,096 5.0 2,048

NB-A2100 — — 3.0 32,768

Note: * indicates that you specify the value of outputRange in the AO_Configure

function call.

outputRange is specified in a call to AO_Setup.

If you set the output type to current by calling AO_Change_Parameter, voltage indicates the current to
output in amps.  The values of outputRange and maxBinVal are listed in the following table:

Device Unipolar

outputRange maxBinVal

DAQCard-AO-2DC 0.002 4,096

                                                                                                                                                                                           

AO_Write

Function
Writes a binary value to the analog output channel to change output current or voltage.

Synopsis

C Syntax locus i32 AO_Write(u32 deviceNumber, u32 channel, i32 value);

Pascal Syntax function AO_Write(deviceNumber : i32; channel : i32; value : i32)

: i32;

BASIC Syntax FN AO_Write(deviceNumber&, channel&, value&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

© National Instruments Corporation 4-7 NI-DAQ Software Reference Manual for Macintosh



Analog Output Functions Chapter 4

channel is the analog output channel number.
Range:  0 through n-1, where n is the number of analog output channels on the board.

value is the digital value to be written to the analog output channel.
Range for unipolar: 0 to 4,095.
Range for bipolar: -2,048 to 2,047.  (-32,768 to 32,767 on the NB-A2100)

AO_Write writes value to the DAC in the analog output channel.  If the analog output channel is configured
for immediate update, the output voltage or current changes immediately.  Otherwise, delayed update is used
and the output voltage or current changes when an update command or pulse is issued.  This type of delayed
update is available only on the NB-AO-6, Lab and 1200 series, MIO E Series, and NB-MIO-16X.

NI-DAQ Software Reference Manual for Macintosh 4-8 © National Instruments Corporation



Chapter 5
Digital I/O Functions
                                                                                                          

This chapter describes the functions used to read from and write to digital ports, which can be addressed as a single
entity or as individual digital lines.  The following National Instruments boards for the Macintosh have digital I/O
hardware:

• All MIO boards

• All Lab and 1200 series boards

• All DIO boards

• NB-TIO-10

• DAQCard-AO-2DC

• DAQCard-500 and DAQCard-700

Digital I/O ports on the National Instruments boards can have up to eight digital lines in width.  Some of the digital
I/O ports have less than eight digital lines.  The name port, in fact, refers to a set of digital lines.  In many instances,
the set of digital lines is controlled as a group both for reading and writing purposes and for configuration purposes.
For example, the port can be configured as either an input port or as an output port, which means that the set of
digital lines making up the port all become input lines or output lines.

The digital ports are usually assigned a letter, and the digital lines making up the port are assigned numbers
beginning with 0.  For example, the NB-DIO-24 contains three ports of eight digital lines each.  These ports
are labeled PA, PB, and PC on the NB-DIO-24 I/O connector drawing, as shown in the NB-DIO-24 User
Manual.  The eight digital lines making up Port PA are labeled PA7 through PA0.

In some cases digital I/O ports can be further combined into a larger entity called a group.  On the NB-DIO-32F, for
example, any of its Ports DIOA through DIOD can be assigned to one of two groups.  These groups control the
digital lines of the ports assigned.

The Digital I/O functions can write to and read from both an entire port and single digital lines within the port.  To
write to an entire port, the digital output data is written to the port as an 8-bit value (range 0 to 255).  To read from a
port, the digital input data is returned as an 8-bit value.  The mapping of the 8 bits to the digital I/O lines is as
follows:

Bit Number Digital I/O Line Number

7 7 Most significant bit
6 6
5 5
4 4
3 3
2 2
1 1
0 0 Least significant bit

For example, a value of 255 corresponds to all lines at a logic high level.  A value of 32 corresponds to digital I/O
line number 5 at a logic high level and to the remaining lines at a logic low level.  In the cases where a digital I/O
port has less than eight lines, the most significant bits in the 8-bit value are ignored.

© National Instruments Corporation 5-1 NI-DAQ Software Reference Manual for Macintosh



Digital I/O Functions Chapter 5

Most of the digital I/O ports on the boards can be configured as either input ports or output ports.  Some digital I/O
ports are permanently fixed as either input ports or output ports.  If a port is configured as an input port, reading that
port returns the value of the digital lines.  The state of the digital lines, in this case, is determined by external devices
connected to those lines and driving them.  If no external device is driving the lines, the lines float to some
indeterminate state and can be read as either in state 0 (digital logic low) or state 1 (digital logic high).  If a port is
configured as an output port, writing to the port sets each digital line in the port to a digital logic high or low,
depending on the pattern of the data written.  In this case, these digital lines can be used to drive an external device.
Many of the digital I/O ports have read-back capability; that is, if the port is configured as an output port, reading the
port returns the output state of that port.

The digital I/O ports and groups on some of the boards support handshaking modes.  Ports and groups can be
configured for handshaking or no-handshaking.  For the remainder of this chapter, no-handshaking mode is
synonymous with nonlatched mode and handshaking mode is synonymous with latched mode.  These two modes are
described as follows:

• No-handshaking (nonlatched) mode:  This mode simply changes the digital value at an output port when written
to and returns a digital value from a digital input port when read.  No handshaking signals are generated.

• Handshaking (latched) mode:  In this mode, a digital input port latches the data present at the input port when it
receives a handshake signal, and generates a handshake pulse when a digital output port is written to by the
computer.  The status of a port or of a group of ports can be read to determine whether an external device has
accepted data written to an output port or has latched data into an input port.

The no-handshaking mode is often used for process control applications, such as controlling or monitoring relays.
The handshaking mode is often used for communications applications, such as transferring data between two
computers.

NB-DIO-24, DAQCard-DIO-24, NB-PRL, and Lab and 1200
Series Digital I/O

The NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab and 1200 series boards contain 24 bits of digital I/O.  These bits
are divided into a set of three digital I/O ports of eight bits each.  Digital I/O on these boards is controlled by an
8255 or 82C55 programmable peripheral interface (PPI) chip.  The digital I/O ports are labeled as Ports PA, PB, and
PC on the I/O connector, as shown in the user manual for each board.  All three ports can be configured either as
input ports or output ports.  These ports are referred to as Ports 0, 1, and 2 for the Digital I/O functions, where:

Port PA = Port 0
Port PB = Port 1
Port PC = Port 2

Ports 0 and 1 can be used with both latched (handshaking) mode and nonlatched (no-handshaking) mode.  Port 2 can
be used with nonlatched mode only.  The digital lines making up Port 2 (PC) are used as handshaking lines for both
Ports 0 and 1 whenever either is configured for latched mode; therefore, Port 2 is not available for Digital I/O
functions whenever either Port 0 or 1 is configured for latched mode.

The NB-PRL has the same functionality as the NB-DIO-24, except that the NB-PRL has a 25-pin DSUB I/O
connector so that the board can be used as a NuBus parallel interface for Centronics printers.  All references to the
NB-DIO-24 throughout the manual also apply to the NB-PRL.

Note: Using an SCXI chassis with a Lab or 1200 series board or DAQCard-DIO-24 will cause NI-DAQ to
reserve some digital I/O lines.  Refer to Chapter 7, SCXI Functions, for more information.

NI-DAQ Software Reference Manual for Macintosh 5-2 © National Instruments Corporation



Chapter 5 Digital I/O Functions

NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab and 1200 Series Groups

Any combination of ports 0 and 1 on the NB-DIO-24, DAQCard-DIO-24, NB-PRL, and Lab and 1200 series can be
grouped together to make up larger ports.  See Digital I/O Application Hints and DIG_Scan_Setup for more
details.

NB-DIO-32F Digital I/O

The NB-DIO-32F contains 38 bits of digital I/O.  These bits are divided into a set of four digital I/O ports of 8 bits
each, a 3-bit digital input port, and a 3-bit digital output port.  The 8-bit digital I/O ports are labeled as Ports DIOA,
DIOB, DIOC, and DIOD on the I/O connector, as shown in the NB-DIO-32F User Manual.  The 3-bit digital input
port is labeled IN and the 3-bit digital output port is labeled OUT on the I/O connector.  These ports are referred to
as Ports 0 through 4 by the Digital I/O functions, where:

Port DIOA = Port 0
Port DIOB = Port 1
Port DIOC = Port 2
Port DIOD = Port 3
Ports OUT and IN = Port 4

You can configure Ports 0 through 3 as either input ports or output ports.  When any of these ports is configured as
an output port, it has read-back capability; that is, by reading the port, you can determine what digital value the
output port is currently asserting.  Port 4 is always configured for both input and output.  However, because the input
and output pins of Port 4 are physically separate, writing to and then reading from Port 4 does not return the value
written (unless OUT1 is wired to IN1 and OUT2 to IN2 at the I/O connector).

You can also configure Ports 0 through 3 for both latched mode and nonlatched mode.  If you configure the ports for
latched mode, you must assign the ports to one of two handshake groups.  The NB-DIO-32F I/O connector includes
handshake lines for each of the two groups.  These handshake lines are labeled REQ for request and ACK for
acknowledge.  Signals received or generated on these handshake lines affect only the ports assigned to the group.

Port 4 is always configured as an I/O port.  Writing to Port 4 affects the output lines labeled OUT1, OUT2, and
OUT3 on the I/O connector.  Reading from Port 4 returns the digital value of the input lines labeled IN1, IN2, and
IN3 on the I/O connector.  These lines are mapped to the bits of the data pattern written to and read from Port 4 as
follows:

Bit Number Digital I/O Line Number

7 through 3
2
1
0

No significance
OUT3 IN3
OUT2 IN2
OUT1 IN1 Least significant bit

Port 4 cannot be configured for latched mode.

NB-DIO-32F Groups

You can assign any of the Ports 0 through 3 on the NB-DIO-32F to one of two groups for handshaking.  These
groups are referred to as Group 1 and Group 2.  Group 1 uses handshake lines ACK1 and REQ1.  Group 2 uses
handshake lines ACK2 and REQ2.  The ACK line is driven by the group, and the REQ line is sensed by the group.
Refer to the NB-DIO-32F User Manual for more information.

Once ports are assigned to groups, the group acts as a single entity controlling 8, 16, or 32 digital lines
simultaneously.  The following assignments are valid group assignments.

© National Instruments Corporation 5-3 NI-DAQ Software Reference Manual for Macintosh



Digital I/O Functions Chapter 5

Assigned Ports Group Size

Port 0
Port 1
Port 2
Port 3
Ports 0 and 1
Ports 2 and 3
Ports 0, 1, 2, and 3

8-bit group
8-bit group
8-bit group
8-bit group

16-bit group
16-bit group
32-bit group

When you assign ports to a group, handshaking of that port is controlled by the group.  These ports are then read
from or written to simultaneously by writing or reading 8, 16, or 32 bits at one time from the group.

The groups can be configured for various handshake configurations.  The configuration choices include level or
edge-triggered handshaking, inverted or noninverted ACK and REQ lines, and a programmed transfer settling time.

NB-DIO-96 and PCI-DIO-96 Digital I/O

The NB-DIO-96 and PCI-DIO-96 boards contain 96 bits of digital I/O.  These bits are divided into a set of 12 digital
I/O ports of eight bits each.  Digital I/O on this board is controlled by four 82C55A PPI chips.  The digital I/O ports
are labeled as Ports APA, APB, APC, BPA, BPB, BPC, CPA, CPB, CPC, DPA, DPB, and DPC on the I/O
connector as shown in the NB-DIO-96 User Manual or PCI-DIO-96 User Manual.  All 12 ports can be configured
as either input ports or output ports.

These ports are referred to as Ports 0 through 11 for the Digital Input and Output functions where:

Port APA = Port 0
Port APB = Port 1
Port APC = Port 2
Port BPA = Port 3
Port BPB = Port 4
Port BPC = Port 5
Port CPA = Port 6
Port CPB = Port 7
Port CPC = Port 8
Port DPA = Port 9
Port DPB = Port 10
Port DPC = Port 11

Ports, 0, 1, 3, 4, 6, 7, 9, and 10 can be used for both latched (handshaking) and nonlatched (no-handshaking) modes.
Ports 2, 5, 8, and 11 can be used only for nonlatched mode.  The digital lines making up Port 2 (APC) are used as
handshaking lines for Ports 0 and 1 whenever either is configured for latched mode; therefore, Port 2 is not available
for Digital Input and Output functions whenever either Port 0 or Port 1 is configured for latched mode.  The digital
lines making up Port 5 (BPC) are used as handshaking lines for Ports 3 and 4 whenever either is configured for
latched mode; therefore, Port 5 is not available for Digital Input and Output functions whenever either Port 3 or
Port 4 is configured for latched mode.  The digital lines making up Port 8 (CPC) are used as handshaking lines for
Ports 6 and 7 whenever either is configured for latched mode; therefore, Port 8 is not available for Digital Input and
Output functions whenever either Port 6 or Port 7 is configured for latched mode.  The digital lines making up Port
11 (DPC) are used as handshaking lines for Ports 9 and 10 whenever either is configured for latched mode;
therefore, Port 11 is not available for Digital Input and Output functions whenever either Port 9 or Port 10 is
configured for latched mode.

NI-DAQ Software Reference Manual for Macintosh 5-4 © National Instruments Corporation



Chapter 5 Digital I/O Functions

NB-DIO-96 and PCI-DIO-96 Groups

Any combination of Ports 0, 1, 3, 4, 6, 7, 9, and 10 on the NB-DIO-96 and PCI-DIO-96 can be grouped together to
make up larger ports.  For example, Ports 0, 3, 9, and 10 can be programmed to make up a 32-bit handshaking port,
or all eight ports can be programmed to make up a 64-bit handshaking port.  See Digital I/O Application Hints and
DIG_Scan_Setup for more details.

NB-MIO-16 and NB-MIO-16X Digital I/O

The NB-MIO-16 and NB-MIO-16X each contain 8 bits of digital I/O.  These bits are divided into a set of two digital
I/O ports of four bits each.  The 4-bit digital I/O ports are labeled as Ports DIOA and DIOB.  These ports are referred
to as Ports 0 and 1 by the Digital I/O functions where:

Port DIOA = Port 0
Port DIOB = Port 1

You can configure Ports 0 and 1 as either input ports or output ports.  Any port that you configure as an output port
has read-back capability (that is, by reading the port, you can determine what digital value the output port is
currently asserting).

The NB-MIO-16 and NB-MIO-16X digital I/O ports operate in nonlatched mode only.

Note: Using an SCXI chassis with an MIO board causes NI-DAQ to reserve some digital I/O lines.  Refer to
Chapter 7, SCXI Functions, for more information.

PCI-MIO-16XE-50 Digital I/O

The E Series devices contain one 8-bit digital I/O port supplied by the DAQ-STC chip. This port is referred to as
port 0 by the Digital I/O functions.

You can configure the entire digital port as either an input or an output port, or you can configure individual lines for
either input or output. The port has read-back capability (that is, by reading the port, you can determine what digital
value the output port is currently asserting). This port operates in nonlatched mode only.

Note: Connecting one or more AMUX-64T devices or an SCXI chassis to an E Series device renders various
lines of the digital I/O port  unavailable:

One AMUX-64T device—Lines 0 and 1 are unavailable.
Two AMUX-64T devices—Lines 0, 1, and 2 are unavailable.
Four AMUX-64T devices—Lines 0, 1, 2, and 3 are unavailable.
SCXI—Lines 0, 1, 2, and 4 are unavailable.

The remaining lines of the digital I/O port are available for input or output. You should use
DIG_Line_Config to configure these remaining lines.

NB-TIO-10 Digital I/O

The NB-TIO-10 contains 16 bits of digital I/O.  These bits are divided into a set of two digital I/O ports of eight bits
each.  Digital I/O on these ports is controlled by the Motorola MC6821 PIA chip.  The 8-bit digital I/O ports are
labeled as Port A and Port B.  These ports are referred to as Ports 0 and 1 by the Digital I/O functions, where:

Port A = Port 0
Port B = Port 1

© National Instruments Corporation 5-5 NI-DAQ Software Reference Manual for Macintosh



Digital I/O Functions Chapter 5

You can configure Ports 0 or 1 as either input ports or output ports.  Either of these ports configured as an output
port has read-back capability; that is, by reading the port, you can determine what digital value the output port is
currently asserting.  You can also configure each line on a port for direction, input or output.  The NB-TIO-10 digital
I/O ports operate in nonlatched mode only.

DAQCard-AO-2DC Digital I/O

The DAQCard-AO-2DC contains 16 bits of digital I/O.  These bits are divided into a set of two digital I/O ports of
eight bits each.  The 8-bit digital I/O ports are labeled as Port A and Port B.  These ports are referred to as Ports 0
and 1 by the Digital I/O functions, where:

Port A = Port 0
Port B = Port 1

You can configure Ports 0 or 1 as either input ports or output ports.  Either of these ports configured as an output
port has read-back capability; that is, by reading the port, you can determine what digital value the output port is
currently asserting.

DAQCard-500 and DAQCard-700 Digital I/O

The DAQCard-500 and DAQCard-700 have one output port (Port 0) and one input port (Port 1) each; the
DAQCard-500 ports are 4-bit ports, and the DAQCard-700 ports are 8-bit.  The digital I/O ports are labeled DIN and
DOUT on the I/O connector, as shown in the appropriate device user manual. The ports are referred to as ports 0 and
1 for the Digital I/O functions, in which:

• DOUT = port 0

• DIN = port 1

You can program ports 0 and 1 for nonlatched (no-handshaking) mode only. You can use port 0 for nonlatched
digital output mode. You can use port 1 for nonlatched digital input mode.

Note: Using an SCXI chassis with the DAQCard-700 renders digital lines 4, 5, 6, and 7 of port 0 and line 6 of
port 1 unavailable.  Refer to Chapter 7, SCXI Functions, for more information.

SCXI Signal Conditioning Hardware

You can use the following digital SCXI modules with the MIO boards, DIO boards, and Lab boards:

• SCXI-1160 16-channel electromechanical SPDT relay module

• SCXI-1161 8-channel electromechanical SPDT relay module

• SCXI-1162 32-channel optically isolated digital input module

• SCXI-1162HV 32-channel high-voltage optically isolated digital input module

• SCXI-1163 32-channel optically isolated digital output module

• SCXI-1163R 32-channel optically isolated digital solid-state relay module

These modules do not work with the NB-TIO-10.

If your SCXI modules are configured for Multiplexed (or Serial) mode, you must use the SCXI functions in
Chapter 7, SCXI Functions, to read and write digital patterns.  If your SCXI modules are configured for Parallel

NI-DAQ Software Reference Manual for Macintosh 5-6 © National Instruments Corporation



Chapter 5 Digital I/O Functions

mode, you can use either the SCXI functions in Chapter 7 or the DIG_In_Port and DIG_Out_Port functions in
this chapter.  Please refer to the SCXI Modules and Compatible Data Acquisition Boards section in Chapter 7 for
more information on which ports drive the modules in Parallel mode.

Digital I/O Function Summary

Use the following functions for digital I/O operations on the NB-DIO-96, PCI-DIO-96, DAQCard-AO-2DC,
NB-DIO-24, DAQCard-DIO-24, DAQCard-500, DAQCard-700, NB-PRL, Lab and 1200 series, NB-DIO-32F,
NB-MIO-16, NB-MIO-16X, and NB-TIO-10:

DIG_In_Line Returns the digital logic state of the specified digital input line in the specified port.

DIG_In_Port Reads digital input data from the specified digital I/O port.

DIG_Line_Config Configures the specified line in the specified port for the direction (input or output)
selected.

DIG_Out_Line Sets or clears the specified digital output line in the specified digital port.

DIG_Out_Port Writes digital output data to the specified digital port.

DIG_Prt_Config Configures the specified port for direction (input or output) and handshake mode.

DIG_Prt_Status Returns a status word indicating the handshake status of the specified port (NB-DIO-96,
PCI-DIO-96, NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab and 1200 series, and NB-PRL
only).

Use the following functions for digital I/O group operations on the NB-DIO-32F:

DIG_Grp_Config Configures the specified group for port assignment, direction (input or output), and size.

DIG_Grp_Mode Configures the group handshake signal modes.

DIG_Grp_Status Returns a status word indicating the handshake status of the specified group.

DIG_In_Group Reads digital input data from the specified digital group.

DIG_Out_Group Writes digital output data to the specified digital group.

Use the following functions for digital I/O group operations on the NB-DIO-96, PCI-DIO-96, NB-DIO-24,
DAQCard-DIO-24, NB-PRL, Lab and 1200 series, and NB-DIO-32F:

DIG_Blk_Check Checks to see if the current buffered digital input or output operation is complete.

DIG_Blk_Clear Clears the current buffered digital input or output operation for the specified group.

DIG_Blk_Start Reads/writes a specified number of digital data patterns to/from a digital I/O group.

DIG_Scan_Setup Configures the specified group for port assignment, direction (input or output), and size
(NB-DIO-96, PCI-DIO-96, NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab and 1200 series
only).

© National Instruments Corporation 5-7 NI-DAQ Software Reference Manual for Macintosh



Digital I/O Functions Chapter 5

Digital I/O Application Hints

Nonlatched Digital I/O

All boards that support digital I/O can be used for nonlatched digital I/O.  NI-DAQ for Macintosh expects
nonlatched digital I/O to be used by default.  For this case, DIG_Prt_Config can be used to configure port
direction (input by default).

DIG_In_Port, DIG_In_Line, DIG_Out_Port, and DIG_Out_Line can be used to read from and write to
ports and individual lines.

Latched Digital I/O with the NB-DIO-96, PCI-DIO-96, NB-DIO-24, DAQCard-DIO-24,
NB-PRL, and Lab and 1200 Series

To use handshaking with the NB-DIO-96, PCI-DIO-96, NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab and 1200
series, you must call DIG_Prt_Config to configure a port for handshaking.  For output handshaking, you may
execute DIG_Prt_Status to see that if port is ready for output before DIG_Out_Port is executed.  For input
handshaking, you must execute DIG_Prt_Status to see if the port has data to be read before DIG_In_Port is
executed.  For handshaking, DIG_In_Line and DIG_Out_Line should not be used.

Latched Digital I/O with the NB-DIO-32F

To use handshaking with the NB-DIO-32F, use only the group functions.  These functions can perform handshaking
of 8, 16, or 32 bits at a time.  You must use DIG_Grp_Config to enable handshaking and to configure
handshaking group size and direction.  You may execute DIG_Grp_Mode to specify handshaking modes other than
the default handshaking mode.  For output handshaking, you must execute DIG_Grp_Status and indicate that the
group is ready for output before DIG_Out_Group is executed.  For input handshaking, you must call
DIG_Grp_Status and indicate that the port has data to be read before DIG_In_Group is executed.

status = 1?

NO

YES

DIG_Grp_Config

(dir = 0)

DIG_Grp_Mode

DIG_Grp_Status

DIG_In_Group

Figure 5-1.  Flowchart for Latched Digital Group Input

NI-DAQ Software Reference Manual for Macintosh 5-8 © National Instruments Corporation



Chapter 5 Digital I/O Functions

status = 1?

NO

YES

DIG_Grp_Config

(dir = 1)

DIG_Grp_Mode

DIG_Grp_Status

DIG_Out_Group

Figure 5-2.  Flowchart for Latched Digital Group Output

Buffered Digital I/O with the NB-DIO-96, PCI-DIO-96, NB-DIO-24, DAQCard-DIO-24,
NB-PRL, and Lab and 1200 Series

DIG_Blk_Start and DIG_Blk_Check perform buffered digital I/O operations to transfer a block of digital
values between a group of digital ports and a user buffer.  DIG_Scan_Setup must be executed to assign ports to a
group and to configure the direction of the group.  DIG_Blk_Start initiates the buffered digital I/O operation,
and DIG_Blk_Check returns the completion status of the buffered digital I/O process.  DIG_Blk_Start
performs both input and output operations.  If the group is configured for output, a user-defined buffer of data is
passed to DIG_Blk_Start to output.  If the group is configured for input, a user-defined buffer is passed to
DIG_Blk_Start to be filled with input data.  DIG_Blk_Start returns immediately after initiating the buffered
digital transfer.  DIG_Blk_Check returns the completion status of the operation.  If a digital output transfer is
initiated by DIG_Blk_Start, then the transfer is complete when DIG_Blk_Check returns status = 1.  If a
digital input transfer is initiated by DIG_Blk_Start, then the data is available in the user-defined buffer specified
in DIG_Blk_Start when DIG_Blk_Check returns with status = 1.  You should execute DIG_Blk_Clear
when the buffered digital I/O operation is complete.  When you use block function calls on these digital boards, you
must use external handshaking signals for any buffered digital I/O operations.

Buffered Digital I/O with the NB-DIO-32F

DIG_Blk_Start and DIG_Blk_Check perform buffered digital I/O operations to transfer a block of digital
values between a group of digital ports and a user buffer.  DIG_Grp_Config must be executed to assign ports to a
group and to configure the direction of the group.  DIG_Blk_Start initiates the buffered digital I/O operation,
and DIG_Blk_Check returns the completion status of the buffered digital I/O process.  DIG_Blk_Start
performs both input and output operations.  If the group is configured for output, a user-defined buffer of data is
passed to DIG_Blk_Start to output.  If the group is configured for input, a user-defined buffer is passed to
DIG_Blk_Start to be filled with input data.  DIG_Blk_Start returns immediately after initiating the buffered
digital transfer.  DIG_Blk_Check returns the completion status of the operation.  If a digital output transfer is
initiated by DIG_Blk_Start, then the transfer is complete when DIG_Blk_Check returns status = 1.  If a
digital input transfer is initiated by DIG_Blk_Start, then the data is available in the user-defined buffer specified
in DIG_Blk_Start when DIG_Blk_Check returns with status = 1.  You should execute DIG_Blk_Clear
when the buffered digital I/O operation is complete.

© National Instruments Corporation 5-9 NI-DAQ Software Reference Manual for Macintosh



Digital I/O Functions Chapter 5

Normally, buffered digital I/O uses external handshaking signals to control the rate of input or output.  If a
DMA is present in the system, timed buffered digital I/O can be implemented by supplying timebase and interval
values when executing DIG_Blk_Start.  This interval specifies the amount of time to elapse between subsequent
reads/writes for a digital group.  External handshaking signals should not be used with timed buffered digital I/O
operations.  Only the NB-DIO-32F supports timed buffered digital I/O.

Example applications that perform buffered digital I/O are included on your NI-DAQ for Macintosh diskettes (see
Chapter 11, NI-DAQ for Macintosh Examples).

DIG_Blk_Check

Function
Checks to see if the current buffered digital input or output operation is complete (NB-DIO-96, PCI-DIO-96,
NB-DIO-32F, NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab and 1200 series only).

Synopsis

C Syntax locus i32 DIG_Blk_Check(u32 deviceNumber, u32 group, u16 *status);

Pascal Syntax function DIG_Blk_Check(deviceNumber : i32; group : i32; var status

: i16) : i32;

BASIC Syntax FN DIG_Blk_Check(deviceNumber&, group&, status&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

group is the handshake group number.
Range:  0 through n-1, where n is the number of groups on the board.

status indicates whether the current buffered digital input or output for this group is complete.
1:  digital input or output is complete.
0:  digital input or output is not yet complete.

If a digital output transfer is initiated by DIG_Blk_Start, then the output transfer is complete when
DIG_Blk_Check returns status = 1.

If a digital input transfer is initiated by DIG_Blk_Start, then the data is available in the buffer specified in
DIG_Blk_Start when DIG_Blk_Check returns with status = 1.

                                                                              

DIG_Blk_Clear

Function
Clears the current buffered digital input or output operation for the specified group (NB-DIO-96, PCI-DIO-96,
NB-DIO-32F, NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab and 1200 series only).

NI-DAQ Software Reference Manual for Macintosh 5-10 © National Instruments Corporation



Chapter 5 Digital I/O Functions

Synopsis

C Syntax locus i32 DIG_Blk_Clear(u32 deviceNumber, u32 group);

Pascal Syntax function DIG_Blk_Clear(deviceNumber : i32; group : i32) : i32;

BASIC Syntax FN DIG_Blk_Clear(deviceNumber&, group&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

group is the handshake group number.
Range:  0 through n-1, where n is the number of groups on the board.

                                                                                                                                                                                           

DIG_Blk_Start

Function
Reads/writes a specified number of digital data patterns to/from a digital I/O group (NB-DIO-96, PCI-DIO-96,
NB-DIO-32F, NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab and 1200 series only).

Synopsis

C Syntax locus i32 DIG_Blk_Start(u32 deviceNumber, u32 group, u32 direction,

u8 *buffer, u32 count, u32 interval, u32 timebase);

Pascal Syntax function DIG_Blk_Start(deviceNumber : i32; group : i32; direction

: i32; buffer : pi16; count : i32; interval : i32;

timebase : i32) : i32;

BASIC Syntax FN DIG_Blk_Start(deviceNumber&, group&, direction&, buffer&, count&,

interval&, timebase&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

group is the handshake group number.
Range:  0 through n-1, where n is the number of groups on the board.

direction selects the direction of the digital transfer.
0:  data is to be input.
1:  data is to be output.

buffer is an array to be used for the digital transfer.  If the group is configured for input, then buffer is an array
to be filled with digital data patterns.  If the group is configured for output, then buffer is an array of digital data
patterns to be output.  Each element of buffer corresponds to an 8-bit value, 16-bit value (NB-DIO-32F only),
or 32-bit value (NB-DIO-32F only)–depending on the group size–and is mapped to the digital lines.

For the NB-DIO-96, PCI-DIO-96, NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab and 1200 series, the elements
of buffer are sequentially mapped to the digital ports making up the group.  For example, if the portList
specified in the DIG_Scan_Setup call uses 0, 4, 1, the first data value maps to Port 0, the second data value
maps to Port 4, the third data value maps to Port 1, and so on.

For the NB-DIO-32F, the elements of buffer are sequentially mapped to the digital ports making up the group
in the following way:

• If the group contains one port, the low-order eight bits of the pattern are written to or read from that port.
For DMA input or output, such as required for timed buffered digital I/O (interval > 0), only Port 0 can be

© National Instruments Corporation 5-11 NI-DAQ Software Reference Manual for Macintosh



Digital I/O Functions Chapter 5

contained in the group if an NB-DMA-8-G is used.  If an NB-DMA2800 is used, either Port 0 or Port 2 can
be contained in the group.

• If the group contains two ports, the low-order 16 bits of the pattern are written to or read from the ports.  If
the group contains Ports 0 and 1, the low-order eight bits map to Port 1, and the next eight bits map to
Port 0.  If the group contains Ports 2 and 3, the low-order eight bits map to Port 3, and the next eight bits
map to Port 2.  The two ports are written to simultaneously.  For DMA input or output, such as required for
timed buffered digital I/O (interval > 0), only Ports 0 and 1 can be contained in the group if an
NB-DMA-8-G is used.  If an NB-DMA2800 is used, either Ports 0 and 1 or Ports 2 and 3 can be contained
in the group.

• If the group contains four ports, all 32 bits of the pattern are written to the ports.  The least significant eight
bits map to Port 3, the next 8 bits map to Port 2, the next eight bits map to Port 1, and the most significant
bits map to Port 0.  The four ports are written to or read from simultaneously.

Pascal Note: If the group size is 8-bit or 16-bit, buffer must be a pointer to an integer array (buffer :
^integer).  For 8-bit groups, each 8-bit pattern occupies 16 bits in the array.  If the
group size is 32 bits, then buffer must be a pointer to a longint (buffer : ^longint).
DIG_Blk_Check unpacks and aligns the data returned by NI-DAQ for Macintosh.

count is the number of bytes to be written to or read from buffer.
Range: 232-1 for interrupts.

224-1 for DMA.

interval is the amount of time to elapse between each digital transfer, thereby permitting timed input or output.
Timed interval updating is used only with the NB-DIO-32F.

Range: 0 for external handshaking; 2 through 65,535 for timed input or output.

To perform timed digital I/O, set interval to a non-zero value.  You also must have an NB-DMA-8-G or
NB-DMA2800 in the system to supply counter/timers to control timed digital I/O.  External handshaking
interval =0 does not require an NB-DMA-8-G or NB-DMA2800.

The interval is a function of the timebase resolution.  The actual interval is calculated as follows:

interval * (timebase resolution)

where the timebase resolution for each value of timebase is given in the timebase discussion that follows.  For
example, if interval = 25 and timebase = 2, then the output interval is 25 * 10 µs = 250 µs.

timebase selects resolution to be used for the interval counter.  The timebase parameter has the following
possible values:

1:  1-MHz clock used as timebase (1-µs resolution).
2:  100-kHz clock used as timebase (10-µs resolution).
3:  10-kHz clock used as timebase (100-µs resolution).
4:  1-kHz clock used as timebase (1-ms resolution).
5:  100-Hz clock used as timebase (10-ms resolution).
6:  SOURCE1 used as timebase.
7:  SOURCE2 used as timebase.
8:  SOURCE3 used as timebase.
9:  SOURCE4 used as timebase.

10:  SOURCE5 used as timebase.

SOURCE1 through SOURCE5 are timing signals available on the NB-DMA-8-G and NB-DMA2800.  See the
description of NB-DMA-8-G and NB-DMA2800 counters and timers in Chapter 8, Counter/Timer Functions,
for more information about these signals.  If the interval is to be externally controlled by the handshaking
signals of the group (interval = 0), then the timebase parameter is ignored and can be any value.

DIG_Blk_Start initiates reading or writing of digital group data patterns sequentially from/to the group on
the specified board and returns immediately.  DIG_Blk_Check should be called to determine when the
transfer completes.  If a digital output transfer is initiated by DIG_Blk_Start, then the transfer is complete
when DIG_Blk_Check returns status = 1.  If a digital input transfer is initiated by DIG_Blk_Start, then
the data is available in buffer when DIG_Blk_Check returns with status = 1.  All ports in this group are
updated/read simultaneously for each pattern in the array.  If the specified group has not been configured for the

NI-DAQ Software Reference Manual for Macintosh 5-12 © National Instruments Corporation



Chapter 5 Digital I/O Functions

appropriate direction of transfer, the operation is not performed and an error is returned.  If no ports have been
assigned to the specified group, the operation is not performed and an error is returned.  For the NB-DIO-32F,
DIG_Grp_Config must be executed to assign ports to a group and to configure the group for the appropriate
direction of transfer.  For the NB-DIO-96, PCI-DIO-96, NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab and
1200 series, DIG_Scan_Setup must be executed to assign ports to a group and to configure the group for the
appropriate direction of transfer.

Note: You cannot use boards equipped with the 8255 PPI (NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab
and 1200 series,  and NB-DIO-96) in non-latched or no-handshaking mode for block transfers.

                                                                                                                                                                                           

DIG_Grp_Config

Function
Configures the specified group for port assignment, direction (input or output), and size (NB-DIO-32F only).

Synopsis

C Syntax locus i32 DIG_Grp_Config(u32 deviceNumber, u32 group, u32 groupSize,

u32 port, u32 direction);

Pascal Syntax function DIG_Grp_Config(deviceNumber : i32; group : i32; groupSize

: i32; port : i32; direction : i32) : i32;

BASIC Syntax FN DIG_Grp_Config(deviceNumber&, group&, groupSize&, port&,

direction&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

group is the group to be configured.
Range:  0 through n-1, where n is the number of groups supported by the board.

groupSize selects the size of the group.  The following values are permitted for groupSize:
0: 0 ports assigned – unassign any previously assigned ports.
1: 1 port assigned (8-bit group).
2: 2 ports assigned (16-bit group).
4: 4 ports assigned (32-bit group).

port selects the digital I/O ports assigned to the group.  The value of port depends on the value of groupSize:
If groupSize = 1 port = 0 assigns Port 0 to the group.

port = 1 assigns Port 1 to the group.
port = 2 assigns Port 2 to the group.
port = 3 assigns Port 3 to the group.

If groupSize = 2 port = 0 assigns Ports 0 and 1 to the group.
port = 2 assigns Ports 2 and 3 to the group.

If groupSize = 4 port = 0 assigns Ports 0, 1, 2 and 3 to the group.

direction selects the direction, input or output, for which the group is to be configured.
0:  group is configured as an input group (default).
1:  group is configured as an output group.

DIG_Grp_Config configures the specified group according to the specified port assignment and direction.  If
groupSize is 0, any ports assigned to the group are released from the group and the group handshake circuitry is
cleared.  If groupSize is 1, 2, or 4, then the specified ports are assigned to the group and are configured for the

© National Instruments Corporation 5-13 NI-DAQ Software Reference Manual for Macintosh



Digital I/O Functions Chapter 5

specified direction.  Ports assigned to a group are subsequently written to or read from as a group using the
DIG_In_Group and DIG_Out_Group functions.  Any ports assigned to a group can no longer be accessed
through any of the non-group calls listed previously in this description.

After system startup, no ports are assigned to groups.

See the NB-DIO-32F User Manual for group handshake timing.

                                                                                                                                                                                           

DIG_Grp_Mode

Function
Configures the group handshake signal modes (NB-DIO-32F only).

Synopsis

C Syntax locus i32 DIG_Grp_Mode(u32 deviceNumber, u32 group, u32

pulseOrLevel, u32 edge, u32 requestPolarity, u32

acknowledgePolarity, u32 settlingTime);

Pascal Syntax function DIG_Grp_Mode(deviceNumber : i32; group : i32;

pulseOrLevel : i32; edge : i32; requestPolarity : i32;

acknowledgePolarity : i32; settlingTime : i32) : i32;

BASIC Syntax FN DIG_Grp_Mode(deviceNumber&, group&, pulseOrLevel&, edge&,

requestPolarity&, acknowledgePolarity&, settlingTime&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

group is the group to be configured for particular handshake modes.
Range:  0 through n-1, where n is the number of groups on the board.

pulseOrLevel indicates whether the group is to be configured for level or pulsed (edge-triggered) handshake
signals.

0:  group is configured for level handshake signals.
1:  group is configured for pulsed handshake signals.

edge indicates whether the group is to be configured for rising edge or falling edge pulsed signals.  edge is valid
only if pulseOrLevel is 1.

0:  group is configured for rising (low-to-high) edge pulsed handshake signals.
1:  group is configured for falling (high-to-low) edge pulsed handshake signals.

requestPolarityindicates whether the group request signal is to be active high or active low.
0:  group is configured for active high (noninverted) request handshake signal polarity.
1:  group is configured for active low (inverted) request handshake signal polarity.

acknowledgePolarity indicates whether the group acknowledge handshake signal is to be active high or active
low.

0:  group is configured for active high (noninverted) acknowledge handshake signal polarity.
1:  group is configured for active low (inverted) acknowledge handshake signal polarity.

settlingTime selects the data settling time for the group.  The value of settlingTime is the number of 100-ns
intervals allowed for data settling.

Range:  0 through 7.
0: no settling time.
7: 700-ns settling time.

NI-DAQ Software Reference Manual for Macintosh 5-14 © National Instruments Corporation



Chapter 5 Digital I/O Functions

DIG_Grp_Mode configures the group handshake signals according to the specified port assignment and
direction.  After system startup, the default handshake mode for each group is as follows:

pulseOrLevel = 0:  level handshake signals.
edge = 0:  edge parameter not valid because pulseOrLevel = 0.
requestPolarity = 0:  request handshake signal is not inverted (active high).
acknowledgePolarity = 0:  acknowledge handshake signal is not inverted (active high).
settlingTime = 0:  no settling time.

DIG_Grp_Mode needs to be called only if different handshake modes are required.  Refer to the NB-DIO-32F
User Manual for handshake timing and mode information.

                                                                                                                                                                                             

DIG_Grp_Status

Function
Returns a status word indicating the handshake state of the specified group (NB-DIO-32F only).

Synopsis

C Syntax locus i32 DIG_Grp_Status(u32 deviceNumber, u32 group, u16 *status);

Pascal Syntax function DIG_Grp_Status(deviceNumber : i32; group : i32; var

status : i16) : i32;

BASIC Syntax FN DIG_Grp_Status(deviceNumber&, group&, status&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

group is the handshake group number.
Range:  0 through n-1, where n is the number of groups on the board.

status returns the handshake status of the group.  The significance of status depends on the configuration of the
group.  If the group is configured as an input group, status = 1 indicates that data has been latched into the ports
making up that group.  If the group is configured as an output group, status = 1 indicates that an external device
has latched the output of the ports making up the group and that new data can be written to the group.

DIG_Grp_Status reads the handshake status of the specified group, and returns an indication of the group
status in status.  DIG_Grp_Status, along with DIG_Out_Group and DIG_In_Group, facilitates
handshaking of digital data between systems.  If the specified group is configured as an input group and
DIG_Grp_Status returns status = 1, then DIG_In_Group can executed to retrieve the data an external
device has latched in.  If the specified group is configured as an output group and DIG_Grp_Status returns
status = 1, then DIG_Out_Group can be called to write the next piece of data to the external device.  If the
specified group is not assigned any ports, then an error code and status = 0 are returned.

DIG_Grp_Config must be called to assign ports to a group and to configure a group for data direction.
Group configuration is discussed in the DIG_Grp_Config description earlier in this chapter.

The state of status corresponds to the NB-DIO-32F DRDY bit and signal.  Refer to the NB-DIO-32F User
Manual for handshake timing details.

                                                                                                                                                                                           

© National Instruments Corporation 5-15 NI-DAQ Software Reference Manual for Macintosh



Digital I/O Functions Chapter 5

DIG_In_Group

Function
Reads digital input data from the specified digital group (NB-DIO-32F only).

Synopsis

C Syntax locus i32 DIG_In_Group(u32 deviceNumber, u32 group, u32 *pattern);

Pascal Syntax function DIG_In_Group(deviceNumber : i32; group : i32; var pattern

: i32) : i32;

BASIC Syntax FN DIG_In_Group(deviceNumber&, group&, pattern&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

group is the handshake group number.
Range:  0 through n-1, where n is the number of groups on the board.

pattern returns the digital data read from the ports in the specified group.
Range: 0 through 255 for group size = 1.

0 through 65,535 for group size = 2.

0 through 232-1 for group size = 4.

pattern is an 8-bit, 16-bit, or 32-bit value, depending on the group size, and is mapped to the digital input lines.
The pattern is mapped as follows to the digital input ports that make up the group:

• If the group contains one port, the eight bits read from that port are returned in the low-order eight bits of
pattern.

• If the group contains two ports, the 16 bits read from the ports are returned in the low-order 16 bits of
pattern.  If the group contains Ports 0 and 1, the value read from Port 1 is returned in the low-order eight
bits and the value read from Port 0 is returned in the next eight bits.  If the group contains Ports 2 and 3, the
value read from Port 3 is returned in the low-order eight bits and the value read from Port 2 is returned in
the next eight bits.  The two ports are read from simultaneously.

• If the group contains all four ports, all 32 bits read from the ports are returned in pattern.  The least
significant eight bits are read from Port 3, the next eight bits are read from Port 2, the next eight bits are
read from Port 1, and the most significant eight bits are read from Port 0.  The four ports are read from
simultaneously.

Note: The MOST significant bits are read from the LOWEST numbered port, and the LEAST significant bits are
read from the HIGHEST numbered port.

DIG_In_Group returns the digital data from the group on the specified board.  All ports making up the group
are read simultaneously.  If the group is configured as an input group, reading that group returns the digital logic
state of the lines of the ports in the group as some external device is driving them.  If the group is configured as
an output group and has read-back capability, reading the group returns the output state of that group.  If no
ports have been assigned to the group, the operation is not performed and an error code is returned.
DIG_Grp_Config must be called to assign ports to a group and to configure the group as an input or output
group.

                                                                                                                                                                                           

NI-DAQ Software Reference Manual for Macintosh 5-16 © National Instruments Corporation



Chapter 5 Digital I/O Functions

DIG_In_Line

Function
Returns the digital logic state of the specified digital input line in the specified port.

Synopsis

C Syntax locus i32 DIG_In_Line(u32 deviceNumber, u32 port, u32 line, u16

*state);

Pascal Syntax function DIG_In_Line(deviceNumber : i32; port : i32; line : i32;

var state : i16) : i32;

BASIC Syntax FN DIG_In_Line(deviceNumber&, port&, line&, state&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

port is the digital I/O port number.
Range:  0 through n-1, where n is the number of digital I/O ports on the board.

line is the digital line to be read.
Range:  0 through k-1, where k is the number of digital I/O lines making up the port.

state returns the digital logic state of the specified line.
1:  digital line is at a digital logic low.
0:  digital line is at a digital logic high.

DIG_In_Line returns the digital logic state of the specified digital line in the specified port.  If the specified
port is configured as an input port, the state of the specified line is determined by how some external device is
driving it.  If the port is configured as an output port and the port has read-back capability, the state of the line is
determined by how that port itself is driving it.

Note:  DIG_Prt_Config must be called to configure a digital I/O port as an input or output port.

                                                                                                                                                                                                                  

DIG_In_Port

Function
Reads digital input data from the specified digital port.

Synopsis

C Syntax locus i32 DIG_In_Port(u32 deviceNumber, u32 port, u8 *pattern);

Pascal Syntax function DIG_In_Port(deviceNumber : i32; port : i32; var pattern :

i16) : i32;

BASIC Syntax FN DIG_In_Port(deviceNumber&, port&, pattern&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

© National Instruments Corporation 5-17 NI-DAQ Software Reference Manual for Macintosh



Digital I/O Functions Chapter 5

port is the digital I/O port number.
Range:  0 through n-1, where n is the number of digital I/O ports on the board.

pattern is the digital data to be written to the specified port.
Range:  0 through 255.

pattern returns the 8-bit value that is mapped from the digital output lines making up the port such that bit 0,
the least significant bit, corresponds to digital input line 0.  If the port is less than eight bits wide, only the high-
order bits in pattern are set to 0.  For example, since ports 0 and 1 on the NB-MIO-16 and NB-MIO-16X are
four bits wide, only bits 0 through 3 of pattern reflect the digital state of these ports.

DIG_In_Port reads the digital data from the port on the specified board.  If the port is configured as an input
port, reading that port returns the digital logic state of the lines as some external device is driving them.  If the
port is configured as an output port and has read-back capability, reading the port returns the output state of that
port.

Note:  DIG_Prt_Config must be called to configure a digital I/O port as an input or output port.

                                                                                                                                                                                           

DIG_Line_Config

Function
Configures the specified line in the specified port for the direction (input or output) selected.

Synopsis

C Syntax locus i32 DIG_Line_Config(u32 deviceNumber, u32 port, u32 line, u32

direction);

Pascal Syntax function DIG_Line_Config(deviceNumber : i32; port : i32; line :

i32; direction : i32) : i32;

BASIC Syntax FN DIG_Line_Config(deviceNumber&, port&, line&, direction&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

port is the digital I/O port number.
Range:  0 through n-1, where n is the number of digital I/O ports on the board.

line is the digital line to be configured.
Range: 0 through k-1, where k is the number of digital I/O lines making up the port.

direction indicates the direction, input or output, to configure the line.
0:  line is an input line (default).
1:  line is an output line.

With DIG_Line_Config, a port can have any combination of input and output lines.  Use
DIG_Prt_Config to set all lines on the port to be either all input or all output lines.

                                                                                                                                                                                           

NI-DAQ Software Reference Manual for Macintosh 5-18 © National Instruments Corporation



Chapter 5 Digital I/O Functions

DIG_Out_Group

Function
Writes digital output data to the specified digital group (NB-DIO-32F only).

Synopsis

C Syntax locus i32 DIG_Out_Group(u32 deviceNumber, u32 group, u32 pattern);

Pascal Syntax function DIG_Out_Group(deviceNumber : i32; group : i32; pattern :

i32) : i32;

BASIC Syntax FN DIG_Out_Group(deviceNumber&, group&, pattern&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

group is the handshake group number.
Range:  0 through n-1, where n is the number of groups on the board.

pattern is the digital data to be written to the specified port.
Range: 0 through 255 for group size = 1.

0 through 65,535 for group size = 2.
0 through 232-1 for group size = 4.

pattern is an 8-bit, 16-bit, or 32-bit value, depending on the group size, and is mapped to the digital output
lines.  The pattern is mapped as follows to the digital output ports that make up the group:

• If the group contains one port, the low-order eight bits of pattern are written to that port.

• If the group contains two ports, the low-order 16 bits of pattern are written to the ports.  If the group
contains Ports 0 and 1, the low-order eight bits are written to Port 1 and the next eight bits are written to
Port 0.  If the group contains Ports 2 and 3, the low-order eight bits are written to Port 3 and the next eight
bits are written to Port 2.  The two ports are written to simultaneously.

• If the group contains all four ports, all 32 bits of pattern are written to the ports.  The least significant eight
bits are written to Port 3, the next eight bits are written to Port 2, the next eight bits are written to Port 1,
and the most significant eight bits are written to Port 0.  The four ports are written to simultaneously.

Note: The MOST significant bits are written to the LOWEST numbered port, and the LEAST significant bits
are written to the HIGHEST numbered port.

DIG_Out_Group writes the specified digital group data to the group on the specified board.  All ports in the
group are updated simultaneously.  If the specified group has not been configured as an output group, the
operation is not performed and an error is returned.  If no ports have been assigned to the specified group, the
operation is not performed and an error is returned.  DIG_Grp_Config must be called to configure a group.

                                                                                                                                                                                           

© National Instruments Corporation 5-19 NI-DAQ Software Reference Manual for Macintosh



Digital I/O Functions Chapter 5

DIG_Out_Line

Function
Sets or clears the specified digital output line in the specified digital port.

Synopsis

C Syntax locus i32 DIG_Out_Line(u32 deviceNumber, u32 port, u32 line, u32

state);

Pascal Syntax function DIG_Out_Line(deviceNumber : i32; port : i32; line : i32;

state : i32) : i32;

BASIC Syntax FN DIG_Out_Line(deviceNumber&, port&, line&, state&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

port is the digital I/O port number.
Range:  0 through n-1, where n is the number of digital I/O ports on the board.

line is the digital output line to be written to.
Range:  0 through k-1, where k is the number of digital I/O lines making up the port.

state is the digital state to set the line to.
0:  digital line is set to a digital logic low.
1:  digital line is set to a digital logic high.

DIG_Out_Line sets the digital line in the specified port to the specified state.  The remaining digital output
lines making up the port are not affected by this call.  If the port has not been configured as an output port, the
operation is not performed and an error is returned.  DIG_Prt_Config must be called to configure a digital
I/O port as an output port.

                                                                                                                                                                                             

DIG_Out_Port

Function
Writes digital output data to the specified digital port.

Synopsis

C Syntax locus i32 DIG_Out_Port(u32 deviceNumber, u32 port, u32 pattern);

Pascal Syntax function DIG_Out_Port(deviceNumber : i32; port : i32; pattern :

i32) : i32;

BASIC Syntax FN DIG_Out_Port(deviceNumber&, port&, pattern&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

NI-DAQ Software Reference Manual for Macintosh 5-20 © National Instruments Corporation



Chapter 5 Digital I/O Functions

port is the digital I/O port number.
Range:  0 through n-1, where n is the number of digital I/O ports on the board.

pattern is the digital data to be written to the specified port.
Range:  0 through 255.

pattern is the 8-bit value that is mapped to the digital output lines making up the port such that bit 0, the least
significant bit, corresponds to digital output line 0.  If the port is less than eight bits wide, only the low-order
bits in pattern affect the port.  For example, since Ports 0 and 1 on the NB-MIO-16 and NB-MIO-16X are four
bits wide, only bits 0 through 3 of pattern affect the digital output state of these ports.

DIG_Out_Port writes the specified digital data to the port on the specified board.  If the specified port has
not been configured as an output port, the operation is not performed and an error is returned.
DIG_Prt_Config must be called to configure a digital I/O port as an output port.

                                                                                                                                                                                           

DIG_Prt_Config

Function
Configures the specified port for direction (input or output) and handshake mode.

Synopsis

C Syntax locus i32 DIG_Prt_Config(u32 deviceNumber, u32 port, u32 direction,

u32 mode);

Pascal Syntax function DIG_Prt_Config(deviceNumber : i32; port : i32; direction

: i32; mode : i32) : i32;

BASIC Syntax FN DIG_Prt_Config(deviceNumber&, port&, direction&, mode&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

port is the digital I/O port number.
Range:  0 through n-1, where n is the number of digital I/O ports on the board.

direction selects the direction, input or output, for which the port is to be configured.
0:  port is configured as an input port (default).
1:  port is configured as an output port.

mode selects the handshake mode that the port is to be configured to use.
0:  port is configured for no-handshaking (nonlatched) mode.
1:  port is configured for handshaking (latched) mode.  mode = 1 is valid only for Ports 0, 1, 3, 4, 6, 7, 9,

and 10 of the NB-DIO-96 and PCI-DIO-96, or for Ports 0 and 1 of the NB-DIO-24, DAQCard-DIO-24,
NB-PRL, Lab and 1200 series.  mode = 0 must be used for all other ports and boards that do not permit
handshaking.  The NB-DIO-32F utilizes handshaking, but only through the group calls (see
DIG_Grp_Config).

DIG_Prt_Config configures the specified port according to the specified direction and handshake mode.
Any configuration that is invalid for the specified port returns an error, and the port configuration is not
changed.  Information about the valid configuration of any digital I/O port is given at the beginning of this
chapter.

DIG_Prt_Config returns an error if the specified port has been assigned to a group.

© National Instruments Corporation 5-21 NI-DAQ Software Reference Manual for Macintosh



Digital I/O Functions Chapter 5

After system startup, all digital I/O ports are configured as follows:

direction = 0:  input port
mode = 0:  no-handshaking mode

Additionally, ports on the NB-DIO-32F are not assigned to any group.  If this is not the digital I/O configuration
you want, you must call DIG_Prt_Config to change the port configuration.  You must call
DIG_Grp_Config to use handshaking modes on the NB-DIO-32F.

                                                                                                                                                                                           

DIG_Prt_Status

Function
Returns the handshake state of the port (NB-DIO-96, PCI-DIO-96, NB-DIO-24, DAQCard-DIO-24, NB-PRL,
Lab and 1200 series only).

Synopsis

C Syntax locus i32 DIG_Prt_Status(u32 deviceNumber, u32 port, u16 *status);

Pascal Syntax function DIG_Prt_Status(deviceNumber : i32; port : i32; var status

: i16) : i32;

BASIC Syntax FN DIG_Prt_Status(deviceNumber&, port&, status&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

port is the digital I/O port number.
Range:  0 through n-1, where n is the number of digital I/O ports on the board.

status returns the handshake status of the port.  status is either 1 or 0.  The significance of status depends on
the port configuration.  If the port is configured to be an input port, status = 1 indicates that data has been
latched into the port.  If the port is configured to be an output port, status = 1 indicates that an external device
has latched the port output and new data can be written to the port.

DIG_Prt_Status reads the handshake status of the specified port and returns the port status in status.
DIG_Prt_Status, along with DIG_Out_Port and DIG_In_Port, facilitates handshaking of digital data
between systems.  If the specified port is configured as an input port, DIG_Prt_Status indicates when to
call DIG_In_Port to fetch the data that an external device has latched in.  If the specified port is configured
as an output port, DIG_Prt_Status indicates when to call DIG_Out_Port to write the next piece of data
to the external device.  If the specified port is not configured for handshaking, an error code and status = 0 are
returned.

Refer to the user manual for each board for handshake timing information.  If the port is configured for input
handshaking, status corresponds to the state of the IBF bit.  If the port is configured for output handshaking,
status corresponds to the state of the OBF* bit.  These bits and how they correspond to handshaking events are
covered in the user manual for each board.

Note: DIG_Prt_Config must be called to configure a port for data direction and handshaking
operation.

                                                                                                                                                                                           

NI-DAQ Software Reference Manual for Macintosh 5-22 © National Instruments Corporation



Chapter 5 Digital I/O Functions

DIG_Scan_Setup

Function
Configures the specified group for port assignment, direction (input or output), and size (NB-DIO-96,
PCI-DIO-96, NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab and 1200 series only).

Synopsis

C Syntax locus i32 DIG_Scan_Setup(u32 deviceNumber, u32 group, u32 groupSize,

u16 *portList, u32 direction);

Pascal Syntax function DIG_Scan_Setup(deviceNumber : i32; group : i32; groupSize

: i32; portList : pi16; direction : i32) : i32;

BASIC Syntax FN DIG_Scan_Setup(deviceNumber&, group&, groupSize&, portList&,

direction&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

group is the group to be configured.
Range: 0 through 1 for the NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab and 1200 series.

0 through 7 for the NB-DIO-96 and PCI-DIO-96.

groupSize selects the number of 8-bit ports in the group.
Range: 0 through 2 for the NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab and 1200 series.

0 through 8 for the NB-DIO-96 and PCI-DIO-96.
Note: 0 is to unassign any ports previously assigned to group.

portList is the list of ports in group.  The order of the ports in the list determines how data is interleaved in the
user's buffer when DIG_Blk_Start is called.  The last port in the list determines the port whose handshaking
signal lines are used to communicate with the external device and to generate hardware interrupts.

Range: 0 or 1 for the NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab and 1200 series.
0, 1, 3, 4, 6, 7, 9, or 10 for the NB-DIO-96 and PCI-DIO-96.

direction selects the direction, input or output, to which the group is to be configured.
0:  group is configured as an input group (default).
1:  group is configured as an output group.

DIG_Scan_Setup configures the specified group to contain the specified ports with the specified assignment
and direction.  If groupSize is 0, any ports previously assigned to group are released.  Any configurations not
supported by or invalid for the specified group return an error, and the group configuration is not changed.
Ports assigned to a group are subsequently written to or read from as a group using DIG_Blk_Start.  Any
ports assigned to a group can no longer be accessed through any of the non-group calls listed previously.

Because each port on the NB-DIO-96, PCI-DIO-96, NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab and 1200
series has its own handshaking circuitry, extra wiring may be necessary to make data transfer of a group with
more than one port reliable.  If the group has only one port, no extra wiring is needed.

Each input port has a different Strobe Input (STB*) control signal.
PC4 on the I/O connector is for Port 0.
PC2 on the I/O connector is for Port 1.

Each input port also has a different Input Buffer Full (IBF) control signal.
PC5 on the I/O connector is for Port 0.
PC1 on the I/O connector is for Port 1.

© National Instruments Corporation 5-23 NI-DAQ Software Reference Manual for Macintosh



Digital I/O Functions Chapter 5

Each output port has a different Output Buffer Full (OBF*) control signal.
PC7 on the I/O connector is for Port 0.
PC1 on the I/O connector is for Port 1.

Each output port also has a different Acknowledge Input (ACK*) control signal.
PC6 on the I/O connector is for Port 0.
PC2 on the I/O connector is for Port 1.

On the NB-DIO-96 and PCI-DIO-96 I/O connector, 4 different sets of PC pins can be found.  They are APC,
BPC, CPC, and DPC.  APC pins correspond to Port 0 and Port 1, BPC pins correspond to Port 3 and Port 4,
CPC pins correspond to Port 6 and Port 7, and  DPC pins correspond to Port 9 and Port 10.  For example, CPC7
is the Output Buffer Full (OBF) control signal for Port 6 and CPC1 is the OBF signal for Port 7 if both ports are
configured as handshaking output ports.

If a group of ports is configured for input, you need to connect all the corresponding Strobe Input (STB) lines
together and connect them to the appropriate handshaking signal of the external device.  Only the Input Buffer
Full (IBF) of the last port in portList should be connected to the external device.  No connection is needed for
the IBF of the other port(s) in portList.

STB*

IBF

Port x 2

•
•
•

STB*

IBF

Port x 1

Port x n

STB*

IBF

(last port in portList)

External Device

Figure 5-3.  Digital Scanning Input Group Handshaking Connections

If a group of ports is configured as output, you should not make any connection on the control signals except
those for the last port in portList.  You should make the connection with the external device as if only the last
port in portList is in the group.  No connection is needed for any other port in the list.

NI-DAQ Software Reference Manual for Macintosh 5-24 © National Instruments Corporation



Chapter 5 Digital I/O Functions

•
•

•

ACK*

OBF*

Port x 1

Port x 2

ACK*

OBF*

(last port in portList)

External Device
Port x n

ACK*

OBF*

Figure 5-4.  Digital Scanning Output Group Handshaking Connections

For NB-DIO-24, DAQCard-DIO-24, and NB-PRL users, the correct W1 jumper setting is required to allow
DIG_Blk_Start to function properly.  As long as Port 0 is not configured as a handshaking output port, the
jumper should be set to PC6; otherwise, the jumper should be set to PC4.

© National Instruments Corporation 5-25 NI-DAQ Software Reference Manual for Macintosh



Chapter 6
Data Acquisition Functions
                                                                                                        

This chapter explains the functions used for performing data acquisition operations.  Single-channel acquisition,
multiple-channel scan acquisition, interval scanning, pretrigger mode, posttrigger mode, double-buffered mode, and
AMUX-64T multiplexer mode are all documented.  These Data Acquisition functions are used with the National
Instruments boards for the Macintosh.  There are three sets of functions described:  the Single-Buffered Data
Acquisition functions (DAQ and SCAN), the Double-Buffered Data Acquisition functions (DAQ2), and the Multiple-
Channel Data Acquisition functions (MDAQ).

The Single-Buffered Data Acquisition functions (DAQ, Lab_ISCAN, and SCAN) acquire a specified number of
samples from one or more channels and return the data when the acquisition is complete.

The Double-Buffered Data Acquisition functions (DAQ2) can acquire samples from one or more channels into a
circular buffer.  With double-buffering, data can be retrieved from an acquisition in progress without interrupting the
acquisition.  Data can be collected continuously using a fixed amount of memory.

The Multiple-Channel Data Acquisition functions (MDAQ) retrieve multiple frames of data from one or more
channels.  Each frame is associated with a trigger and can contain both pre-trigger and post-trigger information.
With the MDAQ functions, data can be retrieved from an acquisition in progress without interrupting the acquisition.

See Appendix A to determine which function set works with your board.

Note: If you are using analog input SCXI modules, you need to program the SCXI hardware first using the
SCXI functions in Chapter 7, SCXI Functions, before using the Data Acquisition functions in this
chapter.

Data Acquisition Hardware

Table 6-1 shows the data acquisition hardware characteristics.

Table 6-1.  Hardware Characteristics

Device Analog Input
Channels

Bits Gains Input Ranges

NB-MIO-16 0–15 (single-ended)
0–7 (differential)

12-bit 1, 10, 100, 500 (16L)
1, 2, 4, 8 (16H)

0 to 10 V (unipolar)
-5 to +5 V (bipolar)
-10 to +10 V (bipolar)

NB-MIO-16X 0–15 (single-ended)
0–7 (differential)

16-bit 1, 10, 100, 500 (16XL)
1, 2, 4, 8 (16XH)

0 to 10 V (unipolar)
0 to 5 V (unipolar)
-5 to +5 V (bipolar)
-10 to +10 V (bipolar)

PCI-MIO-16XE-50 0–15 (single-ended)
0–7 (differential)

16-bit 1, 2, 10, 100 0 to 10 V (unipolar)
-10 to +10 V (bipolar)

DAQCard-500 0–7 (single-ended) 12-bit 1 No Hardware Jumpers

DAQCard-700 0–15 (single-ended)
0–7 (differential)

12-bit 1 No Hardware Jumpers

PCI-1200
DAQCard-1200

0–7 (single-ended)
0, 2, 4, 6
(differential)

12-bit 1, 2, 5, 10, 20, 50, 100 0 to 10 V (unipolar)
-10 to +10 V (bipolar)

Lab-NB, Lab-LC 0–7 (single-ended) 12-bit 1, 2, 5, 10, 20, 50, 100 0 to 10 V (unipolar)
-5 to +5 V (bipolar)

© National Instruments Corporation 6-1 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

NB-MIO-16 and NB-MIO-16X Data Acquisition

The NB-MIO-16 and NB-MIO-16X analog input channels are multiplexed into a single software programmable gain
stage and 12-bit (NB-MIO-16) or 16-bit (NB-MIO-16X) ADC.

Data acquisition with the NB-MIO-16 or NB-MIO-16X is performed in two modes:  single-channel data acquisition
and multiple-channel scan data acquisition.  Single-channel data acquisition involves selecting a single analog input
multiplexer and gain setting.  Multiple-channel scan data acquisition can be used to scan a set of analog input
channels, each with its own gain setting, in a round-robin mode.  In this mode, a scan sequence is stored with a
specified analog channel and gain setting for each step in Mux-Gain Memory on the NB-MIO-16 or NB-MIO-16X.
The length of this scan sequence on the NB-MIO-16 can be 2, 4, 8, or 16.  On the NB-MIO-16X, the length of the
scan sequence can be 1 through 16.

During scanning, the analog input circuitry is set to the next entry in the scan sequence and an A/D conversion is
performed once every sample interval.  For maximum performance, this operation is pipelined so that the next
channel is switched to while the current A/D conversion is performed.

On the NB-MIO-16, only one sampling interval is used for multiple-channel scanning acquisitions.  This interval is
the amount of time to elapse between each A/D conversion.  When the end of the scan sequence is reached on the
NB-MIO-16, the sequence starts over again until the required number of samples have been acquired.

The NB-MIO-16X has additional timing capabilities for multiple-channel scanning acquisitions.  Besides choosing a
sample interval (the time between samples from two different channels), you can also select a scan interval (the time
between samples on any one channel).  During scanning on the NB-MIO-16X, an A/D conversion is performed once
every sample interval.  When the end of the scan sequence is reached, the NB-MIO-16X waits for the remainder of
the scan interval before scanning the channels again.  The channels are scanned repeatedly at the beginning of each
scan interval until the required number of samples have been acquired.  Interval scanning has the advantage of
simulating simultaneous sampling of a group of channels once every scan interval.  A comparison of the scan
interval and the sample interval is shown in Figure 6-1.

Interval scanning is also supported for the NB-MIO-16 in the following special case:  If an SCXI_SCAN_Setup
call has been made to set up an SCXI scan that includes an SCXI-1140 module, then the SCAN_IntStart call is
able to implement interval scanning on the NB-MIO-16 as well as the NB-MIO-16X.  In this special case, the
sample timebase and the scan timebase specified must be the same.  In all other cases, however, interval scanning is
only available on the NB-MIO-16X.

SCXI modules can be used as a data acquisition front end for the NB-MIO-16 or the NB-MIO-16X to provide signal
conditioning for the input signals and channel multiplexing.  The SCXI functions described in Chapter 7 set up the
SCXI modules for data acquisition operations to be performed by the NB-MIO-16 or NB-MIO-16X.

Scan Intervals

Sample 
Interval

Channel 0

Channel 1

Sample 
Interval

Figure 6-1.   NB-MIO-16X Interval Scanning

NI-DAQ Software Reference Manual for Macintosh 6-2 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

NB-MIO-16 and NB-MIO-16X Data Acquisition Timing

Timing for data acquisition can be performed by the onboard counter/timers or can be performed externally.  Data
acquisition timing involves the following timing signals:

Signal Name Description

Trigger An edge-triggered signal that initiates a data acquisition sequence.  A trigger can be
supplied either externally through the I/O connector EXTTRIG* input on the
NB-MIO-16, the I/O connector STARTTRIG* input on the NB-MIO-16X or under
software control.

Conversion pulses Generate a pulse once every sample interval, causing an A/D conversion to be initiated.
This signal can be generated by the onboard programmable sample-interval clock
supplied by the counter/timer or can be supplied externally through the I/O connector
EXTCONV* input.

Note: In most cases, external conversion pulses should not be used in scanning
operations when SCXI is being used in multiplexed mode.  The MIO-16 has
no way of masking conversions before the data acquisition begins, so any
conversion pulses that occur before the acquisition is triggered will advance
the  SCXI channels, causing the data for the channels to be shifted in the
buffer.

Sample counter Counts the number of A/D conversions (samples) when conversion pulses are generated
by the onboard sample-interval counter, and shuts down the data acquisition timing
circuitry when the desired number of samples have been acquired.

Gate A level-triggered signal that, when low, holds off data acquisition timing.  This signal
can be supplied externally through the I/O connector EXTGATE input on the
NB-MIO-16.

Timebase clock Supplies the timebase for the sample interval counter.  Onboard selections of 1 MHz,
100 kHz, 10 kHz, 1 kHz, or 100 Hz are available.  An external timebase clock can be
supplied through the I/O connector at the SOURCE5 input on the NB-MIO-16 and
NB-MIO-16X.

See the NB-MIO-16 User Manual or the NB-MIO-16X User Manual for more information regarding these signals.

NB-MIO-16 Data Acquisition Rates

The maximum recommended data acquisition rates for both single-channel and multiple-channel data acquisition are
given below.  These rates represent the fastest data conversion times that the board can achieve and still maintain
accuracy.  The data acquisition rates given later in this chapter allow for settling to a 10 V input signal change
between conversions.  It is possible to operate at faster speeds; however, accuracy may be compromised.  Data
acquisition errors occur if the following sample rates are exceeded by a large amount.

Maximum recommended data acquisition rates on a single channel (any gain setting) for the NB-MIO-16 are given
in Table 6-2.

Table 6-2.  Maximum Data Acquisition Rates for Single Channels on the NB-MIO-16

Board Typical Worst Case

NB-MIO-16(H/L)-25 45 kS/s 37 kS/s
NB-MIO-16(H/L)-15 71 kS/s 59 kS/s
NB-MIO-16(H/L)-9 100 kS/s 91 kS/s

© National Instruments Corporation 6-3 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

With multiple-channel scan data acquisition, extra time is required by the data acquisition circuitry for
gain/multiplexer settling due to channel switching.  This required settling time depends on the gain setting used for
each channel.  Also, this settling time limits data acquisition rates.  The recommended settling time versus gain for
the NB-MIO-16 is given in Table 6-3.

Table 6-3.  Recommended Settling Time Versus Gain for the NB-MIO-16

Gain Setting Recommended Settling Time

1, 2, 4, 8 10 µs
10 20 µs
100 40 µs
500 80 µs

The maximum recommended data acquisition rates using multiple-channel scanning (gain dependent) for the
NB-MIO-16 are shown in Table 6-4.

Table 6-4.  Maximum Data Acquisition Rates for Multiple Channels on the NB-MIO-16

Board Gain Typical Worst Case

NB-MIO-16(H/L)-25 1, 2, 4, 8, 10

100

500

45 kS/s

25 kS/s

12.5 kS/s

37 kS/s

NB-MIO-16(H/L)-15 1, 2, 4, 8

10

100

500

71 kS/s

50 kS/s

25 kS/s

12.5 kS/s

59 kS/s

NB-MIO-16(H/L)-9 1, 2, 4, 8

10

100

500

100 kS/s

50 kS/s

25 kS/s

12.5 kS/s

91 kS/s

If you are using SCXI with your DAQ board, refer to the SCXI Data Acquisition Rates section for the effect of SCXI
module settling time on your DAQ board rates.

NB-MIO-16X Data Acquisition Rates

The maximum recommended data acquisition rates for both single-channel and multiple-channel data acquisition
represent the fastest data throughput that the board is able to achieve and still maintain accuracy.  The data
acquisition rates given below allow for settling to a 10 V input signal change between conversions.  It may be
possible to operate at faster speeds; however, accuracy may be compromised.  Data acquisition errors occur if the
sample rates are exceeded by a large amount.

Maximum recommended data acquisition rates on a single channel (any gain setting) for the NB-MIO-16X are given
in Table 6-5.

NI-DAQ Software Reference Manual for Macintosh 6-4 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

Table 6-5.  Maximum Data Acquisition Rates for Single Channels on the NB-MIO-16X

Board Acquisition Rate

NB-MIO-16X(H/L)-42

NB-MIO-16X(H/L)-18

23.8 kS/s

55.6 kS/s

With multiple-channel scan data acquisition, extra time is required by the data acquisition circuitry to allow for
gain/multiplexer settling due to channel switching.  This required settling time depends on the gain setting used for
each channel.  Also, this settling time limits data acquisition rates.

The recommended settling time versus gain for the NB-MIO-16X is given in Table 6-6.

Table 6-6.  Recommended Settling Time Versus Gain for the NB-MIO-16X

Gain Setting Accuracy

0.01% 0.005% 0.5 LSB

1, 2, 4, 8, 10 30 µs 50 µs 200 µs
100 50 µs 50 µs 500 µs
500 50 µs 100 µs 500 µs

The maximum data acquisition rates for multiple channel scanning (gain dependent) for the NB-MIO-16X are given
in Table 6-7.

Table 6-7.  Maximum Data Acquisition Rates for Multiple Channels on the NB-MIO-16X

Board Gain Data Acquisition Rate

0.01% Settling 0.005% Settling 0.5 LSB Settling

NB-MIO-16X(H/L)-42 1, 2, 4, 8, 10
100
500

23.8 kS/s
20 kS/s
20 kS/s

20 kS/s
20 kS/s
10 kS/s

5 kS/s
2 kS/s
2 kS/s

NB-MIO-16X(H/L)-18 1, 2, 4, 8, 10
100
500

33.3 kS/s
20 kS/s
20 kS/s

20 kS/s
20 kS/s
10 kS/s

5 kS/s
2 kS/s
2 kS/s

If you are using SCXI with your DAQ board, refer to the SCXI Data Acquisition Rates section for the effect of SCXI
module settling time on your DAQ board rates.

Lab and 1200 Series Data Acquisition

The Lab and 1200 series contain eight single-ended analog input channels numbered 0 through 7.  The analog input
channels are multiplexed into a single software-programmable gain state and 12-bit ADC.  Seven gains are provided
on the Lab and 1200 series:  1, 2, 5, 10, 20, 50, and 100.

Analog input on the Lab-NB can be configured for two different nominal input ranges:

• 0 to +10 V (unipolar)

• -5 to +5 V (bipolar)

© National Instruments Corporation 6-5 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

Data acquisition with the Lab and 1200 series uses one of two modes:  single-channel data acquisition or multiple-
channel scanned data acquisition.  Single-channel data acquisition involves selecting a single analog input
multiplexer and gain setting.  In multiple-channel scanned data acquisition, a set of analog input channels is scanned
with a single gain setting in a round-robin mode.  This scanning is performed by specifying the number of channels
to be scanned and the gain setting to be used for the scanning operation.  During scanning, the analog input circuitry
is set to the next channel in the scan sequence, and an A/D conversion is performed.  When the end of the scan
sequence is reached, the sequence is started over again until the required number of samples have been acquired.

The PCI-1200 and DAQCard-1200 boards support interval scanning.  A scan interval is the time that elapses
between two channel-scanning cycles.

SCXI modules can be used as a data acquisition front end for the Lab and 1200 series to provide signal conditioning
for the input signals.  All the modes described above can be used in conjunction with SCXI for single channel
acquisitions; however, multiple-channel scanned acquisitions are only supported when using the SCXI-1120 or
SCXI-1121 modules in parallel mode.  The SCXI functions described in Chapter 7 set up the SCXI modules for data
acquisition operations to be performed by the Lab and 1200 series.

Lab and 1200 Series Data Acquisition Timing

Timing for data acquisition is provided by the onboard counter/timers or can be performed externally.  Data
acquisition timing involves the following timing signals:

Signal Name Description

Trigger An edge-triggered signal that initiates a data acquisition sequence.  A trigger can be
supplied externally through the I/O connector EXTTRIG input.

Conversion pulses Generate a pulse once every sample interval, causing an A/D conversion to be
initiated.  This signal can be generated by the onboard programmable sample interval
clock supplied by a Counter/Timer or can be supplied externally through the I/O
connector EXTCONV* input.

Sample counter Counts the number of A/D conversions (samples) when conversion pulses are
generated by the onboard sample interval counter, and shuts down the data
acquisition timing circuitry when the desired number of samples have been acquired.

Timebase clock Provides the timebase for the sample interval counter.  Onboard selections of 1 MHz,
100 kHz, 10 kHz, 1 kHz, or 100 Hz are available.

See the specific board user manuals for more information regarding these signals.

Lab and 1200 Series Counter/Timer Signals

The onboard Counter A0 is used to produce the total sample interval for data acquisition.  However, if the total
sample interval is greater than 65,535 µs, Counter B0 is used to generate the clock for a slower timebase, which is
used by Counter A0 to provide the total sample interval.  Counter B0 then cannot be used by the ICTR_Setup and
ICTR_Reset functions for the duration of the data acquisition operation.  Counter B0 also cannot be used by the
Waveform Generations functions if the total update interval for waveform generation is also greater than 65,535 µs
and Counter B0 is required to produce a timebase for waveform generation different from the timebase being
produced by Counter B0 for data acquisition.  Counter B0 is available for data acquisition under the following
conditions:

• If waveform generation is not in progress and no ICTR_Setup call has been made on Counter B0 since
startup.

• If waveform generation is not in progress and an ICTR_Reset call has been made on Counter B0.

NI-DAQ Software Reference Manual for Macintosh 6-6 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

• If waveform generation is in progress and is using Counter B0 to obtain the timebase required to produce the
total update interval, this timebase is the same as required by the Data Acquisition functions to produce the total
sample interval.  In this case, Counter B0 is used to provide the same timebase for both data acquisition and
waveform generation.

Lab and 1200 Series Data Acquisition Rates

The maximum recommended data acquisition rates for both single-channel and multiple-channel data acquisition
represent the fastest data throughput that the board is able to achieve and still maintain accuracy.  The data
acquisition rates given below allow for settling to a 10 V input signal change between conversions.  It may be
possible to operate at faster speeds; however, accuracy may be compromised.  Data acquisition errors occur if the
sample rates are exceeded by a large amount.

With data acquisition, extra time is required by the data acquisition circuitry for gain/multiplexer settling due to
channel switching.  This required settling time depends on the gain setting used for each channel and limits data
acquisition rates.  The recommended settling time versus gain for the Lab and 1200 series is given in Table 6-8.

Table 6-8.  Recommended Settling Time Versus Gain for the Lab and 1200 Series

Gain Setting Recommended Settling Time

1 16 µs

2, 5 20 µs

10, 20 30 µs

50, 100 100 µs

The maximum recommended data acquisition rates for single and multiple channels for the Lab and 1200 series are
shown in Table 6-9.

Table 6-9.  Maximum Data Acquisition Rates for Multiple Channels on the Lab and 1200 Series

Board Gain Data Acquisition Rate

Typical Worst Case

Lab-LC
Lab-NB

1
2, 5
10, 20
50, 100

62.5 kS/s
50 kS/s
33.3 kS/s
10 kS/s

PCI-1200
DAQCard-1200

1
2, 5, 10
20
50
100

90.9 kS/s
76.9 kS/s
66.7 kS/s
37.0 kS/s
16.7 kS/s

71.4 kS/s
62.5 kS/s
52.6 kS/s
29.4 kS/s
12.5 kS/s

If you are using SCXI with your DAQ board, refer to the SCXI Data Acquisition Rates section for the effect of SCXI
module settling time on your DAQ board rates.

© National Instruments Corporation 6-7 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

DAQCard-500 and DAQCard-700 Data Acquisition

The DAQCard-500 and DAQCard-700 can perform single-channel data acquisition and multiple-channel scanned
data acquisition. For single-channel data acquisition, you select a single analog input channel. The device performs a
single A/D conversion on that channel every sample interval.

For multiple-channel scanned data acquisition, the device scans a sequence of analog input channels. A sample
interval indicates the time to elapse between A/D conversions on each channel in the sequence. You need only to
select a single starting channel to select the sequence of channels to scan. The device then scans the channels in
consecutive order until channel 0 is reached and the scan begins anew with the starting channel. If the starting
channel is channel 3, for example, the scan sequence is as follows:

channel 3, channel 2, channel 1, channel 0, channel 3, and so on

You can use both the single-channel and multiple-channel acquisitions with the double-buffered mode. Double-
buffered mode fills the user-specified buffer continuously.

You can use SCXI modules as a data acquisition front end for the DAQCard-700 to signal condition the input
signals and multiplex the channels. You can use all the modes just described in conjunction with SCXI for single-
channel acquisitions; however, multiple-channel acquisitions are only supported when using the SCXI-1120 or
SCXI-1121 modules in Parallel mode.

You cannot use the DAQCard-500 with SCXI.

DAQCard-500 and DAQCard-700 Data Acquisition Timing

Timing for data acquisition can be performed by the onboard MSM82C53 Counter/Timer or externally. The
MSM82C53 Counter/Timer has three independent 16-bit counters/timers, which are assigned as follows:

• Counter 0 is a sample-interval counter for data acquisition that is available if no data acquisition is in progress.

• Counter 1 is available for general-purpose counting functions.

• Counter 2 is available for general-purpose counting functions.

Data acquisition timing involves the following timing signals:

A conversion pulse is a signal that generates a pulse once every sample interval, causing the device to initiate an
A/D conversion. This signal can be generated by the onboard, programmable sample-interval clock supplied by the
MSM82C53 Counter/Timer, or can be supplied externally through the I/O connector EXTCONV* input. You can
select external conversion pulses by calling DAQ_Config. If you do not want to use external conversion pulses,
you should disconnect the EXTCONV* pin on the I/O connector to prevent extra conversions.

A timebase clock is a clock signal that is the timebase for the sample-interval counter. Counter 0 of the MSM82C53
uses a 1 MHz clock as its timebase.

See your device user manual for more information regarding these signals.

If you are using SCXI with your DAQCard-700, refer to the SCXI Data Acquisition Rates section later in this
chapter for the effect of SCXI module settling time on your DAQ device rates.

DAQCard-500 and DAQCard-700 Counter/Timers

The DAQCard-500 and DAQCard-700 contain an onboard MSM82C53 Programmable Interval Timer chip that has
three independent 16-bit counter/timers.  Counter 0 is used for data acquisition operations.

NI-DAQ Software Reference Manual for Macintosh 6-8 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

E Series Data Acquisition

The E Series devices can perform single-channel data acquisitions and multiple-channel scanned data acquisitions.
For single-channel data acquisition, select a single analog input channel and gain setting. The device performs a
single A/D conversion on that channel every sample interval.

For multiple-channel scanned data acquisition, the device scans a set of analog input channels, each with its own
gain setting. In this method, a scan sequence indicates which analog channels to scan and the gain settings for each
channel. The length of this scan sequence can be 1 to 512 channel/gain pairs. During scanning, the analog input
circuitry performs an A/D conversion on the next entry in the scan sequence. The device performs an A/D
conversion once every sample interval. For maximum performance, this operation is pipelined so that the device
switches to the next channel while the current A/D conversion is performed. The device waits for a specified scan
interval before scanning the channels again. The channels are scanned repeatedly at the beginning of each scan
interval until the required number of samples has been acquired. For example, you can scan a sequence of four
channels once every 10  s. The device could sample the channels at the beginning of the 10  s interval, within 20  µs,
with a 5  µs sample interval between channels. If you use SCAN_Start, the scan sequence starts over again
immediately at the end of each scan sequence without waiting for a scan interval. This causes the device to scan the
channels repeatedly as fast as possible.

You can combine both single-channel and multiple-channel acquisition with any of the following additional modes:

• Posttrigger mode

• Pretrigger mode

• Double-buffered mode

• AMUX-64T mode

• SCXI mode

Posttrigger mode collects a specified number of samples after the device receives a trigger. Refer to the start trigger
discussion in the appropriate data acquisition timing section for your device later in this chapter for details. After the
user-specified buffer is full, the data acquisition stops.

Pretrigger mode collects data both before and after the device receives a trigger in posttrigger mode, either through
software or by applying a hardware signal. The device collects samples and fills the user-specified buffer without
stopping until the device receives the stop trigger signal. Refer to the stop trigger discussion in the appropriate data
acquisition timing section for your device later in this chapter for details. The device then collects a specified
number of samples and stops the acquisition. The buffer is treated as a circular buffer—when the entire buffer has
been written to, data is stored at the beginning again, overwriting the old data. When data acquisition stops, the
buffer has samples from before and after the stop trigger occurred. The number of samples saved depends on the
length of the user-specified buffer and on the number of samples specified to be acquired after receipt of the trigger.
Double-buffered mode, like pretrigger mode, also fills the user-specified buffer continuously.

In the AMUX-64T mode, you use one or more external AMUX-64T devices to extend the number of analog input
channels available. You connect the external signals to the pins of the AMUX-64T devices, instead of directly to the
pins of the DAQ device.

You can use SCXI modules as a data acquisition front end for the device to condition the input signals and multiplex
the channels. You can use all the modes just described in conjunction with SCXI.

Note: Refer to the Set_DAQ_Device_Info function in Chapter 2, Board-Specific Functions, for
information on data acquisition modes.

MIO E Series Data Acquisition Timing

The following DAQ-STC counters are used for data acquisition timing and control:

• The scan counter is used to control the number of scans you will acquire. If you want to perform pretriggered
acquisition, this counter ensures that you acquire selected number of scans before the stop trigger is recognized.

© National Instruments Corporation 6-9 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

• The scan timer is a counter that you can use for start scan timing.

• The sample interval timer is a counter that you can use for conversion timing.

Data acquisition timing involves the following timing signals:

• A start trigger is a signal that initiates a data acquisition sequence. You can supply this signal externally
through a selected I/O connector pin, through a RTSI bus trigger line, or by software.

• A start scan signal initiates individual scans. This signal can be supplied from the on-board programmable scan
timer, externally through a selected I/O connector pin, through a RTSI bus trigger line, or by software.

• A conversion signal initiates individual analog-to-digital (A/D) conversions. This signal can be supplied from
the on-board programmable sample timer, externally through a selected I/O connector pin, through a RTSI bus
trigger line, or by software.

• A stop trigger is a signal used for pretriggered data acquisition to notify your device to stop acquiring data after
a specified number of scans. Data acquisition operation is continuously performed until the device receives this
signal. This signal can be supplied externally through a selected I/O connector pin, through a RTSI bus trigger
line, or by software.

• Gate is a signal used for gating the data acquisition. When you enable gating, the data acquisition will proceed
only on selected level of the gate signal. This signal can be supplied externally through a selected I/O connector
pin, through a RTSI bus trigger line.

• Scan timer timebase is a signal used by the scan timer for scan interval timing. This signal is used only when the
scan timer is used. This signal can be supplied from one of the on-board timebase sources, externally through a
selected I/O connector pin, or through a RTSI bus trigger line.

• Sample interval timer timebase is a signal used by the sample interval timer for conversion timing. This signal is
used only when the sample interval timer is used. This signal can be supplied from one of the on-board timebase
sources, externally through a selected I/O connector pin, or through a RTSI bus trigger line.

See your DAQ device user manual for more information regarding these signals.

DAQ devices with the DAQ-STC use two counters, the scan interval counter and the sample interval counter. The E
Series devices support both internal and external timebases. The internal timebases available on the DAQ-STC are
20 MHz (50 ns) and 100 kHz (10 µs). The scan interval counter is a 24-bit counter, and the sample interval counter
is a 16-bit counter.

While the scan interval counter has the freedom to work with both internal and external timebases, the sample
interval counter can use either the 20 MHz timebase or the timebase used by the scan interval counter.

MIO E Series Data Acquisition Rates

Refer to the appropriate user manual for single-channel and multiple-channel DAQ rates and settling accuracy.

If you are using SCXI with your DAQ device, refer to the following SCXI Data Acquisition Rates section for the
effect of SCXI module settling time on your DAQ device rates.

NI-DAQ Software Reference Manual for Macintosh 6-10 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

SCXI Data Acquisition Rates

The settling time of the SCXI modules may affect the maximum data acquisition rates that can be achieved by your
DAQ board.  The settling times and maximum rates of the different SCXI modules at each gain setting are listed in
Table 6-10.  If the maximum rate listed here for your SCXI module is slower than the applicable maximum rate of
your DAQ board, then you will have to use the maximum rate listed here in Table 6-10.

Table 6-10.  Maximum SCXI Data Acquisition Rates

SCXI Module Gain Maximum Acquisition
Rate

Settling Time

SCXI-1100 1-100
200
500
1000, 2000

143 kS/s
100 kS/s
62.5 kS/s
20 kS/s

7 µs
10 µs
16 µs
50 µs

SCXI-1120 1-2000 143 kS/s 7 µs

SCXI-1121 1-2000 143 kS/s 7 µs

SCXI-1140 1-500 143 kS/s 7 µs

If you are using the SCXI-1122, please refer to the SCXI-1122 section in Chapter 7, SCXI Functions.

Single-Buffered Data Acquisition Function Summary

The single-buffered data acquisition functions (DAQ and SCAN) acquire a specified number of samples from one or
more channels and return the data when the acquisition is complete.  Additionally, the configuration, scaling and
analog triggering (that is, waiting until the incoming analog data crosses a specified level) functions can be
performed with both single-buffered and double-buffered data acquisition.

The following functions can be used for single-buffered data acquisition on the Lab and 1200 devices,
DAQCard-500, and DAQCard-700 and MIO boards:

DAQ_Config Stores configuration information for subsequent data acquisition operations.

DAQ_PreTrig Stores pretrigger information for stopping single-buffered data acquisition when a
specified number of samples have been acquired after the occurrence of an external
trigger.  Pretriggering is not available on the NB-MIO-16.

DAQ_Trigger Stores analog trigger configuration information for subsequent single-buffered data
acquisition operations.

DAQ_Check Checks to see whether the current data acquisition operation is complete and returns
its status.

DAQ_Clear Cancels the current data acquisition operation and reinitializes the data acquisition
circuitry.

DAQ_Start Initiates a single-channel data acquisition operation and stores the results in an array.

DAQ_VScale Converts the values of an array of acquired binary data and the gain setting for that
data to actual input voltages measured.

© National Instruments Corporation 6-11 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

Lab_ISCAN_Check Checks to see whether the current scanned data acquisition operation is complete and
then returns the status (DAQCard-500, DAQCard-700, and Lab and 1200 series only).

Lab_ISCAN_Start Initiates a multiple-channel scanned data acquisition operation and stores the results in
an array (DAQCard-500, DAQCard-700, and Lab and 1200 series only).

SCAN_Check Checks to see whether the current scanned data acquisition operation is complete, and
returns its status.

SCAN_Demux Demultiplexes data acquired by a SCAN operation into separate arrays for each
channel (C and Pascal only).

SCAN_IntStart Initiates a multiple-channel scanned data acquisition operation, and can also define a
scan interval for the NB-MIO-16X and PCI-MIO-16XE-50.

SCAN_Setup Initializes the circuitry on the MIO devices for a scanned data acquisition operation.
Initialization includes storing a table of the channel sequence and gain setting for each
channel.

SCAN_Start Initiates a multiple-channel scanned data acquisition operation on an MIO board.

Single-Buffered Data Acquisition Application Hints

Single-Channel Data Acquisition

DAQ_Start and DAQ_Check perform data acquisition operations from a single analog input channel into a user
buffer.  DAQ_Start initiates the data acquisition process, and DAQ_Check returns the completion status of the
data acquisition process.  The data acquired is in binary format and can be scaled to voltage values by using
DAQ_Scale.  Data acquisition can be terminated by executing DAQ_Clear.  Data acquisition is normally
controlled by the onboard counters and is started as soon as DAQ_Start is called.  Other timing modes can be used
when DAQ_Config is called to set them up.  If any jumpers on the analog input circuitry have been changed, use
AI_Configure to update the analog input configuration information for NI-DAQ for Macintosh.

DAQ_Trigger can be executed to enable analog triggering and to set up trigger information on single-buffered
data acquisitions (single-channel and multiple-channel scan).  Subsequent single-buffered calls to DAQ_Start
(while triggering is enabled) cause DAQ_Start to wait for an analog trigger to occur before collecting the array
of sample data.  Analog triggering can also be used in single-channel acquisitions using SCXI.

DAQ_PreTrig can be executed to acquire a specified number of samples after an external stop trigger has
occurred.  Subsequent calls to DAQ_Start (while pretriggering is enabled) cause DAQ_Start to stop single-
buffered data acquisition when a specified number of samples have been acquired after the occurrence of an external
trigger. Pretriggering is possible only on the NB-MIO-16X, PCI-MIO-16XE-50, and Lab and 1200 series boards.

Example applications that perform data acquisition operations are included on your NI-DAQ for Macintosh
diskettes.  (See Chapter 11, NI-DAQ for Macintosh Examples.)

Multiple-Channel (Scanned) Data Acquisition

SCAN_Start, SCAN_IntStart, Lab_ISCAN_Start, SCAN_Check, and Lab_ISCAN_Check perform
data acquisition operations while scanning multiple analog input channels.  SCAN_Start, SCAN_IntStart, and
Lab_ISCAN_Start initiate the acquisition process and store acquired binary values into a one-dimensional array
with the data from each channel interleaved in time.  SCAN_Check or Lab_ISCAN_Check returns the
completion status of the scanned data acquisition process.  After SCAN_Check or Lab_ISCAN_Check signifies
that acquisition is complete, the one-dimensional data can be converted into a two-dimensional array in which one
dimension corresponds to each channel.  The other dimension corresponds to the data for a single channel by passing

NI-DAQ Software Reference Manual for Macintosh 6-12 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

the array to SCAN_Demux. This data can be scaled to voltage values by using DAQ_Scale on one channel of data
at a time.

SCAN_Start and SCAN_IntStart must be preceded by SCAN_Setup, which indicates the number of channels
to be scanned and loads a channel-gain scan sequence.  SCAN_Setup needs to be executed only once if the same
scan setup is valid for all executions of SCAN_Start or SCAN_IntStart.  SCAN_Setup is not used for the
Lab and 1200 series.

SCAN_IntStart can be used instead of SCAN_Start on the NB-MIO-16X and PCI-MIO-16XE-50 and
Lab_ISCAN_Start is used on the PCI-1200 and DAQCard-1200 to perform a multiple-channel acquisition.
These can define a scan interval between channel sequences in addition to the sampling interval between channels.
Interval scanning has the advantage of simulating simultaneous sampling of a group of channels once every
scanning interval.  Interval scanning can also be achieved by using a SCXI-1140 module.  The DAQCard-500 and
DAQCard-700 also use Lab_ISCAN_Start, but only for continuous scanning, not interval scanning.

To perform multiple-channel scanned acquisitions using the SCXI-1140 module, interval scanning must be used.  If
an SCXI_SCAN_Setup call has been made to set up an SCXI scan that includes an SCXI-1140 module, then the
SCAN_IntStart call is able to implement interval scanning on the NB-MIO-16 as well as the NB-MIO-16X.  In
this special case, the sample timebase and the scan timebase specified must be the same.  In all other cases, however,
interval scanning is only available on the NB-MIO-16X.

Scanned data acquisition operations can be terminated by executing DAQ_Clear.  Scanned data acquisition is
normally controlled by the onboard counters and is started as soon as SCAN_Start, Lab_ISCAN_Start, or
SCAN_IntStart is executed.  Other timing modes can be used when DAQ_Config is called to set them up.  If
any jumpers on the analog input circuitry have been changed, use AI_Config to update the analog input
configuration information for NI-DAQ for Macintosh.

DAQ_Trigger can be executed to enable triggering on analog input values and to set up trigger information on
single-buffered data acquisitions (single-channel and multiple-channel scan).  Subsequent single-buffered calls to
SCAN_Start, Lab_ISCAN_Start, or SCAN_IntStart (while triggering is enabled) cause these functions to
wait for trigger conditions to be met before collecting the array of sample data.  Analog triggering can be used with
SCXI in multiple-channel scanned acquisitions only when the SCXI modules are operated in Parallel mode.

DAQ_PreTrig can be executed to enable acquisition of a specified number of samples after an external trigger has
occurred.  Subsequent calls to SCAN_Start, Lab_ISCAN_Start, or SCAN_IntStart (while pretriggering is
enabled) cause these functions to stop single-buffered data acquisition when a specified number of samples have
been acquired after the occurrence of an external trigger.  Pretriggering is possible only on the NB-MIO-16X,
PCI-MIO-16XE-50, and Lab and 1200 series boards.

Example applications that perform multiple-channel data acquisition operations are included on your NI-DAQ for
Macintosh diskettes.  (See Chapter 11, NI-DAQ for Macintosh Examples.)

Using the NB-MIO-16X in Unipolar Mode with Pascal

If you are using an NB-MIO-16X or PCI-MIO-16XE-50 in unipolar mode, conversion values are returned as 16-bit
unsigned integers.  Because Pascal does not support unsigned representation, the values in the range 32,768 through
65,535 are treated as negative numbers in Pascal.  You can use the UArrToLArr conversion function to convert
values to Pascal long integers.

Note: These values should be passed to DAQ_VScale without conversion.  (See Chapter 11, NI-DAQ for
Macintosh Examples, for a complete description of the UArrToLArr function.)

© National Instruments Corporation 6-13 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

DAQ_Check

Function
Checks to see whether the current data acquisition operation is complete and returns its status.

Synopsis

C Syntax locus i32 DAQ_Check(u32 deviceNumber, u16 *status, u32 *retrieved);

Pascal Syntax function DAQ_Check(deviceNumber : i32; var status : i16; var

retrieved : i32) : i32;

BASIC Syntax FN DAQ_Check(deviceNumber&, status&, retrieved&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

status returns an indication of whether the data acquisition has completed.
1:  the data acquisition operation is complete.
0:  the data acquisition operation is not yet complete.

DAQ_Check checks the current background data acquisition operation to determine whether it has completed.
If the operation is complete, DAQ_Check sets status to 1.  Otherwise, status is set to 0.  If the acquisition is
single-buffered, then the data is available in the buffer when status is 1.  If the acquisition is double-buffered in
continuous mode, status will always return 0.  If the acquisition is double-buffered in noncontinuous mode,
status will return 1 only when the entire acquisition is complete.

If DAQ_Check returns an overFlowError or an overRunError, the data acquisition operation may never
complete because of lost A/D conversions due to samples being acquired too rapidly (sample interval was too
small).  An overFlowError indicates that the A/D FIFO overflowed because the data acquisition servicing
operation could not keep up with the sample rate.  An overRunError indicates that the data acquisition
circuitry could not keep up with the sample rate.  If one of these errors occurs, then DAQ_Check executes
DAQ_Clear to terminate the operation and to clear all error flags.

If NI-DAQ for Macintosh is configured for double-buffered mode, an overWriteErr can occur.  An
overWriteErr indicates that the large circular acquisition buffer used for double-buffered acquisitions
overwrote acquired data before it was retrieved by DAQ2Get, DAQ2TGet, DAQ2Tap, or DAQ2TTap.  An
overwrite error can be corrected by increasing the size of the large acquisition buffer, retrieving more data each
time, retrieving data more often, decreasing the size of the smaller dividing blocks, or reducing the sampling
rate.  The large acquisition buffer and smaller dividing block sizes are configured in DAQ2Config.

An error occurs if analog triggering has been enabled for a single-buffered acquisition (see DAQ_Trigger)
and analog trigger conditions are not met before the specified timeout value expires.

In pretrigger mode, DAQ_Check automatically rearranges the array upon completion of the acquisition so that
the oldest data point is at the beginning of the array.

                                                                                                                                                                                           

NI-DAQ Software Reference Manual for Macintosh 6-14 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

DAQ_Clear

Function
Cancels the current data acquisition operation and reinitializes the data acquisition circuitry.

Synopsis

C Syntax locus i32 DAQ_Clear(u32 deviceNumber);

Pascal Syntax function DAQ_Clear(deviceNumber : i32) : i32;

BASIC Syntax FN DAQ_Clear(deviceNumber&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

DAQ_Clear cancels the current data acquisition operation.  You should execute DAQ_Clear whenever you
want to halt data acquisition operation.  Any acquired data is lost.

If NI-DAQ for Macintosh is configured for double-buffered data acquisition (see DAQ2Config), then either
DAQ_Clear or DAQ2Clear can be used to stop the current double-buffered acquisition.  DAQ_Clear stops
the current double-buffered acquisition but leaves NI-DAQ for Macintosh configured for double-buffered mode.
DAQ2Clear stops the current acquisition and disables double-buffered mode.

                                                                                                                                                                                           

DAQ_Config

Function
Stores configuration information for subsequent data acquisition operations.

Synopsis

C Syntax locus i32 DAQ_Config(u32 deviceNumber, u32 externalTrigger, u32

externalGate, u32 externalConvert);

Pascal Syntax function DAQ_Config(deviceNumber : i32; externalTrigger : i32;

externalGate : i32; externalConvert : i32) : i32;

BASIC Syntax FN DAQ_Config(deviceNumber&, externalTrigger&, externalGate&,

externalConvert&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

externalTrigger indicates whether the trigger to initiate data acquisition sequences is externally generated.
0:  generate software trigger to start data acquisition sequence.
1:  wait for external trigger to initiate data acquisition sequence (not supported on the DAQCard-500 and

DAQCard-700).

externalGate indicates whether to enable external gating of data acquisition.  externalGate is only used on the
NB-MIO-16.  See Select_Signal for enabling external gating on E Series boards.

0:  disable external gating.
1:  enable external gating.

© National Instruments Corporation 6-15 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

externalConvert indicates whether timing of A/D conversions during the data acquisition sequence is
controlled externally or internally with the sample-interval clock.

0:  use onboard sample-interval clock to control data acquisition A/D conversions.
1:  allow external clock to control data acquisition A/D conversions.
2:  allow external clock to control scan-interval timing.
3:  allow external control of sample-interval and scan-interval timing.

Note: When using an external clock to control A/D conversions on an NB-MIO-16X, be sure to call
MIO_16X_Config before starting the acquisition.

NB-MIO-16 or NB-MIO-16X Configuration

Only the following combinations of externalTrigger, externalGate, and externalConvert are valid on the
NB-MIO-16 and
NB-MIO-16X:

externalTrigger externalGate externalConvert

0
1
0
0

0
0
1
0

0
0
0
1

The first setting causes A/D conversions to begin as soon as DAQ_Start, SCAN_Start, or
SCAN_IntStart is called.  The second setting causes A/D conversions to begin after a pulse is applied on the
I/O connector once DAQ_Start, SCAN_Start, or SCAN_IntStart is called.  The pulse is applied to the
EXTTRIG* input on the NB-MIO-16.  On the NB-MIO-16X, the pulse is applied to the STARTTRIG* input.
The third setting causes A/D conversions to occur while the EXTGATE signal is high after DAQ_Start or
SCAN_Start is called.  External gating is available only on the NB-MIO-16.  In these three cases, the sample
interval is timed by the onboard counter/timer.  In the fourth case, individual A/D conversions are caused by
pulses applied to the EXTCONV* line.  In this case, the sample interval is determined by the period of the pulse
applied.  More information about data acquisition timing on the NB-MIO-16 or NB-MIO-16X is given at the
beginning of this chapter and under the descriptions of DAQ_Start, SCAN_Start, and SCAN_IntStart.

Note: In most cases, external conversion pulses should not be used in scanning operations when SCXI is
being used in multiplexed mode.  The NB-MIO-16 and NB-MIO-16X have no way of masking
conversions before the data acquisition begins, so any conversion pulses that occur before the
acquisition is triggered will advance the SCXI channels.

Lab and 1200 Series Configuration

Only the following combinations of externalTrigger, externalGate, and externalConvert are valid on the Lab
and 1200 series boards.  An X signifies external gating is not used on the Lab and 1200 series boards and
therefore externalGate can be any value:

externalTrigger externalGate externalConvert

0
1
0
1

X
X
X
X

0
0
1
1

The first setting causes A/D conversion to begin as soon as DAQ_Start or Lab_ISCAN_Start is called.
The second setting causes A/D conversions to begin after a pulse is applied on the I/O connector once
DAQ_Start or Lab_ISCAN_Start is called.  The pulse is applied to the EXTTRIG input.  In these two

NI-DAQ Software Reference Manual for Macintosh 6-16 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

cases, the sample interval is timed by an onboard counter/timer.  In the third case, individual A/D conversions
are caused by pulses applied to the EXTCONV* line.  In this case, the sample interval is determined by the
period of the pulse applied.  In the fourth case, the signal applied to the EXTCONV* line is ignored until a low-
to-high pulse is applied at the EXTTRIG input.  After this trigger has been received, individual A/D conversions
are caused by pulses applied to the EXTCONV* line.  The first falling edge, following a rising edge, generates
the first A/D conversion in the case when external conversion pulses are used.  More information about data
acquisition timing on the Lab and 1200 series is given at the beginning of this chapter and under the
descriptions of DAQ_Start and Lab_ISCAN_Start.

All Devices

DAQ_Config saves the parameter values in the configuration table for data acquisition.  The configuration
table is used by DAQ_Start, SCAN_Start, SCAN_IntStart, and Lab_ISCAN_Start to set up the data
acquisition circuitry to the correct timing modes.

The default settings for data acquisition modes after system startup are as follows:
externalTrigger = 0:  data acquisition sequences are initiated through software.
externalGate = 0:  external gating of data acquisition is disabled.
externalConvert = 0:  onboard sample-interval clock is used to time A/D conversions.

If you want a data acquisition timing configuration that is different from the default setting, then you must call
DAQ_Config with the desired configuration before any data acquisition sequences are initiated.
DAQ_Config needs to be called only when the data acquisition configuration is changed.

The configuration information for the analog input circuitry is controlled by the AI_Config call.  This
configuration information also affects data acquisition.  After system startup, the analog input configuration
table defaults to the following values:

For the MIO boards:
input_mode = 0:  differential.
input_range = 10 V.
polarity = 0:  bipolar.

For the Lab and 1200 series boards:
input_mode = 1:  single-ended.
polarity = 0:  bipolar (-5 to +5 V).

For the DAQCard-500:
input_mode = 1:  single-ended.
input_range = 10 V.
polarity = 0:  bipolar (-5 to +5 V).

For the DAQCard-700:
input_mode = 1:  single-ended.
input_range = 10 V.
polarity = 0:  bipolar (-5 to +5 V).

where input_mode, input_range, and polarity are specified in the AI_Config call.

If the physical configuration of the analog input circuitry on your board differs from these settings, you must
call AI_Config with the correct configuration information in order for the remaining Data Acquisition
functions to operate properly.

                                                                                                                                                                                           

© National Instruments Corporation 6-17 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

DAQ_PreTrig

Function
Stores pretrigger information for stopping single-buffered data acquisition when a specified number of samples
have been acquired after the occurrence of an external trigger.  Pretriggering is not available on the
NB-MIO-16.

Synopsis

C Syntax locus i32 DAQ_PreTrig(u32 deviceNumber, u32 alternateTrigger, u32

count);

Pascal Syntax function DAQ_PreTrig(deviceNumber : i32; alternateTrigger : i32;

count : i32) : i32;

BASIC Syntax FN DAQ_PreTrig(deviceNumber&, alternateTrigger&, count&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

alternateTrigger enables or disables pretriggering.  If pretriggering is enabled, subsequent single-buffered data
acquisition operations acquire data continuously until the external stop trigger occurs and the specified number
of samples after the trigger have been acquired.

0:  disable pretriggering.
1:  enable pretriggering.

count indicates how many samples to acquire after the external stop trigger has occurred before actually
stopping data acquisition.

Range: 2 through 224 for the E Series.
3 to 231-1 for the NB-MIO-16X.
3 to 65,535 for the Lab and 1200 series.

Note: DAQ_PreTrig enables pretriggering for subsequent single-buffered (DAQ_Start, SCAN_Start,
SCAN_IntStart, and Lab_ISCAN_Start) data acquisition operations.  See DAQ2TGet and
DAQ2TTap for enabling pretriggering with double-buffered (DAQ2) data acquisitions.

Lab-NB and Lab-LC Note: If the on-board sample interval clock is used to time A/D conversions, you
may get one extra sample after the trigger.  So, if you configured with
count = 10, you will get 10 samples after the trigger if the trigger occurred
when the conversion signal is low.  You will get 11 samples after the trigger
if the trigger occurred when the conversion signal was high.

If an external clock is used to time A/D conversions, you may get one or two
extra samples after the trigger.  So, if you configured with count = 10, you
will get either 10, 11, or 12 samples after the trigger, depending on when the
trigger occurred.

A pretriggered acquisition can be implemented by first calling DAQ_PreTrig with alternateTrigger set to 1
and with count set to the number of samples to acquire after an external trigger occurs.  DAQ_Start,
SCAN_Start, SCAN_IntStart, or Lab_ISCAN_Start can be used to indicate the total number of
samples to acquire and to start the acquisition.  A trigger applied at the external trigger iput o the connector
triggers NI-DAQ to acquire the number of samples specified by count and then stop the acquisition.  For
example, if DAQ_PreTrig is called to enable pretriggering with count set to 20 and DAQ_Start is called to
acquire 100 samples, then 100 samples are returned after a trigger is applied and DAQ_Check indicates that the
acquisition is complete.  The first 80 samples in the returned array occurred immediately before the trigger;  the
last 20 were sampled after the trigger.

                                                                                                                                                                                           

NI-DAQ Software Reference Manual for Macintosh 6-18 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

DAQ_Start

Function
Initiates a single-channel data acquisition operation and stores the results in an array.

Synopsis

C Syntax locus i32 DAQ_Start(u32 deviceNumber, u32 channel, u32 gain, i16

*buffer, u32 count, u32 timebase, u32 sampleInterval);

Pascal Syntax function DAQ_Start(deviceNumber : i32; channel : i32; gain : i32;

buffer : pi16; count : i32; timebase : i32;

sampleInterval : i32) : i32;

BASIC Syntax FN DAQ_Start(deviceNumber&, channel&, gain&, buffer&, count&,

timebase&, sampleInterval&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

channel is the analog input channel number.  If SCXI is being used, you must use the appropriate analog input
channel on the DAQ board that corresponds to the desired SCXI channel.  Please refer to Chapter 7, SCXI
Functions, for more information on SCXI channel assignments.

Range:  0 through n-1, where n is the number of analog input channels available.

gain is the gain setting to be used for the specified channel.  Refer to Appendix E, Analog Input Channel and
Gain Settings and Voltage Calculation, for valid gain settings.  If you use invalid gain settings, NI-DAQ returns
an error.

This gain setting applies only to the DAQ board; if SCXI is used, any gain desired at the SCXI module must be
established either by setting jumpers on the module or by calling SCXI_Set_Gain.

buffer is a buffer of length count.  When DAQ_Check returns status = 1, then buffer contains the acquired
data.  The elements of buffer are the results of each A/D conversion in the data acquisition operation.  The
elements of buffer are integers (16-bit values).

Refer to Appendix E, Analog Input Channel and Gain Settings and Voltage Calculation, for the range of each
element for buffer.

Note: If NI-DAQ for Macintosh has been configured for double-buffered mode (see DAQ2Config), then
this buffer parameter is not used and must be 0.  The larger buffer allocated by DAQ2Config is
used as the acquisition buffer for double-buffered acquisitions.  DAQ2Get, DAQ2TGet, DAQ2Tap,
and DAQ2TTap can be used to acquire blocks of data from the double-buffered acquisition in
progress.  (See Starting a Double-Buffered Acquisition with DAQ_Start.)

count is the number of samples to be acquired (that is, the number of A/D conversions to be performed).
Range: 3 through 231-1.  (With DMA on an MIO board, the range is limited to 3 through 223.)

Note: If NI-DAQ for Macintosh is configured for continuous double-buffered acquisition (see
DAQ2Config), then the count parameter is ignored and should be 0.  In continuous mode, the total
number of samples to acquire is not indicated and the data acquisition runs continuously until you
stop the process by executing DAQ_Clear or DAQ2Clear.  (See Starting a Double-Buffered
Acquisition with DAQ_Start.)

© National Instruments Corporation 6-19 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

timebase is the resolution to be used for the sample-interval counter.  timebase has the following possible
values:

Most devices:
0:  External clock used as timebase (SOURCE5 input) (NB-MIO-16 or NB-MIO-16X).
1:  1-MHz clock used as timebase (1-µs resolution).
2:  100-kHz clock used as timebase (10-µs resolution).
3:  10-kHz clock used as timebase (100-µs resolution).
4:  1-kHz clock used as timebase (1-ms resolution).
5:  100-Hz clock used as timebase (10-ms resolution).

E Series:
-3:  20-MHz clock used as timebase (50-ns resolution).
0: If you use this function with the timebase set at 0, you must call Select_Signal with signal set to

ND_IN_SCAN_CLOCK_TIMEBASE (not ND_IN_CHANNEL_CLOCK_TIMEBASE), and source set to
a value other than ND_INTERNAL_20_MHZ and ND_INTERNAL_100_KHZ before calling
DAQ_Start with timebase set to 0; otherwise, DAQ_Start will select low-to-high transitions on the
PFI 8 I/O connector pin as your external timebase.

2:  100 kHz clock used as timebase (10 µs resolution).

If sample-interval timing is to be externally controlled, the timebase parameter is ignored and can be any value.
When using external timing sources with the NB-MIO-16X, be sure to call MIO_16X_Config before starting
the acquisition.

sampleInterval indicates the length of the sample interval (that is, the amount of time to elapse between each
A/D conversion).

Range: 2 through 65,536.
2 through 224 (E Series)

The sample interval is a function of the timebase resolution.  The actual sample interval in seconds is
determined by the following formula:

sampleInterval * (timebase resolution)

where the timebase resolution for each value of timebase is specified above.  For example, if
sampleInterval = 25 and timebase = 2, the sample interval is 25 * 10 µs = 250 µs.  If the sample interval is to

be externally controlled, the sampleInterval parameter is ignored and can be any value.

Note: (Lab-NB and Lab-LC only)  Do not drive GATB0 input low on the Lab-NB or Lab-LC I/O connector
if the actual sample interval is greater than 65,535 µs.  In this case, Counter B0 is used to give the
actual sample interval.  Refer to Lab and 1200 Series Counter/Timer Signals earlier in this chapter.

Using This Function
DAQ_Start initiates a single-channel data acquisition either in single-buffered or double-buffered mode.  For
both modes, DAQ_Start configures the analog input multiplexer and gain circuitry as indicated by channel
and gain.  If external sample-interval timing has not been selected by a call to DAQ_Config, the sample-
interval counter is set to the specified sampleInterval and timebase parameters.  If external sample-interval
timing has been selected, then the data acquisition circuitry relies on pulses received on the EXTCONV* input
to initiate individual A/D conversions, and the sampleInterval and timebase parameters are ignored.

If external gating of the data acquisition operation has been selected, a signal at the EXTGATE I/O connector
input on the NB-MIO-16 controls the sample-interval counter.  When the EXTGATE signal is high, the sample-
interval counter is enabled, causing A/D conversions to occur.  When the EXTGATE signal is low, the sample-
interval counter is suspended and no A/D conversions occur.  External gating is available only on the
NB-MIO-16.

NI-DAQ Software Reference Manual for Macintosh 6-20 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

Starting a Single-Buffered Acquisition with DAQ_Start

In a single-buffered acquisition, the DAQ_Start call specifies the number of samples to acquire (count) and
an integer array to store the acquired data (buffer).  After DAQ_Start has returned, the background process
stores up to count A/D conversions into the buffer and ignores any subsequent conversions.  The acquired
samples are available when the DAQ_Check call returns status = 1.  A second call to DAQ_Start cannot be
made without terminating this background process.  If a call to DAQ_Check returns status = 1, the samples are
available and the process is terminated.  A call to DAQ_Clear also terminates a background data acquisition
process.

Starting a Double-Buffered Acquisition with DAQ_Start

In a double-buffered acquisition, data can be returned from an acquisition in progress without interrupting the
acquisition.  NI-DAQ for Macintosh can be configured for double-buffered mode by executing DAQ2Config
before DAQ_Start is called.  DAQ2Config allocates a large internal circular buffer for the data storage and
configures subsequent data acquisitions for double-buffered mode.

In double-buffered mode, DAQ_Start ignores the buffer parameter.  Once DAQ_Start completes with
error = 0, NI-DAQ for Macintosh acquires and stores the A/D conversions into the large buffer allocated by
DAQ2Config.  This buffer is treated as a circular buffer and is continually filled with data until count samples
are acquired.  If continuous double-buffered mode has been specified in DAQ2Config, then the total number
of samples is not specified and the count value in DAQ_Start is ignored.  The data acquisition continues to
run until the process is stopped by executing DAQ_Clear or DAQ2Clear.

Smaller blocks of data can be retrieved from the large internal buffer without interrupting the acquisition by
repeatedly executing the DAQ2Get, DAQ2TGet, DAQ2Tap, and DAQ2TTap retrieval functions.  An integer
array to store the acquired data and the number of samples to retrieve are passed to the retrieval functions.  The
array is returned with a copy of a block of data from the internal circular buffer.  (See the descriptions of
DAQ2Get, DAQ2TGet, DAQ2Tap, and DAQ2TTap for more information on retrieving double-buffered data.)

Using DAQ_Start to Start a Trigger Acquisition Using Single-Buffered Mode

NI-DAQ for Macintosh can be configured for external hardware triggering using DAQ_Config.  If you select
external triggering for the data acquisition operation, a high-to-low edge at the EXTTRIG* I/O connector input
on the NB-MIO-16 or at the STARTTRIG* input on the NB-MIO-16X, or a low-to-high edge at the EXTTRIG
I/O connector input on the Lab and 1200 series initiates the data acquisition operation after the DAQ_Start
call is complete.  Otherwise, DAQ_Start issues a software trigger to initiate the data acquisition operation
before returning.

Data acquisition also can be triggered on the slope and level of the analog input values.  DAQ_Trigger stores
trigger information and enables triggering on analog input values for subsequent single-buffered acquisitions.
When executing DAQ_Trigger, you indicate a trigger channel, slope, and level.  A trigger occurs when the
analog input values of the trigger channel are within the specified slope and level.

If a single-buffered acquisition is started with triggering enabled, DAQ_Start waits for triggering conditions
to be met before collecting the array of sample data.

Pretriggering can be implemented for single-buffered acquisitions.  With pretriggering, data acquisition is
stopped when a specified number of samples have been acquired after the occurrence of an external trigger.  See
the description of DAQ_PreTrig for more information on pretriggering.

Using DAQ_Start to Start a Trigger Acquisition Using Double-Buffered Mode

NI-DAQ for Macintosh can be configured for external hardware triggering for double-buffered mode also by
using DAQ_Config.  External triggering with double-buffering operates differently on the NB-MIO-16,
Lab-NB, and Lab-LC from the way it works on the NB-MIO-16X.

© National Instruments Corporation 6-21 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

If you select external triggering for the data acquisition operation (DAQ_Config) on the NB-MIO-16, Lab and
1200 series, or Lab-LC, a high-to-low edge at the EXTTRIG* I/O connector input initiates the data acquisition
operation after DAQ_Start begins execution.  Otherwise, DAQ_Start issues a software trigger to initiate the
data acquisition operation before returning.

If external triggering is disabled (in DAQ_Config) on the NB-MIO-16X, a software trigger is issued to initiate
each block of the data acquisition operation.  Otherwise, if you select external triggering for the data acquisition
operation, a high-to-low edge at the STARTTRIG* I/O connector input on the NB-MIO-16X, initiates each
block of the data acquisition operation after DAQ_Start begins execution.  When a high-to-low edge is
received, the number of samples in a block (specified in DAQ2Config) are then acquired.  NI-DAQ for
Macintosh then waits for another high-to-low edge before the next block of data is acquired.

Data acquisition also can be triggered on the slope and level of the analog input values.  For double-buffered
acquisition, triggering conditions can be specified for each retrieved block of data.  A trigger channel, slope, and
level can be specified in the DAQ2Get, DAQ2TGet, DAQ2Tap, and DAQ2TTap functions to implement
condition triggering for double-buffered acquisitions.  A trigger occurs when the analog input values of the
trigger channel are within the specified slope and level.

Using the AMUX-64T with DAQ_Start

For details on using the AMUX-64T with Data Acquisition functions on an NB-MIO-16, NB-MIO-16X, or E
Series device, see Appendix C, Using an External Multiplexer.

NuBus DMA

If an NB-DMA-8-G or NB-DMA2800 is not detected in the system, then the NB-MIO-16 and NB-MIO-16X
use interrupts to acquired the data.  Double-buffered acquisitions that use interrupts require a sampling interval
of at least 120 µs.  An overFlowError is returned if no DMA is used and the sampling interval is less than
120 µs for double-buffered acquisitions.  (See Starting a Single-Buffered Acquisition with DAQ_Start if faster
sampling rates are needed for non-DMA acquisitions.)

DAQ_Start initializes a background process to handle storage of A/D conversion samples as they occur.  If an
NB-DMA-8-G or NB-DMA2800 board is detected in the system, a DMA process is initialized to automatically
handle data acquisition on an NB-MIO-16 and NB-MIO-16X.  In either case, the background process handles
incoming data after DAQ_Start has returned.

                                                                                                                                                                                           

DAQ_Trigger

Function
Stores analog trigger configuration information for subsequent single-buffered data acquisition operations.

Synopsis

C Syntax locus i32 DAQ_Trigger(u32 deviceNumber, u32 triggerChannel, u32

triggerSlope, i32 triggerLevel, u32 timeout);

Pascal Syntax function DAQ_Trigger(deviceNumber : i32; triggerChannel : i32;

triggerSlope : i32; triggerLevel : i32; timeout : i32) :

i32;

BASIC Syntax FN DAQ_Trigger(deviceNumber&, triggerChannel&, triggerSlope&,

triggerLevel&, timeout&)

NI-DAQ Software Reference Manual for Macintosh 6-22 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

triggerChannelis the analog input channel number to trigger on in subsequent data acquisitions.  If
triggerSlope is 0, no triggering is performed and this triggerChannelvalue is ignored.  If SCXI is used, this
parameter should be the onboard channel number.

Range:  0 through n-1, where n is the number of analog input channels available.

triggerSlope is the slope to trigger on.  Triggering is disabled by setting triggerSlope to 0.
0:  no triggering is performed.
1:  negative slope.
2:  positive slope.

triggerLevel is the analog input value to trigger on.  If triggerSlope is 0, no triggering is performed and
triggerLevel  is ignored.

Refer to Appendix E, Analog Input Channel and Gain Settings and Voltage Calculation, for the range of values
for triggerLevel

timeout is the number of ticks (60ths of a second) to wait for the occurrence of an analog trigger after data
acquisition starts.  DAQ_Check, SCAN_Check, and Lab_ISCAN_Check return an error if analog input
trigger conditions are not met before the specified number of ticks expire.  If timeout is 0, no time limit for
triggering is imposed, in which case data is not collected until trigger conditions are met.

If SCXI is being used, analog triggering is possible during single-channel acquisitions and during multiple-
channel scanning acquisitions if the SCXI modules are operated in Parallel mode.  Analog triggering is not
possible during multiple-channel scanning if the SCXI modules are operated in Multiplexed mode.  When
analog triggering is used with SCXI, the triggerChannelparameter specified refers to the DAQ board channel
number.  Refer to Chapter 7, SCXI Functions, for more information on SCXI operating modes and channel
assignments.

Analog triggering is enabled for single-buffered data acquisitions (single-channel and multiple-channel scan) by
executing DAQ_Trigger with triggerSlope set to 2 (positive slope) or triggerSlope set to 1 (negative slope).
All subsequent calls to DAQ_Start, SCAN_Start, SCAN_IntStart, or Lab_ISCAN_Start that acquire
data from triggerChannelwait for analog trigger conditions to be met before collecting the requested number of
samples.  An analog trigger occurs when the analog input values are within the specified triggerSlope and
triggerLevel.  If analog triggering is enabled and a data acquisition operation is performed on a channel other
than triggerChannel, then no triggering is performed before the samples are returned.  Executing
DAQ_Trigger with triggerSlope set to 0 disables the analog triggering feature.

Analog triggering is implemented by software on the NB-MIO-16X, NB-MIO-16, PCI-MIO-16XE-50, Lab and
1200 series, DAQCard-500, and DAQCard-700.  NI-DAQ for Macintosh inspects each sampled data point for
the trigger condition.  When the trigger condition is met, the acquisition sequence specified by DAQ_Start,
SCAN_Start, SCAN_IntStart, or Lab_ISCAN_Start begins.  The acquisition of data before the trigger
condition is met does not use any available DMA processor.  Therefore, attempts to use analog triggering at
very high sampling rates may result in an overflow of the FIFO.

Note: DAQ_Trigger permits analog triggering for subsequent SINGLE-BUFFERED (DAQ_Start,
SCAN_Start, and SCAN_IntStart) data acquisition operations.  See DAQ2Get, DAQ2TGet,
DAQ2Tap, and DAQ2TTap for enabling analog triggering with double-buffered (DAQ2) data
acquisition on an NB-MIO-16 or NB-MIO-16X.

                                                                                                                                                                                             

© National Instruments Corporation 6-23 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

DAQ_VScale

Function
Converts the values of an array of acquired binary data and the gain setting for that data to actual input voltages
measured.

Synopsis

C Syntax locus i32 DAQ_VScale(u32 deviceNumber, u32 channel, u32 gain, f64

gainAdjust, f64 offset, u32 count, i16 *readings, f64

*voltages);

Pascal Syntax function DAQ_VScale(deviceNumber : i32; channel : i32; gain : i32;

gainAdjust : f64; offset : f64; count : i32; readings :

pi16; voltages : pf64) : i32;

BASIC Syntax FN DAQ_VScale(deviceNumber&, channel&, gain&, gainAdjust#, offset#,

count&, readings&, voltages&)

Description
channel is the onboard channel or AMUX channel on which the binary data was acquired. For devices other
than E Series devices, this parameter is ignored because the scaling calculation is the same for all of the
channels. However, you are encouraged to pass the correct channel number.

gain is the gain setting at which NI-DAQ acquired the data in binArray. If you used SCXI to take the reading,
this gain parameter should be the product of the gain on the SCXI module channel and the gain used by the
DAQ device.

gainAdjust is the multiplying factor to adjust the gain. Refer to Appendix E, Analog Input Channel and Gain
Settings and Voltage Calculation, for the procedure for determining gainAdjust. If you do not want to do any
gain adjustment, (for example, the ideal gain as specified by the parameter gain) you must set gainAdjust to 1.

offset is the binary offset that needs to be subtracted from reading. Refer to Appendix E, Analog Input Channel
and Gain Settings and Voltage Calculation, for the procedure for determining offset. If you do not want to do
any offset compensation, offset must be set to zero. The data type is double to allow for offset fractional LSBs.
For example, you could use DAQ_Op to acquire many samples from a grounded input channel and average
them to obtain the offset.

count is the length of binArray and voltArray.

binArray is an array of acquired binary data.

voltArray is an array of double-precision values returned by DAQ_VScale and is the voltage representation of
binArray.

Refer to Appendix E, Analog Input Channel and Gain Settings and Voltage Calculation, for the formula used
by DAQ_VScale to calculate voltages from binary readings.

                                                                                                                                                                                           

NI-DAQ Software Reference Manual for Macintosh 6-24 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

Lab_ISCAN_Check

Function
Checks whether the current multiple-channel scanned data acquisition begun by the Lab_ISCAN_Start

function is complete and returns the status, the number of samples acquired to that point, and the scanning order

of the channels in the data array (DAQCard-500, DAQCard-700, and Lab and 1200 series boards only).

Synopsis

C Syntax locus i32 Lab_ISCAN_Check(u32 deviceNumber, u16 *status, u32

*retrieved, u16 *scanOrder);

Pascal Syntax function Lab_ISCAN_Check(deviceNumber : i32; var status : i16; var

retrieved : i32; scanOrder : pi16) : i32;

BASIC Syntax FN Lab_ISCAN_Check(deviceNumber&, status&, retrieved&, scanOrder&)

Description
daqStopped returns an indication of whether the data acquisition has completed.

1: The data acquisition operation has stopped. Either NI-DAQ has acquired all the samples or an error has
occurred.

0: The data acquisition operation is not yet complete.

retrieved indicates the progress of an acquisition. The meaning of retrieved depends on whether you have
enabled pretrigger mode (see DAQ_Pretrig).

If pretrigger mode is disabled, retrieved returns the number of samples collected by the acquisition at the time
of the call to Lab_ISCAN_Check. The value of retrieved increases until it equals the total number of
samples to be acquired, at which time the acquisition terminates.

However, if pretrigger mode is enabled, retrieved returns the offset of the position in your buffer where
NI-DAQ places the next data point when the function acquires. After the value of retrieved reaches count - 1
and rolls over to 0, the acquisition begins to overwrite old data with new data. When you apply a signal to the
stop trigger input, the acquisition collects an additional number of samples specified by ptsAfterStoptrig in the
call to DAQ_Pretrig and then terminates. When Lab_ISCAN_Check returns a status of 1, retrieved
contains the offset of the oldest data point in the array (assuming that the acquisition has written to the entire
buffer at least once). In pretrigger mode, Lab_ISCAN_Check automatically rearranges the array upon
completion of the acquisition so that the oldest data point is at the beginning of the array. Thus, retrieved
always equals 0 upon completion of a pretrigger mode acquisition. Since the stop trigger can occur in the
middle of a scan sequence, the acquisition can end in the middle of a scan sequence. So, when the function
rearranges the data in the buffer, the first sample may not belong to the first channel in the scan sequence. You
can examine the finalScanOrder array to find out the way the data is arranged in the buffer.

finalScanOrder is an array that indicates the scan channel order of the data in the buffer passed to
Lab_ISCAN_Start. The size of finalScanOrder must be at least equal to the number of channels scanned.
This parameter is valid only when NI-DAQ returns daqStopped as 1 and is useful only when you enable
pretrigger mode.

If you do not use pretrigger mode, the values contained in finalScanOrder are, in single-ended mode, n-1, n-2,
...1, 0 to 0, in that order, and in differential mode, 2*(n-1), 2*(n-2), ..., 2, 0, in that order, where n is the number
of channels scanned. For example, if you scanned three channels in single-ended mode, the finalScanOrder
returns:

finalScanOrder[0] = 2.

finalScanOrder[1] = 1.

finalScanOrder[2] = 0.

© National Instruments Corporation 6-25 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

So the first sample in the buffer belongs to channel 2, the second sample belongs to channel 1, the third sample
belong to channel 0, the fourth sample belongs to channel 2, and so on. This is the scan order expected from the
device and finalScanOrder is not useful in this case.

If you use pretrigger mode, the order of the channel numbers in finalScanOrder depends on where in the scan
sequence the acquisition ended. This can vary because the stop trigger can occur in the middle of a scan
sequence, which would cause the acquisition to end in the middle of a scan sequence so that the oldest data
point in the buffer can belong to any channel in the scan sequence. Lab_ISCAN_Check rearranges the buffer
so that the oldest data point is at index 0 in the buffer. This rearrangement causes the scanning order to change.
This new scanning order is returned by finalScanOrder. For example, if you scanned three channels, the
original scan order is channel 2, channel 1, channel 0, channel 2, channel 1, channel 0, and so on. However,
after the stop trigger, if the acquisition ends after taking a sample from channel 1, the oldest data point belongs
to channel 0. So finalScanOrder returns:

finalScanOrder[0] = 0.

finalScanOrder[1] = 2.

finalScanOrder[2] = 1.

So the first sample in the buffer belongs to channel 0, the second sample belongs to channel 2, the third sample
belongs to channel 1, the fourth sample belongs to channel 0, and so on.

Lab_ISCAN_Check checks the current background data acquisition operation to determine whether it has
completed and returns the number of samples acquired at the time that you called Lab_ISCAN_Check. If the
operation is complete, Lab_ISCAN_Check sets daqStopped = 1. Otherwise, daqStopped is set to 0. Before
Lab_ISCAN_Check returns daqStopped = 1, it calls DAQ_Clear, allowing another Start call to execute
immediately.

If Lab_ISCAN_Check returns an overFlowError or an overRunError, NI-DAQ has terminated the data
acquisition operation because of lost A/D conversions due to a sample rate that is too high (sample interval was
too small). An overFlowError indicates that the A/D FIFO memory overflowed because the data acquisition
servicing operation was not able to keep up with sample rate. An overRunError indicates that the data
acquisition circuitry was not able to keep up with the sample rate. Before returning either of these error codes,
Lab_ISCAN_Check calls DAQ_Clear to terminate the operation and reinitialize the data acquisition
circuitry.

                                                                                                                                                                                             

NI-DAQ Software Reference Manual for Macintosh 6-26 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

Lab_ISCAN_Start

Function
Initiates a multiple-channel scanned data acquisition operation and stores its input in an array (DAQCard-500,
DAQCard-700, and Lab and 1200 series only).

Synopsis

C Syntax locus i32 Lab_ISCAN_Start(u32 deviceNumber, u32 channelCount, u32

gain, i16 *buffer, u32 count, u32 timebase, u32

sampleInterval, u32 scanInterval);

Pascal Syntax function Lab_ISCAN_Start(deviceNumber : i32; channelCount : i32;

gain : i32; buffer : pi16; count : i32; timebase : i32;

sampleInterval : i32; scanInterval : i32) : i32;

BASIC Syntax FN Lab_ISCAN_Start(deviceNumber&, channelCount&, gain&, buffer&,

count&, timebase&, sampleInterval&, scanInterval&)

Description
channelCount is the number of channels to be scanned in a single scan sequence. The value of this parameter
also determines which channels NI-DAQ scans because these supported devices have a fixed scanning order.
The scanned channels range from channelCount - 1 to channel 0. If you are using SCXI modules with
additional multiplexers, you must scan the appropriate analog input channels on the DAQ device that
corresponds to the SCXI channels you want. You should select the SCXI scan list using SCXI_SCAN_Setup
before you call this function.

Range:
Lab and 1200 Series:

1 through 4 in differential mode (except on the Lab-NB and Lab-LC)
1 through 8 in single-ended mode.

DAQCard-500
0 through 7 (single-ended)

DAQCard-700
0 through 15 (single-ended)
0 through 7 (differential)

gain is the gain setting to be used for the scanning operation. NI-DAQ applies the same gain to all the channels
scanned. This gain setting applies only to the DAQ device; if you are using SCXI modules with additional gain
selection, you must establish any gain you want at the SCXI module either by setting jumpers on the module or
by calling SCXI_Set_Module_Gain. The following gain settings are valid: 1, 2, 5, 10, 20, 50, 100. If you
use an invalid gain setting, NI-DAQ returns an error.

buffer is an integer array. buffer must have a length equal to or greater than count.

count is the total number of samples to be acquired (that is, the number of A/D conversions to be performed).
For double-buffered acquisitions, count must be even.

Range: 3 through 232 - 1

timebase is the timebase, or resolution, to be used for the sample-interval counter. The sample-interval counter
controls the time that elapses between acquisition of samples within a scan sequence.

timebase has the following possible values:
1: 1 MHz clock used as timebase (1 µs resolution).
2: 100 kHz clock used as timebase (10 µs resolution).
3: 10 kHz clock used as timebase (100 µs resolution).
4: 1 kHz clock used as timebase (1 ms resolution).
5: 100 Hz clock used as timebase (10 ms resolution).

If sample-interval timing is to be externally controlled, NI-DAQ ignores timebase and the parameter can be any
value.

© National Instruments Corporation 6-27 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

sampleInterval indicates the length of the sample interval (that is, the amount of time to elapse between each
A/D conversion within a scan sequence).

Range: 2 through 65,535.

The sample interval is a function of the timebase resolution. NI-DAQ determines the actual sample interval in
seconds by the following formula:

sampleInterval * (sample timebase resolution)

where the sample timebase resolution is equal to one of the values of timebase as specified above. For example,
if sampleInterval = 25 and timebase = 2, the actual sample interval is 25 * 10 µs = 250 µs. The total sample

interval (the time to complete one scan sequence) in seconds is the actual sample interval * number of channels
scanned. If the sample interval is to be externally controlled by conversion pulses applied to the EXTCONV*
input, NI-DAQ ignores the sampleInterval and the parameter can be any value.

scanInterval indicates the length of the scan interval. This is the amount of time to elapse between scans. The
function performs a scan each time NI-DAQ samples all channels in the scan sequence. Therefore, scanInterval
must be greater than or equal to sampleInterval * channelCount +5 µs.  This value must be 0 for the Lab-LC
and Lab-NB because scanInterval is not supported for these boards.

Range: 0 and 2 through 65,535.
A value of 0 disables interval scanning.

If you did not specify external sample-interval timing by the DAQ_Config call, NI-DAQ sets the sample-
interval counter to the specified sampleInterval and timebase, and sets the sample counter up to count the
number of samples acquired and to stop the data acquisition process when the number of samples acquired
equals count. If you have specified external sample-interval timing, the data acquisition circuitry relies on
pulses received on the EXTCONV* input to initiate individual A/D conversions.

Lab_ISCAN_Start initializes a background data acquisition process to handle storing of A/D conversion
samples into the buffer as NI-DAQ acquires them. When you use posttrigger mode (with pretrigger mode
disabled), the process stores up to count A/D conversion samples into the buffer and ignores any subsequent
conversions. The order of the scan is from channel n-1 to channel 0, where n is the number of channels being
scanned. For example, if channelCount is 3 (that is, you are scanning three channels), NI-DAQ stores the data
in the buffer in the following order:

First sample from channel 2, first sample from channel 1, first sample from channel 0, second sample from
channel 2, and so on.

You cannot make the second call to Lab_ISCAN_Start without terminating this background data acquisition
process. If a call to Lab_ISCAN_Check returns daqStopped = 1, the samples are available and NI-DAQ
terminates the process. In addition, a call to DAQ_Clear terminates the background data acquisition process.
Notice that if a call to Lab_ISCAN_Check returns overFlowError or overRunError, or daqStopped = 1,
the process is automatically terminated and there is no need to call DAQ_Clear.

If you enable pretrigger mode, Lab_ISCAN_Start initiates a cyclical acquisition that continually fills the
buffer with data, wrapping around to the start of the buffer once NI-DAQ has written to the entire buffer. When
you apply the signal at the stop trigger input, Lab_ISCAN_Start acquires an additional number of samples
specified by the ptsAfterStoptrig parameter in DAQ_StopTrigger_Config and then terminates.

Since the trigger can occur at any point in the scan sequence, the scanning operation can end in the middle of a
scan sequence. See the description for Lab_ISCAN_Check to determine how NI-DAQ rearranges the buffer
after the acquisition ends. When you enable pretrigger mode, the length of the buffer, which is greater than or
equal to count, should be an integral multiple of channelCount.

If you have selected external start triggering of the data acquisition operation, a low-to-high edge at the
EXTTRIG I/O connector input initiates the data acquisition operation after the Lab_ISCAN_Start call is
complete. Otherwise, Lab_ISCAN_Start issues a software trigger to initiate the data acquisition operation
before returning.

                                                                                                                                                                                             

NI-DAQ Software Reference Manual for Macintosh 6-28 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

SCAN_Check

Function
Checks to see whether the current scanned data acquisition operation is complete, and returns its status.

Synopsis

C Syntax locus i32 SCAN_Check(u32 deviceNumber, u16 *status);

Pascal Syntax function SCAN_Check(deviceNumber : i32; var status : i16) : i32;

BASIC Syntax FN SCAN_Check(deviceNumber&, status&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

status returns an indication of whether the data acquisition operation has completed.
1: the data acquisition operation is complete.
0: the scanned data acquisition operation is not yet complete.

SCAN_Check checks the current background scanned data acquisition operation to determine whether it has
completed.  If the operation is complete, SCAN_Check sets status to 1.  Otherwise, status is set to 0.  If the
acquisition is single-buffered, then the data is available in the buffer when status is 1.  If the acquisition is
double-buffered in continuous mode, status will always return 0.  If the acquisition is double-buffered in
noncontinuous mode, status will return 1 only when the entire acquisition is complete.

If SCAN_Check returns an overFlowError or an overRunError, the data acquisition operation may never
complete because of lost A/D conversions due to samples being acquired too rapidly (sample interval was too
small).  An overFlowError indicates that the A/D FIFO overflowed because the data acquisition servicing
operation was not able to keep up with the sample rate.  An overRunError indicates that the data acquisition
circuitry was not able to keep up with the sample rate.  If one of these errors occurs, then SCAN_Check
executes DAQ_Clear to terminate the operation and to clear all error flags.

If NI-DAQ for Macintosh is configured for double-buffered mode, an overWriteErr can occur.  An
overWriteErr indicates that the large circular acquisition buffer used for double-buffered acquisitions
overwrote acquired data before it was retrieved by DAQ2Get, DAQ2TGet, DAQ2Tap, or DAQ2TTap.  An
overwrite error can be corrected by increasing the size of the large acquisition buffer, retrieving more data each
time, retrieving data more often, decreasing the size of the smaller dividing blocks, or reducing the sampling
rate.  The large acquisition buffer and smaller dividing block sizes are configured in DAQ2Config.

An error occurs if analog triggering has been enabled (see DAQ_Trigger) and analog trigger conditions are
not met before the specified timeout value expires.

                                                                                                                                                                                           

© National Instruments Corporation 6-29 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

SCAN_Demux

Function
Demultiplexes data acquired by a SCAN operation into separate arrays for each channel (C and Pascal only).

Synopsis

C Syntax locus i32 SCAN_Demux(u32 deviceNumber, i16 *inputBuffer, u32 count,

i16 **outputBufferArray);

Pascal Syntax function SCAN_Demux(deviceNumber : i32; inputBuffer : pi16; count

: i32; outputBufferArray : ppi16) : i32;

BASIC Syntax FN SCAN_Demux(deviceNumber&, inputBuffer&, count&,

outputBufferArray&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

inputBuffer is a pointer to an array returned by a SCAN operation.

count is the number of samples contained in inputBuffer.

outputBufferArray is an array of pointers to integer buffers.  The length of outputBufferArray is the total
number of scanned channels as specified in the latest Lab_ISCAN_Start or SCAN_Setup call.  The length
of each integer array is expected to be count divided by the total number of scanned channels.

Note: The channelCount and channel[i] values specified in SCAN_Setup refer to the NB-MIO-16 or
NB-MIO-16X onboard channel numbers (from 0 through 15).  If one or more external boards
(AMUX-64Ts) are used, then the total number of scanned channels equals (four-to-one multiplexer)

* (the number of onboard channels scanned) * (the number of external multiplexer boards), or the

total number of scanned channels equals (4) * (channelCount) * (muxMode).  If SCXI was used to

acquire the data in Multiplexed mode, the total number of channels scanned was determined by the
channelCount array in the SCXI_SCAN_Setup call.

SCAN_Demux demultiplexes the buffer returned by a SCAN operation by copying the A/D conversions taken
from each channel in the scan sequence into a separate buffer for each channel.  Figures 6-2 and 6-3 show how
SCAN_Demux copies from inputBuffer to the separate buffers pointed to by outputBufferArray.

NI-DAQ Software Reference Manual for Macintosh 6-30 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

CH1 #1

CH3 #1

CH4 #1

CH7 #1

CH4 #2

CH7 #2

CH3 #2

CH1 #2

CH1 #3

CH3 #3

CH1 #1

CH1 #2

CH1 #3 CH3 #3

CH3 #2

CH3 #1 CH4 #1

CH4 #2

CH7 #1

CH7 #2

PTR1 PTR2 PTR3 PTR4

10 2 3

0

1

2

0

1

2

0

1

0

1

0

1

2

3

4

5

6

7

8

9 num_chans

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

= 4

Parray

Buffer

Figure 6-2.  SCAN_Demux Buffer Translation for the NB-MIO-16 and NB-MIO-16X

Figure 6-2 shows the case for channelCount = 4 and for a channel = {1, 3, 4, 7} using an NB-MIO-16 or
NB-MIO-16X.  CH1 #1 represents the first sample for channel 1, while CH3 #2 represents the second sample
for channel 3, and so on.  outputBufferArray is supplied by the user and contains four elements labeled PTR1,
PTR2, PTR3, and PTR4.  PTR1 points to the integer buffer for the first channel in the scan sequence (in this
case channel 1).  PTR2 points to the second channel in the scan sequence, and so on.

CH1 #1

CH0 #1

CH3 #1

CH2 #1

CH3 #2

CH2 #2

CH0 #2

CH1 #2

CH1 #3

CH0 #3

CH1 #1

CH1 #2

CH1 #3 CH0 #3

CH0 #2

CH0 #1 CH3 #1

CH3 #2

CH2 #1

CH2 #2

PTR1 PTR2 PTR3 PTR4

10 2 3

0

1

2

0

1

2

0

1

0

1

0

1

2

3

4

5

6

7

8

9 num_chans

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

= 4

Parray

Buffer

Figure 6-3.  SCAN_Demux Buffer Translation for the Lab and 1200 Series

© National Instruments Corporation 6-31 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

Figure 6-3 shows the case for channelCount = 4 and scan_order = {1, 0, 3, 2} returned by
Lab_ISCAN_Check using a Lab and 1200 series board.  CH3 #1 represents the first sample for channel 3,
while CH0 #2 represents the second sample for channel 0, and so on.  outputBufferArray is supplied by the
user and contains four elements labeled PTR1, PTR2, PTR3, and PTR4.  PTR1 points to the integer buffer for
the first channel in the final scan order (in this case, channel 1.  PTR2 points to the second channel in the final
scan order, and so on.

Once SCAN_Demux is used to demultiplex the buffer returned by the SCAN operation, DAQ_Scale can be
used to scale each channel buffer.

                                                                                

SCAN_IntStart

Function
Initiates a multiple-channel scanned data acquisition operation with internal scanning.  This function can also be
used to define a scan internal for the NB-MIO-16 under certain conditions that are defined in the section
Interval Scanning with the NB-MIO-16.

Synopsis

C Syntax locus i32 SCAN_IntStart(u32 deviceNumber, i16 *buffer, u32 count,

u32 sampleTimebase, u32 sampleInterval, u32 scanTimebase,

u32 scanInterval);

Pascal Syntax function SCAN_IntStart(deviceNumber : i32; buffer : pi16; count :

i32; sampleTimebase : i32; sampleInterval : i32;

scanTimebase : i32; scanInterval : i32) : i32;

BASIC Syntax FN SCAN_IntStart(deviceNumber&, buffer&, count&, sampleTimebase&,

sampleInterval&, scanTimebase&, scanInterval&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

buffer is a buffer of length count.  When SCAN_Check returns status = 1, then buffer contains the acquired
data.  The elements of buffer are the results of each A/D conversion in the scanned data acquisition operation.

Note: If NI-DAQ for Macintosh has been configured for double-buffered mode (see DAQ2Config), then
this buffer parameter is not used and must be 0.  The larger buffer allocated by DAQ2Config is
used as the acquisition buffer for double-buffered acquisitions.  DAQ2Get, DAQ2TGet, DAQ2Tap,
and DAQ2TTap can then be used to acquire blocks of data from the double-buffered acquisition in
progress.  (See Starting a Double-Buffered Acquisition with SCAN_IntStart.)

count is the number of samples to be acquired (that is, the number of A/D conversions to be performed).
Range: 3 through 231-1.  (With DMA the range is limited to 3 through 223.) (except the E Series)

2 through 224 * (total number of channels scanned) or 232-1, whichever is less (E Series)

count must be an integer multiple of the total number of channels scanned.  count refers to the total number of
A/D conversions to be performed.

The channelCount and channel[i] values specified in SCAN_Setup refer to the MIO onboard channel
numbers (from 0 through 15).  If one or more external boards (AMUX-64Ts) are used, then the total number of
scanned channels equals (four-to-one multiplexer) * (the number of onboard channels scanned) * (the number

of external multiplexer boards), or the total number of scanned channels equals (4) * (channelCount) *
(muxMode).  If SCXI was used to acquire the data in Multiplexed mode, the total number of channels scanned
was determined by the channelCount array in the SCXI_SCAN_Setup call.

NI-DAQ Software Reference Manual for Macintosh 6-32 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

Note: If NI-DAQ for Macintosh is configured for CONTINUOUS double-buffered mode (see
DAQ2Config), then this count parameter is ignored and should be 0.  In continuous mode, the
total number of samples to acquire is not specified and the data acquisition runs continuously until
you stop the process by executing DAQ_Clear or DAQ2Clear.  (See Starting a Double-Buffered
Acquisition with SCAN_IntStart.)

sampleTimebase is the resolution to use for the sample-interval counter.  If sample-interval timing is to be
externally controlled, the sampleTimebase parameter is ignored and can be any value.

scanTimebase is the resolution to use for the scan-interval counter.

sampleTimebase and scanTimebase have the following possible values:

Most devices:
0:  External clock used as timebase (SOURCE5 input).
1:  1-MHz clock used as timebase (1-µs resolution).
2:  100-kHz clock used as timebase (10-µs resolution).
3:  10-kHz clock used as timebase (100-µs resolution).
4:  1-kHz clock used as timebase (1-ms resolution).
5:  100-Hz clock used as timebase (10-ms resolution).

E Series:
-3:  20-MHz clock used as timebase (50-ns resolution).
0:  If you use this function with the timebase set at 0, you must call Select_Signal with signal set to

ND_IN_SCAN_CLOCK_TIMEBASE (not ND_IN_CHANNEL_CLOCK_TIMEBASE), and source set to
a value other than ND_INTERNAL_20_MHZ and ND_INTERNAL_100_KHZ before calling
DAQ_Start with timebase set to 0; otherwise, DAQ_Start will select low-to-high transitions on the
PFI 8 I/O connector pin as your external timebase.

2:  100 kHz clock used as timebase (10 µs resolution).

sampleInterval indicates the length of the sample interval (that is, the amount of time to elapse between each
A/D conversion).

Range: 2 through 65,536.

The sample interval is a function of the timebase resolution.  The actual sample interval in seconds is
determined by the following formula:

sampleInterval * (timebase resolution)

where the timebase resolution for each value of timebase is as indicated earlier in this function description; that
is, if sampleInterval = 25 and timebase = 2, then the sample interval is 25 * 10 µs = 250 µs.  If the sample

interval is to be externally controlled, the sampleInterval parameter is ignored and can be any value.

scanInterval indicates the length of the scan interval (that is, the amount of time to elapse between samples on
any one channel).

Range: 2 through 65,536.
2 through 224 (E Series)

The scan interval is a function of the timebase resolution.  The actual scan interval in seconds is determined by
the following formula:

scanInterval * (scan timebase resolution)

where the scan timebase resolution for each value of timebase is as specified earlier in this function description.
That is, if scanInterval = 25 and scanTimebase = 2, then the scan interval is 25 * 10 µs = 250 µs.  If the

samples interval is to be externally controlled, the scanInterval parameter is ignored and can be any value.

© National Instruments Corporation 6-33 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

Interval scanning has the advantage of simulating simultaneous sampling of a group of channels once every
scan interval.  A comparison of the scan interval and the sample interval is shown in Figure 6-4.

Scan Intervals

Sample 
Interval

Channel 0

Channel 1

Sample 
Interval

Figure 6-4.  Scan and Sample Intervals

If a DMA is not detected in the system, then interrupts are used to acquire the data.  Double-buffered
acquisitions using interrupts require a sampling interval of at least 120 µs.  An overFlowError is returned if no
DMA is used and the sampling interval is less than 120 µs for double-buffered acquisitions.  (See Starting a
Single-Buffered Acquisition with SCAN_IntStart if faster sampling rates are needed for non-DMA
acquisitions.)

Note: For scanned data acquisition, the sample interval still refers to the period of time between each A/D
conversion.  The sample interval per channel is equal to (sample interval) * (channelCount); that is,

each entry in the scan sequence is sampled once every (sample interval) * (channelCount) seconds.

SCAN_IntStart initiates a multiple-channel data acquisition either in single-buffered or double-buffered
mode.  For both modes, SCAN_IntStart initializes the Mux-Gain Memory Table to point to the start of the
scan sequence as specified by SCAN_Setup.  If external sample interval timing is not selected in the
DAQ_Config call, the sample-interval counter is set to the specified sampleInterval and timebase
parameters.  If external sample-interval timing has been selected, the data acquisition circuitry relies on pulses
received on the EXTCONV* input to initiate individual A/D conversions, and the sampleInterval and
timebase parameters are ignored.

SCAN_IntStart initializes a background process to handle storage of A/D conversions as they occur.  If a
DMA board is detected in the system, a DMA process is initialized to handle data acquisition.  If no DMA
board is detected, an interrupt routine is initialized to handle data acquisition.  In either case, the background
process handles incoming data after SCAN_IntStart has returned.  The acquired samples are stored into the
buffer with the channel scan sequence data interleaved; that is, the first sample is the conversion from the first
channel, the second sample is the conversion from the second channel, and so on.

If external gating has been selected for the data acquisition operation, a signal at the EXTGATE I/O connector
input controls the sample-interval counter.  When the EXTGATE signal is high, the sample-interval counter is
enabled, causing A/D conversions to occur.  When the EXTGATE signal is low, the sample-interval counter is
suspended, and no A/D conversions occur.  External gating is available only on the NB-MIO-16.

NI-DAQ Software Reference Manual for Macintosh 6-34 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

Starting a Single-Buffered Acquisition with SCAN_IntStart

In a single-buffered acquisition, the SCAN_IntStart call specifies the number of samples to acquire (count)
and an integer array to store the acquired data (buffer).  After SCAN_IntStart has returned, the background
process stores up to count A/D conversions in the buffer and ignores any subsequent conversions.  The
acquired samples are available when the SCAN_Check call returns status = 1.  A second call to
SCAN_IntStart cannot be made without terminating this background process.  If a call to SCAN_Check
returns status = 1, the samples are available and the process is terminated.  A call to DAQ_Clear also
terminates a background data acquisition process.

Starting a Double-Buffered Acquisition with SCAN_IntStart

In a double-buffered acquisition, data can be returned from an acquisition in progress without interrupting the
acquisition.  NI-DAQ for Macintosh can be configured for double-buffered mode by executing DAQ2Config
before SCAN_IntStart is called.  DAQ2Config allocates a large internal circular buffer for the data storage
and configures subsequent data acquisitions for double-buffered mode.

In double-buffered mode, SCAN_IntStart ignores the buffer parameter.  Once SCAN_IntStart
completes with error = 0, NI-DAQ for Macintosh acquires and stores the A/D conversions in the large buffer
allocated by DAQ2Config.  This buffer is treated as a circular buffer and is continually filled with data until
count samples are acquired.  If continuous double-buffered mode has been specified in DAQ2Config, then the
total number of samples is not specified and the count value in SCAN_IntStart is ignored.  The data
acquisition runs continuously until the process is stopped by executing DAQ_Clear or DAQ2Clear.

Smaller blocks of data, ranging in size from 1 sample to the number of samples in the buffer, can be retrieved
from the large internal buffer without interrupting the acquisition by repeatedly executing the DAQ2Get,
DAQ2TGet, DAQ2Tap, and DAQ2TTap retrieval functions.  An integer array to store the acquired data and the
number of samples to retrieve are passed to the retrieval functions.  The array is returned with a copy of a block
of data from the internal circular buffer.  (See the descriptions of DAQ2Get, DAQ2TGet, DAQ2Tap, and
DAQ2TTap for more information on retrieving double-buffered data.)

Using SCAN_IntStart to Start a Trigger Acquisition Using Single-Buffered Mode

NI-DAQ for Macintosh can be configured for external hardware triggering using DAQ_Config.  If you select
external triggering for the data acquisition operation, a high-to-low edge at the STARTTRIG* input on the
NB-MIO-16X initiates the data acquisition operation after the SCAN_IntStart call is complete.  Otherwise,
SCAN_IntStart issues a software trigger to initiate the data acquisition operation before returning.

Data acquisition also can be triggered on the slope and level of the analog input values.  DAQ_Trigger stores
trigger information and enables triggering on analog input values for subsequent single-buffered acquisitions.
When executing DAQ_Trigger, you indicate a trigger channel, slope, and level.  A trigger occurs when the
analog input values of the trigger channel are within the specified slope and level.

If a single-buffered acquisition is started with triggering enabled, SCAN_IntStart waits for trigger
conditions to be met before collecting the array of sample data.

Pretriggering can be implemented on the NB-MIO-16X for single-buffered acquisitions.  With pretriggering, a
data acquisition is stopped when a specified number of samples have been acquired after the occurrence of an
external stop trigger.  See the description of DAQ_PreTrig for more information on pretriggering with the
NB-MIO-16X.

© National Instruments Corporation 6-35 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

Using SCAN_IntStart to Start a Trigger Acquisition Using Double-Buffered Mode

NI-DAQ for Macintosh can be configured for external hardware triggering for double-buffered mode by using
DAQ_Config.

If external triggering is disabled (in DAQ_Config) on the NB-MIO-16X, a software trigger is issued to initiate
each block of the data acquisition operation.  Otherwise, if you select external triggering for the data acquisition
operation, a high-to-low edge at the STARTTRIG* I/O connector input on the NB-MIO-16X, initiates each
block of the data acquisition operation after SCAN_IntStart begins execution.  When a high-to-low edge is
received, the number of samples in a block (specified in DAQ2Config) are then acquired.  NI-DAQ for
Macintosh then waits for another high-to-low edge before the next block of data is acquired.

Data acquisition also can be triggered on the slope and level of the analog input values.  For double-buffered
acquisition, triggering conditions can be specified for each retrieved block of data.  A trigger channel, slope, and
level can be specified in the DAQ2Get, DAQ2TGet, DAQ2Tap, and DAQ2TTap functions to implement
condition triggering for double-buffered acquisitions.  A trigger occurs when the analog input values of the
trigger channel are within the specified slope and level.

Once the multiple-channel buffer of data is acquired, DAQ_Scale can be used to scale the 16-bit values in the
buffer array to the actual voltages measured.  DAQ_Scale must be passed a one-dimensional array of data
acquired from one channel.

Interval Scanning with the NB-MIO-16

To perform multiple-channel scanned acquisitions using the SCXI-1140 module, interval scanning must be
used.  If an SCXI_SCAN_Setup call has been made to set up an SCXI scan that includes an SCXI-1140
module, then the SCAN_IntStart call is able to implement interval scanning on the NB-MIO-16.  In this
special case, the sample timebase and the scan timebase specified must be the same.

                                                                                                                                                                                             

SCAN_Setup

Function
Initializes the circuitry on the NB-MIO-16, E Series or NB-MIO-16X for a scanned data acquisition operation.
Initialization includes storing a table of the channel sequence and gain setting for each channel.

Synopsis

C Syntax locus i32 SCAN_Setup(u32 deviceNumber, u32 channelCount, u16

*channels, u16 *gains, u32 muxMode);

Pascal Syntax function SCAN_Setup(deviceNumber : i32; channelCount : i32;

channels : pi16; gains : pi16; muxMode : i32) : i32;

BASIC Syntax FN SCAN_Setup(deviceNumber&, channelCount&, channels&, gains&,

muxMode&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

channelCount indicates the number of onboard channels to be scanned during the data acquisition scan
operation.

Range:
2, 4, 8, 16 (NB-MIO-16)
1 through 16 (NB-MIO-16X)
1 through 512 (E Series)

NI-DAQ Software Reference Manual for Macintosh 6-36 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

channel is an integer array of length channelCount that contains the channel scan sequence to be followed.
channel can contain any onboard analog input channel number from 0 through 15 in any order.  For example, if
channelCount is 4 and if the second element in the channel is 7, then the second channel to be scanned is
analog input channel 7 and four analog input channels are scanned.

Note: channelCount and channel[i] values refer to the onboard channel numbers (range:  0 through 15).

If one or more external boards (AMUX-64T) are used, then the total number of scanned channels
equals (four-to-one multiplexer) * (the number of onboard channels scanned) * (the number of

external multiplexer boards), or the total number of scanned channels equals (4) * (channelCount)

* (muxMode).  For example, if one external board (AMUX-64T) is used and eight onboard

channels are scanned, then the total number of channels is equal to (4) * (8) * (1) = 32.

If SCXI is being used, you must scan the appropriate analog input channels on the DAQ board that
correspond to the desired SCXI channels.  Please refer to Chapter 7, SCXI Functions, for more
information on SCXI channel assignments.

gain is an integer array of length channelCount that contains the gain setting to be used for each channel
specified in channel.  This gain setting applies only to the DAQ board; if SCXI is used, any gain desired at the
SCXI module must be established either by setting jumpers on the module or by calling SCXI_Set_Gain.

Refer to Appendix E, Analog Input Channel and Gain Settings and Voltage Calculation, for valid gain settings.

For example, if channelCount is 8 and the sixth element in the gain is 10 (assuming an NB-MIO-16L or
NB-MIO-16XL board), then when the sixth channel is scanned, the gain circuitry is set to a gain of 10 and eight
analog input channels are scanned.  Notice also that gain[i] corresponds to channel[i].

Another example (using C) is, if gain[2] = 100 and channel[2] = 3, then the third channel to be scanned is
analog input channel 3 and its gain is set to 100.

muxMode indicates the number of external multiplexer boards connected to the MIO board.  An external
multiplexer board (AMUX-64T) can be used to expand the number of analog input signals that can be measured
with the MIO board.  (See the AMUX-64T User Manual for more information on the external multiplexer
board.)  This parameter is not used when SCXI is used.

Valid values:
0, 1, 2, and 4.

The default value is 0.

Note: The default value of muxMode was changed in the Version 2.0 of NI-DAQ for Macintosh.  If no
AMUX-64T boards are being used, then muxMode should be 0.

SCAN_Setup stores the channelCount, channel, and gain in the Mux-Gain Memory Table on the MIO board.
This memory table is used during scanning operations to automatically sequence through an arbitrary set of
analog input channels and to automatically change gains during scanning.

SCAN_Setup needs to be called initially to set up a scan sequence for scanned operations and needs to be
subsequently called only when you want a different scan sequence.  If DAQ_Start or AI_Read is called, the
Mux-Gain Memory Table on the MIO board is modified; therefore, SCAN_Setup should be used again after
these calls to reinitialize the scan sequence.

                                                                                                                                                                                           

© National Instruments Corporation 6-37 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

SCAN_Start

Function
Initiates a multiple-channel scanned data acquisition operation on an MIO board.

Synopsis

C Syntax locus i32 SCAN_Start(u32 deviceNumber, i16 *buffer, u32 count, u32

timebase, u32 sampleInterval);

Pascal Syntax function SCAN_Start(deviceNumber : i32; buffer : pi16; count :

i32; timebase : i32; sampleInterval : i32) : i32;

BASIC Syntax FN SCAN_Start(deviceNumber&, buffer&, count&, timebase&,

sampleInterval&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

buffer is a buffer of length count.  When SCAN_Check returns status = 1, then buffer contains the acquired
data.  The elements of buffer are the results of each A/D conversion in the scanned data acquisition operation.

Note: If NI-DAQ for Macintosh has been configured for double-buffered mode (see DAQ2Config), then
this buffer parameter is not used and must be 0.  The larger buffer allocated by DAQ2Config is
used as the acquisition buffer for double-buffered acquisitions.  DAQ2Get, DAQ2TGet, DAQ2Tap,
and DAQ2TTap can then be used to acquire blocks of data from the double-buffered acquisition in
progress.  (See Starting a Double-Buffered Acquisition with SCAN_Start.)

count is the number of samples to be acquired (that is, the number of A/D conversions to be performed).
Range: 3 through 231-1.  (With DMA, the range is limited to 3 through 223.) (Except E Series)

2 through 224 * (total number of channels scanned) or 232-1, whichever is less (E Series)

count must be an integer multiple of the total number of channels scanned (channelCount).  count refers to the
total number of A/D conversions to be performed; therefore, the number of samples acquired from each channel
is equal to count divided by channelCount.

Note: If NI-DAQ for Macintosh is configured for continuous double-buffered mode (see DAQ2Config),
then the count parameter is ignored and should be 0.  In continuous mode, the total number of
samples to acquire is not specified and the data acquisition runs continuously until you stop the
process by executing DAQ_Clear or DAQ2Clear.  (See Starting a Double-Buffered Acquisition with
SCAN_Start.)

timebase is the resolution to use for the sample-interval counter.  timebase has the following possible values:

Most devices:
0:  External clock used as timebase (SOURCE5 input).
1:  1-MHz clock used as timebase (1-µs resolution).
2:  100-kHz clock used as timebase (10-µs resolution).
3:  10-kHz clock used as timebase (100-µs resolution).
4:  1-kHz clock used as timebase (1-ms resolution).
5:  100-Hz clock used as timebase (10-ms resolution).

NI-DAQ Software Reference Manual for Macintosh 6-38 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

E Series:
-3:  20-MHz clock used as timebase (50-ns resolution).
0:  If you use this function with the timebase set at 0, you must call Select_Signal with signal set to

ND_IN_SCAN_CLOCK_TIMEBASE (not ND_IN_CHANNEL_CLOCK_TIMEBASE), and source set to
a value other than ND_INTERNAL_20_MHZ and ND_INTERNAL_100_KHZ before calling
DAQ_Start with timebase set to 0; otherwise, DAQ_Start will select low-to-high transitions on the
PFI 8 I/O connector pin as your external timebase.

2:  100 kHz clock used as timebase (10 µs resolution).

If sample-interval timing is to be externally controlled, the timebase parameter is ignored and can be any value.
When using external timing sources with the NB-MIO-16X, be sure to call MIO_16X_Config before starting
the acquisition.

sampleInterval is the length of the sample interval (that is, the amount of time to elapse between each A/D
conversion).

Range: 2 through 65,536.
2 through 224 ( E Series)

The sample interval is a function of the timebase resolution.  The actual sample interval in seconds is
determined by the following formula:

sampleInterval * (timebase resolution)

where the timebase resolution for each value of timebase is as indicated above.  That is, if sampleInterval = 25
and timebase = 2, then the sample interval is 25 * 10 µs = 250 µs.  If the sample interval is to be externally

controlled, the sampleInterval parameter is ignored and can be any value.

If an NB-DMA-8-G or NB-DMA2800 is not detected in the system, then interrupts are used to acquire the data.
Double-buffered acquisitions using interrupts require a sampling interval of at least 120 µs.  An overFlowError
is returned if no DMA is used and the sampling interval is less than 120 µs for double-buffered acquisitions.
(See Starting a Single-Buffered Acquisition with SCAN_Start if faster sampling rates are needed for non-DMA
acquisitions.)

Note: For scanned data acquisition, the sample interval still refers to the period of time between each A/D
conversion.  The sample interval per channel is equal to (sample interval) * (channelCount); that is,

each entry in the scan sequence is sampled once every (sample interval) * (channelCount) seconds.

SCAN_Start initiates a multiple-channel data acquisition operation either in single-buffered or double-
buffered mode.  For both modes, SCAN_Start initializes the Mux-Gain Memory Table to point to the start of
the scan sequence as specified by SCAN_Setup.  If external sample-interval timing is not specified in the
DAQ_Config call, the sample-interval counter is set to the specified sampleInterval and timebase
parameters.  If external sample-interval timing has been selected, the data acquisition circuitry relies on pulses
received on the EXTCONV* input to initiate individual A/D conversions, and the sampleInterval and
timebase parameters are ignored.

SCAN_Start initializes a background process to handle storage of A/D conversions as they occur.  If a DMA
board is detected in the system, a DMA process is initialized to handle data acquisition.  If no DMA board is
detected, an interrupt routine is initialized to handle data acquisition.  In either case, the background process
handles incoming data after SCAN_Start has returned.  The acquired samples are stored into the buffer with
the channel scan sequence data interleaved–that is, the first sample is the conversion from the first channel, the
second sample is the conversion from the second channel, and so on.

If external gating of the data acquisition operation has been selected, a signal at the EXTGATE I/O connector
input controls the sample-interval counter.  When the EXTGATE signal is high, the sample-interval counter is
enabled, causing A/D conversions to occur.  When the EXTGATE signal is low, the sample-interval counter is
suspended, and no A/D conversions occur.  External gating is available only on the NB-MIO-16.

© National Instruments Corporation 6-39 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

Starting a Single-Buffered Acquisition with SCAN_Start

In a single-buffered acquisition, the SCAN_Start call specifies the number of samples to acquire (count) and an
integer array to store the acquired data (buffer).  After SCAN_Start has returned, the background process
stores up to count A/D conversions in the buffer and ignores any subsequent conversions.  The acquired
samples are available when the SCAN_Check call returns status = 1.  A second call to SCAN_Start cannot
be made without terminating this background process.  If a call to SCAN_Check returns status = 1, the samples
are available and the process is terminated.  A call to DAQ_Clear also terminates a background data
acquisition process.

Starting a Double-Buffered Acquisition with SCAN_Start

In a double-buffered acquisition, data can be returned from an acquisition in progress without interrupting the
acquisition.  NI-DAQ for Macintosh can be configured for double-buffered mode by executing DAQ2Config
before SCAN_Start is called.  DAQ2Config allocates a large internal circular buffer for the data storage and
configures subsequent data acquisitions for double-buffered mode.

In double-buffered mode, the buffer parameter in SCAN_Start is ignored but must be set to 0.  Once
SCAN_Start completes with error = 0, NI-DAQ for Macintosh acquires and stores the A/D conversions in
the large buffer allocated by DAQ2Config.  This buffer is treated as a circular buffer and is continually filled
with data until count samples are acquired.  If continuous double-buffered mode has been specified in
DAQ2Config, then the total number of samples is not specified and the count value in SCAN_Start is
ignored.  The data acquisition runs continuously until the process is stopped by executing DAQ_Clear or
DAQ2Clear.

Smaller blocks of data can be retrieved from the large internal buffer without interrupting the acquisition by
repeatedly executing the DAQ2Get, DAQ2TGet, DAQ2Tap, and DAQ2TTap retrieval functions.  An integer
array to store the acquired data and the number of samples to retrieve are passed to the retrieval functions.  The
array is returned with a copy of a block of data from the internal circular buffer.  (See the descriptions of
DAQ2Get, DAQ2TGet, DAQ2Tap, and DAQ2TTap for more information on retrieving double-buffered data.)

Using SCAN_Start to Start a Trigger Acquisition Using Single-Buffered Mode

NI-DAQ for Macintosh can be configured for external hardware triggering using DAQ_Config.  If you select
external triggering for the data acquisition operation, a high-to-low edge at the EXTTRIG* I/O connector input
on the NB-MIO-16, or at the STARTTRIG* input on the NB-MIO-16X initiates the data acquisition operation
after the SCAN_Start call is complete.  Otherwise, SCAN_Start issues a software trigger to initiate the data
acquisition operation before returning.

Data acquisition also can be triggered on the slope and level of the analog input values.  DAQ_Trigger stores
trigger information and enables triggering on analog input values for subsequent single-buffered acquisitions.
When executing DAQ_Trigger, you indicate a trigger channel, slope, and level.  A trigger occurs when the
analog input values of the trigger channel are within the specified slope and level.

If a single-buffered acquisition is started with triggering enabled, SCAN_Start waits for trigger conditions to
be met before collecting the array of sample data.

Pretriggering can be implemented on the NB-MIO-16X for single-buffered acquisitions.  With pretriggering,
data acquisition is stopped when a specified number of samples have been acquired after the occurrence of an
external stop trigger.  See the description of DAQ_PreTrig for more information on pretriggering with the
NB-MIO-16X.

NI-DAQ Software Reference Manual for Macintosh 6-40 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

Using SCAN_Start to Start a Trigger Acquisition Using Double-Buffered Mode

NI-DAQ for Macintosh can be configured for external hardware triggering for double-buffered mode by using
DAQ_Config.  External triggering with double-buffering operates differently on the NB-MIO-16 from the way
it works on the NB-MIO-16X.

If you select external triggering for the data acquisition operation (DAQ_Config) on the NB-MIO-16, a high-
to-low edge at the EXTTRIG* I/O connector input on the NB-MIO-16 initiates the data acquisition operation
after SCAN_Start begins execution.  Otherwise, SCAN_Start issues a software trigger to initiate the data
acquisition operation before returning.

If external triggering is disabled (in DAQ_Config) on the NB-MIO-16X, a software trigger is issued to initiate
each block of the data acquisition operation.  Otherwise, if you select external triggering for the data acquisition
operation, a high-to-low edge at the STARTTRIG* I/O connector input on the NB-MIO-16X initiates each
block of the data acquisition operation after SCAN_Start begins execution.  When a high-to-low edge is
received, the number of samples in a block (specified in DAQ2Config) are then acquired.  NI-DAQ for
Macintosh waits for another high-to-low edge before the next block of data is acquired.

Data acquisition also can be triggered on the slope and level of the analog input values.  For double-buffered
acquisition, triggering conditions can be specified for each retrieved block of data.  A trigger channel, slope, and
level can be specified in the DAQ2Get, DAQ2TGet, DAQ2Tap, and DAQ2TTap functions to implement
condition triggering for double-buffered acquisitions.  A trigger occurs when the analog input values of the
trigger channel are within the specified slope and level.

Once the multiple-channel buffer of data is acquired, DAQ_Scale can be used to scale the 12-bit (NB-MIO-16)
or 16-bit (NB-MIO-16X) values in the buffer array to the actual voltages measured.  DAQ_Scale must be
passed a one-dimensional array of a channel's data.

Double-Buffered Data Acquisition Function Summary

The Double-Buffered Data Acquisition functions (DAQ2) can acquire samples from one or more channels into a
circular buffer.  With double-buffering, data can be retrieved from an acquisition in progress without interrupting the
acquisition.  Data can be collected continuously using a fixed amount of memory.

The following functions can be used for double-buffered data acquisition on the MIO boards, DAQCard-500,
DAQCard-700, E Series, and Lab and 1200 series:

DAQ2Clear Cancels any current double-buffered data acquisition operation, reinitializes the data
acquisition circuitry, deallocates the acquisition buffer allocated by DAQ2Config,
and disables double-buffering for subsequent data acquisition operations.

DAQ2Config Configures subsequent data acquisition operations for double-buffered mode, allocates
a large buffer for the background acquisition, and stores double-buffered mode
configuration information.

DAQ2Get Returns a block of data from a background double-buffered acquisition (both single-
channel and multiple-channel scan).  DAQ2Get can be executed repeatedly to return
sequential blocks of data.  DAQ2Get waits until the block of data is available before
returning, unless the timeout expires.  This function can also be used to define a
trigger that determines when to begin acquiring a block of data (MIO boards).

DAQ2MemConfig Configures NI-DAQ for Macintosh to use a memory expansion board for subsequent
data acquisition in double-buffered mode.  Memory for the large buffer allocated by
DAQ2Config for the background acquisition is allocated from the memory space on
the expansion board.

© National Instruments Corporation 6-41 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

DAQ2Tap Returns the most recently acquired block of data from the background double-buffered
data acquisition (both single-channel and multiple-channel scan).  This function can
also be used to define a trigger that determines when to start acquiring the block of
data (MIO boards).

DAQ2TGet Returns a block of data from a background double-buffered acquisition (both single-
channel and multiple-channel scan).  DAQ2TGet can be executed repeatedly to return
sequential blocks of data.  DAQ2TGet waits until the block of data is available before
returning, unless the timeout expires.  This function can also be used to define a
trigger that determines when to begin acquiring the block of data and where this
trigger occurs within the block of data.

DAQ2TTap Returns the most recently acquired block of data from the background double-buffered
data acquisition (both single-channel and multiple-channel scan).  This function can
also be used to define a trigger that determines when to start acquiring the block of
data and where this trigger occurs within the block of data.

Double-Buffered Data Acquisition Application Hints

The double-buffered (DAQ2) Data Acquisition functions can return data from an acquisition in progress without
interrupting the acquisition on an NB-MIO-16, NB-MIO-16X, E Series, DAQCard-500/700, and Lab and 1200
series.  These functions use a double or circular buffering scheme that retrieves and processes chunks of data as
they become available.  With a circular buffer, this scheme can be used to collect an unlimited amount of data
without requiring an unlimited amount of memory.  Double-buffered data acquisition is useful for applications
such as streaming to disk and real-time display of data.  NI-DAQ for Macintosh can use double-buffered data
acquisition for both single-channel and multiple-channel scan data acquisition.  Double-buffered acquisition is
available only with the NB-MIO-16, NB-MIO-16X, E-Series, DAQCard-500/700, and Lab and 1200 series.

Examples of double-buffered data acquisition applications are included on your NI-DAQ for Macintosh diskettes.
(See Chapter 11, NI-DAQ for Macintosh Examples.)  The following paragraphs explain the operation of the
double-buffered Data Acquisition functions.

Initializing Double-Buffered Data Acquisition

You can configure NI-DAQ for Macintosh for double-buffered acquisition operations by executing
DAQ2Config.  NI-DAQ for Macintosh remains configured for double-buffered mode until DAQ2Clear is
called.  If NI-DAQ for Macintosh is in double-buffered mode, all subsequent data acquisitions (single-channel and
multiple-channel scan) are background acquisitions.

When executing DAQ2Config to configure NI-DAQ for Macintosh for double-buffering, you indicate the size of
a large circular buffer allocated by NI-DAQ for Macintosh.  NI-DAQ for Macintosh uses this buffer to store data
in subsequent background data acquisitions.  You also indicate the size of smaller blocks that divide up the larger
buffer.  The background acquisition can be thought of as actually being performed in continuous chunks that are
the size of the specified smaller blocks.  Figure 6-5 shows the blocks in the large circular buffer.  The large
circular buffer is continually filled with one block of data at a time.  When the large buffer has been filled, data is
stored at the beginning of the buffer again (writing over the previously stored data), and continues filling the
buffer until the specified number of samples have been acquired or until the acquisition operation is cleared.

NI-DAQ Software Reference Manual for Macintosh 6-42 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

Buffer

Size
Block

Size

1 2 3 4

Figure 6-5.  Double-Buffered Acquisition Buffer and Blocks

After configuring NI-DAQ for Macintosh for double-buffered mode, you can start a single-channel double-
buffered data acquisition by executing DAQ_Start.  After configuring NI-DAQ for Macintosh for double-
buffered mode, you can start a multiple-channel double-buffered data acquisition by executing SCAN_Start or
SCAN_IntStart.  This action begins the A/D conversion operation and the storing of acquired data in the large
acquisition buffer.  DAQ2Get, DAQ2TGet, DAQ2Tap, or DAQ2TTap can then be executed to retrieve blocks of
data from the background acquisition.  You indicate the number of samples to retrieve from the large acquisition
buffer, and the conversion data is returned by these functions.

Retrieving Acquired Data

Two mechanisms can be used for retrieving data during double-buffered data acquisition.  The Get data
mechanism retrieves blocks of data in the order that they are acquired.  The Tap data mechanism retrieves the
most recently acquired block of data.  The size of a block when retrieving data does not have to be equal to the
block/size specified when initializing a double-buffered data acquisition.  DAQ2Get, DAQ2TGet, DAQ2Tap, or
DAQ2TTap can be used to retrieve blocks of acquired data from a single-channel acquisition in progress or a
multiple-channel scan acquisition in progress. The two functions DAQ2TGet and DAQ2TTap are identical to
DAQ2Get and DAQ2Tap except that they also can define a trigger position, allowing data to be retrieved before
and after the trigger occurrence.  (The T in the function name stands for trigger.)  Any combination of DAQ
retrieval functions can be used together.  These functions are described in more detail later.

The DAQ2Get and DAQ2TGet functions wait until the requested number of samples have been retrieved before
returning.  The data is copied from the large acquisition buffer into the sample array.  A marker into the large
acquisition buffer is updated to keep track of what has been retrieved by DAQ2Get and DAQ2TGet calls.  Each
time either DAQ2Get or DAQ2TGet is called, the marker is updated by the number of samples retrieved.
Therefore, DAQ2Get or DAQ2TGet can be executed repeatedly to return sequential blocks of data.  DAQ2Get
and DAQ2TGet are useful for applications such as concurrent processing of acquired data or logging acquired
data to disk.

The DAQ2Tap and DAQ2TTap functions return the most recently acquired block of data.  The marker into the
large acquisition buffer is not updated.  Unlike DAQ2Get and DAQ2TGet, DAQ2Tap, and DAQ2TTap do not
wait until the samples are available before returning.  If the requested number of samples are not yet available,
both DAQ2Tap and DAQ2TTap return with an error code.  DAQ2Tap and DAQ2TTap are useful for applications
such as displaying data in real time.

Figures 6-6 through 6-8 illustrate the difference in the DAQ2Get/DAQ2TGet and DAQ2Tap/DAQ2TTap
retrieval functions.  Figure 6-6 shows the buffer of an acquisition in progress.  At this point in the acquisition, the
first three blocks of the buffer have been filled with data.  Figure 6-6 shows the results of executing DAQ2Get and
DAQ2Tap at this point in the acquisition operation.  (In this example, the number of samples requested in
DAQ2Get and DAQ2Tap is equal to the block size configured in DAQ2Config.)  DAQ2Get returns the first

© National Instruments Corporation 6-43 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

block of acquired data and updates the marker to the second block.  DAQ2Tap returns the most recent block of
data, which is the third block.

Acquired data

DAQ2Get returns the data from block 1

DAQ2Tap returns the data from block 3

41 2 3

Figure 6-6.  First Execution of DAQ2Get and DAQ2Tap

Figure 6-7 shows the results of executing DAQ2Get and DAQ2Tap later in the acquisition.  DAQ2Get returns the
second block of acquired data and updates the marker to the third block.  DAQ2Tap returns the most recent block
of data, which is the fourth block.

41 2 3

Acquired Data

DAQ2Get returns the data from block 2.

DAQ2Tap returns the data from
block 4.

Figure 6-7.  Second Execution of DAQ2Get and DAQ2Tap

When the large buffer has been filled, data is stored at the beginning of the buffer again, overwriting the previous
data.  If all the data is to be retrieved sequentially (for example, logging all data to disk), then DAQ2Get must
retrieve the blocks of data from the large circular buffer before the data is overwritten.  An overWriteErr is
returned by DAQ2Get if unretrieved data has been overwritten in the large buffer.  An overWriteErr is returned
by DAQ2Tap if the most recent block of data is overwritten as it is being retrieved.  Figure 6-8 shows the results
of executing DAQ2Get and DAQ2Tap when data has been overwritten.  In Figure 6-7, there was no
overWriteErr because DAQ2Get returned a copy of block 1 before data was overwritten.

NI-DAQ Software Reference Manual for Macintosh 6-44 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

Overwrite

Acquired data

DAQ2Get returns the data from

block 3 and an overwrite error.

DAQ2Tap returns the data from

block 3 and no error.

41 2 3

Figure 6-8.  Executing DAQ2Get and DAQ2Tap when Overwrite Occurred

If an acquisition has completed (the specified number of conversions have been performed), then DAQ2Tap and
DAQ2TTap return the last block acquired.  DAQ2Get and DAQ2TGet continue returning sequential blocks of
data until all of the data has been retrieved or until the buffer has been deallocated by executing DAQ2Clear.

DAQ2Config also gives you the option of acquiring data continuously.  In continuous mode, you do not indicate
the number of samples to be acquired in DAQ_Start, SCAN_Start, or SCAN_IntStart.  The data
acquisition continues until you stop the process by executing DAQ_Clear or DAQ2Clear.  DAQ_Clear stops
the current double-buffered acquisition but leaves NI-DAQ for Macintosh configured for double-buffered mode.
DAQ2Clear stops the current acquisition and disables double-buffered mode.  Once a double-buffered
acquisition is in progress (single-channel or multiple-channel), you can use DAQ_Check or SCAN_Check to
return the status.

DAQ_Config

DAQ2Config

DAQ_Start

AI_Config

DAQ2Get

DAQ2Clear

AI_Configure

Figure 6-9.  Single-Channel, Double-Buffered Acquisition

© National Instruments Corporation 6-45 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

DAQ_Config

DAQ2Config

AI_Config

DAQ2Clear

DAQ2Get

SCAN_Start

SCAN_Setup

AI_Configure

Figure 6-10.  Multiple-Channel, Double-Buffered Acquisition (MIO Boards)

AI_Configure

Figure 6-11.  Multiple-Channel, Double-Buffered Acquisition (Lab and 1200 Series)

NI-DAQ Software Reference Manual for Macintosh 6-46 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

Using Double-Buffered Data Acquisition with Analog Triggering

Triggering on analog input values can be enabled for any of the double-buffered Data Acquisition functions.  A
trigger is enabled by specifying a level and slope for an active analog input channel. The functions DAQ2Get and
DAQ2Tap return a block of data whose first data point matches the trigger conditions. The other double-buffered
Data Acquisition functions, DAQ2TGet and DAQ2TTap, can select a trigger position to place the trigger anywhere
within the block of data.  With this scheme, the data acquisition operation can retrieve data before and after the
trigger occurs.

If SCXI is used, analog triggering is possible during single-channel acquisitions and during multiple-channel
scanning acquisitions if the SCXI modules are operated in Parallel mode.  Analog triggering is not possible during
multiple-channel scanning if the SCXI modules are operated in Multiplexed mode.  When analog triggering is used
with SCXI, the trigger channel specified should be the DAQ board channel number that corresponds to the desired
SCXI channel.  Refer to Chapter 7, SCXI Functions, for more information on SCXI operating modes and channel
assignments.

DAQ2Clear

Function
Cancels any current double-buffered data acquisition operation, re-initializes the data acquisition circuitry,
deallocates the acquisition buffer allocated by DAQ2Config, and disables double-buffering for subsequent
data acquisition operations.

Synopsis

C Syntax locus i32 DAQ2Clear(u32 deviceNumber);

Pascal Syntax function DAQ2Clear(deviceNumber : i32) : i32;

BASIC Syntax FN DAQ2Clear(deviceNumber&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

DAQ2Clear cancels any current double-buffered data acquisition operation, reinitializes the data acquisition
circuitry, deallocates the acquisition buffer allocated by DAQ2Config, and disables double-buffering for
subsequent data acquisition operations.

When NI-DAQ for Macintosh is configured for double-buffered data acquisition (see DAQ2Config), then
either DAQ_Clear or DAQ2Clear can be used to stop the current double-buffered acquisition.  DAQ_Clear
stops the current double-buffered acquisition but leaves NI-DAQ for Macintosh configured for double-
buffering.  DAQ2Clear stops the current acquisition and disables double-buffering.

                                                                                                                                                                                           

© National Instruments Corporation 6-47 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

DAQ2Config

Function
Configures subsequent data acquisition operations for double-buffered mode, allocates a large buffer for the
background acquisition, and stores double-buffered mode configuration information.

Synopsis

C Syntax locus i32 DAQ2Config(u32 deviceNumber, u32 mode, u32 bufferSize, u32

blockCount);

Pascal Syntax function DAQ2Config(deviceNumber : i32; mode : i32; bufferSize :

i32; blockCount : i32) : i32;

BASIC Syntax FN DAQ2Config(deviceNumber&, mode&, bufferSize&, blockCount&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

mode indicates whether subsequent data acquisitions should be in continuous mode.
0: Noncontinuous (disable continuous mode).  Subsequent double-buffered data acquisitions acquire the

number of samples specified in DAQ_Start, SCAN_Start, or SCAN_IntStart.
1: Continuous (enable continuous mode).  Subsequent double-buffered data acquisitions acquire data

continuously.

In continuous mode, the sample count value is ignored in subsequent DAQ_Start, SCAN_Start, and
SCAN_IntStart calls.  After you execute DAQ_Start, SCAN_Start, or SCAN_IntStart, data
acquisition continues until you stop the process by executing DAQ_Clear or DAQ2Clear.  Continuous mode
can be disabled by executing DAQ2Config with mode set to 0.

bufferSize indicates the size of the large circular data acquisition buffer used to acquire data in a background
double-buffered data acquisition.  bufferSize is the number of samples in the large buffer.  Once DAQ2Config
is executed, the buffer is allocated and can be used repeatedly in subsequent double-buffered acquisitions.
While double-buffering is enabled, the buffer value is ignored in subsequent DAQ_Start, SCAN_Start, and
SCAN_IntStart calls.  Executing DAQ2Clear disposes of the large circular buffer and disables double-
buffering.

blockCount indicates the size of the smaller blocks that divide up the larger buffer.  The blockCount is the
number of samples in a block of data.  The background acquisition can be thought of as actually being
performed in smaller continuous chunks, each containing the number of samples specified by blockCount.  To
implement a true double-buffered scheme, blockCount should be half of bufferSize.

Increasing bufferSize beyond twice the blockCount creates some leeway for processing to catch up with the
data acquisition operation.  If a multiple-channel scan is to be performed, blockCount should be an integer
multiple of the number of channels to be scanned.  blockCount cannot be less than 200 samples in
DAQ2Config.  The DAQ2Get, DAQ2TGet, DAQ2Tap, and DAQ2TTap functions can be used to retrieve
from 1 to bufferSize number of samples at a time from the larger buffer while a background acquisition is in
progress.

If you use an NB-MIO-16X with external triggering to trigger each block, blockCount must not be greater than
65,535.

Note: DMA is used for data acquisition operations on an NB-MIO-16 or NB-MIO-16X when an
NB-DMA-8-G or NB-DMA2800 board is present.  If DMA is used, NI-DAQ for Macintosh truncates
bufferSize so that the actual size of the large acquisition buffer is a multiple of blockCount.  The
blockCount parameter used in DAQ2Get, DAQ2TGet, DAQ2Tap, or DAQ2TTap should be less
than or equal to the blockCount parameter specified in DAQ2Config for optimum performance
when using DMA and double-buffering.

                                                                                                                                                                                             

NI-DAQ Software Reference Manual for Macintosh 6-48 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

DAQ2Get

Function
Returns a block of data from a background double-buffered acquisition (both single-channel and multiple-
channel scan).  DAQ2Get can be executed repeatedly to return sequential blocks of data.  DAQ2Get waits until
the block of data is available before returning, unless the timeout expires.  This function can also be used to
define a trigger that determines when to begin acquiring a block of data (MIO boards).

DAQ2TGet

Function
Same functionality as DAQ2Get.  In addition, DAQ2TGet can indicate where the trigger occurs within the
block of data.

DAQ2Get Synopsis

C Syntax locus i32 DAQ2Get(u32 deviceNumber, u32 triggerChannel, u32

triggerSlope, i32 triggerLevel, i16 *buffer, u32

blockCount, u32 timeout);

Pascal Syntax function DAQ2Get(deviceNumber : i32; triggerChannel : i32;

triggerSlope : i32; triggerLevel : i32; buffer : pi16;

blockCount : i32; timeout : i32) : i32;

BASIC Syntax FN DAQ2Get(deviceNumber&, triggerChannel&, triggerSlope&,

triggerLevel&, buffer&, blockCount&, timeout&)

DAQ2TGet Synopsis

C Syntax locus i32 DAQ2TGet(u32 deviceNumber, u32 triggerChannel, u32

triggerSlope, i32 triggerLevel, i16 *buffer, u32

triggerPosition, u32 blockCount, u32 *actualCount, u32

timeout);

Pascal Syntax function DAQ2TGet(deviceNumber : i32; triggerChannel : i32;

triggerSlope : i32; triggerLevel : i32; buffer : pi16;

triggerPosition : i32; blockCount : i32; var actualCount

: i32; timeout : i32) : i32;

BASIC Syntax FN DAQ2TGet(deviceNumber&, triggerChannel&, triggerSlope&,

triggerLevel&, buffer&, triggerPosition&, blockCount&,

actualCount&, timeout&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

triggerChannel is the analog input channel number to trigger on.  If triggerSlope is 0, no triggering is
performed and this triggerChannel value is ignored.  If SCXI is used, this parameter should be the onboard
channel number.  Analog triggering can be used with SCXI only for single-channel acquisitions and for
multiple-channel scanned acquisitions in Parallel mode.

Range:  0 through n-1, where n is the number of analog input channels available.

triggerSlope is the slope to trigger on.  Triggering is disabled by setting triggerSlope to 0.
0:  no triggering is performed.

© National Instruments Corporation 6-49 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

1:  negative slope.
2:  positive slope.

triggerLevel is the analog input value to trigger on.  If triggerSlope is 0, no triggering is performed and this
triggerLevel value is ignored.

buffer is a buffer of length blockCount.  When DAQ2Get completes without error, then buffer contains the
next block of acquired data.  The elements of buffer are the 12-bit (NB-MIO-16, DAQCard-500/700, Lab-NB,
and Lab-LC) or 16-bit (PCI-MIO-16XE-50, NB-MIO-16X) results of each A/D conversion in the data
acquisition operation.

blockCount is the number of samples to be acquired from the large acquisition buffer while a double-buffered
acquisition is in progress (that is, the number of A/D conversions).  This value represents the size of the smaller
blocks that divide up the larger acquisition buffer.  For optimum performance, blockCount should be equal to
or less than the blockCount value that was specified in DAQ2Config.

Range:  1 to 231-1.

If the current data acquisition is a multiple-channel scanning acquisition, then blockCount is equal to the
number of samples per channel multiplied by the total number of channels being scanned.

The input values indicated in SCAN_Setup determine the total number of scanned channels.  If no external
multiplexer boards are used, then the total number of scanned channels is the number of onboard channels
specified in the SCAN_Setup call.  If one or more external multiplexer (AMUX-64T) boards are used, then the
total number of channels equals (four-to-one multiplexer) * (the number of onboard channels scanned) * (the

number of external multiplexer boards); that is, the total number of channels equals (4) * (number of onboard

channels) * muxMode.  For example, if one external board (AMUX-64T) is used and eight onboard channels

are scanned, then the total number of scanned channels is equal to (4) * (8) * (1) = 32.  If SCXI is used, the total

number of channels scanned depends on the operating modes of the modules and the number of channels
specified in the SCXI_SCAN_Setup call.

blockCount must be an integer multiple of the number of channels.

triggerPosition is the number of samples from the trigger channel to be retrieved before the trigger.  The
sample at this position in the retrieved data buffer matches the trigger slope and level criteria.  (DAQ2TGet
only)

actualCount is the actual number of samples left in the large acquisition buffer after DAQ2TGet is executed.
If the number of samples remaining to be retrieved is less than the requested blockCount and the data
acquisition operation is complete, then an error is returned.  In this case, the buffer array contains the rest of the
acquisition data, and actualCount indicates the number of valid samples returned.  (DAQ2TGet only)

timeout is the number of ticks (60ths of a second) to wait for valid data before returning, if the retrieval was
unsuccessful.  DAQ2Get returns a timeOutErr if analog input trigger conditions are not met, or if not enough
data points have been acquired before the specified number of ticks expire.  If timeout is 0, no time limit is
imposed, in which case DAQ2Get does not complete until the data can be returned successfully.

After a double-buffered data acquisition is started by executing DAQ_Start, SCAN_Start, or
SCAN_IntStart, DAQ2Get can then be executed to retrieve blocks of data from the background acquisition.
DAQ2Get waits until the requested number of samples (blockCount) are available before returning.  An index
into the large buffer is updated with each DAQ2Get call to keep track of what has been retrieved with
DAQ2Get calls.  Therefore, DAQ2Get can be executed repeatedly to return sequential blocks of data.
DAQ2Get is useful for applications such as concurrent processing of acquired data or logging acquired data to
disk while the acquisition is in progress.

Analog triggering can be enabled by setting triggerSlope to 2 (positive) or setting triggerSlope to 1 (negative)
and by selecting a trigger channel (triggerChannel), level, and timeout value.  Enabling analog triggering
causes DAQ2Get to return a triggered block of data–a block whose first analog input value for the trigger
channel is within the specified triggerSlope and level.  If triggering is enabled, DAQ2Get scans the large

NI-DAQ Software Reference Manual for Macintosh 6-50 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

acquisition buffer and returns the next block of data acquired after trigger conditions are met.  DAQ2Get waits
until the requested number of samples (sample count) following the trigger value are available before returning.

If analog triggering is enabled and no double-buffered data acquisition operation is being performed on the
selected trigger channel, then the trigger conditions are ignored and the next sequential block of data is
returned.  DAQ2Get returns a timeOutErr if the data cannot be retrieved successfully before the number of
ticks specified in timeout expire.  Executing DAQ2Get with triggerSlope set to 0 disables the analog triggering
feature and returns the next sequential block of data after it is acquired.

If DAQ2Get returns an overFlowError, overRunError, or overWriteErr.  A/D conversions may have been
lost due to samples being acquired too rapidly as specified by DAQ_Start, SCAN_Start, or
SCAN_IntStart (sample interval is too small).  An overFlowError indicates that the A/D FIFO overflowed
because the data acquisition servicing operation could not keep up with the sample rate.  An overRunError
indicates that the data acquisition circuitry could not keep up with the sample rate.   An overWriteErr indicates
that the large circular acquisition buffer overwrote acquired data before it was retrieved by DAQ2Get .  An
overwrite error can be corrected by increasing the size of the large acquisition buffer, retrieving more data each
time, retrieving data more often, decreasing the size of the smaller dividing blocks, or reducing the sampling
rate.  The large acquisition buffer and smaller dividing block sizes are specified by DAQ2Config.

Once DAQ2Get completes with error = 0, DAQ_VScale can be used to scale the values in the buffer array to
the actual voltages measured.

Pascal and C Note: If the double-buffered acquisition is a scanning acquisition, then SCAN_Demux
must be called to demultiplex the buffer array by channel before the data is scaled.

                                                                                                                                                                                             

DAQ2MemConfig

Function
Configures NI-DAQ for Macintosh to use a memory expansion board for subsequent data acquisition in double-
buffered mode.  Memory for the large buffer allocated by DAQ2Config for the background acquisition is
allocated from the memory space on the expansion board.

Synopsis

C Syntax locus i32 DAQ2MemConfig(u32 deviceNumber, u32 memorySlot, u32 mode);

Pascal Syntax function DAQ2MemConfig(deviceNumber : i32; memorySlot : i32; mode

: i32) : i32;

BASIC Syntax FN DAQ2MemConfig(deviceNumber&, memorySlot&, mode&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

memorySlot is the board slot number of the memory expansion board to be used for double-buffered
acquisition.

Range:  1 through 6.

Note: Because some memory expansion boards do not have configuration ROMs, NI-DAQ for Macintosh
is unable to verify that a memory expansion board is actually in memorySlot.  Make sure
memorySlot is valid or system errors can occur.

© National Instruments Corporation 6-51 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

mode indicates whether to enable or disable the use of the memory expansion board in memorySlot for
subsequent double-buffered data acquisitions.  Possible values of mode are as follows:

0:  disable use of the memory expansion board for subsequent double-buffered acquisitions.
1:  enable use of the memory expansion board for subsequent double-buffered acquisitions.

DAQ2MemConfig configures NI-DAQ for Macintosh to use a memory expansion board for subsequent
double-buffered data acquisitions.  When use of the memory board has been enabled, DAQ2Config allocates
memory for the large circular buffer on the expansion memory board.  Calls to DAQ2Get, DAQ2TGet,
DAQ2Tap, and DAQ2TTap retrieve blocks from the large buffer on the memory board.

NI-DAQ for Macintosh initially disables the use of a memory expansion board.  Once DAQ2MemConfig is
called with mode set to 1, the memory expansion board is used for all subsequent double-buffered acquisitions
until this feature is disabled by calling DAQ2MemConfig with mode set to 0.

                                                                                                                                                                                                                  

NI-DAQ Software Reference Manual for Macintosh 6-52 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

DAQ2Tap

Function
Returns the most recently acquired block of data from the background double-buffered data acquisition (both
single-channel and multiple-channel scan).  This function can also be used to define a trigger that determines
when to start acquiring the block of data (MIO boards).

DAQ2TTap

Function
The same functionality as DAQ2Tap.  In addition, DAQ2TTap can indicate where the triggerPosition occurs
within the block of data.

DAQ2Tap Synopsis

C Syntax locus i32 DAQ2Tap(u32 deviceNumber, u32 triggerChannel, u32

triggerSlope, i32 triggerLevel, i16 *buffer, u32

blockCount);

Pascal Syntax function DAQ2Tap(deviceNumber : i32; triggerChannel : i32;

triggerSlope : i32; triggerLevel : i32; buffer : pi16;

blockCount : i32) : i32;

BASIC Syntax FN DAQ2Tap(deviceNumber&, triggerChannel&, triggerSlope&,

triggerLevel&, buffer&, blockCount&)

DAQ2TTap Synopsis

C Syntax locus i32 DAQ2TTap(u32 deviceNumber, u32 triggerChannel, u32

triggerSlope, i32 triggerLevel, i16 *buffer, u32

triggerPosition, u32 blockCount);

Pascal Syntax function DAQ2TTap(deviceNumber : i32; triggerChannel : i32;

triggerSlope : i32; triggerLevel : i32; buffer : pi16;

triggerPosition : i32; blockCount : i32) : i32;

BASIC Syntax FN DAQ2TTap(deviceNumber&, triggerChannel&, triggerSlope&,

triggerLevel&, buffer&, triggerPosition&, blockCount&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

triggerChannel is the analog input channel number to trigger on.  This must be a channel that is currently being
sampled.  If triggerSlope is 0, no triggering is performed and this triggerChannel value is ignored.  If SCXI is
used, triggerChannel should be the onboard channel number.  Analog triggering can be used with SCXI only
for single-channel acquisitions and for multiple-channel scanned acquisitions in Parallel mode.

Range:  0 through n-1, where n is the number of analog input channels available.

triggerSlope is the slope to trigger on.  Triggering is disabled by setting triggerSlope to 0.
triggerSlope = 0: no triggering is performed.
triggerSlope = 1: negative slope.
triggerSlope = 2: positive slope.

© National Instruments Corporation 6-53 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

triggerLevel is the analog input value to trigger on.  If triggerSlope is 0, no triggering is performed and this
triggerLevel value is ignored.

blockCount is the number of samples to be acquired from the large acquisition buffer while a double-buffered
acquisition is in progress (that is, the number of A/D conversions).  This value represents the size of the smaller
blocks that divide up the larger acquisition buffer.  For optimum performance, blockCount should be equal to
or less than the blockCount value that is specified in DAQ2Config.

Range:  1 to 231-1.

If the current data acquisition is a multiple-channel scanning acquisition, then blockCount is equal to the
number of samples per channel multiplied by the total number of channels being scanned.

The input values specified in SCAN_Setup determine the total number of scanned channels.  If no external
multiplexer boards are used, then the total number of scanned channels is the number of onboard channels
specified by the SCAN_Setup call.  If one or more external multiplexer (AMUX-64T) boards are used, then
the total number of channels equals (four-to-one multiplexer) * (the number of onboard channels scanned) *
(the number of external multiplexer boards); that is, the total number of channels = (4) * (number of onboard

channels) * muxMode.  For example, if one external board (AMUX-64T) is used and eight onboard channels

are scanned, then the total number of scanned channels is equal to (4) * (8) * (1) = 32.  If SCXI is used, the

number of channels scanned depends on the operating modes and the number of channels specified in the
SCXI_SCAN_Setup call.

blockCount must be an integer multiple of the number of channels.

buffer is a buffer of length blockCount.  When DAQ2Tap completes without error, then buffer contains the
most recent block of acquired data.  The elements of buffer are the 12-bit (NB-MIO-16, Lab and 1200 series) or
16-bit (NB-MIO-16X) results of each A/D conversion in the data acquisition operation.

triggerPosition is the number of samples from the trigger channel to be retrieved before the trigger.  The
sample at this position in the retrieved data buffer matches the trigger slope and level criteria.  (DAQ2TTap
only)

After a double-buffered data acquisition is started by executing DAQ_Start, SCAN_Start, or
SCAN_IntStart, DAQ2Tap can then be executed to retrieve blocks of data from the background acquisition.
Unlike DAQ2Get, DAQ2Tap does not update an index into the large buffer.  Therefore, DAQ2Tap can be
executed repeatedly to return the most recent blocks of data while the data is being acquired in the background.
If the requested number of samples are not yet available, DAQ2Tap returns an error.  Displaying data in a real-
time mode is an example of an application using DAQ2Tap.

Analog triggering can be enabled by setting triggerSlope to 2 (positive) or setting triggerSlope to 1 (negative)
and specifying trigger channel (triggerChannel), level, triggerPosition, and  timeout values.  Enabling analog
triggering causes DAQ2TTap to return the most recent triggered block of data–a block in which the analog
input value at the triggerPosition position for the channel triggerChannel meets the specified triggerSlope
and triggerLevel conditions.

If triggering is enabled, DAQ2TTap scans the large acquisition buffer and returns the most recent block of data
that meets the trigger conditions.  If such a block is not yet available, DAQ2TTap returns an error.  If analog
triggering is enabled and no double-buffered data acquisition operation is being performed on the selected
triggerChannel, then the trigger conditions are ignored and the most recently acquired block of data is
returned.  Executing DAQ2TTap with triggerSlope set to 0 disables the analog triggering feature and returns
the most recently acquired block.

If DAQ2Tap returns an overFlowError or an overRunError.  A/D conversions may have been lost due to
samples being acquired too rapidly as specified by DAQ_Start, SCAN_Start, or SCAN_IntStart
(sample interval was too small).  An overFlowError indicates that the A/D FIFO overflowed because the data
acquisition servicing operation could not keep up with sample rate.  An overRunError indicates that the data
acquisition circuitry could not keep up with the sample rate.  DAQ2Tap returns an overwrite error if the most
recent block of data is overwritten as it is being returned. An overwrite error can be corrected by increasing the

NI-DAQ Software Reference Manual for Macintosh 6-54 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

size of the large acquisition buffer, retrieving more data each time, retrieving data more often, decreasing the
size of the smaller dividing blocks, or reducing the sampling rate.  The large acquisition buffer and smaller
dividing block sizes are specified by DAQ2Config.

Once DAQ2Tap completes with error = 0, DAQ_VScale can be used to scale the values in the buffer array to
the actual voltages measured.

Pascal and C Note: If the double-buffered acquisition is a scanning acquisition, then SCAN_Demux
must be called to demultiplex the buffer array by channel before the data is scaled.

                                                                                                                                                                                                                

Multiple-Channel Data Acquisition (MDAQ)

The remainder of this chapter describes the Multiple-Channel Data Acquisition functions used with the NB-A2000,
NB-A2100, and NB-A2150 boards for Macintosh computers.  These boards do not support SCXI.  The Multiple-
Channel Data Acquisition functions retrieve multiple frames of data from one or more channels.

NB-A2000 Data Acquisition

The NB-A2000 contains four simultaneously-sampled, single-ended analog input channels numbered 0 through 3.
Each analog input channel has a sample-and-hold circuit.  The NB-A2000 samples one, two or four input channels
simultaneously.  These input channels are then multiplexed into a single unity gain stage followed by a 1-µs
conversion time, 12-bit resolution, ADC which reads and converts each selected channel in turn.  The channels that
may be selected are as follows:

One channel: Channels 0, 1, 2 or 3
Two channels: Channels 0 and 1, or 2 and 3
Four channels: Channels 0 through 3

The NB-A2000 operates exactly the same way whether one or many channels are sampled.

The signal range of each input channel is ±5 V when DC coupling is selected and ±5 V peak AC with ±25 VDC
offset when AC coupling is selected.

A/D conversions can be initiated through software or by applying active-low pulses to the SAMPCLK* input on the
NB-A2000 I/O connector or active-high pulses to the CLOCKI RTSI bus input.  A 1,024-word deep FIFO memory
on the board stores up to 1,024 A/D conversion results.

The NB-A2000 operates in several trigger modes for data acquisition:  pretrigger mode, posttrigger mode, or
posttrigger mode with delay.  In pretrigger mode, the NB-A2000 acquires a programmed number of samples both
before and after a trigger is received.  In posttrigger mode, a programmed number of samples is acquired after the
trigger.  In posttrigger mode with delay, the NB-A2000 waits to acquire samples until a programmed time interval
has elapsed after the trigger is received.

The NB-A2000 has two main trigger sources:  analog or digital.  The analog trigger may be received from any one
of the input channels or the ATRIG input on the I/O connector.  Analog trigger circuitry causes a trigger when the
selected input channels reach a pre-programmed slope and level.  A rising or falling edge digital trigger may be
received from the DTRIG I/O connector input.  Alternatively, digital triggers may be received over the RTSI bus.  In
posttrigger mode, acquisition may be immediately started by software when the appropriate call is executed.  Once
configured to acquire samples, the NB-A2000 can trigger and acquire data each time a trigger is received without
being stopped or reprogrammed.  This is called multiple-frame data acquisition where a frame is the data acquired
with each trigger.

© National Instruments Corporation 6-55 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

NB-A2000 Data Acquisition Timing

Timing for data acquisition is performed by the onboard Am9513A Counter/Timer or by the external sample clock,
SAMPCLK*.  Data acquisition timing involves the timing signals and counters shown in the following table.

Signal Name Description

Trigger Signal generated from software or received from the ATRIG or DTRIG I/O connector
input or from the RTSI bus.  This signal determines when posttrigger sampling begins.

Sample Clock Signal generated locally on the NB-A2000 or received from the I/O connector or from
the RTSI bus that causes all selected inputs to be sampled simultaneously.

Sample Interval Counter NB-A2000 counter that generates the onboard sample clock.

Sample Counter NB-A2000 counter that counts posttrigger scans (multiple-channel samples) and stops
acquisition when the programmed number has been acquired.

Delay Counter NB-A2000 counter that counts the specified time delay after the trigger and then starts
posttrigger acquisition when time expires.

Timebase Onboard clock sources for the sample-interval and delay counters.  Available timebases
include 5 MHz, 1 MHz, 100 kHz, 10 kHz, 1 kHz, and 100 Hz.  In addition, external
timebase clocks can be supplied through the RTSI switch signals SOURCE2 and
GATE2.

Additional timing signals can be received from the RTSI bus.  See the NB-A2000 User Manual for more information
regarding these signals.

NB-A2000 Data Acquisition Rates

The maximum data acquisition rate for the NB-A2000 is 1 µs/channel, in other words, 1 µs, 2 µs, or 4 µs for one,
two, or four channels, respectively (see Table 6-11).  Converting at a rate faster than the maximum data acquisition
rate causes points to be missed, and the data returned will be an inaccurate representation of the signal being
measured.

Table 6-11.  Maximum NB-A2000 Data Acquisition Rates

Number of Channels Maximum Data Acquisition Rate

one channel 1 µs (1 MS/s)

two channels 2 µs (500 kS/s)

four channels 4 µs (250 kS/s)

NB-A2100 Data Acquisition

The NB-A2100 contains two simultaneously-sampled analog input channels numbered 0 and 1.  These 16-bit
resolution A/D channels have 64-times oversampling delta-sigma modulating ADCs and digital anti-aliasing filters
for extremely high-accuracy data acquisition.  The input also has a software-programmed switch for AC or DC
coupling of the input signals.

The signal range for each input channel is ±2.828 V (2 Vrms) with a maximum input voltage rating of ±10 V
powered on or off.

The ADCs can be run at 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, or 48 kHz conversion rates.  Maximum data
acquisition rate is 48 kHz for one or two channels.  A 32-bit wide, 16 word deep FIFO memory on the board stores
up to 32 A/D conversion results if one channel is being sampled, or 16 A/D conversion results for each channel if
both analog input channels are being sampled.

NI-DAQ Software Reference Manual for Macintosh 6-56 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

The A/D conversion data can be sent serially over the RTSI bus to other National Instruments boards, such as the
NB-DSP2300 digital signal processing board.

Data acquisition can be started by applying a software trigger or by applying a high-to-low edge on the external
digital trigger.  The digital trigger may be received through the EXTTRIG* pin on the I/O connector or over the
RTSI bus.

A software analog trigger scheme is also implemented on the NB-A2100.  The software analog trigger monitors the
incoming data after the data acquisition has started for the specified trigger conditions to be met before storing data
in the buffer.

NB-A2150 Data Acquisition

The NB-A2150 contains four simultaneously sampled analog input channels numbered 0 through 3.  These 16-bit
resolution A/D channels have 64-times oversampling delta-sigma modulating ADCs and digital anti-aliasing filters
for extremely high-accuracy data acquisition.  The input also has a software-programmed switch for AC or DC
coupling of the input signals.

The signal range for each input channel is ±2.828 V (2 Vrms) with a maximum input voltage rating of ±10 V
powered on or off.

The ADCs can be run at four timebases and each of these timebases is divided by 1, 2, 4, or 8 to produce 16 sample
rates from which to choose.  The timebase values are as follows:

NB-A2150F: 51.2 kHz, 48 kHz, 32 kHz, and 30.72 kHz
NB-A2150C: 48 kHz, 44.1 kHz, 32 kHz, and Fu
NB-A2150S: 24 kHz, 20 kHz, 16 kHz, and Fu

Fu is a user-defined sample rate and is obtained by dividing the custom installed crystal frequency by 384.

The NB-A2150 uses a 32-bit wide, 256 word deep FIFO to store up to 512 A/D conversion results.

You can start data acquisition by applying a software trigger, a high-to-low edge on an external digital trigger, or via
a trigger generated from the internal level-and-slope detection trigger circuit.  You can send the digital trigger from a
signal applied at the EXTTRIG* pin on the I/O connector or from the RTSITRIG* or SWSTART* signals over the
RTSI bus.

Multiple-Channel Data Acquisition Function Summary

Use the following functions for multiple-channel buffered data acquisition operations on the NB-A2000, the
NB-A2100, and the NB-A2150:

MDAQ_Check Reports whether the acquisition is complete, the current number of frames acquired, and
optionally the current number of scans acquired.

MDAQ_Clear Stops data acquisition but does not change the current configuration (for example,
channel coupling, trigger mode and conditions, sampling rate, active input channels).
Also clears the acquisition buffer and deallocates any resources used during the
acquisition.

MDAQ_Get Transfers acquired data from the acquisition buffer into the user's buffer while data
acquisition is in progress or after data acquisition is complete.  MDAQ_Get can retrieve
data from anywhere in the acquisition buffer.

MDAQ_ScanRate Selects the data acquisition scan rate, that is, the rate at which all selected input channels
are sampled.

© National Instruments Corporation 6-57 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

MDAQ_Setup Selects how much data to buffer in memory and how much data to acquire for each
trigger.

MDAQ_Start Starts a multiple-channel data acquisition.

MDAQ_Stop Stops the data acquisition but leaves all settings in effect and the acquisition buffer
accessible.

MDAQ_Trig_Config Selects trigger source and configures the analog and digital trigger conditions.

MDAQ_Trig_Delay Selects the time to delay after a trigger is received before acquiring data.  (Posttrigger
mode only)

Multiple-Channel Data Acquisition Application Hints

The multiple-channel Data Acquisition functions perform both single-channel and multiple-channel data acquisition
operations.  The following terminology is used to describe the multiple-channel Data Acquisition functions:

frame A set of samples acquired from all selected channels with each trigger.  The number of samples
per frame is equal to (preScans + postScans) * number of channels selected.

scan One sample from each of the selected analog input channels.

scanInterval Time between the initiation of consecutive scans.  Equivalent to the interval between samples
on a given channel.

preScans Number of scans to acquire before the trigger.

postScans Number of scans to acquire after the trigger.

For both single read analog input and data acquisition, MAI_Setup selects the analog input channels to be sampled
and MAI_Coupling selects AC or DC coupling for all inputs.

Frame-Oriented and Scan-Oriented Data Acquisition

Data acquisition with the NB-A2000, the NB-A2100, or the NB-A2150 can be performed in two modes:  frame-
oriented data acquisition or scan-oriented data acquisition.  Both modes are double buffered, that is, data can be
retrieved from the acquisition buffer while data is being acquired.

The frame-oriented data acquisition mode allows multiple frames to be acquired.  A frame is acquired each time the
board receives a trigger.  Each frame can contain both pretrigger and posttrigger data.  All frames are the same size
and use the same trigger modes, number of channels, and acquisition rates.  MDAQ_Setup configures the frame size
and the number of pretrigger and posttrigger scans.  MAI_Setup selects the analog input channels and
MDAQ_ScanRate configures the acquisition rate.  Using the MDAQ_Start function, either a specified number of
frames can be acquired, or an unlimited number of frames can be acquired until acquisition is stopped by the user
(MDAQ_Stop).

The scan-oriented data acquisition mode is a posttrigger, single-frame data acquisition case.  After a trigger is
received, either a specified number of scans is acquired before the acquisition is automatically stopped, or an
unlimited number of scans is acquired until the acquisition is stopped by the user.

NI-DAQ Software Reference Manual for Macintosh 6-58 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

Configuring the Trigger Conditions

The MDAQ_Setup, MDAQ_Trig_Config, and MDAQ_Trig_Delay functions configure the acquisition's
triggering conditions.

The NB-A2000, NB-A2100, and NB-A2150 have digital triggering capability in hardware.  The NB-A2000 and the
NB-A2150 also have analog triggering capability in hardware.  The NB-A2100 implements analog triggering in
software.  You select and enable the triggers in MDAQ_Trig_Config, which arms both the analog and the digital
trigger, as well as disables both triggers (thereby configuring a software triggered acquisition).  When the acquisition
is in posttrigger mode, you can set a delay between the trigger and the conversion of the first scan using the
MDAQ_Trig_Delay function.

The NB-A2000 and the NB-A2150 support the following combinations of trigger modes:

• No trigger (software posttrigger acquisition).

• Hardware digital or analog posttrigger with or without delay.

• Hardware digital or analog pretrigger without delay.

For the NB-A2150, you can enable the digital trigger through the EXTTRIG* pin on the I/O connector using
MDAQ_Trig_Config.  To enable the digital trigger over the RTSI bus, you should call RTSI_Conn and make
the RTSITRIG* or RTSISTART* line an input.

The NB-A2100 supports the following combinations of trigger modes:

• No trigger (software posttrigger acquisition).

• Hardware posttrigger with or without delay.

• Hardware pretrigger without delay.

• Software analog trigger without delay.

• Software analog trigger after a hardware posttrigger (with or without delay).  In this case, after the hardware
trigger starts the acquisition, the incoming data is monitored until the analog trigger conditions are met and the
data is then stored in the buffer.

NB-A2100 and NB-A2150 Triggering

The NB-A2100 and NB-A2150 use analog and digital filters to implement anti-aliasing filters which reject signal
components whose frequency exceeds one-half the sample rate.  However, the implementation of the filters is such
that after a data acquisition trigger (hardware or software) is applied, the first sample after the trigger does not
appear in the A/D FIFO until 34 or 35 samples (depending on when the trigger occurred) from each channel being
sampled have been acquired.  This means that in the posttrigger mode, you have 34 or 35 samples of pretrigger data
in the acquisition buffer.  In the pretrigger mode, a software trigger started the acquisition.  So, in this case the first
34 or 35 samples that are put in the buffer are samples taken before the software trigger was applied.

For the NB-A2100, in the analog trigger mode and after a hardware or software trigger starts the acquisition, the first
34 or 35 samples put in the A/D FIFO to be examined for analog trigger conditions are the samples taken before the
hardware or software trigger occurred.

© National Instruments Corporation 6-59 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

Stopping Data Acquisition

MDAQ_Stop can be called to halt data acquisition in progress.  This is necessary when continuously scanning or
when gathering an unlimited number of frames.  After stopping, settings that do not affect the buffer or frame size
can be changed before performing another MDAQ_Start without having to call MDAQ_Setup.  This is useful in
such applications as a digital oscilloscope where the scan rate often changes, but not the number of channels being
scanned.  The settings that can be changed are the scan rate (MDAQ_ScanRate), coupling (MAI_Coupling),
trigger enabling (MDAQ_Trig_Config), and trigger delay (MDAQ_Trig_Delay)–if already in posttrigger mode.

Typical Multiple-Channel Data Acquisition Function Usage

In the function order sequence (see Figure 6-12 and Figure 6-13), the MDAQ_SCAN_Rate function is optional for
the NB-A2100 and NB-A2150.  The frequency selected by the last MDAQ_SCAN_Rate call is used for data
acquisition if MDAQ_SCAN_Rate is not called.  At startup or after a Board_Reset call, the 48-kHz frequency on
the NB-A2100, the 51.2-kHz frequency on the NB-A2150F, the 48-kHz frequency on the NB-A2150C, and the
24-kHz frequency on the NB-A2150S is selected for A/D sampling.

A typical function order needed to start an acquisition is given as follows:

MAI_Coupling to select coupling on input channels.
MAI_Setup to select number of channels to monitor.
MDAQ_Setup to select frame size and number of pretrigger and posttrigger scans.
MDAQ_ScanRate to select acquisition rate.  (optional for NB-A2100 and NB-A2150)
MDAQ_Trig_Config to select trigger type and conditions.
MDAQ_Trig_Delay to select posttrigger delay (if triggering is enabled and the posttrigger mode is used).
MDAQ_Start to select number of frames to acquire and to start acquisition.

While data is acquired, the following functions can be used:

MDAQ_Check to monitor the status of the acquisition.
MDAQ_Get to fetch data from anywhere in the acquisition buffer.
MDAQ_Stop to stop the data acquisition, after which MDAQ_Get can be used to fetch the data.
MDAQ_Clear to clear all resources allocated to the data acquisition operation, including the acquisition buffer.

Figures 6-12 and 6-13 illustrate the ways to use the multiple-channel Data Acquisition functions.  Two examples of
performing a data acquisition are shown, followed by a more detailed look at the possible combinations of functions
used initially, during, and after the completion of an acquisition.

The functions in Figure 6-12 are the minimal set of functions necessary to acquire a given number of untriggered
frames (that is, no hardware triggering enabled).

NI-DAQ Software Reference Manual for Macintosh 6-60 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

The example program MDAQ_Op calls a similar sequence of functions to acquire one frame of data.  This program
can be used as an additional high-level multiple-channel Data Acquisition function.

MAI_Setup

MDAQ_Setup

MDAQ_ScanRate

MDAQ_Start

MDAQ_Get

MDAQ_Clear

Figure 6-12.  Minimum Function Flowchart for Multiple-Channel Data Acquisition

MAI_Setup configures the channels to scan during the acquisition.  MDAQ_Setup configures and allocates the
acquisition buffer.  MDAQ_ScanRate configures the rate at which the input channels are scanned, and
MDAQ_Start initiates the data acquisition operation.  After starting, MDAQ_Get is called to retrieve the frames
from the acquisition buffer, and finally MDAQ_Clear stops the acquisition and clears the acquisition buffer.
MDAQ_Clear must always be called at the end of any data acquisition program and before exiting your application
to release resources allocated by NI-DAQ for Macintosh for use during an acquisition.

Figure 6-13 gives a more general view of the multiple-channel Data Acquisition functions needed to set up an
acquisition to acquire a given number of frames, configure the triggering circuitry, and then retrieve and scale the
acquired frames.

Figure 6-13 adds a few functions to the sequence given in Figure 6-12.  The boxed functions represent optional
steps.  The optional MAI_Coupling step is used to set AC or DC coupling for the analog input and analog trigger
channels.  At power-up and after an Board_Reset, the coupling for all channels defaults to AC on the NB-A2000
and DC on the NB-A2100 and NB-A2150.  The optional MDAQ_Trig_Config step enables and configures the
analog and/or digital triggering conditions that must be met to initiate the acquisition of each frame.  The optional
MDAQ_Trig_Delay step sets a delay of up to 10.9 minutes on the NB-A2000 and up to 65,535 sample intervals
on the NB-A2100 and NB-A2150 after the trigger occurs before beginning to acquire data when in posttrigger mode.

If the data acquisition is configured to continuously scan or acquire an unlimited number of frames, the
MDAQ_Stop function can be called to stop the acquisition.  After stopping, MDAQ_Get can still be used to retrieve
any data present on the acquisition buffer, and MDAQ_Check returns the progress of the acquisition when
MDAQ_Stop was called.  If used, MDAQ_Stop should be called after MAI_Scale and before MDAQ_Clear as in
Figure 6-13.

© National Instruments Corporation 6-61 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

MAI_Coupling

MAI_Setup

MDAQ_Trig_Config

defaults:

   Analog and Digital Trigger disabled

MDAQ_Setup

MDAQ_ScanRate

(posttrigger mode only)

MDAQ_Trig_Delay

defaults:

   no delay

MDAQ_Start

MDAQ_Get

MDAQ_Clear

MAI_Scale

Figure 6-13.  Multiple-Channel Data Acquisition with Optional Coupling and Triggering Configuration

NI-DAQ Software Reference Manual for Macintosh 6-62 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

MDAQ_Check

Function
Reports whether the acquisition is complete, the current number of frames acquired, and optionally the current
number of scans acquired.

Synopsis

C Syntax locus i32 MDAQ_Check(u32 deviceNumber, u32 fullCheck, u16 *done, u32

*currentFrame, u32 *currentScan);

Pascal Syntax function MDAQ_Check(deviceNumber : i32; fullCheck : i32; var done

: i16; var currentFrame : i32; var currentScan : i32) :

i32;

BASIC Syntax FN MDAQ_Check(deviceNumber&, fullCheck&, done&, currentFrame&,

currentScan&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

fullCheck indicates whether to return complete or partial status information.  Partial information includes all
parameters except currentScan.
0:  return partial status information.
1:  return complete status information.

Updating the currentScan parameter when DMA is used requires temporarily suspending servicing of the
board being checked.  If performing many MDAQ_Check operations with fullCheck = 1 during a high-speed
acquisition or while operating many boards together, a board's FIFO can overflow and halt the data acquisition
on that board.  For these cases and when only the status information concerning the completion of the
acquisition is desired, setting fullCheck to 0 is recommended.

done returns an indication of whether the data acquisition has completed.
0:  the data acquisition is not yet complete.
1:  the acquisition is complete.

If you have chosen either continuous acquisition of scans in the MDAQ_Setup function or unlimited acquisition
of frames after the first trigger in the MDAQ_Start function, then the status remains 0 until the acquisition is
stopped with MDAQ_Stop or an error (such as a FIFO overflow) has stopped the acquisition, after which done
becomes 1.

currentScan returns the number of the last completed frame.  In frame-oriented acquisitions, currentScan
ranges from 0 (when the acquisition has not yet started–for example, when waiting for the first trigger in
posttrigger mode) to the total number of frames to be acquired (as defined in MDAQ_Start).  This number
reaches 2,147,483,647 (the maximum long value) before rolling over to 0 and continuing to count.  In scan-
oriented acquisitions, currentScan is 0 until the acquisition is complete, at which time currentScan becomes 1.

currentScan returns the most recent scan number that has been acquired within the current frame.  In frame-
oriented acquisitions, currentScan ranges from 0 (when the frame has not yet started–for example, when
waiting for a trigger in posttrigger mode) to the number of scans in a frame (as defined in MDAQ_Setup).
Furthermore, if the frames include pretrigger scans, then currentScan reaches the number of scans in a frame
then wrap around to 1 and continue counting.  In scan-oriented acquisitions, currentScan ranges from 0 to the
number of posttrigger scans to collect.  If continuously scanning, then currentScan reaches 2,147,483,647 (the
maximum signed long value) before rolling over to 1 and continuing to count.  When fullCheck is 0,
currentScan is always set to 0.

                                                                                                                                                                                           

© National Instruments Corporation 6-63 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

MDAQ_Clear

Function
Stops data acquisition but does not change the current configuration (for example, channel coupling, trigger
mode and conditions, sampling rate, active input channels).  Also clears the acquisition buffer and deallocates
any resources used during the acquisition.

Synopsis

C Syntax locus i32 MDAQ_Clear(u32 deviceNumber);

Pascal Syntax function MDAQ_Clear(deviceNumber : i32) : i32;

BASIC Syntax FN MDAQ_Clear(deviceNumber&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

MDAQ_Clear does not affect any settings, but it does release the acquisition buffer and other resources used.
To start another data acquisition, a MDAQ_Setup is required before executing MDAQ_Start again.

MDAQ_Clear must be called before exiting your application; otherwise, resources are not properly deallocated.

                                                                                                                                                                                           

MDAQ_Get

Function
Transfers acquired data from the acquisition buffer into the user's buffer while data acquisition is in progress or
after data acquisition is complete.  MDAQ_Get can retrieve data from anywhere in the acquisition buffer.

Synopsis

C Syntax locus i32 MDAQ_Get(u32 deviceNumber, u32 scansOrFrames, u32

getOrTap, u32 count, u32 startFrame, u32 startScan, u32

timeout, i16 *buffer, u32 *actualCount, u32 *currentFrame,

u32 *currentSample, u16 *done);

Pascal Syntax function MDAQ_Get(deviceNumber : i32; scansOrFrames : i32;

getOrTap : i32; count : i32; startFrame : i32; startScan

: i32; timeout : i32; buffer : pi16; var actualCount :

i32; var currentFrame : i32; var currentSample : i32; var

done : i16) : i32;

BASIC Syntax FN MDAQ_Get(deviceNumber&, scansOrFrames&, getOrTap&, count&,

startFrame&, startScan&, timeout&, buffer&, actualCount&,

currentFrame&, currentSample&, done&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

scansOrFrames indicates whether to retrieve scans or frames from the acquisition buffer.
0:  scansOrFrames:  get scans from the acquisition buffer.
1:  scansOrFrames:  get frames from the acquisition buffer.

NI-DAQ Software Reference Manual for Macintosh 6-64 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

getOrTap indicates the retrieval method used to retrieve data from the acquisition buffer.
0 (performing a GET): get oldest data sequentially.
1 (performing a TAP): get most recently acquired data.

In either case, a starting frame and scan can be specified.  When performing a GET, NI-DAQ for Macintosh
uses an internal sequential retrieval pointer to keep track of what has been retrieved to guarantee sequential
access.  No such pointer is maintained when performing a TAP.

count is the number of scans or frames to retrieve from the acquisition buffer.  If scansOrFrames is 0 and the
acquisition is frame-oriented, then count ranges from 1 to the number of scans in a frame (pre_trig_scans +
postScans).  Scans can not be retrieved across frame boundaries.  If scansOrFrames is 1, then count ranges
from 1 to the number of frames in the acquisition buffer.

startFrame is the frame number to begin copying from.  If performing a GET (getOrTap = 0) and startFrame
is not 0, then copying begins from startFrame, and after copying the internal sequential retrieval pointer is set
to the frame after the last frame copied. If performing a GET and startFrame is 0, then the internal sequential
retrieval pointer is used to determine where to begin copying.  If performing a TAP (getOrTap = 1) and
startFrame is not 0, then copying begins from startFrame.  If getOrTap is 1 and startFrame is 0, then the
most recently acquired data is copied.  When performing a TAP, no internal retrieval pointers are used or
modified.

startScan is the scan number to begin copying within startFrame.  If scansOrFrames is 1, then startScan is
ignored.  If scansOrFrames is 0 and startFrame is 0, then startScan must also be 0.

timeout is the number of clock ticks (1/60 s) to wait for data that has not yet been acquired.  There are two
special cases for timeout:

-1:  wait indefinitely.
0:  return immediately if the data has not been acquired.

buffer is the address of a non-relocatable array or otherwise allocated memory to store the data retrieved from
the acquisition buffer.  The integer data is copied from the acquisition buffer to buffer.  If more than one input
channel is being sampled, the samples from the different channels is interleaved in the following order:

(Sample 1, channel 0), (Sample 1, channel 1), (Sample 1, channel 2), (Sample 1, channel 3), (Sample 2,
channel 0), (Sample 2, channel 1), (Sample 2, channel 2), (Sample 2, channel 3), (Sample 3, channel 0),
(Sample 3, channel 1), and so on.

actualCount returns the number of items copied from the acquisition buffer to buffer.  When scansOrFrames
is 1, actualCount indicates the number of complete frames that were transferred.  When scansOrFrames is 0,
actualCount indicates the number of scans that were transferred.  When an error has not occurred, actualCount
should equal count.  If an error has occurred, then actualCount indicates how much of buffer is actually valid
data.

currentFrame returns the number of the last frame from which data was copied.  If currentFrame is 0, then no
data was copied.

currentSample returns the last scan number within currentFrame that was copied from the acquisition buffer
to buffer.  If currentSample is 0, no data was copied.

done returns an indication of whether the data acquisition has completed.
0:  the data acquisition is not yet complete.
1:  the acquisition is complete.

If you have chosen either continuous acquisition of scans in the MDAQ_Setup function or unlimited acquisition
of frames after the first trigger in the MDAQ_Start function, then the status is always 0 because data
acquisition runs indefinitely until stopped by an MDAQ_Stop or MDAQ_Clear call.

© National Instruments Corporation 6-65 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

Call MDAQ_Get to retrieve data from the acquisition buffer both while acquisition is in progress and after
acquisition is complete.  MDAQ_Get allows double-buffered data acquisition.  Because the acquisition buffer is
circular, you must retrieve data fast enough to keep pace with the acquisition or data can be overwritten.  If you
attempt to retrieve overwritten data, an overWriteErr is returned.

If performing a GET (getOrTap = 0) and a starting place that has been overwritten is selected, an
overWriteErr is returned, as well as the oldest available data.  If performing a TAP (getOrTap = 1) and a
starting place that has been overwritten is selected, then an overWriteErr and no data is returned.

                                                                                                                                                                                           

MDAQ_ScanRate

Function
Selects the data acquisition scan rate, that is, the rate at which all selected input channels are sampled.

Synopsis

C Syntax locus i32 MDAQ_ScanRate(u32 deviceNumber, u32 scanInterval, i32

timebase);

Pascal Syntax function MDAQ_ScanRate(deviceNumber : i32; scanInterval : i32;

timebase : i32) : i32;

BASIC Syntax FN MDAQ_ScanRate(deviceNumber&, scanInterval&, timebase&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

scanInterval indicates the length of the scan interval (that is, the amount of time to elapse between samples on
any one channel).

Range: 2 through 65,535 on the NB-A2000.
1, 2 on the NB-A2100.
1, 2, 4, 8 on the NB-A2150.

Because the NB-A2100 only samples at fixed timebase rates, the scanInterval must be 1 for the
NB-A2100.

On the NB-A2000, the scanInterval is a function of the timebase resolution selected by timebase.  The actual
scan interval in seconds is determined by the following formula:

scanInterval * (timebase resolution)

On the NB-A2100 and NB-A2150, the actual sampling frequency in hertz is determined by the following
formula:

timebase frequency

scanInterval

timebase is the resolution to use for the sample-interval counter on the NB-A2000 or the sampling frequency to
use on the NB-A2100.

For the NB-A2000, timebase has the following possible values:
-1: 200 ns
0: reserved
1: 1 µs
2: 10 µs

NI-DAQ Software Reference Manual for Macintosh 6-66 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

3: 100 µs
4: 1 ms
5: 10 ms

For the NB-A2100, timebase has the following possible values:
1: 48 kHz
2: 44.1 kHz
3: 32 kHz

On the NB-A2100, although it is possible to select a 16 kHz conversion rate, data integrity is not guaranteed or
specified and the ADC is likely to perform erratically.  However, it is recommended that if you are not using the
ADC but are using the DAC at the 16 kHz update rate, you should also set the ADC conversion rate at the
16-kHz rate for less noise interference between the A/D and D/A word clock signals.

For the NB-A2150, timebase has the following possible values:

timebase NB-A2150F NB-A2150C NB-A2150S

0 30.72 kHz Fu Fu
1 51.2 kHz 48 kHz 24 kHz
2 48 kHz 44.1 kHz 20 kHz
3 32 kHz 32 kHz 16 kHz

If timebase 0 is selected on the NB-A2150C or NB-A2150S, you must have a custom crystal installed on the
board that defines Fu.  Fu is the user-defined sample rate and is obtained by dividing the custom-installed

crystal frequency by 384.  Fu should range from 8 kHz to 51.2 kHz.

Table 6-12 gives the minimum scan rate values allowed on the NB-A2000.

Table 6-12.  Minimum Scan Rate Values on the NB-A2000

channelCount timebase scanInterval actual interval

1 -1 5 1 µs
2 -1 10 2 µs
4 -1 20 4 µs

If external sample clock was selected in A2000_Config, the scanInterval and timebase values are ignored
and an error is returned as a warning.

                                                                                                                                                                                             

© National Instruments Corporation 6-67 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

MDAQ_Setup

Function
Selects how much data to buffer in memory and how much data to acquire for each trigger.

Synopsis

C Syntax locus i32 MDAQ_Setup(u32 deviceNumber, u32 bufferSize, u32

scansOrFrames, u32 preScans, u32 postScans, i16 *buffer);

Pascal Syntax function MDAQ_Setup(deviceNumber : i32; bufferSize : i32;

scansOrFrames : i32; preScans : i32; postScans : i32;

buffer : pi16) : i32;

BASIC Syntax FN MDAQ_Setup(deviceNumber&, bufferSize&, scansOrFrames&, preScans&,

postScans&, buffer&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

bufferSize indicates the size of the large circular buffer (the acquisition buffer) used during the data acquisition.
bufferSize is either the number of scans or the number of frames in the acquisition buffer depending on the
setting of scansOrFrames (see below).  MDAQ_Setup returns an error if bufferSize is too large.  How the size
of the acquisition buffer in bytes is calculated is explained in buffer.

scansOrFrames indicates whether the acquisition is scan oriented or frame oriented.
0: scan-oriented acquisition, a single posttrigger frame is acquired, and bufferSize indicates the number

of scans in the acquisition buffer.
1: frame-oriented acquisition, bufferSize indicates the number of frames in the acquisition buffer.

preScans is the number of scans before a trigger to collect in each frame.

postScans is the number of scans after a trigger to collect in each frame.

When scansOrFrames = 1 (frame-oriented), then the frame size is preScans + postScans.  The acquisition
buffer contains bufferSize number of frames of this size.

NI-DAQ Software Reference Manual for Macintosh 6-68 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

The valid combinations of settings for scansOrFrames, preScans, and postScans and their relationship to
acquisition modes are shown in Table 6-13.

Table 6-13.  Valid Combinations of MDAQ_Setup Parameters

Parameter Combination Results

scansOrFrames = 1
preScans = 0
postScans > 0

frame-oriented data acquisition
posttrigger mode
frame_size = (postScans) * channelCount

bufferSize is in frames

scansOrFrames = 1
preScans = 0
postScans > 0

frame-oriented data acquisition
pretrigger mode

preScans) * channelCount

bufferSize is in frames

scansOrFrames = 0
preScans = 0
postScans > 0

scan-oriented data acquisition
posttrigger mode (only valid mode)
bufferSize is in scans
postScans is total number of scans to
acquire
use frameCount = 1 in MDAQ_Start call

scansOrFrames = 0
preScans = 0
postScans > 0

scan-oriented data acquisition
posttrigger mode (only valid mode)
bufferSize is in scans.
Use frameCount = 1 in MDAQ_Start call.

Note: When scansOrFrames = 0, setting preScans greater than 0 returns an error.  
When scansOrFrames = 1, setting postScans equal to 0 returns an error.

buffer is a pointer to a non-relocatable memory space allocated by the user for the acquisition buffer.  A zero
pointer tells the driver to automatically allocate the acquisition buffer.  We recommend that you set buffer to 0
to let the driver handle memory for you unless you need to use a NuBus memory expansion board.  To use a
memory expansion board, set buffer to the 32-bit mode address of the start of the buffer on the memory board.
When you allocate a buffer and pass the pointer to the buffer in buffer, be sure to allocate the correct amount of
storage.  For example, if you want a buffer to hold 10 frames, where

channelCount (from MAI_Setup) = 2 (two channels)
preScans = 500
postScans = 2000

then you want to allocate bytes of storage (as explained in the following equation) and set bufferSize to 10.

(channelCount) * (preScans = postScans) * (number of frames) * (16-bit integer)

= 2 * (500 + 2000) * 10 * 2

= 100,000 bytes

Conversely, if you want a buffer to hold 20,000 scans for a four channel acquisition, be sure to allocate 160,000
bytes of storage (as explained in the following equation) and set bufferSize to 20,000.

(number of channels) * (number of scans) * (16-bit integer) = 4 * 20,000 * 2 = 160,000 bytes

Notice that if you allocate a buffer, it is your responsibility to deallocate the memory; NI-DAQ for Macintosh
does not attempt to release memory that it does not allocate.

If the memory allocated for the buffer supports block-mode memory transfers and you are using an NB-A2000
board with an NB-DMA2800, you can force the driver to use high-speed block-mode transfers by setting the
A2000_Config mem_type parameter to 1.  When using block-mode DMA transfers, the buffer base address

© National Instruments Corporation 6-69 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

must be aligned at a NuBus block boundary.  The NuBus block size is 64 bytes (16 32-bit words); a NuBus
block boundary is a multiple of NuBus block size.  When acquiring frames, the frame size (sum of preScans
and postScans) must be a multiple of NuBus block size.  When acquiring scans, bufferSize and postScans (if
postScans is not 0) must each be a multiple of NuBus block size.  If any of the above conditions are not met, an
error is returned.

If you are using an NB-A2000 with an NB-DMA2800 on a Macintosh Quadra 700 or Quadra 900, buffer size is
a multiple of NuBus block size as described previously, and either buffer is 0 or buffer is at a NuBus block
boundary, the driver will automatically use block-mode DMA transfers.

On the NB-A2000, postScans must always be at least 2, and when a frame-oriented acquisition is to acquire
pretrigger data, preScans must be at least 3.  Additionally, if MAI_Setup has been called to configure an
acquisition for a single channel, postScans must be even for a scan-oriented acquisition, and the sum of
postScans and preScans must be even for a frame-oriented acquisition.  When an acquisition is configured for
two or more channels, no such restrictions apply.

On the NB-A2100 or NB-A2150, if MAI_Setup has been called to configure and sample only one channel, the
number of scans to acquire (postScans) in the scans-oriented acquisition, or the number of scans to acquire per
frame (postScans and preScans) in the frames-oriented acquisition must be a multiple of 2.  Also, if the number
of scans to acquire in the scans-oriented acquisition or the number of scans to acquire per frame in the frames-
oriented acquisition is greater than 131,072 if one channel is being scanned, greater than 65,536 if two channels
are being scanned, or greater than 32,768 if four channels are being scanned, the number of scans should meet
one of the following conditions:

• Be a power of 2 (that is, 65,536 (216), 131,072 (217), 262,144 (218), and so on).

• Be a multiple of 10 if less than 500,000.

• Be a multiple of 100 if greater than 500,000 and less than 5,000,000.

• Be a multiple of 1,000 if greater than 5,000,000 and less than 50,000,000.

                                                                                                                                                                                           

MDAQ_Start

Function
Starts a multiple-channel data acquisition operation.

Synopsis

C Syntax locus i32 MDAQ_Start(u32 deviceNumber, u32 frameCount);

Pascal Syntax function MDAQ_Start(deviceNumber : i32; frameCount : i32) : i32;

BASIC Syntax FN MDAQ_Start(deviceNumber&, frameCount&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

frameCount is the number of triggers recognized and for which data is acquired.  If scansOrFrames has been
set to 1 (frames) in MDAQ_Setup, then frameCount indicates the number of frames to acquire.  The
acquisition runs until frameCount number of frames has been acquired, at which time the acquisition stops (as
if MDAQ_Stop had been called).  Setting frameCount to 0 means that the acquisition is in unlimited frame
acquisition mode.  Unlimited frame acquisition mode indicates that the driver recognizes and acquire frames of

NI-DAQ Software Reference Manual for Macintosh 6-70 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

data for triggers indefinitely.  In this case, the acquisition does not end until either MDAQ_Stop or
MDAQ_Clear is called.

If scansOrFrames has been set to 0 (scan-oriented data acquisition) in MDAQ_Setup , then frameCount must
be set to 1 (only one posttrigger frame is acquired) and scans are acquired after the first trigger is received.
Furthermore, if postScans has been set to 0 (preScans must be 0 when scansOrFrames is 1), then the NB-
A2000, NB-A2100, or NB-A2150 acquires an unlimited number of scans until either MDAQ_Stop or
MDAQ_Clear is called.

If you chose continuous acquisition of scans in MDAQ_Setup or unlimited acquisition of frames in
MDAQ_Start, you get an error if the NB-A2100 board was unable to acquire a DMA channel for data
acquisition.  This error is designed to prevent your computer from locking up when continuous data acquisition
is done in programmed I/O mode on the NB-A2100.

                                                                                                                                                                                                                                         

MDAQ_Stop

Function
Stops the data acquisition but leaves all settings in effect and the acquisition buffer accessible.

Synopsis

C Syntax locus i32 MDAQ_Stop(u32 deviceNumber);

Pascal Syntax function MDAQ_Stop(deviceNumber : i32) : i32;

BASIC Syntax FN MDAQ_Stop(deviceNumber&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

MDAQ_Stop stops the data acquisition process but leaves the acquisition buffer accessible for subsequent
MDAQ_Get calls.  Because all settings are left in effect, the data acquisition can be restarted (not resumed) by
calling MDAQ_Start again.

                                                                                                                                                                                           

© National Instruments Corporation 6-71 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

MDAQ_Trig_Config

Function
Selects trigger source and configures the analog and digital trigger conditions.

Synopsis

C Syntax locus i32 MDAQ_Trig_Config(u32 deviceNumber, u32 digitalTrigger, u32

edge, u32 analogTrigger, u32 triggerCount, u32 source, u32

triggerSlope, i32 triggerLevel, u32 hysteresisWindow, u32

timeout);

Pascal Syntax function MDAQ_Trig_Config(deviceNumber : i32; digitalTrigger :

i32; edge : i32; analogTrigger : i32; triggerCount : i32;

source : i32; triggerSlope : i32; triggerLevel : i32;

hysteresisWindow : i32; timeout : i32) : i32;

BASIC Syntax FN MDAQ_Trig_Config(deviceNumber&, digitalTrigger&, edge&,

analogTrigger&, triggerCount&, source&, triggerSlope&,

triggerLevel&, hysteresisWindow&, timeout&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

digitalTriggerenables or disables the digital trigger input (DTRIG on the NB-A2000 or EXTTRIG* on the
NB-A2100 and NB-A2150) I/O connector.

0: digital trigger disabled.
1: digital trigger enabled.

edge selects which edge of the digital trigger input signal generates a trigger.
0: trigger on falling edge.
1: trigger on rising edge.

edge is ignored unless digitalTriggeris 1.

Because the NB-A2100 and NB-A2150 always trigger on the falling edge, edge must be 0 for these boards.

analogTrigger enables or disables the analog trigger circuitry on the NB-A2000 or NB-A2150 or the software
trigger capability on the NB-A2100.

0: analog trigger disabled.
1: analog trigger enabled.

All of the remaining parameters, described as follows, are ignored if analogTrigger is 0.

triggerCount is the number of analog trigger occurrences to wait for before storing data.
Range: On the NB-A2000 and NB-A2150, the analog trigger is recognized through the hardware, and this

value must be 1.
Range: On the NB-A2100, the analog trigger is recognized through the software, and this value must be

greater than or equal to 1.

source selects the analog trigger source as follows:
For the NB-A2000:

0 = analog input channel 0.
1 = analog input channel 1.
2 = analog input channel 2.
3 = analog input channel 3.
4 = external analog trigger input ATRIG.

For the NB-A2100:
0 = analog input channel 0.

NI-DAQ Software Reference Manual for Macintosh 6-72 © National Instruments Corporation



Chapter 6 Data Acquisition Functions

1 = analog input channel 1.
For the NB-A2150:

0 = analog input channel 0.
1 = analog input channel 1.
2 = analog input channel 2.
3 = analog input channel 3.

triggerSlope selects which slope condition at the selected analog trigger input generates a trigger.
0: trigger on negative slope.
1: trigger on positive slope.

triggerLevelis the code for the input value of the selected analog trigger signal that generates a trigger.
Range: -2,048 to 2,047 on the NB-A2000 which corresponds to a ±5.12 V analog trigger range in 2.5 mV

steps.  For example, atrig_level = 800 corresponds to a voltage trigger level of +2 V.
Range: -32,768 to 32,767 on the NB-A2100 and NB-A2150 which corresponds to a ±2.828 V analog

trigger range.

hysteresisWindow is the number of digitizing levels below triggerLevel(for positive slope) or above
triggerLevel(for negative slope) that the input signal must go before a valid trigger crossing at triggerLevelis
recognized.

Range: The NB-A2000 does not provide a hysteresis analog trigger, and hysteresisWindow must be 0 on
the NB-A2000.

Range: 0 to 65,535 on the NB-A2100 and NB-A2150.  However, the following restrictions apply:

• If positive slope is selected through triggerSlope, triggerLevel- hysteresisWindow ≥ -32,768.

• If negative slope is selected through triggerSlope, triggerLevel+ hysteresisWindow ≤ 32,767.

timeout is the number of clock ticks (1/60 s) to wait for the specified number of analog triggers to occur after
data acquisition starts.  timeout is ignored for the NB-A2000 and NB-A2150 because these boards implement
the analog trigger in hardware and wait indefinitely for the trigger to occur.  There are two special cases for
timeout on the NB-A2100:

-1:  wait indefinitely.
0:  stop immediately if analog trigger conditions have not been met.

MDAQ_Trig_Config must be called to configure trigger circuitry for hardware triggered acquisition.  For
pretrigger data acquisition, a hardware trigger must be selected.  If neither analog nor digital trigger is enabled, the
driver starts acquisition immediately by a software trigger when MDAQ_Start is called.  Thus, only posttrigger
data is acquired.  On the NB-A2000, when analog and digital triggers are both enabled, the first trigger conditions
met are recognized as the trigger and the other trigger conditions are ignored within each frame.  See Configuring
the Trigger Conditions earlier in this chapter for a description of the valid trigger modes on the NB-A2100 and
NB-A2150.  Triggering can also be controlled from the RTSI bus (see Chapter 9, RTSI Bus Trigger Functions).

The NB-A2100 and NB-A2150 provide hysteresis when looking at an analog trigger.  Hysteresis acts like a noise
filter, ensuring that small variations in the input signal are not mistaken for actual triggers.  The amount of variation
that is to be ignored is selected by hysteresisWindow.  For example, if a positive slope has been selected,
triggerLevelis 2,048, and hysteresisWindow is 256, the triggering scheme first looks for a sample that is at 1,792
or below–that is, 256 below atrig_level.  After finding this sample, the triggering scheme starts looking for a sample
that is at 2,048 (the atrig_level) or above, and when the triggering scheme finds this sample, it triggers.  If a
negative slope has been selected, the triggering scheme first looks for a sample that is hysteresisWindow digitizing
levels above the triggerLeveland then for a sample that is at or below the triggerLevel.

On the NB-A2100, analog triggering is implemented in software and all 16 bits of the triggering levels are used for
triggering.  On the NB-A2150, analog triggering is implemented in hardware and only the upper eight bits of the
hexadecimal value of triggerLeveland the upper eight bits of the hexadecimal value obtained by adding and
subtracting hysteresisWindow to or from triggerLevel, are used for triggering.  For example, values 2,048
(800 hex) and 2,303 (8ff hex) for triggerLevelwill both be treated as 2,048 on the NB-A2150.

                                                                                                                                                                                           

© National Instruments Corporation 6-73 NI-DAQ Software Reference Manual for Macintosh



Data Acquisition Functions Chapter 6

MDAQ_Trig_Delay

Function
Selects the time to delay after a trigger is received before acquiring data.  (Posttrigger mode only)

Synopsis

C Syntax locus i32 MDAQ_Trig_Delay(u32 deviceNumber, u32 delayInterval, i32

timebase);

Pascal Syntax function MDAQ_Trig_Delay(deviceNumber : i32; delayInterval : i32;

timebase : i32) : i32;

BASIC Syntax FN MDAQ_Trig_Delay(deviceNumber&, delayInterval&, timebase&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

delayInterval is the time to wait after the trigger before acquiring data in posttrigger mode.  On the
NB-A2000, setting delayInterval to 0 causes data to be acquired immediately after the trigger occurs.  Setting
delayInterval to 65,535 and timebase to 5 (10-ms timebase) causes the acquisition to start 655.35 s, or
10.9 min, after the trigger (this is the longest possible delay).

Range:  0, 3 through 65,535

timebase is the resolution to be used for the delay counter.  For the NB-A2000, timebase has the following
possible values:

-1: 200 ns.
0: reserved.
1: 1 µs.
2: 10 µs.
3: 100 µs.
4: 1 ms.
5: 10 ms.

On the NB-A2100 and NB-A2150, timebase must be set to 0.  The sampling rate timebase set in
MDAQ_ScanRate is also used as the delay counter timebase.  So, if delayInterval is set to 64,000, the
timebase frequency is set to 32 kHz, and scan interval is set to 1, then the acquisition would start

64,000

(32,000/1)

or 2 s after the trigger.  At system startup or after a Board_Reset, the frequency corresponding to timebase 1
and scanInterval 1 is selected for the A/D sampling rate.

timebase is ignored if delayInterval is 0.  The NB-A2000, NB-A2100, and NB-A2150 default to no posttrigger
delay.

If NI-DAQ for Macintosh has been configured to acquire pretrigger data, then a delay after triggering before
beginning to sample is meaningless.  In this case, the delay is not accepted and a trigDelayIgnoredErr is
returned as a warning.

If NI-DAQ for Macintosh has been configured to acquire only posttrigger data, then a delay can be set.  If
MDAQ_Setup is called to setup an acquisition to acquire pretrigger data as well, then the delay is reset to zero
and an error is given.

NI-DAQ Software Reference Manual for Macintosh 6-74 © National Instruments Corporation



Chapter 7
SCXI Functions
                                                                                                                                                              

This chapter describes functions used to configure and communicate with SCXI modules and chassis.

SCXI hardware can condition analog input signals, isolate analog and digital I/O signals, and multiplex channels to
increase the number of analog and digital signals that a plug-in DAQ board in your computer can process.  An SCXI
system consists of the following components, as shown in the Figure 7-1:

• Plug-in DAQ boards in your computer

• External SCXI chassis that house plug-in SCXI modules.  You connect one or more modules to the plug-in
DAQ boards using SCXI ribbon cable assemblies.

• SCXI terminal blocks that you use to connect signals to the SCXI modules

Plug-in Data
Acquisition Board

Personal Computer

MIO-16 Data
Acquisition Board

SCXI-1340 Cable
 Assembly

SCXI Chassis

SCXI Module

SCXI Terminal
Block or Connector-
and-Shell Assembly

Figure 7-1.  The SCXI System

© National Instruments Corporation 7-1 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

NI-DAQ for Macintosh works with the following SCXI chassis and modules:

• SCXI-1000 4-slot chassis

• SCXI-1001 12-slot chassis

• SCXI-1100 32-channel multiplexer amplifier module

• SCXI-1102 32-channel multiplexer amplifier module for thermocouples

• SCXI-1120 8-channel isolation amplifier module

• SCXI-1121 4-channel isolation amplifier with excitation module

• SCXI-1122 16-channel transducer multiplexer module

• SCXI-1124 6-channel isolated analog output module

• SCXI-1140 8-channel simultaneously sampling differential amplifier module

• SCXI-1141 8-channel analog input module with programmable gains and filters

• SCXI-1160 16-channel electromechanical SPDT relay module

• SCXI-1161 8-channel electromechanical SPDT relay module

• SCXI-1162 32-channel optically isolated digital input module

• SCXI-1162HV 32-channel high-voltage optically isolated digital input module

• SCXI-1163 32-channel optically isolated digital output module

• SCXI-1163R 32-channel optically isolated solid-state relay module

You can use the following DAQ boards in combination with SCXI hardware and NI-DAQ for Macintosh:

• All DIO boards

• All MIO boards

• All Lab and 1200 series boards

• DAQCard-700

Please refer to the SCXI Modules and Compatible Data Acquisition Boards section later in this chapter for
information about the functionality of each DAQ board with each type of SCXI module.

SCXI Installation and Configuration

To install your SCXI system, follow the instructions in the Installing Your SCXI Hardware section in Chapter 1,
Getting Started.  After you assemble your SCXI system, you must run the NI-DAQ Control Panel to enter your
SCXI configuration; NI-DAQ needs the configuration information to program your SCXI system correctly.  The
SCXI Configuration section in Chapter 1 contains detailed instructions for entering your SCXI configuration using
the NI-DAQ Control Panel.

NI-DAQ Software Reference Manual for Macintosh 7-2 © National Instruments Corporation



Chapter 7 SCXI Functions

Using SCXI Modules with the NI-DAQ Functions

For analog input operations, use the SCXI functions for configuration and setup.  After you configure the SCXI
system, you can use the Analog Input functions in Chapter 3, Analog Input Functions, and the Data Acquisition
functions in Chapter 6, Data Acquisition Functions, to actually acquire the data on the DAQ board.

For digital I/O operations, you can use the SCXI functions for configuration, setup, and to perform the digital
operations themselves.  You can use the Digital I/O functions in Chapter 5, Digital I/O Functions, with those
modules that operate in Parallel mode.

For SCXI analog output modules, you must use the SCXI functions to generate output voltages at the SCXI module.

The SCXI Applications section later in this chapter contains flowcharts and explanations of how to use SCXI
modules with NI-DAQ.

SCXI Operating Modes

The way that DAQ boards have access to the signals from the modules depends on the operating modes of the
modules.  There are two basic operating modes for SCXI modules–Multiplexed and Parallel.  The operating mode is
a parameter that you enter in the configuration utility.

Multiplexed Mode for Analog Input Modules

When an analog input module operates in Multiplexed mode, all of its input channels are multiplexed to one module
output.  When you cable a DAQ board to a multiplexed analog input module, the DAQ board has access to that
module's multiplexed output, as well as the outputs of all other multiplexed modules in the chassis via the SCXIbus.
The SCXI functions route the multiplexed analog signals on the SCXIbus for you transparently.  So, if you operate
all modules in the chassis in Multiplexed mode, you only need to cable one of the modules directly to the DAQ
board.

If you use an MIO DAQ board, a PCI-1200, or a DAQCard-1200 you can multiplex all the analog input channels in
the SCXI chassis to one onboard channel dynamically during a timed acquisition.  The SCXI functions program the
chassis with a module scan list that dynamically controls which module sends its output to the SCXIbus during a
scan.  You can specify that the modules be scanned in any order and specify an arbitrary number of channels for
each module; however, the channels on each module must be scanned in consecutive, ascending order.

Note: The DAQCard-700 and Lab series boards support only single-channel acquisitions in Multiplexed mode.

By default, when you cable a DAQ board to a multiplexed module, the multiplexed output of the module (and all
other multiplexed modules in the chassis) appears at analog input channel 0 of the DAQ board.

You can use more than one SCXI chassis with one MIO board if the modules operate in Multiplexed mode.  You
must use one SCXI-1350 multichassis adapter for each additional chassis (refer to your SCXI module user manuals).
You should also enter a unique jumper-selected address in the configuration utility for each chassis.  The
multichassis adapter scheme sends the output of the module in the first chassis to analog input channel 0 of the DAQ
board, the output of the module in the second chassis to analog input channel 1 of the DAQ board, and so on.  When
you want to acquire data from the additional chassis, you must specify the correct onboard DAQ board channel in
the MIO channel scan list that is passed to the SCAN functions.

Multiplexed Mode for Digital and Relay Modules

Multiplexed mode is referred to as Serial mode in the digital and relay module hardware manuals.  When you
operate your digital or relay module in Multiplexed (or Serial) mode, NI-DAQ communicates the module channel
states serially over the SCXIbus backplane.  The SCXI-1162, SCXI-1162HV, SCXI-1163, and SCXI-1163R

© National Instruments Corporation 7-3 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

modules have jumpers that you must set correctly for the module to operate in Multiplexed (or Serial) mode.
Because NI-DAQ can communicate with the multiplexed modules over the SCXIbus backplane, you only need to
cable one multiplexed module in each chassis directly to the DAQ board in the computer.

Multiplexed Mode for Analog Output Modules

The SCXI-1124 analog output module supports only Multiplexed mode (or Serial mode).  This means that NI-DAQ
sets the analog output channel states by communicating serially over the SCXIbus.  Because NI-DAQ can
communicate with the multiplexed modules over the SCXIbus backplane, you only need to cable one multiplexed
module in each chassis directly to the DAQ board in the computer.

Parallel Mode for Analog Input Modules

When an analog input module operates in Parallel mode, it sends each of its input channels directly to a separate
analog input channel of the DAQ board cabled to the module.  You cannot multiplex parallel outputs of a module on
the SCXIbus; only a DAQ board that you cable directly to a module in Parallel mode has access to its input
channels.  In this configuration, the total number of analog input channels is limited to the number of channels
available on the DAQ board.  In some cases, however, you can cable more than one DAQ board to modules in an
SCXI chassis.  For example, you can use two Lab-NB boards and cable each one to a separate SCXI-1120 module in
the chassis operating in Parallel mode.  You must be sure to enter the correct device numbers in the Cabled Device
field of the configuration utility for each module you operate in Parallel mode.

By default, when a module operates in Parallel mode, the module sends its channel 0 output to analog input
channel 0 of the DAQ board, the channel 1 output to analog input channel 1 of the DAQ board, and so on.

Parallel Mode for Digital Modules

When you operate a digital module in Parallel mode, the digital lines on your DAQ board directly drive the
individual digital channels on your SCXI module.  You must cable a DAQ board directly to every module that you
operate in Parallel mode.  The SCXI-1162, SCXI-1162HV, SCXI-1163, and SCXI-1163 R modules have jumpers
that you must set correctly for the module to operate in Parallel mode.

You may wish to use Parallel mode instead of Multiplexed mode for faster updating or reading of the SCXI digital
channels.  For the fastest performance in Parallel mode, you can use the Digital I/O  functions in Chapter 5 with the
appropriate onboard port numbers instead of using the SCXI functions.  Refer to the SCXI Modules and Compatible
Data Acquisition Boards section later in this chapter for information about which digital ports on each DAQ board
are actually used in Parallel mode.

Note: A DAQ board that is cabled to an SCXI-1162, SCXI-1162HV, SCXI-1163, or SCXI-1163R in Parallel
mode cannot be the communication path in the configuration utility.

If you are using a DIO-96, you can also operate a digital module in Parallel mode using the digital ports on the
second half of the ribbon cable (pins 51 to 100).  So, the DIO-96 can operate two digital modules in Parallel mode–
one module using the first half of the ribbon cable (pins 1 to 50) and another module using the second half of the
ribbon cable (pins 51 to 100).  Set the operating mode in the configuration utility to Parallel (secondary) for the
module that will be using the second half of the ribbon cable.

SCXI Modules and Compatible Data Acquisition Boards

The capabilities and limitations described in this section should help you determine how your hardware components
can work together in your application, and help you determine the best SCXI configuration for your application.
Please refer to your SCXI module and chassis user manuals and DAQ board user manuals for detailed information
about the capabilities and limitations of your hardware.

NI-DAQ Software Reference Manual for Macintosh 7-4 © National Instruments Corporation



Chapter 7 SCXI Functions

The SCXI-1100

The SCXI-1100 module has 32 differential analog input channels.  The input voltage range is -10 to +10 V at a gain
of 1.  The SCXI-1100 has a software-selectable gain with values of 1, 2, 5, 10, 20, 50, 100, 200, 500, 1,000, and
2,000.  You use the SCXI_Set_Gain function to program the module gain.  NI-DAQ does not use the gain menu
in the NI-DAQ Control Panel; LabVIEW only uses that menu.

The SCXI-1100 also has a software-selectable calibration mode that you can use to determine the zero offset of the
module (see the SCXI_Calibrate_Setup function description).

The SCXI-1300 and SCXI-1303 terminal blocks that can be used with the SCXI-1100 module each have an onboard
temperature sensor that is jumper-configurable to be either multiplexed with the other input channels (MTEMP), or
to be sent directly to a different DAQ board channel (DTEMP).  In the MTEMP configuration, you can select to read
the temperature sensor using the SCXI_Single_Chan_Setup function; in the DTEMP configuration, the
temperature sensor output will appear on DAQ board channel 1.  If you multiply the voltage read from the
temperature sensor on the SCXI-1300 by 100, you will get the temperature in degrees Celsius.  The temperature
sensor on the SCXI-1303 is a thermistor; you must use the thermistor conversion routine described in Appendix D.

Please refer to the SCXI-1100 User Manual for more information on the hardware-selectable signal conditioning
features on the module.

The SCXI-1100 supports only the Multiplexed operating mode; it does not support Parallel mode.

You can cable an MIO board directly to an SCXI-1100 module using the SCXI-1340 cable.  You must use the
SCXI-1341 cable to connect the SCXI-1100 to a Lab or 1200 series board.  Use an SCXI-1342 cable with the
DAQCard-700.

The SCXI-1102

The SCXI-1102 has 32 differential analog input channels and one cold-junction sensor channel (CJSTEMP) that is
selectable through the SCXI_Single_Chan_Setup function. When you use the module with an SCXI-1300 or
SCXI-1303 terminal block, the terminal block temperature sensor connects to CJSTEMP. The module can multiplex
CJSTEMP with the other 32 input channels during a hardware-controlled scan. On each channel, including
CJSTEMP, the SCXI-1102 has a 3-pole low-pass filter to reject 60 Hz noise. Each of the 32 differential analog input
channels (but not CJSTEMP) also has an amplifier with a selectable gain of 1 or 100, selected through the
SCXI_Set_Gain function. The amplification and filtering occur before multiplexing.

When you change the gain on a channel, the output will take several seconds to settle. The module contains a Status
Register to indicate that the output is in the process of settling, and this information is available to applications
through the SCXI_Get_Status function.

The SCXI-1102 supports only Multiplexed operating mode; it does not support Parallel mode.

The SCXI-1120 and the SCXI-1121

The SCXI-1120 and SCXI-1121 are 8-channel and 4-channel isolation modules, respectively.  The input voltage
range on both modules is -5 V to +5 V.  The modules have a hardware-selectable gain on each input channel with
values of 1, 2, 5, 10, 20, 50, 100, 200, 500, 1,000, and 2,000.  NI-DAQ does not use the gain menu in the NI-DAQ
Control Panel; LabVIEW only uses that menu.  Refer to the SCXI_Scale function to compensate for SCXI-1120
and SCXI-1121 gain.

The SCXI-1121 also has four excitation channels that can be used for voltage or current excitation.

The SCXI-1320 and SCXI-1328 terminal blocks that you can use with the SCXI-1120 and SCXI-1121 modules
each have an onboard temperature sensor that is jumper configurable to be either multiplexed along with the other

© National Instruments Corporation 7-5 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

input channels in Multiplexed mode (MTEMP), or to be sent directly to another DAQ board channel (DTEMP).  In
the MTEMP configuration, you can select to read the temperature sensor using the SCXI_Single_Chan_Setup
function; in the DTEMP configuration, the temperature sensor output will appear on DAQ board channel 15 for the
SCXI-1120 and channel 4 for the SCXI-1121.  Notice that the DAQ board must be in Pseudodifferential mode to
read the temperature sensor in DTEMP mode with the SCXI-1120.  If you multiply the voltage read from the
temperature sensor on the SCXI-1320 by 100, you will get the temperature in degrees Celsius.  The temperature
sensor on the SCXI-1328 is a thermistor; you must use the thermistor conversion routine described in Appendix D.

The SCXI-1321 terminal block that can be used with the SCXI-1121 module has shunt resistors that can be enabled
by using the SCXI_Calibrate_Setup function.  The SCXI-1327 terminal block can divide the input signals
applied to the SCXI-1120 or SCXI-1121 by 100.  See the SCXI_Scale function to compensate for this
attenuation.

Please refer to the SCXI-1120 and SCXI-1121 user manuals for information on the hardware-selectable signal
conditioning features available on the modules.

The SCXI-1120 and the SCXI-1121 modules support both Multiplexed and Parallel operating modes.

You can cable an MIO board directly to an SCXI-1120 or SCXI-1121 module using the SCXI-1340 cable.  You
must use the SCXI-1341 cable to connect the SCXI-1120 or SCXI-1121 to a Lab or 1200 series board.  Use an
SCXI-1342 cable with the DAQCard-700.

The SCXI-1122

The SCXI-1122 has 16 differential analog input channels.  The input voltage range is -5 to +5 V at a gain of 1.  The
SCXI-1122 has a software-selectable gain that applies to all channels on the module; use the SCXI_Set_Gain
function to program the module gain.  NI-DAQ does not use the gain menu in the NI-DAQ Control Panel;
LabVIEW 3.0 only uses that menu.  This module also has a programmable lowpass filter with cut-off frequencies of
4 Hz and 4 kHz.  Use the SCXI_Set_Filter function to select the filter setting.

The SCXI-1122 supports Multiplexed mode only; it does not support Parallel mode.

The SCXI-1322 terminal block that you can use with the SCXI-1122 has an onboard thermistor that you can use to
do cold-junction compensation for temperature readings.  You can use the thermistor conversion routine described in
Appendix D to convert the thermistor voltage to temperature.

You can configure the SCXI-1122 for four-wire scanning mode, which means that the module will switch the
current excitation source to drive one of the channels 8 through 15 as an excitation output channel whenever the
corresponding input channel 0 through 7 is selected.  In this mode the module has eight analog input channels and
eight corresponding current excitation channels.  See the SCXI_Set_Input_Mode function description.

The SCXI-1122 uses relays to switch the input channels; these relays require 10 ms to switch.  As a result, you
cannot use a sampling rate greater than 100 Hz in a channel-scanning operation.  In addition, the relays have a finite
lifetime.  If you plan to take many samples from each channel and average them to eliminate noise, you should use
the single-channel or software scanning applications described later in the chapter in Figure 7-3.  This means you
should select one channel on the module, acquire many samples from that channel, then select the next channel, and
so on.  You should not use the channel-scanning method shown in Figure 7-5 if you want to take many samples from
each channel and average them.

The SCXI-1122 has an onboard EEPROM which contains a set of factory calibration constants for the amplifier on
the module.  NI-DAQ automatically reads these constants and uses them in the SCXI_Scale function to
compensate for amplifier gain and offset errors when scaling binary data to voltage.  You can also perform your own
module calibration by taking readings and using the SCXI_Cal_Constants function to store your own
calibration constants in the EEPROM.

The SCXI-1122 has two software-selectable calibration modes that you use the SCXI_Calibrate_Setup
function to select.  You can ground the module amplifier inputs so that you can read the amplifier offset.  You can

NI-DAQ Software Reference Manual for Macintosh 7-6 © National Instruments Corporation



Chapter 7 SCXI Functions

also switch a shunt resistor across your bridge circuit to test your circuit (refer to the SCXI-1122 User Manual for
more information about the shunt resistor).

The SCXI-1124

The SCXI-1124 is a six-channel analog output module capable of generating voltages between -10 and +10 volts or
currents between 0 and 20 mA.  The SCXI-1124 has six independent 12-bit DACs.  Each DAC channel has a
software selectable voltage or current output range.  Use the SCXI_AO_Write function to set the output range and
write voltages, currents, or binary values to the DACs.  The SCXI-1124 is designed for single-point output
operations; only one channel can be written to at a time.  The SCXI-1124 is not intended for use in waveform
generation.

The SCXI-1124 has an onboard EEPROM that contains a set of factory-calibration constants for each DAC.
NI-DAQ automatically loads these constants so that the SCXI_AO_Write function can compute the 12-bit binary
pattern needed to produce your desired voltage at the output.  You can also compute your own calibration constants
by writing binary values to the DACs, measuring the output voltage with a voltmeter, and using the
SCXI_Cal_Constants function to calculate and store the constants in the module EEPROM.

The SCXI-1124 supports Multiplexed mode only.  You can cable an MIO board, DAQCard-700, or Lab or 1200
series board to the SCXI-1124, in which case you should set the jumpers on the module for MIO operation.  You can
cable a DIO board to the SCXI-1124, in which case you should set the jumpers on the module for DIO operation.  If
there is another module in the chassis cabled to a DAQ board in Multiplexed mode, you do not need to cable the
SCXI-1124 to anything; NI-DAQ will communicate with the module using the SCXIbus backplane.  In this case, the
MIO/DIO jumpers on the module are irrelevant.  If you plan to use analog input SCXI modules in addition to the
SCXI-1124, you should cable one of the analog input modules to the DAQ board.

The SCXI-1140

The SCXI-1140 is an 8-channel simultaneously sampling differential amplifier module.  The input voltage range of
the module is -10 to +10 V.  It has a hardware-selectable gain on each input channel with values of 1, 10, 100, 200,
and 500.  NI-DAQ does not use the gain menu in the NI-DAQ Control Panel; LabVIEW only uses that menu.  Refer
to the SCXI_Scale function to compensate for SCXI-1140 gain.

This module supports both Multiplexed mode and Parallel mode.

The SCXI-1140 will simultaneously sample all the input signals and hold those values while the DAQ board reads
the desired channels one by one.  When the module is holding the input channel values, it is in Hold mode; when it
comes out of Hold mode so that it can sense the new values on the input channels, it is in Track mode.  There is a
control signal on the module that will determine when the module is in Track mode, and when the module will go
into Hold mode.  This signal is derived either from a counter/timer output on the DAQ board, from an external
source connected to a pin on the front connector of the module, or from a trigger line on the SCXIbus.

The SCXI-1140 Track/Hold setup is software configurable for single-channel operations or for interval-scanning
operations.  During single-channel operations, an SCXI function call can put the module into Hold mode before
AI functions are used to acquire the data, and put it back into Track mode to sense new input values.  During
interval-scanning operations, the scan interval timer will cause the module to go into Hold mode at the beginning of
each scan and go back into Track mode at the end of each scan.  Effectively, the input channels of the SCXI-1140
are simultaneously sampled at the beginning of each scan.  The scan interval timer can either be a counter on the
DAQ board or an external source connected to the front connector of the module.  In addition, multiple SCXI-1140
modules can be synchronized by using the SCXIbus so that all SCXI-1140 modules will go into Hold mode at the
same time.  If multiple SCXI-1140 modules are being scanned in Multiplexed mode along with other types of SCXI
modules, the module that is cabled to the DAQ board must be an SCXI-1140 module for the Track/Hold control
signals to be properly routed and synchronized.

Note: Because the SCXI-1140 uses the scan interval timer of the DAQ board to control the state of the module
during scanning, only DAQ boards that support interval scanning will support channel scanning on the

© National Instruments Corporation 7-7 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

SCXI-1140.  The DAQCard-700 and Lab and 1200 series do not support interval scanning, and therefore
do not support timed channel scanning on the SCXI-1140 regardless of the operating mode.  The
NB-MIO-16 can support interval scanning if used with an SCXI-1140 module.  However, all of the DAQ
boards support single-channel operations using the SCXI-1140.  Please refer to SCXI Applications later in
this chapter for more information on building applications with the SCXI-1140 module.

It is important to be aware of the Track/Hold timing requirements of the SCXI-1140.  For accurate data, the module
must be in Track mode for at least 7 µs before going into Hold mode.  During an interval-scanning operation, this
means that the scan interval should be at least 7 µs longer than the total sample interval.  After the module is in Hold
mode, the latched data at the input channels will droop at a rate of 10 mV/s, so you must be careful to sample all the
desired channels relatively quickly after putting the module into Hold mode.

The SCXI-1141

The SCXI-1141 is an 8-channel analog input module with programmable gains and filters.  The input range of the
module is -5 to +5 V.  It has programmable gains on each channel of 1, 2, 5, 10, 20, 50, and 100; use the
SCXI_Set_Gain function to program the gain on a per-channel basis.  The filters have a programmable cutoff
frequency from 10 Hz to 25 kHz, or this frequency can be derived from an external clock; use the
SCXI_Configure_Filter function to select the filter settings on a per-module basis or to bypass any of the
filters on a per-channel basis.  The SCXI-1141 supports both Multiplexed and Parallel modes.

The SCXI-1141 has a software selectable calibration mode that you can select with the
SCXI_Calibrate_Setup function.  You can ground each input of each amplifier so that you can read the
amplifier offsets.  The SCXI-1141 also has an onboard EEPROM that contains a set of factory gain adjustment
calibration constants for each amplifier on the module.  NI-DAQ automatically reads these constants and uses them
in the SCXI_Scale function to compensate for amplifier gain errors when scaling binary data to voltage data.  You
can also perform your own amplifier calibration by taking readings and using the SCXI_Cal_Constants
function to store your own calibration constants in the EEPROM.

The SCXI-1304 terminal block provides either AC or DC coupling of input signals.  This terminal block also
provides a ground reference for floating signals.

The SCXI-1160 and the SCXI-1161

The SCXI-1160 is a 16-channel electromechanical single-pole double-throw (SPDT), also referred to as Form C,
relay module with 16 independent SPDT relays.  The relays are latched–that is, the module powers up with the
relays in the position in which they were left at power down.  Each relay can be set or reset without affecting the
other relays, or all relays can change state at the same time.

The SCXI-1161 is an 8-channel electromechanical SPDT relay module with eight independent SPDT relays.  The
relays are nonlatched, and the module powers up with the relays in the default closed position.  Each relay can be set
or reset without affecting the other relays, or all relays can change state at the same time.

Use the SCXI functions SCXI_Get_State, SCXI_Set_State, and SCXI_Get_Status to control the relay
modules.  Call the SCXI_Reset function to initialize all the relays to the default closed position.  For more
information on these functions, refer to the section entitled SCXI Function Summary.

The SCXI-1160 and SCXI-1161 modules only support Multiplexed (or Serial) mode.  If you cable an MIO board to
these modules using the SCXI-1340 cable, a Lab or 1200 series board using the SCXI-1341 cable, or a
DAQCard-700 using the SCXI-1342 cable, you must set the module jumpers to the MIO position.  If you cable a
DIO board to the module, you must set the jumpers to the DIO position.  If there is another module in the chassis
cabled to a DAQ board in Multiplexed mode, you do not need to cable the SCXI-1160 or SCXI-1161 to anything;
NI-DAQ will communicate with the module using the SCXIbus backplane.  In this case, the MIO/DIO jumpers on
the module are irrelevant.  If you plan to use analog input SCXI modules in addition to the SCXI-1160 or
SCXI-1161, you should cable one of the analog input modules to the DAQ board.

NI-DAQ Software Reference Manual for Macintosh 7-8 © National Instruments Corporation



Chapter 7 SCXI Functions

The SCXI-1162 and the SCXI-1162HV

The SCXI-1162 and SCXI-1162HV are 32-channel optically isolated digital input modules.  They accept 32 input
signals from external equipment and condition the signals for input to a DAQ board while maintaining optical
isolation from the host computer.  The SCXI-1162 accepts 0 to +5 V digital signals, and the SCXI-1162HV senses
AC or DC signals up to 250 V.

You can call the SCXI_Get_State function to read the logical states of the digital input lines on the module.

The SCXI-1162 and SCXI-1162HV modules support both Multiplexed (or Serial) mode and Parallel mode.  You
must set jumpers on the modules correctly for Multiplexed or Parallel mode.  If you cable an MIO board to these
modules using the SCXI-1340 cable, a Lab or 1200 series board using the SCXI-1341 cable, or a DAQCard-700
using the SCXI-1342 cable, you must set the module jumpers to the MIO position.  If you cable a DIO board to
these modules, you must set the jumpers to the DIO position.

The SCXI-1163 and the SCXI-1163R

The SCXI-1163 and the SCXI-1163R are 32-channel optically isolated digital output modules.  The SCXI-1163
makes available to external equipment up to 32 digital outputs from a DAQ board while maintaining optical
isolation from the host computer and eliminating ground-loop problems.  The SCXI-1163R is functionally
equivalent to the SCXI-1163 but incorporates solid-state relays in place of the digital outputs.  You can open or
close each relay independently.

You can call the SCXI_Set_State function to control the digital output lines or relays of the modules.  You can
call the SCXI_Get_State function to obtain the current states of the modules.  It is important to remember that
SCXI_Get_State makes a hardware read only if the module is jumper-configured and operating in Parallel
mode.  When operated in Serial mode, the driver retains the states of the digital output lines in memory.
Consequently, a hardware write must take place before you can obtain the states on the module.

The modules power up with digital output lines in a high state or relays open.  Calling SCXI_Reset also sets all
the digital output lines to a high state.

The SCXI-1163 and SCXI-1163R modules support both Multiplexed (or Serial) mode and Parallel mode.  You must
set jumpers on the module correctly for Multiplexed or Parallel mode.  If you cable an MIO board to these modules
using the SCXI-1340 cable, a Lab or 1200 series board using the SCXI-1341 cable, or a DAQCard-700 using the
SCXI-1341 cable, you must set the module jumpers to the MIO position.  If you cable a DIO board to these
modules, you must set the jumpers to the DIO position.

The MIO Boards

The MIO DAQ boards support the following analog input functionality when using the SCXI analog input modules:

• Single analog input (using the AI class of functions described in Chapter 3, Analog Input Functions)

• Single-channel data acquisition (using the DAQ class of functions described in Chapter 6, Data Acquisition
Functions)

• Multiple-channel and interval scanning (using the SCAN class of functions described in Chapter 6, Data
Acquisition Functions)

The NB-MIO-16 does not support interval channel scanning unless it is being used in an SCXI scan that includes an
SCXI-1140 module.  If an SCXI_SCAN_Setup call has been made for an NB-MIO-16 with a module scan list that
includes an SCXI-1140, then the SCAN_IntStart call can be used to start an interval-scanning operation on the
NB-MIO-16.  In this special case, the sample timebase and scan timebase specified must be the same.  The double-
buffered data acquisition functions (the DAQ2 class of functions) can also be used.

© National Instruments Corporation 7-9 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

You can also use the analog output modules and digital modules in Multiplexed mode.  If you are using analog input
modules with digital and/or analog output modules, you must cable the MIO board to an analog input module.

It is important to remember that when a DAQ board is cabled to an SCXI module, some of the DAQ board I/O
connector pins and therefore some of the board resources will be reserved for SCXI use.  The following MIO
resources are reserved by SCXI:

• Digital I/O lines ADIO0 through ADIO2 are used as output lines to the SCXI; ADIO3 is available for general
use as a digital output line.  Digital line BDIO0 is used as an input line from the SCXI; the remaining lines of
Digital Port B are available for general use as input.

• When an SCXI-1140 module is used, counter 2 is used to control the Track/Hold state of the module.  When the
module is set up for a single-channel or an interval-channel scanning operation, counter 2 is reserved.  Refer to
the SCXI_Track_Hold_Setup function for more information.

• The SCXI-1100, SCXI-1102, and SCXI-1122 modules will drive analog input channel 0; if the SCXI terminal
block is used with the temperature sensor in the DTEMP configuration, analog input channel 1 will also be
driven.

• The SCXI-1120 module will drive analog input channels 0 through 7, even if the module is to be operated in
Multiplexed mode.  In addition, if the temperature sensor on the terminal block is configured for DTEMP mode,
analog input channel 15 will also be driven.  Notice that the DAQ board must be operated in Pseudodifferential
mode to read the temperature sensor in the DTEMP configuration.

• The SCXI-1121 module will drive analog input channels 0 through 3, even if the module is to be operated in
Multiplexed mode.  In addition, if the temperature sensor on the terminal block is in the DTEMP configuration,
analog input channel 4 will also be driven.

• The SCXI-1140 module will drive analog input channels 0 through 7, even if the module is to be operated in
Multiplexed mode.

• The SCXI-1141 module will drive analog input channels 0 through 7, even if the module is to be operated in
Multiplexed mode.

The DIO-32F

The NB-DIO-32F digital I/O board can be cabled directly to an analog output or digital SCXI module.  When a
digital I/O board is cabled to an SCXI module configured for Multiplexed mode, some of the digital board I/O pins,
and therefore some of the board resources, are reserved for SCXI use.  SCXI reserves the following NB-DIO-32F
resources when cabled to a digital or analog output module in Multiplexed mode:

• NB-DIO-32F digital I/O lines DIOB0 to DIOB3 are the output lines to the SCXI module.  The remaining lines
of this port are available for output only.

• NB-DIO-32F digital I/O line DIOA0 is the input line from the SCXI module.  The remaining lines of this port
are available for input only.

When you cable an NB-DIO-32F to an SCXI-1162, SCXI-1162HV, SCXI-1163, or SCXI-1163R in Parallel mode,
the 32 digital lines are directly connected to the module’s 32 digital channels.  You can use the DIG_In_Port and
DIG_Out_Port functions in Chapter 5 to access the SCXI channels in Parallel mode.  You cannot cable an
NB-DIO-32F to an analog input module.

NI-DAQ Software Reference Manual for Macintosh 7-10 © National Instruments Corporation



Chapter 7 SCXI Functions

The DIO-24 and the DIO-96

The NB-DIO-24, DAQCard-DIO-24, NB-DIO-96, and PCI-DIO-96 digital I/O boards can be cabled directly to
analog output or digital modules.  When a digital I/O board is cabled to an SCXI module configured for Multiplexed
mode, some of the digital board I/O pins, and therefore some of the board resources, are reserved for SCXI use.  The
following NB-DIO-24, DAQCard-DIO-24, and NB-DIO-96 resources are reserved by SCXI when cabled to a digital
or analog output module in Multiplexed mode:

• NB-DIO-24 and DAQCard-DIO-24 digital I/O lines PB0 to PB3 and the NB-DIO-96 and PCI-DIO-96 digital
output lines APB0 to APB3 are the output lines to the SCXI module.  The remaining lines of these ports are
available for output only.

• NB-DIO-24 and DAQCard-DIO-24 digital I/O line PA0 and the NB-DIO-96 and PCI-DIO-96 digital I/O line
APA0 are the input lines from the SCXI module. The remaining lines of these ports are available for input only.

When you cable a DIO-24 to an SCXI-1162, SCXI-1162HV, SCXI-1163, or SCXI-1163R in Parallel mode, the 24
digital lines are directly connected to the module’s digital channels 0 to 23.  When you cable a DIO-96 to an
SCXI-1162, SCXI-1162HV, SCXI-1163, or SCXI-1163R in Parallel mode, the DIO-96 ports 0 to 3 are directly
connected to the module’s digital channels.  When you cable a DIO-96 in Parallel (secondary) mode, DIO-96 ports 6
to 9 are directly connected to the module’s digital channels.  You can use the DIG_In_Port and DIG_Out_Port
functions in Chapter 5, using the appropriate onboard ports to access the SCXI digital lines in Parallel mode.  You
cannot cable a DIO-24 or DIO-96 to an analog input module.

The DAQCard-700 and Lab and 1200 Series Boards

The DAQCard-700 and Lab and 1200 series boards support the following analog input functionality when using the
SCXI analog input modules:

• Single analog input (using the AI class of functions described in Chapter 3)

• Single-channel data acquisition (using the DAQ class of functions described in Chapter 6)

• Continuous channel-scanning on the SCXI-1120 and SCXI-1121 modules only, in Parallel mode only (using the
Lab_ISCAN class of functions described in Chapter 6)

The double-buffered data acquisition functions (the DAQ2 class of functions) can also be used.

You can also use the analog output modules and digital modules in Multiplexed mode.  If you are using analog input
modules with digital and/or analog output modules, you must cable the Lab or 1200 series board to an analog input
module.

It is important to remember that when a DAQ board is cabled to an SCXI module, some of the DAQ board I/O
connector pins and therefore some of the board resources will be reserved for SCXI use.  The following resources
are reserved by SCXI:

• Lab and 1200 series digital I/O lines PB4 to PB7 are used as output communication lines to SCXI.
DAQCard-700 digital output lines DOUT4 to DOUT7 are used as output communication lines to SCXI.   The
entire port is reserved by NI-DAQ.

• Lab and 1200 series digital I/O line PC1 is used as an input communication line to SCXI. DAQCard-700 digital
input line DIN6 is used as an input communication line to SCXI.   The remaining lines of these ports are
available for input only.

• When you use an SCXI-1140 module, counter B1 of the Lab and 1200 series and counter 2 of the
DAQCard-700 control the Track/Hold state of the module. When the module is not set up for an input operation,
these counters are available for general use; otherwise, they are reserved. Refer to the
SCXI_Track_Hold_Setup function description for more information.

© National Instruments Corporation 7-11 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

• The SCXI-1100 module drives analog input channel 0 of the DAQ device; if you use the SCXI-1300 terminal
block with the temperature sensor in the DTEMP configuration, the SCXI-1100 also drives analog input
channel 1. The SCXI-1100 cannot read the temperature sensor in DTEMP mode.

• The SCXI-1102 module drives analog input channel 0 of the DAQ device.

• The SCXI-1120 module drives analog input channels 0 to 7, even if you are operating the module in
Multiplexed mode. In addition, if the temperature sensor on the terminal block is in the DTEMP configuration,
the SCXI-1120 also drives analog input channel 15.

• The SCXI-1121 module drives analog input channels 0 to 3, even if you are operating the module in
Multiplexed mode. In addition, if the temperature sensor on the terminal block is in the DTEMP configuration,
the SCXI-1121 also drives analog input channel 4.

• The SCXI-1122 module drives analog input channel 0 of the DAQ device; if you use the SCXI-1300 terminal
block with the temperature sensor in the DTEMP configuration, the SCXI-1122 also drives analog input
channel 1. The SCXI-1122 cannot read the temperature sensor in DTEMP mode.

• The SCXI-1140 module drives analog input channels 0 to 7, even if you are operating the module in
Multiplexed mode.

• The SCXI-1141 module drives analog input channels 0 to 7, even if you are operating the module in
Multiplexed mode.

SCXI Function Summary

SCXI_AO_Write Sets the DAC channel on the SCXI-1124 module to the specified voltage or
current output value.  You can also use this function to write a binary value
directly to the DAC channel, or to translate a voltage or current value to the
corresponding binary value.

SCXI_Cal_Constants Calculates calibration constants for the given channel and range or gain using
measured voltage/binary pairs.  You can use this function with any SCXI analog
input or analog output module.  The constants can be stored and retrieved from
NI-DAQ memory or the module EEPROM (if your module has an EEPROM).
The driver uses the calibration constants to more accurately scale analog input
data when you use the SCXI_Scale function and output data when you use
SCXI_AO_Write.

SCXI_Calibrate_Setup Grounds the amplifier inputs of an SCXI-1100, SCXI-1122, or SCXI-1141 so
that you can determine the amplifier offset.  You can also use this function to
switch a shunt resistor across your bridge circuit to test the circuit.  Shunt
calibration is supported for the SCXI-1122 and the SCXI-1121 with the
SCXI-1321 terminal block.

SCXI_Change_Chan Selects a new channel of a multiplexed module that has previously been
set up for a single-channel analog input operation using the
SCXI_Single_Chan_Setup function.

 SCXI_Configure_Filter Sets the specified channel to the given filter setting on any SCXI module that
supports programmable filter settings.  Currently, only the SCXI-1122 and
SCXI-1141 has programmable filter settings; the other analog input modules
have hardware-selectable filters.

SCXI_Get_Chassis_Info Returns current chassis configuration information.

SCXI_Get_Module_Info Returns current configuration information for a given chassis slot number.

NI-DAQ Software Reference Manual for Macintosh 7-12 © National Instruments Corporation



Chapter 7 SCXI Functions

SCXI_Get_State Returns the state of a single channel or an entire port on any digital or relay
module.

SCXI_Get_Status Returns the data in the Status Register of the specified module.  This function
can be used with the SCXI-1122 or SCXI-1160 to determine if the relays have
finished switching, with the SCXI-1124 module to determine if the DACs have
settled, or with the SCXI-1102 to determine if the filters have settled after
changing the gain.

SCXI_Load_Config Loads the SCXI chassis configuration information that was established in the
configuration utility.

SCXI_MuxCtr_Setup Enables or disables counter 1 to be used as a mux counter during SCXI
multiplexed channel scanning to synchronize the DAQ board scan list with the
module scan list that has been downloaded to Slot 0 of the SCXI chassis.

SCXI_Reset Resets a specified module to its default state, to reset the Slot 0 scanning
circuitry, or to reset the entire chassis.

SCXI_Scale Scales an array of binary data acquired from an SCXI channel to voltage.
SCXI_Scale will use stored software calibration constants if applicable for the
given module when it scales the data.  The SCXI-1102, SCXI-1122 and
SCXI-1141 have default software calibration constants loaded from the module
EEPROM; all other analog input modules have no software calibration constants
unless you follow the analog input calibration procedure outlined in the
SCXI_Cal_Constants function description.

SCXI_SCAN_Setup Sets up the SCXI chassis for a multiplexed scanning data acquisition operation
to be performed by the given DAQ board.  Modules may be scanned in any
order; channels on each module must be scanned in consecutive order.  A
module scan list is downloaded to Slot 0 in the SCXI chassis that will determine
the sequence of modules that will be scanned and how many channels on each
module will be scanned.  Each module is programmed with its given start
channel.

SCXI_Set_Config Allows you to change the configuration of the SCXI chassis that was established
in the configuration utility.

SCXI_Set_Gain Sets the specified channel to the given gain setting on any SCXI module that
supports programmable gain settings.  Currently, the SCXI-1100, SCXI-1102,
SCXI-1122, and SCXI-1141 have programmable gains; the other analog input
modules have hardware-selectable gains.

SCXI_Set_Input_Mode Configures the SCXI-1122 channels for two-wire mode or four-wire mode.

SCXI_Set_State Sets the state of a single channel or an entire port on any digital output or relay
module.

SCXI_Single_Chan_Setup Sets up a multiplexed module for a single channel analog input operation to be
performed by the given DAQ board.  Sets the module channel, enables the
module output, and routes the module output on the SCXIbus if necessary.
Resolves any contention on the SCXIbus by disabling the output of any module
that was previously driving the SCXIbus.  This function can also be used to read
the temperature sensor on a terminal block connected to the front of a module.

SCXI_Track_Hold_Control If an SCXI-1140 module has been configured for a single-channel operation,
this function can be used to put the module into Track mode or Hold mode.

© National Instruments Corporation 7-13 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

SCXI_Track_Hold_Setup Establishes the track/hold behavior of an SCXI-1140 module, and sets up the
module for either a single-channel operation or an interval-scanning operation.

SCXI Applications

There are three categories of SCXI applications–analog input applications, analog output applications, and digital
applications.

Figure 7-2 shows the basic structure of an SCXI application.

SCXI_Reset

SCXI_Reset

Analog Input Operations

Reset the chassis and modules to

their default hardware settings.

Done?

Yes

No

Reset the chassis and modules to

their default hardware settings.

Analog Output Operations Digital Operations

Figure 7-2.  General SCXIbus Application

The figures in the following sections show the detailed call sequences for SCXI operations.  In effect, each of the
remaining flowcharts in the chapter is an enlargement of the Analog Input Operations, the Analog Output
Operations, or the Digital Operations node in Figure 7-2.  Please refer to the function descriptions later in the chapter
for detailed information about each function used in the flowcharts.

NI-DAQ Software Reference Manual for Macintosh 7-14 © National Instruments Corporation



Chapter 7 SCXI Functions

Analog Input Applications

In this section, the SCXI applications have been divided into two types–single-channel applications and channel-
scanning applications.  The distinction between the two types is simple–single-channel applications do not involve
automatic channel switching by the hardware during an analog input process; channel-scanning applications do.

Single-channel applications use the AI class of functions described in Chapter 3 or the DAQ class of functions
described in Chapter 6 to acquire the input data after the SCXI has been set up.  To acquire data from more than one
channel, multiple AI or DAQ function calls are needed, and explicit SCXI function calls may be needed to change
the SCXI channel that has been selected; this specific type of single-channel application is referred to as software
scanning.

Channel-scanning applications will use the SCAN and Lab_SCAN classes of functions described in Chapter 6 to
acquire the input data after the SCXI has been set up.

Building Analog Input Applications in Multiplexed Mode

Multiplexed applications require the use of SCXI functions to select the multiplexed channels, select the
programmable module features, route signals on the SCXIbus, and program Slot 0.  After the SCXI chassis and
modules have been set up, the AI, DAQ, and SCAN functions can be used to acquire the data.  The channel
parameter that is passed to each of these functions will almost always be zero because, by default, the multiplexed
output of a module is connected to analog input channel 0 of the DAQ board.  When multiple chassis are used, the
modules in each chassis are multiplexed to a separate analog input channel.  In that case, the channel parameters of
the AI, DAQ, and SCAN functions should be the DAQ board channel that corresponds to the desired chassis for the
operation.

Figure 7-3 shows the function call sequence of a single-channel or software-scanning application using an
SCXI-1100, SCXI-1102, SCXI-1120, SCXI-1121, SCXI-1122, or SCXI-1141 module operating in Multiplexed
mode.

© National Instruments Corporation 7-15 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

Set up the chassis for a single-channel analog input

operation on a specified channel on a specified module.

Single-Channel Data Acquisition

SCXI_Change_Chan

If desired, change the

selected channel on

the module.

SCXI_Single_Chan_Setup

Single Analog Input

If the desired module has programmable
gain and the current module gain setting is

not desirable, change to the desired gain.

Done?

Yes

No

Have you acquired all the data you

need from this module?

Acquire data from the

desired channel on the

module using the AI
functions or the DAQ

functions.

SCXI_Set_Gain

Figure 7-3.  Single-Channel or Software-Scanning Operation Using the SCXI-1100, SCXI-1102, SCXI-1120,
SCXI-1121, SCXI-1122, or SCXI-1141 in Multiplexed Mode

The SCXI_Single_Chan_Setup function will select the given channel to appear at the module output.  If the
given module is not directly cabled to the DAQ board, the function will send the module output on the SCXIbus;
then it will configure the module that is cabled to the DAQ board to send the signal that is present on the SCXIbus to
the DAQ board.

The SCXI_Set_Gain function is used to change the gain of an SCXI-1100, SCXI-1102, SCXI-1122, or
SCXI-1141 module.  The module will maintain this gain setting until the function is used again to change it.  You
can also do other module-specific programming at this point, such as SCXI_Set_Filter or
SCXI_Set_Input_Mode.

To achieve software scanning,  a different channel on the module can be selected using the SCXI_Change_Chan
function after acquiring data from the desired channel with the AI or DAQ functions.  If a channel on a different

NI-DAQ Software Reference Manual for Macintosh 7-16 © National Instruments Corporation



Chapter 7 SCXI Functions

module is desired, you will have to call the SCXI_Single_Chan_Setup function again to enable the appropriate
module outputs and manage the SCXIbus signal routing.

Figure 7-4 shows the function call sequence of a single channel or software scanning application using an
SCXI-1140 in Multiplexed mode.

© National Instruments Corporation 7-17 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

SCXI_Track_Hold_Setup

Configure the desired module for a

single-channel operation.

Set up the chassis for a

single-channel analog input
operation.

SCXI_Change_Chan

If desired, change the
selected channel on the

module.

SCXI_Single_Chan_Setup

Single Analog Input

Done?

Yes

No

SCXI_Track_Hold_Control

Latch the analog inputs by putting the

module into Hold mode.

SCXI_Track_Hold_Setup

Put the module back into Track mode to

sense the new input values.

Maintain
Hold mode?

No

Yes

SCXI_Change_Chan

If desired, change the
selected channel on the

module.

Have you acquired all the data you need?

Do you wish to take more data while

the module is in Hold mode?

Acquire data from the
desired channel on the
module using the AI

functions.

Figure 7-4.  Single-Channel or Software-Scanning Operation Using the SCXI-1140 in Multiplexed Mode

NI-DAQ Software Reference Manual for Macintosh 7-18 © National Instruments Corporation



Chapter 7 SCXI Functions

The initial SCXI_Track_Hold_Setup call will signal the driver that the module will be used in a single-channel
application, and will put the module into Track mode.  The first SCXI_Track_Hold_Control call will latch, or
sample, all the module inputs; subsequent AI calls will then read the voltages that were sampled.  It is important to
realize that all AI operations that occur between the first SCXI_Track_Hold_Control call, which puts the
module into Hold mode, and the second control call, which puts the module into Track mode, will be acquiring data
that was sampled at the time of the first control call.  One or more channels may be read while the module is in Hold
mode.  After the module is put back into Track mode, the user can repeat the process to acquire new data.  An
SCXI_Single_Chan_Setup call is required to select the multiplexed channel and route the output to the DAQ
board appropriately.  The SCXI_Change_Chan call can change the channel on the module either while it is in
Hold mode, or after the module has been returned to Track mode.

Figure 7-5 shows the function call sequence of a channel-scanning application in Multiplexed mode.  Any
combination of module types can be used in a scanning operation, with the following restrictions–if any SCXI-1140
modules are to be scanned, interval scanning must be used, and the module that is directly connected to the DAQ
board must be an SCXI-1140.

Note: The SCXI-1122 uses relays to switch the input channels; the relays require 10 ms to switch, so the
sampling rate in a channel scanning operation cannot exceed 100 Hz.  If  you want to take many
readings from each channel and average them to reduce noise, you should use the single-channel or
software scanning method shown in Figure 7-3 instead of the channel-scanning method shown in
Figure 7-5.  This means you select one channel on the module, acquire many samples on that channel
using the DAQ functions, select the next channel, and so on. This will increase the lifetime of your
module relays.  Once you have selected a particular channel, you can use the fastest sample rate your
DAQ board supports with the DAQ functions.

© National Instruments Corporation 7-19 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

Configure each SCXI-1140 in the
module scan list for interval scanning.

Specify the module scan list, the start channel of each module,
and the number of channels to scan on each module.

Set the gain of each module
that supports programmable
gain in the module scan list.

SCXI_MuxCtr_Setup

Set up the Mux Counter on the data acquisition
board so that the total number of samples to be

taken in one scan on the data acquisition board is
equal to the total number of channels in one scan

of the module scan list.

Scanned Data Acquisition

Acquire the data using the SCAN functions.
Remember, if there are any SCXI-1140 modules
to be scanned, you must use interval scanning.

Done?

Yes

Have you acquired all the data you need?

No

SCXI_Track_Hold_Setup

Disable the Track/Hold setup of the SCXI-1140
modules to free the counter resource on the

data acquisition board.

SCXI_Set_Gain

SCXI_SCAN_Setup

SCXI_Track_Hold_Setup

Figure 7-5.  Channel-Scanning Operation Using Modules in Multiplexed Mode

If any of the modules to be scanned are SCXI-1140 modules, you must establish the Track/Hold setup of each one.
If you want to synchronize multiple SCXI-1140 modules, you can configure the module that is receiving the
Track/Hold control signal to send the Track/Hold signal on the SCXIbus so that any other SCXI-1140 modules can
use it.  The Track/Hold signal can either be from the DAQ board counter or from an external source.

The SCXI_SCAN_Setup call establishes the module scan list, which is downloaded to Slot 0.  Each module is
programmed for automatic scanning starting at its given start channel.  If the SCXIbus will be needed during the
scan to route the outputs of multiple modules, this function will resolve any contention.

In many of the data acquisition function descriptions in Chapter 6, the count parameter descriptions specify that
count must be an integer multiple of the total number of channels scanned.  When building channel-scanning

NI-DAQ Software Reference Manual for Macintosh 7-20 © National Instruments Corporation



Chapter 7 SCXI Functions

acquisitions in Multiplexed mode, the total number of channels scanned is the sum of all the elements in the
numChansList array in the SCXI_SCAN_Setup function call.

If any of the modules in the module scan list support programmable gain, you can use the SCXI_Set_Gain to
change the gain setting on each module.  You can also use the SCXI_Configure_Filter and
SCXI_Set_Input_Mode functions at this time if they are appropriate for your module.

The SCXI_MuxCtr_Setup call is used to synchronize the module scan list with the DAQ board scan list.  In most
cases (especially when interval scanning is used), it will be desirable to ensure that the number of samples to be
taken in one pass through the module scan list is the same as the number of samples to be taken in one pass through
the DAQ board scan list.  Counter 1 on the MIO-16 is used to achieve this synchronization.

After the SCXI chassis and modules have been set up, more than one channel-scanning operation can be performed
using the SCAN functions without reconfiguring the SCXI chassis or modules.

Building Analog Input Applications in Parallel Mode

When the SCXI-1120, SCXI-1121, and SCXI-1141 modules are operated in Parallel mode, no further SCXI
function calls are required beyond those shown in Figure 7-2 to set up the modules for analog input operations.
After the SCXI chassis and modules have been initialized and reset, you are ready use the AI, DAQ, SCAN, or
Lab_SCAN functions.  Remember that the channel and gain parameters of the AI, DAQ, SCAN, and Lab_SCAN
functions refer to the DAQ board channels and gains.

For example, to acquire a single reading from channel 0 on the module, call the AI_Read function with the
channel parameter set to zero.  The gain parameter refers to the DAQ board gain.  The SCXI_Scale function can
then be used to convert the binary reading to a voltage.

To build a channel-scanning application using the SCXI-1120, SCXI-1121, or SCXI-1141 in Parallel mode, use the
SCAN and Lab_SCAN functions to scan the channels on the DAQ board that correspond to the desired channels on
the module.  For example, to scan channels 0, 1, and 3 on the module using an NB-MIO-16X board, call the
SCAN_Setup function with the channel vector set to {0, 1, 3}.  The gain vector should contain the NB-MIO-16X
channel gains.  After the data is acquired, it can be demultiplexed and the data for each channel can be sent to the
SCXI_Scale function.

In many of the data acquisition function descriptions in Chapter 6, the count parameter descriptions specify that
count must be an integer multiple of the total number of channels scanned.  When building channel-scanning
acquisitions in Parallel mode, the total number of channels scanned is determined by the num_chans parameter in
the SCAN_Setup or Lab_SCAN_Start call.

The SCXI-1140 module requires the use of SCXI functions to configure and control the Track/Hold state of the
module before the AI and SCAN functions can be used to acquire the data.  Figure 7-6 shows the function call
sequence of a single-channel (or software-scanning) operation using the SCXI-1140 module in Parallel mode.

The SCXI-1100, SCXI-1102, and SCXI-1122 modules do not support Parallel mode.

© National Instruments Corporation 7-21 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

SCXI_Track_Hold_Setup

Configure the desired

module for a single-channel operation.

Single Analog Input

Done?

Yes

No

SCXI_Track_Hold_Control

Latch the analog inputs by putting the

module into Hold mode.

SCXI_Track_Hold_Control

Put the module back into Track

 mode to sense the new input values.

Maintain Hold
mode?

No

Do you wish to take more data while

the module is in Hold mode?

Yes

Have you acquired all the data you need?

Acquire data from the

desired channel on the

module using the AI

functions.

SCXI_Track_Hold_Setup

Disable the Track/Hold setup of the module to

 free up the counter resource on the data

acquisition board.

Figure 7-6.  Single-Channel or Software-Scanning Operation Using the
SCXI-1140 in Parallel Mode

NI-DAQ Software Reference Manual for Macintosh 7-22 © National Instruments Corporation



Chapter 7 SCXI Functions

The initial SCXI_Track_Hold_Setup call will signal the driver that the module will be used in a single-channel
application, and will put the module into Track mode.  The first SCXI_Track_Hold_Control call will latch, or
sample, all the module inputs; subsequent AI calls will then read the voltages that were sampled.  It is important to
realize that all AI operations that occur between the first SCXI_Track_Hold_Control call, which puts the
module into Hold mode, and the second control call, which puts the module into Track mode, will be acquiring data
that was sampled at the time of the first control call.  One or more channels may be read while the module is in Hold
mode.  After the module is put back into Track mode, the user can repeat the process to acquire new data.

Remember that the channel and gain parameters of the AI function calls refer to the DAQ board channels and
gains.  Simply use the data acquisition channels that correspond to the desired module channels as described earlier
in this section.  You must also be aware of the SCXI-1140 Track/Hold timing requirements that were described in
The SCXI-1140 section earlier in this chapter.

Figure 7-7 shows the function call sequence of a channel-scanning application using the SCXI-1140 in Parallel
mode.

SCXI_Track_Hold_Setup

Scanned Data Acquisition

Acquire data from the desired channels using 

interval scanning with the SCAN functions.

Done?

Yes

Have you acquired all the data you need?

No

Configure the desired module for 

interval scanning.

SCXI_Track_Hold_Setup

Disable the Track/Hold setup of the module to 

free the counter resource on the data 

acquisition board.

Figure 7-7.  Channel-Scanning Operation Using the SCXI-1140 in Parallel Mode

The call sequence is much simpler because the scan interval timer will control the Track/Hold state of the module
automatically during the interval-scanning operation.  Remember that only the NB-MIO-16 and NB-MIO-16X
boards support channel-scanning using the SCXI-1140 module.

© National Instruments Corporation 7-23 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

Analog Output Applications

Using the SCXI-1124 analog output module with the NI-DAQ functions is very simple.  Just call the
SCXI_AO_Write function to write your desired voltages to the DAC channels on the module.  You can use the
SCXI_Get_Status function, if you wish, to determine when the DAC channels have settled to their final analog
output voltages.

If you want to calculate new calibration constants for SCXI_AO_Write to use for the voltage to binary conversion
instead of the factory calibration constants that are shipped in the module EEPROM, follow the procedure outlined
in the SCXI_Cal_Constants function description.

Digital Applications

If you configured your digital or relay modules for Multiplexed mode, use the SCXI_Set_State and
SCXI_Get_State functions to access your digital or relay channels.

If you are using the SCXI-1160 module, you may wish to use the SCXI_Get_Status function after calling the
SCXI_Set_State function.  SCXI_Get_Status will tell you when the SCXI-1160 relays have finished
switching.

If you are using the SCXI-1162 or SCXI-1162HV module, SCXI_Get_State will read the module digital input
channels.  For the other digital and relay modules, SCXI_Get_State will return a software copy of the current
state that is maintained by NI-DAQ.  However, if you are using the SCXI-1163 or SCXI-1163R in Parallel mode,
SCXI_Get_State will read the hardware states.

If you are using the SCXI-1162, SCXI-1162HV, SCXI-1163, or SCXI-1163R in Parallel mode, you can use the
SCXI functions as described earlier, or you can call the DIG_In_Port and DIG_Out_Port functions using the
correct DAQ board port numbers that correspond to the SCXI module digital channels.  The DIO-24 and DIO-96
and The DIO-32F sections earlier in this chapter list the onboard port numbers that are used for each type of board if
the SCXI-1162, SCXI-1162HV, SCXI-1163, or SCXI-1163R is configured for Parallel mode.  The MIO and Lab
Series boards cannot use the SCXI-1162, SCXI-1162HV, SCXI-1163, or SCXI-1163R in Parallel mode.

Transducer Conversions

Appendix D, Transducer Conversion Routines, contains information regarding transducer conversion functions for
RTDs, thermocouples, thermistors, and strain gauges.  The source code for these functions is provided with NI-DAQ
for Macintosh.

NI-DAQ Software Reference Manual for Macintosh 7-24 © National Instruments Corporation



Chapter 7 SCXI Functions

SCXI_AO_Write

Function
Sets the DAC channel on the SCXI-1124 module to the specified voltage or current output value. You can also
use this function to write a binary value directly to the DAC channel, or to translate a voltage or current value to
the corresponding binary value.

Synopsis

C Syntax locus i32 SCXI_AO_Write(u32 chassisID, u32 moduleSlot, u32

DACchannel, u32 opCode, u32 rangeCode, f64

voltCurrentData, i32 binaryData, i16 *binaryWritten);

Pascal Syntax function SCXI_AO_Write(chassisID : i32; moduleSlot : i32;

DACchannel : i32; opCode : i32; rangeCode : i32;

voltCurrentData : f64; binaryData : i32; var

binaryWritten : i16) : i32;

BASIC Syntax FN SCXI_AO_Write(chassisID&, moduleSlot&, DACchannel&, opCode&,

rangeCode&, voltCurrentData#, binaryData&, binaryWritten&)

C Syntax SCXI_AO_Write (SCXIchassisID, moduleSlot, channel, opCode,

rangeCode, voltCurrentData, binaryData,

binaryWritten);

int SCXIchassisID, moduleSlot, channel, opCode, rangeCode;

double voltCurrentData;

int binaryData, *binaryWritten;

Pascal Syntax SCXI_AO_Write (SCXIchassisID, moduleSlot, channel, opCode,

rangeCode : integer; voltCurrentData : double; 

binaryData : integer; var binaryWritten :

integer) : integer;

Parameters
channel is the number of the analog output channels on the module.

Range: 0 to 5.
opCode specifies the type of data to write to the DAC channel. You can also use opCode to tell
SCXI_AO_Write to translate a voltage or current value and return the corresponding binary pattern in
binaryWritten without writing anything to the module.

0: Write a voltage or current to channel.
1: Write a binary value directly to channel.
2: Translate a voltage or current value to binary, return in binaryWritten.\

rangeCode is the voltage or current range to be used for the analog output channel.
0: 0 to 1 V.
1: 0 to 5 V.
2: 0 to 10 V.
3: -1 to 1 V.
4: -5 to 5 V.
5: -10 to 10 V.
6: 0 to 20 mA.

voltCurrentData is the voltage or current you want to produce at the DAC channel output. If opCode = 1,
NI-DAQ ignores this parameter. If opCode = 2, this is the voltage or current value you want to translate to
binary. If the value is out of range for the given rangeCode, SCXI_AO_Write returns an error.

© National Instruments Corporation 7-25 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

binaryData is the binary value you want to write directly to the DAC. If opCode is not 1, NI-DAQ ignores this
parameter.

Range: 0 to 4,095

binaryWritten returns the actual binary value that NI-DAQ wrote to the DAC. SCXI_AO_Write uses a
formula given later in this section using calibration constants that are stored on the module EEPROM to
calculate the appropriate binary value that will produce the given voltage or current. If opCode = 1,
binaryWritten is equal to binaryData. If opCode = 2, SCXI_AO_Write calculates the binary value but does
not write anything to the module.

Description
SCXI_AO_Write uses the following equation to translate voltage or current values to binary:

Bw =   Bl + (Vw -   Vl)   *   (Bh - Bl) / (Vh -   Vl)

where

Bl = binary value that produces the low value of the range

Bh = binary value that produces the high value of the range

Vh = high value of the range

Vl = low value of the range

Vw = desired voltage or current

Bw = the binary value which will generate Vw

NI-DAQ loads a table of calibration constants from the SCXI-1124 EEPROM load area. The calibration table
contains values for Bl and Bh for each channel and range.

The SCXI-1124 is shipped with a set of factory calibration constants in the factory EEPROM area, and a copy
of the factory constants in the EEPROM load area. You can recalibrate your module and store your own
calibration constants in the EEPROM load area using the SCXI_Cal_Constants function. Please refer to
the SCXI_Cal_Constants function description for calibration procedures and information about the module
EEPROM.

If you want to write a binary value directly to the output channel, use opCode = 1. SCXI_AO_Write will not
use the calibration constants or the conversion formula; it will simply write your binaryData value to the DAC.

                                                                                                                                                                                           

SCXI_Cal_Constants

Function
Calculates calibration constants for the given channel and range or gain using measured voltage/binary pairs.
You can use this function with any SCXI analog input or analog output module.  The constants can be stored
and retrieved from NI-DAQ memory or the module EEPROM (if your module has an EEPROM).  The driver
uses the calibration constants to more accurately scale analog input data when you use the SCXI_Scale
function and output data when you use SCXI_AO_Write.

NI-DAQ Software Reference Manual for Macintosh 7-26 © National Instruments Corporation



Chapter 7 SCXI Functions

Synopsis

C Syntax locus i32 SCXI_Cal_Constants(u32 chassisID, u32 moduleSlot, i32

SCXIchannel, u32 opCode, u32 calArea, u32 rangeCode, f64

SCXIgain, u32 DAQdevice, u32 DAQchannel, u32 DAQgain, f64

TBgain, f64 volt1, f64 binary1, f64 volt2, f64 binary2,

f64 *binEEprom1, f64 *binEEprom2);

Pascal Syntax function SCXI_Cal_Constants(chassisID : i32; moduleSlot : i32;

SCXIchannel : i32; opCode : i32; calArea : i32; rangeCode

: i32; SCXIgain : f64; DAQdevice : i32; DAQchannel : i32;

DAQgain : i32; TBgain : f64; volt1 : f64; binary1 : f64;

volt2 : f64; binary2 : f64; var binEEprom1 : f64; var

binEEprom2 : f64) : i32;

BASIC Syntax FN SCXI_Cal_Constants(chassisID&, moduleSlot&, SCXIchannel&,

opCode&, calArea&, rangeCode&, SCXIgain#, DAQdevice&,

DAQchannel&, DAQgain&, TBgain#, volt1#, binary1#, volt2#,

binary2#, binEEprom1&, binEEprom2&)

Parameters
SCXIchannel is the number of the channel on the module.

Range: 0 to n-1, where n is the number of channels available on the module.
-1: all channels on the module.  For instance, the SCXI-1100 and SCXI-1122 modules have one amplifier

for all channels, so calibration constants for those modules apply to all channels on the module.
-2: the voltage (calConst2) and current (calConst1) excitation channels on the module.  This is valid for

the SCXI-1122 only, and only when opCode = 0.

opCode specifies the type of calibration operation to be performed.
0: Retrieve calibration constants for the given channel and range or gain from calArea and return them in

calConst1 and calConst2.
1: Do one point offset calibration calculation using (volt1, binary1) for the given channel and range or

gain and write calibration constants to calArea  (analog input modules only).
2: Do two point calibration calculation using (volt1, binary1) and (volt2, binary2) for the given channel

and range or gain and write calibration constants to calArea.
3: Write the calibration constants passed in calConst1 and calConst2 to calArea for the given channel

and range or gain.
4: Copy entire calibration table in calArea to the module EEPROM default load area so that it will be

loaded automatically into NI-DAQ memory during subsequent application runs.
5: Copy entire calibration table in calArea to driver memory so it can be used in subsequent scaling

operations in the current NI-DAQ session.

calArea is the location used for the calibration constants.  Please read the discussion below in the Description
section for an explanation of the calibration table stored in NI-DAQ memory and the SCXI-1102, SCXI-1122,
and SCXI-1124 and SCXI-1141 EEPROM organization.

0: NI-DAQ memory.  NI-DAQ maintains a calibration table in memory for use in scaling operations for
the module.

1: Default EEPROM load area.  NI-DAQ will also update the calibration table in memory when you write
to the default load area.

2: Factory EEPROM area.  You cannot write to this area, but you can read or copy from this area.
3: User EEPROM area.

rangeCode is the voltage or current range of the analog output channel.  This parameter is only used for analog
output modules.

0: 0 to 1 V.
1: 0 to 5 V.
2: 0 to 10 V.
3: -1 to 1 V.
4: -5 to 5 V.
5: -10 to 10 V.
6: 0 to 20 mA.

© National Instruments Corporation 7-27 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

SCXIgain is the SCXI module or channel gain setting.  This parameter is only used for analog input modules.
Valid SCXIgain values depend on the module type:

SCXI-1100: 1, 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000.
SCXI-1102: 1, 100.
SCXI-1120: 1, 2, 5, 10, 20, 50, 100, 200, 250, 500, 1,000, 2,000.
SCXI-1121: 1, 2, 5, 10, 20, 50, 100, 200, 250, 500, 1,000, 2,000.
SCXI-1140: 1, 10, 100, 200, 500.
SCXI-1122: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000.
SCXI-1141: 1, 2, 5, 10, 20, 50, 100

DAQdevice is the number of the device you are using to sample the channels on an analog input module.  This
only applies to analog input modules and only when opCode is 0, 1, 2, or 3.  Otherwise, set DAQdevice to 0.

DAQchannel is the channel number on the DAQ board used to sample the channels on an analog input module.
DAQchannel is usually 0.  This only applies to analog input modules and only when opCode is 0, 1, 2, or 3.

gain is the gain code for the gain used for DAQchannel on DAQdevice.  This only applies to analog input
modules and only when opCode is 0, 1, 2, or 3.

TBgain is the terminal block gain applied to the SCXI channel, if any.  Currently, the SCXI-1327 terminal
block is the only terminal block that applies gain to your SCXI channels.  The SCXI-1327 has switches that you
use to select either a gain of 1.0 or a gain of 0.01.  You can use this terminal block with an SCXI-1120 or
SCXI-1121 module.  For terminal blocks that do not apply gain to your SCXI channels, set TBgain =1.0.

volt1, binary1 is a measured voltage/binary pair you have taken for the given channel and range or gain if
opCode = 1 or 2.  If the module is analog output, volt1 is the voltage or current you measured at the output
channel after writing the binary value binary1 to the output channel.

If the module is analog input, binary1 is the binary value you read from the input channel with a known voltage
of volt1 applied at the input.  The binary1 parameter is floating point, so you may take multiple binary readings
from volt1 and average them to be more accurate and reduce the effects of noise.

volt2, binary2 is a second measured voltage/binary pair you have taken for the given channel and range or gain
if opCode = 1 or 2.  If the module is analog output, volt2 is the voltage or current you measured when the
binary value binary2 was written to the output channel.  If the module is analog input, binary2 is the binary
reading from the input channel with a known voltage of volt2 applied at the input.

calConst1 is the first calibration constant.  For analog output modules, calConst1 is the binary value that will
generate the voltage or current at the lower end of the voltage or current range.  For analog input modules,
calConst1 is the binary zero offset; that is, the binary reading that would result from an input voltage of zero.  If
opCode = 1 or 2, calConst1 is a return value calculated from the voltage/binary pairs.  If opCode = 0
calConst1 is a return constant retrieved from the calArea.  If opCode= 0 and channel= -2, calConst1  is the
actual voltage excitation value returned in units of volts.  If opCode = 3, you should pass your first calibration
constant in calConst1 for NI-DAQ to store in calArea.

calConst2 is the second calibration constant.  For analog output modules, calConst2 is the binary value that
generates the voltage or current at the upper end of the voltage or current range.  For analog input modules,
calConst2 is the gain adjust factor; that is, the ratio of the real gain to the ideal gain setting.  If opCode = 1 or 2,
calConst2 is a return value calculated from the voltage/binary pairs.  If opCode = 0, calConst2 is a return
constant retrieved from the calArea.  If opCode = 0 and channel= -2, calConst is the actual current excitation
value returned in units of milliamperes.  If opCode = 3, you should pass your second calibration constant in
calConst2 for NI-DAQ to store in calArea.

Description
Analog Input Calibration

When you call SCXI_Scale to scale binary analog input data, NI-DAQ will use the binary offset and gain
adjust calibration constants loaded for the given module, channel, and gain setting to scale the data to voltage.
Please refer to the SCXI_Scale function description for the equations used.

NI-DAQ Software Reference Manual for Macintosh 7-28 © National Instruments Corporation



Chapter 7 SCXI Functions

By default, NI-DAQ will load calibration constants for the SCXI-1102, SCXI-1122 and SCXI-1141 from the
module EEPROM (the EEPROM Organization section below explains the EEPROM in detail).  The SCXI-1141
has only gain adjust constants in EEPROM and does not have binary zero offset in EEPROM.  All other analog
input modules have no calibration constants by default; NI-DAQ assumes no binary offset and ideal gain
settings for those modules unless you use the procedure outlined below to store calibration constants for your
module.

You can determine calibration constants based specifically on your application setup, which includes your type
of DAQ board, your DAQ board settings, and your cable assembly, all combined with your SCXI module and
its configuration settings.

Note: NI-DAQ will store constants in a table for each SCXI module gain setting.  If your module has
independent gains on each channel, NI-DAQ will store constants for each channel at each gain
setting.  When you use the procedure below, you are also calibrating for your DAQ board settings,
so you must use the same DAQ board settings whenever you use the new calibration constants.  The
factory EEPROM constants apply only to the amplifiers on the SCXI modules, so you can use those
with any DAQ board setup.

To perform a two-point analog input calibration, use the following steps:

1. Make sure the SCXI gain is set to the gain you will be using in your application.

2. Use SCXI_Single_Chan_Setup to program the module for a single channel operation (as opposed to a
channel scanning operation).

3. Ground your SCXI input channel.  If you are using an SCXI-1100, SCXI-1122, or SCXI-1141, you can use
the SCXI_Calibrate_Setup function to internally ground the module's amplifier inputs.  For other
analog input modules, you need to wire the positive and negative channel inputs together at the terminal
block.  Refer to your module user manual for terminal block wiring instructions.

4. Take several readings using the DAQ functions and average them for greater accuracy.  You should use the
DAQ board gain settings you will be using in your application.  You should average over an integral number
of 60 Hz or 50 Hz power line cycles to eliminate line noise.

You now have your first volt/binary pair:  volt1 = 0.0, and binary1 is your binary reading or binary average.

5. Now apply a known, stable, non-zero voltage to your input channel at the terminal block.  Preferably, your
input voltage should be close to the upper limit of your input voltage range for the given gain setting.

6. Take another binary reading or average. If your binary reading is the maximum binary reading for your DAQ
board, you should try a smaller input voltage.  This is your second volt/binary pair:  volt2 and binary2.

7. Call SCXI_Cal_Constants with your two volt/binary pairs and opCode = 2.  Make sure you pass the
correct SCXIgain you used, and pass the gain code you used in AI_Read or DAQ_Op in the gain
parameter.

You can save the constants in the module EEPROM, if your module has one (calArea = 1 or 3).  Refer to the
EEPROM Organization section below for information about constants in the EEPROM.  We recommend that
you use calArea = 3 (user EEPROM area) as you are calibrating, and then call SCXI_Cal_Constants again
at the end of your calibration sequence with opCode = 4 to copy the user EEPROM area to the default
EEPROM load area.  That way there will be two copies of your new constants, and you can revert to the factory
constants using opCode = 4 without wiping out your new constants entirely.

For analog input modules without an EEPROM, you must specify calArea = 0 (NI-DAQ memory).
Unfortunately, calibration constants stored in NI-DAQ memory will be lost at the end of the current NI-DAQ
session.  You may wish to create a file and save the constants returned in calConst1 and calConst2 so that you
can load them again in subsequent application runs using SCXI_Cal_Constants with opCode = 3.

© National Instruments Corporation 7-29 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

Now, any subsequent calls to SCXI_Scale for the given module, channel, and gain setting will use the new
calibration constants when scaling.  You can repeat steps 1 through 7 for any other channel or gain settings you
wish to calibrate.

You may use a different voltage for the first measurement instead of grounding the input channel.  For instance,
if you know you will be using a specific input voltage range, you might use the endpoints of your expected
input voltage range as volt1 and volt2.  Then you would be specifically calibrating your expected input voltage
range.

If you are using an SCXI-1100, SCXI-1122, or SCXI-1141, you may wish to just perform a one-point
calibration to determine the binary offset; you can do this easily without external hookups using the
SCXI_Calibrate_Setup function to internally ground the module amplifier.  Use the procedure above,
skipping steps 5 and 6, and using opCode = 1 for the SCXI_Cal_Constants function.

If you are storing calibration constants in the EEPROM, your binary offset and gain adjust factors must not
exceed the ranges given in your module user manual.  The constant format in the EEPROM will not allow for
larger constants.  If your constants exceed these specifications, the function will return a -10086 badExtRefErr
error.  If this error occurs, you should make sure your SCXIgain, gain, and TBgain values are the actual
settings you used to measure the volt/binary pairs, and you may wish to recalibrate your DAQ board, if
applicable.

Analog Output Calibration

When you call SCXI_AO_Write to output a voltage or current to your SCXI-1124 module, NI-DAQ uses the
calibration constants loaded for the given module, channel, and output range to scale the voltage or current
value to the appropriate binary value to write to the output channel.  NI-DAQ will load calibration constants
into memory for the SCXI-1124 from the module EEPROM load area the first time you access the module
using an NI-DAQ function call (the EEPROM Organization section below explains the EEPROM in detail).

You can recalibrate your SCXI-1124 module to create your own calibration constants using the following
procedure:

1. Use the SCXI_AO_Write function with opCode = 1.  If you are calibrating a voltage output range, pass
the parameter binaryData = 0.  If you are calibrating the 0 to 20 mA current output range (rangeCode = 6),
pass the parameter binaryData = 255.

2. Measure the output voltage or current at the output channel.  This is your first volt/binary pair:
binary1 = 0 or 255,  and volt1 is the voltage or current you measured at the output.

3. Use the SCXI_AO_Write function with opCode = 1 to write the binaryData = 4,095 to the output DAC.

4. Measure the output voltage or current at the output channel.  This is your second volt/binary pair:
binary2 = 4,095 and volt2 is the voltage or current you measured at the output.

5. Call SCXI_Cal_Constants with your voltage/binary pairs and opCode = 2.  You can save the constants
on the module EEPROM (calArea = 1 or 3).  Refer to the EEPROM Organization section below for
information about constants in the EEPROM.  We recommend that you use calArea = 3 (user EEPROM
area) as you are calibrating, and then call SCXI_Cal_Constants again at the end of your calibration
sequence with opCode = 4 to copy the user EEPROM area to the default load area.  That way there will be
two copies of your new constants, and you can revert to the factory constants using opCode = 4 without
wiping out your new constants entirely.

Repeat the procedure above for each channel and range you wish to calibrate.  Subsequent calls to
SCXI_AO_Write will use your new constants to scale voltage or current to the correct binary value.

NI-DAQ Software Reference Manual for Macintosh 7-30 © National Instruments Corporation



Chapter 7 SCXI Functions

EEPROM Organization

The SCXI-1102, SCXI-1122, SCXI-1124, and SCXI-1141 modules have an onboard EEPROM to handle
storage of calibration constants.  The EEPROM is divided into three areas:

• The factory area is shipped with a set of factory calibration constants; you cannot write into the factory
area, but you can read from it.

• The default load area is where NI-DAQ automatically looks to load calibration constants the first time you
access the module during an NI-DAQ session using an NI-DAQ function call (such as SCXI_Reset,
SCXI_Single_Chan_Setup, or SCXI_AO_Write).  When the module is shipped, the default load
area contains a copy of the factory calibration constants.  When you write to the default load area using
SCXI_Cal_Constants, NI-DAQ will also update the constants in NI-DAQ memory.

• The user area is an area provided for you to store your own calibration constants that you calculate by
following the instructions above and using the SCXI_Cal_Constants function.  You may also put a
copy of your own constants in the default load area if you want NI-DAQ to automatically load your
constants for subsequent NI-DAQ sessions.

                                                                                                                                                                                           

SCXI_Calibrate_Setup

Function
Grounds the amplifier inputs of an SCXI-1100, SCXI-1122, or SCXI-1141 so that you can determine the
amplifier offset.  You can also use this function to switch a shunt resistor across your bridge circuit to test the
circuit.  Shunt calibration is supported for the SCXI-1122 and the SCXI-1121 when you use the SCXI-1321
terminal block.

Synopsis

C Syntax locus i32 SCXI_Calibrate_Setup(u32 chassisID, u32 moduleSlot, u32

calOp);

Pascal Syntax function SCXI_Calibrate_Setup(chassisID : i32; moduleSlot : i32;

calOp : i32) : i32;

BASIC Syntax FN SCXI_Calibrate_Setup(chassisID&, moduleSlot&, calOp&)

Parameters
chassisID is the logical ID that was assigned to the SCXI chassis in the configuration utility.

moduleSlot is the chassis slot number of the module.
Range:  1 to n,  where n is the number of slots in the chassis.

calOp indicates the desired Calibration mode.
0:  disable calibration.
1:  connect the positive and negative inputs of the module amplifier together and to analog reference.
2:  switch the shunt resistor(s) across the bridge circuit(s) for the SCXI-1122, or the SCXI-1121

(Revision C or later) with the SCXI-1321 terminal block.

© National Instruments Corporation 7-31 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

Description
The zero offset of the SCXI-1100, SCXI-1122, or SCXI-1141 amplifier varies with the module gain.  Once you
know the offset at a specific gain setting, that offset can be added to any readings acquired at that gain.  In
general, the procedure for determining the offset at a particular gain are as follows:

1. SCXI_Single_Chan_Setup–Enable the module output, route the module output on the SCXIbus if
necessary, and resolve any SCXIbus contention if necessary.  The module channel specified is irrelevant.

2. SCXI_Set_Gain–Set the module gain to the setting that will be used in your application.

3. SCXI_Calibrate_Setup–Ground the amplifier inputs.

4. Acquire data using the DAQ functions; many samples can be acquired and averaged, if desired.  If you have
enabled one of the filer settings on the module, you should wait for the amplifier to settle after you call
SCXI_Calibrate_Setup before you acquire data.  The SCXI-1100, SCXI-1122, and SCXI-1141 user
manuals give settling time information for the filter settings.

5. SCXI_Calibrate_Setup–Disable calibration.

6. Continue with your application; subtract the binary offset value determined in Step 4 from any samples
acquired from the module at the gain specified in Step 2 before passing the binary data to the
SCXI_Scale function.

Or, you can call SCXI_Cal_Constants to store the offset in NI-DAQ memory or the SCXI-1122
EEPROM.  Then subsequent calls to SCXI_Scale for the given gain will automatically subtract the offset
for you.  Refer to the SCXI_Cal_Constants description for more information.

Refer to your SCXI-1321 and SCXI-1122 user manuals for more information about how the shunt resistor is applied
when calOp = 2.

                                                                                                                                                                                           

SCXI_Change_Chan

Function
Selects a new channel of a multiplexed module that has previously been set up for a single-channel analog input
operation using the SCXI_Single_Chan_Setup function.

Synopsis

C Syntax locus i32 SCXI_Change_Chan(u32 chassisID, u32 moduleSlot, i32

channel);

Pascal Syntax function SCXI_Change_Chan(chassisID : i32; moduleSlot : i32;

channel : i32) : i32;

BASIC Syntax FN SCXI_Change_Chan(chassisID&, moduleSlot&, channel&)

Parameters
chassisID is the logical ID that was assigned to the SCXI chassis in the configuration utility.

moduleSlot is the chassis slot number of the module that has been set up for a single-channel analog input
operation.

Range:  1 to n,  where n is the number of slots in the chassis.

NI-DAQ Software Reference Manual for Macintosh 7-32 © National Instruments Corporation



Chapter 7 SCXI Functions

channel is the channel number of the new input channel on the module that is to be read.
0 to n-1: where n is the number of input channels on the module.
-1: set up to read the temperature sensor on the terminal block connected to the module if the

temperature sensor is in the MTEMP configuration.

Description
It is important to realize that this function affects only the channel selection on the module.  It does not affect
the module output enable or any analog signal routing on the SCXIbus; the SCXI_Single_Chan_Setup
function is required to do that.  SCXI_Change_Chan can be very useful in applications like those shown in
Figures 7-4 and 7-5, especially when you are trying to read several channels on a module in a loop at relatively
high speeds.  However, you will need to call SCXI_Single_Chan_Setup again if you want to select a
channel on a different module.

                                                                                                                                                                                           

SCXI_Configure_Filter

Function
Configures the filter on any SCXI module that supports programmable filter settings.  Currently, only the
SCXI-1122 and SCXI-1141 have programmable filter settings; the other analog input modules have hardware-
selectable filters.

Synopsis

C Syntax locus i32 SCXI_Configure_Filter(u32 chassisID, u32 moduleSlot, i32

channel, u32 filterMode, f64 freq, u32 cutoffDivDown, u32

outClkDivDown, f64 *actualFreq);

Pascal Syntax function SCXI_Configure_Filter(chassisID : i32; moduleSlot : i32;

channel : i32; filterMode : i32; freq : f64;

cutoffDivDown : i32; outClkDivDown : i32; var actualFreq

: f64) : i32;

BASIC Syntax FN SCXI_Configure_Filter(chassisID&, moduleSlot&, channel&,

filterMode&, freq#, cutoffDivDown&, outClkDivDown&, actualFreq&)

Parameters
channel is the module channel for which you want to change the filter configuration  If channel = -1,
SCXI_Configure_Filter changes the filter configuration for all channels on the module.

filterMode indicates the filter configuration mode for the given channel:
0: Bypass the filter.
1: Set filter cutoff frequency to freq.
2: Configure the filter to use an external signal.  The module divides the external signal by

cutoffDivDown to determine the filter cutoff frequency.  The module also divides the external signal
by outClkDivDown and sends it to the module front connector OUTCLK pin.  You can use this filter
mode to configure a tracking filter.  This mode is supported by the SCXI-1141 only.

3: Enable the filter.  Reverse of 0.

freq is the cutoff frequency you want to select from the frequencies available on the module if filterMode = 1.

The SCXI-1122 has two possible cutoff frequencies:
4.0: -10 dB at 4 Hz

4,000.0: -3 dB at 4 kHz

The SCXI-1141 has a range of cutoff frequencies from 10 Hz to 25 kHz.  SCXI_Configure_Filter
produces the frequency you want as closely as possible by dividing an internal 10 MHz signal on the
SCXI-1141.  The function returns the exact cutoff frequency produced in the output parameter actualFreq.

© National Instruments Corporation 7-33 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

If filterMode = 2, you should set freq to the approximate frequency of the external signal you will be using.
Chapter 2 in the SCXI-1141 User Manual explains the impact of different signal frequencies on the filters.

If filterMode = 0, NI-DAQ ignores freq.

cutoffDivDown is an integer that the module divides the external signal by to determine the filter cutoff
frequency when filterMode = 2.  NI-DAQ ignores this parameter if filterMode is not 2.

Range: 2 to 65,535

outClkDivDown is an integer by which the module divides either the internal 10 MHz signal
(if filterMode = 1) or the external signal (if filterMode = 2) to send back to the module front connector
OUTCLK pin.  This parameter is only used for the SCXI-1141.

Range: 2 to 65,535

actualFreq returns the actual cutoff frequency that the module will use.

Description
The SCXI-1122 has one filter setting applied to all channels on the module; therefore, you must set
channel = -1.  The SCXI-1122 only works with filterMode = 1; you cannot configure the SCXI-1122 to bypass
the filter or to use an external signal to set the cutoff frequency.  The default frequency setting for the
SCXI-1122 is  4 Hz.

The SCXI-1141 also has one filter setting applied to all channels, so you must use channel = -1 when you select
a cutoff frequency for that module.  After you select the cutoff frequency for the entire module, you can
configure one or more of the channels to enable the filter by calling SCXI_Configure_Filter again for
each channel and setting  filterMode = 3.  By default, all the channel filters on the SCXI-1141 are bypassed.

                                                                                                                                                                                           

SCXI_Get_Chassis_Info

Function
Returns current chassis configuration information.

Synopsis

C Syntax locus i32 SCXI_Get_Chassis_Info(u32 chassisID, u16 *chassisType, u16

*chassisAddr, u16 *commMode, u16 *commPath, u16

*numDeviceNumbers);

Pascal Syntax function SCXI_Get_Chassis_Info(chassisID : i32; var chassisType :

i16; var chassisAddr : i16; var commMode : i16; var

commPath : i16; var numDeviceNumbers : i16) : i32;

BASIC Syntax FN SCXI_Get_Chassis_Info(chassisID&, chassisType&, chassisAddr&,

commMode&, commPath&, numDeviceNumbers&)

Parameters
chassisID is the logical ID that was assigned to the SCXI chassis in the configuration utility.

chassisType indicates what type of SCXI chassis is configured for the given chassisID.
0: SCXI-1000 4-slot chassis.
1: SCXI-1001 12-slot chassis.

chassisAddr is the hardware jumpered address of an SCXI chassis.
Range: 0 to 31.

commMode is the Communication mode that will be used when the driver communicates with the SCXI
chassis and modules.

NI-DAQ Software Reference Manual for Macintosh 7-34 © National Instruments Corporation



Chapter 7 SCXI Functions

0: Communication mode is disabled.  In effect, the chassis is disabled.
1: The SCXI-1000 and SCXI-1001 chassis support only one mode of communication–serial

communication through a digital output port of a DAQ board that is cabled to a module in the chassis.

commPath is the communication path that will be used when the driver communicates with the SCXI chassis
and modules.  If commMode = 1, the commPath should be the device number of the DAQ board that is the
designated communicator for the chassis.  When commMode = 0, commPath is meaningless.

numDeviceNumbers is the number of plug-in module slots in the SCXI chassis.
4: for the SCXI-1000 chassis.

12: for the SCXI-1001 chassis.

Note to C Programmers: chassisType, chassisAddr, commMode, commPath, and numDeviceNumbers
must be passed by reference.

                                                                                                                                                                                             

SCXI_Get_Module_Info

Function
Returns current configuration information for the given chassis slot number.

Synopsis

C Syntax locus i32 SCXI_Get_Module_Info(u32 chassisID, u32 moduleSlot, i32

*moduleType, u16 *opMode, u16 *DAQboard);

Pascal Syntax function SCXI_Get_Module_Info(chassisID : i32; moduleSlot : i32;

var moduleType : i32; var opMode : i16; var DAQboard :

i16) : i32;

BASIC Syntax FN SCXI_Get_Module_Info(chassisID&, moduleSlot&, moduleType&,

opMode&, DAQboard&)

Parameters
chassisID is the logical ID that was assigned to the SCXI chassis in the configuration utility.

moduleSlot is the chassis slot number of the module.
Range:  1 to n,  where n is the number of slots in the chassis.

moduleType indicates what type of module is present in the given slot.
-1: Empty slot; there is no module present in the given slot.
2: SCXI-1121.
4: SCXI-1120.
6: SCXI-1100.
8: SCXI-1140.

10: SCXI-1122
12: SCXI-1160.
14: SCXI-1161.
16: SCXI-1162.
18: SCXI-1163.
20: SCXI-1124.
24: SCXI-1162HV.
28: SCXI-1163R.
30: SCXI-1102.
32: SCXI-1141.

Any other return value for moduleType indicates that an unfamiliar module is in the given slot.

© National Instruments Corporation 7-35 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

operatingMode indicates whether the module present in the given slot is being operated in Multiplexed or
Parallel mode.  Please refer to the SCXI Operating Modes section at the beginning of the chapter for an
explanation of each operating mode.  If the slot is empty the operatingMode is meaningless.

0: Multiplexed operating mode.
1: Parallel operating mode.
2: Parallel with secondary cable of the NB-DIO-96 and PCI-DIO-96.

DAQboard is the device number of the DAQ board in the Macintosh that is cabled to the module present in the
given slot.  If the slot is empty, DAQboard is meaningless.

0: no DAQ board is cabled to the module.
n: where n is the device number of the DAQ board cabled to the module.

Note to C Programmers:  moduleType, operatingMode, and DAQboard must be passed by reference.

                                                                                                                                                                                           

SCXI_Get_State

Function
Returns the state of a single channel or an entire port on any digital or relay module.

Synopsis

C Syntax locus i32 SCXI_Get_State(u32 chassisID, u32 moduleSlot, u32 port,

i32 channel, u32 *data);

Pascal Syntax function SCXI_Get_State(chassisID : i32; moduleSlot : i32; port :

i32; channel : i32; var data : i32) : i32;

BASIC Syntax FN SCXI_Get_State(chassisID&, moduleSlot&, port&, channel&, data&)

Parameters
chassisID is the logical ID that was assigned to the SCXI chassis in the configuration utility.

moduleSlot is the chassis slot number of the module.
1 to n: where n is the number of slots in the chassis.

port is the port number of the module that is read from.  All SCXI modules support Port 0 only.

channel is the channel number on the specified port.  Because all the modules support port 0 only, the channel
number maps to the actual channel on the module.  If channel = -1, the function reads the state pattern from the
entire port.

Range: 0 through 15 for the SCXI-1160.
0 through 7 for the SCXI-1161.
0 through 31 for the SCXI-1162.
0 through 31 for the SCXI-1162HV.
0 through 31 for the SCXI-1163.
0 through 31 for the SCXI-1163R.
-1 to read from an entire port.

When channel= -1, data contains the pattern of an entire port.  Bit 0 corresponds to the state of channel 0 in the
port, and the states of the other channels are represented in ascending order in data so that bit n corresponds to
channel n.  If the port is less than 32 bits wide, the unused bits in data are set to zero.

When channel= n, the LSB (bit 0) of data contains the state of channel n on th specified port.

For relay modules, a 0 bit indicates that the relay is closed or in the normally closed position, and a 1 indicates
that the module is open or in the normally open position.  For SCXI digital modules, a 0 bit indicates that the
line is low, and a 1 bit indicates that the line is high.

NI-DAQ Software Reference Manual for Macintosh 7-36 © National Instruments Corporation



Chapter 7 SCXI Functions

Note: For more information about the Normally Closed (NC) and Normally Open (NO) positions, refer to
your SCXI user manual.

Note to C Programmers:  data must be passed by reference.

Description
The SCXI-1160 is a latching module, that is, the module powers up with its relays in the position they were in
at power down.  Thus, the states of the relays are unknown at program execution.  The driver remembers the
state of a relay as soon as a hardware write takes place.

The SCXI-1161 is a nonlatching module, and powers up with its relays in the NC position.  As with the
SCXI-1160, after calling SCXI_Load_Config or SCXI_Set_Config, you must complete an actual
hardware write to the relays for the driver to return state information for the relays.  Do this by calling
SCXI_Reset.

The SCXI-1162 and SCXI-1162HV are optically isolated digital output modules.  The states are read from
hardware.

The SCXI-1163 and SCXI-1163R are optically isolated digital output modules with 32 digital output channels
and 32 solid-state relay channels, respectively.  You can read the states of the digital output channels from one
of the modules only if you have jumper-configured the SCXI-1163 and SCXI-1163R to operate in Parallel
mode.  When you operate the module in Multiplexed mode, the driver holds the states of the digital output lines
in memory.  Consequently, you must complete a hardware write before the driver can return the states on the
module.

On the SCXI-1163 and SCXI-1163R in Parallel mode, the states are read from hardware.  On both the
SCXI-1160 and SCXI-1161, a software copy of the relay states is kept in memory by the driver.

We recommend that you call SCXI_Reset after calling SCXI_Set_Config or SCXI_Load_Config for
the SCXI-1160, SCXI-1161, SCXI-1163, and SCXI-1163R modules.

                                                                                                                                                                                             

SCXI_Get_Status

Function
Returns the data in the Status Register of the specified module.  This function supports the SCXI-1160,
SCXI-1102, SCXI-1122, or SCXI-1124 modules.

Synopsis

C Syntax locus i32 SCXI_Get_Status(u32 chassisID, u32 moduleSlot, u32 wait,

u32 *data);

Pascal Syntax function SCXI_Get_Status(chassisID : i32; moduleSlot : i32; wait :

i32; var data : i32) : i32;

BASIC Syntax FN SCXI_Get_Status(chassisID&, moduleSlot&, wait&, data&)

Parameters
chassisID is the logical ID that was assigned to the SCXI chassis in the configuration utility.

moduleSlot is the chassis slot number of the module.
moduleSlot =  1 to n,  where n is the number of slots in the chassis.

wait determines if the function should poll the Status Register on the module, until the module is ready or
timeout is reached.  If the module does not become ready by timeout, NI-DAQ returns a timeout error.

1: the function will poll the status register on the module, until ready or timeout.
0: he function will read and return the status register on the module.

© National Instruments Corporation 7-37 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

data contains the contents of the Status Register.
0: the module is busy.  You should not perform any further operations on the module until the status bit

goes high again.  This means the SCXI-1122 or SCXI-1160 relays are still switching, the SCXI-1124
DACs are still settling, or the SCXI-1102 filters are still settling after the gain setting was changed.

1: the module is ready; the SCXI-1122 or SCXI-1160 relays are finished switching or the SCXI-1124
DACs are settled, or the SCXI-1102 filters have settled.

Description
If wait = 1, the function will wait for the module status to be ready.  If timeout occurs while the Status Register
is being polled, the current value of the Status Register is returned in the output parameter data.

The SCXI-1102, SCXI-1122, SCXI-1160, and SCXI-1124 Status Registers contain only one bit, so only the
least significant bit of the data parameter is meaningful.

                                                                                                                                                                                           

SCXI_Load_Config

Function
Loads the SCXI chassis configuration information that was established in the configuration utility.  Sets the
software states of the chassis and the modules present to their default states.  No changes are made to the
hardware state of the SCXI chassis or the SCXI modules.  This function is called automatically when the
Macintosh boots up.  Thereafter, it is only needed if you have changed the configuration using the
SCXI_Set_Config function and you want to revert to the configuration in the NI-DAQ Control Panel.

Synopsis

C Syntax locus i32 SCXI_Load_Config(u32 chassisID);

Pascal Syntax function SCXI_Load_Config(chassisID : i32) : i32;

BASIC Syntax FN SCXI_Load_Config(chassisID&)

Parameters
chassisID is the logical ID that was assigned to the SCXI chassis in the configuration utility.

Description
It is important to realize that this function makes no change to the hardware.  To reset the hardware to its default
state, you should use the SCXI_Reset or function.  Refer to the SCXI_Reset function description for a
listing of the default states of the chassis and modules.

It is possible to programmatically change the configuration that was established in the configuration utility
using the SCXI_Set_Config function.

                                                                                                                                                                                           

NI-DAQ Software Reference Manual for Macintosh 7-38 © National Instruments Corporation



Chapter 7 SCXI Functions

SCXI_MuxCtr_Setup

Function
Enables or disables a DAQ device counter to be used as a multiplexer counter during SCXI channel scanning to
synchronize the MIO board scan list with the module scan list that NI-DAQ has downloaded to Slot 0 of the
SCXI chassis.

Synopsis

C Syntax locus i32 SCXI_MuxCtr_Setup(u32 deviceNumber, u32 enable, u32

scanDiv, u32 muxCtrValue);

Pascal Syntax function SCXI_MuxCtr_Setup(deviceNumber : i32; enable : i32;

scanDiv : i32; muxCtrValue : i32) : i32;

BASIC Syntax FN SCXI_MuxCtr_Setup(deviceNumber&, enable&, scanDiv&, muxCtrValue&)

Parameters
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

enable indicates whether or not to enable a board counter to be a mux counter for subsequent SCXI channel
scanning operations.

0: disable the mux counter; a board counter is freed.
1: enable a board counter to be a mux counter.

scanDiv indicates whether or not the mux counter will divide the scan clock during the acquisition.
0: the mux counter will not divide the scan clock; it will simply pulse after every n mux-gain entries on

the DAQ board, where n is the muxCtrValue.  The mux counter pulses are currently not used by the
SCXI chassis or modules, so this mode is not yet useful.

1: the mux counter will divide the scan clock so that n conversions are performed for every mux-gain
entry on the DAQ board, where n is the muxCtrValue.

muxCtrValue is the value to be programmed into the mux counter.  If enable = 1 and scanDiv =1,
muxCtrValue is the number of conversions to be performed on each mux-gain entry on the DAQ board.  If
enable = 0, this parameter is ignored.

Description
This function can be used to synchronize the scan list that has been loaded into the mux-gain memory of the
DAQ board and the SCXI module scan list that has been loaded into Slot 0 of the SCXI chassis.  The total
number of samples to be taken in one pass through each scan list should be the same.

For example, for the following module scan list and NB-MIO-16X scan list, a muxCtrValue of 8 would cause
eight samples to be taken for each NB-MIO-16X scan list entry.  The first two entries in the module scan list
will occur during the first entry of the NB-MIO-16X scan list, at an NB-MIO-16X gain of 5.  The third module
scan list entry will occur during the second entry of the NB-MIO-16X scan list, at an NB-MIO-16X gain of 10.
Thus, the muxCtrValue here is used to distribute different DAQ board gains across the module scan list, as
well as to make the scan list lengths equal at 16 samples each.

Module Scan List NB-MIO-16X Scan List

Module Number of
Samples

Channel Gain

2 4 0 5
3 4 0 10
4 8

© National Instruments Corporation 7-39 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

Another example would use the same module scan list as above, but only one entry in the MIO-16 scan list.  The
appropriate muxCtrValue would then be 16.

                                                                                                                                                                                           

SCXI_Reset

Function
Resets the specified module to its default state.

Synopsis

C Syntax locus i32 SCXI_Reset(u32 chassisID, u32 moduleSlot);

Pascal Syntax function SCXI_Reset(chassisID : i32; moduleSlot : i32) : i32;

BASIC Syntax FN SCXI_Reset(chassisID&, moduleSlot&)

Parameters
chassisID is the logical ID that was assigned to the SCXI chassis in the configuration utility.

moduleSlot is the chassis slot number of the module that is to be reset.
1 to n: where n is the number of slots in the chassis.
0: reset Slot 0 of the chassis by resetting the module scan list and scanning circuitry.

-1: reset all modules present in the chassis and reset Slot 0.

Description
The default states of the SCXI modules are as follows:

• SCXI-1100, SCXI-1102, and SCXI-1122
Module gain = 1.
Module filter = 4 Hz (SCXI-1122 only).
Channel 0 is selected.
Multiplexed channel scanning is disabled.
Module output is enabled if the module is cabled to a DAQ board.
Calibration is disabled (SCXI-1100 and SCXI-1122).

Note: With an SCXI-1102, this function will not return until the module’s gain amplifier has settled to
within 0.01% upon a gain change. This can result in a noticeable amount of delay.

• SCXI-1120, SCXI-1121, and SCXI-1140
If the module is operating in Multiplexed mode:

Channel 0 is selected.
Multiplexed channel scanning is disabled.
Module output is enabled if the module is cabled to a DAQ board.
Hold count is 1 (SCXI-1140 only).

If the module is operating in Parallel mode:
All channels are enabled.
Track/Hold signal is disabled (SCXI-1140 only).

• SCXI-1124
No action.

• SCXI-1141
If the module is in Multiplexed mode:

Channel 0 is selected.
Filters are bypassed.
Muxed scanning is disabled.

NI-DAQ Software Reference Manual for Macintosh 7-40 © National Instruments Corporation



Chapter 7 SCXI Functions

Module output is enabled if module is cabled to a DAQ board.
Autozeroing is disabled.

If the module is in Parallel mode:
All channels are enabled.
Filters are bypassed.
Autozeroing is disabled.

• SCXI-1160
All state information of the module in memory is set to unknown (see the SCXI_Set_State
description).
No hardware write to the module takes place.

• SCXI-1161
All relays on the module are set to the NC position.

• SCXI-1163
All digital lines are set to the high state.

• SCXI-1163R
Initializes all of the solid-state relays to their open states.

                                                                                                                                                                                             

SCXI_Scale

Function
Scales an array of binary data acquired from an SCXI channel to voltage.  SCXI_Scale will use stored
software calibration constants if applicable for the given module when it scales the data.  The SCXI-1102,
SCXI-1122, and SCXI-1141 have default software calibration constants loaded from the module EEPROM; all
other analog input modules have no software calibration constants unless you follow the analog input
calibration procedure outlined in the SCXI_Cal_Constants function description.

Synopsis

C Syntax locus i32 SCXI_Scale(u32 chassisID, u32 moduleSlot, i32 chan, f64

SCXIgain, f64 TBgain, u32 DAQboard, u32 DAQchan, u32 gain,

u32 count, i16 *binaryArray, f64 *voltArray);

Pascal Syntax function SCXI_Scale(chassisID : i32; moduleSlot : i32; chan : i32;

SCXIgain : f64; TBgain : f64; DAQboard : i32; DAQchan :

i32; gain : i32; count : i32; binaryArray : pi16;

voltArray : pf64) : i32;

BASIC Syntax FN SCXI_Scale(chassisID&, moduleSlot&, chan&, SCXIgain#, TBgain#,

DAQboard&, DAQchan&, DAQgain&, count&, binaryArray&, voltArray&)

Parameters
chan is the number of the channel on the  SCXI module.

Range: 0 to n-1, where n is the number of channels available on the module.

SCXIgain is the SCXI module or channel gain setting. Valid SCXIgain values depend on the module type:
SCXI-1100:  1, 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000.
SCXI-1102:  1, 100.
SCXI-1120:  1, 2, 5, 10, 20, 50, 100, 200, 250, 500, 1,000, 2,000.
SCXI-1121:  1, 2, 5, 10, 20, 50, 100, 200, 250, 500, 1,000, 2,000.
SCXI-1122:  0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000.
SCXI-1140:  1, 10, 100, 200, 500.
SCXI-1141:  1, 2, 5, 10, 20, 50, 100.

© National Instruments Corporation 7-41 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

TBgain is the gain applied at the SCXI terminal block.  Currently, only the SCXI-1327 terminal block can
apply gain to your SCXI module channels; it has dip-switches to choose a gain of 1.0 or 0.01 for each input
channel.  You can use the SCXI-1327 with the SCXI-1120 and SCXI-1121 modules.  For terminal blocks that
do not apply gain to your SCXI channels, set TBgain = 1.0.

DAQboard is the device number of the DAQ board you used to acquire the binary data.  This should be the
same device number that you passed to the DAQ or SCAN function call, and the same DAQboard number you
passed to SCXI_Single_Chan_Setup or SCXI_SCAN_Setup.

DAQchan is the DAQ board channel number you used to acquire the binary data.  This should be the same
channel number that you passed to the DAQ or SCAN function call.  For most cases, you will be multiplexing all
of your SCXI channels into DAQ board channel 0.

gain is the DAQ board gain you used to acquire the binary data.  This should be the same gain code that you
passed to the DAQ or SCAN function call.  For most cases, you will use a DAQ board gain of 1, and you will set
any gain you need at the SCXI module.

count is the number of data points you wish to scale for the given channel.  The binaryArray and voltArray
parameters must be arrays of length count (at least).  If you acquired data from more than one SCXI channel,
you must be careful to pass the number of points for this channel only, not the total number of points you
acquired from all channels.

binaryArray is the array of binary data for the given channel.  binaryArray should contain count  data
samples from the SCXI chan.  If you acquired data from more than one SCXI channel, you will need to de-
multiplex the binary data that was returned from the SCAN call before you call SCXI_Scale.  You can use the
SCAN_Demux call to do this.  After demuxing the binary data, you should call SCXI_Scale once for each
SCXI channel, passing in the appropriate demuxed binary data for each channel.

voltArray is the output array for the scaled voltage data.  voltArray should be at least count elements long.

Description
SCXI_Scale uses the following equation to scale the binary data to voltage:

voltArray[i] =
binArray[i] − binaryOffset( ) voltageResolution( )
SCXIgain( ) TBgain( ) DAQgain( ) gainAdjust( )

The voltageResolution depends on your DAQ board and its range and polarity settings.  For example, the
NB-MIO-16 in bipolar mode with an input range of -10V to 10V has a voltage resolution of 4.88mV per LSB.

NI-DAQ automatically loads binaryOffset and gainAdjust parameters for the SCXI-1122 for all of its gain
settings from the module EEPROM the first time you access the module using an NI-DAQ function call (such as
SCXI_Reset or SCXI_SCAN_Setup).  The SCXI-1102 and SCXI-1122 modules are shipped with factory
calibration constants for binaryOffset and gainAdjust loaded in the EEPROM.  You can calculate your own
calibration constants and store them in the EEPROM and in NI-DAQ memory for SCXI_Scale to use.  Please
refer to the procedure outlined in the SCXI_Cal_Constants function description.  The same is true for the
SCXI-1141, except binaryOffset is not on  the SCXI-1141 EEPROM and defaults to 0.0.  However, you can
calculate your own binaryOffset using the procedure outlined in the SCXI_Cal_Constants function
description.

For other analog input modules, binaryOffset defaults to 0.0 and gainAdjust defaults to 1.0.  However, you
can calculate your own calibration constants and store them in NI-DAQ memory for NI-DAQ to use in the
SCXI_Scale function by following the procedure outlined in the SCXI_Cal_Constants function
description.

                                                                                                                                                                                             

NI-DAQ Software Reference Manual for Macintosh 7-42 © National Instruments Corporation



Chapter 7 SCXI Functions

SCXI_SCAN_Setup

Function
Sets up the SCXI chassis for a multiplexed scanning data acquisition to be performed by the given DAQ board.
Modules may be scanned in any order; channels on each module must be scanned in consecutive order.  A
module scan list is downloaded to Slot 0 in the SCXI chassis that will determine the sequence of modules that
will be scanned and how many channels on each module will be scanned.  Each module is programmed with its
given start channel.

Synopsis

C Syntax locus i32 SCXI_SCAN_Setup(u32 chassisID, u32 numModules, u16

*moduleList, u16 *numChansList, i16 *startChansList, u32

DAQboard, u32 scanMode);

Pascal Syntax function SCXI_SCAN_Setup(chassisID : i32; numModules : i32;

moduleList : pi16;  numChansList : pi16; startChansList :

pi16; DAQboard : i32; scanMode : i32) : i32;

BASIC Syntax FN SCXI_SCAN_Setup(chassisID&, numModules&, moduleList&,

numChansList&, startChansList&, DAQboard&, scanMode&)

Parameters
chassisID is the logical ID that was assigned to the SCXI chassis in the configuration utility.

numModules is the number of modules to be scanned, and the length of the moduleList, numChansList, and
the startChansList arrays.

Range:  1 to 256.

moduleList is an array of length numModules containing the list of module slot numbers corresponding to the
modules to be scanned.

moduleList[i] = 1 to n, where n is the number of slots in the chassis.

Any element greater than the number of slots in the chassis indicates a dummy entry in the module scan list.
Dummy entries can be useful in multi-chassis scanning as placeholders in each Slot 0 scan list to indicate when
the DAQ board is scanning channels on another chassis.

numChansList is an array of length numModules that indicates how many channels to scan on each module
represented in the moduleList array.  If the number of channels specified for a module exceeds the number of
input channels available on the module, the channel scanning will wrap around after the last input channel and
continue with the first input channel.  If a module is represented more than once in the moduleList array, there
can be different numChansList values for each entry.  The total number of channels scanned is the sum of all
the elements in this array.

numChansList[i] = 1 to 128.

startChansList is an array of length numModules that contains the start channels for each module represented
in the moduleList array.  If a module is represented more than once in the moduleList array, the corresponding
elements in the startChansList array should contain the same value; there can only be one start channel for
each module.  If the temperature sensor is chosen as the start channel for a module, all readings from that
module will be readings of the temperature sensor; channel scanning is not possible.

startChansList[i] = 0 to n-1, where n is the number of input channels available on the corresponding
module.

startChansList[i] = -1  select the temperature sensor on the terminal block.

DAQboard is the device of the DAQ board that performs the channel scanning operation.

scanMode indicates the scanning mode to be used.  Only one scanning mode is currently supported, so this
parameter should always be set to zero.

© National Instruments Corporation 7-43 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

Note: The SCXI-1122 uses relays to switch the input channels; the relays require 10 ms to switch, so the
sampling rate in a channel scanning operation cannot exceed 100 Hz.  If  you want to take many
readings from each channel and average them to reduce noise, you should use the single-channel or
software scanning method shown in Figure 7-3 instead of the channel-scanning method shown in
Figure 7-5.  This means you select one channel on the module, acquire many samples on that
channel using the DAQ functions, select the next channel, and so on. This will increase the lifetime
of your module relays.  Once you have selected a particular channel, you can use the fastest sample
rate your DAQ board supports with the DAQ functions.

                                                                                                                                                                                             

SCXI_Set_Config

Function
Allows you to change the software configuration of the SCXI chassis that was established in the configuration
utility.  Sets the software states of the chassis and the modules specified to their default states.  No changes are
made to the hardware state of the SCXI chassis or the SCXI modules.

Synopsis

C Syntax locus i32 SCXI_Set_Config(u32 chassisID, u32 chassisType, u32

chassisAddr, u32 commMode, u32 commPath, u32 numSlots, i32

*modules, u16 *opModes, u16 *DAQboardMap);

Pascal Syntax function SCXI_Set_Config(chassisID : i32; chassisType : i32;

chassisAddr : i32; commMode : i32; commPath : i32;

numSlots : i32; modules : pi32; opModes : pi16;

DAQboardMap : pi16) : i32;

BASIC Syntax FN SCXI_Set_Config(chassisID&, chassisType&, chassisAddr&,

commMode&, commPath&, numSlots&, modules&, opModes&,

DAQboardMap&)

Parameters
chassisID is the logical ID that was assigned to the SCXI chassis in the configuration utility.

chassisType indicates what type of SCXI chassis is configured for the given chassisID.
0: SCXI-1000 4-slot chassis.
1: SCXI-1001 12-slot chassis.

chassisAddr is the hardware jumpered address of an SCXI chassis.
Range: 0 to 31.

commMode is the Communication mode that will be used when the driver communicates with the SCXI
chassis and modules.

0: Communication mode is disabled.  In effect, this disables the chassis.
1: The SCXI-1000 and SCXI-1001 chassis support only one mode of communication–serial

communication through a digital output port of a DAQ board that is cabled to a module in the chassis.

commPath is the communication path that will be used when the driver communicates with the SCXI chassis
and modules.  When commMode = 1, the path should be the device number of the DAQ board that is the
designated communicator for the chassis.  If only one DAQ board is connected to the chassis, the commPath
should be the device number of that board.  If more than one DAQ board is connected to modules in the chassis,
one board must be designated as the communicator board, and its device number should be the commPath.
Refer to the DAQboardMap array description below; the commPath should be one of the slot numbers
specified in that array.  When commMode = 0, commPath is ignored.

NI-DAQ Software Reference Manual for Macintosh 7-44 © National Instruments Corporation



Chapter 7 SCXI Functions

numSlots is the number of plug-in module slots in the SCXI chassis.
4: for the SCXI-1000 chassis.

12: for the SCXI-1001 chassis.

modules is an array of length numSlots that indicates what type of module is present in each slot.  The first
element of the array corresponds to Slot 1 of the chassis, and so on.

modules[i] = -1: Empty slot; there is no module present in the corresponding slot.
modules[i] = 2: SCXI-1121.
modules[i] = 4: SCXI-1120.
modules[i] = 6: SCXI-1100.
modules[i] = 8: SCXI-1140.
modules[i] = 10: SCXI-1122.
modules[i] = 12: SCXI-1160.
modules[i] = 14: SCXI-1161.
modules[i] = 16: SCXI-1162.
modules[i] = 18: SCXI-1163.
modules[i] = 20: SCXI-1124.
modules[i] = 24: SCXI-1162HV.
modules[i] = 28: SCXI-1163R.
modules[i] = 30: SCXI-1102.
modules[i] = 32: SCXI-1141.

Any other value for modules indicates a module that is unfamiliar to NI-DAQ.

opModes is an array of length numSlots that indicates the operating mode of each module in the modules
array: multiplexed or parallel.  Please refer to the SCXI Operating Modes section at the beginning of the chapter
for an explanation of each operating mode.  If any of the slots are empty (indicated by a value of -1 in the
corresponding element of the modules array), the corresponding element in the opModes array is ignored.

opModes[i] = 0: Multiplexed operating mode.
opModes[i] = 1: Parallel operating mode.
opModes[i] = 2: Parallel operating mode with secondary connector of the DAQ board.

DAQboardMap is an array of length numSlots that describes the connections between the SCXI chassis and
the DAQ boards in the Macintosh.  For each module present in the chassis, you must specify the device number
of the DAQ board that is cabled to the module, if there is one.  If any of the slots are empty (indicated by a
value of -1 in the corresponding element of the modules array), the corresponding element of the
DAQboardMap array is ignored.  The commPath parameter value must be one of the data acquisition device
numbers specified in this array.

DAQboardMap[i] = 0: no DAQ board is cabled to the module.
DAQboardMap[i] = n: where n is the device number of the DAQ board cabled to the module.[[

Description
The configuration information that was saved by the configuration utility will remain unchanged; only the
configuration in the current session is changed.  Any subsequent calls to SCXI_Load_Config will reload the
configuration from the configuration utility.

Remember, the hardware state of the chassis is not affected by this function; you should use the SCXI_Reset
function to reset the hardware states.  Refer to the SCXI_Reset function description for a listing of the default
states of the chassis and modules.

                                                                                                                                                                                             

© National Instruments Corporation 7-45 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

SCXI_Set_Gain

Function
Sets the specified channel to the given gain setting on any SCXI module that supports programmable gain
settings.  Currently, the SCXI-1100, SCXI-1102, SCXI-1122, and SCXI-1141 have programmable gains; the
other analog input modules have hardware-selectable gains.

Synopsis

C Syntax locus i32 SCXI_Set_Gain(u32 chassisID, u32 moduleSlot, i32 channel,

f64 SCXIgain);

Pascal Syntax function SCXI_Set_Gain(chassisID : i32; moduleSlot : i32; channel

: i32; SCXIgain : f64) : i32;

BASIC Syntax FN SCXI_Set_Gain(chassisID&, moduleSlot&, channel&, SCXIgain#)

Parameters
chassisID is the logical ID that was assigned to the SCXI chassis in the configuration utility.

moduleSlot is the chassis slot number of the module.
Range:  1 to n,  where n is the number of slots in the chassis.

channel is the module channel you wish to change the gain setting for.  If channel = -1, SCXI_Set_Gain
will change the gain for all channels on the module.  The SCXI-1100 and SCXI-1122 have one gain amplifier,
so all channels have the same gain setting; therefore, you must set channel = -1 for those modules.

SCXIgain is the gain setting you wish to use.  Notice that SCXIgain is a double-precision floating point
parameter.  Valid gain settings depend on the module type:

SCXI-1100: 1, 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000.
SCXI-1102: 1, 100.
SCXI-1122: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000.
SCXI-1141: 1, 2, 5, 10, 20, 50, 100.

Description
With an SCXI-1102, this function will not return until the module’s gain amplifier has settled to within 0.01%
upon a gain change. This can result in a noticeable amount of delay.

                                                                                                                                                                                           

SCXI_Set_Input_Mode

Function
Configures the SCXI-1122 channels for two-wire mode or four-wire mode.

Synopsis

C Syntax locus i32 SCXI_Set_Input_Mode(u32 chassisID, u32 moduleSlot, u32

inputMode);

Pascal Syntax function SCXI_Set_Input_Mode(chassisID : i32; moduleSlot : i32;

inputMode : i32) : i32;

BASIC Syntax FN SCXI_Set_Input_Mode(chassisID&, moduleSlot&, inputMode&)

Parameters
chassisID is the logical ID that was assigned to the SCXI chassis in the configuration utility.

moduleSlot is the chassis slot number of the module.

NI-DAQ Software Reference Manual for Macintosh 7-46 © National Instruments Corporation



Chapter 7 SCXI Functions

Range:  1 to n,  where n is the number of slots in the chassis.

inputMode is the channel configuration you wish to use.
0: two-wire mode (module default)
1: four-wire mode

Description
When the SCXI-1122 is in two-wire mode (module default setting), the module is configured for 16 differential
input channels.

When the SCXI-1122 is in four-wire mode, channels 0 through 7 are configured to be differential input
channels, and channels 8 through 15 are configured to be current excitation channels.  The SCXI-1122 has a
current excitation source that will switch to drive the corresponding excitation channel 8 through 15 whenever
an input channel 0 through 7 is selected.  Channel 8 will produce the excitation when input channel 0 is
selected, channel 9 will produce the excitation when input channel 1 is selected, and so on.  You can use four-
wire mode for single point data acquisition, or for multiple channel scanning acquisitions.  During a multiple
channel scan, the excitation channels will switch simultaneously with the input channels.

You can hook up an RTD or thermistor to your input channel that uses the corresponding excitation channel to
drive the transducer.

You can call the SCXI_Set_Input_Mode function to enable four-wire mode at any time before you start the
acquisition; and you can call SCXI_Set_Input_Mode again after the acquisition to return the module to
normal two-wire mode.

                                                                                                                                                                                             

SCXI_Set_State

Function
Sets the state of a single channel, or an entire port on any digital output or relay module.

Synopsis

C Syntax locus i32 SCXI_Set_State(u32 chassisID, u32 moduleSlot, u32 port,

i32 channel, u32 data);

Pascal Syntax function SCXI_Set_State(chassisID : i32; moduleSlot : i32; port :

i32; channel : i32; data : i32) : i32;

BASIC Syntax FN SCXI_Set_State(chassisID&, moduleSlot&, port&, channel&, data&)

Parameters
chassisID is the logical ID that was assigned to the SCXI chassis in the configuration utility.

moduleSlot is the chassis slot number of the module.
Range: 1 to n, where n is the number of slots in the chassis.

port is the port number of the module that is written to.  All SCXI modules currently support Port 0 only.

channel is the channel number on the specified port.  Because all the modules currently support Port 0 only, the
channel number maps to the actual channel on the module.  If channel = -1, the function writes the pattern
contained in data to the entire port.

Range: 0 through 15 for the SCXI-1160.
0 through 7 for the SCXI-1161.
0 through 31 for the SCXI-1163.

© National Instruments Corporation 7-47 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

0 through 31 for the SCXI-1163R.
-1 to write to an entire port.

When channel= -1, data contains the pattern of an entire port.  Bit 0 corresponds to the state of channel 0 in the
port, and the states of the other channels are represented in ascending order in data so that bit n corresponds to
channel n.  If the port is less than 32 bits wide, the unused bits in data are ignored.

When channel= n, the LSB (bit 0) of data contains the state of channel n on the specified port.

For relay modules, a 0 bit indicates that the relay is closed or in the normally closed position, and a 1 indicates
that the module is open or in the normally open position.  For SCXI digital modules, a 0 bit indicates that the
line is low, and a 1 bit indicates that the line is high.

Note: For more information about the Normally Closed (NC) and Normally Open (NO) positions, refer to
your SCXI module user manual.

Description
Because the relays on the SCXI-1160 module have a finite lifetime, the driver will maintain a software copy of
the relay states as you write to them; this allows the driver to excite the relays only when you specify a new
relay state.  If you call this function to specify the current relay state again, NI-DAQ will not excite the relay
again.  When the SCXI-1160 powers up, the relays remain in the same position as they were at power down.
However, when you start an application, the driver does not know the states of the relays; it will excite all of the
relays the first time you write to them and then remember the states for the remainder of the application.  When
you call the SCXI_Reset function, the driver will mark all relay states as unknown.

The SCXI-1161 powers up with its relays in the NC position.  The SCXI-1163 powers up with its output lines
high when you operate the module in Multiplexed mode.  The SCXI-1163R powers up with its relays open.  If
you operate the SCXI-1163 or the SCXI-1163R in Parallel mode, the states of the output lines or relays are
determined by the states of the corresponding lines on the DAQ board.

                                                                                                                                                                                             

SCXI_Single_Chan_Setup

Function
Sets up a multiplexed module for a single channel analog input operation to be performed by the given DAQ
board.  Sets the module channel, enables the module output, and routes the module output on the SCXIbus if
necessary.  Resolves any contention on the SCXIbus by disabling the output of any module that was previously
driving the SCXIbus.  This function can also be used to read the temperature sensor on a terminal block
connected to the front of a module.

Synopsis

C Syntax locus i32 SCXI_Single_Chan_Setup(u32 chassisID, u32 moduleSlot, i32

channel, u32 DAQboard);

Pascal Syntax function SCXI_Single_Chan_Setup(chassisID : i32; moduleSlot : i32;

channel : i32; DAQboard : i32) : i32;

BASIC Syntax FN SCXI_Single_Chan_Setup(chassisID&, moduleSlot&, channel&,

DAQboard&)

Parameters
chassisID is the logical ID that was assigned to the SCXI chassis in the configuration utility.

moduleSlot is the chassis slot number of the module that is to be read.
Range:  1 to n, where n is the number of slots in the chassis.

NI-DAQ Software Reference Manual for Macintosh 7-48 © National Instruments Corporation



Chapter 7 SCXI Functions

channel is the channel number of the input channel on the module that is to be read.
Range: 0 to n-1, where n is the number of input channels on the module.

-1: set up to read the temperature sensor on the terminal block connected to the module if the
temperature sensor is in the MTEMP configuration.

DAQboard is the device number of the DAQ board in the Macintosh that will be used to read the input channel.

                                                                                                                                                                                             

SCXI_Track_Hold_Control

Function
Controls the Track/Hold state of an SCXI-1140 module that has been set up for a single-channel operation.

Synopsis

C Syntax locus i32 SCXI_Track_Hold_Control(u32 chassisID, u32 moduleSlot, u32

state, u32 DAQboard);

Pascal Syntax function SCXI_Track_Hold_Control(chassisID : i32; moduleSlot :

i32; state : i32; DAQboard : i32) : i32;

BASIC Syntax FN SCXI_Track_Hold_Control(chassisID&, moduleSlot&, state&,

DAQboard&)

Parameters
chassisID is the logical ID that was assigned to the SCXI chassis in the configuration utility.

moduleSlot is the chassis slot number of the desired SCXI-1140 module.
Range:  1 to n,  where n is the number of slots in the chassis.

state indicates whether to put the module into Track or Hold mode.
0:  put the module into Track mode.
1:  put the module into Hold mode.

DAQboard is the device number of the DAQ board in the Macintosh that will be used to read the input channel.

Description
Please refer to the SCXI Applications discussion at the beginning of this chapter for information about how to
use the SCXI-1140 for single-channel and channel-scanning operations.  This function is only needed for single-
channel applications; the scan interval timer controls the Track/Hold state of the SCXI-1140 during a channel-
scanning operation.  Figures 7-2 and 7-5 show flowcharts for single-channel applications, which use the
SCXI-1140 with this function.

                                                                                                                                                                                             

SCXI_Track_Hold_Setup

Function
Establishes the track/hold behavior of an SCXI-1140 module, and sets up the module for either a single-channel
operation or an interval-scanning operation.

© National Instruments Corporation 7-49 NI-DAQ Software Reference Manual for Macintosh



SCXI Functions Chapter 7

Synopsis

C Syntax locus i32 SCXI_Track_Hold_Setup(u32 chassisID, u32 moduleSlot, u32

inputMode, u32 source, u32 send, u32 holdCount, u32

DAQboard);

Pascal Syntax function SCXI_Track_Hold_Setup(chassisID : i32; moduleSlot : i32;

inputMode : i32;  source : i32; send : i32; holdCount :

i32; DAQboard : i32) : i32;

BASIC Syntax FN SCXI_Track_Hold_Setup(chassisID&, moduleSlot&, inputMode&,

source&, send&, holdCount&, DAQboard&)

Parameters
chassisID is the logical ID that was assigned to the SCXI chassis in the configuration utility.

moduleSlot is the chassis slot number of the SCXI-1140 module.
Range:  1 to n,  where n is the number of slots in the chassis.

inputMode indicates what type of analog input operation.
0: none; any resources that were previously reserved for the module (such as a DAQ board counter or an

SCXIbus trigger line) are freed.
1: single-channel operation.
2: interval channel-scanning operation.

source indicates what signal will control the Track/Hold state of the module.  If the inputMode is zero, this
parameter is ignored.

0: A counter of the DAQ board that is cabled to the module will be the source
(Am9513-based MIO-16 Counter 2, an E Series dedicated DAQ-STC counter, a Lab and 1200 series
Counter B1, or DAQCard-700 Counter 2 will be reserved and used for this purpose).  This source is
only valid if the module is cabled to a DAQ board.

1: An external source connected to the HOLDTRIG pin on the front connector of the module will control
the Track/Hold state of the module.  There is a hardware connection between the HOLDTRIG pin and
the counter output of the DAQ board, so if source=1 the appropriate counter (listed above) is driven by
the external source and will be reserved.  Note that if inputMode = 2, this external source will drive
the scan interval timer.  If you are using a Lab or 1200 series board or DAQCard-700, you must
change the jumper setting on the SCXI-1341 adapter card to prevent the external source from
damaging the timer chip on the DAQ board.  This mode is not supported for the NB-MIO-16.

2: A signal routed on an SCXIbus trigger line from another SCXI-1140 module will be used to control
the Track/Hold state of the module.

send indicates where else to send the signal specified by source for synchronization purposes.  This parameter
is also ignored if the inputMode is zero.

0:  nowhere.
1:  make the source signal drive the DAQ board counter output and the HOLDTRIG pin on the module

front connector (if the source is not already one of those signals).  If you are using a Lab or 1200
series board or DAQCard-700, you must change the jumper setting on the SCXI-1341 adapter
card to prevent the external signal source from damaging the timer chip on the DAQ board.

2:  make the source signal drive an SCXIbus trigger line so that other SCXI-1140 modules can use it (if the
source is not from the SCXIbus).  Only one SCXI-1140 module can drive that trigger line; an
error will occur if you attempt to configure more than one SCXI-1140 to drive it.

holdCount is the number of times the module is enabled during an interval scan before going back into Track
mode.  Each time Slot 0 encounters an entry for the module in the module scan list, the module is enabled, and
it remains enabled until the sample count in that module scan list entry expires.  If there is only one entry for the
module in the module scan list, holdCount should be one (this will almost always be the case.)

Range: 1 to 256

DAQboard is the device number of the DAQ board in the Macintosh that will be used in the analog input
operation.  If the DAQboard specified is a Lab-NB or a Lab-LC, inputMode 2 is not supported.

NI-DAQ Software Reference Manual for Macintosh 7-50 © National Instruments Corporation



Chapter 7 SCXI Functions

Application Hints
For single channel operations (inputMode=1) the module is level-sensitive to the source signal; that is, when
the source signal is low the module is in Track mode, and when the source signal is high the module is in Hold
mode.  If source = 0, calls to the SCXI_Track_Hold_Control function can be used to put the module into
Track or Hold mode by toggling the output of the appropriate counter on the DAQ board (see Figure 7-2).  If the
SCXI-1140 you wish to read is not cabled to the DAQ board, you will have to configure the SCXI-1140 module
that is cabled to the DAQ board to send the counter output on the SCXIbus to the desired module.  Then the
SCXI_Track_Hold_Control call will be able to put the desired module into Track or Hold mode.  The
SCXI_Track_Hold_Setup parameters for each module would be:

For the SCXI-1140 that is cabled to the DAQ board:
inputMode = 1.
source = 0.
send = 2.

For the SCXI-1140 module to be read:
inputMode = 1.
source = 2.
send = 0.

Using an external signal source (source=1) for single channel operations is not normally useful because
NI-DAQ has no way of determining when the module has gone into Hold mode and it is appropriate to read the
channels.

For interval channel scanning operations (inputMode = 2), which is only supported for MIO boards, the
module will be configured to go into Hold mode on the rising edge of the source signal.  If source=0, that will
happen when Counter 2 pulses at the beginning of each scan interval; if source=1, that will happen on the rising
edge of the external signal connected to HOLDTRIG on the module front connector.  In the latter case, the
external signal will also trigger the start of each scan.  If more than one SCXI-1140 is to be scanned, you can
send the source signal from the module that is receiving it (either from Counter 2 or from HOLDTRIG) to the
other modules over the SCXIbus.  Note that the module that is cabled to the board can receive the source signal
from the SCXIbus and drive the scan interval  timer of the board, if desired; or it can use OUT2 from the board
and send it on the SCXIbus, even if that module is not in the module scan list.

For example, two SCXI-1140 modules are to be scanned, one of which is cabled to an NB-MIO-16X that is to
perform the acquisition.  An external signal connected to the HOLDTRIG pin of the module that is not cabled to
the DAQ board is to control the Track/Hold state of both modules and the scan interval during the acquisition.
The SCXI_Track_Hold_Setup parameters would be:

For the SCXI-1140 that is cabled to the NB-MIO-16X :
inputMode = 2.
source = 2.
send = 1.

For the other SCXI-1140 module to be scanned:
inputMode = 2.
source = 1.
send = 2.

If the NB-MIO-16X is used, the module will go back into Track mode after n module scan list entries for that
module have occurred, where n is the holdCount.  Usually, each module is represented in the module scan list
only once, so a holdCount of one is appropriate. However, if an SCXI-1140 module is represented more than
once in the module scan list and you want the module to remain in Hold mode until after the last scan list entry
for that module, you will need to set the module holdCount to equal the number of times the module is
represented in the module scan list.

If the NB-MIO-16 is used, the holdCount has no effect and is ignored.  The module always goes back into track
mode at the end of each NB-MIO-16 scan interval.  An external source (source = 1) may not be used with the
NB-MIO-16.

© National Instruments Corporation 7-51 NI-DAQ Software Reference Manual for Macintosh



Chapter 8
Counter/Timer Functions
                                                                                                          

This chapter describes the functions that perform timing I/O and counter operations such as pulse generation,
frequency generation, and event counting.  The chapter is divided into three sections to describe the Counter (CTR)
functions, Interval Counter (ICTR), and General-Purpose Counter (GPCTR) functions for the National Instruments
boards for the Macintosh.  See Appendix A to determine which function set works with your board.

The Counter and Interval Counter functions perform timing I/O (counter) functions such as pulse generation,
frequency generation, and event counting.  These functions are used for frequency and pulse measurement, event
counting, and timed process control.

Counter/Timer Operations (CTR Functions)

The 16-bit counters available on the NB-MIO-16, NB-MIO-16X, NB-DMA-8-G, NB-DMA2800, NB-A2000, and
NB-TIO-10 can be diagrammed as shown in Figure 8-1.

Source

Gate

OutCounter

Figure 8-1.  Counter Block Diagram

Each counter has a SOURCE input, a GATE input, and an output labeled OUT.  The SOURCE, GATE, and OUT
pins for Counters 1, 2, and 5 of the onboard Am9513 are available at the NB-MIO-16 and NB-MIO-16X I/O
connectors.  The SOURCE, GATE, and OUT pins for Counters 1 through 10 of the onboard Am9513 are available
at the NB-TIO-10 I/O connector.

The counters can use several timebases for counting operations.  A counter can use the signal supplied at any of the
Am9513 five SOURCE or five GATE inputs for counting operations.  The Am9513 also has five internal timebases
that any counter can use.  On the NB-MIO-16, NB-MIO-16X, NB-DMA2800, NB-DMA-8-G, NB-A2000, and
NB-TIO-10, these timebases are as follows:

1: 1-MHz clock (1-µs resolution)

2: 100-kHz clock (10-µs resolution)

3: 10-kHz clock (100-µs resolution)

4: 1-kHz clock (1-ms resolution)

5: 100-Hz clock (10-ms resolution)

© National Instruments Corporation 8-1 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

In addition, the counter can be programmed to use the output of the next lower-order counter as a signal source.
This arrangement is useful for counter concatenation.  For example, Counter 2 can be programmed to count the
output of Counter 1, thus creating a 32-bit counter.

A counter can be configured to count either falling or rising edges of the selected internal timebase, SOURCE input,
or next lower-order counter signal.

The counter GATE input is used to gate counting operations.  When a counter is configured through software for an
operation, a signal at the GATE input can be used to start and stop counter operation.  There are nine gating modes
available in the Am9513:

• No Gating Counter is started and stopped by software.

• High-Level Gating Counter starts when gate input is at a high-logic state.  The counter is suspended
when gate input is at a low-logic state.

• Low-Level Gating Counter starts when gate input is at a low-logic start.  The counter is suspended
when gate input is at a high-logic state.

• Rising-Edge Gating Counter starts counting when it receives a low-to-high edge at the gate input.

• Falling-Edge Gating Counter starts counting when it receives a high-to-low edge at the gate input.

• Active high on terminal Counter starts when the TC (not toggler) output of the next lower-order counter
count of next lower-order is at a high-logic state. The counter is suspended when the TC output of the next
counter lower-order counter is at a low-logic state.

• Active high on gate of Counter starts when the gate input of the next higher-order counter is at a
next higher-order counter high-logic state. The counter is suspended when the gate input of the next

higher-order counter is at a low-logic state.

• Active high on gate of Counter starts when the gate input of the next lower-order counter is at a
next lower-order counter high-logic state. The counter is suspended when the gate input of the next

lower-order counter is at a low-logic state.

• Special Gating The gate input selects the reload source, but does not start counting.  The counter
uses the value stored in its internal Hold register when the gate input is high, and
uses the value stored in its internal Load register when the gate input is low.

Counter operation starts and stops relative to the selected timebase.  When a counter is configured for no gating, the
counter starts at the first timebase/source edge (rising or falling, depending on selection) after the counter is
configured by the software.  When a counter is configured for gating modes, gate signals take effect at the next
timebase/source edge.  For example, if a counter is configured to count rising edges and to use the falling edge
gating mode, the counter starts counting on the next rising edge after it receives a high-to-low edge on its GATE
input.  Thus, some time is spent synchronizing the GATE input with the timebase/source.  This synchronization time
creates a time lapse uncertainty of between 0 and 1 timebase periods between the application of the signal at the
GATE input and the start of the counter operation.

The counter generates timing signals at its OUT output.  If the counter is not operating, its output can be set to one of
three states:  high-impedance state, low-logic state, or high-logic state.

The counters generate two types of output signals during counter operation:  terminal count (TC) pulse output, and
TC toggle output.  A counter reaches TC when it counts up to the maximum or down to 0 and rolls over.  In many
counter applications, the counter reloads from an internal register when it reaches TC.  In TC pulse output mode, the
counter generates a pulse during the cycle in which it reaches TC and reloads.  In TC toggle output mode, the
counter output changes state on the next source edge after it reaches TC and reloads.  In addition, the counters can be
configured for positive logic output or negative (inverted) logic output.  Examples of the four types of output signals
generated are shown in Figure 8-2.

NI-DAQ Software Reference Manual for Macintosh 8-2 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

0 < sync period < 1

1

Timebase

Starting

 Signal

TC Toggle 

   Output 

TC Pulse

  Output
1 1

positive

positive

negative

negative

units = timebase period

Figure 8-2.  Counter Timing and Output Types

Figure 8-2 represents a counter generating a delayed pulse (see CTR_Pulse) and demonstrates the four forms the
output pulse could take given the four different types of output signal available.  The TC toggle positive logic output
looks like what would be expected when generating a pulse.  For most of the Counter/Timer functions, TC toggle
output is the preferred output configuration; however, the other signal types are also available.

The starting signal shown in Figure 8-2 represents either a software starting of the counter (for the no-gating case),
or some sort of signal at the GATE input.  The signal could be either a rising-edge gate or a high-level gate.  If a
low-level or falling-edge gate, the starting signal simply appears inverted.  In Figure 8-1, the counter is configured to
count the rising edges of the timebase; therefore, the starting signal takes effect on the rising edge of the timebase,
and the signal output changes state with respect to the rising edge of the timebase.

Programmable Frequency Output Operation

The NB-MIO-16, the NB-MIO-16X, NB-TIO-10, NB-DMA2800, and the NB-DMA-8-G have 4-bit programmable
output signals.  These signals are a divided-down version of the selected timebase.  Any of five internal timebases
and any of the counter SOURCE inputs can be selected as the FOUT source.  (See the CTR_FOUT_Config
function description for FOUT use and timing.)

© National Instruments Corporation 8-3 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

NB-MIO-16 Counter/Timers

From an onboard Am9513 System Timing chip, the NB-MIO-16 uses three independent 16-bit counter/timers and a
4-bit programmable frequency output.  The connection of the Am9513 Counter/Timer signals to the NB-MIO-16 I/O
connector and to the RTSI is shown in Figure 8-3.

     GATE1

SOURCE1

       OUT1

     GATE2

SOURCE2

       OUT2

     GATE5

SOURCE5

       OUT5

SOURCE4

      FOUT

Am9513

I/
O

 C
o
n
n
ec

to
r

R
T

S
I 

B
u
s

Figure 8-3.  NB-MIO-16 Counter/Timer Signal Connections

Counters 1, 2, and 5 are available for counting operations on the NB-MIO-16.  Counters 3 and 4 (not shown) are
reserved for data acquisition operations.  As shown in Figure 8-3, the FOUT, GATE, SOURCE, and OUT signals for
Counters 1, 2, and 5 are available at the I/O connector.  The signals GATE1, FOUT, OUT1, OUT2, and OUT5 are
also available for connection to the RTSI bus trigger lines.  (See Chapter 9, RTSI Bus Trigger Functions, for more
information.)  SOURCE4 can be driven from the RTSI bus.

Although Counter 1 and Counter 5 are made available for general use, they are reserved by NI-DAQ for Macintosh
when performing certain operations.  Counter 1 is reserved when acquiring data with an AMUX-64T.  Counter 5 is
reserved when the sample count in a data acquisition is greater than 65,536.

The operation of the counter/timers and the programmable frequency output is discussed later in this chapter.

NI-DAQ Software Reference Manual for Macintosh 8-4 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

NB-MIO-16X Counter/Timers

From an onboard Am9513 System Timing chip, the NB-MIO-16X uses three independent 16-bit counter/timers and
a 4-bit programmable frequency output.  The connection of the Am9513 Counter/Timer signals to the NB-MIO-16X
I/O connector and to the RTSI bus is shown in Figure 8-4.

     GATE1

SOURCE1

       OUT1

     GATE2

SOURCE2

       OUT2

     GATE5

SOURCE5

       OUT5

      

Am9513

FOUT

SOURCE4

OUT3
(EXTCONV*)

I/
O

 C
o
n
n
ec

to
r

R
T

S
I 

B
u
s

Figure 8-4.  NB-MIO-16X Counter/Timer Signal Connections

Counters 1, 2, and 5 are available for counting operations on the NB-MIO-16X.  Counters 3 and 4 are reserved for
data acquisition operations.  As shown in Figure 8-4, the FOUT, GATE, SOURCE, and OUT signals for Counters 1,
2, and 5 are available at the I/O connector.  The signals GATE1, SOURCE5, OUT1, OUT2, OUT5, OUT3, and
SOURCE4 are also available for connection to the RTSI bus trigger lines.  (See Chapter 9, RTSI Bus Trigger
Functions, for more information.)

Although Counters 1, 2, and 5 are made available for general use, they are reserved by NI-DAQ for Macintosh when
performing certain operations.  Counter 1 is reserved when acquiring data with an AMUX-64T.  Counter 2 is
reserved when performing an interval scanning operation initiated by SCAN_IntStart.  Counter 5 is reserved
when the sample count in a data acquisition is greater than 65,536.

The operation of the counter/timers and the programmable frequency output is discussed later in this chapter.

© National Instruments Corporation 8-5 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

NB-DMA-8-G and NB-DMA2800 Counter/Timers

The NB-DMA-8-G and NB-DMA2800 contain an onboard Am9513 System Timing chip that has five independent
16-bit counter/timers and a 4-bit programmable frequency output.  The connection of the Am9513 Counter/Timer
signals to the RTSI bus is shown in Figure 8-5.

Am9513

SOURCE1

     GATE1 

       OUT1

SOURCE2

     GATE2

       OUT2

SOURCE3

     GATE3

       OUT3

SOURCE4

     GATE4

       OUT4

SOURCE5

     GATE5

       OUT5

      FOUT

1 MHZ

5 MHZ

R
T

S
I 

B
u
s

Figure 8-5.  NB-DMA-8-G and NB-DMA2800 Counter/Timer Signal Connections

Counters 1 through 5 are available for counting operations on the NB-DMA-8-G and NB-DMA2800.  The input and
output signals for these counters are available for connection to the RTSI bus trigger lines for system timing
operations.  (See Chapter 9, RTSI Bus Trigger Functions, for more information.)  As shown in Fig. 8-5, FOUT,
SOURCE3 through 5, GATE1, GATE3, GATE5, and OUT1 through 5 can be connected to the RTSI bus.
SOURCE1 and SOURCE2 are not currently connected to anything.  The GATE2 signal is hardwired to OUT1, and
the GATE4 signal is hardwired to OUT5.  SOURCE4 can be driven from the RTSI bus.

The operation of the counter/timers and the programmable frequency output is discussed later in this chapter.

NB-A2000 Counter/Timers

The NB-A2000 has one unused 16-bit counter/timer from the onboard Am9513A System Timing chip.  This
counter, Counter 2, is made available for general use via the RTSI bus.  The onboard RTSI switch connects the
GATE2, SOURCE2, and OUT2 signals to the RTSI bus as shown in Figure 8-6 (see Chapter 9, RTSI Bus Trigger
Functions, for more information).

NI-DAQ Software Reference Manual for Macintosh 8-6 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

     

       

     GATE2

SOURCE2

       OUT2

R
T

S
I 

B
u
s

Am9513A

Figure 8-6.  NB-A2000 Counter/Timer Signal Connections

The remaining counters, Counter 1, Counter 3, Counter 4, and Counter 5, are reserved for NB-A2000 Data
Acquisition functions.

NB-TIO-10 Counter/Timers

The NB-TIO-10 has two onboard Am9513 System Timing chips that provide ten independent 16-bit counters and
two 4-bit programmable frequency output.  The connection of the Am9513 counter/timer signals to the NB-TIO-10
I/O connector and to the RTSI bus is shown in Figure 8-7.

Counters 1 through 10 are made available for counting operations on the NB-TIO-10.  As shown in Figure 8-7, the
FOUT1 and FOUT2 signals for Counters 1 through 10 are made available at the I/O connector.  The signals GATE1,
SOURCE1, OUT1, GATE6, SOURCE6, OUT6, SOURCE2, OUT2, SOURCE7, GATE5, OUT5, GATE10, OUT10,
and FOUT1 signals are also available for connection to the RTSI bus trigger lines.  See Chapter 9,
RTSI Bus Trigger VIs, for more information.

© National Instruments Corporation 8-7 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

Figure 8-7.  NB-TIO-10 Counter/Timer Signal Connections

NI-DAQ Software Reference Manual for Macintosh 8-8 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

Counter/Timer Function Summary

Use the following Counter/Timer functions on the NB-MIO-16, NB-MIO-16X, NB-DMA-8-G, NB-DMA2800,
NB-A2000, and NB-TIO-10:

CTR_Config Saves information about which configuration to use for a specified counter.

CTR_EvCount Configures the specified counter for an event-counting operation and starts the counter.

CTR_EvRead Reads the current counter without disturbing the event-counting operation and returns the
count and overflow conditions.

CTR_Period Configures the specified counter for period or pulse width measurement and starts the
counter.

CTR_Pulse Sets up the specified counter to generate an output pulse with programmable delay and
pulse width.

CTR_Reset Places counter output drivers in the specified output state.

CTR_Restart Restarts the operation of the specified counter.

CTR_Square Causes the specified counter to generate a continuous square wave output of specified duty
cycle and frequency.

CTR_State Returns the OUT logic level of the specified counter.

CTR_Stop Suspends the operation of the specified counter in such a way that the counter operation
can be restarted.

Use the following function for programming the frequency output on the NB-MIO-16, NB-MIO-16X, NB-TIO-10,
NB-DMA-8-G, and NB-DMA2800:

CTR_FOUT_Config Disables or enables and sets the frequency of the 4-bit programmable FOUT.

Counter/Timer Function Application Hints

The two basic types of functions are event counting and timing signal generation.  For all of these functions,
CTR_Config configures the counter modes; CTR_Stop suspends the function; CTR_Restart restarts or repeats
the function; CTR_State returns the state of the counter output signal; and CTR_Reset stops the counter, clears
the counter's mode, and places the output in a specified state.

Event Counting

CTR_EvCount initiates the event-counting process, and CTR_EvRead returns counter values.  These two
functions perform event-counting and frequency, pulse-width, or time-lapse measurement.  Details on these
applications are given under Event-Counting Applications, which follows the CTR_EvRead description in this
chapter.

Timing Signal Generation

CTR_Pulse initiates single-pulse generation.  CTR_Square initiates counter square wave (also known as pulse-
train) generation.  You can use CTR_Square with special gating (gateMode = 5) to perform gate-controlled pulse
generation.  When the gate input is low, NI-DAQ uses period1 to generate the pulses.  When the gate input is high,
NI-DAQ uses period2 to generate the pulses.  If the output mode is TC toggle, the result is two 50% duty square

© National Instruments Corporation 8-9 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

waves of different frequencies.  If the output mode is TC pulse, the result is two pulse trains of different frequencies.
CTR_FOUT_Config generates a clock signal at the FOUT Port.

The Pulse Generator function included in the NI-DAQ for Macintosh Examples folder illustrates the use of the
Counter/Timer functions.  This function generates a specified number of pulses at a selected frequency and duty
cycle.

CTR_Config

Function
Saves information about which configuration to use for the specified counter.

Synopsis

C Syntax locus i32 CTR_Config(u32 deviceNumber, u32 counter, u32 edgeMode,

u32 gateMode, u32 outputType, u32 outputPolarity);

Pascal Syntax function CTR_Config(deviceNumber : i32; counter : i32; edgeMode :

i32; gateMode : i32; outputType : i32; outputPolarity :

i32) : i32;

BASIC Syntax FN CTR_Config(deviceNumber&, counter&, edgeMode&, gateMode&,

outputType&, outputPolarity&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

counter is the counter number.
Range: 1, 2, or 5 for the NB-MIO-16 or NB-MIO-16X.

1 through 5 for the NB-DMA-8-G and NB-DMA2800.
1 through 10 for the NB-TIO-10.
2 for the NB-A2000.

edgeMode indicates the edge of the input signal that the counter counts.
0: count rising edges.
1: count falling edges.

gateMode selects the gating mode used by the counter.  The five different gating modes numbered 0 through 4
are:

0: no gating used.
1: high-level gating used.
2: low-level gating used.
3: edge-triggered gating used—rising edge.
4: edge-triggered gating used—falling edge.

10: active high on terminal count of next lower-order counter.
11: active high on gate of next higher-order counter.
12: active high on gate of next lower-order counter.
13: special gating used (See Counter/Timer Operations (CTR Functions) section earlier in this chapter for

more information.

outputType selects the type of output generated by the counter.  The counters generate two types of output
signals:  TC toggle output, and TC pulse output.

0: TC toggle output type used.
1: TC pulse output type used.

NI-DAQ Software Reference Manual for Macintosh 8-10 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

outputPolarity selects the output polarity used by the counter.
0: positive logic output.
1: negative logic (inverted) output.

If TC pulse output type is selected, then outputPolarity = 0 means that active logic-high TC pulses are
generated.  outputPolarity = 1 means that active logic-low TC pulses are generated.  Similarly, if TC toggle
output type is selected, then outputPolarity = 0 means that the OUT signal toggles from low to high on the first
TC.  outputPolarity = 1 means that the OUT signal toggles from high to low on the first TC.

CTR_Config saves the parameters in the configuration table for the specified counter.  This configuration
table is used when the counter is set up for an event-counting, pulse output, or frequency output operation.
CTR_Config lets you take advantage of the many modes supported by the counter.

The default settings for counter configuration modes after system startup are as follows:
edgeMode = 0:  count rising edges.
gateMode = 0:  no gating used.
outputType = 0:  TC toggle output type used.
outputPolarity = 0:  positive logic output used.

If you want a counter configuration different from this default setting, then you must call CTR_Config with
the configuration you want before any counter operation is initiated.  Call CTR_Config only when the counter
configuration is changed.

                                                                                                                                                                                             

CTR_EvCount

Function
Configures the specified counter for an event-counting operation and starts the counter.

Synopsis

C Syntax locus i32 CTR_EvCount(u32 deviceNumber, u32 counter, u32 timebase,

u32 mode);

Pascal Syntax function CTR_EvCount(deviceNumber : i32; counter : i32; timebase :

i32; mode : i32) : i32;

BASIC Syntax FN CTR_EvCount(deviceNumber&, counter&, timebase&, mode&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

counter is the counter number.
Range: 1, 2, or 5 for the NB-MIO-16 or NB-MIO-16X.

1 through 5 for the NB-DMA-8-G and NB-DMA2800.
1 through 10 for the NB-TIO-10.
2 for the NB-A2000.

© National Instruments Corporation 8-11 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

timebase selects the resolution used by the counter.  timebase has the following possible values:
0:  TC signal of counter-1 used as timebase.
1:  Internal 1-MHz clock used as timebase (1-µs resolution).
2:  Internal 100-kHz clock used as timebase (10-µs resolution).
3:  Internal 10-kHz clock used as timebase (100-µs resolution).
4:  Internal 1-kHz clock used as timebase (1-ms resolution).
5:  Internal 100-Hz clock used as timebase (10-ms resolution).
6:  SOURCE1 used as timebase if 1≤ counter ≤ 5 or SOURCE6 used as timebase if 6 ≤ counter ≤ 10.
7:  SOURCE2 used as timebase if 1≤ counter ≤ 5 or SOURCE7 used as timebase if 6 ≤ counter ≤ 10.
8:  SOURCE3 used as timebase if 1≤ counter ≤ 5 or SOURCE8 used as timebase if 6 ≤ counter ≤ 10.
9:  SOURCE4 used as timebase if 1≤ counter ≤ 5 or SOURCE9 used as timebase if 6 ≤ counter ≤ 10.

10:  SOURCE5 used as timebase if 1≤ counter ≤ 5 or SOURCE10 used as timebase if 6 ≤ counter ≤ 10.
11:  GATE 1 used as timebase if 1 ≤ counter ≤5 or GATE 6 used as timebase if 6 ≤ counter ≤ 10.
12:  GATE 2 used as timebase if 1 ≤ counter ≤5 or GATE 7 used as timebase if 6 ≤ counter ≤ 10.
13:  GATE 3 used as timebase if 1 ≤ counter ≤5 or GATE 8 used as timebase if 6 ≤ counter ≤ 10.
14:  GATE 4 used as timebase if 1 ≤ counter ≤5 or GATE 9 used as timebase if 6 ≤ counter ≤ 10.
15:  GATE 5 used as timebase if 1 ≤ counter ≤5 or GATE 10 used as timebase if 6 ≤ counter ≤ 10.

If timebase is 0, counters are concatenated.  Counters 5 and 6 on the NB-TIO-10 cannot be concatenated
because Counters 1 through 5 are on one chip and Counters 6 through 10 are on the other chip.

cont indicates whether counting continues when the counter rolls over to 0.  cont can be either 0 or 1.  If cont is
0, event counting stops when the counter counts up to 65,535 and rolls over to 0, in which case an overflow
condition is registered.  If cont is 1, event counting continues when the counter rolls over to 0, and no overflow
condition is registered.  Setting cont to 1 is useful when more than one counter is concatenated for event
counting.

CTR_EvCount configures the specified counter for an event-counting operation.  The counter is configured to
count up from 0 and to use the gating mode, edge mode, output type, and polarity as indicated by the
CTR_Config call.

Note: Edge-triggered gating mode does not operate properly during event counting if cont is 1.  If cont is
1, use level-gating mode or no-gating mode.

Applications for CTR_EvCount are discussed in Event-Counting Applications later in this chapter.

                                                                                                                                                                                             

CTR_EvRead

Function
Reads the current count without disturbing the counting process and returns the count and overflow conditions.

Synopsis

C Syntax locus i32 CTR_EvRead(u32 deviceNumber, u32 counter, u16 *overflow,

u32 *count);

Pascal Syntax function CTR_EvRead(deviceNumber : i32; counter : i32; var

overflow : i16; var count : i32) : i32;

BASIC Syntax FN CTR_EvRead(deviceNumber&, counter&, overflow&, count&)

NI-DAQ Software Reference Manual for Macintosh 8-12 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

counter is the counter number.
Range: 1, 2, or 5 for the NB-MIO-16 or NB-MIO-16X.

1 through 5 for the NB-DMA-8-G and NB-DMA2800.
1 through 10 for the NB-TIO-10.
2 for the NB-A2000.

overflow returns the overflow state of the counter.  A counter overflows if it counts up to 65,535 and rolls over
to 0 on the next count.  If overflow is 0, no overflow has occurred.  If overflow is 1, an overflow occurred.  See
the Special Considerations for Overflow Detection section later in this function description.

count returns the current value of the specified counter.  count can be between 0 and 65,535.  count represents
the number of edges (either falling or rising edges, not both) that have occurred because the counter started
counting.

CTR_EvRead reads the current value of the counter without disturbing the counting process and returns the
value in count.  CTR_EvRead also performs overflow detection and returns the overflow status in overflow.
Overflow detection and the significance of count depend on the counter configuration.

Pascal Note: The event count returned in count is a 16-bit unsigned number.  Because Pascal does not
support unsigned representation, a count greater than 32,767 is treated as a negative by
Pascal.  You can use the UToL conversion function to convert count to a Pascal long
integer.  (See Chapter 11, NI-DAQ for Macintosh Examples, for a complete description of
the UToL function.)

Special Considerations for Overflow Detection

To detect an overflow condition the counter must be configured for TC toggle output type and positive output
polarity, and the counter must be configured to stop counting on overflow (cont = 0 in the CTR_EvCount
call).  If these conditions are not met, then the value of overflow is meaningless.  If more than one counter is
concatenated for event-counting applications, the lower-order counters should be configured to continue
counting when overflow occurs (overflow detection is meaningful only for the highest order counter).  The
value of count returned by CTR_EvRead for the lower-order counters, then, represents the module 65,536
event count.  (For more information, see the Event Counting Applications section later in this chapter.)

                                                                                                                                                                                             

Event-Counting Applications

The four types of event-counting/timing measurements utilized by CTR_EvCount and CTR_EvRead are event
counting, pulse-width measurement, time-lapse measurement, and frequency measurement.  CTR_EvCount also
permits concatenation of counters such that 32-bit or 48-bit resolution can be used for these measurements.

For event-counting applications, the events counted are the signal transition or edges of an input SOURCE signal;
therefore, you should set timebase to a value from 6 through 10.  Either low-to-high or high-to-low edges can be
counted (this feature is selected by edgeMode in the CTR_Config function).  In addition, the various gating modes
given by CTR_Config can be used to control counting.

For pulse-width measurement, a counter is configured to count during the duration of a pulse.  For this application,
any timebase can be used, including an external clock connected to the counter SOURCE input.  Level gating modes
should be used for pulse-width measurements, where the pulse measured is connected to the counter GATE input.
Pulse width is equal to (event count) * (timebase period).

For time-lapse measurement, a counter is configured to count from the occurrence of some event.  For this
application, any timebase can be used, including an external clock connected to the counter SOURCE input.  Edge-

© National Instruments Corporation 8-13 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

triggered gating modes can be used if a single counter performs the event-counting and if cont is 0.  In this case, the
starting event is an edge applied to the GATE input of the counter.  The time lapse from the edge is equal to (event
count) * (timebase period).  If counters are concatenated for time-lapse measurement, use level-gating where the

GATE input signal goes active at the starting event and stays active.

Frequency measurement is a special case of event-counting; that is, the frequency of an input signal can be measured
by counting the number of edges of a signal that occur during a fixed amount of time.  For this application, timebase
should be set to 0, and the signal measured should be connected to the SOURCE input of the counter.  Either low-to-
high or high-to-low edges can be counted (this feature is selected by edgeMode in the CTR_Config function).
Event-counting is constrained to a fixed amount of time by using level-gating and by applying a gate pulse of known
fixed duration to the GATE input of the counter.  The average frequency of the incoming signal is then
(event count) / (gate period).  The gating pulse for frequency measurement can be supplied by another counter (see
CTR_Pulse).

For 16-bit resolution event-counting and time-lapse, only one counter need be used.  cont should be set to 0 so that
you are notified if the counter overflows (see CTR_EvRead).  Any gating mode can be used.  In addition, TC toggle
output type and positive output polarity should be selected during the CTR_Config call so that overflow detection
operates properly.

For greater than 16-bit resolution, two or more counters can be concatenated.  A low-order counter is configured to
count the incoming edges.  The OUT signal of the low-order counter is connected to the SOURCE input of the next
high-order counter.  The next high-order counter is configured to count once every time the low-order counter rolls
over.  The OUT signal of the next high-order counter is connected to the SOURCE input of an additional counter.
The last counter (referred to as the high-order counter) is the counter that performs overflow detection.  The lower-
order counters increment continuously and generate output pulses whenever they roll over.

For 32-bit counting, use two counters.  For 48-bit counting, use three counters, and so on.  The counter
configurations for concatenated event-counting are as follows:

• Low-order counter configuration:

edgeMode:  count rising edges or falling edges.
gateMode:  any value.
outputType:  TC pulse output type.
outputPolarity:  positive polarity.
timebase:  any value.
cont = 1:  (continuous counting).

• Intermediate counter configuration:

edgeMode:  count rising edges (indicates low-order counter rolled over).
gateMode:  no gating.
outputType:  TC pulse output type.
outputPolarity:  positive polarity.
timebase = 0:  (counts lower-order counter output).
cont = 1:  (continuous counting).

• High-order counter configuration:

edgeMode:  count rising edges (indicates low-order counter rolled over).
gateMode:  no gating.
outputType:  TC toggle output type (for proper overflow detection).
outputPolarity:  positive polarity.
timebase = 0:  so that it counts lower-order counter output.
cont = 0:  so that counter stops on overflow.

NI-DAQ Software Reference Manual for Macintosh 8-14 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

Period Measurements Applications

With the proper use of CTR_Config, CTR_Period, and CTR_EvRead, you can configure a counter for the
following:

• Period measurement

• Continuous pulse width measurement

To make a period measurement, call CTR_Config with gateMode set to either rising or falling edge-triggered
gating (3 or 4).  With rising edge-triggered gating, a counter can measure the time interval between two rising edges
of the gate signal.  With falling edge-triggered gating, a counter can measure the time interval between two falling
edges of the gate signal.  When you execute CTR_Config, and you apply the signal being measured to the
appropriate gate, you can execute CTR_Period to initiate period measurement.  The specified counter starts
counting on the first gate edge and latches the counter value to the onboard Hold Register once the counter detects a
second gate edge.  After each period measurement, the counter re-loads itself with a 0 and starts a new measurement.

While the measurement is occurring, call CTR_EvRead to retrieve the counter value saved in the Hold Register.
The period is then equal to the value returned by CTR_EvRead * timebase.

If you choose an improper timebase frequency, CTR_EvRead retrieves a smaller count value.  A small count
indicates that the timebase frequency is either too low or too high compared to the gate signal.  If the timebase
frequency is too low, the counter can only count a few source edges.  However, if the timebase frequency is too
high, the counter counts too many source edges, causing counter overflow.  In case of counter overflow, a small
count (typically 1 or 2) is saved on the Hold Register, and the counter reloads itself with a 0 and waits for a new gate
trigger to make a new measurement.  If the value returned by CTR_EvRead is 0, the period measurement reading is
not available.

For a pulse width measurement, use the same NI-DAQ for Macintosh calls used for period measurement, except
gateMode should be set to high-level or low-level gating (1 or 2).  With high-level gating, a counter can measure the
duration of a positive pulse, and with low-level gating, a counter can measure the duration of a negative pulse.
When CTR_Period is called, the counter starts counting once the gate goes active.  When the gate goes inactive,
the counter value latches to the Hold Register.  CTR_EvRead can then be called to retrieve the saved value.  Pulse
width is then equal to the value returned by CTR_EvRead * timebase.  When the counter value is latched to the

Hold Register, the counter reloads itself with a 0 and waits for the gate to go active to begin a new measurement.

For measuring pulse width, a rough estimate is needed for the duration of the pulse being measured.  When a counter
is configured to measure pulse width, the counter continues counting in case of overflow.  No counter value is
latched to the Hold Register until the gate signal becomes inactive.  To detect the counter overflow, feed the output
of the pulse width measurement counter to the source input of an event-counting counter.  If the event-counting
counter value is not 0 after the pulse width measurement, the pulse width measurement is not correct.

For more information on event-counting, see CTR_EvCount and Event-Counting Applications earlier in this chapter.

                                                                                                                                                                                             

CTR_FOUT_Config

Function
Disables or enables and sets the frequency of the 4-bit programmable FOUT.

© National Instruments Corporation 8-15 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

Synopsis

C Syntax locus i32 CTR_FOUT_Config(u32 deviceNumber, u32 FOUT_port, u32 mode,

u32 timebase, u32 division);

Pascal Syntax function CTR_FOUT_Config(deviceNumber : i32; FOUT_port : i32; mode

: i32; timebase : i32; division : i32) : i32;

BASIC Syntax FN CTR_FOUT_Config(deviceNumber&, FOUT_port&, mode&, timebase&,

division&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

FOUT_port is the frequency output port programmed.
1: for FOUT1 on the NB-TIO-10 or FOUT on the NB-MIO-16, NB-MIO-16X,

NB-DMA-8-G, and NB-DMA2800.
2: for FOUT2 on the NB-TIO-10.

mode indicates whether to enable or disable the programmable frequency output.
0: the frequency output signal is turned off to a logic low level.
1: the frequency output signal is enabled.

If clock is 0, none of the following parameters apply.

timebase selects the resolution used by the programmable frequency output.  timebase has the following
possible values:

1: Internal 1-MHz clock used as timebase (1-µs resolution).
2: Internal 100-kHz clock used as timebase (10-µs resolution).
3: Internal 10-kHz clock used as timebase (100-µs resolution).
4: Internal 1-kHz clock used as timebase (1-ms resolution).
5: Internal 100-Hz clock used as timebase (10-ms resolution).
6: SOURCE1 used as timebase if FOUT_port = 1 or SOURCE6 used as timebase if FOUT_port = 2.
7: SOURCE2 used as timebase if FOUT_port = 1 or SOURCE7 used as timebase if FOUT_port = 2.
8: SOURCE3 used as timebase if FOUT_port = 1 or SOURCE8 used as timebase if FOUT_port = 2.
9: SOURCE4 used as timebase if FOUT_port = 1 or SOURCE9 used as timebase if FOUT_port = 2.

10: SOURCE5 used as timebase if FOUT_port = 1 or SOURCE10 used as timebase if FOUT_port = 2.
11:  GATE 1 used as timebase if FOUT_port = 1 or GATE 6 used as timebase if FOUT_port = 2.
12:  GATE 2 used as timebase if FOUT_port = 1 or GATE 7 used as timebase if FOUT_port = 2.
13:  GATE 3 used as timebase if FOUT_port = 1 or GATE 8 used as timebase if FOUT_port = 2.
14:  GATE 4 used as timebase if FOUT_port = 1 or GATE 9 used as timebase if FOUT_port = 2.
15:  GATE 5 used as timebase if FOUT_port = 1 or GATE 10 used as timebase if FOUT_port = 2.

division is the divide-down factor for generating the clock.  The clock frequency is then equal to (timebase
frequency) divided by division.

Range:  1 through 16.

CTR_FOUT_Config generates an output clock at the programmable frequency output signal FOUT if mode
is 1; otherwise, the FOUT signal is a logic low level.  The frequency of the FOUT signal is the timebase
frequency divided by the division factor.  FOUT provides a 50 percent duty-cycle clock signal.

Note: CTR_FOUT_Config function is only available on the NB-MIO-16, NB-MIO-16X, NB-TIO-10,
NB-DMA-8-G, and NB-DMA2800.

Note: CTR_FOUT_Config replaces the CTR_Clock function used in previous versions of NI-DAQ for
Macintosh.

                                                                                                                                                                                             

NI-DAQ Software Reference Manual for Macintosh 8-16 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

CTR_Period

Function
Configures the specified counter for period or pulse width measurement and starts the counter.

Synopsis

C Syntax locus i32 CTR_Period(u32 deviceNumber, u32 counter, u32 timebase);

Pascal Syntax function CTR_Period(deviceNumber : i32; counter : i32; timebase :

i32) : i32;

BASIC Syntax FN CTR_Period(deviceNumber&, counter&, timebase&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

counter is the counter number.
Range: 1, 2, or 5 for the NB-MIO-16 or NB-MIO-16X.

1 through 5 for the NB-DMA-8-G and NB-DMA2800.
1 through 10 for the NB-TIO-10.
2 for the NB-A2000.

timebase selects the resolution used by the counter.  timebase has the following possible values:
0:  TC signal of counter-1 used as timebase.
1:  Internal 1-MHz clock used as timebase (1-µs resolution).
2:  Internal 100-kHz clock used as timebase (10-µs resolution).
3:  Internal 10-kHz clock used as timebase (100-µs resolution).
4:  Internal 1-kHz clock used as timebase (1-ms resolution).
5:  Internal 100-Hz clock used as timebase (10-ms resolution).
6:  SOURCE1 used as timebase if 1≤ counter ≤ 5 or SOURCE6 used as timebase if 6 ≤ counter ≤ 10.
7:  SOURCE2 used as timebase if 1≤ counter ≤ 5 or SOURCE7 used as timebase if 6 ≤ counter ≤ 10.
8:  SOURCE3 used as timebase if 1≤ counter ≤ 5 or SOURCE8 used as timebase if 6 ≤ counter ≤ 10.
9:  SOURCE4 used as timebase if 1≤ counter ≤ 5 or SOURCE9 used as timebase if 6 ≤ counter ≤ 10.

10:  SOURCE5 used as timebase if 1≤ counter ≤ 5 or SOURCE10 used as timebase if 6 ≤ counter ≤ 10.
11:  GATE 1 used as timebase if 1 ≤ counter ≤5 or GATE 6 used as timebase if 6 ≤ counter ≤ 10.
12:  GATE 2 used as timebase if 1 ≤ counter ≤5 or GATE 7 used as timebase if 6 ≤ counter ≤ 10.
13:  GATE 3 used as timebase if 1 ≤ counter ≤5 or GATE 8 used as timebase if 6 ≤ counter ≤ 10.
14:  GATE 4 used as timebase if 1 ≤ counter ≤5 or GATE 9 used as timebase if 6 ≤ counter ≤ 10.
15:  GATE 5 used as timebase if 1 ≤ counter ≤5 or GATE 10 used as timebase if 6 ≤ counter ≤ 10.

Set timebase to 1 through 5 for the counter to count one of the five available internal signals.  Set timebase to 6
through 15 (except 10 for the NB-TIO-10) if you plan to provide an external signal to a counter.  This external
signal is then the signal counted for counting.

CTR_Period configures the specified counter for period and pulse width measurement.  The counter is
configured to count up from 0 and to use gating mode, edge mode, output type, and polarity as specified by the
CTR_Config call.

Applications for CTR_Period are discussed in the Period Measurement Applications section later in this
chapter.

                                                                                                                                                                                             

© National Instruments Corporation 8-17 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

CTR_Pulse

Function
Sets up the specified counter to generate an output pulse with programmable delay and pulse width.

Synopsis

C Syntax locus i32 CTR_Pulse(u32 deviceNumber, u32 counter, u32 timebase, u32

delay, u32 pulseWidth);

Pascal Syntax function CTR_Pulse(deviceNumber : i32; counter : i32; timebase :

i32; delay : i32; pulseWidth : i32) : i32;

BASIC Syntax FN CTR_Pulse(deviceNumber&, counter&, timebase&, delay&,

pulseWidth&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

counter is the counter number.
Range: 1, 2, or 5 for the NB-MIO-16 or NB-MIO-16X.

1 through 5 for the NB-DMA-8-G and NB-DMA2800.
1 through 10 for the NB-TIO-10.
2 for the NB-A2000.

timebase selects the resolution used by the counter.  timebase has the following possible values:
0:  TC signal of counter-1 used as timebase.
1:  Internal 1-MHz clock used as timebase (1-µs resolution).
2:  Internal 100-kHz clock used as timebase (10-µs resolution).
3:  Internal 10-kHz clock used as timebase (100-µs resolution).
4:  Internal 1-kHz clock used as timebase (1-ms resolution).
5:  Internal 100-Hz clock used as timebase (10-ms resolution).
6:  SOURCE1 used as timebase if 1≤ counter ≤ 5 or SOURCE6 used as timebase if 6 ≤ counter ≤ 10.
7:  SOURCE2 used as timebase if 1≤ counter ≤ 5 or SOURCE7 used as timebase if 6 ≤ counter ≤ 10.
8:  SOURCE3 used as timebase if 1≤ counter ≤ 5 or SOURCE8 used as timebase if 6 ≤ counter ≤ 10.
9:  SOURCE4 used as timebase if 1≤ counter ≤ 5 or SOURCE9 used as timebase if 6 ≤ counter ≤ 10.

10:  SOURCE5 used as timebase if 1≤ counter ≤ 5 or SOURCE10 used as timebase if 6 ≤ counter ≤ 10.
11:  GATE 1 used as timebase if 1 ≤ counter ≤5 or GATE 6 used as timebase if 6 ≤ counter ≤ 10.
12:  GATE 2 used as timebase if 1 ≤ counter ≤5 or GATE 7 used as timebase if 6 ≤ counter ≤ 10.
13:  GATE 3 used as timebase if 1 ≤ counter ≤5 or GATE 8 used as timebase if 6 ≤ counter ≤ 10.
14:  GATE 4 used as timebase if 1 ≤ counter ≤5 or GATE 9 used as timebase if 6 ≤ counter ≤ 10.
15:  GATE 5 used as timebase if 1 ≤ counter ≤5 or GATE 10 used as timebase if 6 ≤ counter ≤ 10.

If timebase is 0, counters are concatenated.  Set timebase to 6 through 15 if you plan to provide an external
clock to the counter.

delay is the delay before the pulse is generated.  delay can be between 3 and 65,536.  The actual time period
delay represents is determined by the following formula:

delay * (timebase resolution)

pulseWidth is the width of the pulse generated.  pulseWidth can be between 0 and 65,536.  The actual time
pulseWidth represents is determined by the following formula:

pulseWidth * (timebase resolution)

NI-DAQ Software Reference Manual for Macintosh 8-18 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

for 1≤pulseWidth≤65,536.  pulseWidth = 0 is a special case of pulse generation and actually generates a pulse
of infinite duration (see the timing diagrams in Figures 6-6 and 6-7).

CTR_Pulse sets up the counter to generate a pulse of the duration indicated by pulseWidth after a time delay
of the duration indicated by delay.  If no gating is selected, CTR_Pulse starts the counter; otherwise, counter
operation is controlled by the gate input.  Timing of pulse generation is determined by the timebase selected and
is shown in Figure 8-8.

Successive identical pulses can be generated by calling CTR_Restart.  Be sure that the previous pulse
generation  is complete; otherwise, the call is ignored.  In the case where pulseWidth is 0 and TC toggle output
is used, the delay period toggles polarity after every CTR_Restart call.

Pulse Generation Timing Considerations

Figure 8-8 shows pulse generation timing for both the TC toggle output and TC pulse output cases.  These
signals are positive polarity output signals.

0 < sync period < 1

1

Timebase

Starting

 Signal

TC Toggle 
   Output 

TC Pulse
  Output 1 1

units = timebase period

delay pulse_width

delay - 1 pulse_width - 1

Figure 8-8.  Pulse Generation Timing

An uncertainty is associated with the delay period due to counter synchronization.  Counting starts on the first
timebase edge after the starting signal is applied.  The delay between receipt of the starting pulse and start of
pulse generation can last between (delay) and (delay+1) units of the timebase.

pulseWidth = 0 generates a special case signal as shown in Figure 8-9.

© National Instruments Corporation 8-19 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

0 < sync period < 1

1

Timebase

Starting

 Signal

TC Toggle 

   Output 

TC Pulse

  Output 1

units = timebase period

delay

delay - 1

Figure 8-9.  Pulse Timing for pulse_width = 0

                                                                                                                                                                                           

CTR_Reset

Function
Places counter output drives in the specified output state.

Synopsis

C Syntax locus i32 CTR_Reset(u32 deviceNumber, u32 counter, u32 outputState);

Pascal Syntax function CTR_Reset(deviceNumber : i32; counter : i32; outputState

: i32) : i32;

BASIC Syntax FN CTR_Reset(deviceNumber&, counter&, outputState&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

counter is the counter number.
Range: 1, 2, or 5 for the NB-MIO-16 or NB-MIO-16X.

1 through 5 for the NB-DMA-8-G and NB-DMA2800.
1 through 10 for the NB-TIO-10.
2 for the NB-A2000.

outputState indicates the output state of the counter OUT signal driver.
0:  set OUT signal driver to high-impedance state.
1:  set OUT signal driver to low-logic level.
2:  set OUT signal driver to high-logic level.

NI-DAQ Software Reference Manual for Macintosh 8-20 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

CTR_Reset causes the specified counter to terminate its current operation, clears the counter mode, and places
the counter OUT driver in the specified output state.  All counters are reset and have their OUT drivers set to the
high-impedance state after system startup.  The counters are then ready to perform counter operations.
CTR_Reset must be used to stop and clear a counter before it is set up for any subsequent operations.
CTR_Reset can also be used to change the output state of an idle counter.

                                                                                                                                                                                             

CTR_Restart

Function
Restarts the operation of the specified counter.

Synopsis

C Syntax locus i32 CTR_Restart(u32 deviceNumber, u32 counter);

Pascal Syntax function CTR_Restart(deviceNumber : i32; counter : i32) : i32;

BASIC Syntax FN CTR_Restart(deviceNumber&, counter&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

counter is the counter number.
Range: 1, 2, or 5 for the NB-MIO-16 or NB-MIO-16X.

1 through 5 for the NB-DMA-8-G and NB-DMA2800.
1 through 10 for the NB-TIO-10.
2 for the NB-A2000.

CTR_Restart can be used after a CTR_Stop operation to resume the suspended counter operation.  If the
specified counter was never set up for an operation, CTR_Restart returns an error.

CTR_Restart can also be used after a CTR_Pulse operation to generate additional pulses.  CTR_Pulse
generates the first pulse.  In this case, CTR_Restart should not be called until the previous pulse has
completed.

                                                                                                                                                                                             

CTR_Square

Function
Causes the specified counter to generate a continuous square wave output of specified duty cycle and frequency.

Synopsis

C Syntax locus i32 CTR_Square(u32 deviceNumber, u32 counter, u32 timebase,

u32 period1, u32 period2);

Pascal Syntax function CTR_Square(deviceNumber : i32; counter : i32; timebase :

i32; period1 : i32; period2 : i32) : i32;

BASIC Syntax FN CTR_Square(deviceNumber&, counter&, timebase&, period1&,

period2&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

© National Instruments Corporation 8-21 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

counter is the counter number.
Range: 1, 2, or 5 for the NB-MIO-16 or NB-MIO-16X.

1 through 5 for the NB-DMA-8-G and NB-DMA2800.
1 through 10 for the NB-TIO-10.
2 for the NB-A2000.

timebase selects the resolution used by the counter.  timebase has the following possible values:
0:  TC signal of counter-1 used as timebase.
1:  Internal 1-MHz clock used as timebase (1-µs resolution).
2:  Internal 100-kHz clock used as timebase (10-µs resolution).
3:  Internal 10-kHz clock used as timebase (100-µs resolution).
4:  Internal 1-kHz clock used as timebase (1-ms resolution).
5:  Internal 100-Hz clock used as timebase (10-ms resolution).
6:  SOURCE1 used as timebase if 1≤ counter ≤ 5 or SOURCE6 used as timebase if 6 ≤ counter ≤ 10.
7:  SOURCE2 used as timebase if 1≤ counter ≤ 5 or SOURCE7 used as timebase if 6 ≤ counter ≤ 10.
8:  SOURCE3 used as timebase if 1≤ counter ≤ 5 or SOURCE8 used as timebase if 6 ≤ counter ≤ 10.
9:  SOURCE4 used as timebase if 1≤ counter ≤ 5 or SOURCE9 used as timebase if 6 ≤ counter ≤ 10.

10:  SOURCE5 used as timebase if 1≤ counter ≤ 5 or SOURCE10 used as timebase if 6 ≤ counter ≤ 10.
11:  GATE 1 used as timebase if 1 ≤ counter ≤5 or GATE 6 used as timebase if 6 ≤ counter ≤ 10.
12:  GATE 2 used as timebase if 1 ≤ counter ≤5 or GATE 7 used as timebase if 6 ≤ counter ≤ 10.
13:  GATE 3 used as timebase if 1 ≤ counter ≤5 or GATE 8 used as timebase if 6 ≤ counter ≤ 10.
14:  GATE 4 used as timebase if 1 ≤ counter ≤5 or GATE 9 used as timebase if 6 ≤ counter ≤ 10.
15:  GATE 5 used as timebase if 1 ≤ counter ≤5 or GATE 10 used as timebase if 6 ≤ counter ≤ 10.

If timebase is 0, counters are concatenated.  Set timebase to a value between 6 and 15 if you plan to provide an
external clock to the counter.

period1 and period2 indicate the two periods making up the square wave generated.  For TC toggle output type
and positive output polarity, period1 indicates the duration of the on-cycle (logic-high state) and period2
specifies the duration of the off-cycle (logic-low state).

Range:  1 through 65,536.

CTR_Square sets up the counter to generate a square wave of duration and frequency determined by period1,
period2, and timebase.  If no gating is selected, square wave generation is started by the CTR_Square call;
otherwise, counter operation is controlled by the gate input.

You can use special gating (gateMode = 5) to perform gate-controlled pulse generation.  When the gate input is
low, NI-DAQ uses period1 to generate the pulses.  When the gate input is high, NI-DAQ uses period2 to
generate the pulses.  If the output mode is TC toggle, the result is two 50% duty square waves of different
frequencies.  If the output mode is TC pulse, the result is two pulse trains of different frequencies.

The total period of the square wave is determined by the following formula:

(period1 + period2 ) * (timebase period)

This implies that the frequency of the square wave is as follows:

1

(period1 + period2) * (timebase period)

The percent duty cycle of the square wave is determined by the following formula:

period 1

(period1 + period2)
  *  100%

Figure 8-10 shows the timing of square wave generation for both TC toggle output and TC pulse output.  For
this example, period1 = 3 and period2 = 2.  The output signals shown are positive polarity output signals.

NI-DAQ Software Reference Manual for Macintosh 8-22 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

0 < sync period < 1

1

Timebase

Starting

 Signal

TC Toggle 

   Output 

TC Pulse

  Output

units = timebase period

period1 period2

11

period1 - 1 period2 - 1

Figure 8-10.  Square Wave Timing

Square Wave Generation Timing Considerations

There is an uncertainty associated with the beginning of square wave generation due to counter synchronization.
Square wave generation starts on the first timebase edge after the starting signal is applied.  The delay between
receipt of the starting signal and the start of the square wave generation can last between 0 and 1 units of the
timebase.

Edge-triggered gating should not be used with square wave generation.  If edge-triggered gating is used, the
waveform stops after period1 expires and continues for one total period (period2 + period1) only after another
edge is applied.  This delay may or may not be useful.  For continuous square wave generation, use level or no
gating.

                                                                                                                                                                                             

CTR_State

Function
Returns the OUT logic level of the specified counter.

Synopsis

C Syntax locus i32 CTR_State(u32 deviceNumber, u32 counter, u16

*outputState);

Pascal Syntax function CTR_State(deviceNumber : i32; counter : i32; var

outputState : i16) : i32;

BASIC Syntax FN CTR_State(deviceNumber&, counter&, outputState&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

© National Instruments Corporation 8-23 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

counter is the counter number.
Range: 1, 2, or 5 for the NB-MIO-16 or NB-MIO-16X.

1 through 5 for the NB-DMA-8-G and NB-DMA2800.
1 through 10 for the NB-TIO-10.
2 for the NB-A2000.

outputState returns the logic state of the counter OUT signal.
0:  indicates that OUT is at a low-logic state.
1:  indicates that OUT is at a high-logic state.

CTR_State reads the logic state of the OUT signal for the specified counter and returns the state in
outputState.  If the counter OUT driver is set to the high-impedance state, outputState is determinate and can
be either 0 or 1.

                                                                                                                                                                                             

CTR_Stop

Function
Suspends the operation of the specified counter in such a way that the counter operation can be restarted.

Synopsis

C Syntax locus i32 CTR_Stop(u32 deviceNumber, u32 counter);

Pascal Syntax function CTR_Stop(deviceNumber : i32; counter : i32) : i32;

BASIC Syntax FN CTR_Stop(deviceNumber&, counter&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

counter is the counter number.
Range: 1, 2, or 5 for the NB-MIO-16 or NB-MIO-16X.

1 through 5 for the NB-DMA-8-G and NB-DMA2800.
1 through 10 for the NB-TIO-10.
2 for the NB-A2000.

CTR_Stop suspends the operation of the counter in such a way that the counter can be restarted by
CTR_Restart and continue in its operation.  For example, if a counter is set up for frequency output, issuing
CTR_Stop causes the counter to stop generating a square wave, and CTR_Restart allows it to resume.
CTR_Stop causes the counter output to remain at the state it was when CTR_Stop was issued.

                                                                                                                                                                                             

Interval Counter/Timer Operation (ICTR Functions)

The 16-bit counters available on the DAQCard-500, DAQCard-700, and Lab and 1200 Series boards can be
diagrammed as shown in Figure 8-11.

NI-DAQ Software Reference Manual for Macintosh 8-24 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

Clock

Gate

Counter Output

Figure 8-11.  Interval Counter Block Diagram

Each counter has a Clock input, a Gate input, and an output labeled CLK, GAT, and OUT, respectively.  The CLK
pin for Counters B1 and B2 and the GAT and OUT pins for Counters B0, B1, and B2 are available on the Lab and
1200 Series I/O connector.

A counter can be used to count the falling edges of the signal applied to the CLK input.  The counter GAT input is
used to gate counting operations.  Refer to the 8253 data sheet included in your board user manual for information
on how the GAT input affects the counting operation in different counting modes.

Interval Counter/Timer Function Summary

Use the following functions for interval counter operations on the Lab and 1200 Series boards:

ICTR_Read Returns the current contents of the selected interval counter without disturbing the counting
process.

ICTR_Reset Resets the interval counter output to the specified state.

ICTR_Setup Configures the selected interval counter to operate in the specified mode.

Interval Counting Function Application Hints

Lab and 1200 Series

Note: All of the Lab and 1200 series boards have onboard 82C53 Programmable Interval Chips (CTRs),
except the Lab-NB, which has onboard 8253 CTRs.  Operation modes for your board’s CTRs are
documented in our Lab or 1200 series user manual.

The Lab and 1200 series boards contain two onboard CTRs that provide three independent 16-bit counter/timers
each.  One of these, CTR-A, is reserved for data acquisition and waveform generation operations.  The three
counters on the other chip, CTR-B, are available for counting/timing operations.  The connection of the CTR-B
counter/timer signals to the Lab-NB I/O connector is shown in Figure 8-12.

© National Instruments Corporation 8-25 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

GATB2
CLKB2
OUTB2

GATB1
CLKB1
OUTB1

OUTB0
GATB0

................................

................................

8253 (Lab-NB) or 
82C53 (all other 

Lab and 1200 
series boards) 
Counter/Timer

Group B

CLKB0

2-MHz
Source

Figure 8-12.  Lab and 1200 Series Counter/Timer Signal Connections

CLKB0 is driven by an internal 2 MHz clock.  You should supply the signals for CLKB1, CLKB2, GATB1, and
GATB2 through the I/O connector.

Counter B0 is used either as a general-purpose counter/timer or for data acquisition/waveform generation timing.
Counter B0 is used for data acquisition (waveform generation) if the total sample (update) interval is greater than
65,535 µs.  If Counter B0 is used for data acquisition/waveform generation, then it is not available as a general-
purpose counter/timer through an ICTR_Setup or ICTR_Reset call.  Similarly, when the counter is used as a
general-purpose counter/timer through an ICTR_Setup call, it is no longer available for data acquisition/waveform
generation.  In this case, an ICTR_Reset call on Counter B0 makes it available for data acquisition timing.

Counters B1 and B2 are always available for counting/timing operations.

DAQCard-500 and DAQCard-700

The DAQCard-500 and DAQCard-700 contain an onboard MSM82C53 Programmable Interval Timer chip that has
three independent 16-bit counter/timers.  Counter 0 is used for data acquisition operations.  Counter 1 is available for
counting/timing operations.  Counter 2 can be reserved for Track*/Hold manipulation for the SCXI-1140 (with the
DAQCard-700 only), and is otherwise available for counting/timing operations.

Figure 8-13 shows the connections of the MSM82C53 Counter/Timer signals to the DAQCard-500 and
DAQCard-700 I/O connector.

NI-DAQ Software Reference Manual for Macintosh 8-26 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

Figure 8-13.  DAQCard-500 and DAQCard-700 I/O Counter/Timer Signal
Connections

The counter has a clock input, a gate input, and an output labeled CLK, GATE, and OUT, respectively. The CLK
pin for counters 1 and 2 and the GATE and OUT pins for counters 0, 1, and 2 are available on the device I/O
connector. The inverted OUT1 signal is also available on the DAQCard-700 I/O connector.

The inverted OUT1 signal is not available on the DAQCard-500.

ICTR_Read

Function
Returns the current contents of the selected interval counter without disturbing the counting process.

Synopsis

C Syntax locus i32 ICTR_Read(u32 deviceNumber, u32 counter, u32 *count);

Pascal Syntax function ICTR_Read(deviceNumber : i32; counter : i32; var count :

i32) : i32;

BASIC Syntax FN ICTR_Read(deviceNumber&, counter&, count&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

© National Instruments Corporation 8-27 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

counter is the counter number.
Range:  0 through 2.

count returns the current count of the specified counter while the counter is counting down.  count can be
between 0 and 65,535 if ICTR_Setup has not been called since startup or if the last call to ICTR_Setup
configured counter in binary counting mode.  count can be between 0 and 9,999 if the last call to
ICTR_Setup configured counter in binary-coded decimal (BCD) counting mode.

                                                                                                                                                                                           

ICTR_Reset

Function
Resets the interval counter output to the specified state.

Synopsis

C Syntax locus i32 ICTR_Reset(u32 deviceNumber, u32 counter, u32

outputState);

Pascal Syntax function ICTR_Reset(deviceNumber : i32; counter : i32; outputState

: i32) : i32;

BASIC Syntax FN ICTR_Reset(deviceNumber&, counter&, outputState&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

counter is the counter number.
Range:  0 through 2.

outputState is the logic state to which the counter is reset.
Range:  0 or 1.

If outputState is 0, the counter output is forced low by programming the specified counter in Mode 0.  The
count register is not loaded; thus, the output remains low until the counter is programmed in another mode.

If outputState is 1, the counter output is forced high by programming the given counter in Mode 2.  The count
register is not loaded; thus, the output remains high until the counter is programmed in another mode.

                                                                                                                                                                                             

ICTR_Setup

Function
Configures the selected interval counter to operate in the specified mode.

Synopsis

C Syntax locus i32 ICTR_Setup(u32 deviceNumber, u32 counter, u32 mode, u32

count, u32 counterType);

Pascal Syntax locus i32 ICTR_Setup(u32 deviceNumber, u32 counter, u32 mode, u32

count, u32 counterType);

BASIC Syntax FN ICTR_Setup(deviceNumber&, counter&, mode&, count&, counterType&)

NI-DAQ Software Reference Manual for Macintosh 8-28 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

counter is the counter number.
Range:  0 through 2.

mode is the mode in which the counter is to operate.
Range: 0:  Toggles low-to-high on terminal count.

1:  Programmable one-shot
2:  Rate generator.
3:  Square wave rate generator.
4:  Software-triggered strobe.
5:  Hardware-triggered strobe.

In Mode 0, the output goes low after the ICTR_Setup operation, and the counter begins to count down while
the gate input is high.  The output goes high when the terminal count is reached (that is, the counter has
decremented to 0) and stays high until the selected counter is set to a different mode.

Clock

WR

Gate

Output
6 5 4 3 2 1 0

(n = 6)

A BA + B = n

{ {
Figure 8-14.  Mode 0 Timing Diagram

In Mode 1, the output goes low on the count following the rising edge of the gate input and goes high on
terminal count.

Clock

Gate

Output (n = 4)

4 3 2 1 0

Figure 8-15.  Mode 1 Timing Diagram

In Mode 2, the output goes low for one period of the clock input.  count indicates the period from one output
pulse to the next.

© National Instruments Corporation 8-29 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

Clock

Output

Gate 4 23 1 0 (4) 3 2 1

(n = 4)

0 (4)

Figure 8-16.  Mode 2 Timing Diagram

In Mode 3, the output stays high for one half of the count clock pulses and stays low for the other half.

Clock

Gate

Output

Output

(n = 4)

(n = 5)

4

24 242

4 2 4

2

42

45

4

2 5

2

5

4 2

5

2

5

4 2

Figure 8-17.  Mode 3 Timing Diagram

In Mode 4, the output is initially high, and the counter begins to count down while the gate input is high.  On
terminal count, the output goes low for one clock pulse, then goes high again.

Clock

WR

Gate

Output

n = 4

4 3 2 1 0

Figure 8-18.  Mode 4 Timing Diagram

Mode 5 is similar to Mode 4 except that the gate input is used as a trigger to start counting.

Clock

Gate

Output
4 3 2 1 0

n = 4

Figure 8-19.  Mode 5 Timing Diagram

Note: All of the Lab and 1200 series boards have onboard 82C53 CTRs except the Lab-NB, which has
onboard 8253 CTRs.  Operation modes for your board’s CTRs are further documented in your Lab
or 1200 series user manual.

NI-DAQ Software Reference Manual for Macintosh 8-30 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

count is the period from one output pulse to the next.
Range for Modes 0, 1, 4 and 5: 0 through 65,535 in binary counter operation

0 through 9,999 in BCD counter operation
Range for Modes 2 and 3: 2 through 65,535 and 0 in binary counter operation

2 through 9,999 and 0 in BCD counter operation

Note: 0 is equivalent to 65,536 in binary counter operations and 10,000 in BCD counter operations.

After the count value is written by the ICTR_Setup call, the count value is loaded into the counter register on
the falling edge following a rising edge.  Any read of the counter prior to that falling clock edge can yield
invalid data.

counterType controls whether the counter operates as a 16-bit binary counter or as a 4-decade BCD counter.
0:  4-decade BCD counter
1:  6-bit binary counter

                                                                                                                                                                                           

General-Purpose Counter/Timer Function Summary

The General-Purpose Counter/Timer (GPCTR) functions perform counting and timing operations on the E Series
devices:

GPCTR_Change_ Customizes the counter operation to fit the requirements of your application by selecting
Parameter a specific parameter setting.

GPCTR_Configure_ Assigns the buffer that NIDAQ will use for a buffered counter operation.
Buffer

GPCTR_Control Controls the operation of the general-purpose counter.

GPCTR_Set_ Selects the application for which you will use the general-purpose counter. The function
Application description contains many application hints.

GPCTR_Watch Monitors the state of the general-purpose counter and its operation.

The General-Purpose Counter/Timer Application Hints

The General-Purpose Counter/Timer (GPCTR) functions perform a variety of event counting, time measurement, and
pulse and pulse train generation operations, including buffered operations. To start learning about the GPCTR
functions, read the introduction to the GPCTR_Set_Application description and the sections that pertain to the
applications you want to perform with the counter. You can then refer to the descriptions of other GPCTR functions
for more details.

GPCTR_Change_Parameter

Function
Selects a specific parameter setting for the general-purpose counter (E Series devices only).

© National Instruments Corporation 8-31 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

Synopsis

C Syntax locus i32 GPCTR_Change_Parameter(u32 deviceNumber, u32 gpctrNum, u32

paramID, u32 paramValue);

Pascal Syntax function GPCTR_Change_Parameter(deviceNumber : i32; gpctrNum :

i32; paramID : i32; paramValue : i32) : i32;

BASIC Syntax FN GPCTR_Change_Parameter(deviceNumber&, gpctrNum&, paramID&,

paramValue&)

Description
Legal ranges for gpctrNum, paramID, and paramValue are given in terms of constants defined in a header
file. The header file you should use depends on the language you are using:

• C programmers—nidaqcns.h

• Pascal programmers—nidaq.p

• BASIC programmers—nidaq.bas

Use gpctrNum to indicate to NI-DAQ which counter you want to program. Legal values for this parameter are
ND_COUNTER_0 and ND_COUNTER_1.

Legal values for paramValue depend on paramID. The following paragraphs list legal values for paramID
with explanations and corresponding legal values for paramValue:

paramID = ND_SOURCE
The general-purpose counter counts transitions of this signal. Corresponding legal values for paramValue are
as follows:

• ND_PFI_0 through ND_PFI_9—the 10 I/O connector pins

• ND_RTSI_0 through ND_RTSI_6—the seven RTSI lines

• ND_INTERNAL_20_MHZ and ND_INTERNAL_100_KHZ—the internal timebases

• ND_OTHER_GPCTR_TC—terminal count of the other general-purpose counter

Use this function with paramID = ND_SOURCE_POLARITY to select polarity of transitions to use for
counting.

paramID = ND_SOURCE_POLARITY
The general-purpose counter counts the transitions of the signal selected by paramID = ND_SOURCE.
Corresponding legal values for paramValue are as follows:

• ND_LOW_TO_HIGH—counter counts the low-to-high transitions of the source signal

• ND_HIGH_TO_LOW—counter counts the high-to-low transitions of the source signal

paramID = ND_GATE
This signal controls the operation of the general-purpose counter in some applications. Corresponding legal
values for paramValue are as follows:

• ND_PFI_0 through ND_PFI_9—the 10 I/O connector pins

• ND_RTSI_0 through ND_RTSI_6—the seven RTSI lines

• ND_IN_START_TRIGGER and ND_IN_STOP_TRIGGER—the input section triggers

• ND_OTHER_GPCTR_OUTPUT—output of the other general-purpose counter

NI-DAQ Software Reference Manual for Macintosh 8-32 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

Use this function with paramID = ND_GATE_POLARITY to select polarity of the gate signal.

paramID = ND_GATE_POLARITY
This gate signal controls the operation of the general-purpose counter in some applications. In those
applications, you can use polarity of the gate signals to modify behavior of the counter. Corresponding legal
values for paramValue are as follows:

• ND_POSITIVE

• ND_NEGATIVE

The meaning of the two ND_GATE_POLARITY selections is described in the GPCTR_Set_Application
function.

paramID = ND_INITIAL_COUNT
The general-purpose counter starts counting from this number when the counter is configured for one of the
simple event counting and time measurement applications. Corresponding legal values for paramValue are 0
through 224-1.

paramID = ND_COUNT_1, ND_COUNT_2, ND_COUNT_3, ND_COUNT_4
The general-purpose counter uses these numbers for pulse width specification when the counter is configured
for one of the simple pulse and pulse train generation applications. For example, when you use the counter for
frequency shift keying (FSK), ND_COUNT_1 and ND_COUNT_2 specify the durations of low and high output
states for one gate state and ND_COUNT_3 and ND_COUNT_4 specify them for the other gate state.
Corresponding legal values for paramValue are 2 through 224-1.

paramID = ND_AUTOINCREMENT_COUNT
The value specified by ND_COUNT_1 is incremented by the value selected by ND_AUTOINCREMENT_COUNT
every time the counter is reloaded with the value specified by ND_COUNT_1.

For example, with this feature you can generate retriggerable delayed pulses with incrementally increasing
delays. You can then use these pulses for applications such as equivalent time sampling (ETS). Corresponding
legal values for paramValue are 0 through 28-1.

paramID = ND_UP_DOWN
When the application is ND_SIMPLE_EVENT_CNT or ND_BUFFERED_EVENT_CNT, you can use the up or
down control options of the DAQ-STC general-purpose counters. The up or down control can be performed by
software or hardware.

Software Control
The software up or down control is available by default; if you do not use the GPCTR_Change_Parameter
function with paramID set to ND_UP_DOWN, the counter will be configured for the software up or down
control and will start counting up. To make the counter use the software up or down control and start counting
down, use the GPCTR_Change_Parameter function with the paramID set to ND_UP_DOWN and the
paramValue set to ND_COUNT_DOWN. To change the counting direction during counting, use the
GPCTR_Control function with the action set to ND_COUNT_UP or ND_COUNT_DOWN.

Hardware Control
If you want to use hardware to control the counting direction, use digital I/O line 6 (GPCTR 0) or 7 (GPCTR 1);
the counter will count down when the DIO line is in the low state and up when it is in the high state. Use the
GPCTR_Change_Parameter function with the paramID set to ND_UP_DOWN and the paramValue set to
ND_HARDWARE to take advantage of this counter feature.

paramID = ND_OUTPUT_MODE
This value changes the output mode from default toggle (the output of the counter toggles on each terminal
count) to pulsed (the output of the counter makes a pulse on each terminal count). The corresponding settings of
paramValue are ND_TOGGLE and ND_PULSE. This paramID is rarely used.

© National Instruments Corporation 8-33 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

paramID = ND_OUTPUT_POLARITY
This paramID allows you to change the output polarity from default positive (the normal state of the output is
TTL low) to negative (the normal state of the output is TTL high). The corresponding settings of paramValue
are ND_POSITIVE and ND_NEGATIVE.

This function lets you customize the counter for your application. You can use this function after the
GPCTR_Set_Application function, and before GPCTR_Control with action = ND_PREPARE or
action = ND_PROGRAM. You can call this function as many times as you need to.

                                                                                                                                                                                             

GPCTR_Config_Buffer

Function
Assigns a buffer that NI-DAQ will use for a buffered counter operation (E Series devices only).

Synopsis

C Syntax locus i32 GPCTR_Config_Buffer(u32 deviceNumber, u32 gpctrNum, u32

reserved, u32 numPoints, u32 *buffer);

Pascal Syntax function GPCTR_Config_Buffer(deviceNumber : i32; gpctrNum : i32;

reserved : i32; numPoints : i32; buffer : pi32) : i32;

BASIC Syntax FN GPCTR_Config_Buffer(deviceNumber&, gpctrNum&, reserved&,

numPoints&, buffer&)

Description
The legal range for gpctrNum is given in terms of constants defined in a header file. The header file you should
use depends on the language you are using:

• C programmers—nidaqcns.h

• Pascal programmers—nidaq.p

• BASIC programmers—nidaq.bas

Use gpctrNum to indicate to NI-DAQ which counter you want to program. Legal values for this parameter are
ND_COUNTER_0 and ND_COUNTER_1.

numPoints is the number of data points the buffer can hold. The definition of a data point depends on the
application the counter is used for. Legal range is 2 through 232-1.

When you use the counter for one of the buffered event counting or buffered time measurement operations, a
data point is a single counted number.

buffer is an array of U32 or an NI_DAQ_Mem array.

You need to use this function if you want to use a general-purpose counter for buffered operation. You should
call this function after calling the GPCTR_Set_Application function.

NI-DAQ transfers counted values into the buffer assigned by this function when you are performing a buffered
counter operation.

If you are using the general-purpose counter for ND_BUFFERED_PERIOD_MSR,
ND_BUFFERED_SEMI_PERIOD_MSR, or ND_BUFFERED_PULSE_WIDTH_MSR, you should wait for the
operation to be completed before accessing the buffer.

                                                                                                                                                                                           

NI-DAQ Software Reference Manual for Macintosh 8-34 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

GPCTR_Control

Function
Controls the operation of the general-purpose counter (E Series devices only).

Synopsis

C Syntax locus i32 GPCTR_Control(u32 deviceNumber, u32 gpctrNum, u32 action);

Pascal Syntax function GPCTR_Control(deviceNumber : i32; gpctrNum : i32; action

: i32) : i32;

BASIC Syntax FN GPCTR_Control(deviceNumber&, gpctrNum&, action&)

Description
Legal ranges for the gpctrNum and action are given in terms of constants defined in a header file. The header
file you should use depends on the language you are using:

• C programmers—nidaqcns.h

• Pascal programmers—nidaq.p

• BASIC programmers—nidaq.bas

Use gpctrNum to indicate to NI-DAQ which counter you want to program. Legal values for this parameter are
ND_COUNTER_0 and ND_COUNTER_1.

action is what you want NI-DAQ to perform with the counter. Legal values for this parameter are as follows:

Action Description

ND_PREPARE Prepare the general-purpose counter for the operation

selected by invocations of the

GPCTR_Set_Application and (optionally)

GPCTR_Change_Parameter function. Do not arm

the counter.

ND_ARM Arm the general-purpose counter.

ND_PROGRAM ND_PREPARE and then ND_ARM the counter.

ND_RESET Reset the general-purpose counter.

ND_COUNT_UP Change the counting direction to UP.

ND_COUNT_DOWN Change the counting direction to DOWN.

You need to use this function with action = PROGRAM after completing the configuration sequence consisting
of calling GPCTR_Set_Application followed by optional calls to GPCTR_Change_Parameter and
GPCTR_Config_Buffer.

Use the ND_PREPARE and ND_ARM actions to program the counter before arming. You may find this useful if
it is critical to minimize time between a software event (a call to GPCTR_Control) and a hardware action
(counter starts counting).

© National Instruments Corporation 8-35 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

You can use this function with action = ND_RESET whenever you want to halt the operation the general-
purpose counter is performing.

Use actions ND_COUNT_UP and ND_COUNT_DOWN to change the counting direction. You can do this only
when your application is ND_SIMPLE_EVENT_CNT or ND_BUFFERED_EVENT_CNT and the counter is
configured for software control of the counting direction (up/down).

                                                                                                                                                                                           

GPCTR_Set_Application

Function
Selects the application for which you will use the general-purpose counter (E Series devices only).

Synopsis

C Syntax locus i32 GPCTR_Set_Application(u32 deviceNumber, u32 gpctrNum, u32

application);

Pascal Syntax function GPCTR_Set_Application(deviceNumber : i32; gpctrNum : i32;

application : i32) : i32;

BASIC Syntax FN GPCTR_Set_Application(deviceNumber&, gpctrNum&, application&)

Description
Legal ranges for gpctrNum and application are given in terms of constants that are defined in a header file.
The header file you should use depends on the language you are using:

• C programmers—nidaqcns.h

• Pascal programmers—nidaq.p

• BASIC programmers—nidaq.bas

Use gpctrNum to indicate to NI-DAQ which counter you want to program. Legal values for this parameter are
ND_COUNTER_0 and ND_COUNTER_1.

NI-DAQ Software Reference Manual for Macintosh 8-36 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

application can be one of the following:

Group Application Description

Simple
Counting and
Time
Measurement

ND_SIMPLE_EVENT_CNT Simple event counting

ND_SINGLE_PERIOD_MSR Simple single period measurement

ND_SINGLE_PULSE_WIDTH_MSR Simple single pulse-width
measurement

ND_TRIG_PULSE_WIDTH_MSR Pulse-width measurement you can
use for recurring pulses.

Simple Pulse
and Pulse
Train
Generation

ND_SINGLE_PULSE_GNR Generation of a single pulse

ND_SINGLE_TRIG_PULSE_GNR Generation of a single triggered pulse

ND_RETRIG_PULSE_GNR Generation of a retriggerable single
pulse

ND_PULSE_TRAIN_GNR Generation of pulse train

ND_FSK Frequency Shift-Keying

Buffered
Counting and
Time
Measurement

ND_BUFFERED_EVENT_CNT Buffered, asynchronous event
counting

ND_BUFFERED_PERIOD_MSR Buffered, asynchronous period
measurement

ND_BUFFERED_SEMI_PERIOD_MSR Buffered, asynchronous semi-period
measurement

ND_BUFFERED_PULSE_WIDTH_MSR Buffered, asynchronous pulse-width
measurement

_CNT stands for Counting
_MSR stands for Measurement
_GNR stands for Generation

NI-DAQ requires you to select a set of parameters so that it can program the counter hardware. Those
parameters include, for example, signals to be used as counter source and gate and the polarities of those
signals. A full list of the parameters is given in the description of the GPCTR_Change_Parameter function.
By using the GPCTR_Set_Application function, you assign specific values to all of those parameters. If
you do not like some of the settings used by this function, you can alter them by using the
GPCTR_Change_Parameter function.

© National Instruments Corporation 8-37 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

The behavior of the counter you are preparing for an application with this function will depend on application,
your future calls of the GPCTR functions, and the signals supplied to the counter. The following paragraphs
illustrate typical scenarios.

application = ND_SIMPLE_EVENT_CNT

In this application, the counter is used for simple counting of events. By default, the events are low-to-high
transitions on the PFI8/GPCTR0_SOURCE I/O connector pin for general-purpose counter 0 and the
PFI3/GPCTR1_SOURCE I/O connector pin for general-purpose counter 1. The counter counts up starting from
0, and it is not gated.

Figure  8-20 shows one possible scenario of a counter used for ND_SIMPLE_EVENT_CNT after the following
programming sequence:

GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application(deviceNumber, gpctrNum, ND_SIMPLE_EVENT_CNT)

GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)

In Figure  8-20:

• Source is the signal present at the counter source input

• Count is the value you would read from the counter if you called the GPCTR_Watch function with
entityID  =  ND_COUNT. The different numbers illustrate behavior at different times.

Figure 8-20.  Simple Event Counting

The following pseudo-code continuation of the example given earlier illustrates what you can do if you want to
continuously read the counter value (GPCTR_Watch function with entityID = ND_COUNT does this) and print
it:

Repeat Forever

{

GPCTR_Watch(deviceNumber, gpctrNum, COUNT, counterValue)

Output counterValue.

}

When the counter reaches 224-1 (Terminal Count) it rolls over and keeps counting. If you want to check if this
occurred, use GPCTR_Watch function with entityID set to ND_TC_REACHED.

Typically, you will find modifying the following parameters through the GPCTR_Change_Parameter
function useful when the counter application is ND_SIMPLE_EVENT_CNT. You can change the following:

• ND_SOURCE to any value

• ND_SOURCE_POLARITY to ND_HIGH_TO_LOW

You can use the GPCTR_Change_Parameter function after calling GPCTR_Set_Application and
before calling GPCTR_Control with action = ND_PROGRAM or ND_PREPARE.

NI-DAQ Software Reference Manual for Macintosh 8-38 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

application = ND_SINGLE_PERIOD_MSR

In this application, the counter is used for a single measurement of the time interval between two transitions of
the same polarity of the gate signal. By default, the events are low-to-high transitions on the
PFI9/GPCTR0_GATE I/O connector pin for general-purpose counter 0 and the PFI4/GPCTR1_GATE I/O
connector pin for general-purpose counter 1. The counter counts the 20 MHz internal timebase
(ND_INTERNAL_20_MHZ), so the resolution of measurement is 50 ns. The counter counts up starting from 0.

With the default 20 MHz timebase, combined with the counter width (24 bits), you can measure a time interval
between 100 ns and 0.8 s long.

Figure  8-21 shows one possible scenario of a counter used for ND_SINGLE_PERIOD_MSR after the following
programming sequence:

GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application(deviceNumber, gpctrNum, ND_SINGLE_PERIOD_MSR)

GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)

In Figure 8-21:

• Gate is the signal present at the counter gate input.

• Source is the signal present at the counter source input.

• Count is the value you would read from the counter if you called the GPCTR_Watch function with
entityID  =  ND_COUNT. The different numbers illustrate behavior at different times.

• Armed is the value you would read from the counter if you called the GPCTR_Watch function with
entityID  =  ND_ARMED. The different values illustrate behavior at different times.

Figure 8-21.  Single Period Measurement

Use the GPCTR_Watch function with entityID = ND_ARMED to monitor the progress of the counting process.
This measurement completes when entityValue becomes ND_NO. When counter is no longer armed, you can
retrieve the counted value by using GPCTR_Watch with entityID = ND_COUNT. You can do this as follows:

Create U32 variable counter_armed.

Create U32 variable counted_value.

repeat

{

GPCTR_Watch(deviceNumber, gpctrNumber, ND_ARMED, counter_armed)

}

until (counter_armed = ND_NO)

GPCTR_Watch(deviceNumber, gpctrNumber, ND_COUNT, counted_value)

© National Instruments Corporation 8-39 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

To calculate the measured interval, you need to multiply the counted value by the period corresponding to the
timebase you are using. For example, if your ND_SOURCE is ND_INTERNAL_20_MHZ, the interval will be
1/(20 MHz) = 50 ns. If the ND_COUNT is 4 (Figure  8-21), the actual interval is 4 * 50 ns = 200 ns.

When the counter reaches 224-1 (Terminal Count), it rolls over and keeps counting. If you want to check if this
occurred, use the GPCTR_Watch function with entityID set to ND_TC_REACHED.

Typically, you will find modifying the following parameters through the GPCTR_Change_Parameter
function useful when the counter application is ND_SINGLE_PERIOD_MSR. You can change the following:

• ND_SOURCE to ND_INTERNAL_100_KHZ. With this timebase, you can measure the time interval
between 20  µs and 160 s. The resolution will be lower than if you are using the ND_INTERNAL_20_MHZ
timebase.

• ND_SOURCE_POLARITY to ND_HIGH_TO_LOW.

• ND_GATE to any legal value listed in the GPCTR_Change_Parameter function description.

• ND_GATE_POLARITY to ND_NEGATIVE. The interval will be measured from a high-to-low to the next
high-to-low transition of the gate signal.

You can use the GPCTR_Change_Parameter function after calling GPCTR_Set_Application and
before calling GPCTR_Control with action = ND_PROGRAM or ND_PREPARE.

If you want to provide your timebase, you can connect your timebase source to one of the PFI pins on the I/O
connector and change ND_SOURCE and ND_SOURCE_POLARITY to the appropriate values.

You can also configure the other general-purpose counter for ND_PULSE_TRAIN_GNR and set ND_SOURCE
of this counter to ND_OTHER_GPCTR_TC if you want to measure intervals longer than 160 s.

application = ND_SINGLE_PULSE_WIDTH_MSR

In this application, the counter is used for a single measurement of the time interval between two transitions of
the opposite polarity of the gate signal. By default, the measurement is performed between a low-to-high and a
high-to-low transition on the PFI9/GPCTR0_GATE I/O connector pin for general-purpose counter 0 and the
PFI4/GPCTR1_GATE I/O connector pin for general-purpose counter 1. The counter counts the 20 MHz internal
timebase (INTERNAL_20_MHZ), so the resolution of measurement is 50 ns. The counter counts up starting
from  0.

The default 20 MHz timebase, combined with the counter width (24 bits), lets you measure the duration of a
pulse between 100  ns and 0.8 s long.

Figure  8-22 shows one possible scenario of a counter used for ND_SINGLE_PULSE_WIDTH_MSR after the
following programming sequence:

GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application(deviceNumber, gpctrNum, ND_SINGLE_PULSE_WIDTH_MSR)

GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)

In Figure  8-22:

• Gate is the signal present at the counter gate input.

• Source is the signal present at the counter source input.

• Count is the value you would read from the counter if you called the GPCTR_Watch function with
entityID  =  ND_COUNT. The different numbers illustrate behavior at different times.

NI-DAQ Software Reference Manual for Macintosh 8-40 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

• Armed is the value you would read from the counter if you called the GPCTR_Watch function with
entityID  =  ND_ARMED. The different values illustrate behavior at different times.

Figure 8-22.  Single-Pulse Width Measurement

Use the GPCTR_Watch function with entityID = ND_ARMED to monitor the progress of the counting process.
This measurement completes when entityValue becomes ND_NO. When the counter is no longer armed, you
can retrieve the counted value by using GPCTR_Watch with entityID = ND_COUNT, as shown in the following
example code:

Create U32 variable counter_armed.

Create U32 variable counted_value.

repeat

{

GPCTR_Watch(deviceNumber, gpctrNumber, ND_ARMED, counter_armed)

}

until (counter_armed = ND_NO)

GPCTR_Watch(deviceNumber, gpctrNumber, ND_COUNT, counted_value)

To calculate the measured interval, multiply the counted value by the period corresponding to the timebase you
are using. For example, if your ND_SOURCE is ND_INTERNAL_20_MHZ, the interval will be
1/(20  MHz)  = 50 ns. If the ND_COUNT is 4 (Figure  8-21), the actual interval is 4 * 50 ns = 200 ns.

When the counter reaches 224-1 (Terminal Count), it rolls over and keeps counting. If you want to check if this
occurred, use the GPCTR_Watch function with entityID set to ND_TC_REACHED.

© National Instruments Corporation 8-41 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

Typically, you will find modifying the following parameters through the GPCTR_Change_Parameter
function useful when the counter application is ND_SINGLE_PULSE_WIDTH_MSR. You can change the
following:

• ND_SOURCE to ND_INTERNAL_100_KHZ. With this timebase, you can measure pulse widths between
20  µs and 160 s. The resolution will be lower than if you are using the ND_INTERNAL_20_MHZ
timebase.

• ND_SOURCE_POLARITY to ND_HIGH_TO_LOW.

• ND_GATE to any legal value listed in the GPCTR_Change_Parameter function description.

• ND_GATE_POLARITY to ND_NEGATIVE. The pulse width will be measured from a high-to-low to the
next low-to-high transition of the gate signal.

You can use the GPCTR_Change_Parameter function after calling GPCTR_Set_Application and
before calling GPCTR_Control with action = ND_PROGRAM or ND_PREPARE.

If you want to provide your timebase, connect your timebase source to one of the PFI pins on the I/O connector
and change ND_SOURCE and ND_SOURCE_POLARITY to the appropriate values.

You can also configure the other general-purpose counter for ND_PULSE_TRAIN_GNR and set ND_SOURCE
of this counter to ND_OTHER_GPCTR_TC if you want to measure pulse widths longer than 160 s.

Warning: Application ND_SINGLE_PULSE_WIDTH_MSR will work as described only if the gate signal
stays in the low state when ND_GATE_POLARITY is ND_POSITIVE, or if the signal stays in the
high state when ND_GATE_POLARITY is ND_NEGATIVE while GPCTR_Control is executed
with action = ND_ARM or action = ND_PROGRAM. If this criterion is not met, executing
GPCTR_Control with action = ND_ARM or action  =  ND_PROGRAM returns an error. If this
happens, you should not rely on values returned by GPCTR_Watch.

application = ND_TRIG_PULSE_WIDTH_MSR

In this application, the counter is used for a single measurement of the time interval between two transitions of
the opposite polarity of the gate signal. By default, the measurement is performed between a low-to-high and a
high-to-low transition on the PFI9/GPCTR0_GATE I/O connector pin for general-purpose counter 0 and the
PFI4/GPCTR1_GATE I/O connector pin for general-purpose counter 1. The counter counts the 20 MHz internal
timebase (INTERNAL_20_MHZ), so the resolution of measurement is 50 ns. The counter counts up starting
from  0.

Unlike ND_SINGLE_PULSE_WIDTH_MSR, your gate signal can change state during counter arming.
However, the counter will start counting only after a high-to-low edge on the gate if the gate polarity is positive,
or after a low-to-high edge on the gate if the gate polarity is negative. This transition is the trigger from this
application’s name.

The default 20 MHz timebase, combined with the counter width (24 bits), lets you measure the duration of a
pulse between 100  ns and 0.8 s long.

Figure  8-23 shows one possible scenario of a counter used for ND_TRIG_PULSE_WIDTH_MSR after the
following programming sequence:

GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application(deviceNumber, gpctrNum, ND_TRIG_PULSE_WIDTH_MSR)

GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)

NI-DAQ Software Reference Manual for Macintosh 8-42 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

In Figure  8-23:

• Gate is the signal present at the counter gate input.

• Source is the signal present at the counter source input.

• Count is the value you would read from the counter if you called the GPCTR_Watch function with
entityID  =  ND_COUNT. The different numbers illustrate behavior at different times.

• Armed is the value you would read from the counter if you called the GPCTR_Watch function with
entityID  =  ND_ARMED. The different values illustrate behavior at different times.

Figure 8-23.  Single Triggered Pulse Width Measurement

Use the GPCTR_Watch function with entityID = ND_ARMED to monitor the progress of the counting process.
This measurement completes when entityValue becomes ND_NO. When the counter is no longer armed, you
can retrieve the counted value by using GPCTR_Watch with entityID = ND_COUNT, as shown in the following
example code:

Create U32 variable counter_armed.

Create U32 variable counted_value.

repeat

{

GPCTR_Watch(deviceNumber, gpctrNumber, ND_ARMED, counter_armed)

}

until (counter_armed = ND_NO)

GPCTR_Watch(deviceNumber, gpctrNumber, ND_COUNT, counted_value)

To calculate the measured interval, multiply the counted value by the period corresponding to the timebase you
are using. For example, if your ND_SOURCE is ND_INTERNAL_20_MHZ, the interval will be
1/(20  MHz)  =  50 ns. If the ND_COUNT is 4 (Figure  8-21), the actual interval is 4 * 50 ns = 200 ns.

When the counter reaches 224-1 (Terminal Count), it rolls over and keeps counting. If you want to check if this
occurred, use GPCTR_Watch function with entityID set to ND_TC_REACHED.

© National Instruments Corporation 8-43 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

Typically, you will find modifying the following parameters through the GPCTR_Change_Parameter
function useful when the counter application is ND_TRIG_PULSE_WIDTH_MSR. You can change the
following:

• ND_SOURCE to ND_INTERNAL_100_KHZ. With this timebase, you can measure pulse widths between
20  µs and 160 s. The resolution will be lower than if you are using the ND_INTERNAL_20_MHZ
timebase.

• ND_SOURCE_POLARITY to ND_HIGH_TO_LOW.

• ND_GATE to any legal value listed in the GPCTR_Change_Parameter function description.

• ND_GATE_POLARITY to ND_NEGATIVE. The pulse width will be measured from a high-to-low to the
next low-to-high transition of the gate signal.

You can use the GPCTR_Change_Parameter function after calling GPCTR_Set_Application and
before calling GPCTR_Control with action = ND_PROGRAM or ND_PREPARE.

If you want to provide your timebase, connect your timebase source to one of the PFI pins on the I/O connector
and change ND_SOURCE and ND_SOURCE_POLARITY to the appropriate values.

You can also configure the other general-purpose counter for ND_PULSE_TRAIN_GNR and set ND_SOURCE
of this counter to ND_OTHER_GPCTR_TC if you want to measure pulse widths longer than 160 s.

application = ND_SINGLE_PULSE_GNR

In this application, the counter is used for the generation of single delayed pulse. By default, you get this
through the 20 MHz internal timebase (ND_INTERNAL_20_MHZ), so the resolution of timing is 50 ns. By
default, the counter counts down from ND_COUNT_1 = 5 million to 0 for the delay time and then down from
ND_COUNT_2  =  10 million to 0 for the pulse generation time to generate a 0.5 s pulse after 0.25 s of delay.

The default 20 MHz timebase, combined with the counter width (24 bits), lets you generate pulses with a delay
and length between 100 ns and 0.8 s (each).

For example, assume that you want to generate a pulse 200 ns long after 150 ns of delay. You need to set
ND_COUNT_1 to 150 ns/50 ns = 3 and ND_COUNT_2 to 200 ns/50 ns = 4. Figure  8-24 shows a counter used
for ND_SINGLE_PULSE_GNR after the following programming sequence:

GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application(deviceNumber, gpctrNum, ND_SINGLE_PULSE_GRN)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_1, 3)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_2, 4)

Select_Signal(deviceNumber, gpctrNumOut, gpctrNumOut,ND_LOW_TO_HIGH)

GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)

In Figure  8-24:

• Source is the signal present at the counter source input.

• Output is the signal present at the counter output.

• Armed is the value you would read from the counter if you called the GPCTR_Watch function with
entityID  =  ND_ARMED. The different values illustrate behavior at different times.

NI-DAQ Software Reference Manual for Macintosh 8-44 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

Figure 8-24.  Single Pulse Generation

Use the GPCTR_Watch function with entityID = ND_ARMED to monitor the progress of the pulse generation
process. The generation completes when entityValue becomes ND_NO.

You will typically find modification of the following parameters through the GPCTR_Change_Parameter
function useful when the counter application is ND_SINGLE_PERIOD_MSR. You can change the following:

• ND_COUNT_1 and ND_COUNT_2 to any value between 2 and 224 - 1. The defaults are given for illustrative
purposes only.

• ND_SOURCE to ND_INTERNAL_100_KHZ. With this timebase, you can generate pulses with delay and
length between 20 µs and 160 s. The timing resolution will be lower than if you are using the
ND_INTERNAL_20_MHZ timebase.

You can use the GPCTR_Change_Parameter function after calling GPCTR_Set_Application and
before calling GPCTR_Control with action = ND_PROGRAM or ND_PREPARE.

If you want to provide your timebase, connect your timebase source to one of the PFI pins on the I/O connector
and change ND_SOURCE and ND_SOURCE_POLARITY to the appropriate values.

You can also configure the other general-purpose counter for ND_PULSE_TRAIN_GNR and set ND_SOURCE
of this counter to ND_OTHER_GPCTR_TC if you want to generate pulses with delays and intervals longer than
160 s.

application = ND_SINGLE_TRIG_PULSE_GRN

In this application, the counter is used for the generation of single delayed pulse after a transition on the gate
input. By default, this is achieved by using the 20 MHz internal timebase (ND_INTERNAL_20_MHZ), so the
resolution of timing is 50 ns. By default, the counter counts down from ND_COUNT_1 = 5 million to 0 for the
delay time, and then down from ND_COUNT_2 = 10 million to 0 for the pulse generation time to generate a 0.5 s
pulse after 0.25 s of delay. By default, the gate is PFI9/GPCTR0_GATE I/O connector pin for general-purpose
counter 0 and the PFI4/GPCTR1_GATE I/O connector pin for general-purpose counter 1, and the transition
which initiates the pulse generation is low-to-high. Only the first transition of the gate signal after you arm the
counter initiates pulse generation; all subsequent transitions are ignored.

The default 20 MHz timebase, combined with the counter width (24 bits), lets you generate pulses with delay
and length between 100 ns and 0.8 s.

Assume that you want to generate a pulse 200 ns long after 150 ns of delay from the transition of the gate
signal. You need to set ND_COUNT_1 to 150 ns/50 ns = 3 and ND_COUNT_2 to 200 ns/50 ns = 4. Figure  8-25

© National Instruments Corporation 8-45 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

shows the scenario of a counter used for ND_SINGLE_TRIG_PULSE_GRN after the following programming
sequence:

GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application(deviceNumber, gpctrNum, ND_SINGLE_TRIG_PULSE_GRN)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_1, 3)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_2, 4)

Select_Signal(deviceNumber, gpctrNumOut, gpctrNumOut,ND_LOW_TO_HIGH)

GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)

In Figure  8-25 :

• Gate is the signal present at the counter gate input.

• Source is the signal present at the counter source input.

• Output is the signal present at the counter output.

• Armed is the value you would read from the counter if you called the GPCTR_Watch function with
entityID  =  ND_ARMED. The different values illustrate behavior at different times.

Figure 8-25 .  Single Triggered Pulse Generation

Use the GPCTR_Watch function with entityID = ND_ARMED to monitor the progress of the pulse generation
process. The generation completes when entityValue becomes ND_NO.

Typically, you will find modifying the following parameters through the GPCTR_Change_Parameter
function useful when the counter application is ND_SINGLE_TRIG_PULSE_GNR. You can change the
following:

• ND_COUNT_1 and ND_COUNT_2 to any value between 2 and 224 - 1. The defaults are given for illustrative
purposes only.

• ND_SOURCE to ND_INTERNAL_100_KHZ. With this timebase, you can generate pulses with a delay and
length between 20 µs and 160 s. The timing resolution will be lower than if you are using
ND_INTERNAL_20_MHZ timebase.

• ND_GATE to any legal value listed in the GPCTR_Change_Parameter function description.

• ND_GATE_POLARITY to ND_NEGATIVE. A high-to-low transition of the gate signal initiates the pulse
generation timing.

NI-DAQ Software Reference Manual for Macintosh 8-46 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

You can use the GPCTR_Change_Parameter function after calling GPCTR_Set_Application and
before calling GPCTR_Control with action = ND_PROGRAM or ND_PREPARE.

If you want to provide your timebase, you can connect your timebase source to one of the PFI pins on the I/O
connector and change ND_SOURCE and ND_SOURCE_POLARITY to the appropriate values.

You can also configure the other general-purpose counter for ND_SINGLE_TRIG_PULSE_GRN and set
ND_SOURCE of this counter to ND_OTHER_GPCTR_TC if you want to generate pulses with delays and
intervals longer than 160 s.

application = ND_RETRIG_PULSE_GNR

In this application, the counter is used for the generation of a retriggerable delayed pulse after each transition on
the gate input. By default, you get this by using the 20 MHz internal timebase (ND_INTERNAL_20_MHZ), so
the resolution of timing is 50 ns. By default, the counter counts down from ND_COUNT_1 = 5 million to 0 for
the delay time and then down from ND_COUNT_2 = 10 million to 0 for the pulse generation time to generate a
0.5 s pulse after 0.25 s of delay. By default, the gate is the PFI9/GPCTR0_GATE I/O connector pin for general-
purpose counter 0 and the PFI4/GPCTR1_GATE I/O connector pin for general-purpose counter 1, and the
transition which initiates the pulse generation is low-to-high. All transitions of the gate signal after you arm the
counter initiate pulse generation.

The default 20 MHz timebase, combined with the counter width (24 bits), lets you generate pulses with a delay
and length between 100 ns and 0.8 s.

For example, assume that you want to generate a pulse 200 ns long after 150 ns of delay from every transition of
the gate signal. You need to set ND_COUNT_1 to 150 ns/50 ns = 3 and ND_COUNT_2 to 200 ns/50 ns = 4.
Figure  8-26 shows a counter used for ND_RETRIG_PULSE_GNR after the following programming sequence:

GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application(deviceNumber, gpctrNum, ND_RETRIG_PULSE_GNR)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_1, 3)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_2, 4)

Select_Signal(deviceNumber, gpctrNumOut, gpctrNumOut,ND_LOW_TO_HIGH)

GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)

In Figure  8-26 :

• Gate is the signal present at the counter gate input.

• Source is the signal present at the counter source input.

• Output is the signal present at the counter output.

Figure 8-26 .  Retriggerable Pulse Generation

© National Instruments Corporation 8-47 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

Use the GPCTR_Control function with action = ND_RESET to stop the pulse
generation.

Typically, you will find modifying the following parameters through the GPCTR_Change_Parameter
function useful when the counter application is ND_RETRIG_PULSE_GNR. You can change the following:

• ND_COUNT_1 and ND_COUNT_2 to any value between 2 and 224 - 1. The defaults are given for illustrative
purposes only.

• ND_SOURCE to ND_INTERNAL_100_KHZ. With this timebase, you can generate pulses with delay and
length between 20 µs and 160 s. The timing resolution will be lower than if you are using
ND_INTERNAL_20_MHZ timebase.

• ND_GATE to any legal value listed in the GPCTR_Change_Parameter function description.

• ND_GATE_POLARITY to ND_NEGATIVE. A high-to-low transition of the gate signal initiates the pulse
generation timing.

You can use the GPCTR_Change_Parameter function after calling GPCTR_Set_Application and
before calling GPCTR_Control with action = ND_PROGRAM or ND_PREPARE.

If you want to provide your timebase, you can connect your timebase source to one of the PFI pins on the I/O
connector and change ND_SOURCE and ND_SOURCE_POLARITY to the appropriate values.

You can also configure the other general-purpose counter for ND_RETRIG_PULSE_GNR, and set ND_SOURCE
of this counter to ND_OTHER_GPCTR_TC if you want to generate pulses with delays and intervals longer than
160 s.

application = ND_PULSE_TRAIN_GNR

In this application, the counter is used for generation of a pulse train. By default, you get this by using the 20
MHz internal timebase (ND_INTERNAL_20_MHZ), so the resolution of timing is 50 ns. By default, the counter
repeatedly counts down from ND_COUNT_1 = 5 million to 0 for the delay time and then down from
ND_COUNT_2 = 10 million to 0 for the pulse generation time to generate a train 0.5 s pulses separated by 0.25 s
of delay. Pulse train generation starts as soon as you arm the counter. You must reset the counter to stop the
pulse train.

The default 20 MHz timebase, combined with the counter width (24 bits), lets you generate trains consisting of
pulses with delay and length between 100 ns and 0.8 s.

Assume that you want to generate a pulse train with the low period 150 ns long and the high period 200 ns long.
You need to set ND_COUNT_1 to 150 ns/50 ns = 3 and ND_COUNT_2 to 200 ns/50 ns = 4. This corresponds to a
20 MHz : (3 + 4) = 2.86 MHz signal with (3/7)/(4/7) = 43/57 duty cycle. Figure  8-27 shows the scenario of a
counter used for ND_PULSE_TRAIN_GNR after the following programming sequence:
GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application(deviceNumber, gpctrNum, ND_PULSE_TRAIN_GNR)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_1, 3)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_2, 4)

Select_Signal(deviceNumber, gpctrNumOut, gpctrNumOut,ND_LOW_TO_HIGH)

GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)

In Figure  8-27

• Source is the signal present at the counter source input.

• Output is the signal present at the counter output.

NI-DAQ Software Reference Manual for Macintosh 8-48 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

Figure 8-27.  Pulse Train Generation

Use the GPCTR_Control function with action = ND_RESET to stop the pulse
generation.

Typically, you will find modifying the following parameters through the GPCTR_Change_Parameter
function useful when the counter application is ND_PULSE_TRAIN_GNR. You can change the following:

• ND_COUNT_1 and ND_COUNT_2 to any value between 2 and 224 - 1. The defaults are given for illustrative
purposes only.

• ND_SOURCE to ND_INTERNAL_100_KHZ. With this timebase, you can generate pulses with delay and
length between 20 µs and 160 s. The timing resolution will be lower than if you are using the
ND_INTERNAL_20_MHZ timebase.

You can use the GPCTR_Change_Parameter function after calling GPCTR_Set_Application and
before calling GPCTR_Control with action = ND_PROGRAM or ND_PREPARE.

If you want to provide your timebase, you can connect your timebase source to one of the PFI pins on the I/O
connector and change ND_SOURCE and ND_SOURCE_POLARITY to the appropriate values.

You can also configure the other general-purpose counter for ND_PULSE_TRAIN_GNR, and set ND_SOURCE
of this counter to ND_OTHER_GPCTR_TC if you want to generate pulses with delays and intervals longer than
160 s.

application = ND_FSK

In this application, the counter is used for generation of frequency shift keyed signals. The counter generates a
pulse train of one frequency and duty cycle when the gate is low, and a pulse train with different parameters
when the gate is high. By default, you get this by using the 20 MHz internal timebase
(ND_INTERNAL_20_MHZ), so the resolution of timing is 50 ns. By default, when the gate is low, the counter
repeatedly counts down from ND_COUNT_1 = 5 million to 0 for the delay time, and then down from
ND_COUNT_2 = 10 million to 0 for the pulse generation time, to generate a train 0.5 s pulses separated by 0.25 s
of delay. Also by default, when the gate is high, the counter repeatedly counts down from
ND_COUNT_3 = 4 million to 0 for the delay time, and then down from ND_COUNT_4 = 6 million to 0 for the
pulse generation time, to generate a train 0.3 s pulses separated by 0.2 s of delay. The FSK pulse generation
starts as soon as you arm the counter. You must reset the counter to stop the pulse generation.
The default 20 MHz timebase, combined with the counter width (24 bits), lets you generate pulses with a delay
and length between 100 ns and 0.8 s.

Assume that you want to generate a pulse train with 100 ns low and 150 ns high time when the gate is low and
with 300 ns low time and 200 ns high time when the gate is high. You need to set ND_COUNT_1 to 100 
ns/50 ns = 2, ND_COUNT_2 to 150 ns/50  ns = 3, ND_COUNT_3 to 300 ns/50 ns = 6, and ND_COUNT_4 to
200 ns/50 ns = 4. Figure  8-28 shows a counter used for ND_FSK after the following programming sequence:

GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application(deviceNumber, gpctrNum, ND_FSK)

© National Instruments Corporation 8-49 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_1, 2)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_2, 3)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_3, 6)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_4, 4)

Select_Signal(deviceNumber, gpctrNumOut, gpctrNumOut,ND_LOW_TO_HIGH)

GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)

In Figure  8-28:

• Gate is the signal present at the counter gate input.

• Source is the signal present at the counter source input.

• Output is the signal present at the counter output.

Figure 8-28.  Frequency Shift Keying

Use the GPCTR_Control function with action = ND_RESET to stop the pulse generation.

Typically, you will find modifying the following parameters through the GPCTR_Change_Parameter
function useful when the counter application is ND_RETRIG_PULSE_GNR. You can change the following:

• ND_COUNT_1, ND_COUNT_2, ND_COUNT_3, and ND_COUNT_4 to any value between 2 and 224 - 1. The
defaults are given for illustrative purposes only.

• ND_SOURCE to ND_INTERNAL_100_KHZ. With this timebase, you can generate pulses with a delay and
length between 20 µs and 160 s. The timing resolution will be lower than if you are using the
ND_INTERNAL_20_MHZ timebase.

• ND_GATE to any legal value listed in the GPCTR_Change_Parameter function description.

You can use the GPCTR_Change_Parameter function after calling GPCTR_Set_Application and
before calling GPCTR_Control with action = ND_PROGRAM or ND_PREPARE.

If you want to provide your timebase, connect your timebase source to one of the PFI pins on the I/O connector
and change ND_SOURCE and ND_SOURCE_POLARITY to the appropriate values.
You can also configure the other general-purpose counter for ND_FSK, and set ND_SOURCE of this counter to
ND_OTHER_GPCTR_TC if you want to generate pulses with delays and intervals longer than 160 s.

application = ND_BUFFERED_EVENT_CNT

In this application, the counter is used for continuous counting of events. By default, the events are low-to-high
transitions on the PFI8/GPCTR0_SOURCE I/O connector pin for general-purpose counter 0 and the
PFI3/GPCTR1_SOURCE I/O connector pin for general-purpose counter 1. Counts present at specified events of

NI-DAQ Software Reference Manual for Macintosh 8-50 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

the signal present at the gate are saved in a buffer. By default, those events are the low-to-high transitions of the
signal on the PFI9/GPCTR0_GATE I/O connector pin for general-purpose counter 0 and the
PFI4/GPCTR1_GATE I/O connector pin for general-purpose counter 1. The counter counts up starting from 0;
its contents are placed in the buffer after an edge of appropriate polarity is detected on the gate; the counter
keeps counting without interruption. NI-DAQ transfers data from the counter into the buffer until the buffer is
filled; the counter is disarmed at that time.

The counter width (24 bits) lets you count up to 224-1 events. Figure  8-29 shows one possible scenario of a
counter used for ND_BUFFERED_EVENT_CNT after the following programming sequence:

Make buffer be a 100-element array of U32.

GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application(deviceNumber, gpctrNum, ND_BUFFERED_EVENT_CNT)

GPCTR_Config_Buffer(deviceNumber, gpctrNum, 0, 100, buffer)

GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)

In Figure  8-29:

• Gate is the signal present at the counter gate input.

• Source is the signal present at the counter source input.

• Buffer is the contents of the buffer; you can retrieve data from the buffer when the counter becomes
disarmed.

Figure 8-29.  Buffered Event Counting

Use the GPCTR_Watch function with entityID = ND_ARMED to monitor the progress of the counting process.
This measurement completes when entityValue becomes ND_NO. You can do this as follows:

Create U32 variable counter_armed.

repeat

{

GPCTR_Watch(deviceNumber, gpctrNumber, ND_ARMED, counter_armed)

}

until (counter_armed = ND_NO)

When the counter is disarmed, you can safely access data in the buffer.

© National Instruments Corporation 8-51 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

Typically, you will find modifying the following parameters through the GPCTR_Change_Parameter
function useful when the counter application is ND_BUFFERED_PERIOD_MSR. You can change the
following:

• ND_SOURCE to any legal value listed in the GPCTR_Change_Parameter function description.

• ND_SOURCE_POLARITY to ND_HIGH_TO_LOW.

• ND_GATE to any legal value listed in the GPCTR_Change_Parameter function description.

• ND_GATE_POLARITY to ND_NEGATIVE. Counts will be captured on every high-to-low transition of the
signal present at the gate.

Note: The counter will start counting as soon as you arm it. However, it will not count if the gate signal
stays in low state when ND_GATE_POLARITY is ND_POSITIVE or if it stays in high state when
ND_GATE_POLARITY is ND_NEGATIVE while GPCTR_Control is executed with action =
ND_ARM or action = ND_PROGRAM. Be aware of this when you interpret the first count in your
buffer.

application = ND_BUFFERED_PERIOD_MSR

In this application, the counter is used for continuous measurement of the time interval between successive
transitions of the same polarity of the gate signal. By default, those are the low-to-high transitions of the signal
on the PFI9/GPCTR0_GATE I/O connector pin for general-purpose counter 0 and the PFI4/GPCTR1_GATE
I/O connector pin for general-purpose counter 1. The counter counts the 20 MHz internal timebase
(ND_INTERNAL_20_MHZ), so the resolution of measurement is 50 ns. The counter counts up starting from 0;
its contents are placed in the buffer after an edge of appropriate polarity is detected on the gate; the counter then
starts counting up from 0 again. NI-DAQ transfers data from the counter into the buffer until the buffer is filled;
the counter is disarmed at that time.

The default 20 MHz timebase, combined with the counter width (24 bits), lets you measure the width of a pulse
between 100 ns and 0.8 s long.

Figure  8-30 shows one possible scenario of a counter used for ND_BUFFERED_PERIOD_MSR after the
following programming sequence:

Make buffer be a 100-element array of U32.

GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application(deviceNumber, gpctrNum, ND_BUFFERED_PERIOD_MSR)

GPCTR_Config_Buffer(deviceNumber, gpctrNum, 0, 100, buffer)

GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)

In Figure  8-30:

• Gate is the signal present at the counter gate input.

• Source is the signal present at the counter source input.

• Buffer is the contents of the buffer; you can retrieve data from the buffer when the counter becomes
disarmed.

NI-DAQ Software Reference Manual for Macintosh 8-52 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

Figure 8-30.  Buffered Period Measurement

Use the GPCTR_Watch function with entityID = ND_ARMED to monitor the progress of the counting process.
This measurement completes when entityValue becomes ND_NO, as shown in the following example:

Create U32 variable counter_armed.

repeat

{

GPCTR_Watch(deviceNumber, gpctrNumber, ND_ARMED, counter_armed

}

until (counter_armed = ND_NO)

When the counter is disarmed, you can safely access data in the buffer.

Typically, you will find modifying the following parameters through the GPCTR_Change_Parameter
function useful when the counter application is ND_BUFFERED_PERIOD_MSR. You can change the
following:

• ND_SOURCE to ND_INTERNAL_100_KHZ. With this timebase, you can measure intervals between 20  µs
and 160 s long. The resolution will be lower than if you are using ND_INTERNAL_20_MHZ timebase.

• ND_SOURCE_POLARITY to ND_HIGH_TO_LOW.

• ND_GATE to any legal value listed in the GPCTR_Change_Parameter function description.

• ND_GATE_POLARITY to ND_NEGATIVE. Measurements will be performed between successive high-to-
low transitions of the signal present at the gate.

If you want to provide your timebase, you can connect your timebase source to one of the PFI pins on the I/O
connector and change ND_SOURCE and ND_SOURCE_POLARITY to the appropriate values.

You can also configure the other general-purpose counter for ND_PULSE_TRAIN_GNR, and set ND_SOURCE
of this counter to ND_OTHER_GPCTR_TC if you want to measure intervals longer than 160 s.

Note: The counter will start counting as soon as you arm it. Be aware of this when you interpret the first
count in your buffer.

application = ND_BUFFERED_SEMI_PERIOD_MSR

In this application, the counter is used for the continuous measurement of the time interval between successive
transitions of the gate signal. By default, those are all transitions of the signal on the PFI9/GPCTR0_GATE I/O

© National Instruments Corporation 8-53 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

connector pin for general-purpose counter 0 and the PFI4/GPCTR1_GATE I/O connector pin for general-
purpose counter 1. The counter counts the 20 MHz internal timebase (ND_INTERNAL_20_MHZ), so the
resolution of measurement is 50 ns. The counter counts up starting from 0; its contents are placed in the buffer
after an edge is detected on the gate; the counter then starts counting up from 0 again. NI-DAQ transfers data
from the counter into the buffer until the buffer is filled; the counter is disarmed at that time.

The default 20 MHz timebase, combined with the counter width (24 bits), lets you measure the width of a pulse
between 100 ns and 0.8 s long.

Figure  8-31 shows one possible scenario of a counter used for ND_BUFFERED_SEMI_PERIOD_MSR after the
following programming sequence:

Make buffer be a 100-element array of U32.

GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application(deviceNumber, gpctrNum,

ND_BUFFERED_SEMI_PERIOD_MSR)

GPCTR_Config_Buffer(deviceNumber, gpctrNum, 0, 100, buffer)

GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)

In Figure  8-31:

• Gate is the signal present at the counter gate input.

• Source is the signal present at the counter source input.

• Buffer is the contents of the buffer; you can retrieve data from the buffer when the counter becomes
disarmed.

Figure 8-31.  Buffered Semi-Period Measurement

Use the GPCTR_Watch function with entityID = ND_ARMED to monitor the progress of the counting process.
This measurement completes when entityValue becomes ND_NO. The following code example shows this
process:

Create U32 variable counter_armed.

repeat

{

GPCTR_Watch(deviceNumber, gpctrNumber, ND_ARMED, counter_armed)

}

until (counter_armed = ND_NO)

NI-DAQ Software Reference Manual for Macintosh 8-54 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

When the counter is disarmed, you can safely access data in the buffer.

Typically, you will find modifying the following parameters through the GPCTR_Change_Parameter
function useful when the counter application is ND_BUFFERED_SEMI_PERIOD_MSR. You can change the
following:

• ND_SOURCE to ND_INTERNAL_100_KHZ. With this timebase, you can measure intervals between 20  µs
and 160 s long. The resolution will be lower than if you are using the ND_INTERNAL_20_MHZ timebase.

• ND_SOURCE_POLARITY to ND_HIGH_TO_LOW.

• ND_GATE to any legal value listed in the GPCTR_Change_Parameter function description.

If you want to provide your timebase, you can connect your timebase source to one of the PFI pins on the I/O
connector and change ND_SOURCE and ND_SOURCE_POLARITY to the appropriate values.

You can also configure the other general-purpose counter for ND_PULSE_TRAIN_GNR and set ND_SOURCE
of this counter to ND_OTHER_GPCTR_TC if you want to measure intervals longer than 160 s.

Note: The counter will start counting as soon as you arm it. Be aware of this when you interpret the first
count in your buffer.

application = ND_BUFFERED_PULSE_WIDTH_MSR

In this application, the counter is used for continuous measurement of width of pulses of selected polarity
present at the counter gate. By default, those pulses are active high pulses present on the signal on the
PFI9/GPCTR0_GATE I/O connector pin for general-purpose counter 0 and the PFI4/GPCTR1_GATE I/O
connector pin for general-purpose counter 1. The counter counts the 20 MHz internal timebase
(ND_INTERNAL_20_MHZ), so the resolution of measurement is 50 ns. The counter counts up starting from 0;
its contents are placed in the buffer after a pulse completes; the counter then starts counting up from 0 again
when the next pulse appears. NI-DAQ transfers data from the counter into the buffer until the buffer is filled; the
counter is disarmed at that time.

The default 20 MHz timebase, combined with the counter width (24 bits), lets you measure the width of a pulse
between 100 ns and 0.8 s long.

When using the buffered counter operations in applications involving period/pulse-width measurements, the
first acquired point may represent bad data. The first data point is the measured interval between the instant
when the counter is armed and when the first edge transition takes place on the counter GATE. Because there is
no deterministic way of specifying when the counter is actually armed, the first value may be incorrect.
Subsequent data points acquired will not have this problem.

Figure  8-32 shows one possible scenario of a counter used for ND_BUFFERED_PULSE_WIDTH_MSR after the
following programming sequence:

Make buffer be a 100-element array of U32.

GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application(deviceNumber, gpctrNum,

ND_BUFFERED_PULSE_WIDTH_MSR)

GPCTR_Config_Buffer(deviceNumber, gpctrNum, 0, 100, buffer)

GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)

In Figure  8-32:

• Gate is the signal present at the counter gate input.

• Source is the signal present at the counter source input.

© National Instruments Corporation 8-55 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

• Buffer is the contents of the buffer; you can retrieve data from the buffer when the counter becomes
disarmed.

Figure 8-32.  Buffered Pulse Width Measurement

Use the GPCTR_Watch function with entityID = ND_ARMED to monitor the progress of the counting process.

This measurement completes when entityValue becomes ND_NO. You can do this as follows:

Create U32 variable counter_armed.

repeat

{

GPCTR_Watch(deviceNumber, gpctrNumber, ND_ARMED, counter_armed)

}

until (counter_armed = ND_NO)

When the counter is disarmed, you can safely access data in the buffer.

Typically, you will find modifying the following parameters through the GPCTR_Change_Parameter
function useful when the counter application is ND_BUFFERED_PULSE_WIDTH_MSR. You can change the
following:

• ND_SOURCE to ND_INTERNAL_100_KHZ. With this timebase, you can measure intervals between 20  µs
and 160 s long. The resolution will be lower than if you are using ND_INTERNAL_20_MHZ timebase.

• ND_SOURCE_POLARITY to ND_HIGH_TO_LOW.

• ND_GATE to any legal value listed in the GPCTR_Change_Parameter function description.

• ND_GATE_POLARITY to ND_NEGATIVE. Measurements will be performed on the active low pulses.

If you want to provide your timebase, you can connect your timebase source to one of the PFI pins on the I/O
connector and change ND_SOURCE and ND_SOURCE_POLARITY to the appropriate values.
You can also configure the other general-purpose counter for ND_PULSE_TRAIN_GNR, and set ND_SOURCE
of this counter to ND_OTHER_GPCTR_TC if you want to measure intervals longer than 160 s.

Note: You must make sure that there is at least one source transition during the measured pulse in order
for this application to work properly.

                                                                                                                                                                                           

NI-DAQ Software Reference Manual for Macintosh 8-56 © National Instruments Corporation



Chapter 8 Counter/Timer Functions

GPCTR_Watch

Function
Monitors state of the general-purpose counter and its operation (E Series devices only).

Synopsis

C Syntax locus i32 GPCTR_Watch(u32 deviceNumber, u32 gpctrNum, u32 entityID,

u32 *entityValue);

Pascal Syntax function GPCTR_Watch(deviceNumber : i32; gpctrNum : i32; entityID

: i32; var entityValue : i32) : i32;

BASIC Syntax FN GPCTR_Watch(deviceNumber&, gpctrNum&, entityID&, entityValue&)

Description
Legal ranges for the gpctrNum, entityID, and entityValue are in terms of constants defined in a header file.
The header file you should use depends on the language you are using:

• C programmers—nidaqcns.h

• Pascal programmers—nidaq.p

• BASIC programmers—nidaq.bas

Use gpctrNum to indicate to NI-DAQ which counter you want to program. Legal values for this parameter are
ND_COUNTER_0 and ND_COUNTER_1.

Use entityID to indicate to NI-DAQ which feature you are interested in. Legal values are listed in the following
paragraphs, along with the corresponding values you can expect for entityValue. entityValue will be given
either in terms of constants from the header file, or as numbers, as appropriate.

entityID = ND_COUNT
This is the counter contents. entityValue can be between 0 and 224-1.

entityID = ND_ARMED
Indicates whether the counter is armed. entityValue can be ND_YES or ND_NO. You can use this in
applications such as ND_SINGLE_PULSE_WIDTH_MSR for finding out when the pulse width measurement
completes.

entityID = ND_TC_REACHED
Indicates whether the counter has reached terminal count entityValue can be ND_YES or ND_NO. You can
use this in applications such as ND_SINGLE_PULSE_WIDTH_MSR for detecting overflow (pulse was too long
to be measured using the selected timebase).

entityID = ND_DONE
When the application is ND_SINGLE_TRIG_PULSE_GNR, this indicates that the pulse has completed. When
the application is ND_RETRIG_PULSE_GNR, this indicates that an individual pulse has completed. In this
case, the indication that an individual pulse has completed will be returned only once per pulse by the
GPCTR_Watch function.

entityID = ND_OUTPUT_STATE
You can use this to read the value of the counter output; the range is ND_LOW and ND_HIGH.

entityID = ND_AVAILABLE_POINTS
This is useful for buffered operations.  You can use this to find the number of sample points available in your
buffer.

© National Instruments Corporation 8-57 NI-DAQ Software Reference Manual for Macintosh



Counter/Timer Functions Chapter 8

entityID = ND_COUNT_AVAILABLE
If the application is ND_TRIG_PULSE_WIDTH_MSR, ND_SINGLE_PULSE_WIDTH_MSR, or
ND_SINGLE_PERIOD_MSR, this indicates whether your measurement has completed. entityValue can be
ND_YES (the measurement has completed) and ND_NO (the measure has not completed).

Note to C Programmers—entityValue is a pass-by-reference parameter.

                                                                                                                                                                                           

NI-DAQ Software Reference Manual for Macintosh 8-58 © National Instruments Corporation



Chapter 9
RTSI Bus Trigger Functions
                                                                                                          

The RTSI Bus Trigger functions connect and disconnect signals over the RTSI bus trigger lines.  See Appendix A to
determine which functions are available for your board.

The RTSI Bus

The RTSI bus is implemented via a 50-pin ribbon cable connector on the top edge of the National Instruments
boards on the Macintosh.  Fourteen of the RTSI bus lines are dedicated to a 8-wire trigger bus.  Each board that uses
a RTSI bus interface contains a number of useful signals that can be driven onto, or received from, the trigger lines.
Each board is equipped with a switch that can connect any onboard signal to any one of the RTSI bus trigger lines
through software control.  If you program one board to drive a given trigger line and another board to receive from
the same trigger line, a hardware connection can be made between the two boards.  The RTSI Bus Trigger functions
explained in this chapter support this type of programmable signal interconnection between boards.

The RTSI bus trigger lines can be used to trigger one board from another board, to share clocks and signals between
boards, and to synchronize boards to the same signals.

To specify the signals on each board that can be connected to the RTSI bus trigger lines, each board signal is
assigned a signal code number.  All references to that signal are made by using the signal code number in the RTSI
Bus Trigger function calls.  The signal codes for each board that uses the RTSI bus trigger lines are given later in
this chapter.

Each signal listed in this chapter also has a signal direction.  If a signal is listed with a source direction, then that
signal is able to drive the trigger lines.  If a signal is listed with a receiver direction, then that signal must be received
from the trigger lines.  A bidirectional signal direction means that the signal can act as either a source or receiver,
depending on the application.

NB-MIO-16 RTSI Connections

The NB-MIO-16 contains nine signals that you can connect to the RTSI bus trigger.  These signals are shown in
Table 9-1.

Table 9-1.  NB-MIO-16 RTSI Bus Signals

Signal Name Signal Direction Signal Code

GATE1 bidirectional 0

FOUT source 1

EXTCONV* receiver 2

OUT2 source 3

SOURCE4 bidirectional 4

EXTGATE receiver 5

OUT5 source 6

OUT1 bidirectional 7

EXTTRIG* bidirectional 8

© National Instruments Corporation 9-1 NI-DAQ Software Reference Manual for Macintosh



RTSI Bus Trigger Functions Chapter 9

The signals GATE1, SOURCE4, OUT1, OUT2, OUT5, and FOUT are input and output signals from the Am9513
Counter/Timer on the NB-MIO-16 board.  OUT1, OUT2, and OUT5 are outputs of Counters 1, 2, and 5,
respectively.  FOUT is the Am9513 programmable frequency output.  GATE1 is the gating signal for Counter 1, and
SOURCE4 is a counter source input.  The counters and frequency output are programmed via the Counter functions
(see Chapter 8, Counter/Timer Functions).  GATE1, OUT1, OUT2, OUT5, and FOUT are also available on the
NB-MIO-16 I/O connector.

The signals EXTCONV*, EXTGATE, and EXTTRIG* are used for data acquisition timing.  These signals are
explained in Chapter 6, Data Acquisition Functions.

Some restrictions apply for connection of onboard signals to the RTSI bus.  OUT2 and EXTCONV* should not be
connected to the RTSI bus at the same time.  Doing so results in the OUT2 signal driving the EXTCONV* line.
Similarly, OUT5 and EXTGATE should not be connected to the RTSI bus at the same time.  Doing so results in the
OUT5 signal driving the EXTGATE line.  For more information about the NB-MIO-16 signals, see the
NB-MIO-16 User Manual.

NB-MIO-16X RTSI Connections

The NB-MIO-16X contains nine signals that you can connect to the RTSI bus trigger.  These signals are shown in
Table 9-2.

Table 9-2.  NB-MIO-16X RTSI Bus Signals

Signal Name Signal Direction Signal Code

EXTCONV* bidirectional 0

RTSIWG receiver 1

GATE1 receiver 2

OUT2 source 3

SOURCE5 bidirectional 4

STOPTRIG receiver 5

OUT5 source 6

OUT1 bidirectional 7

STRTTRIG* bidirectional 8

The signals GATE1, SOURCE5, OUT1, OUT2, and OUT5 are input and output signals from the Am9513
Counter/Timer on the NB-MIO-16X board.  OUT1, OUT2, and OUT5 are outputs of Counters 1, 2, and 5,
respectively.  GATE1 is the gating signal for Counter 1, and SOURCE5 is a counter source input.  The counters and
frequency output are programmed via the Counter functions (see Chapter 8, Counter/Timer Functions).  GATE1,
OUT1, OUT2, and OUT5 are also available on the NB-MIO-16X I/O connector.

The signals EXTCONV*, STOPTRIG, and STRTTRIG* are used for data acquisition timing.  These signals are
explained in Chapter 6, Data Acquisition Functions.

Some restrictions apply for connection of onboard signals to the RTSI bus.  OUT2 and GATE1 should not be
connected to the RTSI bus at the same time.  Doing so results in the OUT2 signal driving the GATE1 line.
Similarly, OUT5 and STOPTRIG should not be connected to the RTSI bus at the same time.  Doing so results in the
OUT5 signal driving the STOPTRIG line.  For more information about the NB-MIO-16X signals, see the
NB-MIO-16X User Manual.

E Series Boards RTSI Connections

For more information regarding signals on the E Series boards that you can connect to the RTSI bus, refer to the
Select_Signal function description in Chapter 2,  Board-Specific Functions.

NI-DAQ Software Reference Manual for Macintosh 9-2 © National Instruments Corporation



Chapter 9 RTSI Bus Trigger Functions

NB-DMA-8-G and NB-DMA2800 RTSI Connections

The NB-DMA-8-G and NB-DMA2800 contain 14 signals that you can connect to the RTSI bus trigger.  These
signals are shown in Table 9-3.

Table 9-3.  NB-DMA-8-G and NB-DMA2800 RTSI Bus Signals

Signal Name Signal Direction Signal Code

FOUT source 0

SOURCE5 receiver 1

SOURCE4 receiver 2

SOURCE3 receiver 3

GATE5 receiver 4

GATE3 receiver 5

GATE1 receiver 6

TOUT3 source 7

TOUT2 source 8

OUT5 source 9

OUT4 source 10

OUT3 source 11

OUT2 source 12

OUT1 source 13

The signals FOUT, SOURCE5 through SOURCE3, GATE5, GATE3, GATE1, and OUT5 through OUT1 are input
and output signals from the Am9513 Counter/Timer on the NB-DMA-8-G and NB-DMA2800 boards.  OUT5
through OUT1 signals are outputs of Counters 5 through 1, respectively.  FOUT is the Am9513 programmable
frequency output.  GATE5, GATE3, and GATE1 are the gating signals for Counters 5, 3, and 1, respectively.
SOURCE5 through SOURCE3 are counter clock source inputs.  The counters and frequency output are programmed
via the Counter functions (see Chapter 8, Counter/Timer Functions).

The signal TOUT3 supplies a 5 MHz clock signal, and TOUT2 supplies a 1 MHz clock signal.   For more
information about the NB-DMA-8-G or NB-DMA2800 signals, see the NB-DMA-8-G User Manual or the
NB-DMA2800 User Manual.

NB-DIO-32F RTSI Connections

The NB-DIO-32F contains six signals that you can connect to the RTSI bus trigger.  These signals are shown in
Table 9-4.

© National Instruments Corporation 9-3 NI-DAQ Software Reference Manual for Macintosh



RTSI Bus Trigger Functions Chapter 9

Table 9-4.  NB-DIO-32F RTSI Bus Signals

Signal Name Signal Direction Signal Code

RRQ1 source 0

RRQ2 source 1

RQNI1 receiver 2

RQNI2 receiver 3

XAK1 source 4

XAK2 source 5

The signals RRQ1 and RRQ2 are request signals received from the I/O connector.  These signals are driven by an
external device during handshaking.  RQNI1, RQNI2, XAK1, and XAK2 permit handshaking with the NB-DIO-32F
over the RTSI bus.  For more information about the NB-DIO-32F signals, see the NB-DIO-32F User Manual.

NB-AO-6 RTSI Connections

The NB-AO-6 contains two signals connected to the RTSI bus trigger.  These signals are shown in Table 9-5.

Table 9-5.  NB-AO-6 RTSI Bus Signals

Signal Name Signal Direction Signal Code

TRIGUP receiver 0

UPDATE source 1

The signal TRIGUP can be used to trigger an update on the NB-AO-6 for updating of the DACs.  UPDATE is the
update signal generated.  For more information about the NB-AO-6 signals, see the
NB-AO-6 User Manual.

NB-A2000 RTSI Connections

The NB-A2000 contains seven signals that can be connected to the RTSI bus trigger lines.  These signals are shown
in Table 9-6.

Table 9-6.  NB-A2000 RTSI Bus Signals

Signal Name Signal Direction Signal Code

START* bidirectional 0

TRIGGER* bidirectional 1

CLOCKO source 2

CLOCKI receiver 3

GATE2 receiver 4

SOURCE2 receiver 5

OUT2 source 6

NI-DAQ Software Reference Manual for Macintosh 9-4 © National Instruments Corporation



Chapter 9 RTSI Bus Trigger Functions

The signals GATE2, SOURCE2, and OUT2 are input and output signals from the Am9513A Counter/Timer on the
NB-A2000 board.  GATE2 is the gating signal for Counter 2, SOURCE2 is the source signal for Counter 2, and
OUT2 is the output of Counter 2.  Counter 2 is programmed via the Counter/Timer functions (see Chapter 8,
Counter/Timer Functions).

The signals START*, TRIGGER*, CLOCKO, and CLOCKI are used for data acquisition timing.  These signals
may be generated locally on the NB-A2000 or may be controlled from the RTSI bus.  These signals are explained as
follows.

Signal Name Description

START* START* is an active-low signal that initiates a data acquisition sequence.  If data
acquisition is locally controlled, the START* signal pulses low when a trigger is
generated from software (pretrigger mode) or from the NB-A2000 analog trigger or
digital trigger circuitry (posttrigger or pretrigger mode).  When locally generated,
START* is a signal source.  Alternatively, if the NB-A2000 is configured to receive
START* from the RTSI bus, it initiates a data acquisition sequence when a low pulse is
received.

TRIGGER* TRIGGER* is an active-low signal that activates the sample counter.  If data acquisition
is locally controlled, TRIGGER* pulses low when a trigger is received either through
software (posttrigger mode only) or  from the NB-A2000 analog trigger or digital trigger
circuitry (posttrigger or pretrigger mode).  In pretrigger mode, TRIGGER* pulses
sometime after START*.  In posttrigger mode, START* drives the TRIGGER* signal
directly.  The TRIGGER* signal may be driven from the RTSI switch when the NB-
A2000 is configured for pretrigger mode only.  In this case, the NB-A2000 begins to
acquire posttrigger samples after a low pulse is received on the TRIGGER* input rather
than from the local analog or digital circuitry.

CLOCKO CLOCKO is the active-high, sample-clock output signal.  The rising edge of this signal
initiates a scanning sequence in which all active channels are sampled simultaneously.
Any locally generated sample clock or any clock received from the I/O connector
SAMPCLK* input will appear on the CLOCKO signal.

CLOCKI CLOCKI is the active-high, sample-clock input signal.  If CLOCKI is driven from the
RTSI Switch, the rising edge of this signal initiates a scanning sequence in which all
active channels are sampled simultaneously.  The locally generated sample clock and  I/O
connector SAMPCLK* signal are ignored when CLOCKI is driven by the RTSI switch.
With the exception of master/slave clock operation, the NB-A2000 must be configured to
use external sample clock if CLOCKI is to be driven from the RTSI switch (see
A2000_Config).

Note: If the RTSI switch drives any of the START*, TRIGGER*, or CLOCKI signals, then locally generated
signals are overwritten.  TRIGGER* should be driven from the RTSI switch only if the NB-A2000 is
configured for pretrigger mode.

NB-A2100 RTSI Connections

The NB-A2100 has three signals that you can connect to the RTSI bus trigger lines.  These signals are shown in
Table 9-7.

© National Instruments Corporation 9-5 NI-DAQ Software Reference Manual for Macintosh



RTSI Bus Trigger Functions Chapter 9

Table 9-7.  NB-A2100 RTSI Bus Signals

Signal Name Signal Direction Signal Code

EXTTRIG* bidirectional 0

WCAD source 1

WCDA source 2

The RTSI bus trigger lines share the signal EXTTRIG* with the RCA jack on the I/O connector panel.  So, if you
configure EXTTRIG* as a source, the signal applied at the I/O connector appears at the RTSI trigger lines.
Similarly, if you configure EXTTRIG* as a receiver, the signal applied at EXTTRIG* through a RTSI trigger line
also appears at the I/O connector.

The signals labeled WCAD and WCDA are the A/D and D/A sampling clock signals.

NB-A2150 RTSI Connections

The NB-A2150 has five signals that you can connect to the RTSI bus trigger lines.  These signals are shown in
Table 9-8.

Table 9-8.  NB-A2150 RTSI Bus Signals

Signal Name Signal Direction Signal Code

RTSITRIG* bidirectional 0

WCAD source 1

RTSI_A2 source 2

SWSTART* source 3

RTSISTART* receiver 4

The signal WCAD is the A/D word clock signal.  The signal RTSI_A2 is controlled through one of the registers on
the board and is always low.

NI-DAQ Software Reference Manual for Macintosh 9-6 © National Instruments Corporation



Chapter 9 RTSI Bus Trigger Functions

You can use the signals RTSITRIG*, SWSTART*, and RTSISTART* for data acquisition triggering.  These signals
are explained as follows:

Signal Name Description

RTSITRIG* RTSITRIG* is the signal that activates the sample counter when a high-to-
low edge is received at the signal.  In posttrigger mode, a high-to-low edge
starts the data acquisition on the NB-A2150.  In pretrigger mode, the
NB-A2150 begins to acquire posttrigger samples after a high-to-low pulse is
received.  Alternatively, if the RTSITRIG* signal is configured to be the
source, it is connected to the local trigger signal of the board.  The local
trigger signal is connected to the EXTTRIG* pin on the I/O connector if the
external digital trigger is enabled or to the analog trigger circuitry if analog
level triggering is enabled.  The analog triggering circuitry generates an
active low pulse when the analog trigger conditions are met.

SWSTART* SWSTART* is the signal that generates an active low pulse when a trigger is
generated from software (pretrigger or posttrigger mode).  This signal can be
driven to the RTSISTART* signal on other NB-A2150 boards to
simultaneously start data acquisition on all boards when a software trigger is
generated at the board that is driving this signal.

RTSISTART* RTSISTART* is the signal that starts the data acquisition when a high-to-low
edge is received at the signal.  In posttrigger mode, this signal has the same
effect as the RTSITRIG* signal.  In pretrigger mode, a high-to-low edge at
this signal starts continuous data acquisition.  However, the sample counter is
not started until a trigger is received from the RTSITRIG* signal, the
EXTTRIG* pin on the I/O connector, or the analog triggering circuitry.

NB-TIO-10 RTSI Connections

The NB-TIO-10 has 14 signals that you can connect to the RTSI bus trigger lines.  These signals are shown in
Table 9-9.

Table 9-9.  NB-TIO-10 RTSI Bus Signals

Signal Name Signal Direction Signal Code

SOURCE1 bidirectional 0

GATE1 bidirectional 1

OUT1 bidirectional 2

SOURCE2 bidirectional 3

OUT2 bidirectional 4

GATE5 bidirectional 5

OUT5 bidirectional 6

SOURCE6 bidirectional 7

GATE6 bidirectional 8

OUT6 bidirectional 9

SOURCE7 bidirectional 10

GATE10 bidirectional 11

OUT10 bidirectional 12

FOUT1 source 13

© National Instruments Corporation 9-7 NI-DAQ Software Reference Manual for Macintosh



RTSI Bus Trigger Functions Chapter 9

All 14 signals are input and output signals from the Am9513 on the NB-TIO-10 board.  OUT1, OUT2, OUT5,
OUT6, and OUT10 are outputs of Counters 1, 2, 5, 6, and 10, respectively.  FOUT1 is the Am9513 programmable
frequency output.  GATE1, GATE5, GATE6, and GATE10 are the gating signals for Counters 1, 5, 6, and 10,
respectively.  SOURCE1, SOURCE2, SOURCE6, and SOURCE7 are counter clock source inputs.  The counters
and frequency output are programmed via the Counter/Timer Functions (see Chapter 8, Counter/Timer Functions).

Warning: If you configure the output of a counter as an input over the RTSI bus, you must call CTR_Reset
and put the counter back in high impedance mode to avoid multiple sources driving the signal and
possibly causing damage to the board.

For more information about these signals, refer to the NB-TIO-10 User Manual.

RTSI Bus Trigger Function Summary

Use the following RTSI Bus Trigger functions to make signal connections from NB Series boards to the RTSI bus
trigger lines:

RTSI_Clear Disconnects all RTSI trigger connections from the specified board.

RTSI_Conn Connects a signal from the specified board to the specified trigger line.

RTSI_DisConn Disconnects a signal on the specified board from a specified trigger line.

RTSI Bus Trigger Function Application Hints

Note: For information regarding signals on the E Series boards that you can connect to the RTSI bus, refer to
the Select_Signal function in Chapter 2, Board-Specific Functions.

To connect signals across the RTSI bus trigger lines, you must execute RTSI_Conn at least twice:  once for the
signal transmitter and once for the signal receiver.  Additional executions of RTSI_Conn can add more signal
receivers to the connection.

Signals can be disconnected in one of two ways:  either execute RTSI_DisConn for each connection made via
RTSI_Conn, or use RTSI_Clear to disconnect an entire board from the RTSI bus trigger lines.

                                                                                                                                                                                             

RTSI_Clear

Function
Disconnects all RTSI bus trigger line connections from the specified board.

Synopsis

C Syntax locus i32 RTSI_Clear(u32 deviceNumber);

Pascal Syntax function RTSI_Clear(deviceNumber : i32) : i32;

BASIC Syntax FN RTSI_Clear(deviceNumber&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

NI-DAQ Software Reference Manual for Macintosh 9-8 © National Instruments Corporation



Chapter 9 RTSI Bus Trigger Functions

RTSI_Clear clears all RTSI bus trigger line connections from the specified board.  After you execute
RTSI_Clear, the board does not drive signals onto any trigger line nor does it receive signals from any trigger
line.  This function can be used to reset the RTSI interface of the board.  After system startup, the RTSI bus
interface for each board is reset in this manner.

                                                                                

RTSI_Conn

Function
Connects a signal from the specified board to the specified trigger line.

Synopsis

C Syntax locus i32 RTSI_Conn(u32 deviceNumber, u32 signalCode, u32

triggerLine, u32 direction);

Pascal Syntax function RTSI_Conn(deviceNumber : i32; signalCode : i32;

triggerLine : i32; direction : i32) : i32;

BASIC Syntax FN RTSI_Conn(deviceNumber&, signalCode&, triggerLine&, direction&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

signalCode is the signal code number of the signal to be connected to the trigger line.  Signal code numbers for
each board type are given at the beginning of this chapter.

triggerLine is the RTSI bus trigger line that is to be connected to the signal.
Range:  0 through 6.

direction is the direction of the connection.  The value of direction corresponds to the direction of the signal.
0: receive signal (input, receiver) from the RTSI bus trigger line.
1: transmit signal (output, source) to the RTSI bus trigger line.

RTSI_Conn programs the RTSI interface on the specified deviceNumber such that the signal identified by
signalCode is connected to the trigger line specified by triggerLine.  For example, if the specified board is an
NB-DMA-8-G or NB-DMA2800 board, signalCode is 13, triggerLine is 3, and direction is 1, then the
NB-DMA-8-G or NB-DMA2800 RTSI interface is configured to drive the signal for OUT1 of the onboard
Am9513 onto trigger line 3.

You need two RTSI_Conn calls to make a connection between two boards.  For example, a second call can
access an NB-MIO-16 board with signalCode set to 2, triggerLine set to 3, and direction set to 0.  This call
configures the NB-MIO-16 board RTSI interface to receive a signal from trigger line 3 and drive it onto the
NB-MIO-16 EXTCONV* signal.  The total effect of these two calls is that the NB-MIO-16 EXTCONV* signal
is controlled by the OUT1 signal on the NB-DMA-8-G and NB-DMA2800 boards, thus controlling A/D
conversions on the NB-MIO-16 by timers on the NB-DMA-8-G and NB-DMA2800.

Rules for RTSI Bus Connections

Observe the following rules when routing signals over the RTSI bus trigger lines:

• Any signal can be connected to any trigger line.

© National Instruments Corporation 9-9 NI-DAQ Software Reference Manual for Macintosh



RTSI Bus Trigger Functions Chapter 9

• RTSI connections should have only one source signal but can have multiple receiver signals.  Connection
of two or more source signals causes bus contention over the trigger line.

• You can connect two or more signals on the same board together via a RTSI bus trigger line as long as the
above rules are followed.

• RTSI connections can be disconnected by using either RTSI_DisConn or RTSI_Clear.

                                                                                                                                                                                             

RTSI_DisConn

Function
Disconnects a signal on the specified board from the specified trigger line.

Synopsis

C Syntax locus i32 RTSI_DisConn(u32 deviceNumber, u32 signalCode, u32

triggerLine);

Pascal Syntax function RTSI_DisConn(deviceNumber : i32; signalCode : i32;

triggerLine : i32) : i32;

BASIC Syntax FN RTSI_DisConn(deviceNumber&, signalCode&, triggerLine&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

signalCode is the signal code number of the signal to be disconnected from the trigger line.  Signal code
numbers for each board type are given at the beginning of this chapter.

triggerLine is the RTSI bus trigger line that is to be disconnected from the signal.
Range:  0 through 6.

RTSI_DisConn programs the RTSI interface on the specified deviceNumber such that the signal identified 
by signalCode and the trigger line specified by triggerLine are disconnected.

Note: The same number of  RTSI_DisConn calls are needed to disconnect a connection as were needed
to make the connection in the first place.  (See the RTSI_Conn description for further explanation.)

                                                                                                                                                                                           

NI-DAQ Software Reference Manual for Macintosh 9-10 © National Instruments Corporation



Chapter 10
Waveform Generation Functions
                                                                                                          

This chapter describes the functions for generating analog waveform signals at the analog output channels.  The
three sets of functions described are as follows:

Synchronous Waveform Generation (WF_Grp) Functions–Control analog output boards for single-buffered or, if
the board can use DMA, double-buffered waveform generation on a group of analog output channels sharing a
common update clock.

Asynchronous Waveform Generation (WF) Functions–Control the following analog output boards for single-
buffered or double-buffered waveform generation on a single individually updated channel.

Buffered Waveform Generation (BWF) Functions–Control the following analog output board for buffered
waveform generation in which output data can be updated while the waveform generation is in progress.

See Appendix A to determine which function set works with your board.

Waveform Generation Hardware

System Timing for Waveform Generation

Some analog output boards require an NB-DMA-8-G or the NB-DMA2800 in the system for waveform
generation timing.  Table 10-1 lists the waveform generation boards that require DMA and the boards that will
automatically use DMA to service data requests, if available.  When DMA is not used, an interrupt routine
services the requests.

Table 10-1.  Waveform Generation DMA Requirements

Waveform Generation
Board

DMA Required DMA Used If
Available

NB-AO-6 Yes Yes

NB-MIO-16 Yes Yes

NB-MIO-16X No Yes

Lab and 1200 series No No

NB-A2100 No Yes

MIO E Series No No

Waveform Generation Using DMA

The NB-DMA-8-G and NB-DMA2800 connect to the other NB Series boards via the RTSI connector.  Each DMA
board has three independent update clocks that can be used for controlling waveform generation.  These clock
signals are generated by programmable counter/timers.  These clocks can generate DMA requests that cause new
values to be loaded into the DACs used for waveform generation during each update interval.  In addition, the
update clock is sent over the RTSI bus to clock the DACs on the waveform generation board.

One of the waveform generation update clocks on each DMA board can handle multiple-channel waveform
generation.  You can generate up to six different waveforms on six different analog output channels synchronized to

© National Instruments Corporation 10-1 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

this update clock.  The other two waveform clocks can handle one channel of waveform generation each.  Each
DMA board can generate up to seven waveforms in parallel.

Waveform generation on the NB-A2100 uses an internal clock to generate DMA requests that are serviced by DMA,
if a DMA channel is available.

Waveform Generation Without DMA

Some waveform generation boards use their own internal update clock for controlling waveform generation if DMA
is not available.  The update clocks generate interrupts that cause new values to be loaded into the DACs during each
update interval.  In addition, the update clock clocks the DACs on the analog output board.  Both DACs on each
analog output board are updated simultaneously with this clock to perform multiple-channel waveform generation.
The NB-MIO-16X uses counter 2; the Lab and 1200 series use counters A2 and B0; and the NB-A2100 and
MIO E Series use internal clocks to control waveform generation.

Synchronous Waveform Generation

Synchronous waveform generation allows several analog output channels to be loaded one at a time, and then all the
analog output voltages can be updated simultaneously with the update clock.  Synchronous waveform generation
provides two benefits–the analog output channel voltage changes precisely with the update clock edge; and for
multiple-channel waveform generation, the multiple-channel clock ensures that the analog output channel voltages
change at the same time.  This type of waveform generation requires double-buffered DACs.  Double-buffered
DACs are capable of storing a new output value when written to, and they wait to change the output voltage value
when a clock edge is received.

Asynchronous Waveform Generation

Asynchronous waveform generation updates only one analog output channel per update clock.  The analog output
voltage still changes once every update clock pulse; however, the delay between the analog output changing state
and the update clock pulse is variable.  This variable delay contributes some delay and phase jitter with respect to
the update clock.  The delay is due to the DAC changing its output voltage value whenever it is written to and not
waiting for a clock edge to change state.  The phase jitter results from variations in DMA servicing times for the
DAC.  This phase jitter is on the order of a few hundred nanoseconds and therefore may not be noticeable for
lower frequency update rates.  This type of waveform generation can be used with any type of DAC–double-
buffered, or single-buffered.  When a board with double-buffered DACs is used in the asynchronous waveform
generation mode, the DACs are simply configured to operate as if they were single-buffered DACs.

Synchronous Versus Asynchronous Waveform Generation

Obviously, synchronous waveform generation using double-buffered DACs is the preferred way to generate
waveforms.  It results in a high precision update rate and allows synchronization between waveforms.  However, the
NB-MIO-16 does not have double-buffered DACs.  In addition, a board with double-buffered DACs has one update
clock shared by all channels.  Therefore, either all channels must operate in synchronous mode with a single update
clock, or each channel must operate asynchronously, each with its own update clock.

NI-DAQ Software Reference Manual for Macintosh 10-2 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

Finally, the following combinations of asynchronous and synchronous waveform generation are possible when
using the NB-DMA-8-G or NB-DMA2800 to control waveform generation:

Asynchronous Synchronous

Three channels (any board) No channels

Two channels (any board other than the board
being used for synchronous waveform generation)

Up to four channels on a single NB-AO-6 board or
Up to two channels on a single NB-MIO-16X board

One channel (any board other than the board being
used for synchronous waveform generation)

Up to six channels on one NB-AO-6 or
Up to two channels on one NB-MIO-16X or
Up to four channels on one NB-AO-6 or up to two
channels on an NB-MIO-16X board and one channel on a
separate NB-AO-6 or NB-MIO-16X board

No channel boards Up to six channels on one NB-AO-6 or two channels on
one NB-MIO-16X board and one channel each on a
separate NB-AO-6 or NB-MIO-16X board or
Up to four channels on one NB-AO-6 or two channels on
one NB-MIO-16X board and up to one channel on each of
two separate NB-AO-6 or NB-MIO-16X

Notice that for asynchronous waveform generation, each channel has its own update clock, but for synchronous
waveform generation, all channels on the same board share the update clock.  In addition, only one clock is available
for multiple-channel waveform generation.

NB-MIO-16 Waveform Generation

The NB-MIO-16 contains two analog voltage output channels numbered 0 and 1.  Each analog output channel
contains a single-buffered DAC.  The NB-MIO-16 can use asynchronous waveform generation only.  Up to two
waveforms can be generated simultaneously on one NB-MIO-16 board, with each channel using a separate update
clock.  See Asynchronous Waveform Generation Call Sequences under Waveform Generation Application Hints
later in this chapter.

Analog output on the NB-MIO-16 can be hardware jumper-configured for the following output ranges:

• 0 to +10 V (unipolar, internal reference)

• -10 to +10 V (bipolar, internal reference)

• 0 to Vref (unipolar, external reference)

• -Vref to Vref (bipolar, external reference)

NB-MIO-16X Waveform Generation

The NB-MIO-16X contains two analog voltage output channels numbered 0 and 1.  Each analog output channel
contains a double-buffered DAC.  The NB-MIO-16X can use synchronous waveform generation only.  Up to two
waveforms can be generated simultaneously on one NB-MIO-16X board.

Both channels on the NB-MIO-16X share the same update clock.  A single NB-MIO-16X can generate up to two
different waveforms with synchronous waveform generation.  If the waveform generation operation is configured for
external timing, an external clock signal can be applied to OUT2 on the I/O connector to clock the DACs and control

© National Instruments Corporation 10-3 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

the update interval.  See Synchronous Waveform Generation under Waveform Generation Application Hints later in
this chapter.

The NB-MIO-16X uses the NB-DMA-8-G board or the NB-DMA2800 board for waveform generation if one of the
DMA boards is detected in the system.  If a DMA board is not present, then the NB-MIO-16X internal Counter 2 is
used to clock the DACs on the board.

Analog output on the NB-MIO-16X is configured for the following output ranges:

• 0 to +10 V (unipolar, internal reference)

• -10 to +10 V (bipolar, internal reference)

• 0 to Vref (unipolar, external reference)

• -Vref to Vref (bipolar, external reference)

PCI-MIO-16XE-50 Waveform Generation

Because of large interrupt latencies on PCI Macintosh computers, waveform generation will halt and an underflow
error will be returned at rates above a few hundred hertz.

The PCI-MIO-16XE-50 contains two analog voltage output channels numbered 0 and 1.  Each analog output
channel contains a double-buffered DAC.  The PCI-MIO-16XE-50 can use synchronous waveform generation only.
Up to two waveforms can be generated simultaneously on one PCI-MIO-16XE-50 board.

Both channels on the PCI-MIO-16XE-50 share the same update clock.  A single PCI-MIO-16XE-50 can generate up
to two different waveforms with synchronous waveform generation.  If the waveform generation operation is
configured for external timing, an external clock signal can be applied to a pin on the I/O connector to clock the
DACs and control the update interval.  See Synchronous Waveform Generation under Waveform Generation
Application Hints later in this chapter.

Analog output on the PCI-MIO-16XE-50 is configured for the following output range:

• -10 to +10 V (bipolar, internal reference)

NB-AO-6 Waveform Generation

The NB-AO-6 contains six analog output channels numbered 0 through 5.  Each channel provides both a voltage and
current output.  Each analog output channel contains a double-buffered DAC.  All channels on the NB-AO-6 share
the same update clock.  The NB-AO-6 can be operated such that either all channel outputs change synchronously
with respect to this update clock, or each output changes individually when written to.  The NB-AO-6 supports both
synchronous and asynchronous waveform generation.  Synchronous waveform generation allows up to six different
waveforms to be generated by a single NB-AO-6.  If asynchronous waveform generation is used, up to three
waveforms can be generated simultaneously on one NB-AO-6 board, with each channel using a separate update
clock.  See the discussions Synchronous Waveform Generation Call Sequences and Asynchronous Waveform
Generation Call Sequences under Waveform Generation Application Hints later in this chapter.

Analog voltage outputs on the NB-AO-6 can be hardware jumper-configured for the following output ranges:

• 0 to +10 V (unipolar, internal reference)

• -10 to +10 V (bipolar, internal reference)

• 0 to Vref (unipolar, external reference)

• -Vref to Vref (bipolar, external reference)

NI-DAQ Software Reference Manual for Macintosh 10-4 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

Lab and 1200 Series Waveform Generation

Because of large interrupt latencies on PCI Macintosh computers, waveform generation timing is unreliable on
PCI-1200s at rates above a few hundred hertz.

These boards contain two analog output channels numbered 0 and 1.  Each analog output channel contains a 12-bit
double-buffered DAC.  Each analog output channel can be hardware jumper configured for unipolar or bipolar
voltage with the following output ranges:

• 0 to +10 V (unipolar)

• -5 to +5 V (bipolar)

The DACs can be updated immediately upon writing to the DAC (asynchronous update mode) or updated at a later
time by applying an update pulse (synchronous update mode).  Waveform generation on the Lab-NB or Lab-LC uses
the synchronous update mode for generating waveforms.  Up to two waveforms can be generated simultaneously on
one Lab-NB or Lab-LC board, with each channel using the same update clock so that the outputs of both channels
change synchronously with respect to the update clock.  Synchronous waveform generation has two benefits:

• The analog output channel voltage changes precisely with the update clock edge.

• For two-channel waveform generation, the analog output voltages change at the same time.

Lab and 1200 Series Counter/Timer Signals

Waveform generation uses the onboard Counter A2 to produce the total update interval for waveform generation.
However, if the total update interval is greater than 65,535 µs, Counter B0 is used to generate the clock for a slower
timebase, which is used by Counter A2 to provide the total update interval.  Counter B0 then cannot be used by the
ICTR_Setup and ICTR_Reset functions for the duration of the waveform generation operation.  Counter B0
also cannot be used by the Data Acquisition Functions DAQ_Start and Lab_ISCAN_Start if the total sample
interval for data acquisition is also greater than 65,535 µs and Counter B0 is required to produce a timebase for data
acquisition different from the timebase being produced by Counter B0 for waveform generation.  Counter B0 is
considered available for waveform generation if any of the following is true:

• If data acquisition is not in progress and no ICTR_Setup call has been made on Counter B0 since startup.

• If data acquisition is not in progress and an ICTR_Reset call has been made on Counter B0.

• If data acquisition is in progress and is using Counter B0 to obtain the timebase required to produce the total
sample interval, this timebase is the same as required by Waveform Generation Functions to produce the total
update interval.  In this case, Counter B0 is used to provide the same timebase for both data acquisition and
waveform generation.

NB-A2100 Waveform Generation

The NB-A2100 contains two simultaneously-updated analog output channels numbered 0 and 1.  These 16-bit
resolution D/A channels use 8-times oversampling digital anti-imaging filters for extremely high fidelity data output.
Each channel also has a jumper to select AC or DC coupling.

The output range for each channel is ±3 V (or about 2.12 Vrms).

The DACs can be run at 16, 22.05, 24, 32, 44.1, or 48 kHz conversion rates.  A 32-bits wide, 16 words deep FIFO
memory on the board serves as a buffer to the DAC and can store 32 conversion values if one channel is being
output or 16 conversion values for each channel if both channels are being output.

The D/A conversion data can be received serially over the RTSI bus from other National Instruments boards such as
the NB-DSP2300 digital signal processing board.

© National Instruments Corporation 10-5 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

Waveform generation can be started by applying a software trigger or by applying a high-to-low edge on the
external digital trigger.  The digital trigger may be received through the EXTTRIG* pin on the I/O connector or over
the RTSI bus.

Synchronous and Asynchronous Waveform Generation
Function Summary

The Waveform Generation Functions, listed as follows, are divided into two groups–those for asynchronous
waveform generation and those for synchronous waveform generation.  The asynchronous Waveform Generation
Functions control individual channels, whereas the synchronous Waveform Generation Functions control a group of
channels.  For each set of Waveform Generation Functions, waveform loading and status checking are performed on
an individual channel basis; therefore, WF_Load and WF_Check are included in both groups of functions.

Asynchronous Waveform Generation Functions

These functions can be used for single-channel waveform generation:

WF_Check Checks to see if at least one cycle of the waveform has been generated.

WF_Load Loads the waveform buffer to be used for waveform generation.

WF_Offset Offsets the values in a waveform buffer for bipolar waveform generation (NB-MIO-16 only).

WF_Reset Resets the synchronous waveform generation on the specified board by stopping waveform
generation, and releases the DMA channels, analog output channels, and trigger line being
used for synchronous waveform generation.

WF_Setup Selects the update rate used for asynchronous waveform generation.

WF_Start Initiates asynchronous waveform generation.

WF_Stop Stops asynchronous waveform generation.

Each of the functions listed here operates on a single-channel basis.  Waveform generation can be configured,
started, and stopped on an individual channel basis.  Each channel receives its own update clock.  This type of
waveform generation can be performed by both the NB-MIO-16 and NB-AO-6.

Synchronous Waveform Generation Functions

These functions can be used for single-channel or multiple-channel waveform generation synchronized to a single
update clock:

WF_Check Checks to see if at least one cycle of the waveform has been generated.

WF_Grp_Reset Resets the synchronous waveform generation on the specified board by stopping waveform
generation and releases any DMA channels, analog output channels, and trigger line being
used for synchronous waveform generation.

WF_Grp_Setup Configures the board for subsequent synchronous waveform generation.

WF_Grp_Start Initiates synchronous waveform generation.

NI-DAQ Software Reference Manual for Macintosh 10-6 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

WF_Grp_Stop Stops synchronous waveform generation.

WF_Load Loads the waveform buffer to be used for waveform generation.

WF_Offset Offsets the values in a waveform buffer for bipolar waveform generation.

Several of the functions listed here operate on a group of analog output channels.  Channels can be configured,
started, and stopped on a group basis.  This type of waveform generation can be performed by the NB-MIO-16X,
NB-AO-6, Lab and 1200 series boards, and MIO E series boards.

Waveform Generation Application Hints

Waveform generation is performed by writing a buffer of values to an analog output channel controlled by an update
clock.  One value is written to the analog output channel every update interval, resulting in an output voltage change
every update interval.  The amplitude of the waveform is determined by the range of values in the buffer.  The
frequency of the waveform depends on the length of the buffer and the update interval.

The configuration information for the analog output circuitry is controlled by the AO_Setup function.  After
system startup, the analog output configuration defaults to bipolar output polarity.  If you have changed the jumper
configuration on your board, you must execute AO_Setup so that waveform generation functions work properly.

Fundamental Frequency

If you select continuous waveform generation, waveform generation repeatedly outputs the contents of the buffer
until stopped.  The fundamental frequency of the output waveform depends on three factors:

• update interval

• number of points in the buffer

• number of cycles in the buffer

The following formula determines the fundamental frequency of the generated waveform:

F = 
number of cycles per buffer

 update interval * timebase * number of points in buffer

Timebase is the timebase selected for the update interval counter.

For example, if the update interval is 10, timebase is 1 µs, the number of points per cycle of the waveform is 500,
and the buffer contains one cycle of the waveform, then the frequency of the output waveform is calculated as
follows:

F = 
1

(10 * 1 E-6 * 500)
 = 200 Hz

Minimum Update Interval

A minimum update interval of 4 µs per channel is recommended for both synchronous and asynchronous waveform
generation with DMA (an NB-DMA-8-G or NB-DMA2800 is present in the system).  For example, if one channel is
used, the update interval can be 4 µs.   If two channels are used simultaneously, then the update interval for each
channel should be no smaller than 8 µs, and so on.  The update interval is limited by the bus bandwidth of the
Macintosh computer when using DMA.  If the update interval is made smaller than recommended, waveform points
may be lost due to bus conflict.

© National Instruments Corporation 10-7 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

A minimum update interval of 100 µs/channel is recommended for waveform generation without DMA (an
NB-DMA-8-G or NB-DMA2800 is not present in the system).  For waveform generation on the Lab-LC a minimum
update interval of 125 µs/channel is recommended.  When you use waveform generation on the NB-MIO-16X
without DMA, interrupts are generated for every point in the waveform cycle.  Since these interrupts are serviced by
the Macintosh CPU, this large number of interrupts can result in sluggish response of the Macintosh user interface
(mouse moving slowly, and so on).  For generation of very high frequency waveforms, you may choose to use
DMA.  If an NB-DMA-8-G or NB-DMA2800 is present in the system, DMA is used to update the DACs on the
NB-MIO-16X.   The NB-MIO-16X waveform generation response is greatly improved with the use of DMA.

Minimum Buffer Size

There is no minimum buffer size restriction; however, an interrupt is generated at the end of each waveform cycle.
In the case where one or more waveforms are generated at high update rates, a large number of interrupts are
generated.  Since these interrupts are serviced by the Macintosh CPU, this large number of interrupts may result in
sluggish response of the Macintosh user interface (mouse moving slowly, and so on).  For generation of very high
frequency waveforms, you may choose to use a small update interval and very few points per cycle.  In this case, it
is recommended that you store several cycles of a waveform in a buffer to reduce the frequency of system interrupts
and improve the overall responsiveness of the computer.

Asynchronous Waveform Generation Call Sequences

The NB-AO-6 and NB-MIO-16 boards perform asynchronous waveform generation using the functions WF_Setup,
WF_Load, WF_Start, WF_Stop, WF_Reset, and WF_Check.  These functions control waveform generation on
an individual analog output channel basis.

To generate a waveform, you must create an array containing the waveform points.  First, call WF_Setup to
indicate the update interval for the analog output channel and to indicate single-cycle or continuous mode.  Calling
WF_Load passes the waveform to the channel.  WF_Start can then generate a waveform.

Once waveform generation on a given channel is started, you can stop it by calling WF_Stop.  You can then restart
it at any time by calling WF_Start, that is, until you call WF_Reset for that channel.  For continuous waveform
generation, you must call WF_Reset before you exit the application.  You can call WF_Check to determine
whether at least one cycle (an entire buffer) of the waveform has been generated.

WF_Reset clears waveform generation on a given channel at any time.  WF_Reset frees update clocks and DMA
channels for other NI-DAQ for Macintosh activities.

NI-DAQ Software Reference Manual for Macintosh 10-8 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

Figure 10-1.  Asynchronous Waveform Generation Flowchart

Synchronous Waveform Generation Call Sequences

The NB-AO-6, NB-MIO-16X, MIO E Series, and Lab and 1200 series boards perform synchronous waveform
generation using the functions WF_Grp_Setup, WF_Load, WF_Grp_Start, WF_Grp_Stop,
WF_Grp_Reset, and WF_Check.  These functions control waveform generation on a group of channels sharing a
single update clock.  These channels are updated simultaneously.  The NB-MIO-16X, MIO E Series, and Lab and
1200 series boards perform only synchronous waveform generation.  The NB-AO-6 performs both synchronous and
asynchronous waveform generation.  Synchronous waveform generation has more precise waveform generation
timing than asynchronous waveform generation; therefore, even if only one waveform is generated from the
NB-AO-6, you should use synchronous functions.

In order to generate a waveform, you must create one array containing waveform points for each channel.  First, call
WF_Grp_Setup to specify the group of channels and the update interval.  You must then pass a waveform to each
channel by calling WF_Load for each channel.  You can then initiate waveform generation on all channels by
calling WF_Grp_Start.

Once synchronous waveform generation starts, you can stop it by calling WF_Grp_Stop.  You can then restart it at
any time by calling WF_Grp_Start, that is, until you call WF_Grp_Reset.  The MIO E Series devices do not
support the WF_Grp_Stop function.  If continuous waveform generation was specified on any channel, you must
call WF_Grp_Reset before you exit the application.  You can call WF_Check for each channel to determine
whether at least one cycle (an entire buffer) of the waveform has been generated.

WF_Grp_Reset clears waveform generation on the channel group at any time.  WF_Grp_Reset frees update
clocks and DMA channels for other NI-DAQ for Macintosh activities.

© National Instruments Corporation 10-9 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

Figure 10-2.  Synchronous Waveform Generation Flowchart

Double-Buffered Waveform Generation Using WF_DBLoad

Table 10-2 shows the conditions under which you can use double-buffered waveform generation.

Table 10-2.  Conditions When You Can Use Double-Buffered Waveform Generation

Device Conditions

NB-AO-6 • Can be used if a DMA board is installed in the system
• Can be applied to asychronous or synchronous

waveform generation

NB-MIO-16 • Can be used if a DMA board is installed in the system
• Can be applied to asychronous or synchronous

waveform generation

NB-MIO-16X • Can be used if a DMA board is installed in the system
and the external update clock is not used

• Can be applied to asychronous or synchronous
waveform generation

PCI-MIO-16XE-50 • No restrictions

Because the synchronous waveform generation case is more involved, it will be used in the example that follows;
however, all the steps that are outlined apply to the asynchronous case as well.

In order to generate waveforms using the double-buffered mode, you must create two different buffers for every
channel included in the group.  One buffer, the buffer loaded during the initial call to WF_DBLoad, is called the
master buffer, and the handler divides it into two equal halves called buffer A and buffer B, as shown in
Figure 10-4 under the description of WF_DBLoad.  The other buffer will be used as an intermediate buffer and
will hold new data until that data has been copied into the next available half of the master buffer.

NI-DAQ Software Reference Manual for Macintosh 10-10 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

To configure the software for double-buffered waveform generation, you must run WF_Grp_Setup to configure
the channels in the group and the update interval for the waveform.  Then, for each channel in the group, you must
run WF_DBLoad in the load initial mode (see the description of the WF_DBLoad function for more information).
After all the channels have been loaded, run WF_Grp_Start to start the waveform operation.  Then, for each
channel in the group, you must run WF_DBLoad in the load next or load last mode; this step should be repeated
until all data has been written to the master buffer.  After the waveform generation ends, you should run
WF_Grp_Reset.

The WF_Grp_Stop and WF_Grp_Start functions can be used to stop and start the waveform at any point
during its generation.  However, once the last buffer is loaded or the WF_Grp_Reset function is executed, the
waveform operation must be reconfigured in order to generate more waveforms.  The MIO E Series devices do
not support the WF_Grp_Stop function.

A flowchart of the operations required for using double-buffered waveform generation is outlined in Figure 10-3.

WF_Grp_Start

WF_Check

(for number of channels
 to update)

WF_DBLoad

WF_Grp_Setup

WF_Grp_Stop

WF_Grp_Reset

Restart

(for number of channels
 to update)

AO_Setup

Done?

load initial

No
error?

Yes

No

No Yes

Yes

More
data?

No

Loop until done

Yes

No
error?

Yes

load next
or

load last

No

(for number of channels to update)

Time-out
error?

YesNo

WF_DBLoad

Figure 10-3.  Double-Buffered Waveform Generation Flowchart

© National Instruments Corporation 10-11 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

Externally Timed Waveform Generation

The NB-AO-6, NB-MIO-16X, MIO E Series and Lab and 1200 series can have an external clock signal to control
waveform generation.  You can configure a waveform generation operation for external timing by calling
WF_Grp_Setup.  Once configured for external timing, the external signal on the I/O connector clocks the DACs
and controls the update interval.  During an externally timed waveform generation operation on the NB-MIO-16X,
DMA is disabled.

WF_Check

Function
Checks to see if at least one cycle of the output waveform has been generated on the specified output channel.

Synopsis

C Syntax locus i32 WF_Check(u32 deviceNumber, u32 channel, u16 *status);

Pascal Syntax function WF_Check(deviceNumber : i32; channel : i32; var status :

i16) : i32;

BASIC Syntax FN WF_Check(deviceNumber&, channel&, status&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

channel is the analog output channel.
Range:  0 through n-1, where n is the number of analog output channels on the board.

status returns a value that reflects certain conditions of the waveform generation operation.  If count is set to 0
in WF_Load, a status of 0 indicates the waveform operation has not completed, while a status of 1 indicates
that the waveform operation has completed.  If count is set to 1 in WF_Load, a status of 0 indicates that less
than one full buffer of data has been generated, while a status of 1 indicates that the buffer has been generated
at least once.  For the double-buffered cases, a status of 0 indicates either that the waveform operation has not
started or that it is still in progress, while a status of 1 indicates that the waveform operation has terminated.  If
the waveform operation has terminated, the error code indicates whether the process halted under normal
conditions or aborted.

For single-cycle waveforms, the buffer parameter used in WF_Load should not be deallocated until
WF_Check returns status is 1.  For repetitive output or double-buffered waveforms, the buffer parameter used
in WF_Load should not be deallocated until a waveform reset function is called.

                                                                                                                                                                                             

NI-DAQ Software Reference Manual for Macintosh 10-12 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

WF_DBLoad

Function
Loads the waveform buffers to be used for single-buffered or double-buffered waveform generation.
WF_DBLoad is a superset of WF_Load; you can use it in place of WF_Load.  To configure double-buffered
waveforms, you must use WF_DBLoad.  Table 10-3 shows the conditions under which you can use double-
buffered waveform generation.

Table 10-3.  Conditions When You Can Use Double-Buffered Waveform Generation

Device Conditions

NB-AO-6 • Can be used if a DMA board is installed in the system
• Can be applied to asychronous or synchronous

waveform generation

NB-MIO-16 • Can be used if a DMA board is installed in the system
• Can be applied to asychronous or synchronous

waveform generation

NB-MIO-16X • Can be used if a DMA board is installed in the system
and the external update clock is not used

• Can be applied to asychronous or synchronous
waveform generation

PCI-MIO-16XE-50 • No restrictions

                                                                                                                                                                                             

WF_Load

Function
Loads the waveform buffers to be used for single-buffered waveform generation.  WF_Load is a subset of
WF_DBLoad; you can use it in place of WF_DBLoad except when using double-buffered waveforms.

WF_DBLoad Synopsis

C Syntax locus i32 WF_DBLoad(u32 deviceNumber, u32 channel, i16 *buffer, u32

count, u32 mode, u32 timeout);

Pascal Syntax function WF_DBLoad(deviceNumber : i32; channel : i32; buffer :

pi16; count : i32; mode : i32; timeout : i32) : i32;

BASIC Syntax FN WF_DBLoad(deviceNumber&, channel&, buffer&, count&, mode&,

timeout&)

© National Instruments Corporation 10-13 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

WF_Load Synopsis

C Syntax locus i32 WF_Load(u32 deviceNumber, u32 channel, i16 *buffer, u32

count, u32 mode);

Pascal Syntax function WF_Load(deviceNumber : i32; channel : i32; buffer : pi16;

count : i32; mode : i32) : i32;

BASIC Syntax FN WF_Load(deviceNumber&, channel&, buffer&, count&, mode&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

channel is the analog output channel.
Range:  0 through n-1, where n is the number of analog output channels on the board.

buffer is an integer buffer of length count.  The elements of buffer are the values constituting the output
waveform.

For most boards, if the specified analog output channel is configured for bipolar output, each element of the
buffer should range from -2,048 to +2,047.  Otherwise, if the analog output channel is configured for unipolar
output, each element of the buffer should range from 0 to 4,095.

When using the NB-MIO-16, each element of the buffer should range from 0 to 4,095 regardless of whether the
specified analog output channel is configured for unipolar or bipolar output.  WF_Offset can be called prior to
WF_Load or WF_DBLoad to offset the buffer values by 2,048 if needed (see WF_Offset).

count is the number of elements in buffer.
Range:  m through n, where m and n are defined by count as follows:

count m n

0
1

8† (load initial)

9† (load initial)
10 (load next)
11 (load next)
12 (load last)
13 (load last)

2
2

256
256
128
128
128
128

223 - 1
223 - 1
223 - 2
223 - 2
n0 ÷ 2

n0 ÷ 2

n0 ÷ 2

n0 ÷ 2

†count must be even

n0 is the value specified for n when count was 8

or 9 (when waveform generation was started)

If no DMA board is installed, the range for n is 2 through 231 (except the E Series boards) and 2 through
224 (E Series boards).

count selects the generation mode for the waveform.  The count parameter has the following possible values:
0: single-buffered waveform, single playback of buffer
1: single-buffered waveform, continuous playback of buffer
8: double-buffered waveform, load initial buffers, stop at end of second buffer if no new data is loaded
9: double-buffered waveform, load initial buffers, replay both buffers until new data is loaded
10: double-buffered waveform, load next buffer, stop at end of added buffer if no new data is loaded
11: double-buffered waveform, load next buffer, replay last two buffers until new data is loaded
12: double-buffered waveform, load last buffer, stop at end of added buffer
13: double-buffered waveform, load last buffer, replay last two buffers until stopped by a stop or reset call

NI-DAQ Software Reference Manual for Macintosh 10-14 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

A count setting of 0 or 1 selects a single-buffered waveform-generation mode–the former specifies a single
playback of the loaded buffer, while the latter specifies continuous playback of the loaded buffer (until a stop or
reset call is executed).

A count setting of 8, 9, 10, 11, 12, or 13 selects double-buffered waveform generation.  When double-buffered
waveform generation is used, there are three different cases to consider–load initial, load next, and load last.
Each of these cases has, in turn, two different playback options:  stop at end or continuous.

The load initial case is used to configure the initial buffers and to indicate to the software that double-buffered
waveform generation should be used.  In this case, the number of points loaded determines the size of the
master buffer.  The maximum size of each half of the master buffer is (count ÷ 2).  For example, if you wish to
continue adding 10,000-point buffers to the system, you should load at least 20,000 points during the load initial
call.

The load next and load last cases are used to copy a new buffer into the next available half of the master buffer.
Conceptually, there is no difference between these two modes; however, there is a functional difference
associated with the amount of error checking that takes place—the load last mode makes additional checks that
prevent any new buffers from being loaded.

The stop at end playback option is used to prevent stale data–data already used to generate an output–from
being replayed.  In the event that a new buffer of data is not loaded before the end of the last buffer is reached,
waveform generation is terminated with an error.

The continuous playback option is used to replay the last two buffers in the event new data is not loaded before
the end of the last buffer is reached.  If this option is selected, both halves of the master buffer are continuously
replayed–buffer A, buffer B, buffer A, buffer B, and so on.  If the previous mode was load initial or load next,
new data can be copied into the next available half of the master buffer.

Note: This function has no provision for specifying which half of the master buffer will be loaded.  The
function loads the halves sequentially, first A, then B, and so on.

timeout specifies, in ticks, the maximum amount of time to wait before returning from the load call; there are
60 ticks in each second.  This variable is of significance only if you are using double buffering.  Figure 10-4
shows how new buffers are copied into the master buffer, which affects timeout.

C

A                    B

n

m

Figure 10-4.  Waveform Master Buffer Scheme

When you make the load initial call, you have a single buffer (the master buffer) which is n values long.  This
buffer is divided into two buffers, buffer A and buffer B, each of which is (n ÷ 2) values long.  When you make
all subsequent calls, you are attempting to copy a buffer, buffer C, into the memory occupied by buffer A or
buffer B.  In this case, the length of buffer C, m, must be less than or equal to the length of buffer A (or
buffer B).  Therefore, m ≤ (n ÷ 2).  Because buffer C will be copied into memory occupied by an earlier portion
of your wave, the software must wait until the current buffer has been generated before it can copy buffer C into
the master buffer.  This is where timeout comes into play.  Let us say that buffer B is being generated when you

© National Instruments Corporation 10-15 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

try to load buffer C.  In addition, let us say that the software just began generating buffer B, that buffer A has
already been loaded with new data, and that it can take up to 30 seconds to finish generating buffer B.  In this
case, you may not want to wait all that time to load buffer C (which must be copied into master buffer B)–what
you would do in this case is set a small timeout, perhaps 3 seconds (180 ticks), after which your program can
do something else.  At some later time, your program tries again to load buffer C.  In this way, you can prevent
your program from stopping operation for a long period of time whenever you try to load a new buffer of data.

You can use WF_Load or WF_DBLoad to load a waveform buffer for asynchronous and synchronous
waveform generation on an analog output channel.  To set up an asynchronous waveform generation, the
desired channel and update interval must first be specified in a call to WF_Setup.  WF_Load or WF_DBLoad
is then called to specify a waveform buffer to be generated on the analog output channel.  Once the waveform
has been loaded, WF_Start, WF_Stop, WF_Reset, and WF_Check can be used to execute and complete the
asynchronous waveform operation.  An error code is returned if WF_Setup has not been called before
WF_Load or WF_DBLoad.  If you are using double buffering, WF_DBLoad is called in the load initial mode,
WF_Start is called, then WF_DBLoad is called again to update the master buffer.

To set up a synchronous waveform generation, the desired channels must first be specified in a
WF_Grp_Setup call.  The update interval indicated in WF_Grp_Setup applies to all the channels in the
group.  After WF_Grp_Setup, WF_Load or WF_DBLoad is called once for each channel in the group.  Once
a waveform has been loaded for each channel, WF_Grp_Start, WF_Grp_Stop, WF_Grp_Reset, and
WF_Check can be used to execute and complete the synchronous waveform operation.  An error is returned if
WF_Grp_Setup is not called before WF_Load or WF_DBLoad or if channel was not included in the group
defined by WF_Grp_Setup.  If you are using double buffering, WF_DBLoad is called in the load initial mode
for each channel, WF_Grp_Start is called, then WF_DBLoad is called again to update the master buffer–you
must make one call for each channel in the group.

There are several new error conditions that WF_DBLoad or WF_Check can return, as follows:

• noDataErr

• dmaChainingErr

• endBlkLoadedErr

A code of noDataErr indicates that no new data was available to replace the data that was just generated.  This
error occurs when the stop at end playback option halts the playback, and a subsequent WF_DBLoad is
attempted.  In this case, you can do one of two things to remedy the problem–either increase the update interval
(which increases the time required to generate the buffer), or increase the number of points in the buffer.

A code of dmaChainingErr indicates that the software was unable to reprogram the DMA controller before it
finished generating the current buffer.  Usually, this error indicates that some system operation had a higher
interrupt priority and was using the processor when the DMA controller requested an update.  To remedy the
problem, try running your waveform operation again.  This should solve the problem in most cases.  If the error
occurs repeatedly, treat this error as if it were a noDataErr.

A code of endBlkLoadedErr indicates that the last buffer of data has already been loaded (a previous load call
was made with mode set to load last).  You must restart the waveform operation before another load call can be
made.

In general, we suggest that you disable virtual memory when using the double-buffered waveform generation
calls.  The system uses interrupts to update the buffers; using virtual memory increases system interrupt latency
to the extent that DMA may shut down because of a lack of new data before the waveform buffers can update.

For single-cycle waveforms, do not deallocate the buffer parameter used in WF_Load or WF_DBLoad until
WF_Check returns 1 in status.  For repetitive output waveforms or double-buffered waveforms, do not
deallocate the buffer parameter used in WF_Load or WF_DBLoad until you call a waveform reset function.

                                                                                                                                                                                           

NI-DAQ Software Reference Manual for Macintosh 10-16 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

WF_Grp_Reset

Function
Resets the synchronous waveform by stopping waveform generation, and releases any DMA channels, analog
output channels, and trigger lines being used for synchronous waveform generation.

Synopsis

C Syntax locus i32 WF_Grp_Reset(u32 deviceNumber);

Pascal Syntax function WF_Grp_Reset(deviceNumber : i32) : i32;

BASIC Syntax FN WF_Grp_Reset(deviceNumber&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

WF_Grp_Reset first calls WF_Grp_Stop to stop synchronous waveform generation on the specified board
and then releases any DMA channels on the NB-DMA-8-G or NB-DMA2800 board, analog output channels on
the specified board, and trigger lines on the RTSI bus that were used for synchronous waveform generation.

                                                                                                                                                                                             

WF_Grp_Setup

Function
Configures the board for subsequent synchronous waveform generation on a group of channels.

Synopsis

C Syntax locus i32 WF_Grp_Setup(u32 deviceNumber, u32 channelCount, u16

*channels, u32 interval, u32 timebase);

Pascal Syntax function WF_Grp_Setup(deviceNumber : i32; channelCount : i32;

channels : pi16; interval : i32; timebase : i32) : i32;

BASIC Syntax FN WF_Grp_Setup(deviceNumber&, channelCount&, channels&, interval&,

timebase&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

channelCount is the number of analog output channels to be used for synchronous waveform generation.  The
following values are valid for channelCount on the NB-AO-6:

1, 2, 3, 4, 5, 6.

The following values are valid for channelCount on the NB-MIO-16X, MIO E Series, and Lab and 1200
series:

1, 2.

channels  is an integer array of length channelCount that indicates the analog output channels to be used for
synchronous waveform generation.

Range:  0 through n-1, where n is the number of analog output channels on the board

© National Instruments Corporation 10-17 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

channels can contain any analog output channel number in any order.  For example, if channelCount is 4, and
if channels[i] is 2, then analog output channel 2 is one of the four channels on which a synchronous waveform
can be generated.

interval is the update interval to be used for synchronous waveform generation.
Range: 3 through 65,536 (except the E Series boards).

2 through 224 (E Series boards).

The interval is a function of the timebase used.  The actual update interval in seconds is given by the following
formula:

interval  * timebase resolution

where the timebase resolution for each value of timebase is indicated below.  For example, if interval = 25 and
timebase = 2, then the update interval is 25 * 10 µs = 250 µs.  The interval parameter is ignored if timebase is

passed as 0.

timebase indicates the resolution of the timer used for the update interval counter.  timebase has the following
possible values:

-3: 20 MHz clock used as timebase (50-ns resolution).
0: External clock used to provide update interval.
1: 1-MHz clock used as timebase (1-µs resolution).
2: 100-kHz clock used as timebase (10-µs resolution).
3: 10-kHz clock used  as timebase (100-µs resolution).
4: 1-kHz clock used as timebase (1-ms resolution).
5: 100-Hz clock used as timebase (10-ms resolution).
6: SOURCE1 used as timebase.
7: SOURCE2 used as timebase.
8: SOURCE3 used as timebase.
9: SOURCE4 used as timebase.

10: SOURCE5 used as timebase.
11: External timebase

Range: 0 to 10 for most devices.
-3, 0, 2, 11 for E Series devices.

SOURCE1 through SOURCE5 are timing signals available on the NB-DMA-8-G and NB-DMA2800.  See the
description of NB-DMA-8-G and NB-DMA2800 counters and timers in Chapter 8, Counter/Timer Functions,
for more information about these signals.  If the waveform generation is on an NB-MIO-16X board, and an
NB-DMA-8-G or NB-DMA2800 is not present in the system, then SOURCE 1 through SOURCE 5 are timing
signals available on the NB-MIO-16X.  See the description of NB-MIO-16X counters and timers in Chapter 8,
Counter/Timer Functions for more information about these signals.

Setting timebase to 0 indicates that a signal connected to the I/O connector supplies the total update interval.
For example, if the frequency of the clock signal connected to the I/O connector is 5000 Hz, then the total
update interval is 1/5000, or 200 µs.  The external signal is connected to the EXTUPDATE* line on the Lab and
1200 series I/O connector.  The external signal is connected to the OUT2 signal on the NB-MIO-16X I/O
connector.  The external signal is connected to the EXT.UPD signal on the NB-AO-6 I/O connector.  Use the
AO_Setup call to configure the edge used for updating the DACs when using EXT.UPD.  Connect your
external signal to the PFI5 pin, by default, or use the Select_Signal function to specify a different source
for E Series devices.

WF_Grp_Setup marks the analog output channels indicated in channels busy.  If DMA is available, this
function allocates the appropriate number of DMA channels on an NB-DMA-8-G or NB-DMA2800 present in
the system.  Waveform generation on the NB-AO-6 requires DMA.  Waveform generation on the NB-MIO-16X
uses DMA if it is available; waveform generation on the PCI-MIO-16XE-50 and Lab and 1200 series never uses
DMA.  The appropriate error code is returned if DMA is needed and an NB-DMA-8-G or NB-DMA2800 board
is not detected in the system or one or more of the required DMA channels are not available.  Synchronous
waveform generation using DMA also requires the use of a trigger line on the RTSI bus; therefore, at least one

NI-DAQ Software Reference Manual for Macintosh 10-18 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

RTSI bus trigger line should be available.  The DMA channels, analog output channels, and one RTSI bus
trigger line used by the synchronous waveform generation operation are allocated by the WF_Grp_Setup call
and are deallocated by a call to WF_Grp_Reset.

                                                                                                                                                                                           

WF_Grp_Start

Function
Initiates synchronous waveform generation.

Synopsis

C Syntax locus i32 WF_Grp_Start(u32 deviceNumber);

Pascal Syntax function WF_Grp_Start(deviceNumber : i32) : i32;

BASIC Syntax FN WF_Grp_Start(deviceNumber&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

WF_Grp_Start initiates synchronous waveform generation on the specified board.  The number of channels,
update interval, and channel specification are selected in a WF_Grp_Setup call, and the waveform buffer or
buffers to be used are specified in WF_Load calls.

If count is 0 in a call to WF_Load for an analog output channel, then a single cycle of the waveform is
generated for that channel.  In single-cycle waveform generation, the contents of the buffer are output only
once.  Otherwise, the waveform is generated repeatedly until WF_Grp_Stop or WF_Grp_Reset is called.

A call to WF_Grp_Start can immediately follow a call to WF_Grp_Stop in order to restart waveform 
generation.  Waveform generation restarts at the position in the buffer where WF_Grp_Stop stopped the 
waveform generation.  The MIO E Series devices do not support WF_Grp_Stop.

                                                                                                                                                                                           

WF_Grp_Stop

Function
Stops synchronous waveform generation.

Synopsis

C Syntax locus i32 WF_Grp_Stop(u32 deviceNumber);

Pascal Syntax function WF_Grp_Stop(deviceNumber : i32) : i32;

BASIC Syntax FN WF_Grp_Stop(deviceNumber&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

WF_Grp_Stop stops synchronous waveform generation on the specified board.  A WF_Grp_Start call can
immediately follow a WF_Grp_Stop call to restart the waveform generation on the specified channel.

© National Instruments Corporation 10-19 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

Waveform generation restarts at the position in the buffer where waveform generation was stopped by
WF_Grp_Stop.  Notice that any DMA channels, analog output channels, and RTSI bus trigger lines used for
synchronous waveform generation remain allocated after a WF_Grp_Stop call.  WF_Grp_Reset, on the
other hand, stops synchronous waveform generation and releases any DMA channels, analog output channels,
and RTSI trigger lines used.  The MIO E Series devices do not support WF_Grp_Stop.

                                                                                                                                                                                           

WF_Offset

Function
Offsets the values in a waveform buffer for bipolar waveform generation (NB-MIO-16 only).

Synopsis

C Syntax locus i32 WF_Offset(u32 deviceNumber, u32 channel, u32 count, i16

*buffer);

Pascal Syntax function WF_Offset(deviceNumber : i32; channel : i32; count : i32;

buffer : pi16) : i32;

BASIC Syntax FN WF_Offset(deviceNumber&, channel&, count&, buffer&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

channel is the analog output channel.
Range:  0 through n-1, where n is the number of analog output channels on the board.

buffer is an integer buffer of length count.  The elements of the buffer are the values constituting the output
waveform.  If the DAC for the specified channel is configured for bipolar output, each element of the buffer
should range from -2,048 to +2,047.  Otherwise, if the DAC is configured for unipolar output, each element of
the buffer should range from 0 to 4,095.

count is the number of elements in buffer.
Range:  1 through 223-1.

When using the NB-MIO-16, each element of the buffer passed to WF_Load should always range from 0 to
4,095, regardless of whether the DAC for the specified channel is configured for unipolar or bipolar output.
WF_Offset can be called prior to WF_Load to offset each element in the buffer by 2,048 if needed.

WF_Offset first checks if deviceNumber is an NB-MIO-16 and if channel has been configured for bipolar
output.  If both of these conditions are met, WF_Offset simply adds an offset of 2,048 to each element in
buffer.  This addition results in buffer containing values ranging from 0 to 4,095.  If either of the conditions is
not met, WF_Offset returns buffer unchanged.  WF_Load can then be called to select this waveform buffer
for waveform generation on the analog output channel.

                                                                                                                                                                                             

NI-DAQ Software Reference Manual for Macintosh 10-20 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

WF_Reset

Function
Resets the asynchronous waveform by stopping waveform generation, and releases any DMA channel and
analog output channel being used for asynchronous waveform generation.

Synopsis

C Syntax locus i32 WF_Reset(u32 deviceNumber, u32 channel);

Pascal Syntax function WF_Reset(deviceNumber : i32; channel : i32) : i32;

BASIC Syntax FN WF_Reset(deviceNumber&, channel&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

channel is the analog output channel.
Range:  0 through n-1, where n is the number of analog output channels on the board.

WF_Reset first calls WF_Stop to stop asynchronous waveform generation on the specified board and then 
releases the DMA channel on the NB-DMA-8-G or NB-DMA2800 board and the analog output channel on the 
specified board.

                                                                                                                                                                                             

WF_Setup

Function
Selects the update rate used for asynchronous waveform generation.

Synopsis

C Syntax locus i32 WF_Setup(u32 deviceNumber, u32 channel, u32 interval, u32

timebase);

Pascal Syntax function WF_Setup(deviceNumber : i32; channel : i32; interval :

i32; timebase : i32) : i32;

BASIC Syntax FN WF_Setup(deviceNumber&, channel&, interval&, timebase&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

channel is the analog output channel.
Range:  0 through n-1, where n is the number of analog output channels on the board.

interval is the update interval to be used for waveform generation on the specified channel.
Range:  3 through 65,536.

The interval is a function of the timebase used.  The following formula gives the actual update interval in
seconds:

interval * timebase resolution

© National Instruments Corporation 10-21 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

where the timebase resolution for each value of timebase is indicated below.  For example, if you set interval
to 25 and timebase to 2, then the update interval is 25 * 10 µs = 250 µs.

timebase indicates the resolution of the timer used for the update interval counter.  The timebase parameter has
the following possible values:

1: 1-MHz clock used as timebase (1-µs resolution).
2: 100-kHz clock used as timebase (10-µs resolution).
3: 10-kHz clock used as timebase (100-µs resolution).
4: 1-kHz clock used as timebase (1-ms resolution).
5: 100-Hz clock used as timebase (10-ms resolution).
6: SOURCE1 used as timebase.
7: SOURCE2 used as timebase.
8: SOURCE3 used as timebase.
9: SOURCE4 used as timebase.

10: SOURCE5 used as timebase.

SOURCE1 through SOURCE5 are timing signals available on the NB-DMA-8-G and NB-DMA2800.  See the
description of NB-DMA-8-G and NB-DMA2800 counters and timers in Chapter 8, Counter/Timer Functions,
for more information about these signals.

WF_Setup selects the update interval and timebase to be used for asynchronous waveform generation.  If the
given channel has been configured as part of a synchronous group through a WF_Grp_Setup call, an error is
returned, indicating that the specified channel is not available.

                                                                                                                                                                                             

WF_Start

Function
Initiates asynchronous waveform generation.

Synopsis

C Syntax locus i32 WF_Start(u32 deviceNumber, u32 channel);

Pascal Syntax function WF_Start(deviceNumber : i32; channel : i32) : i32;

BASIC Syntax FN WF_Start(deviceNumber&, channel&)

Description

deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

channel is the analog output channel.
Range:  0 through n-1, where n is the number of analog output channels on the board.

WF_Start initiates asynchronous waveform generation on the specified channel.  The waveform buffer must
be specified in a WF_Load call.  If WF_Start is called without calling WF_Load first, an error code is
returned.

If count is set to 0 in a call to WF_Load for this analog output channel, then a single cycle of the waveform is
generated.  In single-cycle waveform generation, the contents of the buffer are output once and then the
operation stops.  Otherwise, the waveform is generated repeatedly until WF_Stop or WF_Reset is called.

A call to WF_Start can immediately follow a call to WF_Stop in order to restart the waveform generation.
Waveform generation restarts at the position in the buffer where waveform generation was stopped by
WF_Stop.

                                                                                                                                                                                             

NI-DAQ Software Reference Manual for Macintosh 10-22 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

WF_Stop

Function
Stops asynchronous waveform generation.

Synopsis

C Syntax locus i32 WF_Stop(u32 deviceNumber, u32 channel);

Pascal Syntax function WF_Stop(deviceNumber : i32; channel : i32) : i32;

BASIC Syntax FN WF_Stop(deviceNumber&, channel&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

channel is the analog output channel.
Range:  0 through n-1, where n is the number of analog output channels on the board.

WF_Stop stops asynchronous waveform generation on the specified board.  A call to WF_Start can 
immediately follow a call to WF_Stop in order to restart waveform generation on the specified channel.  
Notice that the DMA channel and analog output channel used for asynchronous waveform generation remain 
allocated after a call to WF_Stop.  WF_Reset, on the other hand, stops the asynchronous waveform 
generation and releases the DMA channel and analog output channel used.

                                                                                                                                                                                             

Buffered Waveform Generation Function Summary

Use the following functions for buffered waveform generation operations on the NB-A2100.

BWF_BlkLoad Updates the data in the waveform buffer without interrupting the background waveform
generation.

BWF_BufLoad Initializes a waveform buffer for waveform generation.  Indicates the data values and the rate
at which the waveform buffer will be output.  Also disables or enables block update mode for
the waveform generation.

BWF_Check Reports the completion status of the waveform generation, the buffer number being output,
the number of cycles that have been output, the number of points that have been output in the
current cycle (optionally), and the current waveform generation rate.

BWF_Clear Stops the waveform generation in progress and deallocates the resources being used for
waveform generation.

BWF_Rate Changes the current waveform generation rate at which the output channels are updated.

BWF_Resume Resumes the waveform generation stopped by BWF_Stop.

BWF_Start Starts waveform generation using the selected waveform buffer.

BWF_Stop Stops the waveform generation in progress.

© National Instruments Corporation 10-23 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

Buffered Waveform Generation Terminology

The following terminology is used to describe the Buffered Waveform Generation Functions.

Name Description

Group A group of channels configured to share the same update clock.

Channel An analog output channel number on which a waveform is being generated.

Waveform Buffer The one-dimensional array that contains the data to be output at a selected channel.

Points The number of data points that a waveform buffer contains.

Cycles The number of times the waveform buffer is cyclically output.

Update Interval The amount of time that elapses between the output of two consecutive points to
the output channel.  If the output buffer contains 100 points and the update interval
is 20 µs, the total time to output one cycle would be 100 * 20 = 2000 µs.

Blocks A division of a waveform buffer.  A waveform buffer can be divided into two or
more blocks for block update mode waveform generation.

Block Update Mode The waveform generation mode in which you can update data in one block of a
waveform buffer while another block of that waveform buffer is being generated.

Interleaved Buffer Data The data for channels 0 and 1 alternated in the same waveform buffer–channel 0's
first point, channel 1's first point, channel 0's second point, channel 1's second
point, and so on.  The two channels are tightly coupled and cannot be controlled
independently.  Therefore, channels 0 and 1 are treated as a single channel
(channel 2) with one shared interleaved buffer.

Buffered Waveform Generation Application Hints

Use the buffered waveform generation (BWF) functions for generation of analog output waveforms on the
NB-A2100.  The BWF functions use a circular waveform buffer to continuously generate a waveform at the analog
output channels.  You can use the BWF functions to update the circular buffer and change the output waveform data
or output rate while waveform generation is in progress. With a circular buffer, you can seamlessly generate an
unlimited amount of data without requiring an unlimited amount of memory.  Buffered waveform generation is
useful for data streaming from disk and for changing the output data in the circular waveform buffer on the fly.
Application flowcharts shown below step through creating a function generator or stream to disk application.

Buffered Waveform Generation Call Sequence

You can begin building a buffered waveform generation application by using BWF_BufLoad to load and initialize
a circular output buffer.  BWF_BufLoad selects the analog output channels, output rate, and the update mode.  A
circular buffer created by BWF_BufLoad can be divided into individual blocks.  These block divisions are used
later for updating blocks of data without interrupting the waveform generation.

Call BWF_Start to start the waveform generation.

While the waveform generation is in progress, you can optionally call five BWF functions repeatedly to control or
monitor the waveform generation:  BWF_Check, BWF_Rate, BWF_BlkLoad, BWF_Stop, and BWF_Resume.
BWF_Check monitors the status of the waveform generation.  BWF_Rate changes the output rate on the fly.
BWF_BlkLoad changes the output waveform values using various update methods described below.  BWF_Stop
suspends waveform generation.  BWF_Resume continues waveform output from where it was suspended by
BWF_Stop.

Call BWF_Clear to complete the waveform generation operation.

NI-DAQ Software Reference Manual for Macintosh 10-24 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

If changing the output waveform data or output rate while waveform generation is in progress is not necessary, then
BWF_BufLoad, BWF_Start, and BWF_Clear are the only functions needed to output a cycle of a waveform or
a continuous waveform.

BWF_Resume

BWF_BlkLoadBWF_Check BWF_Stop

BWF_Start

BWF_BufLoad

Optional

to return status to change 

output waveform 

to suspend

to resume

BWF_Clear

BWF_Rate

to change rate

Figure 10-5.  BWF Function Flowchart

Initializing Buffered Waveform Generation

BWF_BufLoad selects the analog output channels, output rate, and the update modes.  BWF_BufLoad also
initializes a circular output waveform buffer for waveform generation.  The data in the circular buffer is cyclically
generated continuously.  When the end of the circular buffer is reached, data from the beginning of the buffer is
generated until the specified number of cycles of the circular buffer have been generated or until the waveform
generation operation is cleared.

© National Instruments Corporation 10-25 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

If you want to synchronize the update of the waveform output values as the waveform generation is in progress, you
should use BWF_BufLoad to divide the circular buffer into individual blocks.  These block divisions are the update
divisions used later by BWF_BlkLoad for updating data without interrupting the waveform generation.  The
background waveform generation can be thought of as actually being performed in continuous fragments that are the
size of the smaller blocks specified.  Figure 10-6 represents blocks in the large circular buffer.  If updates do not
need to be synchronized, then specify a block size of 0 in BWF_BufLoad and use immediate update in
BWF_BlkLoad.

Buffer

size
Block

size

1 2 3 4

Figure 10-6.  Circular Waveform Buffer and Blocks

If you have divided the circular buffer into blocks and you do not want regeneration of old data to occur, you should
set regenerationMode in BWF_BufLoad to 1.  This insures that the waveform generation stops and data that has
been generated once is not generated a second time if the data has not been updated in the circular waveform buffer
with BWF_BlkLoad.

After initializing buffered waveform generation with BWF_BufLoad, you can start waveform generation by
executing BWF_Start.  This action begins the D/A conversion operations and the generation of data from the
circular waveform buffer.  If changing the output waveform data or output rate while waveform generation is in
progress is not necessary, then BWF_BufLoad, BWF_Start, and BWF_Clear are the only functions needed to
output a cycle of a waveform or a continuous waveform.

Updating Waveform Output During Waveform Generation

Use BWF_BlkLoad to update data in the circular output buffer during waveform generation.  You can update a
block of data or a range of points.  BWF_BlkLoad updates data on-the-fly in either of two modes:  block update
and immediate.  Block update mode synchronizes data updates and provides underwrite error detection.  Immediate
mode updates a range of points immediately with no error checking performed.

Note: DMA is required for block update mode.

Block Update of the Output Waveform

Setting copyMode equal to 1 or 2 in BWF_BlkLoad selects block update for updating the circular waveform buffer
during  waveform generation.

If copyMode is 1, the count selected in BWF_BlkLoad must be an integral multiple of the blockSize specified in
BWF_BufLoad.  This means that you can update one or more blocks in the block update mode with one
BWF_BlkLoad execution.  When multiple blocks are being updated, BWF_BlkLoad waits until all the blocks
have been updated before returning.  If copyMode is 2, the count selected in BWF_BlkLoad does not have to be an
integral multiple of block size specified in BWF_BufLoad.  When copyMode is set to 2, waveform generation

NI-DAQ Software Reference Manual for Macintosh 10-26 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

stops when data being copied into the circular waveform buffer by BWF_BlkLoad is generated once.  This mode is
useful for cleanly stopping waveform generation after a data file's last fragment which may not be the exact multiple
of blockSize.  You can use the timeout control in BWF_BlkLoad to set the maximum amount of time that
BWF_BlkLoad should wait to update the circular waveform buffer.

You can use two mechanisms for updating circular waveform buffer data during block update mode of waveform
generation.  The sequential update mechanism blocks of data in the order that they are generated.  The sequential
update is selected by setting startPoint to 0 in BWF_BlkLoad.  The selected update mechanism lets you update
any specified block.  The selected update is used if startPoint is set to a nonzero value in BWF_BlkLoad.

Sequential Block Update

Setting the startPoint parameter in BWF_BlkLoad to 0 selects the sequential update mode.   Data passed to
BWF_BlkLoad is copied into the next circular waveform buffer block, wrapping back to the beginning if needed.
An internal pointer cycles through the buffer to keep track of the next block.  You can use sequential block update to
easily buffer sequential output blocks without keeping track of their position in the circular buffer.

Selected Block Update

Setting startPoint in BWF_BlkLoad to a block boundary chooses the selected update mode.  A block boundary is
defined by the number of points in the circular waveform buffer and the block size.  So, if the circular buffer size is
10,000 and the block size is 2,500, the block boundaries would be at 1, 2,501, 5,001 and 7,501.  When startPoint is
at a block boundary, data in the block passed to BWF_BlkLoad is copied into the block of the circular waveform
buffer which starts at the block boundary specified by startPoint.  After the data is copied into the circular buffer,
the internal pointer is not updated as it was in the sequential update mode.

For both the sequential and the selected update modes, BWF_BlkLoad will not update a block buffer until it has
been generated as specified by the blockRepititions control in BWF_BlkLoad.  If blockRepititions is 1,
BWF_BlkLoad will not update a buffer block until it has been generated at least once.  This mode is useful for
applications which are generating data from a large disk file.  If some of the data in the circular waveform generation
data has been generated more than once, BWF_BlkLoad still does the copy, but it also returns an underWriteErr
which indicates this error condition.  If blockRepititions is 0, BWF_BlkLoad first will not update the buffer block
until the circular waveform buffer block is completely generated.  This mode is useful for changing the waveform
buffer data without any glitches.  If some data in the circular waveform buffer block is generated while the new data
is being copied into it, BWF_BlkLoad will return an underWriteErr.  If multiple blocks of the circular waveform
buffer are being updated, an underWriteErr is also returned if one of the blocks is generated more times than one of
the blocks that has already been updated during the multiple block update.  If an underWriteErr occurs while
copying one of the multiple blocks, BWF_BlkLoad will wait until all the blocks have been updated or a timeout
occurs.  Then it will return the underWriteErr.

Immediate Update of the Output Waveform

You can also do an immediate update of the output waveform using BWF_BlkLoad.   Setting the copyMode
parameter in BWF_BlkLoad to 0 selects the immediate update mode.  The immediate update mode immediately
copies the new data passed to BWF_BlkLoad into the waveform buffer and does not perform any underWriteErr
detection described above for block update waveform generation.  The immediate update mode does not require that
the waveform buffer be divided into blocks in BWF_BufLoad, therefore blockSize can be 0.  In the immediate
update mode, the startPoint and the count parameters to BWF_BlkLoad must be between 1 and the count
parameter that was passed to BWF_BufLoad.

Writing a Stream-from-Disk Application

The flowchart in Figure 10-7 illustrates the sequence of BWF functions needed to create a stream-from-disk
application.

© National Instruments Corporation 10-27 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

Read the first n points
into an array called buffer.

Read the next m points

into an array called block.

Read the next block

of data into block

End of file
reached?

N

Y

Y

N

Set data to buffer

Set cnt to n

Set blk_size to m

Set cycles to -1

Set data_regen to 0

Set data to block

Set num_pts to m

Set start_point to 0

Set blk_reps to 1

Set copy_mode to 1

Set data to block

Set num_pts in BWF_BlkLoad 

     to points read last time

Set start_point to 0

Set blk_reps to 1

Set copy_mode to 2

{

{

{

BWF_BufLoad

BWF_Start

BWF_BlkLoad

BWF_Check

BWF_Clear

BWF_BlkLoad

Status = 0

Figure 10-7.  Streaming from Disk Application Hints

NI-DAQ Software Reference Manual for Macintosh 10-28 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

Writing a Function Generator Application

The flowchart in Figure 10-8 illustrates the sequence of BWF functions needed to create a function generator
application.  The function generator continuously generates an output waveform and can switch to a new output
waveform at any time.  The waveform output changes with no delay between the last point of the previous
waveform and the first point of the new waveform.  This function generator example imposes the restriction that the
number of points in the output waveforms must be equal.

Fill an array called buffer with

n points of waveform data

BWF_BufLoad

BWF_Start

Y

N

Set data to buffer

Set cnt to n

Set blk_size to m

Set cycles to -1

Set data_regen to 0

Set data to buf2

Set num_pts to n

Set start_point to 0

Set blk_reps to 0

Change 

waveform being

generated

Fill another array called buf2

 with n points of the next

 waveform to be generated

BWF_Clear

{

{BWF_BlkLoad

Figure 10-8.  Function Generator Application Hints

© National Instruments Corporation 10-29 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

BWF_BlkLoad

Function
Updates the data in the waveform buffer without interrupting the background waveform generation.

Synopsis

C Syntax locus i32 BWF_BlkLoad(u32 deviceNumber, u32 group, u32 channel, u32

bufferNumber, u32 copyMode, i16 *buffer, u32 count, u32

Pascal Syntax function BWF_BlkLoad(deviceNumber : i32; group : i32; channel :

i32; bufferNumber : i32; copyMode : i32; buffer : pi16;

count : i32; startPoint : i32; blockRepititions : i32;

timeout : i32; var pointsCopied : i32; var lastPoint :

i32; var blockRepititionsDone : i32) : i32;

BASIC Syntax FN BWF_BlkLoad(deviceNumber&, group&, channel&, bufferNumber&,

copyMode&, buffer&, count&, startPoint&, blockRepititions&,

timeout&, pointsCopied&, lastPoint&, blockRepititionsDone&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

group is analog output channel group number.  group must be 0 for NB-A2100 because the NB-A2100 does
not allow configuration of channel groups.

channel is the analog output channel number(s) selected in BWF_BufLoad.
Range:  0:  Channel 0.

1:  Channel 1.
2:  Both channels 0 and 1.

bufferNumber selects the waveform buffer to be updated.  bufferNumber is always 1 for the NB-A2100.

copyMode selects the update mode.
Range: 0: Updates a range of data points in the waveform buffer using immediate update mode.

1: Updates a block of data in the waveform buffer using block update mode and continues
waveform generation.

2: Updates a block of data in the waveform buffer using block update mode and stops waveform
generation after the data block has been generated.

buffer contains the block data to be copied into the waveform buffer.

count is the total number of data points in buffer.

If copyMode is 0 or 2, count can range from 1 through count selected for bufferNumber in BWF_BufLoad.

If copyMode is 1, count must be an integer multiple of blockSize selected for bufferNumber in
BWF_BufLoad.

startPoint selects an index into the waveform buffer where buffer should be copied.

If copyMode is 0, startPoint must be between 1 and the count selected for bufferNumber in BWF_BufLoad.

If copyMode is 1 or 2, startPoint must be either at 0 or at a block boundary of bufferNumber .  So, if count in
BWF_BufLoad is 100 and blockSize was defined in BWF_BufLoad to be 25, startPoint can be 1, 26, 51, 76
or 0.  If startPoint is 0, a sequential block update is performed.  If startPoint is at a block boundary, selected
block update is performed.

NI-DAQ Software Reference Manual for Macintosh 10-30 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

blockRepititions indicates when the data is copied from buffer into the circular buffer of bufferNumber.
Range: 0: BWF_BlkLoad updates the buffer block immediately.  If the block to be updated is currently

being generated, BWF_BlkLoad copies buffer into the waveform block after generation of the
block is completed.

1: BWF_BlkLoad waits until the data in the buffer block has been generated at least once before
copying buffer into the waveform buffer.

blockRepititions is ignored for immediate update mode (copyMode = 0).

timeout is the number of clock ticks (1/60 s) to wait to copy the data.  There are two special cases for timeout:

-1: Wait indefinitely.
0: Return immediately if the block to be updated has not been generated.

timeout is ignored for immediate update mode (copyMode = 0).

pointsCopied indicates the number of points copied.

lastPoint indicates the index number of the last point where buffer was copied.
Range:  1 to the number of points in the waveform buffer.

blockRepititionsDone returns the number of times the data in the last updated block had been generated since
the last block update if copyMode is 1 or 2.  blockRepititionsDone always returns 0 if copyMode is 0.

See the Buffered Waveform Generation Application Hints section earlier in this chapter for more information on
how BWF_BlkLoad is used.

                                                                                                                                                                                             

BWF_BufLoad

Function
Initializes a waveform buffer for waveform generation.  Indicates the data values and the rate at which the
waveform buffer will be output.  Also disables or enables block update mode for the waveform generation.

Synopsis

C Syntax locus i32 BWF_BufLoad(u32 deviceNumber, u32 group, u32 channel, u32

bufferNumber, u32 cycles, i16 *buffer, u32 count, u32

interval, u32 timebase, u32 triggerMode, u32 blockSize,

u32 regenerationMode);

Pascal Syntax function BWF_BufLoad(deviceNumber : i32; group : i32; channel :

i32; bufferNumber : i32; cycles : i32; buffer : pi16;

count : i32; interval : i32; timebase : i32; triggerMode

: i32; blockSize : i32; regenerationMode : i32) : i32;

BASIC Syntax FN BWF_BufLoad(deviceNumber&, group&, channel&, bufferNumber&,

cycles&, buffer&, count&, interval&, timebase&, triggerMode&,

blockSize&, regenerationMode&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

group is analog output channel group number.  group must be 0 for NB-A2100 because the NB-A2100 does
not allow configuration of channel groups.

© National Instruments Corporation 10-31 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

channel is the analog output channel number(s).
Range:  0:  Channel 0.

1:  Channel 1.
2:  Both channels 0 and 1.

bufferNumber is the number to be assigned to the buffer being loaded.  Currently only one buffer can be
loaded at a time, so bufferNumber must be 1.

cycles is the number of cycles of the waveform buffer to generate.
Range: -1:  Generate infinite number of cycles, that is, continue waveform generation indefinitely.

≥1:  Generate the selected number of cycles.

buffer is the integer buffer that contains the values defining the output waveform.  If channel is 2 on the
NB-A2100, buffer must contain interleaved data for channels 0 and 1.

count is the total number of data points in buffer.  count must be an even number.
Range:  2 through 231.

If cycles is not = -1, the total number of points to be output, determined by count * cycles, must be greater
than 32.

interval is the length of the update interval (that is, the amount of time to elapse between updates on the
channel).

Range: 0: Use the default rate or the rate parameters defined by the latest BWF_Rate call since startup.
At startup, the default interval on the NB-A2100 is set to 1 and default timebase is set to 1.

1: Use an update interval of 1.  The actual update interval in seconds can be calculated as follows:

interval 

timebase frequency

where the timebase frequency is selected by timebase.

timebase is the frequency of the timer used for the update interval.  On the NB-A2100, timebase has the
following possible values:

1: 48 kHz.
2: 44.1 kHz.
3: 32 kHz.
4: 24 kHz.
5: 22.05 kHz.
6: 6 kHz.

timebase is ignored if interval is 0.

triggerMode enables or disables the digital trigger input (EXTTRIG*) on the NB-A2100 I/O connector and
determines when BWF_Start starts the waveform output.

Range:  0:  Start immediately.
1:  Wait for a falling edge on EXTTRIG* input.
2:  Wait for a falling edge on EXTTRIG* input to start waveform output for every cycle.

If triggerMode is 1, and waveform output for the waveform buffer starts after a trigger is applied, the
subsequent cycles of the waveform buffer are output with a software trigger.  If triggerMode is 2, each cycle of
the waveform buffer is output after a trigger is received on the EXTTRIG* input.

NI-DAQ Software Reference Manual for Macintosh 10-32 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

blockSize enables or disables block update mode.  If blockSize is not 0, the BWF_BufLoad sets the number of
samples in a block of data and has the following possible values:

0: Disables block update mode.  Does not divide the buffer into blocks.  If blockSize is 0, you cannot use
BWF_BlkLoad in the block update mode.  However, you can still use BWF_BlkLoad to update a
range of points in the buffer in the immediate update mode.

16 through count/2: Enables block update mode.  blockSize is used to divide the waveform buffer data
into count/blockSize number of blocks of data.  In this mode, you can use BWF_BlkLoad in block
update mode to update the output waveform.  blockSize should be at least 16 and such that count is an
integer multiple of blockSize.

Block update mode can be enabled only if a DMA channel is available.

regenerationMode determines if waveform generation should stop after data in the waveform buffer has been
generated once.

Range: 0: Continue cycling through the buffer after data has been generated once.
1: Stop after data has been generated once.  This mode is only used in block update mode

(blockSize is not 0).

If regenerationMode is 0, waveform generation continues even if BWF_BlkLoad is not called in time to
replace generated data in the waveform buffer.  If regenerationMode is 1, waveform generation stops if
BWF_BlkLoad is not called in time to replace generated data in the waveform buffer.  blockSize should be
less than or equal to count/3 if you want to set regenerationMode to 1.  Setting regenerationMode to 1
ensures seamless waveform generation.

The channel selected in BWF_BufLoad defines the channel(s) for waveform generation.  The channel number
selected in subsequent buffered waveform generation functions must be the same as channel.  To switch to a
different channel after a BWF_BufLoad has been made, you must call BWF_Clear and then call
BWF_BufLoad with the new channel number.

                                                                                                                                                                                             

BWF_Check

Function
Reports the completion status of the waveform generation, the buffer number being output, the number of cycles
that have been output, the number of points that have been output in the current cycle (optionally), and the
current waveform generation rate.

Synopsis

C Syntax locus i32 BWF_Check(u32 deviceNumber, u32 group, u32 channel, u32

checkMode, u16 *status, u32 *bufferNumber, u32

*cyclesOutput, u32 *pointsOutput, u32 *interval, u16

*timebase);

Pascal Syntax function BWF_Check(deviceNumber : i32; group : i32; channel : i32;

checkMode : i32; var status : i16; var bufferNumber :

i32; var cyclesOutput : i32; var pointsOutput : i32; var

interval : i32; var timebase : i16) : i32;

BASIC Syntax FN BWF_Check(deviceNumber&, group&, channel&, checkMode&, status&,

bufferNumber&, cyclesOutput&, pointsOutput&, interval&,

timebase&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

© National Instruments Corporation 10-33 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

group is analog output channel group number.  group must be 0 for NB-A2100 because the NB-A2100 does
not allow configuration of channel groups.

channel is the analog output channel number(s) selected in BWF_BufLoad.
Range:  0:  Channel 0.

1:  Channel 1.
2:  Both channels 0 and 1.

checkMode selects whether to return complete or minimal status information and determines the value returned
by pointsOutput.

Range: 0:  Return minimal status information.
1:  Return full status information.

Full status information requires interrupting the waveform generation, if DMA is being used, and can therefore
affect waveform generation performance.  Use minimal status information when possible for optimized
performance.

status indicates whether waveform generation is in progress or has been stopped because the required number
of cycles on the buffer loaded have been output; or an error has occurred; or BWF_Stop has been called.

0: The waveform generation is in progress.
1: The waveform generation has ended, that is, the required number of cycles of the buffer have been

output, or an error occurred.
2: The waveform generation has stopped because BWF_Stop was called.  The waveform operation can be

resumed by calling BWF_Resume.
3: The waveform generation stopped because old data was about to be regenerated.  This value of status is

only possible when block update mode is enabled for the buffer being generated and regenerationMode
was set to 1 in BWF_BufLoad.

bufferNumber indicates the buffer number that is currently being output if waveform generation is in progress
or is the buffer number that was being output when waveform generation stopped.  This will always return 1 for
the NB-A2100.

cyclesOutput indicates the number of cycles of bufferNumber that have been output.

pointsOutput indicates the number of data buffer points that have been output.  If checkMode is 0,
pointsOutput will always be 0.  If checkMode is 1, pointsOutput will return the number of the data buffer
points that have been written to the D/A FIFO during the current cycle.  The NB-A2100 has a 16-word (one
word is 32 bits) FIFO on the board so the FIFO can contain up to 32 data points.  Therefore, the pointsOutput
indicates the index of the data point that will be output after 32 update intervals.

interval indicates the current update interval (that is, the amount of time to elapse between updates on the
channel) being used for waveform generation.  The actual update interval in seconds can be calculated as
follows:

interval 

timebase frequency

where the timebase frequency is defined by timebase, described as follows.

timebase indicates the frequency of the timer used to determine the update interval.  On the NB-A2100,
timebase has the following possible values:

1: 48 kHz.
2: 44.1 kHz.
3: 32 kHz.
4: 24 kHz.
5: 22.05 kHz.
6: 16 kHz.

                                                                                                                                                                                             

NI-DAQ Software Reference Manual for Macintosh 10-34 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

BWF_Clear

Function
Stops the waveform generation in progress and deallocates the resources used for waveform generation.

Synopsis

C Syntax locus i32 BWF_Clear(u32 deviceNumber, u32 group, u32 channel);

Pascal Syntax function BWF_Clear(deviceNumber : i32; group : i32; channel : i32)

: i32;

BASIC Syntax FN BWF_Clear(deviceNumber&, group&, channel&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

group selects the analog output channel group number.  group must be 0 for the NB-A2100.

channel is the analog output channel number(s) selected in BWF_BufLoad.
Range:  0:  Channel 0.

1:  Channel 1.
2:  Both channels 0 and 1.

Call BWF_Clear before exiting to stop waveform generation in progress on channel and release any DMA
channels used for waveform generation.

                                                                                                                                                                                             

BWF_Rate

Function
Changes the current waveform generation rate at which the output channels are updated.

Synopsis

C Syntax locus i32 BWF_Rate(u32 deviceNumber, u32 group, u32 channel, u32

interval, u32 timebase, u32 mode);

Pascal Syntax function BWF_Rate(deviceNumber : i32; group : i32; channel : i32;

interval : i32; timebase : i32; mode : i32) : i32;

BASIC Syntax FN BWF_Rate(deviceNumber&, group&, channel&, interval&, timebase&,

mode&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

group is analog output channel group number.  group must be 0 for NB-A2100 because the
NB-A2100 does not allow configuration of channel groups.

channel is the analog output channel number(s) selected in BWF_BufLoad.
Range:  0:  channel 0.

1:  channel 1.
2:  Both channels 0 and 1.

© National Instruments Corporation 10-35 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

interval is the length of the update interval (that is, the amount of time to elapse between updates on the
channel).  The actual update interval in seconds can be calculated as follows:

interval / timebase frequency

where the timebase frequency is defined by timebase, described as follows.

On the NB-A2100, interval must be 1.

timebase is the frequency of the timer which determines the update interval. On the NB-A2100, timebase has
the following possible values:

1: 48 kHz.
2: 44.1 kHz.
3: 32 kHz.
4: 24 kHz.
5: 22.05 kHz.
6: 16 kHz.

mode selects the mode to use for changing the waveform generation rate.
0: BWF_Rate immediately changes the current waveform generation rate.
1: BWF_Rate returns immediately, but synchronizes when the new waveform rate is changed.  If

waveform generation is in progress, the waveform generation rate is changed after the current waveform
cycle is complete.  If waveform generation is not in progress, the rate is changed when waveform
generation is resumed on the current buffer or started on a new buffer whose rate was not specified in
BWF_BufLoad (interval = 0).

BWF_Rate sets the default waveform generation rate for waveform buffers that have not specified a rate in
BWF_BufLoad.  If waveform generation has been started, BWF_Rate changes the current waveform
generation rate of the buffer being output.  However, if waveform generation is restarted through BWF_Start,
the rate specified in BWF_BufLoad is used again.

                                                                                                                                                                                             

BWF_Resume

Function
Resumes the waveform generation stopped by BWF_Stop.

Synopsis

C Syntax locus i32 BWF_Resume(u32 deviceNumber, u32 group, u32 channel);

Pascal Syntax function BWF_Resume(deviceNumber : i32; group : i32; channel :

i32) : i32;

BASIC Syntax FN BWF_Resume(deviceNumber&, group&, channel&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

group is analog output channel group number.  group must be 0 for the NB-A2100.

channel is the analog output channel number(s) selected in BWF_BufLoad.
Range:  0:  Channel 0.

1:  Channel 1.
2:  Both channels 0 and 1.

NI-DAQ Software Reference Manual for Macintosh 10-36 © National Instruments Corporation



Chapter 10 Waveform Generation Functions

BWF_Resume resumes waveform generation from the point where the generation was stopped by BWF_Stop.
If the NB-A2100 was waiting for an external trigger when BWF_Stop was called, BWF_Resume resumes the
waveform generation in the same trigger state.  Otherwise, if the NB-A2100 was not waiting for a trigger when
BWF_Stop is called, BWF_Resume provides a software trigger to resume waveform generation.

                                                                                                                                                                                             

BWF_Start

Function
Starts waveform generation using the selected waveform buffer.

Synopsis

C Syntax locus i32 BWF_Start(u32 deviceNumber, u32 group, u32 channel, u32

*bufferNumbers, u32 startMode);

Pascal Syntax function BWF_Start(deviceNumber : i32; group : i32; channel : i32;

var bufferNumbers : i32; startMode : i32) : i32;

BASIC Syntax FN WF_Start(deviceNumber&, channel&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

group is analog output channel group number.  group must be 0 for NB-A2100 because the
NB-A2100 does not allow configuration of channel groups.

channel is the analog output channel number(s) selected in BWF_BufLoad.
Range:  0:  Channel 0.

1:  Channel 1.
2:  Both channels 0 and 1.

bufferNumber contains the buffer number for each channel in a group.  Because the NB-A2100 does not allow
configuration of channel groups, only the buffer number at index 0 of bufferNumber is used.  Currently the
buffer number in bufferNumber must be set to 1.

startMode selects the mode to use for starting the generation of data in the specified buffer number in
bufferNumber.  startMode must be set to 0 for the NB-A2100.

                                                                                                                                                                                             

© National Instruments Corporation 10-37 NI-DAQ Software Reference Manual for Macintosh



Waveform Generation Functions Chapter 10

BWF_Stop

Function
Stops the waveform generation in progress.

Synopsis

C Syntax locus i32 BWF_Stop(u32 deviceNumber, u32 group, u32 channel, u32

stopMode);

Pascal Syntax function BWF_Stop(deviceNumber : i32; group : i32; channel : i32;

stopMode : i32) : i32;

BASIC Syntax FN BWF_Stop(deviceNumber&, group&, channel&, stopMode&)

Description
deviceNumber is the device number of the board you want NI-DAQ to use for this function.  Please refer to the
Devices section in Chapter 1, Getting Started, for more information.

group is analog output channel group number.  group must be 0 for the NB-A2100.

channel is the analog output channel number(s) selected in BWF_BufLoad.
Range:  0:  Channel 0.

1:  Channel 1.
2:  Both channels 0 and 1.

stopMode selects the mode for stopping waveform generation.
Range: 0: BWF_Stop stops waveform generation immediately.

1: BWF_Stop returns immediately.  Waveform generation stops after the current cycle of the
waveform is completed.

BWF_Resume resumes a waveform generation stopped by BWF_Stop.

                                                                                                                                                                                             

NI-DAQ Software Reference Manual for Macintosh 10-38 © National Instruments Corporation



Chapter 11
NI-DAQ for Macintosh Examples
                                                                                                        

This chapter describes the examples included in the NI-DAQ for Macintosh software.  These examples show you
how you can use various NI-DAQ for Macintosh functions in actual applications.  Examples written in C are in the
C/C++ Examples folder.  The Pascal Examples folder includes examples written in Pascal.  Refer to
Chapter 1, Getting Started, for instructions on creating and running these example applications using the different
language environments.

The example descriptions in this chapter apply to all languages.  The corresponding source files can be found on
disk with the example name followed by the appropriate language extension.  Pascal source files use the .pas
extension, C source files use the .c extension.

There are some example programs included on disk that are not described in this chapter.  The comments in the
source code of these programs should fully explain the operation and structure of the programs.  In particular, there
are examples describing the use of the SCXI functions that are included on disk, but are not described in this
chapter.

NI-DAQ for Macintosh Examples

The following examples are included on the NI-DAQ for Macintosh diskettes.  A list of boards that can be used with
the example and the NI-DAQ function calls used follows each description:

• OneShotScope(1ch) Uses NI-DAQ for Macintosh single-buffered Data Acquisition (DAQ)
functions to perform single-channel data acquisition and graph the results.

Boards supported:  MIO boards, Lab and 1200 series, DAQCard-500,
DAQCard-700

NI-DAQ functions used:  DAQ_Start, DAQ_Check, DAQ_Scale

• OneShotScope(2ch) Uses NI-DAQ for Macintosh single-buffered Data Acquisition (SCAN)
functions to perform multiple-channel scanned data acquisition and graph the
results.

Boards supported:  MIO boards

NI-DAQ functions used:  SCAN_Setup, SCAN_Start, SCAN_Check,
SCAN_Demux, DAQ_Scale, DAQ_Clear

• Lab-OneShotScope(2ch) Uses NI-DAQ for Macintosh single-buffered Data Acquisition (Lab_ISCAN)
functions to perform multiple-channel scanned data acquisition and graph the
results.

Boards supported:  Lab and 1200 series, DAQCard-500, DAQCard-700

NI-DAQ functions used:  Lab_ISCAN_Start, Lab_ISCAN_Check,
SCAN_Demux, DAQ_Scale, DAQ_Clear

• Oscilloscope Uses NI-DAQ for Macintosh double-buffered Data Acquisition (DAQ2)
functions to continuously acquire and graph the data from an A/D channel.

© National Instruments Corporation 11-1 NI-DAQ Software Reference Manual for Macintosh



NI-DAQ for Macintosh Examples Chapter 11

Boards supported:  MIO boards and Lab and 1200 series

NI-DAQ functions used:  DAQ2Config, DAQ_Start, DAQ2TTap,
DAQ_Scale, DAQ2Clear

• StreamToDisk(1ch) Uses NI-DAQ for Macintosh double-buffered Data Acquisition (DAQ2)
functions to perform single-channel data acquisition and stream the data to
disk as the data is acquired.

Boards supported:  MIO boards, Lab and 1200 series, DAQCard-500,
DAQCard-700

NI-DAQ functions used:  DAQ2Config, DAQ_Start, DAQ2TGet,
DAQ2Clear

• StreamToDisk(4ch) Uses NI-DAQ for Macintosh double-buffered Data Acquisition (DAQ2)
functions to perform multiple-channel data acquisition and stream the data to
disk as the data is acquired.  Individual files are created for each channel's
data.

Boards supported:  MIO boards

NI-DAQ functions used:  DAQ2Config, SCAN_Setup, SCAN_Start,
DAQ2TGet, SCAN_Demux, DAQ2Clear

• AsyncFuncGenerator Uses NI-DAQ for Macintosh asynchronous Waveform Generation (WF)
functions to produce a 400-Hz sine, square, or triangle waveform on an analog
output channel.

Boards supported:  NB-MIO-16 and NB-AO-6; both boards require an
NB-DMA-8-G or NB-DMA2800 in the system for waveform generation.

NI-DAQ functions used:  WF_Setup, WF_Offset, WF_Load,
WF_Start, WF_Stop, WF_Reset

• SyncFuncGenerator Uses NI-DAQ for Macintosh synchronous Waveform Generation (WF_Grp)
functions to produce a 25-Hz sine waveform on analog output channel 0 and a
1.25-kHz square wave on analog output channel 1.

Boards supported:  NB-MIO-16X, E Series boards, Lab and 1200 series, and
NB-AO-6; the NB-AO-6 requires an NB-DMA-8-G or NB-DMA2800 in the
system for waveform generation.

NI-DAQ functions used:  WF_Grp_Setup, WF_Load, WF_Grp_Start,
WF_Grp_Stop, WF_Grp_Reset

• SampleAndGenerate Uses NI-DAQ for Macintosh asynchronous Waveform Generation (WF)
functions together with double-buffered Data Acquisition (DAQ2) functions
to continuously sample an input waveform and then generate the sample.

Board supported:  NB-MIO-16; this board requires an NB-DMA-8-G or
NB-DMA2800 in the system for waveform generation.

NI-DAQ functions used:  DAQ2Config, DAQ_Start, DAQ2TTap,
DAQ2Clear, WF_Setup, WF_Offset, WF_Load, WF_Start, WF_Stop,
WF_Reset

NI-DAQ Software Reference Manual for Macintosh 11-2 © National Instruments Corporation



Chapter 11 NI-DAQ for Macintosh Examples

• PreTrig_Interval_Scan Uses NI-DAQ for Macintosh (SCAN_Int) functions to acquire and graph
data from an interval-scanning data acquisition using pretriggering.  Interval
scanning can be used to simulate simultaneous sampling of a group of
channels.

Boards supported:  NB-MIO-16X and E Series devices

NI-DAQ functions used:  DAQ_PreTrig, SCAN_Setup,
SCAN_IntStart, SCAN_Check, SCAN_Demux, DAQ_Scale,
DAQ_Clear

• Digital_Blk_Transfer Uses NI-DAQ for Macintosh Digital Block (DIG_Blk) functions to transfer a
buffer of digital data to and from two digital groups on a board using
handshaking.

Board supported:  NB-DIO-32F

NI-DAQ functions used:  DIG_Grp_Config, DIG_Blk_Start,
DIG_Grp_Status, DIG_In_Group, DIG_Blk_Clear

• SqWaveGenerator Uses NI-DAQ for Macintosh Interval Counter (ICTR) functions to produce a
50 percent duty-cycle square wave of any frequency between 32 Hz
and 1 MHz.

Boards supported:  Lab and 1200 series, DAQCard-500, DAQCard-700

NI-DAQ functions used:  ICTR_Setup

• MultiChannelDVM Uses NI-DAQ for Macintosh Multiple-channel Analog Input (MAI) functions
to collect four simultaneous readings from four channels of the NB-A2000 or
two simultaneous readings from two channels of the NB-A2100 or
NB-A2150.

Boards supported:  NB-A2000, NB-A2100, and NB-A2150

NI-DAQ functions used:  MAI_Coupling, MAI_Setup, MAI_Read,
MAI_Scale, MAI_Clear

• GetFramesAndGraph Uses NI-DAQ for Macintosh double-buffered Multiple-channel Data
Acquisition (MDAQ) functions to perform a high speed data acquisition and
graph the results.

Boards supported:  NB-A2000, NB-A2100, and NB-A2150

NI-DAQ functions used:  Board_ID, MAI_Coupling, MAI_Setup,
MDAQ_Trig_Config, MDAQ_Setup, MDAQ_ScanRate, MDAQ_Start,
MDAQ_Check, MDAQ_Get, MAI_Scale, MDAQ_Clear

• MDAQ_OpExample Uses the example function MDAQ_Op to acquire one frame of data from the
NB-A2000, the NB-A2100, or the NB-A2150 and then graphs the results.

Boards supported:  NB-A2000, NB-A2100, or NB-A2150

NI-DAQ functions used:  MAI_Setup, MDAQ_ScanRate, MDAQ_Setup,
MDAQ_Start, MDAQ_Check, MDAQ_Get, MDAQ_Clear, MAI_Scale

• MDAQ_Op Designed to be used like an NI-DAQ for Macintosh function.  Calls a series of
double-buffered Multiple-Channel Data Acquisition (MDAQ) functions to
acquire a single frame of data from the selected channels.

© National Instruments Corporation 11-3 NI-DAQ Software Reference Manual for Macintosh



NI-DAQ for Macintosh Examples Chapter 11

Boards supported:  NB-A2000, NB-A2100, or NB-A2150

NI-DAQ functions used:  MAI_Setup, MDAQ_ScanRate, MDAQ_Setup,
MDAQ_Start, MDAQ_Check, MDAQ_Get, MDAQ_Clear

• StreamToDisk(MDAQ) Uses NI-DAQ for Macintosh double-buffered Multiple-Channel Data
Acquisition (MDAQ) functions to perform multiple-channel data acquisition
and to stream the data to disk as the data is acquired.

Boards supported:  NB-A2000, NB-A2100, or NB-A2150

NI-DAQ functions used:  Board_ID, MAI_Coupling, MAI_Setup,
MDAQ_Trig_Config, MDAQ_Setup, MDAQ_ScanRate, MDAQ_Start,
MDAQ_Get, MDAQ_Clear

• StreamFromDisk Uses NI-DAQ for Macintosh Buffered Waveform Generation (BWF) functions
to generate the data from a disk file at the specified analog output channels of
the NB-A2100.  All or some of the data in the disk file can be generated.

Board supported:  NB-A2100

NI-DAQ functions used:  BWF_BufLoad, BWF_Start, BWF_BlkLoad,
BWF_Check, BWF_Clear

• PeriodMeasurement Uses NI-DAQ for Macintosh Counter (CTR) functions to measure period or
pulse width.

Boards supported:  NB-MIO-16, NB-MIO-16X, or NB-TIO-10

NI-DAQ functions used:  Board_ID, CTR_Config, CTR_Period,
CTR_Square, CTR_EvRead, CTR_Reset

NI-DAQ Software Reference Manual for Macintosh 11-4 © National Instruments Corporation



Appendix A
NI-DAQ for Macintosh Function and Board
Compatibility
                                                                                                                                                              

This appendix contains a table of the National Instruments boards that work with NI-DAQ for Macintosh and the
functions that work with each board, as well as a table of National Instruments SCXI chassis and modules that work
with NI-DAQ for Macintosh and the functions that work with each element of SCXI hardware.

A √ signifies that the function operation is supported on the specified board.  Notice that DMA support is
automatically used for data acquisition, waveform generation, and buffered digital I/O on the NB-MIO-16,
NB-MIO-16X, NB-AO-6, NB-DIO-32F, NB-A2100, and NB-A2000 if an NB-DMA-8-G or NB-DMA2800 is
detected in the system.

Table A-1.  NI-DAQ for Macintosh Function and Device Support

Device

Functions

L
ab

-L
C

L
ab

-N
B

N
B

-A
2
0
0
0

N
B

-A
2
1
0
0

N
B

-A
2
1
5
0

N
B

-A
O

-6

N
B

-D
IO

-2
4

N
B

-D
IO

-3
2
F

N
B

-D
IO

-9
6

N
B

-D
M

A
2
8
0
0

N
B

-D
M

A
-8

-G

N
B

-M
IO

-1
6

N
B

-M
IO

-1
6
X

N
B

-P
R

L

N
B

-T
IO

-1
0

A2000_Calibrate √

A2000_Config √

A2100_Calibrate √ √

A2100_Configure √

A2150_Config √

AI_Check √ √ √ √ √ √ √ √ √

AI_Clear √ √ √ √ √ √ √ √ √

AI_Configure √ √ √ √ √ √ √ √ √

AI_Mux_Config √ √ √

AI_Read √ √ √ √ √ √ √ √ √

AI_Setup √ √ √ √ √ √ √ √ √

AI_VScale √ √ √ √ √ √ √ √ √

AO_Change_Parameter √

AO_Setup √ √ √ √ √ √ √ √ √

AO_Update √ √ √ √ √ √ √

© National Instruments Corporation A-1 NI-DAQ Software Reference Manual for Macintosh



NI-DAQ for Macintosh Function and Board Compatibility Appendix A

Table A-1.  NI-DAQ for Macintosh Function and Device Support (Continued)

Device

Functions

L
ab

-L
C

L
ab

-N
B

N
B

-A
2
0
0
0

N
B

-A
2
1
0
0

N
B

-A
2
1
5
0

N
B

-A
O

-6

N
B

-D
IO

-2
4

N
B

-D
IO

-3
2
F

N
B

-D
IO

-9
6

N
B

-D
M

A
2
8
0
0

N
B

-D
M

A
-8

-G

N
B

-M
IO

-1
6

N
B

-M
IO

-1
6
X

N
B

-P
R

L

N
B

-T
IO

-1
0

AO_VScale √ √ √ √ √ √ √ √ √ √

AO_Write √ √ √ √ √ √ √ √ √ √

Board_ID √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Board_Reset √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

BWF_BlkLoad √

BWF_BufLoad √

BWF_Check √

BWF_Clear √

BWF_Rate √

BWF_Resume √

BWF_Start √

BWF_Stop √

Calibrate_1200 √

Calibrate_E_Series √

CTR_Config √ √ √ √ √ √

CTR_EvCount √ √ √ √ √ √

CTR_EvRead √ √ √ √ √ √

CTR_FOUT_Config √ √ √ √ √

CTR_Period √ √ √ √ √ √

CTR_Pulse √ √ √ √ √ √

CTR_Reset √ √ √ √ √ √

CTR_Restart √ √ √ √ √ √

CTR_Square √ √ √ √ √ √

CTR_State √ √ √ √ √ √

CTR_Stop √ √ √ √ √ √

NI-DAQ Software Reference Manual for Macintosh A-2 © National Instruments Corporation



Appendix A NI-DAQ for Macintosh Function and Board Compatibility

Table A-1.  NI-DAQ for Macintosh Function and Device Support (Continued)

Device

Functions

L
ab

-L
C

L
ab

-N
B

N
B

-A
2
0
0
0

N
B

-A
2
1
0
0

N
B

-A
2
1
5
0

N
B

-A
O

-6

N
B

-D
IO

-2
4

N
B

-D
IO

-3
2
F

N
B

-D
IO

-9
6

N
B

-D
M

A
2
8
0
0

N
B

-D
M

A
-8

-G

N
B

-M
IO

-1
6

N
B

-M
IO

-1
6
X

N
B

-P
R

L

N
B

-T
IO

-1
0

DAQ2Clear √ √ √ √ √ √ √ √ √

DAQ2Config √ √ √ √ √ √ √ √ √

DAQ2Get √ √ √

DAQ2MemConfig √ √ √ √ √ √ √ √

DAQ2Tap √ √ √ √

DAQ2TGet √ √ √ √ √ √ √ √ √

DAQ2TTap √ √ √ √ √ √ √ √ √

DAQ_Check √ √ √ √ √ √ √ √ √

DAQ_Clear √ √ √ √ √ √ √ √ √

DAQ_Config √ √ √ √ √ √ √ √ √

DAQ_PreTrig √ √ √ √ √ √

DAQ_Start √ √ √ √ √ √ √ √ √

DAQ_Trigger √ √ √ √ √ √ √ √ √

DAQ_VScale √ √
DIG_Blk_Check √ √ √ √ √ √ √ √ √ √
DIG_Blk_Clear √ √ √ √ √ √ √ √ √ √

DIG_Blk_Start √ √ √ √ √ √ √ √ √ √

DIG_Grp_Config √

DIG_Grp_Mode √

DIG_Grp_Status √

DIG_In_Group √

DIG_In_Line √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

DIG_In_Port √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

DIG_Line_Config √ √

DIG_Out_Group √

© National Instruments Corporation A-3 NI-DAQ Software Reference Manual for Macintosh



NI-DAQ for Macintosh Function and Board Compatibility Appendix A

Table A-1.  NI-DAQ for Macintosh Function and Device Support (Continued)

Device

Functions

L
ab

-L
C

L
ab

-N
B

N
B

-A
2
0
0
0

N
B

-A
2
1
0
0

N
B

-A
2
1
5
0

N
B

-A
O

-6

N
B

-D
IO

-2
4

N
B

-D
IO

-3
2
F

N
B

-D
IO

-9
6

N
B

-D
M

A
2
8
0
0

N
B

-D
M

A
-8

-G

N
B

-M
IO

-1
6

N
B

-M
IO

-1
6
X

N
B

-P
R

L

N
B

-T
IO

-1
0

DIG_Out_Line √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

DIG_Out_Port √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

DIG_Prt_Config √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

DIG_Prt_Status √ √ √ √ √ √ √ √ √

DIG_Scan_Setup √ √ √ √ √ √ √ √ √

Get_DAQ_Device_Info √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

GPCTR_Change_Parameter √

GPCTR_Config_Buffer √

GPCTR_Control √

GPCTR_Set_Application √

GPCTR_Watch √

ICTR_Read √ √ √ √ √ √

ICTR_Reset √ √ √ √ √ √

ICTR_Setup √ √ √ √ √ √

Lab_ISCAN_Check √ √ √ √ √ √

Lab_ISCAN_Start √ √ √ √ √ √

MAI_Arm √ √ √

MAI_Clear √

MAI_Coupling √ √ √

MAI_Read √ √ √

MAI_Scale √ √ √

MAI_Setup √ √ √

Master_Slave_Config √ √

MDAQ_Check √ √ √

MDAQ_Clear √ √ √

NI-DAQ Software Reference Manual for Macintosh A-4 © National Instruments Corporation



Appendix A NI-DAQ for Macintosh Function and Board Compatibility

Table A-1.  NI-DAQ for Macintosh Function and Device Support (Continued)

Device

Functions

L
ab

-L
C

L
ab

-N
B

N
B

-A
2
0
0
0

N
B

-A
2
1
0
0

N
B

-A
2
1
5
0

N
B

-A
O

-6

N
B

-D
IO

-2
4

N
B

-D
IO

-3
2
F

N
B

-D
IO

-9
6

N
B

-D
M

A
2
8
0
0

N
B

-D
M

A
-8

-G

N
B

-M
IO

-1
6

N
B

-M
IO

-1
6
X

N
B

-P
R

L

N
B

-T
IO

-1
0

MDAQ_Get √ √ √

MDAQ_ScanRate √ √ √

MDAQ_Setup √ √ √

MDAQ_Start √ √ √

MDAQ_Stop √ √ √

MDAQ_Trig_Config √ √ √

MDAQ_Trig_Delay √ √ √

MIO_16X_Config √

MIO_Config √ √

RTSI_Clear √ √ √ √ √ √ √ √ √ √

RTSI_Conn √ √ √ √ √ √ √ √ √ √

RTSI_DisConn √ √ √ √ √ √ √ √ √ √

SC_2040_Config √

SCAN_Check √ √ √

SCAN_Demux √ √ √ √ √ √ √ √ √

SCAN_IntStart √ √

SCAN_Setup √ √ √

SCAN_Start √ √ √

Select_Signal √

Set_DAQ_Device_Info √ √ √ √ √ √ √ √ √ √ √ √ √

WF_Check √ √ √ √ √ √ √ √

WF_DBLoad √ √ √ √

WF_Grp_Reset √ √ √ √ √ √ √

WF_Grp_Setup √ √ √ √ √ √ √

WF_Grp_Start √ √ √ √ √ √ √

© National Instruments Corporation A-5 NI-DAQ Software Reference Manual for Macintosh



NI-DAQ for Macintosh Function and Board Compatibility Appendix A

Table A-1.  NI-DAQ for Macintosh Function and Device Support (Continued)

Device

Functions

L
ab

-L
C

L
ab

-N
B

N
B

-A
2
0
0
0

N
B

-A
2
1
0
0

N
B

-A
2
1
5
0

N
B

-A
O

-6

N
B

-D
IO

-2
4

N
B

-D
IO

-3
2
F

N
B

-D
IO

-9
6

N
B

-D
M

A
2
8
0
0

N
B

-D
M

A
-8

-G

N
B

-M
IO

-1
6

N
B

-M
IO

-1
6
X

N
B

-P
R

L

N
B

-T
IO

-1
0

WF_Grp_Stop √ √ √ √ √ √

WF_Load √ √ √ √ √ √ √ √

WF_Offset √

WF_Reset √ √

WF_Setup √ √

WF_Start √ √

WF_Stop √ √

NI-DAQ Software Reference Manual for Macintosh A-6 © National Instruments Corporation



Appendix A NI-DAQ for Macintosh Function and Board Compatibility

Table A-2.  SCXI Function and Hardware Support

Module Device

Functions

SCXI_AO_Write √

SCXI_Cal_Constants √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

SCXI_Calibrate_Setup √ √ √ √

SCXI_Change_Chan √ √ √ √ √ √ √

SCXI_Configure_Filter √ √

SCXI_Get_Chassis_Info

SCXI_Get_Module_Info √ √ √ √ √ √ √ √ √ √ √ √

SCXI_Get_State √ √ √ √

SCXI_Get_Status √ √ √ √

SCXI_Load_Config

SCXI_MuxCtr_Setup √ √ √ √ √ √ √ √ √ √ √ √

SCXI_Reset √ √ √ √ √ √ √ √ √ √ √ √

SCXI_Scale √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

SCXI_Scan_Setup √ √ √ √ √ √ √ √ √ √ √ √

SCXI_Set_Config √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

SCXI_Set_Gain √ √ √ √

SCXI_Set_Input_Mode √

SCXI_Set_State √ √ √

SCXI_Single_Chan_Setup √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

SCXI_Track_Hold_Control √ √ √ √ √ √ √ √

SCXI_Track_Hold_Setup √ √ √ √ √ √ √ √ √

© National Instruments Corporation A-7 NI-DAQ Software Reference Manual for Macintosh



© National Instruments Corporation B-1 NI-DAQ Software Reference Manual for Macintosh

Appendix B
Error Codes
                                                                                                                      

This appendix lists the error codes NI-DAQ for Macintosh returns, including the error number, name, and description.  
Each function returns an error code that indicates whether the function was performed successfully.

All of the error code descriptions are also listed in the NI-DAQ control panel.

Table B-1.  NI-DAQ Error Codes  

Error 

Code
Name Description

-10001 syntaxError An error was detected in the input string; the arrangement or 

ordering of the characters in the string is not consistent with 

the expected ordering.

-10002 semanticsError An error was detected in the input string; the syntax of the 

string is correct, but certain values specified in the string are 

inconsistent with other values specified in the string.

-10003 invalidValueError The value of a numeric parameter is invalid.

-10004 valueConflictError The value of a numeric parameter is inconsistent with 

another one, and therefore the combination is invalid.

-10005 DSPbadDeviceError The device is invalid.

-10006 badLineError The line is invalid.

-10007 badChanError A channel is out of range for the board type or input 

configuration; or the combination of channels is not allowed; 

or the scan order must be reversed (0 last).

-10008 badGroupError The group is invalid.

-10009 badCounterError The counter is invalid.

-10010 badCountError The count is too small or too large for the specified counter; 

or the given I/O transfer count is not appropriate for the 

current buffer or channel configuration.

-10011 badIntervalError The analog input scan rate is too fast for the number of 

channels and the channel clock rate; or the given clock rate is 

not supported by the associated counter channel or I/O 

channel.

-10012 badRangeError The analog input or analog output voltage range is invalid for 

the specified channel.

-10013 badErrorCodeError The driver returned an unrecognized or unlisted error code.

-10014 groupTooLargeError The group size is too large for the board.



Error Codes Appendix B

NI-DAQ Software Reference Manual for Macintosh B-2 © National Instruments Corporation

-10015 badTimeLimitError The time limit is invalid.

-10016 badReadCountError The read count is invalid.

-10017 badReadModeError The read mode is invalid.

-10018 badReadOffsetError The offset is unreachable.

-10019 badClkFrequencyError The frequency is invalid.

-10020 badTimebaseError The timebase is invalid.

-10021 badLimitsError The limits are beyond the range of the board.

-10022 badWriteCountError Your data array contains an incomplete update, or you are 

trying to write past the end of the internal buffer, or your 

output operation is continuous and the length of your array is 

not a multiple of one half of the internal buffer size.

-10023 badWriteModeError The write mode is out of range or is disallowed.

-10024 badWriteOffsetError Adding the write offset to the write mark places the write 

mark outside the internal buffer.

-10025 limitsOutOfRange The requested input limits exceed the board's capability or 

configuration.

-10026 badBufferSpec The requested number of buffers or the buffer size is not 

allowed; e.g., Lab-PC buffer limit is 64K samples, or the 

board does not support multiple buffers.

-10027 badDAQEventError For DAQEvents 0 and 1 general value A must be greater than 

0 and less than the internal buffer size.

-10028 badFilterCutoffError The cutoff frequency specified is not valid for this device.

-10080 badGainError The gain is invalid.

-10081 badPretrigCountError The pretrigger sample count is invalid.

-10082 badPosttrigCountError The posttrigger sample count is invalid.

-10083 badTrigModeError The trigger mode is invalid.

-10084 badTrigCountError The trigger count is invalid.

-10085 badTrigRangeError The trigger range or trigger hysteresis window is invalid.

-10086 badExtRefError The external reference is invalid.

-10087 badTrigTypeError The trigger type is invalid.

-10088 badTrigLevelError The trigger level is invalid.

-10089 badTotalCountError The total count is inconsistent with the buffer size and 

pretrigger scan count or with the board type.

Table B-1.  NI-DAQ Error Codes (Continued)

Error 

Code
Name Description



Appendix B Error Codes

© National Instruments Corporation B-3 NI-DAQ Software Reference Manual for Macintosh

-10090 badRPGError The individual range, polarity, and gain settings are valid but 

the combination is not allowed.

-10091 badIterationsError You have attempted to use an invalid setting for the iterations 

parameter. The iterations value must be 0 or greater. Your 

device may be limited to only two values, 0 and 1.

-10100 badPortWidthError The requested digital port width is not a multiple of the 

hardware port width.

-10200 EEPROMreadError Unable to read data from EEPROM.

-10201 EEPROMwriteError Unable to write data to EEPROM.

-10240 noDriverError The driver interface could not locate or open the driver.

-10241 oldDriverError One of the driver files or the configuration utility is out of 

date.

-10242 functionNotFoundError The specified function is not located in the driver.

-10243 DSPconfigFileError The driver could not locate or open the configuration file, or 

the format of the configuration file is not compatible with the 

currently installed driver.

-10244 deviceInitError The driver encountered a hardware-initialization error while 

attempting to configure the specified device.

-10245 osInitError The driver encountered an operating-system error while 

attempting to perform an operation, or the operating system 

does not support an operation performed by the driver.

-10246 communicationsError The driver is unable to communicate with the specified 

external device.

-10247 DSPcmosConfigError The CMOS configuration-memory for the device is empty or 

invalid, or the configuration specified does not agree with the 

current configuration of the device, or the EISA system 

configuration is invalid.

-10248 dupAddressError The base addresses for two or more devices are the same; 

consequently, the driver is unable to access the specified 

device.

-10249 intConfigError The interrupt configuration is incorrect given the capabilities 

of the computer or device.

-10250 dupIntError The interrupt levels for two or more devices are the same.

-10251 dmaConfigError The DMA configuration is incorrect given the capabilities of 

the computer/DMA controller or device.

-10252 dupDMAError The DMA channels for two or more devices are the same.

Table B-1.  NI-DAQ Error Codes (Continued)

Error 

Code
Name Description



Error Codes Appendix B

NI-DAQ Software Reference Manual for Macintosh B-4 © National Instruments Corporation

-10253 jumperlessBoardError Unable to find one or more jumperless boards you have 

configured using WDAQCONF.

-10254 DAQCardConfError Cannot configure the DAQCard because 1) the correct 

version of the card and socket services software is not 

installed; 2) the card in the PCMCIA socket is not a 

DAQCard; or 3) the base address and/or interrupt level 

requested are not available according to the card and socket 

services resource manager.

-10340 noConnectError No RTSI signal/line is connected, or the specified signal and 

the specified line are not connected.

-10341 badConnectError The RTSI signal/line cannot be connected as specified.

-10342 multConnectError The specified RTSI signal is already being driven by a RTSI 

line, or the specified RTSI line is already being driven by a 

RTSI signal.

-10343 SCXIConfigError The specified SCXI configuration parameters are invalid, or 

the function cannot be executed with the current SCXI 

configuration.

-10360 DSPInitError The DSP driver was unable to load the kernel for its 

operating system.

-10370 badScanListError The scan list is invalid; for example, you are mixing AMUX-

64T channels and onboard channels or are scanning SCXI 

channels out of order.

-10400 userOwnedRsrcError The specified resource is owned by the user and cannot be 

accessed or modified by the driver.

-10401 DSPunknownDeviceError The specified device is not a National Instruments product, or 

the driver does not support the device (e.g., the driver was 

released before the device was supported).

-10402 deviceNotFoundError No device is located in the specified slot or at the specified 

address.

-10403 DSPdeviceSupportError The specified device does not support the requested action 

(the driver recognizes the device, but the action is 

inappropriate for the device).

-10404 noLineAvailError No line is available.

-10405 noChanAvailError No channel is available.

-10406 noGroupAvailError No group is available.

-10407 lineBusyError The specified line is in use.

-10408 chanBusyError The specified channel is in use.

Table B-1.  NI-DAQ Error Codes (Continued)

Error 

Code
Name Description



Appendix B Error Codes

© National Instruments Corporation B-5 NI-DAQ Software Reference Manual for Macintosh

-10409 groupBusyError The specified group is in use.

-10410 relatedLCGBusyError A related line, channel, or group is in use; if the driver 

configures the specified line, channel, or group, the 

configuration, data, or handshaking lines for the related line, 

channel, or group will be disturbed.

-10411 counterBusyError The specified counter is in use.

-10412 noGroupAssignError No group is assigned, or the specified line or channel cannot 

be assigned to a group.

-10413 groupAssignError A group is already assigned, or the specified line or channel 

is already assigned to a group.

-10414 reservedPinError The selected signal requires a pin that is reserved and 

configured only by NI-DAQ.

-10415 externalMuxSupporError This function does not support this device when an external 

multiplexer (such as AMUX-64T or SCXI) is connected to it.

-10440 sysOwnedRsrcError The specified resource is owned by the driver and cannot be 

accessed or modified by the user.

-10441 memConfigError No memory is configured to support the current data-transfer 

mode, or the configured memory does not support the current 

data-transfer mode.

-10442 memDisabledError The specified memory is disabled or is unavailable given the 

current addressing mode.

-10443 memAlignmentError The transfer buffer is not aligned properly for the current 

data-transfer mode.

-10444 DSPmemFullError No more system memory is available on the heap, or no more 

memory is available on the device, or insufficient disk space 

is available.

-10445 memLockError The transfer buffer cannot be locked into physical memory.

-10446 memPageError The transfer buffer contains a page break; system resources 

may require reprogramming when the page break is 

encountered.

-10447 memPageLockError The operating environment is unable to grant a page lock.

-10448 stackMemError The driver is unable to continue parsing a string input due to 

stack limitations.

-10449 cacheMemError A cache-related error occurred, or caching is not supported in 

the current mode.

-10450 physicalMemError A hardware error occurred in physical memory, or no 

memory is located at the specified address.

Table B-1.  NI-DAQ Error Codes (Continued)

Error 

Code
Name Description



Error Codes Appendix B

NI-DAQ Software Reference Manual for Macintosh B-6 © National Instruments Corporation

-10451 virtualMemError The driver is unable to make the transfer buffer contiguous in 

virtual memory and therefore cannot lock it into physical 

memory; thus, the buffer cannot be used for DMA transfers.

-10452 noIntAvailError No interrupt level is available for use.

-10453 intInUseError The specified interrupt level is already in use by another 

device.

-10454 noDMACError No DMA controller is available in the system.

-10455 noDMAAvailError No DMA channel is available for use.

-10456 DMAInUseError The specified DMA channel is already in use by another 

device.

-10457 badDMAGroupError DMA cannot be configured for the specified group because it 

is too small, too large, or misaligned.

-10459 DSPDLLInterfaceError The DLL could not be called due to an interface error.

-10460 interfaceInteractionError You have mixed VIs from the DAQ library and the _DAQ 

compatibility library (LabVIEW 2.2 style VIs).

-10560 invalidDSPhandleError The DSP handle input is not valid .

-10600 noSetupError No setup operation has been performed for the specified 

resources.

-10601 multSetupError The specified resources have already been configured by a 

setup operation.

-10602 noWriteError No output data has been written into the transfer buffer.

-10603 groupWriteError The output data associated with a group must be for a single 

channel or must be for consecutive channels.

-10604 activeWriteError Once data generation has started, only the transfer buffers 

originally written to may be updated.

-10605 endWriteError No data was written to the transfer buffer because the final 

data block has already been loaded.

-10606 notArmedError The specified resource is not armed.

-10607 armedError The specified resource is already armed.

-10608 noTransferInProgError No transfer is in progress for the specified resource.

-10609 transferInProgError A transfer is already in progress for the specified resource.

-10610 transferPauseError A single output channel in a group may not be paused if the 

output data for the group is interleaved.

-10611 badDirOnSomeLinesError Some of the lines in the specified channel are not configured 

for the transfer direction specified.

Table B-1.  NI-DAQ Error Codes (Continued)

Error 

Code
Name Description



Appendix B Error Codes

© National Instruments Corporation B-7 NI-DAQ Software Reference Manual for Macintosh

-10612 badLineDirError The specified line does not support the specified transfer 

direction.

-10613 badChanDirError The specified channel does not support the specified transfer 

direction.

-10614 badGroupDirError The specified group does not support the specified transfer 

direction.

-10615 masterClkError The clock configuration for the clock master is invalid.

-10616 slaveClkError The clock configuration for the clock slave is invalid.

-10617 noClkSrcError No source signal has been assigned to the clock resource.

-10618 badClkSrcError The specified source signal cannot be assigned to the clock 

resource.

-10619 multClkSrcError A source signal has already been assigned to the clock 

resource.

-10620 noTrigError No trigger signal has been assigned to the trigger resource.

-10621 badTrigError The specified trigger signal cannot be assigned to the trigger 

resource.

-10622 preTrigError The pretrigger mode is not supported or is not available in the 

current configuration, or no pretrigger source has been 

assigned.

-10623 postTrigError No posttrigger source has been assigned.

-10624 delayTrigError The delayed trigger mode is not supported or is not available 

in the current configuration, or no delay source has been 

assigned.

-10625 masterTrigError The trigger configuration for the trigger master is invalid.

-10626 slaveTrigError The trigger configuration for the trigger slave is invalid.

-10627 noTrigDrvError No signal has been assigned to the trigger resource.

-10628 multTrigDrvError A signal has already been assigned to the trigger resource.

-10629 invalidOpModeError The specified operating mode is invalid, or the resources have 

not been configured for the specified operating mode.

-10630 invalidReadError An attempt was made to read 0 bytes from the transfer buffer, 

or an attempt was made to read past the end of the transfer 

buffer.

-10631 noInfiniteModeError Continuous input or output transfers are not allowed in the 

current operating mode.

Table B-1.  NI-DAQ Error Codes (Continued)

Error 

Code
Name Description



Error Codes Appendix B

NI-DAQ Software Reference Manual for Macintosh B-8 © National Instruments Corporation

-10632 someInputsIgnoredError Certain inputs were ignored because they are not relevant in 

the current operating mode.

-10633 invalidRegenModeError The specified analog output regeneration mode is not allowed 

for this board.

-10680 badChanGainError All channels of this board must have the same gain.

-10681 badChanRangeError All channels of this board must have the same range.

-10682 badChanPolarityError All channels of this board must be the same polarity.

-10683 badChanCouplingError All channels of this board must have the same coupling.

-10684 badChanInputModeError All channels of this board must have the same input mode.

-10685 clkExceedsBrdsMaxConvRate The clock rate exceeds the board's recommended maximum 

rate.

-10686 scanListInvalidError A configuration change has invalidated the scan list.

-10687 bufferInvalidError A configuration change has invalidated the allocated buffer.

-10688 noTrigEnabledError The number of total scans and pretrigger scans implies that a 

triggered start is intended, but triggering is not enabled.

-10689 digitalTrigBError Digital trigger B is illegal for the number of total scans and 

pretrigger scans specified.

-10690 digitalTrigAandBError This board does not allow digital triggers A and B to be 

enabled at the same time.

-10691 extConvRestrictionError This board does not allow an external sample clock with an 

external scan clock, start trigger, or stop trigger.

-10692 chanClockDisabledError The acquisition cannot be started because the channel clock 

is disabled.

-10693 extScanClockError You cannot use an external scan clock when doing a single 

scan of a single channel.

-10694 unsafeSamplingFreqError The sample frequency exceeds the safe maximum rate for the 

hardware, gains, and filters used.

-10695 DMAnotAllowedError You have set up an operation that requires the use of 

interrupts.

-10696 multiRateModeError Multi-rate scanning cannot be used with the AMUX-64, 

SCXI, or pretriggered acquisitions.

-10697 rateNotSupportedError Unable to convert your timebase/interval pair to match the 

actual hardware capabilities of this board.

-10698 timebaseConflictError You cannot use this combination of scan and sample clock 

timebases for this board.

Table B-1.  NI-DAQ Error Codes (Continued)

Error 

Code
Name Description



Appendix B Error Codes

© National Instruments Corporation B-9 NI-DAQ Software Reference Manual for Macintosh

-10699 polarityConflictError You cannot use this combination of scan and sample clock 

source polarities for this operation and board.

-10700 signalConflictError You cannot use this combination of scan and convert clock 

signal sources for this operation and board.

-10740 SCXITrackHoldError A signal has already been assigned to the SCXI track-and-

hold trigger line, or a control call was inappropriate because 

the specified module is not configured for one-channel 

operation.

-10780 sc2040InputModeError When you have an SC2040 attached to your device, all 

analog input channels must be configured for differential 

input mode.

-10781 outputTypeMustBeVoltageError The polarity of the output channel cannot be bipolar when 

outputting currents.

-10800 timeOutError The operation could not complete within the time limit.

-10801 calibrationError An error occurred during the calibration process.

-10802 dataNotAvailError The requested amount of data has not yet been acquired.

-10803 transferStoppedError The transfer has been stopped to prevent regeneration of 

output data.

-10804 earlyStopError The transfer stopped prior to reaching the end of the transfer 

buffer.

-10805 overRunError The clock source for the input task is faster than the 

maximum clock rate the device supports.

-10806 noTrigFoundError No trigger value was found in the input transfer buffer.

-10807 earlyTrigError The trigger occurred before sufficient pretrigger data was 

acquired.

-10808 LPTCommunicationError An error occurred in the parallel port communication with 

the DAQ device.

-10809 gateSignalError Attempted to start a pulse width measurement with the pulse 

in the phase to be measured (e.g., high phase for high-level 

gating).

-10840 softwareError An unexpected error occurred inside the driver when 

performing the given operation.

-10841 firmwareError The firmware does not support the specified operation, or the 

firmware operation could not complete due to a data-integrity 

problem.

Table B-1.  NI-DAQ Error Codes (Continued)

Error 

Code
Name Description



Error Codes Appendix B

NI-DAQ Software Reference Manual for Macintosh B-10 © National Instruments Corporation

-10842 hardwareError The hardware is not responding to the specified operation, or 

the response from the hardware is not consistent with the 

functionality of the hardware.

-10843 underFlowError Because of system limitations, the driver could not write data 

to the device fast enough to keep up with the device 

throughput.

-10844 underWriteError New data was not written to the output transfer buffer before 

the driver attempted to transfer the data to the device.

-10845 overFlowError Because of system limitations, the driver could not read data 

from the device fast enough to keep up with the device 

throughput; the onboard device memory reported an overflow 

error.

-10846 overWriteError The driver wrote new data into the input transfer buffer 

before the previously acquired data was read.

-10847 dmaChainingError New buffer information was not available at the time of the 

DMA chaining interrupt; DMA transfers will terminate at the 

end of the currently active transfer buffer.

-10848 noDMACountAvailError The driver could not obtain a valid reading from the transfer-

count register in the DMA controller.

-10849 openFileError The configuration file or DSP kernel file could not be opened.

-10850 closeFileError Unable to close a file.

-10851 fileSeekError Unable to seek within a file.

-10852 readFileError Unable to read from a file.

-10853 writeFileError Unable to write to a file.

-10854 miscFileError An error occurred accessing a file.

-10855 osUnsupportedError NI-DAQ does not support the current operation on this 

version of the operating system.

-10856 osError An unexpected error occurred from the operating system 

while performing the given operation.

-10880 updateRateChangeError A change to the update rate is not possible at this time 

because 1) when waveform generation is in progress, you 

cannot change the interval timebase or 2) when you make 

several changes in a row, you must give each change enough 

time to take effect before requesting further changes.

-10881 partialTransferCompleteError You cannot do another transfer after a successful partial 

transfer.

Table B-1.  NI-DAQ Error Codes (Continued)

Error 

Code
Name Description



Appendix B Error Codes

© National Instruments Corporation B-11 NI-DAQ Software Reference Manual for Macintosh

Additional error codes can be returned to signify Macintosh system error codes.  These errors may be due to uninstalled 
or corrupted drivers.

-10920 gpctrDataLossError One or more data points may have been lost during buffered 

GPCTR operations due to speed limitations of your system.

Table B-1.  NI-DAQ Error Codes (Continued)

Error 

Code
Name Description



Appendix C
Using an External Multiplexer
                                                                                                        

This appendix contains information on using the AMUX-64T.

An external multiplexer board (AMUX-64T) can be used to expand the number of analog input signals that can be
measured with an MIO board.  The AMUX-64T has 16 separate four-to-one analog multiplexer circuits.  One
AMUX-64T board can multiplex up to 64 analog input signals.  Four AMUX-64T boards can be cascaded to permit
up to 256 single-ended (128 differential) signals to be multiplexed by one MIO board.

The following table shows the number of channels available on an MIO board with an external multiplexer.

Table C-1.  Analog Input Channel Range

Number of External Multiplexer
(AMUX-64T) Boards

Channel Range,
Single-Ended

Channel Range,
Differential

0 0 – 15 0 – 7
1 0 – 63 0 – 31
2 0 – 127 0 – 31, 64 – 95
4 0 – 255 0 – 31, 64 – 95, 128 – 159, 192 – 223

AI_Mux_Config configures the number of multiplexer boards connected to the MIO board.  Input channels are
then referenced in subsequent data acquisition calls with respect to the external AMUX-64T analog input channel
numbers rather than the MIO board onboard channel numbers.  For example, with one external board, channel can
have a value of 0 through 63 (single-ended), or 0 through 31 (differential).  With two or four AMUX-64T boards, the
second board's channel numbering can be from 64 through 127 (single-ended), or from 64 through 95 (differential).
Therefore, single-ended and differential channels always begin at the same number on each board.

When more than one AMUX-64T board is used, the channels on the different boards are addressed as follows:

Table C-2.  External Multiplexer Channels

AMUX-64T Board Channel Number

Single-Ended Differential

Board A 0 - 63 0 - 31
Board B 64 - 127 64 - 95
Board C 128 - 191 128 - 159
Board D 192 - 255 192 - 223

The channel address on each AMUX-64T depends on the switch setting on each board.  (See the AMUX-64T User
Manual for more information on the external multiplexer board.)

© National Instruments Corporation C-1 NI-DAQ Software Reference Manual for Macintosh



Using an External Multiplexer Appendix  C

Scanning Order Using the AMUX-64T

The scanning counters on the AMUX-64T and on an MIO board perform automatic scanning of the AMUX-64T
analog input channels.  When a multiple-channel scan data acquisition is performed with an AMUX-64T, one of the
counter/timers on the MIO board normally available to the user, Counter 1, is used for switching the MIO board
onboard multiplexers.

Scanning is a simple operation for one AMUX-64T board, but becomes more complex for multiple AMUX-64T
boards.  The following paragraphs explain in detail how channels are scanned from the AMUX-64T.  You must
know this scanning order so that you can determine from which analog input channel the data was scanned during a
data acquisition operation.  When a single AMUX-64T board is connected to the MIO board, four AMUX-64T input
channels must be scanned for every MIO board channel.  If two AMUX-64T boards are attached to the MIO board,
then eight AMUX-64T channels must be scanned for every MIO board input channel.  For example, channels 0
through 3 on AMUX-64T board A and channels 64 through 67 on AMUX-64T board B are multiplexed together
into MIO board channel 0.  Notice that the first four channels on board A are scanned, followed by the first four
channels on board B.

If four AMUX-64T boards are attached to the MIO board, then 16 AMUX-64T channels must be scanned for every
MIO board input channel.  For example, channels 0 through 3 on AMUX-64T board A, channels 64 through 67 on
AMUX-64T board B, channels 128 through 131 on AMUX-64T board C, and channels 192 through 195 on board D
are multiplexed together into MIO board channel 0.  Notice that the first four channels on board A are scanned,
followed by the first four channels on board B, the first four channels on board C, and, finally, the first four channels
on board D.

The order in which channels are scanned depends on the scan channel sequence specified in SCAN_Setup.  This
scan sequence is an array of MIO board onboard channel numbers that specifies the order in which the MIO board
onboard channels are scanned.  The scanning order on the AMUX-64T, however, is fixed.  Table B-3 shows the
order in which the AMUX-64T channels are scanned for every MIO board input channel for different AMUX-64T
configurations.

NI-DAQ Software Reference Manual for Macintosh C-2 © National Instruments Corporation



Appendix  C Using an External Multiplexer

Table C-3.  AMUX-64T Scanning Order for Each MIO Board Input Channel

MIO Board
Channel

AMUX-64T Channels

One Board Two Boards Four Boards

Board A Board A Board B Board A Board B Board C Board D

0 0-3 0-3 64-67 0-3 64-67 128-131 192-195
1 4-7 4-7 68-71 4-7 68-71 132-135 196-199
2 8-11 8-11 72-75 8-11 72-75 136-139 200-203
3 12-15 12-15 76-79 12-15 76-79 140-143 204-207
4 16-19 16-19 80-83 16-19 80-83 144-147 208-211
5 20-23 20-23 84-87 20-23 84-87 148-151 212-215
6 24-27 24-27 88-91 24-27 88-91 152-155 216-219
7 28-31 28-31 92-95 28-31 92-95 156-159 220-223
8 32-35 32-35 96-99 32-35 96-99 160-163 224-227
9 36-39 36-39 100-103 36-39 100-103 164-167 228-231

10 40-43 40-43 104-107 40-43 104-107 168-171 232-235
11 44-47 44-47 108-111 44-47 108-111 172-175 236-239
12 48-51 48-51 112-115 48-51 112-115 176-179 240-243
13 52-55 52-55 116-119 52-55 116-119 180-183 244-247
14 56-59 56-59 120-123 56-59 120-123 184-187 248-251
15 60-63 60-63 124-127 60-63 124-127 188-191 252-255

For example, if one AMUX-64T board is used, then whenever channel 0 on the MIO board is selected in the scan
sequence, channels 0 through 3 on the AMUX-64T are automatically scanned.  If two AMUX-64T boards are used,
channels 0 through 3 (board A) and channels 64 through 67 (board B) are automatically scanned whenever channel 0
is selected in the scan sequence.  If four AMUX-64T boards are used, channels 0 through 3 (board A), channels 64
through 67 (board B), channels 128 through 131 (board C), and channels 192 through 195 (board D) are
automatically scanned whenever channel 0 is selected in the scan sequence.

If the MIO board is programmed with a sequential channel scan sequence of 0 through 7 or 0 through 15, then the
AMUX-64T channels are scanned from top to bottom in the order given in Table C-3.  Notice that if differential
input configuration is used, only MIO board channels 0 through 7 should be entered in the scan sequence in
SCAN_Setup, in which case only the information pertaining to those channels in Table C-3 applies.  See the
AMUX-64T User Manual for more information on the external multiplexer board.

© National Instruments Corporation C-3 NI-DAQ Software Reference Manual for Macintosh



Appendix D
Transducer Conversion Routines
                                                                                                                                                              

This appendix describes the transducer conversion routines included in NI-DAQ for Macintosh.  You can use these
routines to convert analog input voltages read from thermocouples, RTDs, and strain gauges into units of
temperature or strain.  There is a folder for each language that contains source files for each conversion routine.
You can cut and paste, include, or merge these conversion routines into your application source files so that the
routines may be called in your application.  One of the SCXI example programs includes the thermocouple
conversion routine, so you can refer to that program to see how the conversion is incorporated into an application.

The conversion routines were included in NI-DAQ for Macintosh as source files rather than driver function calls so
that you have complete access to the conversion formulas that are used.  You can edit the conversion formulas or
replace them with your own to meet the specific accuracy requirements of your application.  Comments in the
conversion source code are provided to facilitate any editing you feel is necessary.

There is a header file for each language that contains constant definitions that are used in the conversion routines.
This header file should also be included or merged into your application program.

The conversion routine descriptions in this appendix apply to all languages.

NI-DAQ for Macintosh includes the following routines:

• Thermocouple_Convert Both single-voltage and voltage-buffer routines are supplied that
convert voltages read from E-, J-, K-, R-, S-, or T-type thermocouples
into temperature in Celsius, Fahrenheit, Kelvin, or Rankine.

• RTD_Convert Both single-voltage and voltage-buffer routines are supplied that
convert voltages read from an RTD into resistance and then into
temperature in Celsius, Fahrenheit, Kelvin, or Rankine.

• Strain_Convert Both single-voltage and voltage-buffer routines are supplied that
convert voltages read from a strain gauge into measured strain using the
formula appropriate to the strain gauge bridge configuration used.

• Thermistor_Convert Both single-voltage and voltage-buffer routines are supplied that
convert voltages read from a thermistor into temperature in Celsius,
Fahrenheit, Kelvin, or Rankine.

© National Instruments Corporation D-1 NI-DAQ Software Reference Manual for Macintosh



Transducer Conversion Routines Appendix D

Thermocouple_Convert
Thermocouple_Buf_Convert

Function
Converts a voltage or voltage buffer that was read from a thermocouple into temperature.

Parameters
TCType is an integer indicating what type of thermocouple was used to read the temperature.  Constant

definitions for each thermocouple type are given in the conversion header file.  You can use the constants
that have been defined, or you can pass integer values to the routine.

E = 1
J = 2
K = 3
R = 4
S = 5
T = 6.

CJCTemp is the temperature in Celsius that will be used for cold-junction compensation of the thermocouple
temperature.  If you are using SCXI, this will most likely be the temperature that was read from the
temperature sensor on the SCXI terminal block.  The AMUX-64T also has a temperature sensor that can be
used for this purpose.

TempScale is an integer indicating in which temperature unit you want your return values to be.  Constant
definitions for each temperature scale are given in the conversion header file.

Celsius = 1
Fahrenheit = 2
Kelvin = 3
Rankine = 4

The Thermocouple_Convert routine has two remaining parameters:  TCVolts is the voltage that was read
from the thermocouple, and TCTemp is the return temperature value.

The Thermocouple_Buf_Convert routine has three remaining parameters: numPts is the number of
voltage points to convert, TCVoltBuf is the array that contains the voltages that were read from the
thermocouple, and TCTempBuf is the return array that will contain the temperatures.

Description
These conversions routines plug TCVolts (or each element of TCVoltBuf) into a polynomial that is appropriate
for the given TCType.  The resulting temperature (in Celsius) is then added to the given CJCTemp for cold-
junction compensation.  That result is then converted to the desired temperature scale specified by TempScale.

The valid temperature ranges and accuracies for the polynomials used for each thermocouple type are given in
Table D-1.  The errors listed in the table refer to the polynomials only; they do not take into consideration the
accuracy of the thermocouple itself, the SCXI modules, or the DAQ board that is used to take the voltage
reading.

NI-DAQ Software Reference Manual for Macintosh D-2 © National Instruments Corporation



Appendix D Transducer Conversion Routines

Table D-1.  Valid Thermocouple Temperature Ranges and Accuracies

Thermocouple Type Temperature Range Error

E -100° C to 1000° C ±0.5° C

J 0° C to 760° C ±0.1° C

K 0° C to 1370° C ±0.7° C

R 0° C to 1000° C ±0.5° C

S 0° C to 1750° C ±1° C

T -160° C to 400° C ±0.5° C

The method of cold-junction compensation used in these routines is not the most accurate method.  A more
accurate method would use the following algorithm:

1.  Convert the given CJCTemp to a thermocouple voltage using a polynomial that converts temperature to
voltage.

2.  Add that voltage to TCVolts (or each element of TCVoltBuf).
3.  Plug the resulting voltage(s) into the provided polynomial to obtain temperature.

The weakness of this algorithm is speed, because there are two polynomial expressions that need to be
evaluated.  In the routines provided, we have sacrificed some accuracy in favor of speed.  If your application
requires more accuracy, you can modify the routines to use the method outlined above.

                                                                                                                                                                                           

RTD_Convert
RTD_Buf_Convert

Function
Converts a voltage or voltage buffer that was read from an RTD into temperature.

Parameters
convType is an integer that indicates whether to use the given conversion formula, or to use a user-defined
formula that you have put into the routine.

convType = 0 use the given conversion formula.
convType = -1 use a user-defined formula that has been added to the routine.

Iex is the excitation current that was used with the RTD.  If a zero is passed in Iex, a default excitation current
of 0.15 mA is assumed.

Ro is the RTD resistance at 0° C.

A and B are the coefficients of the Callendar Van-Dusen equation that fit your RTD.

TempScale is an integer indicating in which temperature unit you want your return values to be.  Constant
definitions for each temperature scale are given in the conversion header file.

Celsius = 1
Fahrenheit = 2
Kelvin = 3
Rankine = 4

The RTD_Convert routine has two remaining parameters:  RTDVolts is the voltage that was read from the
RTD, and RTDTemp is the return temperature value.

© National Instruments Corporation D-3 NI-DAQ Software Reference Manual for Macintosh



Transducer Conversion Routines Appendix D

The RTD_Buf_Convert routine has three remaining parameters: numPts is the number of voltage points to
convert, RTDVoltBuf is the array that contains the voltages that were read from the RTD, and RTDTempBuf
is the return array that will contain the temperatures.

Description
The conversion routines first find the RTD resistance by dividing RTDVolts (or each element of RTDVoltBuf)
by Iex.  That resistance is converted to temperature using a solution to the Callendar
Van-Dusen equation for RTDs:

Rt = Ro[1 + At + Bt2  + C(t-100)t3]

For temperatures above 0° C, the C coefficient is zero and the above equation reduces to a quadratic equation
for which we have found the appropriate root.  Thus, these conversion routines are only accurate for
temperatures above 0° C.

Your RTD documentation should give you Ro and the A and B coefficients for the Callendar Van-Dusen
equation.  The most common RTDs are 100-Ω platinum RTDs that either follow the European temperature
curve (also known as the DIN 43760 standard) or the American curve.  Those values for A and B are given
below:

European Curve (DIN 43760):
A = 3.90802e-03
B = -5.80195e-07
(α = 0.00385;  ∂ = 1.492)

American Curve:
A = 3.9784e-03
B = -5.8408e-07
(α = 0.00392;  ∂ = 1.492)

Some RTD documentation will give you values for α, β, and ∂, from which you can calculate A, B, and C using
the following equations:

A = α(1 + ∂/100)
B =  -α∂/1002

C = -αβ/1004 for < 0° C

                                                                                                                                                                                           

Strain_Convert
Strain_Buf_Convert

Description
Converts a voltage or voltage buffer that was read from a strain gauge to units of strain.

Parameters
bridgeConfig is an integer indicating in what type of bridge configuration the strain gauge is mounted.
Figure D-1 shows all the different bridge configurations and the corresponding values that should be passed in
bridgeConfig.

Vex is the excitation voltage that was used.  If the value of Vex is 0, a default excitation voltage of 3.333 V is
assumed.  The SCXI-1121 module provides for excitation voltages of 10 V and 3.333 V.

GF is the gauge factor of the strain gauge.

v is Poisson's Ratio (only needed in certain bridge configurations).

NI-DAQ Software Reference Manual for Macintosh D-4 © National Instruments Corporation



Appendix D Transducer Conversion Routines

Rg is the strain gauge nominal value.

RL is the lead resistance.  In many cases, the lead resistance will be negligible and you can pass a value of 0 for
RL to the routine.  Otherwise you can measure RL to be more accurate.

Vinit is the unstrained voltage of the strain gauge after it has been mounted in its bridge configuration.  You
should read this voltage at the beginning of your application and save it to pass to the strain gauge conversion
routines.

The Strain_Convert routine has two remaining parameters:  strainVolts is the voltage that was read from
the strain gauge, and strainVal is the return strain value.

The Strain_Buf_Convert routine has three remaining parameters: numPts is the number of voltage points
to convert, strainVoltBuf is the array that contains the voltages that were read from the strain gauge, and
strainValBuf is the return array that will contain the strain values.

Description
The conversion formula used is based solely on the bridge configuration.  The seven bridge configurations
supported and the corresponding formulas are given in Figure D-1.  For all bridge configurations, the following
formula is used to obtain Vr:

Vr = (strainVolts - Vinit) / Vex

In the circuit diagrams, VOUT is the voltage that is measured and passed to the conversion routines in
strainVolts or strainVoltBuf.  In the quarter-bridge and half-bridge configurations, R1 and R2 are dummy
resistors that are not directly incorporated into the conversion formula.  The SCXI-1121 provides R1 and R2 for
a bridge-completion network, if needed.  Please refer to the SCXI-1121 User Manual for more information on
bridge-completion networks and voltage excitation.

© National Instruments Corporation D-5 NI-DAQ Software Reference Manual for Macintosh



Transducer Conversion Routines Appendix D

Figure D-1.  Strain Gauge Bridge Configurations

NI-DAQ Software Reference Manual for Macintosh D-6 © National Instruments Corporation



Appendix D Transducer Conversion Routines

Thermistor_Convert
Thermistor_Buf_Convert

Function
Converts a voltage or voltage buffer that was read from a thermistor to temperature.  Some SCXI terminal
blocks have onboard thermistors that you can use to do cold-junction compensation.

Parameters
Vref is the voltage reference you apply across the thermistor circuit (see Figure D-2).  The thermistor on the
SCXI terminal blocks has a Vref of 2.5 volts.

R1 is the value expressed in Ohms of the resistor in series with your thermistor (see Figure D-2).  The
thermistor on the SCXI terminal blocks has an R1 value of 5000 Ohms.

TempScale is an integer indicating in which temperature unit you want your return values to be.  Constant
definitions for each temperature scale are given in the conversion header file.

Celsius = 1
Fahrenheit = 2
Kelvin = 3
Rankine = 4

The Thermistor_Convert function has two remaining parameters–Volts is the voltage that you read from
the thermistor, and Temperature is the return temperature value given in units determined by TempScale.

The Thermistor_Buf_Convert function has three remaining parameters–numPts is the number of
voltage points to convert, VoltBuf is the array of voltages that you read from the thermistor, and TempBuf is
the return array of temperature values given in units determined by TempScale.

Description
The thermistor conversion routines use the following equation, which expresses the relationship between Volts
and Rt, the thermistor resistance (see Figure D-2).

Volts = Vref ( Rt / (R1 + Rt))

Solving the previous equation for Rt:

Rt = R1 ( Volts / (Vref + Volts))

Once the routine calculates Rt, it uses the following equation to convert Rt, the thermistor resistance, to
temperature in Kelvin.  Then it converts the temperature to the desired temperature scale if necessary.

T = 1 / ( a + b(ln Rt) + c(ln Rt)^3)

The following values used for a, b, and c are correct for the thermistors provided on the SCXI terminal blocks.
If you are using a thermistor with different values for a, b, and c (consult you thermistor data sheet), you can
edit the thermistor conversion routine to use your own a, b, and c values.

a = 1.295361E-3
b = 2.343159E-4
c = 1.018703E-7

© National Instruments Corporation D-7 NI-DAQ Software Reference Manual for Macintosh



Transducer Conversion Routines Appendix D

Figure D-2.  Circuit Diagram of a Thermistor in a Voltage Divider

                                                                                                                                                                                    

NI-DAQ Software Reference Manual for Macintosh D-8 © National Instruments Corporation



Appendix E
Analog Input Channel and Gain Settings and
Voltage Calculation
                                                                                                        

This appendix lists the valid channel and gain settings for DAQ boards, describes how NI-DAQ calculates voltage,

and describes the measurement of offset and gain adjustment.

DAQ Device Analog Input Channel Settings

Table E-1 lists the valid analog input (ADC) channel settings. If you have one or more AMUX-64T boards and an

MIO board, see Appendix C, Using an External Multiplexer, for more information.

Table E-1.  Valid Analog Input Channel Settings

Device Settings

Single-ended

configuration

Differential

configuration

NB-MIO-16, NB-MIO-16X 0–15 0–7

Lab-LC, DAQCard-1200, PCI-1200 0–7 0, 2, 4, 6

DAQCard-700 0–15 0–7

DAQCard-500, Lab-NB, Lab-LC 0–7 N/A

PCI-MIO-16XE-50 0–15 0–7

†ND_CJ_TEMP is a constant that is defined in a header file. The header file you should use depends on the

language you are using:

• C programmers—NIDAQCNS.H

• Pascal programmers—NIDAQCNS.PAS

© National Instruments Corporation E-1 NI-DAQ Software Reference Manual for Macintosh



Analog Input Channel and Gain Settings and Voltage Calculation Appendix  E

Voltage Calculation

Table E-2 lists the valid return values for different devices:

Table E-2.  Valid Return Values

Board(s) Unipolar Mode Bipolar Mode

NB-MIO-16,
Lab and 1200 Series

0 to 4,095 -2,048 to 2,047

NB-MIO-16X,
PCI-MIO-16XE-50

0 to 65,535 -32,768 to 32,767

DAQCard-500,
DAQCard-700

— -2,048 to 2,047

AI_VScale and DAQ_VScale calculate voltage from reading as follows:

voltage =  ( )reading – offset

maxReading
  *  ( )maxVolt

gain * gainAdjust

where:

maxReading is the maximum binary reading for the given board, channel, range, and polarity.

maxVolt is the maximum voltage the board can measure at a gain of 1 in the given range and polarity.

Table E-3 lists the values of maxReading and maxVolt for different boards.

Table E-3.  The Values of maxReading and maxVolt

Board(s) Unipolar Mode Bipolar Mode

maxReading maxVolt maxReading maxVolt

NB-MIO-16 4,096 * 2,048 *

NB-MIO-16X,
PCI-MIO-16XE-50

65,536 10 V 32,768 10 V

Lab and 1200 Series 4,096 10 V 2,048 5 V

DAQCard-500,
DAQCard-700

4,096 * 2,048 *

* The value of maxVolt depends on inputRange, as discussed in AI_Configure.

For the DAQCard-1200, gain is ignored, and the following formula is used:

voltage =  ( )reading – offset

maxReading
  *  (maxVolt)

NI-DAQ Software Reference Manual for Macintosh E-2 © National Instruments Corporation



Appendix  E Analog Input Channel and Gain Settings and Voltage Calculation

Offset and Gain Measurement

Measurement of Offset

To determine the offset parameter used in the AI_VScale and DAQ_VScale functions, follow this procedure:

1. Ground analog input channel i, where i can be any valid input channel.

2. Call the AI_Read function with gain set to the gain that will be used in your real acquisition (g). The

reading given by the AI_Read function is the value of offset. The offset is only valid for the

gain setting at which it was measured. Remember that the data type of offset in the AI_VScale and

DAQ_VScale functions is floating point, so if you use AI_Read to get the offset, you will have to typecast it

before passing it to the scale function.

Note: Another way to read the offset is to perform multiple readings using a DAQ function call and average
them to be more accurate and reduce the effects of noise.

Measurement of Gain Adjustment

To determine the gainAdjust parameter used in the AI_VScale and DAQ_VScale functions, follow this

procedure:

1. Connect the known voltage Vin to channel i.

2. Call the AI_Read function with gain equal to g. Use the reading returned by AI_Read with the offset value

determined above to calculate the real gain.

Note: You can use the DAQ functions to take many readings and average them instead of using the AI_Read
function.

The real gain is computed as follows:

GR  =  ( )reading – offset

maxReading
  *  ( )maxVolt

Vin

The gain adjustment is computed as follows:

gainAdjust  =  [ ] 1 -  
(g  – GR)  

g

© National Instruments Corporation E-3 NI-DAQ Software Reference Manual for Macintosh



Appendix F
Customer Communication
                                                                                                        

For your convenience, this appendix contains forms to help you gather the information necessary to help us solve
technical problems you might have as well as a form you can use to comment on the product documentation.  Filling
out a copy of the Technical Support Form before contacting National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world.  In the U.S. and Canada,
applications engineers are available Monday through Friday from 8:00 a.m. to 6:00 p.m. (central time).  In other
countries, contact the nearest branch office.  You may fax questions to us at any time.

Corporate Headquarters
(512) 794-0100
Technical support fax:  (512) 794-5678

Branch Offices Phone Number Fax Number
Australia 03 9 879 9422 03 9 879 9179
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 519 622 9310
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 71 11
Finland 90 527 2321 90 502 2930
France 1 48 14 24 24 1 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden  08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

© National Instruments Corporation F-1 NI-DAQ Software Reference Manual for Macintosh



Technical Support Form
___________________________________________________

Photocopy this form and update it each time you make changes to your software or hardware, and use the completed
copy of this form as a reference for your current configuration.  Completing this form accurately before contacting
National Instruments for technical support helps our applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem, include the
configuration forms from their user manuals.  Include additional pages if necessary.

Name                                                                                                                                                                                 

Company                                                                                                                                                                            

Address                                                                                                                                                                            

                                                                                                                                                                           

Fax (        )                                                            Phone (        )                                                                              

Computer brand                                            Model                                       Processor                                     

Operating system                                                                                                                                                      

Speed                               MHz RAM                               MB Display adapter                                   

Mouse                        yes                      no Other adapters installed                                                       

Hard disk capacity                                 MB Brand                                                                                       

Instruments used                                                                                                                                                        

National Instruments hardware product model                                     Revision                                                 

Configuration                                                                                                                                                            

National Instruments software product                                               Version                                                   

Configuration                                                                                                                                                            

The problem is                                                                                                                                                                 

                                                                                                                                                                                             

                                                                                                                                                                                             

                                                                                                                                                                                             

                                                                                                                                                                                             

List any error messages                                                                                                                                                     

                                                                                                                                                                                             

                                                                                                                                                                                             

                                                                                                                                                                                             

The following steps will reproduce the problem                                                                                                               

                                                                                                                                                                                             

                                                                                                                                                                                             

                                                                                                                                                                                             



NI-DAQ for Macintosh Hardware and
Software Configuration Form
                                                                                                        

Record the settings and revisions of your hardware and software on the line to the right of each item.  Complete a
new copy of this form each time you revise your software or hardware configuration, and use this form as a
reference for your current configuration.  Completing this form accurately before contacting National Instruments
for technical support helps our applications engineers answer your questions more efficiently.

National Instruments Products

• Data Acquisition Hardware _________________________________________________

• Interrupt Level of Hardware _________________________________________________

• DMA Channels of Hardware _________________________________________________

• Base I/O Address of Hardware _________________________________________________

• NI-DAQ Version _________________________________________________

• LabVIEW Version _________________________________________________

Other Products

• Computer Make and Model _________________________________________________

• Microprocessor _________________________________________________

• Clock Frequency _________________________________________________

• Type of Video Board Installed _________________________________________________

• System Version _________________________________________________

• Programming Language _________________________________________________

• Programming Language Version _________________________________________________

• Other Boards in System _________________________________________________

• Base I/O Address of Other Boards _________________________________________________

• DMA Channels of Other Boards _________________________________________________

• Interrupt Level of Other Boards _________________________________________________



Documentation Comment Form
                                                                                                                                                                                           

National Instruments encourages you to comment on the documentation supplied with our products.  This
information helps us provide quality products to meet your needs.

Title: NI-DAQ® Software Reference Manual for Macintosh, Version 4.8

Edition Date: February 1996

Part Number: 371345A-01

Please comment on the completeness, clarity, and organization of the manual.

                                                                                                                                                                                             

                                                                                                                                                                                             

                                                                                                                                                                                             

                                                                                                                                                                                             

                                                                                                                                                                                             

                                                                                                                                                                                             

                                                                                                                                                                                             

If you find errors in the manual, please record the page numbers and describe the errors.

                                                                                                                                                                                             

                                                                                                                                                                                             

                                                                                                                                                                                             

                                                                                                                                                                                             

                                                                                                                                                                                             

                                                                                                                                                                                             

                                                                                                                                                                                             

                                                                                                                                                                                             

Thank you for your help.

Name                                                                                                                                                                               

Title                                                                                                                                                                               

Company                                                                                                                                                                            

Address                                                                                                                                                                            

                                                                                                                                                                           

Phone (                )                                                   

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678
Austin, TX  78730-5039



Glossary
___________________________________________________

Prefix Meaning Value

n-

µ-

m-

k-

M-

nano-

micro-

milli-

kilo-

mega-

10-9

10-6

10-3

103

106

° degrees
A amperes
A/D analog-to-digital
AC alternating current
ADC A/D converter
BCD binary-coded decimal
C Celsius
CPU central processing unit
D/A digital-to-analog
DAC D/A converter
DC direct current
DMA direct memory access
DSP digital signal processing
EEPROM electrically erasable programmable read-only memory
FIFO first-in-first-out
GPIB General Purpose Interface Bus
hex hexadecimal
Hz hertz
I/O input/output
LSB least significant bit
MB megabytes of memory
min minutes
NB NuBus
PIA peripheral interface adapter
PPI programmable peripheral interface
pt points
rms root mean square
ROM read-only memory
RTD resistance temperature detector
RTSI Real-Time System Integration
s seconds
SCXI Signal Conditioning eXtensions for Instrumentation
SPDT single-pole double-throw
TC terminal count
V volts
Vrms volts, root mean square

© National Instruments Corporation Glossary-1 NI-DAQ Software Reference Manual for Macintosh



Index
                                                                                                                       

A NB-MIO-16, 3-1
NB-MIO-16X, 3-1 to 3-2
SCXI modules, 3-3A2000_Calibrate function, 2-2 to 2-3

voltage calculation, E-2A2000_Config function, 2-3 to 2-4
analog input functionsA2100_Calibrate function, 2-4

multiple-channelA2100_Config function, 2-5
boards supported, A-4A2150_Config function, 2-6
function summary, 3-12AI_Check function, 3-5
MAI_Arm, 3-15 to 3-16AI_Clear function, 3-5
MAI_Clear, 3-16AI_Configure function, 3-6 to 3-7
MAI_Coupling, 3-16 to 3-17AI_Mux_Config function, 3-7 to 3-8
MAI_Read, 3-17 to 3-18AI_Read function, 3-8 to 3-9
MAI_Scale, 3-18AI_Read_Scan function, 3-9
MAI_Setup, 3-19 to 3-20AI_Setup function, 3-9 to 3-10

single-channelAI_VScale function, 3-10 to 3-11
AI_Check, 3-5AMUX-64T
AI_Clear, 3-5analog input channel range (table), C-1
AI_Configure, 3-6 to 3-7configuring, C-1
AI_Mux_Config, 3-7 to 3-8external multiplexer channels (table), C-1
AI_Read, 3-8 to 3-9overview, C-1
AI_Read_Scan, 3-9scanning order, C-2 to C-3
AI_Setup, 3-9 to 3-10analog input. See also analog input functions.
AI_VScale, 3-10 to 3-11calibration, 7-28 to 7-30
application hints, 3-4channel settings (table), E-1
boards supported, A-1gain adjustment measurement, E-3
function summary, 3-3multiple-channel

analog outputapplication hints, 3-13 to 3-15
calibration, 7-30buffered analog input, 3-14
data acquisition board summary (table), 4-1externally-clocked analog input, 3-14 to 3-15
DMA requirements for waveform generation

(table), 10-1
flowchart for analog input readings, 3-14

externally clocked, 3-15
NB-A2100, 4-2NB-A2000, 3-11
SCXI modulesNB-A2100, 3-11 to 3-12

application hints, 7-24NB-A2150, 3-12
multiplexed mode, 7-4typical usage, 3-13 to 3-14

analog output functionsoffset and gain measurement, E-3
AO_Change_Parameter, 4-3 to 4-4SCXI applications, 7-15 to 7-23
AO_Setup, 4-4 to 4-6multiplexed mode, 7-15 to 7-21
AO_Update, 4-6channel-scanning operation (figure), 7-20
AO_VScale, 4-6 to 4-7single-channel or software-scanning

operation (figure), 7-16, 7-18 AO_Write, 4-7 to 4-8
application hints, 4-2 to 4-3parallel mode, 7-21 to 7-23
boards supported, A-1 to A-2channel-scanning operation (figure), 7-23
function summary, 4-2single-channel or software-scanning

operation (figure), 7-22 AO_Change_Parameter function, 4-3 to 4-4
AO_Setup function, 4-4 to 4-6SCXI modules
AO_Update function, 4-6multiplexed mode, 7-3
AO_VScale function, 4-6 to 4-7parallel mode, 7-4
AO_Write function, 4-7 to 4-8single-channel
AsyncFuncGenerator example program,  11-2DAQCard-500 and DAQCard-700, 3-3
asynchronous waveform generation. See also

waveform generation.
flowchart for analog input readings, 3-4

externally clocked, 3-4
Lab and 1200 series, 3-2

© National  Instruments Corporation Index-1 NI-DAQ Software Reference Manual for Macintosh



Index

call sequences for waveform generation,
10-8 to 10-9

buffered waveform generation. See also
asynchronous waveform generation;
synchronous waveform generation.description, 10-2

synchronous versus asynchronous, 10-2 to 10-3 application hints, 10-24 to 10-29
asynchronous waveform generation functions block update of output waveform, 10-26 to 10-27

boards supported, A-5 to A-6 BWF function flowchart, 10-25
function summary, 10-6 call sequence, 10-24 to 10-25
WF_DBLoad, 10-10 to 10-11, 10-13 circular waveform buffer and blocks

(figure), 10-26WF_Load, 10-13 to 10-16
WF_Offset, 10-20 function summary, 10-23
WF_Reset, 10-21 immediate update of output waveform,  10-27
WF_Setup, 10-21 to 10-22 initializing, 10-25 to 10-26
WF_Start, 10-22 terminology related to (table), 10-24
WF_Stop, 10-23 updating waveform output during generation,

10-26 to 10-27

B
writing function generator application,  10-29
writing stream-from-disk application,

10-27 to 10-28
buffered waveform generation functionsBASIC. See also  specific functions for syntax.

boards supported, A-2BASIC interface, 1-15 to 1-16
BWF_BlkLoad, 10-30 to 10-31error handling, 1-13
BWF_BufLoad, 10-31 to 10-33include files, 1-12 to 1-13
BWF_Check, 10-33 to 10-34libraries, 1-11 to 1-12
BWF_Clear, 10-35bit-mapping
BWF_Rate, 10-35 to 10-36digital I/O functions (table), 5-1
BWF_Resume, 10-36 to 10-37NB-DIO-32F (table), 5-3
BWF_Start, 10-37block update mode (table), 10-24
BWF_Stop, 10-38block update of output waveform, 10-26 to 10-27
function summary, 10-23blocks (table), 10-24

BWF_BlkLoad function, 10-30 to 10-31Board-ID function, 2-7
BWF_BufLoad function, 10-31 to 10-33board slot number, determining, 2-7
BWF_Check function, 10-33 to 10-34board-specific functions
BWF_Clear function, 10-35A2000_Calibrate, 2-2 to 2-3
BWF_Rate function, 10-35 to 10-36A2000_Config, 2-3 to 2-4
BWF_Resume function, 10-36 to 10-37A2100_Calibrate, 2-4
BWF_Start function, 10-37A2100_Config, 2-5
BWF_Stop function, 10-38A2150_Config, 2-6

C

Board-ID, 2-7
Board_Reset, 2-8 to 2-11
boards supported, A-1 to A-2, A-4 to A-5
Calibrate_1200, 2-12 to 2-14
Calibrate_E_Series, 2-14 to 2-17 C languages. See also  specific functions for syntax.
function summary, 2-1 to 2-2 error handling, 1-13
Get_DAQ_Device_Info, 2-17 to 2-18 C/C++ interface, 1-13 to 1-14
Master_Slave_Config, 2-18 to 2-19 include files, 1-12 to 1-13
MIO_16X_Config, 2-19 libraries, 1-11 to 1-12
MIO_Config, 2-20 Calibrate_1200 function, 2-12 to 2-14
SC_2040_Config, 2-20 to 2-21 Calibrate_E_Series function, 2-14 to 2-17
Select_Signal, 2-21 to 2-29 calibration functions
Set_DAQ_Device_Info, 2-29 to 2-32 A2000_Calibrate, 2-2 to 2-3

Board_Reset function, 2-8 to 2-11 A2100_Calibrate, 2-4
boards. See also  specific boards. Calibrate_1200, 2-12 to 2-14

function support for boards (table), A-1 to A-7 Calibrate_E_Series, 2-14 to 2-17
supported by NI-DAQ for Macintosh (table), 1-3 SCXI_Cal_Constants, 7-26 to 7-31

buffered analog input, 3-14 SCXI_Calibrate_Setup, 7-31 to 7-32
buffered data acquisition. See double-buffered data

acquisition; single-buffered data acquisition.
channel, definition (table), 10-24
channel settings (table), E-1

buffered digital I/O, 5-9 to 5-10 CLOCKI signal (table)

NI-DAQ Software Reference Manual for Macintosh Index-2 © National Instruments Corporation



Index

description, 9-5 application hints, 8-9 to 8-10
NB-A2000, 9-4 boards supported, 8-1, A-2, A-4

CLOCKO signal (table) CTR_Config, 8-10 to 8-11
description, 9-5 CTR_EvCount, 8-11 to 8-12
NB-A2000, 9-4 CTR_EvRead, 8-12 to 8-13

clones, Macintosh, 1-3 CTR_FOUT_Config, 8-15 to 8-16
configuration CTR_Period, 8-17

AMUX-64T, C-1 CTR_Pulse, 8-18 to 8-20
hardware CTR_Reset, 8-20 to 8-21

determining device information, 1-7 to 1-8 CTR_Restart, 8-21
device configuration, 1-8 to 1-9 CTR_Square, 8-21 to 8-23
SCXI modules, 1-9 to 1-11 CTR_State, 8-23 to 8-24
using NI-DAQ Control Panel, 1-7 to 1-11 CTR_Stop, 8-24

Lab and 1200 series, 6-16 to 6-17 function summary, 8-9
NB-MIO-16 or NB-MIO-16X, 6-16 GPCTR_Change_Parameter, 8-31 to 8-34
port configuration, 5-1 to 5-2 GPCTR_Config_Buffer, 8-34

configuration functions GPCTR_Control, 8-35 to 8-36
A2000_Config, 2-3 to 2-4 GPCTR_Set_Application, 8-36 to 8-56
A2100_Config, 2-5 GPCTR_Watch, 8-57 to 8-58
A2150_Config, 2-6 ICTR_Read, 8-27 to 8-28
AI_Configure, 3-6 to 3-7 ICTR_Reset, 8-28
AI_Mux_Config, 3-7 to 3-8 ICTR_Setup, 8-28 to 8-31
AI_Setup, 3-9 to 3-10 overflow detection, 8-13
AO_Setup, 4-4 to 4-6 timing signal generation, 8-9 to 8-10
CTR_Config, 8-10 to 8-11 counter/timer operation
DAQ2Config, 6-48 block diagram, 8-1
DAQ2MemConfig, 6-51 to 6-52 counter timing and output types (figure), 8-3
DAQ_Config, 6-15 to 6-17 description, 8-1 to 8-3
DIG_Grp_Config, 5-13 to 5-14 event counting, 8-9
DIG_Line_Config function, 5-18 event-counting applications, 8-13 to 8-15
DIG_Prt_Config, 5-21 to 5-22 NB-A2000, 8-6 to 8-7
DIG_SCAN_Setup, 5-23 to 5-25 NB-DMA-8-G, 8-6
GPCTR_Config_Buffer, 8-34 NB-DMA2800, 8-6
ICTR_Setup, 8-28 to 8-31 NB-MIO-16, 8-4
MAI_Setup, 3-19 to 3-20 NB-MIO-16X, 8-5
Master_Slave_Config, 2-18 to 2-19 NB-TIO-10, 8-7 to 8-8
MDAQ_Setup, 6-68 to 6-70 period measurement applications, 8-15
MDAQ_Trig_Config, 6-72 to 6-73 programmable frequency output operation,

8-3 to 8-8MIO_16X_Config, 2-19
MIO_Config, 2-20 counter-timer signals for Lab and 1200 series,

6-6, 10-5SC_2040_Config, 2-20 to 2-21
SCAN_Setup, 6-36 to 6-37 counter-timers for DAQCard-500 and

DAQCard-700, 6-8SCXI_Configure_Filter, 7-33 to 7-34
SCXI_Load_Config, 7-38 CTR_Config function, 8-10 to 8-11
SCXI_MuxCtr_Setup, 7-39 to 7-40 CTR_EvCount function, 8-11 to 8-12
SCXI_SCAN_Setup, 7-43 to 7-44 CTR_EvRead function, 8-12 to 8-13
SCXI_Set_Config, 7-44 to 7-45 CTR_FOUT_Config function, 8-15 to 8-16
SCXI_Single_Chan_Setup, 7-48 to 7-49 CTR_Period function, 8-17
SCXI_Track_Hold_Setup, 7-49 to 7-51 CTR_Pulse function, 8-18 to 8-20
WF_Grp_Setup, 10-17 to 10-19 CTR_Reset function, 8-20 to 8-21
WF_Setup, 10-21 to 10-22 CTR_Restart function, 8-21

conversion pulse timing signal CTR_Square function, 8-21 to 8-23
Lab and 1200 series, 6-6 CTR_State function, 8-23 to 8-24
NB-MIO-16 and NB-MIO-16X (table), 6-3 CTR_Stop function, 8-24

conversion signal, MIO E series, 6-9 customer communication, xvii, F-1
counter/timer functions. See also  general-purpose

counter/timer functions, interval
counter/timer functions.

cycles, definition (table), 10-24

© National Instruments Corporation Index-3 NI-DAQ Software Reference Manual for Macintosh



Index

D analog triggering, 6-47
application hints, 6-42 to 6-47
buffer and blocks (figure), 6-43DAQ2Clear function, 6-47
initializing, 6-42 to 6-43DAQ2Config function, 6-48
multiple-channel (figure)DAQ2Get function

Lab and 1200 series, 6-46description, 6-49 to 6-51
NB-MIO-16 and NB-MIO-16X, 6-46retrieving acquired data, 6-43 to 6-45

retrieving acquired data, 6-43 to 6-46DAQ2MemConfig function, 6-51 to 6-52
executing DAQ2Get and DAQ2Tap when

overwrite occurred (figure), 6-45
DAQ2Tap function

description, 6-53 to 6-55
first execution of DAQ2Get and DAQ2Tap

(figure), 6-44
retrieving acquired data, 6-43 to 6-45

DAQ2TGet function
second execution of DAQ2Get and DAQ2Tap

(figure), 6-44
description, 6-49 to 6-51
retrieving acquired data, 6-43

single-channel (figure), 6-46DAQ2TTap function
startingdescription, 6-53 to 6-55

with DAQ_start, 6-21retrieving acquired data, 6-43 to 6-45
with SCAN_IntStart, 6-35DAQCard-500 and DAQCard-700
with SCAN_Start, 6-40analog input, 3-3

triggeringanalog input channel settings (table), E-1
with DAQ_start, 6-21 to 6-22counter-timers, 6-8
with SCAN_IntStart, 6-36data acquisition
with SCAN_Start, 6-41capabilities (table), 6-1

data acquisition, multiple-channel. See also  data
acquisition operation.

overview, 6-8
timing, 6-8

application hints, 6-12 to 6-13, 6-58 to 6-62default state, 2-11
configuring trigger conditions, 6-59digital I/O, 5-6
frame-oriented and scan-oriented

acquisition, 6-58
interval counter/timer operation, 8-26 to 8-27
nonlatched digital I/O, 5-6

maximum data acquisition rates (table)voltage calculation, E-2
Lab and 1200 series, 6-7DAQCard-700
NB-MIO-16, 6-4default state, 2-11
NB-MIO-16X, 6-5SCXI module support and capabilities,

7-11 to 7-12 minimum function flowchart, 6-61
NB-A2000, 6-55 to 6-56multiplexed mode (note), 7-3
NB-A2100, 6-56 to 6-57DAQCard-1200. See Lab and 1200 series.
NB-A2150, 6-57DAQCard-AO-2DC
optional coupling and triggering configuration

(figure), 6-62
analog output (table), 4-1
default state, 2-11

stopping data acquisition, 6-60digital I/O, 5-6
triggering for NB-A2100 and NB-A2150, 6-59nonlatched digital I/O, 5-8
typical usage, 6-60DAQCard-DIO-24

data acquisition, single-buffered. See also  data
acquisition operation.

buffered digital I/O, 5-9
digital I/O, 5-2

application hints, 6-12grouping ports, 5-3
NB-MIO-16X in unipolar mode, with

Pascal, 6-13
latched digital I/O, 5-2, 5-8
nonlatched digital I/O, 5-2, 5-8

startingport configuration, 5-2
with DAQ_Start, 6-21SCXI module support and capabilities, 7-11
with SCAN_IntStart, 6-35DAQ_Check function, 6-14
with SCAN_Start, 6-40DAQ_Clear function, 6-15

triggeringDAQ_Config function, 6-15 to 6-17
with DAQ_Start, 6-21DAQ_PreTrig function, 6-18
with SCAN_IntStart, 6-35DAQ_Start function, 6-19 to 6-22
with SCAN_Start, 6-40DAQ_Trigger function, 6-22 to 6-23

data acquisition functionsDAQ_VScale function, 6-24
double-buffereddata acquisition, double-buffered. See also  data

acquisition operation. boards supported, A-3

NI-DAQ Software Reference Manual for Macintosh Index-4 © National Instruments Corporation



Index

boards supported (table), 6-1 NB-A2100, 6-56 to 6-57
DAQ2Clear, 6-47 NB-A2150, 6-57
DAQ2Config, 6-48 NB-MIO-16, 6-2 to 6-5
DAQ2Get, 6-49 to 6-51 data acquisition rates, 6-3 to 6-4
DAQ2MemConfig, 6-51 to 6-52 data acquisition timing (table), 6-3
DAQ2Tap, 6-53 to 6-55 overview, 6-2
DAQ2TGet, 6-49 to 6-51 NB-MIO-16X, 6-2 to 6-5
DAQ2TTap, 6-53 to 6-55 data acquisition rates, 6-4 to 6-5
function summary, 6-41 to 6-42 data acquisition timing (table), 6-3

multiple-channel interval scanning (figure), 6-2
boards supported, A-4 to A-5 overview, 6-2
boards supported (table), 6-1 SCXI data acquisition rates, 6-11
function summary, 6-57 to 6-58 delay counter timing signal, NB-A2000

(table), 6-56MDAQ_Check, 6-63
MDAQ_Clear, 6-64 device configuration
MDAQ_Get, 6-64 to 6-66 determining board ID number, 2-7
MDAQ_ScanRate, 6-66 to 6-67 determining device information, 1-7 to 1-8
MDAQ_Setup, 6-68 to 6-70 SCXI modules, 1-9 to 1-11
MDAQ_Start, 6-70 to 6-71 using NI-DAQ Control Panel, 1-8 to 1-9
MDAQ_Stop, 6-71 DIG_Blk_Check function, 5-10
MDAQ_Trig_Config, 6-72 to 6-73 DIG_Blk_Clear function, 5-10 to 5-11
MDAQ_Trig_Delay, 6-74 DIG_Blk_Start function, 5-11 to 5-13

single-buffered DIG_Grp_Config function, 5-13 to 5-14
boards supported, 6-1, A-3, A-4, A-5 DIG_Grp_Mode function, 5-14 to 5-15
DAQ_Check, 6-14 DIG_Grp_Status function, 5-15
DAQ_Clear, 6-15 DIG_In_Group function, 5-16
DAQ_Config, 6-15 to 6-17 DIG_In_Line function, 5-17
DAQ_PreTrig, 6-18 DIG_In_Port function, 5-17 to 5-18
DAQ_Start, 6-19 to 6-22 digital I/O
DAQ_Trigger, 6-22 to 6-23 application hints, 5-8 to 5-10
DAQ_VScale, 6-24 bit mapping (table), 5-1
function summary, 6-11 to 6-12 boards supported, 5-1
Lab_ISCAN_Check, 6-25 to 6-26 buffered digital I/O
Lab_ISCAN_Start, 6-27 to 6-28 NB-DIO-32F, 5-9 to 5-10
maximum data acquisition rates (table) NB-DIO-96, PCI-DIO-96, NB-DIO-24,

DAQCard-DIO-24, NB-PRL, Lab and
1200 series, 5-9

NB-MIO-16, 6-3
NB-MIO-16X, 6-5

SCAN_Check, 6-29 DAQCard-500 and DAQCard-700, 5-6
SCAN_Demux, 6-30 to 6-32 DAQCard-AO-2DC, 5-6
SCAN_IntStart, 6-32 to 6-36 DAQCard-DIO-24, 5-2
SCAN_Setup, 6-36 to 6-37 Lab and 1200 series, 5-2
SCAN_Start, 6-38 to 6-41 latched mode

data acquisition operation application hints, 5-8 to 5-9
DAQCard-500 and DAQCard-700 configuring, 5-2

counter-timers, 6-8 flowcharts for group input and output,
5-8 to 5-9data acquisition timing, 6-8

overview, 6-8 NB-DIO-32F, 5-8
data acquisition overview, 6-5 to 6-6 NB-DIO-96, PCI-DIO-96, NB-DIO-24,

DAQCard-DIO-24, NB-PRL, Lab and
1200 series, 5-8

Lab and 1200 series, 6-5 to 6-7
counter-timer signals, 6-6
data acquisition timing (table), 6-6 NB-DIO-24, 5-2
data acquisition rate, 6-7 NB-DIO-32F, 5-3 to 5-4
overview, 6-5 to 6-6 NB-DIO-96, 5-4 to 5-5

MIO E series data acquisition timing, 6-9 NB-MIO-16, 5-5
NB-A2000 NB-MIO-16X, 5-5

data acquisition rates, 6-56 NB-PRL, 5-2
data acquisition timing, 6-56 NB-TIO-10, 5-5 to 5-6
overview, 6-55 nonlatched mode

© National Instruments Corporation Index-5 NI-DAQ Software Reference Manual for Macintosh



Index

application hints, 5-8 multiple-channel (figure)
configuring, 5-2 Lab and 1200 series, 6-46

overview, 5-1 to 5-2 NB-MIO-16 and NB-MIO-16X, 6-46
PCI-DIO-96, 5-4 to 5-5 retrieving acquired data, 6-43 to 6-46
PCI-MIO-16XE-50, 5-5 executing DAQ2Get and DAQ2Tap when

overwrite occurred (figure), 6-45port configuration, 5-1 to 5-2
definition, 5-1 first execution of DAQ2Get and DAQ2Tap

(figure), 6-44NB-DIO-24, DAQCard-DIO-24, NB-PRL, Lab
and 1200 series groups, 5-3 second execution of DAQ2Get and DAQ2Tap

(figure), 6-44NB-DIO-32F groups, 5-3 to 5-4
NB-DIO-96 groups, 5-5 single-channel (figure), 6-46
PCI-DIO-96 groups, 5-5 starting

SCXI support, 5-6 to 5-7 with DAQ_start, 6-21
digital I/O functions with SCAN_IntStart, 6-35

boards supported by, A-3 to A-4 with SCAN_Start, 6-40
DIG_Blk_Check, 5-10 triggering
DIG_Blk_Clear, 5-10 to 5-11 with DAQ_start, 6-21 to 6-22
DIG_Blk_Start, 5-11 to 5-13 with SCAN_IntStart, 6-36
DIG_Grp_Config, 5-13 to 5-14 with SCAN_Start, 6-41
DIG_Grp_Mode, 5-14 to 5-15 double-buffered data acquisition functions
DIG_Grp_Status, 5-15 boards supported, A-3
DIG_In_Group, 5-16 boards supported (table), 6-1
DIG_In_Line, 5-17 DAQ2Clear, 6-47
DIG_In_Port, 5-17 to 5-18 DAQ2Config, 6-48
DIG_Line_Config, 5-18 DAQ2Get, 6-49 to 6-51
DIG_Out_Group, 5-19 DAQ2MemConfig, 6-51 to 6-52
DIG_Out_Line, 5-20 DAQ2Tap, 6-53 to 6-55
DIG_Out_Port, 5-20 to 5-21 DAQ2TGet, 6-49 to 6-51
DIG_Prt_Config, 5-21 to 5-22 DAQ2TTap, 6-53 to 6-55
DIG_Prt_Status, 5-22 function summary, 6-41 to 6-42
DIG_SCAN_Setup, 5-23 to 5-25 double-buffered waveform generation using

WF_DBLoad, 10-10 to 10-11function summary, 5-7
digital SCXI applications, 7-24

E
digital SCXI modules

multiplexed mode, 7-3 to 7-4
parallel mode, 7-4

Digital_Blk_Transfer example program, 11-3 E series. See MIO E series.
DIG_Line_Config function, 5-18 EEPROM organization, 7-31
DIG_Out_Group function, 5-19 error codes, NI-DAQ, B-1 to B-11
DIG_Out_Line function, 5-20 error conditions for functions. See specific

functions.DIG_Out_Port function, 5-20 to 5-21
DIG_Prt_Config function, 5-21 to 5-22 error handling, 1-13
DIG_Prt_Status function, 5-22 event counting
DIG_SCAN_Setup function, 5-23 to 5-25 counter/timer application hints, 8-9 to 8-10
DMA waveform generation event-counting applications, 8-13 to 8-15

description, 10-1 to 10-2 ND_BUFFERED_EVENT_CNT application,
8-50 to 8-52hardware requirements (table), 10-1

documentation ND_SIMPLE_EVENT_CNT application, 8-38
about National Instruments documentation

set, xvii
example programs

AsyncFuncGenerator, 11-2
conventions used in manual, xvi-xvii Digital_Blk_Transfer, 11-3
organization of manual, xv-xvi flow charts

double-buffered data acquisition. See also  data
acquisition operation.

function generator application, 10-29
stream-from-disk application, 10-27 to 10-28

analog triggering, 6-47 GetFramesAndGraph, 11-3
application hints, 6-42 to 6-47 Lab-OneShotScope(2ch), 11-1
buffer and blocks (figure), 6-43 MDAQ_Op, 11-3 to 11-4
initializing, 6-42 to 6-43 MDAQ_OpExample, 11-3

NI-DAQ Software Reference Manual for Macintosh Index-6 © National Instruments Corporation



Index

MultiChannelDVM, 11-3 application hints, 8-31
OneShotScope(1ch), 11-1 boards supported, A-4
OneShotScope(2ch), 11-1 function summary, 8-31
Oscilloscope, 11-1 to 11-2 GPCTR_Change_Parameter function,

8-31 to 8-34PeriodMeasurement, 11-4
PreTrig_Interval_Scan, 11-3 GPCTR_Config_Buffer function, 8-34
SampleAndGenerate, 11-2 GPCTR_Control function, 8-35 to 8-36
SqWaveGenerator, 11-3 GPCTR_Set_Application function, 8-36 to 8-56
StreamFromDisk, 11-4 GPCTR_Watch function, 8-57 to 8-58
StreamToDisk(1ch), 11-2 Get_DAQ_Device_Info function, 2-17 to 2-18
StreamToDisk(4ch), 11-2 GetFramesAndGraph example program, 11-3
StreamToDisk (MDAQ), 11-4 GPCTR_Change_Parameter function, 8-31 to 8-34
SyncFuncGenerator, 11-2 GPCTR_Config_Buffer function, 8-34

EXTCONV* signal (table) GPCTR_Control function, 8-35 to 8-36
NB-MIO-16, 9-1 GPCTR_Set_Application function, 8-36 to 8-56
NB-MIO-16X, 9-2 description, 8-36 to 8-37

external multiplexer board. See AMUX-64T. ND_BUFFERED_EVENT_CNT application,
8-50 to 8-52externally-clocked analog input, 3-14 to 3-15

EXTGATE signal (table), 9-1 ND_BUFFERED_PERIOD_MSR application,
8-52 to 8-53EXTTRIG* signal (table)

NB-A2150, 9-6 ND_BUFFERED_PULSE_WIDTH_MSR
application, 8-55 to 8-56NB-MIO-16, 9-1

F

ND_BUFFERED_SEMI_PERIOD_MSR
application, 8-53 to 8-55

ND_FSK application, 8-49 to 8-50
ND_PULSE_TRAIN_GNR application,

8-48 to 8-49fax technical support, F-1
ND_RETRIG_PULSE_GNR application,

8-47 to 8-48
FOUT signal (table)

NB-DMA-8-G and NB-DMA2800, 9-3
ND_SIMPLE_EVENT_CNT application, 8-38NB-MIO-16, 9-1
ND_SINGLE_PERIOD_MSR application,

8-39 to 8-40
FOUT1 signal (table), 9-7
frame-oriented multiple-channel data

acquisition, 6-58 ND_SINGLE_PULSE_GNR application,
8-44 to 8-45frequency shift-keying. See ND_FSK application.

ND_SINGLE_PULSE_WIDTH_MSR
application, 8-40 to 8-42

function generator application flow chart, 10-29
FutureBASIC. See BASIC.

ND_SINGLE_TRIG_PULSE_GRN application,
8-45 to 8-47

G ND_TRIG_PULSE_WIDTH_MSR application,
8-42 to 8-44

synopsis, 8-37gain adjustment measurement, E-3
GPCTR_Watch function, 8-57 to 8-58gate signal
GPIB functions available in NI-488 software, 1-4MIO E series data acquisition timing, 6-9
groups. See also  digital I/O functions.NB-MIO-16 and NB-MIO-16X (table), 6-3

buffered waveform generation (table), 10-24GATE1 signal (table)
definition, 5-1NB-DMA-8-G and NB-DMA2800, 9-2

H

NB-MIO-16, 9-1
NB-MIO-16X, 9-2
NB-TIO-10, 9-7

GATE2 signal (table), 9-4
handshaking (latched) mode, 5-2GATE3 signal (table), 9-3
hardwareGATE5 signal (table)

configurationNB-DMA-8-G and NB-DMA2800, 9-3
device configuration, 1-8 to 1-9NB-TIO-10, 9-7
device numbers, 1-7 to 1-8GATE6 signal (table), 9-7
SCXI modules, 1-9 to 1-11GATE10 signal (table), 9-7
using NI-DAQ Control Panel, 1-7 to 1-11general-purpose counter/timer functions. See also

counter/timer functions. installation

© National Instruments Corporation Index-7 NI-DAQ Software Reference Manual for Macintosh



Index

data acquisition boards, 1-5 port configuration, 5-2
SCXI hardware, 1-5 to 1-6 SCXI module support and capabilities,

7-11 to 7-12

I
multiplexed mode (note), 7-3

voltage calculation, E-2
waveform generation, 10-5

externally timed, 10-12ICTR_Read function, 8-27 to 8-28
Lab-OneShotScope(2ch) example program, 11-1ICTR_Reset function, 8-28
Lab_ISCAN_Check function, 6-25 to 6-26ICTR_Setup function, 8-28 to 8-31
Lab_ISCAN_Start function, 6-27 to 6-28installation
LabVIEW software, 1-4 to 1-5hardware, 1-5 to 1-6
language interfaces, 1-11 to 1-16NI-DAQ for Macintosh, 1-6 to 1-7

BASIC, 1-15 to 1-16for use with LabVIEW, 1-4 to 1-5
C/C++, 1-13 to 1-14interface for languages. See language interfaces.
data types, 1-13interleaved buffer data (table), 10-24
error handling, 1-13interval counter/timer functions. See also

counter/timer functions. include files, 1-12 to 1-13
libraries, 1-11 to 1-12application hints, 8-25 to 8-27
Pascal, 1-14 to 1-15boards supported, A-4
supported by NI-DAQ for Macintosh, 1-1function summary, 8-25

latched digital I/O. See digital I/O.ICTR_Read, 8-27 to 8-28

M

ICTR_Reset, 8-28
ICTR_Setup, 8-28 to 8-31

interval counter/timer operation
block diagram, 8-25
DAQCard-500 and DAQCard-700, 8-26 to 8-27 MAI_Arm function, 3-15 to 3-16
Lab 1200 series, 8-25 to 8-26 MAI_Clear function, 3-16
overview, 8-24 to 8-25 MAI_Coupling function, 3-16 to 3-17

interval scanning MAI_Read function, 3-17 to 3-18
NB-MIO-16, 6-2, 6-36 MAI_Scale function, 3-18
NB-MIO-16X (figure), 6-2 MAI_Setup function, 3-19 to 3-20
simultaneous sampling, 6-2 manual. See documentation.
with SCXI modules, 6-2 Master_Slave_Config function, 2-18 to 2-19

L

MDAQ_Check function, 6-63
MDAQ_Clear function, 6-64
MDAQ_Get function, 6-64 to 6-66
MDAQ_Op example program, 11-3 to 11-4
MDAQ_OpExample example program, 11-3Lab and 1200 series
MDAQ_ScanRate function, 6-66 to 6-67analog input, 3-2
MDAQ_Setup function, 6-68 to 6-70analog input channel settings (table), E-1
MDAQ_Start function, 6-70 to 6-71analog output (table), 4-1
MDAQ_Stop function, 6-71buffered digital I/O, 5-9
MDAQ_Trig_Config function, 6-72 to 6-73configuration, 6-16 to 6-17
MDAQ_Trig_Delay function, 6-74counter/timer signals, 6-6 to 6-7, 10-5
Metrowerks C/C+. See C languages.data acquisition, 6-5 to 6-7
Metrowerks Pascal. See Pascal.capabilities (table), 6-1
MIO E seriesmaximum data acquisition rates for multiple

channels (table), 6-7 data acquisition timing, 6-9
RTSI bus connections, 9-2rates, 6-7
SCXI module support and capabilities, 7-9recommended settling time versus gain

(table), 6-7 signal name equivalencies (table), 2-29
waveform generation, externally timed, 10-12timing (table), 6-6

MIO_16X_Config function, 2-19default state, 2-9
MIO_Config function, 2-20digital I/O, 5-2
Mode 0 through Mode 5 timing diagrams,

8-29 to 8-30
grouping ports, 5-3
interval counter/timers, 8-25 to 8-26

MPW C/C++. See C languages.latched digital I/O, 5-2, 5-8
MPW Pascal. See Pascal.nonlatched digital I/O, 5-2, 5-8

NI-DAQ Software Reference Manual for Macintosh Index-8 © National Instruments Corporation



Index

MultiChannelDVM example program, 11-3 digital and relay modules, 7-3 to 7-4
multiple-channel analog input

N
application hints, 3-13 to 3-15
buffered analog input, 3-14
externally-clocked analog input, 3-14 to 3-15
flowchart for analog input readings, 3-14 NB-A2000

externally clocked, 3-15 counter/timers, 8-6 to 8-7
NB-A2000, 3-11 data acquisition, 6-55 to 6-56
NB-A2100, 3-11 to 3-12 capabilities (table), 6-1
NB-A2150, 3-12 maximum data acquisition rates (table), 6-56
typical usage, 3-13 to 3-14 rates, 6-56

multiple-channel analog input functions timing, 6-56
boards supported, A-4 default state, 2-10
function summary, 3-12 multiple-channel analog input, 3-11
MAI_Arm, 3-15 to 3-16 RTSI bus connections, 9-4 to 9-5
MAI_Clear, 3-16 NB-A2100
MAI_Coupling, 3-16 to 3-17 analog output, 4-2
MAI_Read, 3-17 to 3-18 data acquisition, 6-56 to 6-57
MAI_Scale, 3-18 capabilities (table), 6-1
MAI_Setup, 3-19 to 3-20 default state, 2-10

multiple-channel data acquisition. See also  data
acquisition operation.

multiple-channel analog input, 3-11 to 3-12
RTSI bus connections, 9-5 to 9-6

application hints, 6-12 to 6-13, 6-58 to 6-62 triggering of multiple-channel data
acquisition, 6-59configuring trigger conditions, 6-59

frame-oriented and scan-oriented
acquisition, 6-58

waveform generation, 10-5 to 10-6
NB-A2150

maximum data acquisition rates (table) data acquisition, 6-57
Lab and 1200 series, 6-7 capabilities (table), 6-1
NB-MIO-16, 6-5 default state, 2-10
NB-MIO-16X, 6-5 multiple-channel analog input, 3-12

minimum function flowchart, 6-61 RTSI bus connections, 9-6 to 9-7
NB-A2000, 6-55 to 6-56 triggering of multiple-channel data

acquisition, 6-59NB-A2100, 6-56 to 6-57
NB-A2150, 6-57 NB-AO-6
optional coupling and triggering configuration

(figure), 6-62
analog output (table), 4-1
default state, 2-9

stopping data acquisition, 6-60 double-buffered waveform generation using
WF_DBLoad (table), 10-10, 10-13triggering for NB-A2100 and NB-A2150, 6-59

typical usage, 6-60 RTSI bus connections, 9-4
multiple-channel data acquisition functions waveform generation, 10-4

boards supported, 6-1, A-4 to A-5 externally timed, 10-12
function summary, 6-57 to 6-58 NB-DIO-24
MDAQ_Check, 6-63 buffered digital I/O, 5-9
MDAQ_Clear, 6-64 default state, 2-9
MDAQ_Get, 6-64 to 6-66 digital I/O, 5-2
MDAQ_ScanRate, 6-66 to 6-67 grouping ports, 5-3
MDAQ_Setup, 6-68 to 6-70 latched digital I/O, 5-2, 5-8
MDAQ_Start, 6-70 to 6-71 nonlatched digital I/O, 5-2, 5-8
MDAQ_Stop, 6-71 port configuration, 5-2
MDAQ_Trig_Config, 6-72 to 6-73 SCXI module support and capabilities, 7-11
MDAQ_Trig_Delay, 6-74 NB-DIO-32F

multiplexed mode, SCXI modules bit mapping (table), 5-3
analog input applications, 7-15 to 7-21 buffered digital I/O, 5-9 to 5-10

channel-scanning operation (figure), 7-20 default state, 2-9
single-channel or software-scanning operation

(figure), 7-16, 7-18
digital I/O, 5-3 to 5-4
grouping ports, 5-3 to 5-4

analog input modules, 7-3 latched digital I/O, 5-3, 5-8
analog output modules, 7-4 nonlatched digital I/O, 5-3, 5-8

© National Instruments Corporation Index-9 NI-DAQ Software Reference Manual for Macintosh



Index

RTSI bus connections, 9-3 to 9-4 maximum data acquisition rates (table)
SCXI module support and capabilities, 7-10 multiple channels, 6-5

NB-DIO-96 single channels, 6-5
buffered digital I/O, 5-9 overview, 6-2
default state, 2-9 rates, 6-4 to 6-5
digital I/O, 5-4 to 5-5 timing (table), 6-3
grouping ports, 5-5 default state, 2-8
latched digital I/O, 5-4, 5-8 digital I/O, 5-5
nonlatched digital I/O, 5-4, 5-8 double-buffered waveform generation using

WF_DBLoad (table), 10-10, 10-13port configuration, 5-4
SCXI module support and capabilities, 7-11 interval scanning (table), 6-2

NB-DMA-8-G nonlatched digital I/O, 5-5, 5-8
counter/timers, 8-6 recommended settling time versus gain

(table), 6-5signal connections (figure), 8-6
default state, 2-9 RTSI bus connections, 9-2
RTSI bus connections, 9-3 SCXI module support and capabilities, 7-9

NB-DMA2800 using unipolar mode
counter/timers, 8-6 with Pascal, 6-13

signal connections (figure), 8-6 voltage calculation, E-2
default state, 2-9 waveform generation, 10-3 to 10-4
RTSI bus connections, 9-3 externally timed, 10-12

NB LabDriver software compatibility (note), 1-6 NB-PRL
NB-MIO-16 buffered digital I/O, 5-9

analog input, 3-1 digital I/O, 5-2
analog input channel settings (table), E-1 grouping ports, 5-3
analog output (table), 4-1 latched digital I/O, 5-2, 5-8
configuration, 6-16 nonlatched digital I/O, 5-2, 5-8
counter/timers, 8-4 port configuration, 5-2

signal connections (figure), 8-4 NB-TIO-10
data acquisition counter/timers, 8-7 to 8-8

capabilities (table), 6-1 signal connections (figure), 8-8
maximum data acquisition rates (table) default state, 2-10

multiple channels, 6-4 digital I/O, 5-5 to 5-6
single channels, 6-3 nonlatched digital I/O, 5-6, 5-8

overview, 6-2 RTSI bus connections, 9-7 to 9-8
rates, 6-3 to 6-4 ND_BOARD_CLOCK signal, 2-28
timing (table), 6-3 ND_BUFFERED_EVENT_CNT application,

8-50 to 8-52default state, 2-8
digital I/O, 5-5 ND_BUFFERED_PERIOD_MSR application,

8-52 to 8-53double-buffered waveform generation using
WF_DBLoad (table), 10-10, 10-13 ND_BUFFERED_PULSE_WIDTH_MSR

application, 8-55 to 8-56interval scanning, 6-36
nonlatched digital I/O, 5-5, 5-8 ND_BUFFERED_SEMI_PERIOD_MSR

application, 8-53 to 8-55recommended settling time versus gain
(table), 6-4 ND_FREQ_OUT signal, 2-27

RTSI bus connections, 9-1 to 9-2 ND_FSK application, 8-49 to 8-50
SCXI module support and capabilities, 7-9 ND_GPCTR0_OUTPUT signal, 2-26
voltage calculation, E-2 ND_GPCTR1_OUTPUT signal, 2-27
waveform generation, 10-3 ND_IN_CHANNEL_CLOCK_TIMEBASE

signal, 2-25NB-MIO-16X
analog input, 3-1 to 3-2 ND_IN_CONVERT signal, 2-24
analog input channel settings (table), E-1 ND_IN_EXTERNAL_GATE signal, 2-23
analog output (table), 4-1 ND_IN_SCAN_CLOCK_TIMEBASE signal, 2-24
configuration, 6-16 ND_IN_SCAN_START signal, 2-23 to 2-24
counter/timers, 8-5 ND_IN_START_TRIGGER signal, 2-22 to 2-23

signal connections (figure), 8-5 ND_IN_STOP_TRIGGER signal, 2-23
data acquisition ND_OUT_START_TRIGGER signal, 2-25

capabilities (table), 6-1 ND_OUT_UPDATE signal, 2-25

NI-DAQ Software Reference Manual for Macintosh Index-10 © National Instruments Corporation



Index

ND_OUT_UPDATE_CLOCK_TIMEBASE
signal, 2-26

NB-A2000, 9-4
NB-DMA-8-G and NB-DMA2800, 9-3

ND_PFI_0 through ND_PFI_9 signals, 2-26 NB-MIO-16, 9-1
ND_PULSE_TRAIN_GNR application,

8-48 to 8-49
NB-MIO-16X, 9-2
NB-TIO-10, 9-7

ND_RETRIG_PULSE_GNR application,
8-47 to 8-48

OUT3 signal (table), 9-3
OUT4 signal (table), 9-3

ND_RTSI_0 through ND_RTSI_6 signals, 2-27 OUT5 signal (table)
ND_RTSI_CLOCK signal, 2-28 NB-A2150, 9-7
ND_SIMPLE_EVENT_CNT application, 8-38 NB-DMA-8-G and NB-DMA2800, 9-3
ND_SINGLE_PERIOD_MSR application,

8-39 to 8-40
NB-MIO-16, 9-1
NB-MIO-16X, 9-2

ND_SINGLE_PULSE_GNR application,
8-44 to 8-45

OUT6 signal (table), 9-7
OUT10 signal (table), 9-7

ND_SINGLE_PULSE_WIDTH_MSR application,
8-40 to 8-42

overflow detection, 8-13

P
ND_SINGLE_TRIG_PULSE_GRN application,

8-45 to 8-47
ND_TRIG_PULSE_WIDTH_MSR application,

8-42 to 8-44 parallel mode, SCXI modules
NI-DAQ Control Panel analog input applications, 7-21 to 7-23

determining device numbers, 1-7 to 1-8 channel-scanning operation (figure), 7-23
device configuration, 1-8 to 1-9 single-channel or software-scanning operation

(figure), 7-22Device Configuration option (figure), 1-8
Device Configuration window (figure), 1-9 analog input modules, 7-4
NI-DAQ Control Panel (figure), 1-7 digital modules, 7-4
SCXI configuration, 1-9 to 1-11 Pascal. See also  specific functions for syntax.
SCXI Configuration option (figure), 1-10 error handling, 1-13
SCXI Configuration window (figure), 1-11 include files, 1-12 to 1-13

NI-DAQ file, 1-5 libraries, 1-11 to 1-12
NI-DAQ for Macintosh Pascal interface, 1-14 to 1-15

boards supported (table), 1-3 PCI-1200. See Lab and 1200 series.
compatibility with previous versions (note), 1-6 PCI-DIO-96
function summary, 1-4 buffered digital I/O, 5-9
hardware compatibility (table), 1-3 default state, 2-11
installation, 1-6 to 1-7 digital I/O, 5-4 to 5-5

for use with LabVIEW, 1-4 to 1-5 grouping ports, 5-5
language interfaces supported, 1-1 latched digital I/O, 5-4, 5-8
steps for using (figure), 1-2 nonlatched digital I/O, 5-4, 5-8
support for SCXI chassis and modules, 7-2 port configuration, 5-4
with Macintosh clones, 1-3 SCXI module support and capabilities, 7-11

NI-DAQ Installer, 1-4 to 1-5 PCI-MIO-16XE-50
NI-DMA/DSP file, 1-5 analog input channel settings (table), E-1
nonlatched digital I/O. See digital I/O. analog output (table) function, 4-1

O

data acquisition capabilities (table), 6-1
default state, 2-11
digital I/O, 5-5
double-buffered waveform generation using

WF_DBLoad (table), 10-10, 10-13offset and gain measurement, E-3
OneShotScope(1ch) example program, 11-1 nonlatched digital I/O, 5-5
OneShotScope(2ch) example program, 11-1 waveform generation, 10-4
Oscilloscope example program, 11-1 to 11-2 period measurement applications
OUT1 signal (table) description, 8-15

NB-DMA-8-G and NB-DMA2800, 9-3 ND_BUFFERED_PERIOD_MSR application,
8-52 to 8-53NB-MIO-16, 9-1

NB-MIO-16X, 9-2 ND_BUFFERED_SEMI_PERIOD_MSR
application, 8-53 to 8-55NB-TIO-10, 9-7

OUT2 signal (table)

© National Instruments Corporation Index-11 NI-DAQ Software Reference Manual for Macintosh



Index

ND_SINGLE_PERIOD_MSR application,
8-39 to 8-40

RTSI_DisConn, 9-10
RTSI_A2 signal (table), 9-6

PeriodMeasurement example program, 11-4 RTSI_Clear function, 9-8 to 9-9
points (table), 10-24 RTSI_Conn function, 9-9 to 9-10
ports. See digital I/O; digital I/O functions. RTSI_DisConn function, 9-10
PreTrig_Interval_Scan example program, 11-3 RTSISTART* signal (table)
program examples. See example programs. description, 9-7
pulse generation NB-A2150, 9-6

ND_RETRIG_PULSE_GNR application,
8-47 to 8-48

RTSITRIG* signal (table)
description, 9-7

ND_SINGLE_PULSE_GNR application,
8-44 to 8-45

NB-A2150, 9-6
RTSIWG signal (table), 9-2

ND_SINGLE_TRIG_PULSE_GRN application,
8-45 to 8-47

Stiming considerations, 8-19 to 8-20. See also
CTR_Pulse function.

pulse train generation application
(ND_PULSE_TRAIN_GNR), 8-48 to 8-49

sample clock timing signal, NB-A2000 (table),
6-55

pulse-width measurement sample counter timing signal
ND_BUFFERED_PULSE_WIDTH_MSR

application, 8-55 to 8-56
Lab and 1200 series, 6-6
NB-A2000 (table), 6-55

ND_SINGLE_PULSE_WIDTH_MSR
application, 8-40 to 8-42

NB-MIO-16 and NB-MIO-16X (table), 6-3
sample interval counter signal, NB-A2000

(table), 6-55ND_TRIG_PULSE_WIDTH_MSR application,
8-42 to 8-44 sample interval timer, MIO E series, 6-9

R

sample interval timer timebase, MIO E series, 6-9
sample programs. See example programs.
SampleAndGenerate example program, 11-2
sampling

relay SCXI modules, multiplexed mode, 7-3 to 7-4 NB-MIO-16 and NB-MIO-16X sampling
interval, 6-2retrieving acquired data, 6-43 to 6-46

RQNI1 signal (table), 9-4 simultaneous sampling, 6-2
RQNI2 signal (table), 9-4 SC_2040_Config function, 2-20 to 2-21
RRQ1 signal (table), 9-4 scan counter, MIO E series, 6-9
RRQ2 signal (table), 9-4 scan interval, NB-MIO-16 and NB-MIO-16X, 6-2
RTD_Buf_Convert routine, D-3 to D-4 scan-oriented multiple-channel data

acquisition, 6-58RTD_Convert routine, D-3 to D-4
RTSI bus, 9-1 scan sequence, NB-MIO-16 and NB-MIO-16X, 6-2
RTSI bus connections scan timer, MIO E series, 6-9

application hints, 9-8 scan timer timebase, MIO E series, 6-9
MIO E series, 9-2 SCAN_Check function, 6-29
NB-A2000, 9-4 to 9-5 SCAN_Demux function, 6-30 to 6-32
NB-A2100, 9-5 to 9-6 SCAN_IntStart function, 6-32 to 6-36
NB-A2150, 9-6 to 9-7 SCAN_Setup function, 6-36 to 6-37
NB-AO-6, 9-4 SCAN_Start function, 6-38 to 6-41
NB-DIO-32F, 9-3 to 9-4 SCXI applications, 7-14 to 7-24. See also

transducer conversions.NB-DMA-8-G, 9-3
NB-DMA2800, 9-3 analog input applications, 7-15 to 7-23
NB-MIO-16, 9-1 to 9-2 analog output applications, 7-24
NB-MIO-16X, 9-2 digital applications, 7-24
NB-TIO-10, 9-7 to 9-8 general SCXIbus application (figure), 7-14
rules for connections, 9-9 to 9-10 multiplexed mode, analog input applications,

7-15 to 7-21RTSI bus trigger functions
application hints, 9-8 channel-scanning operation (figure), 7-20
boards supported, A-5 single-channel or software-scanning operation

(figure), 7-16, 7-18function summary, 9-8
RTSI_Clear, 9-8 to 9-9 parallel mode, analog input applications,

7-21 to 7-23RTSI_Conn, 9-9 to 9-10

NI-DAQ Software Reference Manual for Macintosh Index-12 © National Instruments Corporation



Index

channel-scanning operation (figure), 7-23 analog input modules, 7-4
single-channel or software-scanning operation

(figure), 7-22
digital modules, 7-4

single-channel analog input, 3-3
SCXI functions using with NI-DAQ functions, 7-3

boards supported, A-7 Select_Signal function, 2-21 to 2-29
function summary, 7-12 to 7-14 E series signal name equivalencies (table), 2-29
SCXI_AO_Write, 7-25 to 7-26 ND_BOARD_CLOCK signal, 2-28
SCXI_Cal_Constants, 7-26 to 7-31 ND_FREQ_OUT signal, 2-27
SCXI_Calibrate_Setup, 7-31 to 7-32 ND_GPCTR0_OUTPUT signal, 2-26
SCXI_Change_Chan, 7-32 to 7-33 ND_GPCTR1_OUTPUT signal, 2-27
SCXI_Configure_Filter, 7-33 to 7-34 ND_IN_CHANNEL_CLOCK_TIMEBASE

signal, 2-25SCXI_Get_Chassis_Info, 7-34 to 7-35
SCXI_Get_Module_Info, 7-35 to 7-36 ND_IN_CONVERT signal, 2-24
SCXI_Get_State, 7-36 to 7-37 ND_IN_EXTERNAL_GATE signal, 2-23
SCXI_Get_Status, 7-37 to 7-38 ND_IN_SCAN_CLOCK_TIMEBASE signal, 2-24
SCXI_Load_Config, 7-38 ND_IN_SCAN_START signal, 2-23 to 2-24
SCXI_MuxCtr_Setup, 7-39 to 7-40 ND_IN_START_TRIGGER signal, 2-22 to 2-23
SCXI_Reset, 7-40 to 7-41 ND_IN_STOP_TRIGGER signal, 2-23
SCXI_SCAN_Setup, 7-43 to 7-44 ND_OUT_START_TRIGGER signal, 2-25
SCXI_Set_Config, 7-44 to 7-45 ND_OUT_UPDATE signal, 2-25
SCXI_Set_Gain, 7-46 ND_OUT_UPDATE_CLOCK_TIMEBASE

signal, 2-26SCXI_Set_State, 7-47 to 7-48
SCXI_Single_Chan_Setup, 7-48 to 7-49 ND_PFI_0 through ND_PFI_9 signals, 2-26
SCXI_Track_Hold_Control, 7-49 ND_RTSI_0 through ND_RTSI_6 signals, 2-27
SCXI_Track_Hold_Setup, 7-49 to 7-51 ND_RTSI_CLOCK signal, 2-28
SXCI_Scale, 7-41 to 7-42 summary of signals (table), 2-22
SXCI_Set_Input_Mode, 7-46 to 7-47 synopsis, 2-21

SCXI modules serial (multiplexed) mode for digital and relay
SCXI modules, 7-3 to 7-4boards supported, 7-2

capabilities and limitations Set_DAQ_Device_Info function, 2-29 to 2-32
DAQCard-700, 7-11 to 7-12 infoType values (table), 2-30
DIO-24 and DIO-96, 7-11 infoValue values (table), 2-31
DIO-32F, 7-10 possible data transfer methods for devices

(table), 2-32Lab and 1200 series, 7-11 to 7-12
MIO boards, 7-9 synopsis, 2-29
SCXI-1100, 7-5 signal source selection. See Select_Signal

function.SCXI-1102, 7-5
SCXI-1120 and SCXI-1121, 7-5 to 7-6 simultaneous sampling, 6-2
SCXI-1122, 7-6 to 7-7 single-buffered data acquisition. See also  data

acquisition operation.SCXI-1124, 7-7
SCXI-1140, 7-7 to 7-8 application hints, 6-12
SCXI-1141, 7-8 NB-MIO-16X in unipolar mode, with

Pascal, 6-13SCXI-1160 and SCXI-1161, 7-8
SCXI-1162 and SCXI-1162HV, 7-9 starting
SCXI-1163 and SCXI-1163R, 7-9 with DAQ_Start, 6-21

components (illustration), 7-1 with SCAN_IntStart, 6-35
configuration, 1-9 to 1-11, 7-2 with SCAN_Start, 6-40
data acquisition rates, 6-11 triggering
data acquisition support, 6-2 with DAQ_Start, 6-21
digital I/O support, 5-6 to 5-7 with SCAN_IntStart, 6-35
installation, 1-5 to 1-6, 7-2 with SCAN_Start, 6-40
interval scanning using NB-MIO-16, 6-36 single-buffered data acquisition functions
multiplexed mode boards supported, 6-1, A-3, A-4, A-5

analog input modules, 7-3 DAQ_Check, 6-14
analog output modules, 7-4 DAQ_Clear, 6-15
digital and relay modules, 7-3 to 7-4 DAQ_Config, 6-15 to 6-17

operating modes, 7-3 to 7-4 DAQ_PreTrig, 6-18
parallel mode DAQ_Start, 6-19 to 6-22

© National Instruments Corporation Index-13 NI-DAQ Software Reference Manual for Macintosh



Index

DAQ_Trigger, 6-22 to 6-23 STOPTRIG signal (table), 9-2
DAQ_VScale, 6-24 Strain_Buf_Convert routine, D-4 to D-6
function summary, 6-11 to 6-12 Strain_Convert routine, D-4 to D-6
Lab_ISCAN_Check, 6-25 to 6-26 stream-from-disk application, flow chart for,

10-27 to 10-28Lab_ISCAN_Start, 6-27 to 6-28
maximum data acquisition rates (table) StreamFromDisk example program, 11-4

NB-MIO-16, 6-3 StreamToDisk (MDAQ) example program, 11-4
NB-MIO-16X, 6-5 StreamToDisk(1ch) example program, 11-2

SCAN_Check, 6-29 StreamToDisk(4ch) example program, 11-2
SCAN_Demux, 6-30 to 6-32 STRTTRIG* signal (table), 9-2
SCAN_IntStart, 6-32 to 6-36 SWSTART* signal (table)
SCAN_Setup, 6-36 to 6-37 description, 9-7
SCAN_Start, 6-40 NB-A2150, 9-6

single-channel analog input Symantec C/C++. See C languages.
DAQCard-500 and DAQCard-700 analog

input, 3-3
SyncFuncGenerator example program, 11-2
synchronous waveform generation. See also

waveform generation.flowchart for analog input readings, 3-4
externally clocked, 3-4 call sequences for waveform generation,

10-9 to 10-11Lab and 1200 series analog input, 3-2
NB-MIO-16 analog input, 3-1 description, 10-2
NB-MIO-16X analog input, 3-1 to 3-2 function summary, 10-6 to 10-7
SCXI modules, 3-3 synchronous versus asynchronous, 10-2 to 10-3

single-channel analog input functions synchronous waveform generation functions
AI_Check, 3-5 boards supported, A-5 to A-6
AI_Clear, 3-5 WF_Check, 10-12
AI_Configure, 3-6 to 3-7 WF_Grp_Reset, 10-17
AI_Mux_Config, 3-7 to 3-8 WF_Grp_Setup, 10-17 to 10-19
AI_Read, 3-8 to 3-9 WF_Grp_Start, 10-19
AI_Read_Scan, 3-9 WF_Grp_Stop, 10-19 to 10-20
AI_Setup, 3-9 to 3-10

T
AI_VScale, 3-10 to 3-11
application hints, 3-4
boards supported, A-1
function summary, 3-3 technical support, F-1

slot position. See board slot number, determining. telephone technical support, F-1
software installation. See NI-DAQfor Macintosh. Thermistor_Buf_Convert routine, D-7 to D-8
SOURCE1 signal (table), 9-7 Thermistor_Convert routine, D-7 to D-8
SOURCE2 signal (table) Thermocouple_Buf_Convert routine, D-2 to D-3

NB-A2000, 9-4 Thermocouple_Convert routine, D-2 to D-3
NB-TIO-10, 9-7 THINK C. See C languages.

SOURCE3 signal (table), 9-3 THINK Pascal. See Pascal.
SOURCE4 signal (table) timebase clock (table), 6-56

NB-DMA-8-G and NB-DMA2800, 9-3 timebase clock timing signal (table)
NB-MIO-16, 9-1 Lab and 1200 series, 6-6

SOURCE5 signal (table) NB-MIO-16 and NB-MIO-16X, 6-3
NB-DMA-8-G and NB-DMA2800, 9-3 timing signal generation, 8-9 to 8-10
NB-MIO-16X, 9-2 TOUT2 signal (table), 9-3

SOURCE6 signal (table), 9-7 TOUT3 signal (table), 9-3
SOURCE7 signal (table), 9-7 transducer conversions
square wave generation timing considerations,

8-23. See also  CTR_Square function.
overview, D-1
RTD_Buf_Convert, D-3 to D-4

SqWaveGenerator example program, 11-3 RTD_Convert, D-3 to D-4
start scan signal, MIO E series, 6-9 Strain_Buf_Convert, D-4 to D-6
START* signal (table) Strain_Convert, D-4 to D-6

description, 9-5 summary of routines, D-1
NB-A2000, 9-4 Thermistor_Buf_Convert, D-7 to D-8

start trigger signal, MIO E series, 6-9 Thermistor_Convert, D-7 to D-8
stop trigger signal, MIO E series, 6-9 Thermocouple_Buf_Convert, D-2 to D-3

NI-DAQ Software Reference Manual for Macintosh Index-14 © National Instruments Corporation



Index

Thermocouple_Convert, D-2 to D-3 application hints, 10-24 to 10-29
TRIGGER* signal (table) block update of output waveform,

10-26 to 10-27description, 9-5
NB-A2000, 9-4 BWF function flowchart, 10-25

trigger timing signal (table) call sequence, 10-24 to 10-25
Lab and 1200 series, 6-6 circular waveform buffer and blocks

(figure), 10-26NB-A2000, 6-56
NB-MIO-16 and NB-MIO-16X, 6-3 function summary, 10-23

triggering immediate update of output waveform, 10-27
double-buffered data acquisition initializing, 10-25 to 10-26

using analog input values, 6-47 terminology related to (table), 10-24
with DAQ_Start, 6-21 to 6-22 updating waveform output during generation,

10-26 to 10-27with SCAN_IntStart, 6-36
with SCAN_Start, 6-41 writing function generator application, 10-29

multiple-channel data acquisition, 6-59 writing stream-from-disk application,
10-27 to 10-28single-buffered data acquisition

with DAQ_Start, 6-21 DMA requirements (table), 10-1
with SCAN_IntStart, 6-35 Lab and 1200 series, 10-5
with SCAN_Start, 6-40 NB-A2100, 10-5 to 10-6

TRIGUP signal (table), 9-4 NB-AO-6, 10-4

U

NB-MIO-16, 10-3
NB-MIO-16X, 10-3 to 10-4
PCI-MIO-16XE-50, 10-4
synchronous

call sequences for waveform generation,
10-9 to 10-11

update interval (table), 10-24
UPDATE signal (table), 9-4

definition, 10-2

V
description, 10-2
synchronous versus asynchronous, 10-2 to 10-3

system timing for, 10-1 to 10-2
with DMA, 10-1 to 10-2voltage calculation, E-2
without DMA, 10-2

W
waveform generation functions

asynchronous
boards supported, A-5 to A-6
function summary, 10-6waveform buffer (table), 10-24
WF_DBLoad, 10-10 to 10-11, 10-13waveform generation. See also  waveform

generation functions. WF_Load, 10-13 to 10-16
WF_Offset, 10-20application hints, 10-7 to 10-12
WF_Reset, 10-21asynchronous waveform generation call

sequences, 10-8 to 10-9 WF_Setup, 10-21 to 10-22
WF_Start, 10-22buffered waveform generation, 10-24 to 10-25
WF_Stop, 10-23double-buffered waveform generation using

WF_DBLoad, 10-10 to 10-11 buffered
boards supported, A-2externally timed waveform generation, 10-12
BWF_BlkLoad, 10-30 to 10-31fundamental frequency, 10-7
BWF_BufLoad, 10-31 to 10-33minimum buffer size, 10-8
BWF_Check, 10-33 to 10-34minimum update interval, 10-7 to 10-8
BWF_Clear, 10-35overview, 10-7
BWF_Rate, 10-35 to 10-36synchronous waveform generation call

sequences, 10-9 to 10-11 BWF_Resume, 10-36 to 10-37
BWF_Start, 10-37asynchronous
BWF_Stop, 10-38call sequences for waveform generation, 10-8

to 10-9 function summary, 10-23
synchronousdefinition, 10-2

boards supported, A-5 to A-6description, 10-2
function summary, 10-6 to 10-7synchronous versus asynchronous, 10-2 to 10-3
WF_Check, 10-12buffered

© National Instruments Corporation Index-15 NI-DAQ Software Reference Manual for Macintosh



Index

WF_Grp_Reset, 10-17
WF_Grp_Setup, 10-17 to 10-19
WF_Grp_Start, 10-19
WF_Grp_Stop, 10-19 to 10-20

WCAD signal (table)
NB-A2100, 9-6
NB-A2150, 9-6

WCDA signal (table), 9-6
WF_Check function, 10-12
WF_DBLoad function

description, 10-13
double-buffered waveform generation,

10-10 to 10-11
WF_Grp_Reset function, 10-17
WF_Grp_Setup function, 10-17 to 10-19
WF_Grp_Start function, 10-19
WF_Grp_Stop function, 10-19 to 10-20
WF_Load function, 10-13 to 10-16
WF_Offset function, 10-20
WF_Reset function, 10-21
WF_Setup function, 10-21 to 10-22
WF_Start function, 10-22
WF_Stop function, 10-23

X

XAK1 signal (table), 9-4
XAK2 signal (table), 9-4

Z

Zedcor FutureBASIC. See BASIC.

NI-DAQ Software Reference Manual for Macintosh Index-16 © National Instruments Corporation


	NI-DAQ ® Software Reference Manual for Macintosh Version 4.8
	Contents
	About This Manual
	Assumption of Previous Knowledge
	Organization of This Manual
	Conventions Used in This Manual
	About the National Instruments Documentation Set
	Customer Communication

	Ch 1 Getting Started
	Figure 1-1. Steps to Begin Using NI-DAQ
	NI-DAQ for Macintosh Overview
	Installing the NI-DAQ Software for Use with LabVIEW
	Installing Your National Instruments Hardware
	Installing the NI-DAQ for Macintosh Software
	Using the NI-DAQ Control Panel to Configure Your Hardware
	Using the NI-DAQ for Macintosh Language Interfaces

	Ch 2 Board-Specific Functions
	Board-Specific Functions

	Ch 3 Analog Input Functions
	Single-Channel Analog Input
	Single-Channel Analog Input Function Summary
	Multiple-Channel Analog Input (MAI)
	Multiple-Channel Analog Input Function Summary

	Ch 4 Analog Output Functions
	Analog Output
	Analog Output Function Summary

	Ch 5 Digital I/O Functions
	NB-DIO-24, DAQCard-DIO-24, NB-PRL, and Lab and 1200 Series Digital I/O
	NB-DIO-32F Digital I/O
	NB-DIO-96 and PCI-DIO-96 Digital I/O
	NB-MIO-16 and NB-MIO-16X Digital I/O
	PCI-MIO-16XE-50 Digital I/O
	NB-TIO-10 Digital I/O
	DAQCard-AO-2DC Digital I/O
	DAQCard-500 and DAQCard-700 Digital I/O
	SCXI Signal Conditioning Hardware
	Digital I/O Function Summary

	Ch 6 Data Acquisition Functions
	Data Acquisition Hardware
	Single-Buffered Data Acquisition Function Summary
	Double-Buffered Data Acquisition Function Summary
	Multiple-Channel Data Acquisition (MDAQ)
	Multiple-Channel Data Acquisition Function Summary

	Ch 7 SCXI Functions
	SCXI Installation and Configuration
	Using SCXI Modules with the NI-DAQ Functions
	SCXI Operating Modes
	SCXI Modules and Compatible Data Acquisition Boards
	SCXI Function Summary
	SCXI Applications

	Ch 8 Counter/Timer Functions
	Counter/Timer Operations (CTR Functions)
	Programmable Frequency Output Operation
	Counter/Timer Function Summary
	Interval Counter/Timer Operation (ICTR Functions)
	Interval Counter/Timer Function Summary
	General-Purpose Counter/Timer Function Summary

	Ch 9 RTSI Bus Trigger Functions
	NB-MIO-16 RTSI Connections
	NB-MIO-16X RTSI Connections
	The RTSI Bus
	E Series Boards RTSI Connections
	NB-DMA-8-G and NB-DMA2800 RTSI Connections
	NB-DIO-32F RTSI Connections
	NB-AO-6 RTSI Connections
	NB-A2000 RTSI Connections
	NB-A2100 RTSI Connections
	NB-A2150 RTSI Connections
	NB-TIO-10 RTSI Connections
	RTSI Bus Trigger Function Summary

	Ch 10 Waveform Generation Functions
	Waveform Generation Hardware
	Synchronous and Asynchronous Waveform Generation Function Summary
	Buffered Waveform Generation Function Summary

	Ch 11 NI-DAQ for Macintosh Examples
	NI-DAQ for Macintosh Examples

	App A Function and Board Compatibility
	App B Error Codes
	App C Using an External Multiplexer
	Scanning Order Using the AMUX-64T

	App D Transducer Conversion Routines
	App E Analog Input Channel and Gain Settings and Voltage Calculation
	DAQ Device Analog Input Channel Settings
	Voltage Calculation
	Offset and Gain Measurement

	App F Customer Communication
	Technical Support Form
	NI-DAQ for Macintosh Hardware and Software Configuration Form
	Documentation Comment Form

	Glossary
	Index

