COMPREHENSIVE SERVICES We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources. ### **SELL YOUR SURPLUS** We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs. ### **OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP** We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware. **Bridging the gap** between the manufacturer and your legacy test system. **(3)** 1-800-915-6216 www.apexwaves.com sales@apexwaves.com All trademarks, brands, and brand names are the property of their respective owners. Request a Quote SCXI-1000DC # **SCXI**TM **SCXI Chassis User Manual** #### **Worldwide Technical Support and Product Information** ni.com ### **National Instruments Corporate Headquarters** 11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100 #### **Worldwide Offices** Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599, Canada 800 433 3488, China 86 21 6555 7838, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 0 9 725 725 11, France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, India 91 80 41190000, Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400, Lebanon 961 0 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 0 348 433 466, New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210, Russia 7 095 783 68 51, Singapore 1800 226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 02 2377 2222, Thailand 662 278 6777, United Kingdom 44 0 1635 523545 For further support information, refer to the *Signal Conditioning Technical Support Information* document. To comment on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter the info code feedback. © 1991–2006 National Instruments Corporation. All rights reserved. # **Important Information** ### Warranty The SCXI chassis (SCXI-1000, SCXI-1000DC, and SCXI-1001) are warranted against defects in materials and workmanship for a period of one year from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period. This warranty includes parts and labor. The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free. A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by warranty. National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it. EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER'S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR REGIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner's failure to follow the National Instruments installation, operation, or maintenance instructions; owner's modification of the product; owner's abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside reasonable control. ### Copyright Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National Instruments Corporation. National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction. #### Trademarks National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the *Terms of Use* section on ni.com/legal for more information about National Instruments trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. #### **Patents** For patents covering National Instruments products, refer to the appropriate location: **Help»Patents** in your software, the patents.txt file on your CD, or ni.com/patents. #### WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS (1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN. (2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER COLLECTIVELY TERMED "SYSTEM FAILURES"). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILLY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LINITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION. # **Conventions** The following conventions are used in this manual: » The » symbol leads you through nested menu items and dialog box options to a final action. The sequence File»Page Setup»Options directs you to pull down the File menu, select the Page Setup item, and select Options from the last dialog box. This icon denotes a note, which alerts you to important information. This icon denotes a caution, which advises you of precautions to take to avoid injury, data loss, or a system crash. When this icon is marked on the product, refer to the *Read Me First: Safety and Radio-Frequency Interference* document, shipped with the product, for precautions to take. When symbol is marked on a product it denotes a warning advising you to take precautions to avoid electrical shock. When symbol is marked on a product it denotes a component that may be hot. Touching this component may result in bodily injury. bold Bold text denotes items that you must select or click in the software, such as menu items and dialog box options. Bold text also denotes parameter names. italic Italic text denotes variables, emphasis, a cross-reference, or an introduction to a key concept. Italic text also denotes text that is a placeholder for a word or value that you must supply. monospace
Text in this font denotes text or characters that you should enter from the keyboard, sections of code, programming examples, and syntax examples. This font is also used for the proper names of disk drives, paths, directories, programs, subprograms, subroutines, device names, functions, operations, variables, filenames, and extensions. NI-DAQ Refers to both NI-DAQmx and Traditional NI-DAQ (Legacy) unless otherwise noted. SCXI chassis Refers to the SCXI-1000, SCXI-1000DC, and SCXI-1001. When information pertains to only one chassis, that chassis is named explicitly; for example, the SCXI-1001 has 12 module slots. SCXIbus Refers to the backplane in the chassis. A signal on the backplane is referred to as the SCXIbus <signal name> line (or signal). The SCXIbus descriptor may be omitted when the meaning is clear. Slot 0 Refers to the power supply and control circuitry in the SCXI chassis. # **Contents** ### Chapter 1 Introduction | About the SCXI Chassis | | | |---|--|------| | Software Programming Choices | About the SCXI Chassis | 1-1 | | NI-DAQ | What You Need to Get Started | 1-1 | | National Instruments ADE Software | Software Programming Choices | 1-2 | | National Instruments Documentation | NI-DAQ | 1-2 | | Chapter 2 Configuring and Installing the SCXI Chassis Chassis Description 2-1 Chassis Uses 2-7 Configuring the SCXI Chassis 2-8 Selecting Chassis Addresses 2-8 SCXI-1000/1001 2-8 SCXI-1000DC 2-9 Selecting Voltage and Replacing the Fuse for the SCXI-1000 2-13 A Replacing the Voltage 2-13 Replacing and Checking Backplane Fuses on the SCXI-1000 2-14 Replacing and Checking Backplane Fuses on the SCXI-1000 2-14 Replacing the Fuses on the SCXI-1000DC 2-15 Replacing the Power Entry Fuse and +5 VDC Fuse 2-15 Replacing and Checking Backplane Fuses 2-16 Installing the SCXI Chassis 2-17 Installing the SCXI Chassis 2-17 Installing Filler Panels 2-18 Installing Filler Panels 2-18 Installing Front Filler Panels 2-18 Installing Rear Panels 2-19 | National Instruments ADE Software | 1-3 | | Chapter 2 Configuring and Installing the SCXI Chassis 2-1 Chassis Description | National Instruments Documentation | 1-4 | | Chassis Description | Optional Equipment | 1-5 | | Chassis Description | Chapter 2 | | | Chassis Uses 2-7 Configuring the SCXI Chassis 2-8 Selecting Chassis Addresses 2-8 SCXI-1000/1001 2-8 SCXI-1000DC 2-9 Selecting Voltage and Replacing the Fuse for the SCXI-1000 2-11 Selecting the Voltage 2-13 Replacing the Power Entry Module Fuse 2-14 Replacing and Checking Backplane Fuses on the SCXI-1000 2-14 Replacing the Fuses on the SCXI-1000DC 2-15 Replacing the Power Entry Fuse and +5 VDC Fuse 2-15 Replacing and Checking Backplane Fuses 2-16 Installing the SCXI Chassis 2-17 Installing the SCXI-1000 and SCXI-1001 Chassis 2-17 Installing Filler Panels 2-18 Installing Front Filler Panels 2-18 Installing Rear Panels 2-18 Installing Rear Panels 2-18 | | | | Chassis Uses 2-7 Configuring the SCXI Chassis 2-8 Selecting Chassis Addresses 2-8 SCXI-1000/1001 2-8 SCXI-1000DC 2-9 Selecting Voltage and Replacing the Fuse for the SCXI-1000 2-11 Selecting the Voltage 2-13 Replacing the Power Entry Module Fuse 2-14 Replacing and Checking Backplane Fuses on the SCXI-1000 2-14 Replacing the Fuses on the SCXI-1000DC 2-15 Replacing the Power Entry Fuse and +5 VDC Fuse 2-15 Replacing and Checking Backplane Fuses 2-16 Installing the SCXI Chassis 2-17 Installing the SCXI-1000 and SCXI-1001 Chassis 2-17 Installing Filler Panels 2-18 Installing Front Filler Panels 2-18 Installing Rear Panels 2-18 Installing Rear Panels 2-18 | Chassis Description | 2-1 | | Configuring the SCXI Chassis 2-8 Selecting Chassis Addresses 2-8 SCXI-1000/1001 2-8 SCXI-1000DC 2-9 Selecting Voltage and Replacing the Fuse for the SCXI-1000 2-11 and SCXI-1001 2-13 Replacing the Power Entry Module Fuse 2-14 Replacing and Checking Backplane Fuses on the SCXI-1000 2-14 Replacing the Fuses on the SCXI-1001 2-15 Replacing the Power Entry Fuse and +5 VDC Fuse 2-15 Replacing and Checking Backplane Fuses 2-16 Installing the SCXI Chassis 2-17 Installing the SCXI-1000 and SCXI-1001 Chassis 2-17 Installing Filler Panels 2-18 Installing Front Filler Panels 2-18 Installing Rear Panels 2-18 | • | | | Selecting Chassis Addresses | | | | SCXI-1000/1001 2-8 SCXI-1000DC 2-9 Selecting Voltage and Replacing the Fuse for the SCXI-1000 2-11 Selecting the Voltage 2-13 Replacing the Power Entry Module Fuse 2-14 Replacing and Checking Backplane Fuses on the SCXI-1000 2-14 Replacing the Fuses on the SCXI-1000DC 2-15 Replacing the Power Entry Fuse and +5 VDC Fuse 2-15 Replacing and Checking Backplane Fuses 2-16 Installing the SCXI Chassis 2-17 Installing the SCXI-1000 and SCXI-1001 Chassis 2-17 Installing Filler Panels 2-18 Installing Front Filler Panels 2-18 Installing Rear Panels 2-18 | · · | | | Selecting Voltage and Replacing the Fuse for the SCXI-1000 and SCXI-1001 | | | | and SCXI-1001 | SCXI-1000DC | 2-9 | | Selecting the Voltage | Selecting Voltage and Replacing the Fuse for the SCXI-1000 | | | Replacing the Power Entry Module Fuse 2-14 Replacing and Checking Backplane Fuses on the SCXI-1000 and SCXI-1001 2-14 Replacing the Fuses on the SCXI-1000DC 2-15 Replacing the Power Entry Fuse and +5 VDC Fuse 2-15 Replacing and Checking Backplane Fuses 2-16 Installing the SCXI Chassis 2-17 Installing the SCXI-1000 and SCXI-1001 Chassis 2-17 Installing the SCXI-1000DC Chassis 2-17 Installing Filler Panels 2-18 Installing Front Filler Panels 2-18 Installing Rear Panels 2-19 | and SCXI-1001 | 2-11 | | Replacing and Checking Backplane Fuses on the SCXI-1000 and SCXI-1001 | Selecting the Voltage | 2-13 | | Replacing and Checking Backplane Fuses on the SCXI-1000 and SCXI-1001 | Replacing the Power Entry Module Fuse | 2-14 | | Replacing the Fuses on the SCXI-1000DC | | | | Replacing the Power Entry Fuse and +5 VDC Fuse | and SCXI-1001 | 2-14 | | Replacing and Checking Backplane Fuses 2-16 Installing the SCXI Chassis 2-17 Installing the SCXI-1000 and SCXI-1001 Chassis 2-17 Installing the SCXI-1000DC Chassis 2-17 Installing Filler Panels 2-18 Installing Front Filler Panels 2-18 Installing Rear Panels 2-19 | Replacing the Fuses on the SCXI-1000DC | 2-15 | | Installing the SCXI Chassis | Replacing the Power Entry Fuse and +5 VDC Fuse | 2-15 | | Installing the SCXI-1000 and SCXI-1001 Chassis | Replacing and Checking Backplane Fuses | 2-16 | | Installing the SCXI-1000DC Chassis | Installing the SCXI Chassis | 2-17 | | Installing Filler Panels | | | | Installing Front Filler Panels | Installing the SCXI-1000DC Chassis | 2-17 | | Installing Rear Panels2-19 | Installing Filler Panels | 2-18 | | | · · | | | Maintaining the Fan Filter | <u> </u> | | | 8 | Maintaining the Fan Filter | 2-19 | # Appendix A Specifications # Appendix B Common Questions ### Glossary ### Index | F | i | a | u | r | e | S | |---|---|---|---|---|---|---| | | | ч | u | | v | u | | i igui co | | | |-------------|---|------| | Figure 2-1. | SCXI-1000 Front View Diagram | 2-2 | | Figure 2-2. | SCXI-1000DC Front View Diagram | | | Figure 2-3. | SCXI-1001 Front View Diagram | 2-4 | | Figure 2-4. | SCXI-1000 Rear View Diagram | | | Figure 2-5. | SCXI-1001 Rear View Diagram | 2-6 | | Figure 2-6. | SCXI-1000DC Rear View Diagram | 2-7 | | Figure 2-7. | Address Setting Examples | 2-9 | | Figure 2-8. | SCXI-1000DC Chassis Address Jumper Settings | 2-10 | | Figure A-1. | Physical Dimensions of the SCXI-1001 | A-3 | | Figure A-2. | Physical Dimensions of the SCXI-1000 and SCXI-1000DC | A-4 | | Tables | | | | Table 2-1. | SCXI Chassis Front View Items | 2-1 | | Table 2-2. | SCXI-1000/1001 Chassis Rear View Items | 2-4 | | Table 2-3. | SCXI-1000DC Chassis Rear View Items | 2-6 | | Table 2-4. | SCXI-1000/1001 Voltage Selection and Fuse Ratings by Region | | | | | | Introduction This manual describes the electrical and mechanical aspects of the SCXI-1000, SCXI-1000DC, and SCXI-1001 chassis and contains information concerning their operation. The SCXI chassis supply power to and contain control circuitry for the SCXI series of modules. The SCXI-1000 and SCXI-1000DC hold up to four modules. The SCXI-1001 holds up to 12 modules. This chapter describes the SCXI chassis, lists what you need to get started, and describes the optional software and equipment. ### **About the SCXI Chassis** The SCXI-1000 and SCXI-1001 chassis are powered with standard AC power. The SCXI-1000DC is powered by any 9.5 to 16 VDC source such as the optional SCXI-1382 battery pack or the SCXI-1383 power supply. Every SCXI chassis supplies a low-noise environment for signal conditioning, supplying power and control circuitry for the modules. It is a general-purpose chassis that you can use with current SCXI modules. Refer to Appendix A, *Specifications*, for detailed SCXI-1000, SCXI-1000DC, and SCXI-1001
specifications. ### What You Need to Get Started To set up and use the SCXI chassis, you need the following items: - ☐ Hardware - One of the following SCXI chassis: - SCXI-1000 - SCXI-1000DC - SCXI-1001 - One of the following, depending on your application: - Power cord (120, 220, or 240 VAC) - SCXI-1382 battery pack (SCXI-1000DC only) - SCXI-1383 (VDC) power supply (SCXI-1000DC only) - A computer #### ☐ Software - NI-DAO - One of the following software packages: - LabVIEW - LabWindowsTM/CVITM - Measurement Studio #### Documentation - SCXI Chassis User Manual - Read Me First: Safety and Radio-Frequency Interference - SCXI Quick Start Guide - Documentation for your hardware - Documentation for your software You can download documentation from ni.com/manuals. ## **Software Programming Choices** There are several options to choose from when programming the NI plug-in DAQ and SCXI hardware. You can use LabVIEW, LabWindows/CVI, Measurement Studio, or NI-DAQ. ### NI-DAO NI-DAQ has an extensive library of functions that you can call from the application development environment (ADE). These functions allow you to use all the features of NI measurement products. NI-DAQ carries out many of the complex interactions, such as programming interrupts, between the computer and the DAQ hardware. NI-DAQ maintains a consistent software interface among its different versions so that you can change platforms with minimal modifications to your code. Whether you are using LabVIEW, LabWindows/CVI, Measurement Studio, VI Logger, or other ADEs, your application uses NI-DAQ. You can download the most recent version of NI-DAQ from ni.com/downloads. ### **National Instruments ADE Software** LabVIEW features interactive graphics, a state-of-the-art interface, and a powerful graphical programming language. The LabVIEW Data Acquisition VI Library, a series of virtual instruments for using LabVIEW with National Instruments DAQ hardware, is included with LabVIEW. LabWindows/CVI is a complete ANSI C ADE that features an interactive user interface, code generation tools, and the LabWindows/CVI Data Acquisition and Easy I/O libraries. Measurement Studio, which includes tools for Visual C++ and tools for Visual Basic, is a development suite that allows you to design test and measurement applications. For Visual Basic developers, Measurement Studio features a set of ActiveX controls for using National Instruments DAQ hardware. These ActiveX controls provide a high-level programming interface for building virtual instruments (VIs). For Visual C++ developers, Measurement Studio offers a set of Visual C++ classes and tools to integrate those classes into Visual C++ applications. The ActiveX controls and classes are available with Measurement Studio and the NI-DAQ software. VI Logger is an easy-to-use yet flexible tool specifically designed for data logging applications. Using dialog windows, you can configure data logging tasks to easily acquire, log, view, and share your data. VI Logger does not require any programming; it is stand-alone, configuration-based software. Using LabVIEW, LabWindows/CVI, Measurement Studio, or VI Logger greatly reduces the development time for your data acquisition and control application. ### **National Instruments Documentation** The SCXI Chassis User Manual is one piece of the documentation set for the data acquisition and SCXI system. You could have any of several types of documents, depending on the hardware and software in the system. Use the documents you have as follows: - The SCXI Quick Start Guide—This document describes how to set up an SCXI chassis, install SCXI modules and terminal blocks, and configure the SCXI system in Measurement & Automation Explorer (MAX). - The SCXI hardware user manuals—Read these manuals next for detailed information about signal connections and module configuration. They also explain in greater detail how the module works and contain application hints. - The DAQ hardware user manuals—These manuals have detailed information about the DAQ hardware that plugs into or is connected to the computer. Use these manuals for hardware installation and configuration instructions, specification information about the DAQ hardware, and application hints. - Software documentation—Examples of software documentation you may have are the LabVIEW, Measurement Studio, and NI-DAQ documentation sets. After you set up the hardware system, use either the application software (LabVIEW or Measurement Studio) or the NI-DAQ documentation to help you write your application. If you have a large, complicated system, it is worthwhile to look through the software documentation before you configure the hardware. - Accessory installation guides or manuals—If you are using accessory products, read the terminal block and cable assembly installation guides or accessory user manuals. They explain how to physically connect the relevant pieces of the system. Consult these guides when you are making the connections. - If you are designing your own module, the *SCXIbus System Specification* is available from NI upon request. This specification describes the physical, electrical, and timing requirements for the SCXIbus. # **Optional Equipment** NI provides a full line of modules that amplify, filter, isolate, and multiplex a wide variety of signal types, such as thermocouples, resistance temperature detectors (RTDs), strain gauges, high-voltage inputs, current inputs, analog outputs, and digital I/O signals. Cables and terminal blocks with screw terminals, BNC connectors, or thermocouple plugs are available to connect signals to the modules. Refer to the latest NI catalog and ni.com/catalog for a complete listing of sensors and I/O types supported in SCXI. # Configuring and Installing the SCXI Chassis This chapter contains instructions for configuring and installing the SCXI chassis. It describes the following: - Chassis address selection - Voltage and fuse selection - Chassis, modules, and accessories installation - Fan filter maintenance ## **Chassis Description** Table 2-1 describes the front view items shown in Figures 2-1, 2-2, and 2-3. Table 2-1. SCXI Chassis Front View Items | Item | Definition | |--|---| | Power switch | Powers the chassis on and off | | Indicator light | When lit, indicates that the chassis is powered on | | Reset button | Reinitializes Slot 0 and all modules to their power-on state when pressed | | Slot 0/power supply | Contains the power supply and control circuitry for the chassis | | Address DIP switches | Determine the chassis address—SCXI-1000 and SCXI-1001 | | Address selection
jumpers (located behind
the front panel) | Determine the chassis address—SCXI-1000DC only | | Module guides | Guide modules to connect with the SCXIbus connector | | Backplane | Brings power, control lines, and analog bus connections to modules | | Front threaded strips | Secure modules in the chassis and attach front panels | - Address DIP Switches - Reset Button - Power Switch - Indicator Light Front Panel Screws (flathead on some revisions) - Front Panel Screws (early revisions only) - Module Guides - Front Threaded Strips - 9 Backplane10 Slot 0/Power Supply Figure 2-1. SCXI-1000 Front View Diagram - Reset Button - Power Switch - Indicator Light - Front Panel Screws (flathead on some revisions) - Module Guides - Front Threaded Strips - Backplane - 10 Slot 0/Power Supply Figure 2-2. SCXI-1000DC Front View Diagram - 1 Address DIP Switches - 2 Reset Button - 3 Power Switch - 4 Indicator Light - 5 Front Panel Screws (flathead on some revisions) - 6 Front Panel Screws (early revisions only) - 7 Module Guides - 8 Front Threaded Strips - 9 Backplane - 10 Slot 0/Power Supply Figure 2-3. SCXI-1001 Front View Diagram Tables 2-2 and 2-3 describe the rear view items shown in Figures 2-4, 2-5, and 2-6. Table 2-2. SCXI-1000/1001 Chassis Rear View Items | Item | Description | | |--------------------|--|--| | Power entry module | IEC receptacle for power input, voltage selection board, and fuse | | | Fuse | Protects both you and the SCXI chassis in case of a fault in the chassis | | | Voltage tumbler | Configures the chassis for the AC line voltage | | | Fan(s) | Cools the chassis | | | Filter(s) | Prevents dirt from contaminating the circuitry in the chassis | | | Fan screws | Secure the fan(s) to the chassis | | Table 2-2. SCXI-1000/1001 Chassis Rear View Items (Continued) | Item | Description | |----------------------|--| | Backplane fuses | Protect the power supply from shorts on modules | | Rear connector space | For module space, connector mounting brackets, or adapters | | Rear threaded strips | Secure cable connections, mounting brackets, or filler panels to the chassis | - 1 Fan and Filter - 2 Fan Screws - 3 Rear Threaded Strips - 4 Rear Connector Space - 5 Rear Panel Screws (flathead on some revisions) - 6 Voltage Tumbler - 7 Power Entry Module - 8 Fuse (concealed) - 9 Backplane Fuses (behind fan) Figure 2-4. SCXI-1000 Rear View Diagram - 1 Fans and Filters - 2 Fan Screws (each fan) - 3 Rear Threaded Strips - 4 Rear Connector Space - Rear Panel Screws (flathead on some revisions) - 6 Voltage Tumbler - 7 Power Entry Module - 8 Fuse (concealed) - 9 Backplane Fuses (behind fan) Figure 2-5. SCXI-1001 Rear View Diagram Table 2-3. SCXI-1000DC Chassis Rear View Items | Item | Description | |--------------------------|--| | Power entry connector J1 | Receptacle for power input; uses a 9.5 to 16 VDC power source | | Fuse F1 | Power input fuse (6.3 A), protects both you and the SCXI chassis in case of a fault in the chassis | | Fuse F2 | +5 VDC
internal power supply fuse (3.15 A), protects the power supply from shorts on modules | | Fan(s) | Cools the chassis | | Fan screws | Secure the fan(s) to the chassis | | Backplane fuses | Protect the power supply from shorts on modules | | Rear connector space | For module space, connector mounting brackets, or adapter boards | | Rear threaded strips | Secure cable connections, mounting brackets, or filler panels to the chassis | - 1 Fan and Filter - 2 Fan Screws - 3 Rear Threaded Strips - 4 Rear Connector Space - 5 Rear Panel Screws (flathead on some revisions) - 6 Power Entry Connector - 7 Power Input Fuse - 8 +5 VDC Internal Power Supply Fuse - Backplane Fuses (behind fan) Figure 2-6. SCXI-1000DC Rear View Diagram ### **Chassis Uses** Before you configure the chassis, decide whether you are going to use it in multiplexed mode or parallel mode. In multiplexed mode, analog input (AI) channels are multiplexed into one module output so that the cabled E/M Series DAQ device has access to the multiplexed output of the module and the outputs of all other multiplexed modules in the chassis. In parallel mode, you need a separate E/M Series DAQ device for each module to send each of its output channels directly to a separate AI channel of the E/M Series DAQ device connected to the module. ### **Configuring the SCXI Chassis** Configuring the chassis involves selecting a chassis or high-level data link control (HDLC) address, line voltage, and fuse value on any chassis. **Note** Refer to the *Read Me First: Safety and Radio-Frequency Interference* document before removing equipment covers or connecting or disconnecting any signal wires. ### **Selecting Chassis Addresses** These sections provide information about how to select addresses for the SCXI chassis. ### SCXI-1000/1001 Unless you are using multiple chassis and need to configure one or more SCXI chassis for a different address, you can skip this section, and the SCXI chassis retains factory-default address of 0. You can configure the SCXI chassis for one of 32 different addresses so that you can connect multiple SCXI chassis to the same control source. The five switches on the front panel of Slot 0 determine the chassis address. Switches one through five represent the values 1, 2, 4, 8, and 16, when set to the ON position. When set to the OFF position, their value is zero. The chassis address is the sum of the switch values. Figure 2-7 shows examples of both the factory-default setting of the chassis address 0 and the switch setting for chassis address 19. **Notes** SCXI-1000 chassis through revision D do not have address jumpers or switches and respond to any address, but you cannot use them in multichassis systems. Revision E chassis use jumpers on Slot 0 for chassis addressing. Revision F and later chassis use a DIP switch for chassis addressing. SCXI-1001 chassis through revision D use jumpers on Slot 0 for chassis addressing. Revision E and later chassis use a DIP switch for chassis addressing. Figure 2-7. Address Setting Examples ### SCXI-1000DC Unless you are using multiple chassis and need to configure one or more SCXI chassis for a different address, you can skip this section, and the SCXI chassis retains the factory-default address of 0. You can configure the SCXI chassis for one of 32 different addresses so that you can connect multiple SCXI chassis to the same control source. Three jumpers that determine the chassis address are located behind the front panel of Slot 0 just below the Reset button. The chassis address is the sum of the values of all the jumpers. Figure 2-8 shows examples of both the factory-default setting of address 0 and the jumper settings for address 19. **Note** SCXI-1000DC chassis through revision C do not have address jumpers or switches and respond to any address, but you cannot use them in multichassis systems. Revision D and later chassis use jumpers on Slot 0 for chassis addressing. Figure 2-8. SCXI-1000DC Chassis Address Jumper Settings ### **Changing the Chassis Address** While referring to Figures 2-2 and 2-6, complete the following steps to change the chassis address of the SCXI-1000DC: - Power off the chassis and remove the power cord from the power entry module. - 2. To prevent a shock hazard, wait at least one minute before proceeding to step 3. - 3. Using a screwdriver, remove the four (six on some revisions) panhead screws from the front panel of Slot 0. - 4. Remove the six screws from the rear panel. - 5. Remove the controller from Slot 0. - 6. Set all three jumpers for the chassis address you want. - 7. Replace the controller in Slot 0. - 8. Replace the four (six on some revisions) screws. Do *not* overtighten. - 9. Replace the six screws in the rear panel. Do *not* overtighten. # Selecting Voltage and Replacing the Fuse for the SCXI-1000 and SCXI-1001 If you ordered the chassis with the appropriate part number (the -0x extension of the kit part number corresponds to your geographical region), the voltage tumbler and fuse are correct for operation in your geographical region. Check the voltage on the voltage tumbler to ensure that you have the correct voltage tumbler setting and fuse. The SCXI chassis can operate with line voltages of 100, 120, 220, and 240 VAC. The voltage tumbler in the power entry module determines the voltage for which the chassis is configured. You can identify the operating voltage by looking at the number on the power entry module when the door that covers the tumbler is closed. The fuse is 5×20 mm, which has a current rating relative to the operating voltage. Table 2-4 shows the proper voltage selections and fuse ratings for different regions. **Caution** For continued protection, replace fuses only with fuses of the same type and rating. Table 2-4. SCXI-1000/1001 Voltage Selection and Fuse Ratings by Region | SCXI
Chassis
Type | Region/Voltage | Main
Power Fuse
Quantity | Main Power
Fuse Type | Backplane
Fuse
Quantity | Backplane
Fuse Type | |-------------------------|----------------------|--------------------------------|--|-------------------------------|---| | SCXI-1000 | 100 V Japan | 1 | T0.75A 250V
(5 mm × 20 mm
SLO-BLO) | 2 | F1.5A 125V (LittleFuse
R251 01.5 TI) | | | 120 V | 1 | T0.5A 250V
(5 mm × 20 mm
SLO-BLO) | 2 | F1.5A 125V (LittleFuse
R251 01.5 TI) | | | 220 V Swiss | 1 | T0.25A 250V
(5 mm × 20 mm
SLO-BLO) | 2 | F1.5A 125V (LittleFuse
R251 01.5 TI) | | | 240 V Australia | 1 | T0.25A 250V
(5 mm × 20 mm
SLO-BLO) | 2 | F1.5A 125V (LittleFuse
R251 01.5 TI) | | | 240 V Europe | 1 | T0.25A 250V
(5 mm × 20 mm
SLO-BLO) | 2 | F1.5A 125V (LittleFuse
R251 01.5 TI) | | | 240 V North American | 1 | T0.25A 250V
(5 mm × 20 mm
SLO-BLO) | 2 | F1.5A 125V (LittleFuse
R251 01.5 TI) | | | 240 V U.K. | 1 | T0.25A 250V
(5 mm × 20 mm
SLO-BLO) | 2 | F1.5A 125V (LittleFuse
R251 01.5 TI) | Table 2-4. SCXI-1000/1001 Voltage Selection and Fuse Ratings by Region (Continued) Chapter 2 | SCXI
Chassis
Type | Region/Voltage | Main
Power Fuse
Quantity | Main Power
Fuse Type | Backplane
Fuse
Quantity | Backplane
Fuse Type | |-------------------------|----------------------|--------------------------------|--|-------------------------------|---------------------------------------| | SCXI-1001 | 100 V Japan | 1 | T3.0A 250 V
(5 mm × 20 mm
SLO-BLO) | 2 | F4A 125V (LittleFuse
R251 01.5 TI) | | | 120 V | 1 | T3.0A 250 V
(5 mm × 20 mm
SLO-BLO) | 2 | F4A 125V (LittleFuse
R251 01.5 TI) | | | 220 V Swiss | 1 | T1.6A 250 V
(5 mm × 20 mm
SLO-BLO) | 2 | F4A 125V (LittleFuse
R251 01.5 TI) | | | 240 V Australia | 1 | T1.6A 250 V
(5 mm × 20 mm
SLO-BLO) | 2 | F4A 125V (LittleFuse
R251 01.5 TI) | | | 240 V Europe | 1 | T1.6A 250 V
(5 mm × 20 mm
SLO-BLO) | 2 | F4A 125V (LittleFuse
R251 01.5 TI) | | | 240 V North American | 1 | T1.6A 250 V
(5 mm × 20 mm
SLO-BLO) | 2 | F4A 125V (LittleFuse
R251 01.5 TI) | | | 240 V U.K. | 1 | T1.6A 250 V
(5 mm × 20 mm
SLO-BLO) | 2 | F4A 125V (LittleFuse
R251 01.5 TI) | ### **Selecting the Voltage** Complete the following steps to select a voltage: - 1. Power off the chassis. - 2. Remove the power cord from the power entry module. - 3. Using a flathead screwdriver, pry the door to the tumbler open from the top. - 4. Remove the voltage tumbler. - 5. Rotate the tumbler to the appropriate voltage and reinsert it into the power entry module. - 6. Close the door. - 7. Check to make sure that the voltage showing on the selection tumbler is correct. - 8. Reinsert the power cord. ### Replacing the Power Entry Module Fuse **Caution** Disconnect all power before removing the cover. Complete the following steps to replace the power entry module fuse: - 1. Power off the chassis. - 2. Remove the power cord from the power entry module. - 3. Using a flathead screwdriver, pry the door to the voltage selection tumbler open from the top. - 4. Pull out the fuse drawer. - Remove the fuse. - 6. Install the new fuse in the drawer. - 7. Reinsert the fuse drawer in the right-hand slot with the arrow pointing to the right. - 8. Close the door. - 9. Reinsert the power cord. # Replacing and Checking Backplane Fuses on the SCXI-1000 and SCXI-1001 In addition to the power entry module fuse, the analog supply lines on the backplane are fused at 1.5 A on the SCXI-1000 chassis and at 4 A on the SCXI-1001 chassis. If you are making your own modules, fuse the module at 250 mA to avoid blowing the backplane fuses. Fusing the module better protects the module when a failure results in a large amount of current drawn by not allowing the current to blow the backplane fuses. On the SCXI-1000, the backplane fuses are located behind the fan. On the SCXI-1001, the backplane fuses are located behind the right-hand fan, near the power entry
module, as viewed from the rear of the chassis. Complete the following steps to check or replace fuses: 1. Remove the appropriate fan and filter from the rear of the chassis by following the instructions in the *Maintaining the Fan Filter* section. Make sure to switch the power off and remove the power cord. - 2. The fuse marked with a copper + on the backplane is for the positive analog supply, and the fuse marked with a copper is for the negative analog supply. To check whether a fuse is blown, connect an ohmmeter across the leads. If the reading is not approximately 0Ω , replace the fuse. - 3. Using a pair of needle-nose pliers, carefully extract the fuse. - 4. Take a new fuse and bend its leads so the component is 12.7 mm (0.5 in.) long, the dimension between the fuse sockets, and clip the leads to a length of 6.4 mm (0.25 in.). - 5. Using the needle-nose pliers, insert the fuse into the socket holes. - 6. Repeat for the other fuse if necessary. - 7. Check the fan filter and, if it is dirty, clean it as described in the *Maintaining the Fan Filter* section. - Reinstall the fan and filter. ### Replacing the Fuses on the SCXI-1000DC There are two fuses located on the rear panel of the SCXI-1000DC. The input power fuse (F1) is a 6.3 A, 5×20 mm time-lag fuse. The internal +5 VDC supply is fused by a 3.15 A, 5×20 mm time-lag fuse (F2). ### Replacing the Power Entry Fuse and +5 VDC Fuse **Caution** For continued protection against fire, replace fuses only with fuses of the same type and rating. Complete the following steps to replace the rear panel fuses: - 1. Power off the chassis. - 2. Remove the power cord from power entry connector J1. - 3. Turn the fuse holder counter-clockwise with a screwdriver and pull out the fuse holder to expose the fuse in the housing. - 4. Remove the fuse. - 5. Install the new fuse. - 6. Push the fuse holder back into the housing and screw it clockwise until it is secure. - 7. Reinsert the power cord. ### **Replacing and Checking Backplane Fuses** In addition to the power entry and the +5 V supply fuses, the analog supply lines on the backplane are fused at 1.5 A on the SCXI-1000DC chassis. If you design a special/prototype module, use the SCXI-1181 module and fuse the module at 250 mA to avoid blowing the analog backplane and +5 V supply fuses. Fusing the module better protects the module when a failure results in a large amount of current drawn by not allowing the current to blow the backplane fuses and +5 V fuses. On the SCXI-1000DC, the backplane fuses are located behind the fan. Complete the following steps to check or replace fuses: - 1. Remove the appropriate fan and filter from the rear of the chassis by following the instructions in the *Maintaining the Fan Filter* section. Be sure to switch the power off and remove the power cord. - 2. The fuse marked with a copper + on the backplane is for the positive analog supply, and the fuse marked with a copper is for the negative analog supply. To check whether a fuse is blown, connect an ohmmeter across the leads. If the reading is not approximately $0\ \Omega$, replace the fuse. - 3. Using a pair of needle-nose pliers, carefully extract the fuse. - 4. Take a new fuse and bend its leads so the component is 12.7 mm (0.5 in.) long, the dimension between the fuse sockets, and clip the leads to a length of 6.4 mm (0.25 in.). - 5. Using the needle-nose pliers, insert the fuse into the socket holes. - 6. Repeat, if necessary, for the other fuse. - 7. Check the fan filter and, if it is dirty, clean it as described in the *Maintaining the Fan Filter* section. - Reinstall the fan and filter. ### Installing the SCXI Chassis These sections provide information about installing the SCXI chassis. Chapter 2 ### Installing the SCXI-1000 and SCXI-1001 Chassis Complete the following steps to install the SCXI-1000 and SCXI-1001 chassis: - 1. If necessary, change the chassis address of the box by following the instructions in the *Selecting Chassis Addresses* section. Unless you are using multiple chassis, skip this step and leave the address at its factory-default setting of 0. - 2. Place the SCXI chassis on a sturdy, level surface. Leave at least 10 cm (4 in.) of space behind the chassis for adequate air circulation. - 3. Power off the chassis. - 4. Make sure the voltage selection tumbler in the power entry module is set for the line voltage of the outlet. Refer to the *Selecting the Voltage* section if necessary. - 5. Insert the female end of the power cord into the power entry module. - 6. Insert the male end of the power cord into the wall outlet. - 7. Install the modules into the chassis. - 8. Install the necessary cabling for the modules. Consult the SCXI module user manual for cabling installation instructions. - 9. Install any front and rear filler panels. - 10. Power on the chassis. - 11. Power on the computer connected to the modules. - 12. Refer to the *SCXI Quick Start Guide* to complete the SCXI system installation. ### Installing the SCXI-1000DC Chassis Complete the following steps to install the SCXI-1000DC chassis: - If necessary, change the chassis address by following the instructions in the *Selecting Chassis Addresses* section. Unless you are using multiple chassis, skip this step and leave the address at its factory-default setting of 0. - 2. Place the SCXI chassis on a sturdy, level surface. Leave at least 10 cm (4 in.) of space behind the chassis for adequate air circulation. - 3. Place the chassis power switch in the off position. - 4. Make sure the voltage of the power source is between 9.5 and 16 VDC. - 5. Insert the power plug into the header J1. **Caution** Revision A SCXI-1000DC chassis have screw terminals on the rear panel to connect the power source. Wire the power source to these screw terminals. Observe the correct polarity, as connecting the power source with the wrong polarity can cause permanent damage to the chassis. NI is *not* liable for any damage or injuries resulting from improper power connections. - 6. Install the modules into the chassis. - 7. Install the necessary cabling for the modules. Consult the SCXI module user manual for cabling installation instructions. - 8. Install any needed front and rear filler panels. - 9. Power on the chassis. - 10. Power on the computer connected to the modules. - 11. Refer to the *SCXI Quick Start Guide* to complete the SCXI system installation. ### **Installing Filler Panels** The front and rear filler panel accessories protect the inside of the chassis and the installed modules by preventing unwanted material from entering the chassis and damaging modules, or forming conductive paths that can degrade performance. Install all modules first, then start installing filler panels from the edge of a front panel. ### **Installing Front Filler Panels** Complete the following steps to install front filler panels: - 1. Place the panel with the captive screws to the right of the chassis front. Line up the screws with the threaded strip holes. - 2. Using a flathead screwdriver, screw the captive screws into the threaded strip holes. ### **Installing Rear Panels** Complete the following steps to install rear panels: - 1. Place the panel at the rear of the chassis between the two threaded strips. Align the panel so that the serial number faces into the chassis and the screw holes are on the right. - 2. Using a flathead screwdriver, screw the two screws through the rear panel into the threaded strip holes. ### **Maintaining the Fan Filter** The brushless fan(s) on the rear of the SCXI chassis cool the chassis and modules. To keep the fan effective, the fan filter(s) must be clean. Dust and dirt accumulation reduces airflow, making the inside of the chassis hotter, shortening the life of the chassis and modules. Complete the following steps to clean the fan filter(s): - 1. Power off the chassis. - 2. Remove the power cord from the power entry module. - 3. Place the chassis face down on a flat surface so that the fan is on top. If the chassis is so heavily cabled that you cannot easily place it in this position, leave the chassis as it is, but be careful to support the fan during removal and reinstallation to avoid breaking the fan wires. - 4. Remove the fan filter. Remove the four screws that secure the fan and filter to the rear of the chassis. When removing the last screw, be careful to hold the fan to avoid breaking the fan wires. - 5. Clean the fan filter by moving the filter around under a gentle stream of cold tap water until all the dust is removed. Dry the filter. - 6. Replace the fan filter by aligning the fan and filter with the fan holes, making sure that the label side of the fan is face down. Reinstall the four screws and make sure the assembly is secure. # **Specifications** This appendix lists the specifications of the SCXI chassis. These are typical at 25 $^{\circ}\text{C}$ unless otherwise stated. ### **Electrical Characteristics** | Supplies | SCXI-1000/
1000DC | SCXI-1101 | |--------------------------------|----------------------|------------------| | V+ | | | | Tolerance limits include peaks | +18.5 to +25 V | +18.5 to +25 V | | Ripple (peak-to-peak) | 1.5 V | 1.5 V | | Max load | 680 mA | 2.04 A | | V- | | | | Tolerance limits include peaks | −18.5 to −25 V | -18.5 to -25 V | | Ripple (peak-to-peak) | 1.5 V | 1.5 V | | Max load | 680 mA | 2.04 A | | +5 V | | | | Tolerance limits include peaks | +4.75 to +5.25 V | +4.75 to +5.25 V | | Ripple (peak-to-peak) | 50 mV | 50 mV | | Max load | 250 mA | 600 mA | Maximum loads are the supply current for the entire chassis. Scaling the maximum power gives the allotted current per slot, as follows. | Supplies | SCXI-1000/1000DC | SCXI-1001 | |----------|------------------|-----------| | V+ | 170 mA | 170 mA | | V- | 170 mA | 170 mA | | +5 V | 50 mA | 50 mA | ### **Source Power Requirements** | Line Voltage, | Max AC Current | | | | |---------------|----------------|-----------|--|--| | 47–63
Hz | SCXI-1000 | SCXI-1001 | | | | 100 VAC, ±10% | 0.5 A | 1.7 A | | | | 120 VAC, ±10% | 0.6 A | 1.5 A | | | | 220 VAC, ±10% | 0.25 A | 0.8 A | | | | 240 VAC, ±10% | 0.25 A | 0.8 A | | | ### SCXI-1000DC | Input voltage | 12 VDC nominal | |--------------------------|-------------------| | | (9.5 to 16.0 VDC) | | Max DC operating current | | | at 9.5 VDC | 5.5 A | ### **Physical** ### Weight | SCXI-1000 | 3.9 kg (8 lb, 10 oz) | |-------------|-----------------------| | SCXI-1000DC | 3.3 kg (7 lb, 5 oz) | | SCXI-1001 | 6.8 kg (14 lb, 14 oz) | Refer to Figures A-1 and A-2 for the physical dimensions of the four-slot chassis (SCXI-1000 and SCXI-1000DC) and the 12-slot chassis (SCXI-1001). Figure A-1. Physical Dimensions of the SCXI-1001 SCXI Chassis User Manual Figure A-2. Physical Dimensions of the SCXI-1000 and SCXI-1000DC ### **Environmental** | Operating temperature | . 0 to 50 °C | |------------------------------------|-------------------------------| | Storage temperature | .–20 to 70 °C | | Humidity | . 10 to 90% RH, noncondensing | | Maximum altitude | . 2,000 meters | | Pollution Degree (indoor use only) | . 2 | ### Safety The chassis are designed to meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use: - IEC 61010-1, EN 61010-1 - UL 1244 - CAN/CSA-C22.2 No. 61010-1 **Note** For UL and other safety certifications, refer to the product label, or visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column. ### **Electromagnetic Compatibility** | Emissions | EN 55011 Class A at 10 m
FCC Part 15A above 1 GHz | |-----------|--| | Immunity | EN 61326:1997 + A2:2001,
Table 1 | | EMC/EMI | CE, C-Tick, and FCC Part 15 (Class A) Compliant | **Note** For EMC compliance, operate this device with shielded cabling. ### **CE Compliance** The chassis meet the essential requirements of applicable European Directives, as amended for CE marking, as follows: Low-Voltage Directive (safety)......73/23/EEC Electromagnetic Compatibility Directive (EMC)89/336/EEC **Note** Refer to the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column. # **Common Questions** My chassis worked fine until I inadvertently removed and reinserted a module while the chassis was on. Now my chassis does not power on. What can I do? SCXI modules are not hot swapable, so you may have blown a fuse. Refer to Chapter 2, *Configuring and Installing the SCXI Chassis*, for information on fuse replacement. If replacing the fuse does not correct the problem, you may have damaged the digital bus circuitry or the SCXI module. Please contact NI Technical Support at ni.com/support for assistance. My chassis power is on, my modules are configured for multiplexed mode, and I am not getting good data. All the channels read the same voltage even though I know I am putting different voltages into each channel. What is causing this problem? The SCXI chassis has backplane fuses. One or both of these fuses could be blown. Refer to the *Replacing and Checking Backplane Fuses on the SCXI-1000 and SCXI-1001* section of Chapter 2, *Configuring and Installing the SCXI Chassis*, for fuse replacement information. # Can I programmatically detect whether or not my chassis is powered on? Not exactly. You can determine whether or not you can communicate with configured modules through SCXI_ModuleID_Read in NI-DAQ or using a LabVIEW VI that you can obtain from ni.com/express by entering the info code rdtscp. #### My chassis will not power on. What should I check? Check the to make sure the power cord is attached and connected to a power source. Look at the voltage selection tumbler above the power cord receptacle and make sure it is set to the correct voltage. Make sure the power switch is powered on. Verify that the main power fuse is good. # **Glossary** | Symbol | Prefix | Value | |--------|--------|----------| | p | pico | 10-12 | | m | milli | 10-3 | | k | kilo | 10^{3} | ## **Numbers/Symbols** ° degrees - negative of, or minus Ω ohms ± plus or minus + positive of, or plus % percent +5 V (signal) +5 VDC source signal ### A A amperes A/D analog-to-digital AC alternating current ### C C Celsius D D/A digital-to-analog DAQ data acquisition—(1) collecting and measuring electrical signals from sensors, transducers, and test probes or fixtures and processing the measurement data using a computer; (2) collecting and measuring the same kinds of electrical signals with A/D and/or DIO boards plugged into a computer, and possibly generating control signals with D/A and/or DIO boards in the same computer F fuse a protective device that breaks a circuit when a current exceeds a rated value G GND ground Н HDLC high-level data-link control Hz hertz—cycles per second of a periodic signal I I/O input/output—the transfer of data to/from a computer system involving communications channels, operator interface devices, and/or data acquisition and control interfaces IEC International Electrotechnical Commission in. inch or inches K kg kilograms L lb pounds 0 oz ounces S s seconds SCXI Signal Conditioning eXtensions for Instrumentation V V volts VAC volts, alternating current VDC volts, direct current W W watts # Index | Symbols | chassis usage considerations, 2-7 | |---|---| | +5 VDC fuse replacement, SCXI-1000DC, 2-15 | fuse replacement and check procedure,
backplane
SCXI-1000 and SCXI-1001, 2-14 | | A | SCXI-1000DC, 2-16 | | address selection, 2-8 jumper settings SCXI-1000 and SCXI-1001 (figure), 2-9 SCXI-1000DC (figure), 2-10 jumperless chassis (note), 2-8 SCXI-1000 and 1001, 2-8 SCXI-1000DC, 2-9 | fuse replacement for power entry module +5 VDC fuse replacement, SCXI-1000DC, 2-15 voltage selection for SCXI-1000 and SCXI-1001 procedure, 2-13 voltage selection and fuse ratings by region (table), 2-12 conventions used in the manual, iv | | B backplane fuse replacement and check procedure SCXI-1000 and 1001, 2-14 SCXI-1000DC, 2-16 | documentation conventions used in the manual, <i>iv</i> National Instruments documentation, 1-4 related documentation, 1-4 | | cables, optional equipment, 1-5 CE compliance specifications, A-6 chassis address selection. See address selection configuration See also installation address selection SCXI-1000 and SCXI-1001, 2-8 figure, 2-9 SCXI-1000DC, 2-9 figure, 2-10 chassis descriptions front view diagrams, 2-2, 2-3, 2-4 | electromagnetic compatibility specifications, A-5 environmental specifications, A-5 equipment, optional, 1-5 F fan filter maintenance, 2-19 filler panel installation front filler panel, 2-18 rear filler panel, 2-19 | | front view items (table), 2-1
rear view diagrams, 2-5, 2-6, 2-7
rear view items (table), 2-4, 2-6 | frequently asked questions, B-1 | | fuse replacement | overview, 1-1 | |---|---------------------------------------| | backplane fuse replacement and check | SCXI chassis descriptions | | procedure | front view diagrams | | SCXI-1000 and SCXI-1001, 2-14 | SCXI-1000, 2-2 | | SCXI-1000DC, 2-16 | SCXI-1000DC, 2-3 | | fuse ratings by region (table) | SCXI-1001, 2-4 | | SCXI-1000 and SCXI-1001, 2-12 | front view items (table), 2-1 | | fuse replacement for power entry module | rear view diagrams | | +5 VDC fuse replacement, | SCXI-1000, 2-5 | | SCXI-1000DC, 2-15 | SCXI-1000DC, 2-7 | | SCXI-1000DC, 2-15 | SCXI-1001, 2-6 | | fuse, blown, B-1 | rear view items (table) | | | SCXI-1000 and 1001, 2-4 | | 1 | SCXI-1000DC, 2-6 | | 1 | SCXI modules | | installation | troubleshooting and common | | chassis descriptions | questions, B-1 | | front view diagrams, 2-2, 2-3, 2-4 | SCXI-1000 | | front view items (table), 2-1 | address selection, 2-8 | | rear view diagrams, 2-5, 2-6, 2-7 | jumper settings (figure), 2-9 | | rear view items (table), 2-4, 2-6 | front view diagram, 2-2 | | fan filter maintenance, 2-19 | fuse replacement | | filler panel installation, 2-18 | backplane fuse replacement and | | SCXI-1000 and SCXI-1001, 2-17 | check procedure, 2-14 | | SCXI-1000DC, 2-17 | fuse ratings by region (table), 2-12 | | | power entry module, 2-14 | | M | installation, 2-17, A-3 | | • | physical dimensions (figure), A-4 | | maintenance of fan filter, 2-19 | rear view diagram, 2-5 | | | rear view items (table), 2-4 | | P | source power requirements, A-2 | | • | voltage selection, 2-11 | | problems and solutions, B-1 | procedure, 2-13 | | | voltage selection and fuse ratings by | | S | region (table), 2-12 | | safety specifications, A-5 | SCXI-1000DC | | SCXI chassis | address selection, 2-9 | | common questions, B-1 | jumper settings (figure), 2-10 | | hardware and software requirements, 1-1 | front view diagram, 2-3 | | optional equipment, 1-5 | | | optional equipment, 1-3 | | | fuse replacement | safety, A-5 | |---|---------------------------------------| | +5 VDC fuse replacement, 2-15 | source power requirements | | backplane fuse replacement and | SCXI-1000 and 1001, A-2 | | check procedure, 2-16 | SCXI-1000DC, A-2 | | power entry fuse and +5 VDC, 2-15 | weight, A-2 | | installation, 2-17 | | | physical dimensions (figure), A-4 | V |
| rear view diagram, 2-7 | - | | rear view items (table), 2-6 | voltage selection | | source power requirements, A-2 | See also fuse replacement | | SCXI-1001 | SCXI-1000 and SCXI-1001, 2-11 | | address selection, 2-8 | procedure, 2-13 | | jumper settings (figure), 2-9 | voltage selection and fuse ratings by | | front view diagram, 2-4 | region (table), 2-12 | | fuse replacement | | | backplane fuse replacement and | W | | check procedure, 2-14 | | | fuse ratings by region (table), 2-12 | weight specifications, A-2 | | power entry module, 2-14 | | | installation, 2-17 | | | physical dimensions (figure), A-3 | | | rear view diagram, 2-6 | | | rear view items (table), 2-4 | | | source power requirements, A-2 | | | voltage selection, 2-11 | | | procedure, 2-13 | | | voltage selection and fuse ratings by | | | region (table), 2-12 | | | software programming choices, 1-2 | | | source power requirements | | | SCXI-1000 and 1001, A-2 | | | SCXI-1000DC, A-2 | | | specifications | | | CE compliance, A-6 | | | electrical characteristics (table), A-1 | | | electromagnetic compatibility, A-5 | | | environmental, A-5 | | | physical dimensions | | | SCXI-1000 and SCXI-1000DC | | | (figure), A-4 | | | SCXI-1001 (figure), A-3 | |