

https://www.apexwaves.com/modular-systems/national-instruments/scxi/SCXI-1161?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/scxi/SCXI-1161?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/scxi/SCXI-1161?aw_referrer=pdf

LabWindows /CVI

Standard Libraries
Reference Manual

July 1996 Edition

Part Number 320682C-01

© Copyright 1994, 1996 National Instruments Corporation.
All rights reserved.



Internet Support

GPIB: gpib.support@natinst.com
DAQ: dag.support@natinst.com

VXI: vxi.support@natinst.com
LabVIEW: Iv.support@natinst.com
LabWindows:w.support@natinst.com
HiQ: hig.support@natinst.com

VISA: visa.support@natinst.com
Lookout:lookout.support@natinst.com
FTP Siteftp.natinst.com

Web Addresswww.natinst.com

Bulletin Board Support

BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 1 48 65 15 59

El FaxBack Support

(512) 418-1111

Q‘Z}
Telephone Support (U.S.)

Tel: (512) 795-8248
Fax: (512) 794-5678

PN
International Offices

Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,

Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico 95 800 010 0793,
Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100



Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as
evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software
media that do not execute programming instructions if National Instruments receives notice of such defects during
the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted
or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the
outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the
shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. Inthe event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREINNATIONAL INSTRUMENTS MAKES NO WARRANTIES EXPRESS OR IMPLIEDAND

SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE

CUSTOMER S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART NIATIONAL

INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMERNATIONAL INSTRUMENTS

WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATAPROFITS USE OF PRODUCTSOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES EVEN IF ADVISED OF THE POSSIBILITY THEREOF This limitation of the liability of

National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The
warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s
failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification

of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of
third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole
or in part, without the prior written consent of National Instruments Corporation.

Trademarks

NI-DAQ®, NI-488.2™, and NI-488.2M™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.



WARNING REGARDING MEDICAL AND CLINICAL USE
OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on
the part of the user or application designer. Any use or application of National Instruments products for or

involving medical or clinical treatment must be performed by properly trained and qualified medical personnel, and
all traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to
prevent serious injury or death should always continue to be used when National Instruments products are being
used. National Instruments products are NOT intended to be a substitute for any form of established process,
procedure, or equipment used to monitor or safeguard human health and safety in medical or clinical treatment.



Contents

ADOUL ThIS ManUAL.............cccooiiiie e XVii
Organization Of ThISAANUAL ..........cooiiiiiii e XVii
Conventions Used in ThiS ManUAL ............uuuuiiiiiiiii e XiX
The LabWindows/CVI Documentation Set............cooioiiiiiiiiiiiiiiiiiiieeeeeeeee e XX
Related DOCUMENTALION .........oiiiiiiiiiiiiieie et e e e e e e e e e e e as XX
Customer COMMUNICALION .......coeeiiiiiiiiieieiiiib bbbt e e e e e e e e e e e e e e e e e e e s s e s s eeabebneeees XX

Chapter 1

ANSI C LIDIAIY oottt sttt ne s 1-1
LOW-LeVEl 1/O FUNCHONS ....coiiiiiiiieeeieeeeeee ettt 1-2
Standard Language AGItIONS ........uuuuueeiiiiieee e 1-2
(O g P = T (=T gl o 0Tt 1Y [ T SRR 1-5
SHNG PrOCESSING ...ttt ettt e e e e e e e e e e e e et e ee ettt b e e e e e e e eeeaeeeeees 1-5
INPUY/OULPUL FACHITIES ..vvviiei e e et s e e e e e e e e e e e e eeeenannnnnnns 1-6
errno Set by File 1/O FUNCHONS .........uuiiiiee e 1-6
MathematiCal FUNCLIONS .........oooiiiiiiiii e 1-6
Time and Date FUNCLIONS .......uuiiiiiiiieie e e e e e e e e 1-6
CONLIOI FUNCLIONS ...ttt e e e e e e e e e e e e e e e e ees 1-7
ANSI C Library FUNCLION REFEIENCE.........ueiiiiiee e 1-9

10 (0] 0 1= o TSP UPPRRR 1-9

Chapter 2

Formatting and I/O LIDIAry ..o 2-1
Formatting and 1/O Library FUNCLION OVEIVIEW ...........cccevviiieiiiiiiiieiee e e e e e eeeeeeeeeeaneens 2-1

The Formatting and I/O Library Function Panels............cccccoooiiiiiiiiiiiniiiinn, 2-1
The String Manipulation FUNCHONS .......uiiiiiiieecccecceeeeeeeses e e e eeeeeeaaeens 2-3
The Special Nature of the Formatting and Scanning Functions....................... 2-3
Formatting and 1/O Library Function ReferencCe.........cccooevvvieeiiiiiiiiieiicciie e 2-4
ANTAYTORIIE ... e e e e e e e as 2-4
ClOSEFIIE <. et a e 2-7
COMPAIEBYLES ... e 2-7
(070 p g =T (=10 1 110 S PRRR 2-8
COPYBYLES ..t e e aa s 2-9
(@] 0V 111 2-10
FHETOAITAY ... e ettt e e e e e e e e e e aeees 2-11
111277 (=S 2-13
FINAPALIEIN ... e s 2-13
1 1 PP PPPPPPRR 2-14
0 11 =PSRRI 2-15
FIMTOUL ... e e r e e e e e e e e e eenes 2-16
GEEFIIEINTO ... e e e e e e eees 2-17

© National Instruments Corporation % LabWindows/CVI Standard Libraries



Contents

GEtFMEEITNGX. ..o eees 2-18
GEIFMUOETTON ... et e e e eeeaeaa s 2-18
(€T 0011 (O ] = o) 8571 ] o T 2-19
NUMPMEABYLES ... e e 2-20
(@01 | o = RSP UUOUR 2-20
REAAFIIE ... e 2-22
REAULINE ..ttt e e e e e e e 2-23
Yot o [T PP RPUP PP PUPPPPPTN 2-24
SCANFIIE et 2-25
SYor=1 o] 1 o DTSRRI 2-25
SOUFIEPI ...t 2-26
SHINGLENGIN ... e eeeeeee 2-28
S T o M0 1V (O T RS 2-28
SHINQUPPEICASE ...ttt s e e e e e e e e e e eeeeeennnnes 2-29
WWIEEIFIIR. .t e e e e e e 2-29
WWHEELING <. e e e e e e e e et e e e e e e e e aaeas 2-30
Using the Formatting and Scanning FUNCLIONS ...........ccooiiiiiiiiiiiiciiieee e 2-31
Introductory Formatting and Scanning Examples..........cccccooiiiiiiiiiiiiiiiiiiiininnns 2-31
Formatting FUNCLIONS .......oovveiiiiiciie e e e e 2-32
Formatting Functions—Format String..............uuvveiiiiiiiieeneeeeiceeeeeeieiee 2-33
Formatting MOIfIers .........oevvviiiiiiiiie e 2-35
Formatting Integer Modifiers (%i, %d, %X, %0, %C).............. 2-35
Formatting Floating-Point Modifiers (%f)........ccccceevieiiieennnn... 2-37
Formatting String Modifiers (%0S) .........uuvvueiiiiiiinieieeeeieeeeeeeiiis 2-38
Fmt, FmtFile, FmtOut—Asterisks (*) Instead of Constants
IN FOrMat SPECITIEIS ... 2-39
Fmt, FmtFile, FmtOut—Literals in the Format String............cccccceo..... 2-40
SCANNING FUNCHIONS ...ttt e e 2-40
Scanning Functions—Format String.........ccccceevieiieeeeeeeeieeeeeeeeen 2-41
Scanning MOAIFIEIS ....uuuuiiiii e 2-43
Scanning Integer Modifiers (%i, %d, %X, %0, %C)................. 2-43
Scanning Floating-Point Modifiers (%f)........cccceeiiiiiiiiiiiiinnnns 2-45
Scanning String Modifiers (%6S) .......ceeeeeiiieeeeeeieieeeeein 2-46
Scan, ScanFile, Scanin—Asterisks (*) Instead of Constants
IN FOrMat SPECITIEIS ..o i e 2-48
Scan, ScanFile, Scanin—Literals in the Format String ....................... 2-48
Formatting and 1/O Library Programming EXamples .........ccccceeiiiiiiieeiiiieeceeeeiinn, 2-49
Fmt/FmtFile/FmtOut EXamples in C ... 2-50
a1 CTo T g (o TS (11T 2-50
LONG INtEYET 10 SN ..vvviriiiiieie e 2-51
Real to String in Floating-Point Notation ..., 2-51
Real to String in Scientific NOtation ...........ccooovveeiiiiiiiiiiiiic e, 2-52
Integer and Real to String with LiteralS ..........cccooeveveiiiiiiiiiieeeen, 2-53
Two Integers to ASCII File with Error Checking ...........ccccceeeiiinnnnennn. 2-53

Real Array to ASCII File in Columns and with Comma Separators ...2-53

LabWindows/CVI Standard Libraries Vi © National Instruments Corporation



Contents

Integer Array to Binary File, Assuming a Fixed

Number of EIemMeNntS........oouuiiiiii e 2-54
Real Array to Binary File, Assuming a Fixed
Number of EIemMeNntS.........ouuuiiii e 2-54
Real Array to Binary File, Assuming a Variable
Number of EIemMeNntS.........ouuuiiiii e 2-55
A Variable Portion of a Real Array to a Binary File............ccccccovvvne. 2-55
Concatenating TWO STHNGS ..cceuuvrrureiiiiiie et 2-56
paY o oL aTo [T o TN (o JE= S i 1 Vo 2-56
Creating an Array of File Names ... 2-57
Writing a Line Containing an Integer with Literals to
the Standard OULPUL.........oooiiiii e 2-58
Writing to the Standard Output without
a Linefeed/Carriage REeIUIM ...........iiiiii i 2-58
Scan/ScanFile/Scanin EXamples iN C .......euuiiiiiiii e 2-59
SHING t0 INTEGET ... 2-59
String t0 LONG INEOET ...uueiii i 2-60
SEING t0 REAL ... 2-60
String to Integer and Real.............uuiiiiiiiii e 2-61
SEING T0 STNG .. e a e 2-62
String to Integer and StriNg ........cooovviiiiieeei e 2-63
String to Real, Skipping over Non-Numeric Characters
T IRt g TSI (11T S 2-63
String to Real, After Finding a Semicolon in the String...................... 2-64
String to Real, After Finding a Substring in the String................vvve.. 2-64
String with Comma-Separated ASCIlI Numbers to Real Array ........... 2-65
Scanning Strings That Are Not NUL-Terminated ...............ccccevvvvvnnens 2-65
Integer Array t0 Real AITay.........uuuuueiiiiiiiieeeeeee e 2-66
Integer Array to Real Array with Byte Swapping..........ccccevvvvvvvvvvnnnnnne 2-66
Integer Array Containing 1-Byte Integers to Real Array..................... 2-66
String Containing Binary Integers to Integer Array.......ccccccevvvvvvneennnn. 2-67
String Containing an IEEE-Format Real Number
to a Real Variable ... 2-67
ASCII File to Two Integers with Error Checking ...........cccoeeeeeeiiviinnnns 2-68
ASCII File with Comma Separated Numbers to Real Array,
with Number of Elements at Beginning of File ..o, 2-68
Binary File to Integer Array, Assuming a Fixed
Number of EIemMeNntS........oouuuiiii e 2-69

Binary File to Real Array, Assuming a Fixed Number of Elements....2-69
Binary File to Real Array, Assuming a Variable

NUumber Of EIEMENTS........coooiiiiii e 2-69
Reading an Integer from the Standard INpUt............ccciiiiiiiiiiin, 2-70
Reading a String from the Standard Input............coovvviiiiiiiiiie e, 2-70
Reading a Line from the Standard INput...........cccccoeiiiiiiiiiiiiiiiiies 2-71

© National Instruments Corporation vii LabWindows/CVI Standard Libraries



Contents

Chapter 3
ANAIYSIS LIDIAIY oo 3-1
Analysis Library FUNCHON OVEIVIEW ......ccoiiiieeeeeeiieeeeeeetis s e e e e e e e e e e eeeeeeenaann s 3-1
The Analysis Library FUNCLION PanelS............ooooiiiiiiiiiiiiiie e 3-1
Hints for Using Analysis Function Panels ...........ccccccccccciiiiiiee e, 3-3
Reporting ANAlYSIS EITOIS......uuuueiiiiiiee e 3-4
Analysis Library FUNCLION REEIENCE.......ccoiii i 3-4
Y o 1S3 5 USSR 3-4
N [0 1 PRSP PP PP 3-5
Yo [0 124 5 PR TR 3-5
ClEAILD ...ttt e e e e e e e as 3-6
(0] o) 1 B TSP PPPPPPIN 3-7
(05791 [0 L PPPPPPPPPRPPPPPR 3-7
(05592 Vo o 1 1 I 2P PPPPUPUUPPRURR 3-8
CXDIV et e e e e e e e e e e e e e e e e a 3-9
CXDIVID .. 3-10
CXLINEVLID .ottt e e 3-11
CXIMUL e e et e e e e e e e e e e e e e eaaaa 3-12
CXMUILD ...ttt et e e e e e e e e e e aeeeeas 3-12
(@9d 2 {=Tod | o T PP SRRPRPP 3-13
XU e 3-14
(05765 U1 1 5 2SR 3-15
(D=7 =T1 001 = o | ST PPPPPPPPPPPPPPPR 3-16
DIV AD e 3-16
5] I L PP PPPPPUPPPPPPPPPPR 3-17
9T ] 1 o To [ [ SRR PPPPPPPPRRTRRTR 3-18
GetANAlYSISEITOISIING ...cciii e e e e e e e e e eeees 3-19
HISTOGIAIM ..ottt e e e e e e e e e e e e e e e e eeeeeeesennnnn 3-19
1YY= U1 ) PP PPPPPPPPPPPTRTPR 3-20
[T 1Y I ORI 3-21
LINEV2D ... 3-22
IMALTIXIVIUL ... e e e e et e ettt et r e e e e e e e e e e e eees 3-23
IMAXIMINTLD ...ttt e e e e e e e e e e e e e e e e e ann e 3-24
MAXIMINZD ...t e e e e e et e e et a bbb a e e e e e 3-24
L= PP 3-25
IMIUILD ettt et e e e e e e e e e e e e e e e e e e e e e s nnnnn bbb bareeseeeeeees 3-26
IMIUIZD ettt e e e e e e e e e e e e e e e e e e ee s 3-27
NEGLD e e e s 3-28
SOULD ..ttt a et e e e 3-28
Yo ] AU PPPTTR TR 3-29
] (0| 51 PP PPPPUPPPPPPPP 3-29
SUDBLD ...t r et e e e e e e e e e e e e e e e aa e 3-30
SUDZD ... e 3-31
YU 0151 0 1 L UURRP 3-32
TOPOIAT ... e 3-32

LabWindows/CVI Standard Libraries viii © National Instruments Corporation



Contents

TOPOIAILD ...t e e e 3-33
TORECT .. e e e 3-34
L0 T 1 1 5 PP 3-35
B =115 010 1] PP 3-36
[T go] g OfoT g Lo [1110] o 1= PPPPPPRPPPPPPPR 3-37
Chapter 4
GPIB/GPIB-488.2 LIDIary ...ttt 4-1
GPIB Library FUNCHON OVEIVIEW........uuuiiiiiei e e e eeeeeeeeeeeetesess e e e e e e e e e e e aeeeeeanannnnnnn e as 4-1
GPIB Functions Library Function Panels ... 4-1
GPIB LiDrary CONCEPLS .. .uuuuuuiiiii i e e e ee et eeeeeeeeitiess s s s e e e e e e e e e e e e eeeeatesaaaa s s e aaeeaaaaaeeeeennnnnes 4-5
GPIB Libraries and the GPIB Dynamic Link Library/Device Driver.............. 4-5
Guidelines and Restrictions for Using the GPIB Libraries.............cccccevvvvvnnn. 4-6
Device and Board FUNCHONS .......oiiiiiiieecceccceeeeeeii e 4-7
Automatic Serial PoOIlING .......cooviieeeeei e 4-7
Autopolling Compatibility .........cooovviiiiiii s 4-8
Hardware Interrupts and AUtOPOIliNG..........uvvriiiiiiii e 4-8
Read and Write TermiNation ..........ccooveeeeeeiiiiiiieiiiiiicee e 4-9
THMBOULS ...ttt ettt et et e e e e e e e e e e e e e e e e e e s e aaannnn 4-9
Global Variables for the GPIB LiDrary ... 4-10
Different Levels of Functionality Depending on Platform and GPIB Board...4-10
WINAOWS 5.t e e e e e e e e e e eeeeneeee 4-10
NatiVe 32-Bit DIVE......uueiiiiiiiiiiiiiieeeeeeee e 4-10
Compatibility DIIVET ......coeeviiiiiiiaiaeee e 4-11
WINAOWS NT L.ttt e e e e e e e e e e e e e e e 4-11
Limitations oN TranSfer SIZE ... 4-11
YT T Y= To [T T 4-11
Notification of SRQ and Other GPIB EVeNtS.........cccccoevveviviiiiiiieeceeieeeeeeeeia, 4-12
Synchronous Callbacks ..........cooovvviiiieiiiicc e 4-12
Asynchronous Callbacks...........uueuuiiiiiiii e 4-12
Driver Version REqQUIFEMENTS...........coevveiviiiiiiiiiie e e e eeeeeeeeeeeeeeaennne s 4-12
GPIB FUNCHON REFEIENCE ....eveiiiiiiie e e e e eees 4-13
ClOSEDBV ...ttt e e e e e e 4-13
ClOSEINSIIDEVS ...ttt s e e e e e e e e e e e e e eeeeseseannnns 4-14
IDINSTAICAIIDACK........co oo 4-14
SRQI, RQS, and Auto Serial Polling .........ccoooeiviiiiiiiieiiie e, 4-16
CallDACKFUNCHION ....coviiiiieeeeeiie e 4-17
1011 L] 1] Y20 4-17
EVENTMASK ...ttt 4-18
SRQI, RQS, and Auto Serial Polling .........ccooveiviiiiiiiieeie e, 4-19
CallDACKFUNCHION ....coviiiiieeeeeiie e 4-19
Restrictions on Operations in Asynchronous Callbacks....................... 4-20
OPENDEV....ceee e 4-21
ThreadlDCNt ... ..o 4-22
TRIEAAIDCNT ... e 4-22

© National Instruments Corporation iX LabWindows/CVI Standard Libraries



Contents

JLIL L= T 1 o= o P 4-23
THrEAAIDSIA. ... . e 4-25
Chapter 5
RS-232 LIDIAIY oottt 5-1
RS-232 Library FUNCLON OVEIVIEW..........coiiiiiiiiiiiiiiiiie et e e e e e 5-1
The RS-232 Library FUNCHION PanelS..........ccoiiiiiiiiiiciieeeine e 5-1
USING RS-485 ... et 5-3
RePOrtiNg RS-232 EITOIS......cciieeeeiiiiiiiiiieeee e e e e e eeeeeeeeeeaaeaannas s s e e e eeeaaeeeseesessnnnnns 5-3
XModem File Transfer FUNCHONS .........coouiiiiiiiiiiieeiiiiis e 5-3
TroubleShOOtING ......ccoiiiiieee e —————— 5-3
RS-232 Cable INformation ............ccoouuiiiiiiiiiiie e 5-4
[ F= T £ F= 1T o 5-6
Software Handshaking ...........oooeeiiiiiiiiiiiee e 5-6
Hardware Handshaking .............ouvuuiiiiiiiii e 5-7
RS-232 Library FUNCLION REFEIENCE .......oveeiiiiiiiie e 5-8
@4 [0 157> @] 1 o 5-8
COMBIEAK. ... .t e e e e e e a e e e aaae 5-9
(©0] 001 o1 0] i = PP 5-9
(@70 5 1] o USRI 5-11
(@70 0120 | 23/ (USSP 5-12
(7011 0] o I =T 1 1 [P URPTTR 5-12
COM S BIESCAPE. e 5-14
(0] 1 0 1 e ] 1 = PRSPPI 5-15
(0] 0 1VLY o PP 5-16
COMWITBYLE ...ttt e e et e e e e e e e e e e e e eennes 5-17
FIUSNINQ ...eei e e e et e e e e e e e e e e s e e aaa e e eeeeenes 5-18
L (U] T 11 (SRR 5-19
(12 (0f0] 11 1) = PP PPRRUPPTRPPIN 5-19
7= 1101 = o PP 5-20
L= (@ 111 (6 ] T o 5-21
GEtRS232EITOISHING ... i ettt ettt e e e e e e e e e e eeeeeeeenes 5-22
INStAllCOMCAIIDACK........ccee e e e e e e e e 5-22
(@011 1001 o EU TP 5-25
(@] 01=] 0 [@4o] 141 @o] oo PR 5-26
SN ] S YA Al o 5-28
Y= (001 11 ] o 1= S 5-29
SEICTSMOUE ...t e e e et e e e e e et e e e e eeaaes 5-30
1=,/ [ To [ 5-31
XMOAEMCONTIG 1.ttt e e e e e e e e e e eeeeeeeennes 5-31
XMOAEMRECEIVE......euieii et e e e e e e e e e e e e e e eeeeeaennene 5-33
XIMOAEMSENG. ... . e e e e e e e e e e e e e e e 5-34
[ o g @0 T 111 0] o SRR PPURRRR 5-36

LabWindows/CVI Standard Libraries X © National Instruments Corporation



Contents

Chapter 6
D1 R I o] = USSR 6-1
DDE Library FUNCLION OVEIVIEW..........cceeiieiiiiiiiiie e e e e e e eeeeeeeeeseaasanasnsssaseeeeseeaseeenennnnnes 6-1
The DDE Library FUNCHON PanelS.........ccoooiiiiiiiiiiii e 6-1
DDE ClientS @nd SEIVEIS......cccoiiieieeeeeeeiiiee e e e e e e e e e e et e s s s s e e e e eaaaaeeeeees 6-2
The DDE Callback FUNCLION ...........uuuieiiiiiiie e 6-2
DDE LINKS. ..o eiiiiiiei ittt e e e e e e e e e e e e e sttt e e e e e e e e e as 6-4
A DDE Library Example Using Microsoft Excel and LabWindows/CVI....... 6-5
DDE Library FUNCLION REfEIENCE .......uvuiiiiei i 6-6
AdVISEDDEDALAREAAY.........cceieiiiiiiiiiiiiieee ettt e e 6-6
BroadcastDDEDAtaREAAY .........coiiiiiiieeiiiieieeeeee e 6-8
CHENtDDEEXECULE .....vui et e e e s 6-10
CHENIDDEREAU. ........ctiiiiiiiei e et e e e e e e e e s e e e e e e e e e e eeeees 6-10
CHENIDDEWIIEE ....u et e et e e e e e e e e e e aaa e e eeaanes 6-12
CONNECITTODDESEIVET ... eees 6-13
DiSCONNECIFIOMDDESEIVEN .....uuuiiiiiii e 6-15
(T U ] = g o] 5] 11 o PP 6-15
REGISIEIDDESEIVET ....vttiiiiee ettt ettt a e e e e e eaaas 6-16
SEIVEIDDEWTIILE ..ottt e e e e e e e e e e e e e aeaes 6-19
SEtUPDDEHOLLINK ...t e e e e e eeeeaeees 6-20
SetUPDDEWAIMLINK ......ccoiiiiieeeeeiee e e e e e e e e e e e e eeeannnnnes 6-21
TermiNateDDELINK...........uiiie e e aeans 6-22
UNregiStEIDDESEIVEN ....uuiiiii i e e e e e e e e e 6-23
[y o] g @o] oo 111 To] 1SS 6-23
Chapter 7
TP LIDIAIY oottt ettt b ettt saeneene s 7-1
TCP Library FUNCHON OVEIVIEW..........oiiiiiiiiiiiiiiiea ettt a e e e e e eeees 7-1
The TCP Library FUNCtion Panels...........ooooveviiiiiiiiiii e 7-1
TCP CleNntS and SEIVEIS .....ccoii i 7-2
The TCP Callback FUNCLON.......cciiiiiii e 7-2
TCP Library FUNCHON REFEIENCE .....uuueiiiii e e 7-3
(@4 1T o1 i IO =] =T To S 7-3
(1] o WO AV 4 (= TSP 7-4
CONNECTTOTCP SEIVEL ...ttt e e eeans 7-5
DiSCONNECIFIOMTCPSEIVEL . 7-7
(D {oto] g1 T=Tox i IO = 1= o | PSP 7-7
GEtTCPEITOISIIING. ...cciiieeeeeiiittieeee ettt e e e e e e e e e e e e eeeeeaban s 7-8
REGISIEITC P SEIVEN ... .ttt e e e e e e e e e e e e e e eeeeaeannne 7-8
SEIVEITCPREAU ... ... 7-10
Y =T V= o O VY = USRS 7-11
UNFEQIStEITC P SEIVEL ...ttt e e e e e e e e e e eeeeaeeees 7-11
[ o g @0 T 111 0] o RSP PPURRRR 7-12

© National Instruments Corporation Xi LabWindows/CVI Standard Libraries



Contents

Chapter 8
ULHIEY LIDFAIY oottt 8-1

The Utility Library FUNCLION PANEIS..........uuiiiiiiiie e e e e e eeeeeeeanannnns 8-1

Utility Library FUNCLION REEIENCE .......eviieiiieiii e 8-5
(T o PP 8-5
Bre@akPOINT ... e e e e e e e e e eraaaaaa 8-6
ClOSECVIRTE ...ttt e e e ae e 8-6
LS e e a e aaaaan, 8-7
(@] o)V | = 8-7
CVILowLevelSupportDriverLoaded.............cooouiiiiiiiiiiiiiiieeceeeeeeeee 8-8
(D F= =3 1 (PP PPPTRPIN 8-9
DAY ... a e e 8-9
[T =3 1= I | 8-10
DEIETEFIIE ... 8-10
DisableBreakOnNLIDraryErTOrsS ..........eu i eeeee et e e e e e e e e e e eeeeaeanannnes 8-11
DISADIEINTEITUPLS ...t e e e e e e e e e e eeeeeeeees 8-12
DisableTaskSWItCHING..........cooiiiii e e e e e eaanens 8-12
ENableBreakOnLIDraryEITOrS ........uuuuueuiiiiiiiee ettt e e e e eeeeanes 8-15
ENADIEINIEITUPLS ...eeiieee et e e e e e e e e e e e e eaenannne 8-15
ENableTaskSWILCNING ... 8-16
ExecutableHasTerminated................uuiiiiiiiiiie e e e e e e e 8-16
GetBreakOnNLIDraryErTOrS. .. ... i 8-17
GetBreakOnNProteCHONEITOIS ......vviiiiiiiiie et e e e e e e e e e eeeeaeenns 8-18
(€T OV AV =T <o ] o PP 8-18
€= (@AW ] (=T o] 1 F= U1 {0 o o 8-19
€T D | S UUUPPPPPPTRTPRRRR 8-20
7= (D 1Y S EEPPURRRR 8-20
GetEXxternalModuleAddr ............ 8-21
C 7= 1 1= A 11 USSP 8-23
GELFIIEDALE ...t ettt a e e e e 8-24
GOIFIIBSIZE .t e e e e ———— 8-25
(€T 1 Lo T 0T PP 8-26
= 1651 | = S 8-27
GetFUIIPatNFIOMPIOJECT ... .. i 8-29
GetINTEITUPTSTATE .....ccevieeeei e et e e e e e eaans 8-30
LT | (=TT PUPPPTTRRR 8-30
(€= 111Y [ To [ 1] 1= I | S 8-31
GEINEXIFIIE ... e 8-33
GetPersiStenNtVariable...........cooiiiiiieece e a e 8-33
(€T (o] [=Tod 1 | PP 8-34
(€127 5] (0 [0 = o PRSP 8-35
GetStAIOWINAOWOPLIONS ....vviiiiieiieee ettt 8-35
GetStdIOWINAOWPOSITION........uueiiiiseeeeeeeeee e e e e e e e e e e e e 8-36
GetSIAIOWINUOWSIZE ... e e e e 8-37
GetStdioWIiNdoWVISIDIlitY ..........ovveeeiiicie e e 8-37

LabWindows/CVI Standard Libraries Xii © National Instruments Corporation



Contents

GtSYSIEMDALE......ceeeiciei e 8-38
GtSYSIEMTIME ... e e e e e e e et e e e s 8-39
GetWindowDisplaySetting............evuuuuiiiiiiiiie e e e e e e e e e e e eeeaannns 8-39
INIECVIRTE ..ot e e e e e e et e e e et e e s saa e e asaaearens 8-40
1] PP PURUR 8-42
] 0] OO URPPPPPPTTTPTRTRRR 8-42
INStanNdaloNEEXECULADIE .......... i 8-43
KEYHIT ...t e e e e e e e e e 8-43
LAUNCNEXECULADIE ... ..cee e eaas 8-44
LaUNChEXECULADIEEX.......ccouiiiii e e 8-47
LOAdEXtErnalMOAUIE. ...........uiiieie e ea e ees 8-49
LOAdEXtErnalMOAUIEEX ..........cvuuiiiiiiii e 8-52
Y == T T 8-54
MaKEPAtNNAMIE ... e e e e e eaas 8-55
(011 | { o TR PP UPPTRPPI 8-56
(010110 PP PPTPPPPTRPPIN 8-56
ReadFromPhYSICAIMEMOIY ........iiiiiiie e e e 8-57
ReadFromPhySICAIMEMOIYEX .....cocoiiiiiiiiiiieeeeeiie e 8-58
ReleaseEXterNalMOAUIE .........coovuuiiiie e 8-59
RENAMEBFIIE. ... et e e e e eaaas 8-60
RetireExecutableHaNdIE............cuuiiiiiii e 8-61
RoundRealTONEAreStINtEQEN .........uuieeiiiiiie et eeeeeeees 8-61
RUNEXIEINAIMOAUIE ... e e 8-62
SetBreakOnNLIDraryErrOrs .. ..o 8-63
SetBreakOnNProtECtIONEITOIS ... .ccuvu i 8-64
ST 1 51 8-66
Y= 1 Y= TR 8-66
Y=Y 1 (S AN 1 £ 8-67
Y= ] (=T = (R 8-68
Y=Y | TS 1T = 8-70
SetPersisStentVariable ...........ooieuiii e 8-71
Y=Y ] (0 [0 o o SRR 8-71
SetStAdiIOWINAOWOPLIONS........ueiiiiiieee e e e e e e e e e e s 8-72
SetStAIOWINAOWPOSITION ... e 8-74
SetSIAIOWINAOWSIZE.... .t e e e e e eaaas 8-75
SetStAdioOWINAOWVISIDIILY .....eeeeiiiee s 8-76
SEISYSIEMDALE .....eiiiiiie e 8-76
SEESYSIEMTIME ..ot e et e bbb s e e e e e e e e e e e eeeeeeennnnes 8-77
0 11 = 11 o PP 8-77
SYNCWWAIL ...ttt e e ettt e et e ettt s e e e e e e e e e e e eeeeeeeennnnnnn 8-79
YA (=11 1= o 1 8-79
TermiNAEEXECULADIE ..........cie e e 8-82
I 1= 8-83
B LTS3 | T 8-83
TruNCaAtEREAINUMDET .. .ceiecieee e e e 8-84

© National Instruments Corporation Xiii LabWindows/CVI Standard Libraries



Contents

UnIoadEXternalMOUIE ............oooiiiiiiiiii e 8-84
WHteTOPRYSICAIMEMOIY ... 8-85
Wrte TOPhYSICAIMEMOIYEX........uuiiiiiieei e e e e e e e e e 8-86
Chapter 9
X Property LIDFAIY ..ot 9-1
X Property LiDrary OVEIVIEW........uuciiii i e eeeeeeeeeeeeie s e s s e e e e e e e e e e e e e e e e e e aaeaaaees 9-1
The X Property Library FUNCION PaNelS ... 9-1
X Interclient COMMUNICATION .......uuuieiiiiiiiiieeee e 9-2
Property Handles and TYPES ....uuuuuuiiiiiiiieee et 9-3
Communicating with Local AppliCationS ........cccoevieeeeiiiiiieeecere e, 9-3
The HIdden WINAOW .......coouiiiiiiiiiee e 9-3
Property Callback FUNCLIONS .......ciiiiiiie e 9-4
EITOr COUBS ... e e e e et as 9-4
Using the Library Outside of LabWindows/CVI ...........cccceeeeiiiiiiiiieeieeiiis 9-7
X Property Library FUNCION REfEIreNCe........ccovviiiiiiiiiiee e 9-7
(@f0] gl T=Todl e Duq B 1S o] - |V 9-7
CrEate X PIOPEITY ... . ettt e et e e e ettt e e e e e e raa e e e eeene 9-9
(OF (L= 10=) A (0] o1 Y/ o PP PP 9-10
DESIIOY XPIOPEITY ... ettt e e et e e e e e e era e eees 9-12
DS 10)Y0 ol (0] 01 1Y/ 01T PP PTTRUPPRTRPPIN 9-13
DiSCONNECtFrOMXDISPIAY ....ceveeiiiiiiiiiiiie et eeeaeeees 9-14
(€T 0 (0] o] =1 (o] 2571 ] o [ 9-15
GetXPropertyNAIME ... e e e e e e e eeaaans 9-15
(1) D e (0] o1 AV 1Y/ 1P PP 9-16
GetXPropTYPENEAIME ......u e e e e e e e e eae e e e eneeanns 9-17
(€12 0 (0] T 1Y =35 4= T 9-18
GetXPIOPTYPEUNIL ...ttt e e e e e e e e 9-19
GetXWINAOWPTOPEIYITEIM ...t e e e e e e e e e e e e eeeeanennne 9-20
GetXWINdOWPTIOPEIrYValUE .........ueiiiiieeeeeee e 9-22
InstallXPropertyCallDack ... 9-25
PUtXWINAOWPTOPEITYITEIM ...t e e aeaneees 9-27
PUtXWIiNAOWPTOPErtyValUe..........uuuuiiiiiiii et e e e e e e e e 9-29
ReMOVEXWINAOWPTOPEITY ....coeiieiiiiiiiiieee ettt e e e e e e e eeeeeenes 9-31
UninstallXPropertyCallback ..............oovveuiiiiiiiiiii e 9-33
Chapter 10
Easy 1/0O for DAQ LIDIrary ...t 10-1
Easy 1/0 for DAQ Library FUNCLION OVEIVIEW.........cccceiiiiiiieeeeiiiiiiee e e e e e e eeeeeeeanens 10-1
Advantages of Using the Easy I/O for DAQ Library ..., 10-1
Limitations of Using the Easy I/O for DAQ Library ..........cccccovvvvvvviiiiviccennnn. 10-2
Easy 1/0 for DAQ Library Function Panels..........cccoooovviiiiiiiiiiiiiiiiiceee e 10-2
DEVICE NUMDEIS ...ttt 10-4
Channel String for Analog Input FUNCLIONS ...........cooviiiiiiiiiiiiiiee e 10-4
(@] a0 F=T g o IR 1 1 0o 1 T 10-6

LabWindows/CVI Standard Libraries Xiv © National Instruments Corporation



Channel String for Analog Output FUNCLIONS .........uviiiiiiiiiiieeecececeeee, 10-7
Valid Counters for the Counter/Timer FUNCHONS ..........ueiiiiniinieiiiiiieeeeiiiiiinaes 10-7
Easy 1/0 for DAQ FUNCtiON REfEIENCE ......ccccee e 10-8
AlAcquireTriggeredWavefOrms ..........oooooiiiiiiiiiiiiiiii e 10-8
AIACQUIrEWAVETOIMS .. e e e e e e e e e e 10-13
AICNECKACQUISITION.....eiiiiiiiiiiie et e e eas 10-15
AICIEATACHUISITION v e ee e et e e e e e e e e e e e e e ee e e e e e e eaaeeeeees 10-15
AIREAJACUISTEION ...ttt et a e e e e e e e e eeas 10-16
AISaMPIECNANNEL ......eeeiii e 10-17
AlSAMPIECNANNEIS ... 10-18
AISTArTACQUISITION ... e e e e e e e e s e e e e e e e e e e eeeeeeeensennnns 10-19
AOCIEANWAVETOIMS ...t e e e e e e e 10-20
AOGENEratEWaVETOIMS ... 10-21
AOUPAAtECNANNEL ... 10-22
F @18 oL Fo 1 (=104 o =T ] 1= S PPRR 10-23
ContiNUOUSPUISEGENCONTIG ...vuuiiiiiieeee e 10-24
CounterEventOrTIMeCONTIQ.......uuueiiiiee e e e e e e e 10-26
CounterMeasUrEeFrEQUENCY .........ocuuuiiiiiiiiiiee et e e e 10-29
COUNTEIREAM. ...ttt e e e e e e e e e eeeas 10-32
COUNTEISTAIT ...t e et e e e e e e e e e e e e e e e e e e e e nrna e eeas 10-33
(01010 01 (=] 2] (0] o PP UPPTRPPIN 10-34
DelayedPulseGenCoNfig .......ooo oo 10-34
FrequencyDiIVIAerCONTIQ........vviieeeiiiiiies e e e e e e e e e e e e eeeaennes 10-37
GetAILIMItSOfChANNEl........ueeeiie s 10-40
GetChannElNAICES ..........uuiiiiiiiiieiiee e 10-41
GetChannelNameFromINAeX .........coooiviiiiiiiiiiii e 10-42
GEtDAQEITOISIIING ..o e eeeeeeeeeetie s e e e e e e e e et et r s e e e e e e e e e e e eeeeeneeennnnes 10-43
GEtNUMCRNANNEIS .....eiiiiie e e e e e 10-44
GroupBYCRANNEL.........cco o 10-44
[COUNTEICONTION ... 10-45
PlotLastAIWavefOrMSPOPUD .....ueiiiiie e e e e e e 10-47
PulseWidthOrPeriodMeasCoNTig.........uuuuueiiiiiiieee et 10-48
ReadFromDIigitalline.............evuuiiiiiiiiiee e e e e e e e e e e 10-49
ReadFromDIgitalPOrt ...........uuueiiiieiie e 10-51
SetEasylOMUltitaskingMOAE ............uuuueiiiiiiie e e e e e e e eeeeeeees 10-53
WIHEETODIGItAILING ...t 10-53
WIHEETODIGItAIPOIT.... .. e e e e e e e e e e e e eeeeaeannne 10-55
[T o] g @] g To [11T0] o F SO UPPPPPPPRPPPRRPRR 10-57
Appendix A
Customer COMMUNICALION.........c.ciiiiiiiiee ettt A-1
GHUOSSAIY......ceeceecee ettt bbbttt ae bttt naene e rens G-1
INAEX ..ttt a et b ettt re b ettt e s neeae e I-1

Contents

© National Instruments Corporation XV LabWindows/CVI Standard Libraries



Contents

Table 1-1.
Table 1-2.

Table 2-1.

Table 3-1.
Table 3-2.

Table 4-1.

Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.

Table 6-1.
Table 6-2.
Table 6-3.

Table 7-1.
Table 7-2.
Table 7-3.

Table 8-1.

Table 9-1.
Table 9-2.
Table 9-3.
Table 9-4.

Table 10-1.
Table 10-2.
Table 10-3.
Table 10-4.
Table 10-5.

Tables
ANSI C Standard Library ClaSSES .........uuuiiiiiiiee it eeeeeeeeenanans 1-1
C Locale Information ValUES...........cooiiiiiiiiiiiiiiiiieeeeeeeee e 1-3
The Formatting and 1/0O Library FUNCLION Tree..........cuvvvvvvivieiiiiiiiieeeeeeeeeeeeeeeeeeeee 2-2
The Analysis Library FUNCLON TreEe.......ccocvviiiiiiiiiiiiiie e e e 3-1
Analysis Library Error COUES .......coooiiiiiiiiieiiiieie et 3-37
The GPIB Functions Library FUNCLION Tree..........ouuuuiuiiiiiiiiieieeeeeeeeeeeeiii 4-2
The RS-232 Library FUNCHON TrEe.....coii it 5-1
PC Cable Configuration...........cooiiiiiiiiiiiieiee e e e e e e e e e e e eeeeeannnnes 5-4
DTE to DCE Cable Configuration............c.ooueiiiiiiiiiiiieeeeeeeeeeeeeeeeeivi e 5-5
PC to DTE Cable Configuration ..............ueiiiiiiieeeceeeeeeeeeeiiiiss e e e e e e e e e eeeeeeeannnens 5-5
Bit Definitions for the GetComStat FUNCHON ...........eiiiiiiiieiieiiiee e 5-20
RS-232 Library ErrOr COUGS......ciiiiiiie et e e e e e e e e e 5-36
DDE Library FUNCLON TrEE.......ccciiiiieieeeeiiii et e et s e e e e e e e e aaeeees 6-1
DDE Transaction TYPES (XTYPE) ....ceiiiieeiiiiiruuiiiaiaaeeeeeeeeeeeeeeeeeessssnsnas e e e e aeeaaeeeeees 6-4
DDE Library ErrOr COUBS......cceeeiiiiiiieeeiiiiiiete s e e e e e e e e e e e et s s e e e e e e e e aaeeeeennnnens 6-24
The TCP Library FUNCHON TIEE .....cccoiiiiieeeeeeeie et e e e 7-1
TCP Transaction TYPES (XTYPE)...ceeeueuuuuiuueiiiiaaeeaeeeeeeeeeeeeeeaetrssnnaaa e e e e e eeaaeeeeeeenenns 7-3
TCP Library Error COUES......cccciiiieieeeiiii ittt e e e e e e e e e e e eeeeeanennnnns 7-12
The Utility Library FUNCHON TIEE .....uueiii i e e e e 8-1
The X Property Library FUNCLON TreE ......cccovvviiiieiiiiiiiie e 9-2
Predefined Property TYPES. ... oot e e e e 9-3
X Property Library Error Types and DeSCrPtiONS............uvueeeiiiiiiiiiiiieeeeeeeeeeeaeeee 9-5
Status Values for InstallXPropertyCallback .............ooooiiiiiiii e, 9-26
Easy 1/0 for DAQ FUNCLON TrEE.......ouuuiiiiiiiieee ettt eeeeeeeeeees 10-2
Valid COUNTEIS ...ttt et e e e e e e e e e e e e s e e e s et b n e e e e e eeees 10-7
Definition of AmM 9513: COUNEr +1 ...ccooiiiiiiiiiiiiieeeiiie e 10-28
Yo = o= oL @010 =] £ 10-30
Easy 1/O for DAQ Error COUES........cooiiiiiiiiiiiiiiie et 10-57

LabWindows/CVI Standard Libraries XVi © National Instruments Corporation



About This Manual

TheLabWindows/CVI Standard Libraries Reference Mamaaitains information about the
LabWindows/CVI standard libraries—the Graphics Library, the Analysis Library, the Formatting
and I/O Library, the GPIB Library, the GPIB-488.2 Library, the RS-232 Library, the Utility
Library, and the system libraries. ThabWindows/CVI Standard Libraries Reference Manual

is intended for use by LabWindows/CVI users who have already complet€etireg Started

with LabWindows/CViutorial and are familiar with theabWindows/CVI User ManualTo use

this manual effectively, you should be familiar with LabWindows/CVI and DOS fundamentals.

Organization of This Manual

ThelLabWindows/CVI Standard Libraries Reference Mamuakrganized as follows.

Chapter 1ANSI C Library describes the ANSI C Standard Library as implemented in
LabWindows/CVI1.

Chapter 2Formatting and I/O Librarydescribes the functions in the LabWindows/CVI
Formatting and 1/O Library, and contains many examples of how to use them. The

Formatting and 1/O Library contains functions that input and output data to files and
manipulate the format of data in a program.

Chapter 3Analysis Library describes the functions in the LabWindows/CVI Analysis
Library. TheAnalysis Library Function Overviesection contains general information about
the Analysis Library functions and panels. Amalysis Library Function Referensection
contains an alphabetical list of the function descriptions.

Chapter 4GPIB/GPIB-488.2 Librarydescribes the NI-488 and NI-488.2 functions in the
LabWindows/CVI GPIB Library, as well as the Device Manager functions in
LabWindows/CVI. TheGPIB Library Function Overviewsection contains general

information about the GPIB Library functions and panels, the GPIB DLL, and guidelines
and restrictions you should know when using the GPIB Library. Detailed descriptions of the
NI-488 and NI-488.2 functions can be found in your NI-488.2 function reference manual.
The GPIB Function Referencgection contains an alphabetical list of descriptions for the
Device Manager functions, the callback installation functions, and the functions for returning
the thread-specific status variables.

© National Instruments Corporation XVii LabWindows/CVI Standard Libraries



About This Manual

» Chapter 5RS-232 Librarydescribes the functions in the LabWindows/CVI RS-232 Library.
TheRS-232 Library Function Overviesection contains general information about the RS-232
Library functions and panels. TRS-232 Library Function Referensection contains an
alphabetical list of function descriptions.

» Chapter 6DDE Library, describes the functions in the LabWindows/CVI DDE (Dynamic
Data Exchange) Library. THeDE Library Function Overviewsection contains general
information about the DDE Library functions and panels. DBé& Library Function
Referencesection contains an alphabetical list of function descriptions. This library is
available for LabWindows/CVI for Microsoft Windows only.

* Chapter 7TCP Library, describes the functions in the LabWindows/CVI TCP (Transmission
Control Protocol) Library. Th&CP Library Function Overviewection contains general
information about the TCP Library functions and panels. Ti®e Library Function
Referencesection contains an alphabetical list of function descriptions.

» Chapter 8Utility Library, describes the functions in the LabWindows/CVI Utility Library.
The Utility Library contains functions that do not fit into any of the other LabWindows/CVI
libraries. TheUtility Library Function Panelssection contains general information about the
Utility Library functions and panels. Thdtility Library Function Referencsection contains
an alphabetical list of function descriptions.

» Chapter 9X Property Library describes the functions in the Lab/Windows CVI X Property
Library. The X Property Library contains functions that read and write properties to and from
X Windows. TheX Property Library Overvievgection contains general information about
the X Property Library functions and panels. Theroperty Library Function Reference
section contains an alphabetical list of function descriptions.

» Chapter 10Easy I/O for DAQ Librarydescribes the functions in the Easy I/O for DAQ
Library. TheEasy I/O for DAQ Library Function Overviesection contains general
information about the functions, and guidelines and restrictions you should know when using
the Easy I/O for DAQ Library. Theasy I/O for DAQ Library Function Referensection
contains an alphabetical list of function descriptions.

* Appendix A,Customer Communicatioeontains forms you can use to request help from
National Instruments or to comment on our products and manuals.

* TheGlossarycontains an alphabetical list and description of terms used in this manual,
including abbreviations, acronyms, metric prefixes, mnemonics, and symbols.

* Thelndexcontains an alphabetical list of key terms and topics in this manual, including the
page where you can find each one.

LabWindows/CVI Standard Libraries XViii © National Instruments Corporation



About This Manual

Conventions Used in This Manual

The following conventions are used in this manual:

bold

italic

bold italic

monospace

italic monospace

»

paths

Bold text denotes a parameter, menu item, return value, function
panel item, or dialog box button or option.

Italic text denotes emphasis, a cross reference, or an introduction to
a key concept.

Bold italic text denotes a note, caution, or warning.

Text in this font denotes text or characters that you should literally
enter from the keyboard. Sections of code, programming
examples, and syntax examples also appear in this font. This font
also is used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, variables,
filenames, and extensions, and for statements and comments taken
from program code.

Italic text in this font denotes that you must supply the appropriate
words or values in the place of these items.

Angle brackets enclose the name of a key. A hyphen between two
or more key names enclosed in angle brackets denotes that you
should simultaneously press the named keys—for example,
<Ctrl-Alt-Delete>.

The» symbol leads you through nested menu items and dialog
box options to a final action. The sequence

File » Page Setup » Options » Substitute Fonts
directs you to pull down thieile menu, select thBage Setup
item, selecOptions, and finally select th8ubstitute Fonts
option from the last dialog box.

Paths in this manual are denoted using backslashes (\) to

separate drive names, directories, and files, as in
drivename\dirlname\dir2Zname\myfile

IEEE 488, IEEE 488 and IEEE 488.2 refer to the ANSI/IEEE Standard 488.1-1987, IEEE 488.2
and the ANSI/IEEE Standard 488.2-1992, respectively, which define the GPIB.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and terms are listed in the

Glossary

© National Instruments Corporation XiX LabWindows/CVI Standard Libraries



About This Manual

The LabWindows/CVI Documentation Set

For a detailed discussion of the best way to use the LabWindows/CVI documentation set, see the
sectionUsing the LabWindows/CVI Documentation &eChapter 1introduction to
LabWindows/CVbf Getting Started with LabWindows/CVI

Related Documentation

The following documents contain information that you may find helpful as you read this manual:

* ANSI/IEEE Standard 488.1-198EEE Standard Digital Interface for Programmable
Instrumentation

« ANSI/IEEE Standard 488.2-199EEE Standard Codes, Formats, Protocols, and Common
Commands

* Harbison, Samuel P. and Guy L. Steele,(JrA Reference ManuaEnglewood Cliffs, NJ:
Prentice-Hall, Inc., 1995.

* Nye, Adrian. Xlib Programming Manual.Sebastopol, California: O'Reilly & Associates,
1994. ISBN 0-937175-27-7

* Gettys, James and Robert W. Scheifl§libb—C Language X Interface, MIT X Consortium
Standard Cambridge, Massachussetts: X Consortium, 1994. ISBN (none)

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We are
interested in the applications you develop with our products, and we want to help if you have
problems with them. To make it easy for you to contact us, this manual contains comment and
technical support forms for you to complete. These forms are in the appeuasiigmer
Communicationat the end of this manual.

LabWindows/CVI Standard Libraries XX © National Instruments Corporation



Chapter 1
ANSI C Library

This chapter describes the ANSI C Standard Library as implemented in LabWindows/CVI.

Note: When you link your executable or DLL with an external compiler, you are using the
ANSI C library of the external compiler.

Table 1-1. ANSI C Standard Library Classes

Class

Header File

Character Handling
Character Testing
Character Case Mapping

Date and Time
Time Operations
Time Conversion
Time Formatting

Localization

Mathematics
Trigonometric Functions
Hyperbolic Functions
Exp and Log Functions
Power Functions

Nonlocal Jumping

Signal Handling

Input/Output
Open/Close
Read/Write/Flush
Line Input/Output
Character Input/Output
Formatted Input/Output
Buffer Control
File Positioning
File System Operations
Error Handling

<ctype.h>

<time.h>

<locale.h>
<math.h>

<setjmp.h>
<signal.h>
<stdio.h>

© National Instruments Corporation 1-1

(continues)

LabWindows/CVI Standard Libraries



ANSI C Library Chapter 1

Table 1-1. ANSI C Standard Library Classes (Continued)

General Utilities <stdlib.h>
String to Arithmetic Expressior
Random Number Generation
Memory Management
Searching and Sorting
Integer Arithmetic
Multibyte Character Sets
Program Termination
Environment

String Handling <string.h>
Byte Operations
String Operations
String Searching
Collation Functions
Miscellaneous

Low-Level I/O Functions

Under UNIX you can use the low-level I/O functions (sucb@en , sopen , read , and

write ) from the system library by including system header files in your program. Under
Windows you can use these functions by inclugwignclude\ansi\lowlvlio.h in
your program. No function panels are provided for these functions.

Standard Language Additions

LabWindows/CVI does not support extended character sets that require more than 8 bits per
character. As aresult, the wide character typlear _t is identical to the single-bythar

type. LabWindows/CVI accepts wide character constants specified withpitegix (as in

L‘ab’ ), but only the first character is significant. Furthermore, library functions that use the
wchar_t type operate only on 8-bit characters.

LabWindows/CVI supports variable argument functions using the ANSI C macros, with one
exception: none of the unspecified arguments can have a struct type. As a result, the macro
va_arg (ap,type ) should never be used whigqpe is a structure.

Note: LabWindows/CVI will not warn you about this error.

Under UNIX, LabWindows/CVI implements only the C locale as defined by the ANSI C
standard. The native locale, which is specified by the empty string, ", is also the C locale. The
following table shows the locale information values for the C locale.

LabWindows/CVI Standard Libraries 1-2 © National Instruments Corporation



Chapter 1

ANSI C Library

Table 1-2. C Locale Information Values

(2]

Name Type | Clocale Valug Description

decimal_point ar * Decimal point character for non-monetary
values.

thousands_sep har * Non-monetary digit group separator character
or characters.

grouping har * Non-monetary digit groupings.

int_curr_symbol r* The three-character international currency
symbol, plus the character used to separate the
international symbol from the monetary
quantity.

currency_symbol ar * The local currency symbol for the current
locale.

mon_decimal_point ar * Decimal point character for monetary valuegs.

mon_thousands_sep  ghar * Monetary digit group separator character o
characters.

mon_grouping har * Monetary digit groupings.

positive_sign r* Sign character or characters for non-negatiyve
monetary quantities.

negative_sign ar * Sign character or characters for negative
monetary quantities.

int_frac_digits char CHAR_MAX Digits appear to the right of the decimal point
for international monetary formats.

frac_digits r HAR_MAX Digits appear to the right of the decimal point
for other than international monetary formats.

p_cs_precedes har CHAR_MAX 1 if currency_symbol  precedes non-
negative monetary values; O if it follows.

p_sep_by_space har CHAR_MAX 1if currency_symbol is separated from
non-negative monetary values by a space;
else 0.

n_cs_precedes har CHAR_MAX Like p_cs_precedes , for negative values.

n_sep_by_space har CHAR_MAX Like p_sep_by space , for negative
values.

p_sign_posn har CHAR_MAX The positioning opositive_sign for a
non-negative monetary quantity, then its
currency_symbol

n_sign_posn har CHAR_MAX The positioning ohegative_sign for a

negative monetary quantity, then its
currency_symbol

© National Instruments Corporation

1-3 LabWindows/CVI Standard Libraries



ANSI C Library Chapter 1

Under Windows, LabWindows/CVI implements the default locale by using the appropriate items
from thelntl  section of th&VIN.INI file and appropriate Microsoft Windows functions.

Anything not mentioned here has the same behavior under the default locale as specified in the C
locale.

For theLC_NUMERIQocale:

» decimal_point maps to the value eDecimal .

* thousands_sep maps to the value afThousand .

For theLC_MONETARMcale:

* currency_symbol maps to the value aiCurrency

* mon_decimal_point maps to the value eDecimal .
* mon_thousands_sep maps to the value afThousand .
» frac_digits maps to the value aCurrDigits

* int_frac_digits maps to the value aCurrDigits

e p_cs precedes andn_cs precedes are setto 1 iiCurrency equals O or 2,
otherwise they are set to 0.

* p_sep by space andn_sep by space aresettoOiiCurrency equalsOorl,
otherwise they are set to 0.

e p_sign_posn andn_sign_posn are determined by the valueitegCurr as follows:

Value of
Value of iNegCurr | p_sign_posn/n_sign_posn
0,4 0
1,5,8,9 1
3,7,10 2
6 3
2 4

For theLC_CTYPElocale:
* isalnum maps to the Windows functiasCharAlphaNumeric

* isalpha maps to the Windows functiorsCharAlpha

LabWindows/CVI Standard Libraries 1-4 © National Instruments Corporation



Chapter 1 ANSI C Library

islower  maps to the Windows functioeCharLower

* isupper maps to the Windows functiosCharUpper

tolower  maps to the Windows functigdnsiLower .

toupper maps to the Windows functicgdinsiUpper .
For theLC_TIME locale:

o strftime uses the following items from tW&IN.INI file for the appropriate format
specifierssTime , iTime ,s1159,s2359 ,iTLZero ,sShortDate , andsLongDate .

* The names of the weekdays and the names of the months match the language version of
LabWindows/CVI. That is, a German version of LabWindows/CVI would use the German
names of months and days.

For theLC _COLLATHocale:
» streoll maps to the Windows functidstrcmp

Because LabWindows/CVI does not support extended character sets that require more than a
byte per character, a multibyte character in LabWindows/CVI is actually a single byte character.
Likewise, a multibyte sequence is a sequence of single byte characters. Because a multibyte
character is the same as a wide character, the conversion functions described in these sections do
little more than return their inputs as outputs.

Character Processing

LabWindows/CVI implements all the ANSI C character processing facilities as both macros and
functions. The macros are disabled when the LabWindows/CVI debugging level is set to
Standard or Extended, so that user protection is available for the arguments to the functions.

String Processing

Under UNIX, thestrcoll function is equivalent tetrcmp and its behavior is not affected by
theLC_COLLATHocale. Under Windowsstrcoll is equivalent to the Windows function
Istrcmp . For both platforms, the functi@trxfrm  performs a string copy usirsyncpy

and returns the length of its second argument.

© National Instruments Corporation 1-5 LabWindows/CVI Standard Libraries



ANSI C Library Chapter 1

Input/Output Facilities

The functionrename fails if the target file already exists. Under Microsoft Windorgsame
fails if the source and target files are on different disk drives. Under UNibgme fails if the
source and target files are on different file systems.

The functiondgetpos andftell  seterrno to EFILPOS on error.

errno Set by File 1/O Functions

Theerrno global variable is set to indicate specific error conditions by the ANSI C file 1/0O
functions and the low-level I/O functions. The possible valuesrab are declared in
cvilinclude\ansi\errno.h. There is a base set of values that is common to all
platforms. There are additional values that are specific to particular platforms.

Under Windows 3.1lerrno  gives very limited information. If the operating system returns an
error,errno is set tcelO.

Under Windows 95 and NT, you can call the Windows SB#{LastError  function to
obtain system specific information wherrno is set to one of the following values:

EACCES
EBADF
EIO
ENOENT
ENOSPC

Mathematical Functions

The macrdHUGE_VAldefined in the headenath.h as well as the macréd.T_EPSILON,
FLT_MAX FLT_MIN, DBL_EPSILON DBL_MAXDBL_MIN, LDBL_EPSILON LDBL_MAX
andDBL_MIN defined in the headéoat.h all refer to variables. Consequently, these
macros cannot be used in places where constant expressions are required, such as in global
initializations.

Time and Date Functions

Functiontime returns the number of seconds since January 1, 1990.

Functionsmktime andlocaltime  require time zone information to produce correct results.
LabWindows/CVI obtains time zone information from the environment variable ndatlit

exists. The value of this variable should have the foA#e&[S]HH[:MM]BBB , where optional
items are in square brackets.

LabWindows/CVI Standard Libraries 1-6 © National Instruments Corporation



Chapter 1 ANSI C Library

The AAAandBBBfields specify the names of the standard and daylight savings time zones,
respectively (such as EST for Eastern Standard Time and EDT for Eastern Daylight Time). The
optional sign fieldS indicates whether the local time zone is to the wgso( to the east() of

UTC (Greenwich Mean Time). The hour fieldH and the optional minutes fieldMM) specify

the number of hours and minutes from UTC. As an example, the BBIRGSEDTspecifies the

time zone information for the eastern part of the United States.

The functionggmtime , localtime , andmktime make corrections for daylight savings time
(DST). LabWindows/CVI uses a set of rules for determining when daylight savings time begins
and ends. A string in the messagesdilensgs.txt in the LabWindows/CVbin directory
specifies these rules. The following is the default value of this string.

":(1986)040102+0:110102-0:(1967)040102-0:110102-0"

This states that for the years from 1986 to the present, DST begins at 2:00 a.m. on the first
Sunday in April, and ends at 2:00 a.m. on the last Sunday in October. For the years from 1967 to
1985, DST begins at 2:00 a.m. on the last Sunday in March, and ends at 2:00 a.m. on the last
Sunday in October. You can change the way LabWindows/CVI determines DST by changing
this string in theevimsgs.txt file. Thecountmsg.exe program must be executed after
changing the text file. You should execute the following line.

countmsg cvimsgs.txt

Control Functions

Theassert macro defined by LabWindows/CVI does not print diagnostics to the standard
error stream when the debugging level is anything other than None. Instead, when the value of
its argument evaluates to zero, LabWindows/CVI will display a dialog box with a message
containing the file name, line number, and expression that caused the assert to fail.

Under UNIX,system passes the specified command to the Bourne sellgs input, as if the
current process was performingvait(2V) system call and was waiting until the shell
terminated. Callbacks are not called while the command is executing.

Under Windows, the executable can be either an MS DOS or Microsoft Windows executable,
including*.exe ,*.com ,*bat ,and*.pif files. The function does not return until the
command terminates, and user keyboard and mouse events are ignored until the command exits.
Callbacks for asynchronous events, such as idle events, Windows messages, and VXI interrupts,
PostDeferredCall calls, and DAQ events are called while the command is executing. If

you need to execute a command built cwonmand.com such agopy , dir , and others, you

can callsystem with the commandommand.com /C DosCommand args , where
DosCommandis the shell command you would like executed. Refer to your DOS

documentation for further help witommand.com. DOS executablesgxe , .com, and

.bat files) use the settings irdefault.pif (in your Windows directory) when they are

running. You can change their priority, display options, and more by eddafgult.pif

© National Instruments Corporation 1-7 LabWindows/CVI Standard Libraries



ANSI C Library Chapter 1

or by creating anothepif file. Refer to your Microsoft Windows documentation for help on
creating and editingpif  files.

If the function is passed a null pointer, LabWindows/CVI returns a non zero value if a command
processor is available. Under UNIX, if the argument is not a null pointer, the program returns a
zero. Under Microsoft Windows, if the argument is not a null pointer, the program returns zero

if the program was successfully started, otherwise it returns one of the following error codes.

-1 System was out of memory, executable file was corrupt, or relocations were invalid.
-3 File was not found.
-4 Path was not found.

-6 Attempt was made to dynamically link to a task, or there was a sharing or network
protection error.

-7 Library required separate data segments for each task.
-9 There was insufficient memory to start the application.
-11 Windows version was incorrect.

-12 Executable file was invalid. Either it was not a Windows application or there was an error
in the.EXE image.

-13 Application was designed for a different operating system.

-14 Application was designed for MS-DOS 4.0.

-15 Type of executable file was unknown.

-16 Attempt made to load a real-mode application (developed for an earlier Windows version.)

-17 Attempt was made to load a second instance of an executable file containing multiple data
segments that were not marked read-only.

-20 Attempt was made to load a compressed executable file. The file must be decompressed
before it can be loaded.

-21 Dynamic-link library (DLL) file was invalid. One of the DLLs required to run this
application was corrupt.

-22 Application requires Microsoft Windows 32-bit extensions.
-23 Could not findtoolhelp.dll ortoolhelp.dll IS corrupted.
-24 Could not allocate @etProcUserDefinedHandle

Theexit function does not actually flush and close the open streams. LabWindows/CVI leaves
files open so that they may be used from within the Interactive Window after execution of the
project terminates. Th@lose Libraries menu option under tHRun menu performs this library
cleanup. This library cleanup is also performed when you restart execution of the project by
selectingRun Project from theRun menu. The argument passed to funcégit is not used

by the LabWindows/CVI environment. Under UNIX, standalone executables created by
LabWindows/CVI return the value of the argument passed texithe function.

LabWindows/CVI Standard Libraries 1-8 © National Instruments Corporation



Chapter 1 ANSI C Library

The UNIX version of LabWindows/CVI works with all the signals supported by UNIX in
addition to the ANSI C signals.

ANSI C Library Function Reference

For ANSI C function descriptions, consult a reference work such AsReference Manual

which is listed in thd&kelated Documentatiosection ofAbout This ManualAlternatively, you

can use LabWindows/CVI function panel help. The following function description is provided
because it is an extension of the ANSI C function set.

fdopen
FILE * fp =fdopen(int fileHandle, char* mode);
Note: This function is available only in the Windows version of LabWindows/CVI.

Purpose

You can use this function to obtain a pointer to a buffered 1/O stream from a file handle returned
by one of the following functions.

open ( low-level I/O)
sopen ( low-level 1/0)

You can use the return value just as if you had obtained itflspen .

(Although this function is not in the ANSI standard, it is included in this library because it
returns a pointer to a buffered 1/O stream.)

Parameters
Input | fileHandle integer | File handle returned lopen orsopen .
mode string Specifies the read/write, binary/text, and append modes

Return Value

fp FILE* | Pointer to a buffered 1/O file stream.

Return Codes

NULL (0) Failure. More specific information is grro .

© National Instruments Corporation 1-9 LabWindows/CVI Standard Libraries



ANSI C Library Chapter 1

Parameter Discussion
modeis the same as thmode parameter téopen .

You should use modevalue that is consistent with the mode in which you originally opened the
file. If you use write capabilities that were not enabled when the file handle was originally
opened, the call tidopen succeeds, but any attempt to write fails. For instance, if you
originally opened the file for reading only, you can gass tofdopen , but any call to

fwrite  fails.

LabWindows/CVI Standard Libraries 1-10 © National Instruments Corporation



Chapter 2
Formatting and 1/O Library

This chapter describes the functions in the LabWindows/CVI Formatting and I/O Library, and
contains many examples of how to use them. The Formatting and I/O Library contains functions
that input and output data to files and manipulate the format of data in a program.

TheFormatting and I/O Library Function Overviesection contains general information about
the Formatting and I/O Library functions and panels. Because the Formatting and I/O Library
differs in many respects from the other LabWindows/CVI libraries, it is very important to read
the overview before reading the other sections of this chapter.

TheFormatting and I/O Library Function Referensection contains an alphabetical list of
function descriptions. This section is helpful for determining the syntax of the file I/O and string
manipulation functions.

TheUsing the Formatting and Scanning Functi@estion describes in detail this special class of
functions. Although these functions are listed in the function reference, their versatility and
complex nature require a more complete discussion.

The final sectionFormatting and I/O Library Programming Example®ntains many examples
of program code that call Formatting and 1/O Library functions. Most of the examples use the
formatting and scanning functions.

Formatting and I/O Library Function Overview

This section contains general information necessary for understanding the Formatting and 1/0
Library functions and panels.

The Formatting and I/O Library Function Panels

The Formatting and 1/O Library function panels are grouped in a tree structure according to the
types of operations performed. The Formatting and 1/O Library function tree is shown in
Table 2-1.

The first- and second-level bold headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The
third-level headings in plain text are the names of individual function panels. The names of the
functions are in bold italics to the right of the function panels. Refer t8ahmple Function

Panels for the Formatting and Scanning Functisastionlater in this chapter for more

information.

© National Instruments Corporation 2-1 LabWindows/CVI Standard Libraries



Formatting and 1/O Library

Table 2-1. The Formatting and I/O Library Function Tree

Chapter 2

Formatting and 1/0O
File 110

Open File

Close File

Read from File
Write to File

Array to File

File to Array

Get File Information
Set File Pointer

String Manipulation

Get String Length
String to Lowercase
String to Uppercase

Fill Bytes
Copy Bytes
Copy String
Compare Bytes
Compare Strings
Find Pattern
Read Line
Write Line

Data Formatting

Formatting Functions
Fmt to Memory (Sample Panel)

Fmt to File
Fmt to Stdout

(Sample Panel)
(Sample Panel)

Scanning Functions

Scan from Mem (Sample Panel)

Scan from File (Sample Panel)

Scan from Stdin (Sample Panel)

Status Functions

Get # Formatted Bytes
Get Format Index Error

Get I/O Error
Get I/O Error String

OpenFile
CloseFile
ReadFile
WriteFile
ArrayToFile
FileToArray
GetFilelnfo
SetFilePtr

StringLength
StringLowerCase
StringUpperCase
FillBytes
CopyBytes
CopyString
CompareBytes
CompareStrings
FindPattern
ReadLine
WriteLine

Fmt
FmtFile
FmtOut

Scan
ScanFile
Scanlin

NumFmtdBytes
GetFmtErrNdx
GetFmtIOError
GetFmtlOErrorString

The classes and subclasses in the tree are described below:

LabWindows/CVI Standard Libraries

2-2

© National Instruments Corporation

TheFile I/O function panels open, close, read, write, and obtain information about files.

The String Manipulation function panels manipulate strings and character buffers.



Chapter 2 Formatting and 1/O Library

* The Data Formatting function panels perform intricate formatting operations with a single
function call.

— Formatting Functions, a subclass of Data Formatting, contains function panels that
combine and format one or more source items into a single target item.

— Scanning Functionsa subclass of Data Formatting, contains function panels that
transform a single source item into several target items.

— Status Functions,a subclass of Data formatting, contains function panels that return
information about the success or failure of a formatting or scanning call.

The online help with each panel contains specific information about operating each function
panel.

The String Manipulation Functions

The functions in the String Manipulation class perform common operations such as copying one
string to another, comparing two strings, or finding the occurrence of a string in a character
buffer. These functions are similar in purpose to the standard C string functions.

The Special Nature of the Formatting and Scanning Functions

The formatting and scanning functions are different in nature from the other functions in the
LabWindows/CVI libraries. With few exceptions, each LabWindows/CVI library function has a
fixed number of parameters, and each parameter has a definite data type. Each formatting and
scanning function, however, takes a variable number of parameters, and the parameters can be of
various data types. This difference is necessary to give the formatting and scanning functions
versatility.

For instance, a singtecan function call performs disparate operations, such as the following.
* Find the two numeric values in the string:

"header: 45, -1.03e-2"

and place the first value in an integer variable and the second in a real variable.

» Take the elements from an integer array, swap the high and low bytes in each element, and
place the resulting values in a real array.

To perform these operations, each formatting and scanning function takesaastringas one

of its parameters. In effect, a format string is a mini-program that instructs the formatting and
scanning functions on how to transform the input arguments to the output arguments. For
conciseness, format strings are constructed using single-character codes. These codes are

© National Instruments Corporation 2-3 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

described in detail in thdsing the Formatting and Scanning Functiaestion later in this
chapter.

You may find the formatting and scanning functions more difficult to learn than other
LabWindows/CVI functions. To help you in this learning process, read the discussions in the
Formatting and 1/O Library Programming Examplesctionat the end of this chapter.

Formatting and I/O Library Function Reference

This section gives a brief description of each of the functions available in the LabWindows/CVI
Formatting and 1/O Library. The LabWindows/CVI Formatting and I/O Library functions are
arranged alphabetically.

ArrayToFile

int status=ArrayToFile (char *fileName, void *array,int dataType,
int numberOfElements int numberOfGroups,
int arrayDataOrder, int fileLayout, int colSepStyle
int fieldWidth, int fileType, int fileAction);

Purpose

Saves an array to a file using various formatting options. The function handles creating, opening,
writing, and closing the file. The file can later be read back into an array using the
FileToArray  function.

Parameters
Input | fileName string File pathname.
array void * Numeric array.
dataType integer | Array element data type.

numberOfElements | integer | Number of elements in array.

numberOfGroups integer | Number of groups in array.
arrayDataOrder integer | How groups are ordered in file.
fileLayout integer | Direction to write groups in file.
colSepStyle integer | How data on one line are separated.
fieldWidth integer | Constant width between columns.
fileType integer | ASCIlI/binary mode.

fileAction integer | File pointer reposition location.

LabWindows/CVI Standard Libraries 2-4 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Return Value

status integer Indicates success/failure.

Return Codes

0 success.

-1 Error attempting to open file.

-2 Error attempting to close file.

-3 An 1/O error occurred.

-4 Invalid dataType parameter.

-5 Invalid numberOfElements parameter.
-6 Invalid numberOfGroups parameter.
-7 Invalid arrayDataOrder parameter.
-8 Invalid fileLayout parameter.

-9 Invalid fileType parameter.

-10 Invalid separationStyleparameter.
-11 Invalid fieldWidth parameter.

-12 Invalid fileAction parameter.

Parameter Discussion

FileName may be an absolute pathname or a relative file name. If you use a relative file name,
the file is created relative to the current working directory.

DataType must be one of the following.

VAL_CHAR

VAL_SHORT_INTEGER
VAL_INTEGER

VAL_FLOAT

VAL_DOUBLE
VAL_UNSIGNED_SHORT_INTEGER
VAL_UNSIGNED_INTEGER
VAL_UNSIGNED_CHAR

If you save the array data in ASCII format, you may divide the array data into groups. Groups
can be written as either columns or rohemberOfGroups specifies the number of groups into
which to divide the array data. If you do not want to divide your data into groups, use 1.

If you divide your array data into grougsyayDataOrder specifies how the data is ordered in
the array. The two choices are as follows.

© National Instruments Corporation 2-5 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2
* VAL_GROUPS_TOGETHE®points of each data group are assumed to be stored consecutively
in the data array.

* VAL_DATA_MULTIPLEXEBH is assumed that the first point from each data group is stored
together, followed by the second point from each group and so on.

If you save the array data in ASCII formileLayout specifies how the data appears in the file.
The two choices are as follows.

e VAL _GROUPS_AS_COLUMNS
e VAL _GROUPS_AS_ROWS

If you have only one group, us8AL_GROUPS_AS_COLUMMNSwrite each array element on a
separate line.

If you specify that multiple values be written on each lowSepStylespecifies how the values
are separated. The choices are as follows.

* VAL_CONST WIDTHeonstant field width for each column
* VAL _SEP_BY_coMmavalues followed by commas, except last value on line
* VAL_SEP_BY_TAB-values separated by tabs

If you have specified eolSepStyleof VAL_CONST_WIDTHieldWidth specifies the width of
the columns.

FileType specifies whether to create the file in ASCII or binary format.
The choices are as follows.

VAL_ASCII

VAL_BINARY

FileAction specifies the location in the file to begin writing data if the named file already exists.
The choices are as follows.

VAL_TRUNCATE-Positions the file pointer to the beginning of the file and deletes its prior
contents.

VAL_APPENB-AIl write operations append data to file.

VAL_OPEN_AS_IS—Positions the file pointer at the beginning of the file but does not
affect the prior file contents.

LabWindows/CVI Standard Libraries 2-6 © National Instruments Corporation



Chapter 2

CloseFile

int status= CloseFile(int fileHandle);

Purpose

Formatting and 1/O Library

Closes the file associated witleHandle. fileHandle is the file handle that was returned from

theOpenFile function and specifies the file to close.

Parameter
Input fileHandle integer File handle.
Return Value
status integer Result of the close file

operation.

Return Codes

-1 Bad file handle.
0 Success.
CompareBytes

int result = CompareBytes(char *buffer#1, int

Purpose

int

buffer#2Index, int

buffer#lindex, char *buffer#2,
numberofBytes,int caseSensitive);

Compares theumberofBytes starting at positiobuffer#lindex of buffer#1 to the
numberofBytes starting at positiobuffer#2Index of buffer#2.

Parameters
Input buffer#1 string String 1.
buffer#1index integer Starting position irbuffer#1.
buffer#2 string String 2.
buffer#2Index integer Starting position irbuffer#2.
numberofBytes integer Number of bytes to compare.
caseSensitive integer Case sensitivity mode.

© National Instruments Corporation

2-7

LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

Return Value

result integer Result of the compare
operation.

Return Codes

-1 Bytes frombuffer#1 less than bytes frofuffer#2.

0 Bytes frombuffer#1 identical to bytes frorbuffer#2.

1 Bytes frombuffer#1 greater than bytes from
buffer#2.

Parameter Discussion
Both buffer#1index andbuffer#2Index are zero-based.

If caseSensitivés zero, alphabetic characters are compared without regard to case. If
caseSensitivés non-zero, alphabetic characters are considered equal only if they have the same
case.

The function returns an integer value indicating the lexicographic relationship between the two
sets of bytes.

CompareStrings

int result = CompareStrings(char *string#1,int string#lindex, char *string#2,
int  string#2Index, int caseSensitive);

Purpose

Compares the NUL-terminated string starting at posgtong#1Iindex of string#1 to the
NUL-terminated string starting at positistring#2Index of string#2. Bothstring#lindex and
string#2Index are zero-based.

Parameters
Input string#1 string String 1.
string#lindex integer Starting position irstring#1.
string#2 string String 2.
string#2Index integer Starting position irstring#2.
caseSensitive integer Case sensitivity mode.

LabWindows/CVI Standard Libraries 2-8 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Return Value

result integer Result of the compare
operation.

Return Codes

-1 Bytes fromstring#1 less than bytes frostring#2.
0 Bytes fromstring#1 identical to bytes frorstring#2.
1 Bytes fromstring#1 greater than bytes frostring#2.

Parameter Discussion

If caseSensitives zero, alphabetic characters are compared without regard to case. If
caseSensitivés non-zero, alphabetic characters are equal only if they have the same case.

The function returns an integer value indicating the lexicographic relationship between the two
strings.

CopyBytes

void CopyBytes €har targetBuffer[] ,int targetindex, char *sourceBuffer,
int  sourcelndex,int  numberofBytes);

Purpose

Copies themumberofBytesbytes starting at positiasourcelndexof sourceBuffer to position
targetindex of targetBuffer.

Parameters
Input targetindex integer Starting position in
targetBuffer.
sourceBuffer string Source buffer.
sourcelndex integer Starting position in
sourceBuffer.
numberofBytes integer Number of bytes to copy.
Output targetBuffer string Destination buffer.

Return Value

None

© National Instruments Corporation 2-9 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

Parameter Discussion
Both sourcelndexandtargetindex are zero-based.

You can use this function even whawurceBuffer andtargetBuffer overlap.

CopyString

void CopyString (char targetString[] ,int targetindex, char *sourceString,
int  sourcelndex,int maximum#Bytes);

Purpose

Copies the string starting at positisnurcelndexof sourceStringto positiontargetindex of
targetString until an ASCII NUL is copied omaximum#Bytesbytes have been copied.
Appends an ASCII NUL if no ASCII NUL was copied.

Parameters
Input targetindex integer Starting position iargetString.
sourceString string Source bulffer.
sourcelndex integer Starting position irsourceString
maximum#Bytes | integer Number of bytes to copy, excluding the ASCII
NUL.
Output | targetString string Destination buffer.

Return Value
None
Parameter Discussion

Both sourcelndexandtargetindex are zero-based. If you want to usaximum#Bytesto
prevent from writing beyond the endtafgetString, make sure that you allow room for the
ASCII NUL. For example, imaximum#Bytesis 40, the destination buffer should contain at
least 41 bytes.

If you do not want to specify a maximum number of bytes to copy, use riafomum#Bytes
You can use this function even whapurceStringandtargetString overlap.

Note: The value ofmaximum#Bytesmust not exceed one less than the number of bytes in
the target variable.

LabWindows/CVI Standard Libraries 2-10 © National Instruments Corporation



Chapter 2

FileToArray

Formatting and 1/O Library

int status=FileToArray (char *fileName, void *array, int dataType,
int numberOfElements int numberOfGroups,
int arrayDataOrder, int fileLayout, int fileType);

Purpose

Reads data from a file into an array. Can be used with files created ushkmgayieoFile
function. The function handles creating, opening, reading, and closing the file.

Parameters
Input fileName string File pathname.
dataType integer Array element data type.
numberOfElements |integer Number of elements in array.
numberOfGroups integer Number of Groups in array.
arrayDataOrder integer How groups are ordered in file.
fileLayout integer Direction to write groups in file.
fileType integer ASCII/binary mode.
Output |array void* Numeric array.
Return Value
status integer Indicates success or failure.
Return Code
0 Success.
-1 Error attempting to open file.
-2 Error attempting to close file.
-3 An 1/0 error occurred.
-4 Invalid arrayDataType parameter.
-5 Invalid numberOfElements parameter.
-6 Invalid numberOfGroups parameter.
-7 Invalid arrayDataOrder parameter.
-8 Invalid fileLayout parameter.
-9 Invalid fileType parameter.

© National Instruments Corporation

2-11 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

Parameter Discussion

FileName may be an absolute pathname or a relative file name. If you use a relative file name,
the file is located relative to the current working directory.

DataType must be one of the following.

e VAL _CHAR

VAL_SHORT_INTEGER

* VAL_INTEGER

* VAL_FLOAT

* VAL_DOUBLE

* VAL_UNSIGNED_SHORT_INTEGER

* VAL_UNSIGNED_INTEGER

* VAL_UNSIGNED_CHAR

NumberOfGroups specifies the number of groups into which the data in the file is divided.

Groups can be in the form of either columns or rows. If there are no groups, use 1. This
parameter only applies if the file type is ASCII.

If the data is divided into groupatrayDataOrder specifies the order in which the data is to be
stored in the array. The two choices are as follows.

« VAL _GROUPS_TOGETHERall points from one data group are stored together followed by
all points from the next data group.

« VAL_DATA_ MULTIPLEXEB-the first points from each data group are stored
consecutively, followed by the second points from each group, etc.

If the file is in ASCII format, fileLayout specifies how the data appears in the file. The two
choices are as follows.

e VAL GROUPS_AS_COLUMNS

e VAL _GROUPS_AS_ROWS

If there is only one group/AL_GROUPS_AS_COLUMB|&cifies that each value in the file is
on a separate line.

FileType specifies whether the file is in ASCII or binary format. The choices are as follows.

e VAL_ASCII
e VAL_BINARY

LabWindows/CVI Standard Libraries 2-12 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

FillBytes
void FillBytes (char buffer[] ,int startinglndex, int numberofBytes,int value);
Purpose

Sets thexumberofBytes bytes starting at positicgtartinglndex of buffer to the value in the
lower byte ofvalue. startingindex is zero-based.

Parameters
Input buffer string Destination buffer.
startinglndex integer Starting position irbuffer.
numberofBytes integer Number of bytes to fill.
value integer Value to place in bytes.

Return Value

None

FindPattern

int ndx =FindPattern (char *buffer, int startingindex, int numberofBytes,
char *pattern, int caseSensitiveint startFromRight);

Purpose

Searches a character buffer for a pattern of bytes. The pattern of bytes is specified by the string
pattern.

Parameters
Input buffer string Buffer to be searched.
startinglndex integer Starting position irbuffer.
numberofBytes integer Number of bytes to search.
pattern string Pattern to search for.
caseSensitive integer Case-sensitivity mode.
startFromRight integer Direction of search.

© National Instruments Corporation 2-13 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

Return Value

ndx integer Index inbuffer where pattern
was found.

Return Code

-1 Pattern not found.

Parameter Discussion

The buffer searched is the seinoimberofBytesbytes starting at positicstartinglndex of
buffer. Exception: lihumberofBytesis -1, the buffer searched is the set of bytes starting at
positionstartinglndex of buffer up to the first ASCIl NUL.startingIndex is zero-based.

If caseSensitives zero, alphabetic characters are compared without regard to case. If
caseSensitivés non-zero, alphabetic characters are considered equal only if they have the same
case. IfstartFromRight is zero, the leftmost occurrence of the pattern in the buffer will be

found. IfstartFromRight is non-zero, the rightmost occurrence of the pattern in the buffer will
be found.

If the pattern is foundpattern returns the inderelative to the beginning dfuffer where it
found the first byte of the pattern. If the pattern is not fopattern returns -1.

The following example returns 4, which is the index of the second of the three occurresites of
in the stringlab2ab3ab4 . The first occurrence is skipped becastsetinglndex is 3. Of the
two remaining occurrences, the leftmost is found becstas#-romRight is zero:

ndx = FindPattern ("lab2ab3ab4", 3, -1, "AB", 0, 0);

On the other hand, the following line returns 7, which is the index of the last occurreaice of
becausestartFromRight is non-zero:

ndx = FindPattern ("1ab2ab3ab4", 3, -1, "AB", 0, 1);

Fmt
int n=Fmt (void *target, char *formatString, sourcel...sourcen);
Purpose

Formats thesourcel... sourcenarguments according to descriptions inftirenatString
argument.

LabWindows/CVI Standard Libraries 2-14 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Parameters
Input formatString String.
sourcel,...,sourcen Types must matcformatString contents.
Output target Type must matcformatString contents.

Return Value

n integer Number of source format
specifiers satisfied.

Return Code

-1 Format string error.

Using This Function

This function places the result of the formatting into the target argument, which you must pass by
reference. The return value indicates how many source format specifiers were satisfied, or

-1 if the format string is in error. A complete discussion of this function is ib$imey the

Formatting and Scanning Functiossction later in this chapter.

FmtFile
int n=FmtFile (int fileHandle, char *formatString, sourcel...,sourcen);
Purpose

Formats thesourcel... sourcenarguments according to descriptions inftirenatString
argument. The result of the formatting is written into the file corresponding fitetHandle
argument, which was obtained by a call to the LabWindows/CVI fun@juenFile

Parameters
Input fileHandle integer File handle.
formatString string
sourcel,...,sourcen types must matcformatString
contents

© National Instruments Corporation 2-15 LabWindows/CVI Standard Libraries



Formatting and 1/O Library

Return Value

Chapter 2

integer

Number of source format
specifiers satisfied.

Return Codes

-1
-2

Format string error

I/0O error.

Using This Function

The return value indicates how many source format specifiers were satisfigdhe format
string is in error, o2 if there was an I/O error. A complete discussion of this function is in the
Using the Formatting and Scanning Functiaestion later in this chapter.

FmtOut

int n=FmtOut (char *formatString, sourcel...,sourcen);

Purpose

Formats thesourcel ... sourcermrguments according to descriptions inftirenatString
argument. The result of the formatting is written to the Standard I/O window.

Parameters

Input formatString
sourcel,...,sourcen

String.

Types must matcformatString contents.

Return Value

integer

Number of source format
specifiers satisfied.

Return Codes

-1 Format string error.
-2 /O error.
LabWindows/CVI Standard Libraries 2-16 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Using This Function

The return value indicates how many source format specifiers were satisfigdhe format
string is in error, o2 if there was an I/O error. A complete discussion of this function is in the
Using the Formatting and Scanning Functiaestion later in this chapter.

GetFilelnfo
int status= GetFileInfo (char *fileName,long *fileSize);
Purpose

Verifies if a file exists. Returns an integer value of zero if no file is presert drite is
present.fileSizeis a long variable that contains the file size in bytes or zero if no file exists.

Parameters
Input fileName string Pathname of the file to be
checked.
Output fileSize long File size or zero.
Return Value
status integer Indicates if the file exists.
Return Codes
1 File exists.
0 File does not exist.
-1 Maximum number of files already open.
Example
/* Check for presence of file AADATA\TEST1.DAT. */
/* Print its size */
/* if file exists or message stating file does not exist. */
int n;
long size;
n = GetFileInfo("a:\\data\\test1.dat",&size);
if (n == 0)
FmtOut("File does not exist.");
else

FmtOut("File size = %i[b4]",size);

© National Instruments Corporation 2-17 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

GetFmtErrNdx
int n=GetFmtErrNdx (void );
Purpose

Returns the zero-based index into the format string where an error occurred in the last formatting
or scanning call.

Parameters
None

Return Value

n integer Position of error in format
string.

Return Code

-1 No error.

Using This Function

If the format string of the preceding call contains an error, such as an invalid format, or
inappropriate modifier, the return value indicates the position within the format string, beginning
with position zero, where the error was found. The function can report only one error per call,
even if several errors existed within the string.

Example

inti, n;

Scan ("1234", "%s>%d", &i);

n = GetFmtErrNdx ();

/* n will have the value -1, indicating that */

/* there was no error found in the format string. */

GetFmtIOError
int status = GetFmtlOError (void );
Purpose

This function returns specific I/O information for the last call to a Formatting and 1/0O function
that performs file I/0. If the last function was successbgt{LastFmtIOError returns zero (no

LabWindows/CVI Standard Libraries 2-18 © National Instruments Corporation



Chapter 2

Formatting and 1/O Library

error). If the last function that performs I/O encountered an I/O €it,astFmtIOError
returns a nonzero value.

Return Value

status integer Indicates success or failure of last function that

performed file 1/O.
Return Codes

FmtIONoErr 0 No error.

FmtIONoFileErr 1 File not found.

FmtlOGenErr 2 General 1/O error.

FmtliOBadHandleErr 3 Invalid file handle.

FmtlOlInsuffMemErr 4 Not enough memory.

FmtlOFileExistsErr 5 File already exists.

FmtlOAccessErr 6 Permission denied.

FmtlOInvalArgErr 7 Invalid argument.

FmtlOMaxFilesErr 8 Maximum number of files open.

FmtlODiskFullErr 9 Disk is full.

FmtlONameToolLongErr | 10 File name is too long.

GetFmtIOErrorString

char* message= GetFmtlOErrorString (int errorNum);
Purpose

Converts the error number returned®gtLastFmtIOError into a meaningful error message.

Parameters

Input | errorNum | integer | Error Code returned b@etLastFmtIOErr.
Return Value

message string Explanation of error.

© National Instruments Corporation 2-19 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

NumFmtdBytes
int n =NumFmtdBytes (void );
Purpose
Returns the number of bytes formatted or scanned by the previous formatting or scanning call.
Parameters
None

Return Value

n integer Number of bytes formatted of
scanned.

Using This Function

If the previous call was a formatting cadllumFmtdBytes returns the number of bytes placed into

the target. If the previous call was a scanning balmFmtdBytes returns the number of bytes
scanned from the source. The return value is undefined if there have been no preceding formatting
or scanning calls.

Certain operations using tientFile andScanFile routines can result in more than 64 KB
being formatted or scanned. BecalsenFmtdBytes returns an integer, its value will not be
accurate in these cases. The value returned rolls over when formatting or scanning more than
65,535 bytes.

Example

double f; intn;

Scan ("3.1416", "%s>%f", &f);

n = NumFmtdBytes ();

/* n will have the value 6, indicating that six bytes */
/* were scanned from the source string. */

OpenFile
int handle = OpenFile (char *fileName,int read/writeMode, int action,int fileType);
Purpose

Opens a file for input and/or output.

LabWindows/CVI Standard Libraries 2-20 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Parameters
Input fileName string Pathname.
read/writeMode integer Read/write mode.
action integer File pointer reposition location.
fileType integer ASCll/binary mode.
Return Value
handle integer File handle to be used in
subsequent ReadFile/WriteFile
calls.
Return Code
-1 Function failed, unable to open file, or bad argument
to function.

Parameter Discussion

fileName is a pathname specifying the file to be opened. If¢hd/writeMode argument is

write or read/write, this function creates the file if it does not already exist. If a file is created, it
is created with no protection; that is, both reading and writing can be performed on it. Use the
function GetFilelnfo if it is necessary to determine whether a file already exists.

read/writeMode specifies how the file is opened:
* VAL_READ_WRITE =open file for reading and writing
* VAL_READ_ONLY¥ open file for reading only
* VAL_WRITE_ONLY= open file for writing only

action specifies whether to delete the old contents of the file, and whether to force the file
pointer to the end of the file before each write operataartion is meaningful only if
read/writeMode = write or read/write. After read operations are performed, the file pointer
points to the byte following the last byte reattion values are as follows:

 VAL_TRUNCATE truncate file (deletes its old contents and positions the file pointer at the
beginning of the file.

 VAL_APPEND= do not truncate file (all write operations append to end of file).

« VAL_OPEN_AS_IS= do not truncate file (positions the file pointer at the beginning of the
file.)

© National Instruments Corporation 2-21 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

fileType specifies whether to treat file as ASCII or binary. When performing I/O on a file in
binary mode, no special treatment is given to carriage retGRsafd line feedsLF). When
you open the file in ASCII mod€RLF combination translates td- when reading, andF
translates t&€RLF when writing. fileType values are as follows:

* VAL_BINARY= binary

* VAL_ASCII =ASCII

ReadFile
int n =ReadFile(int fileHandle, char buffer[] ,int count);
Purpose

Reads up taount bytes of data from a file @TDIN into buffer. Reading starts at the current
position of the file pointer. When the function completes, the file pointer points to the next
unread character in the file.

Parameters
Input fileHandle integer File handle.
count integer Number of bytes to read.
Output buffer string Input buffer.
Return Value
n integer Number of bytes read.

Return Codes

-1 Error, possibly bad handle.
0 Tried to read past end-of-file.

Parameter Discussion

fileHandle is the file handle returned by tlpenFile function. fileHandle points to the file
from which you want to read. fileHandle =0, input is read fronSTDIN, and no prior
OpenFile callis neededbuffer is the buffer into which you read data. You must allocate
space for this buffer before you call this functia@ount specifies the number of bytes to read.
count must not be greater thaffer size.

LabWindows/CVI Standard Libraries 2-22 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Using This Function

The return value can be less than number of bytes requested if end of file was reached before
byte count was satisfied. Notice that if you open the file in ASCIl mode, @Rtk

combination read is counted as 1 character, because the pair is transldt&dwhen stored in

the buffer.

Note: This function does not terminate the buffer with an ASCII NUL.

ReadLine
int n=ReadLine(int fileHandle, char lineBuffer[] ,int maximum#Bytes);
Purpose

Reads bytes from a file until a linefeed is encountered.

Parameters
Input fileHandle integer File handle.
maximum#Bytes | integer Maximum number of bytes to
read into line, excluding the
ASCII NUL.
Output lineBuffer string Input buffer.
Return Value
n integer Number of bytes read,

excluding linefeed.

Return Codes

-2 End of file.
-1 1/0O error.

Parameter Discussion

This function places up tmaximum#Bytesbytes, excluding the linefeed, iritoeBuffer.
Appends an ASCII NUL tdineBuffer. If there are more thanaximum#Bytesbytes before the
linefeed, the extra bytes are discarded.

fileHandle is the file handle that was returned from @wgenFile function and specifies the
file from which to read the line. The file should be opened in ASCIl mode so that a

© National Instruments Corporation 2-23 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

carriage-return/linefeed combination will be treated as a linefedidleHandle is zero, the line
will be read from the standard input.

lineBuffer is a character buffer. It should be large enough to comakimum#Bytesbytes
plus an ASCII NUL.

ReadLine returns the number of bytes read from the file, including discarded bytes, but
excluding the linefeed. Hence, the return value will exceaximum#Bytesif and only if bytes
are discarded.

If no bytes are read because the end of the file has been rddehdtine returns-2 . If an
I/O error occursReadLine returns-1 .

Scan
int n=Scan(void *source,char *formatString, targetptrl,... targetptrn);
Purpose

Scans a single source item in memory and breaks it into component parts according to format
specifiers found in formatString. The components are then placed into the target parameters.

Parameters

Input source Type must matcformatString contents

formatString string.

Output targetptrl,... targetptrn Types must matcformatString contents.
Return Value

n integer Number of target format

specifiers satisfied.

Return Code

-1 Format string error.

Using This Function

The return value indicates how many target format specifiers were satisfieédjfahe format
string is in error. A complete discussion of this function is intbieg the Formatting and
Scanning Functionsection later in this chapter.

LabWindows/CVI Standard Libraries 2-24 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

ScanFile
int n=ScanFile(int fileHandle, char *formatString, targetptrl,... targetptrn);
Purpose

Performs the same basic operation asSitemn function, except that the source material is
obtained from the file referred to by thieHandle argument, which is obtained by calling the
LabWindows/CVI functiorOpenFile

Parameters

Input fileHandle Integer.

formatString String.

Output targetptrl,... targetptrn Types must matcformatString contents.
Return Value

n integer Number of target format

specifiers satisfied.

Return Codes

-1 Format string error.

-2 I/O error.

Using This Function

The amount of data read from the file depends on the amount needed to fulfill the formats in the
format string. The return value indicates how many target format specifiers were satfisfied,

the format string is in error, 62 if there was an 1/O error. A complete discussion of this

function is in theJsing the Formatting and Scanning Functi@estion later in this chapter.

Scanlin
int n=Scanin(char *formatString, targetptrl,... targetptrn);
Purpose

Performs the same basic operation asSitenFile  function, except that the source material is
obtained fronSTDIN.

© National Instruments Corporation 2-25 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

Parameters
Input formatString String.
Output targetptrl,... targetptrn Types must matcformatString contents.

Return Value

n integer Number of target format
specifiers satisfied.

Return Codes

-1 Format string error.
-2 I/O error.

Using This Function

No argument is required for the source item in the case &daeln function. The return
value indicates how many target format specifiers were satisfied, -1 if the format string is in
error, or -2 if there was an 1/0O error. A complete discussion of this function is isthg the
Formatting and Scanning Functiossction later in this chapter.

SetFilePtr
long position = SetFilePtr (int fileHandle, long offset,int origin);
Purpose

Moves the file pointer for the file specified bieHandle to a location that isffset bytes from
origin. Returns the offset of the new file pointer position from the beginning of the file.

Parameters
Input fileHandle integer File handle returned by
OpenkFile
offset long integer Number of bytes from origin {o
position of file pointer.
origin integer Position in file from which to
base offset.

LabWindows/CVI Standard Libraries 2-26 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Return Value

position long integer Offset of the new file pointer
position from the beginning of]
the file.

Return Code

-1 Error due to an invalid file handle, an invalid origin
value, or an offset value that is before the beginning
of the file.

Parameter Discussion

The valid values obrigin are as follows:
* 0 = beginning of file

* 1 = current position of file pointer

2 =endoffile

Using This Function

This function can also be used to obtain the file size by setting offset to 0 and origin to 2. In this
case, the return value indicates the file size and the pointer will be at the end of the file.

It is possible to position the file pointer beyond the end of the file. Intermediate bytes (bytes
between the old end of file and the new end of file) contain indeterminate values. An attempt to
position the file pointer before the beginning of the file causes the function to return an error.

If the file is a device that does not support random access (such as the standard input), the
function returns an indeterminate value.

Example

/* Open or create the file c\TEST.DAT, move 10 bytes into the
file, and write a string to the file. */
/* Note: Use \\ in pathname in C instead of \. */
int handle,result;
long position;
handle = OpenFile("c:\TEST.DAT", 0, 2, 1);
if (handle == -1){
FmtOut("error opening file");
exit(1);
}
position = SetFilePtr(handle, 10L, 0);
if (position == 10){

© National Instruments Corporation 2-27 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

result = WriteFile(handle, "Hello, World!", 13);
if (result == -1)
FmtOut("error writing to file");
}
else
FmtOut("error positioning file pointer");
CloseFile(handle);

StringLength

int n =StringLength (char *string);

Purpose

Returns the number of bytes in steng before the first ASCII NUL.

Parameter

Input string String.

Return Value

n integer Number of bytes iistring
before ASCII NUL.

Example

char s[100];
int nbytes;
nbytes = StringLength (s);

StringLowerCase

void StringLowerCase(char string[] );

Purpose

Converts all uppercase alphabetic characters in the NUL-termstaigg to lowercase.

Parameter

Input/Output| string String.

LabWindows/CVI Standard Libraries 2-28 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Return Value

None

StringUpperCase

void StringUpperCase(char string[] );

Purpose

Converts all lowercase alphabetic characters in the NUL-termisaited to uppercase.

Parameter

Input/Output| string String.

Return Value

None

WriteFile
int n =WriteFile (int fileHandle, char *buffer, unsigned int count);
Purpose

Writes up tocount bytes of data frorbuffer to a file or toSTDOUT Writing starts at the
current position of the file pointer, and when the function completes, the file pointer is
incremented by the number of bytes written.

Parameters
Input fileHandle integer File handle.
buffer string Data buffer.
count integer Number of bytes to write.
Return Value
n integer Number of bytes written to the
file.

© National Instruments Corporation 2-29 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

Return Code

-1 Error.

Parameter Discussion

fileHandle is the file handle that was returned from @wenFile function. IffleHandle=1,
data is written t&TDOUTand no priolOpenFile call is needed.

buffer is the buffer from which to write data.

count specifies number of bytes to write. T¢munt parameter overrides the buffer size in
determining the number of bytes to write. Buffers containing embaddiédbytes are written in
full. count must not be greater thanffer size.

Using This Function

For files opened in ASCII mode, each LF character is replaced with a CR-LF combination in the
output. In this case, the return value does not include the CR character written to the output.

An error can indicate a bad file handle, an attempt to access a protected file, an attempt to write
to a file opened aReadOnly , or no more space left on disk.

WriteLine
int n=WriteLine (int fileHandle, char *lineBuffer, int numberofBytes);
Purpose

WritesnumberofBytesbytes fromlineBuffer to a file and then writes a linefeed to the file.

Parameters
Input fileHandle integer File handle.
lineBuffer string Data buffer.
numberofBytes integer Number of bytes to write.
Return Value
n integer Number of bytes written.

including line feed.

LabWindows/CVI Standard Libraries 2-30 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Return Code

-1 I/0O error.

Parameter Discussion

If numberofBytesis -1, only the bytes ineBuffer before the first ASCII NUL are written,
followed by a linefeed.

fileHandle is the file handle that was returned from @genFile function. The file should be
opened in ASCIlI mode so that a carriage return will be written before the linefddeHdihdle
is 1, the line will be written to th8 TDOUT

Using This Function

WriteLine  returns the number of bytes written to the file, excluding the linefeed. If an 1/O
error occursWriteLine  returns-1 .

Using the Formatting and Scanning Functions

You use data formatting functions to translate or reformat data items into other forms. Typical
usages might be to translate between data stored on external files and the internal forms which
the program can manipulate, or to reformat a foreign binary representation into one on which the
program can operate.

There are three subclasses of data formatting functions in the LabWindows/CVI Formatting and
I/O Library:

* Formatting functions
* Scanning functions
» Status functions

You use formatting functions to combine and format one or more source items into a single

target item, and you use scanning functions to break apart a single source item into several target
items. The status functions return information regarding the success or failure of the formatting
or scanning functions.

Introductory Formatting and Scanning Examples

To introduce you to the formatting and scanning functions, consider the following examples.

© National Instruments Corporation 2-31 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

Convert the integer value 23 to its ASCII representation and place the contents in a string
variable:

char a[5];
int b,n;
b =23;
n = Fmt (a, "%s<%i", b);
After theFmt call, a contains the string3.

In this examplea is the target argumerit, is the source argument, and the stfitgx%i is the
format string. Thé&mt call uses the format string to determine how to convert the source
argument into the target argument.

With theScan function, you can convert the stri@d to an integer:
char *a;
a="23"
n = Scan (a$, "%s>%i", b%);

After theScan call,b = 23.

In this examplea is the source argumeilit,is the target argument, abes>%i is the format

string. In both the formatting and the scanning functions, the format string defines the variable
types of the source and target arguments and the method by which the source arguments are
transformed into the target arguments.

Formatting Functions

The following information is a brief description of the three formatting functions:
* n=Fmt (target, formatstring, sourcel, ..., sourcen);

TheFmt function formats theourcel, ..., sourcen arguments according to
descriptions in théormatstring argument. The function places the result of the
formatting into thearget argument.

* n=FmtFile (handle, formatstring, sourcel, ..., sourcen);

TheFmtFile function formats theourcel, ..., sourcen arguments according to
descriptions in théormatstring argument. The function writes the result of the
formatting into the file corresponding to thandle argument.

* n=FmtOut (formatstring, sourcel, ..., sourcen);

TheFmtOut function formats theourcel, ..., sourcen arguments according to
descriptions in théormatstring argument. The function writes the result of the
formatting to Standard Ouit.

LabWindows/CVI Standard Libraries 2-32 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Each of these formatting functions return the numbeoafce format specifiers satisfied. If
there is an error in the format string, -1 is returned.

The formatting functions are used to format and combine multiple source items into a single
target item. The only difference in the workings of the three functions is the location of the
target data. For the functidfmt, the target is a data item in memory which is passed to the
function by reference. FémmtFile , the target is a file whose handle is passed as the first
argument. The LabWindows/CVI functi@penFile returns this handle. For the function
FmtOut , the target is Standard Out (typically the display), and in this case the target argument
present in the other two functions is omitted. Except for these differences, the following
descriptions apply to all the formatting functions.

The target parameter f6mt must be passed by reference (that is, must be a pointer).

Formatting Functions—Format String
Consider the following formatting function:
n = Fmt(target, formatstring, sourcel, ..., sourcen);

whereformatstring contains the information to transform the source arguments to the target
argument.

Format strings for all the formatting functions are of the form:
"target_spec < source_specs_and_literals"

wheretarget_spec is a format specifier that describes the nature of the target data item, and
source_specs_and_literals is a sequence of format specifiers and literal characters that
indicate how the source material is to be combined into the target.

Examples of format strings for the formatting functions are as follows.
"%s < RANGE %i"
"%s < %s; %i"

The charactex is a visual reminder of the direction of the data transformation (that is, from the
sources to the target), and also separates the single target format specifier from the (perhaps
multiple) source format specifiers and literals. The target format specifier can be omitted, in
which case &bsstring format is assumed. If the target format specifier is omitted, the

< character can be omitted also, or retained for clarity.

Notice that the target format specifier is located to the left ok tmbol, just as the target
parameter is located to the left of the format string. Likewise, the source format specifiers are
located to the right of the symbol, just as the source parameters are located to the right of the
format string.

© National Instruments Corporation 2-33 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

Format specifiers describe the inputs and outputs of data transformations. Each format specifier
has the following form.

%

[rep] formatcode [[ modifiers]]

The characte¥introduces all format specifiersep indicates how many times the format
repeats with respect to the argumeritgmatcode is a code character which indicates the
nature of the data items being formattedodifiers  is an optional bracket-enclosed sequence
of codes which further describe the data format.

Examples of format specifiers are as follows.

%s

Note:

%100f  %i[b2u]

rep is not allowed wheriormatcode iss (string).

formatcode is specified with one of the following codes:

S

string. As a source or target specifier, this indicates that the corresponding parameter is a
character string. As a target specifier (the default if no target specifier is present), this

can mean that numeric source parameters become converted into an ASCII form for
inclusion in the target string. See the individual numeric formats, si#h asd%f, for

details of these conversions. Arrays of strings are not allowed. For exétiflejs not

a valid format string.

Note: When a target string is filled in, an ASCII NUL is always placed in the string
after the last byte.

integer. This source or target specifier indicates that the corresponding parameter is an
integer or, ifrep is present, an integer array. The function performs conversions to
ASCII digits when converting to or from the string forr'ed A modifier is available to
specify the radix to be used in such a conversion (default is decimal).

integer (hexadecimal). This source or target specifier indicates that the corresponding
parameter is an integer orydp is present, an integer array. The function performs
conversions to ASCII hexadecimal digi@l23456789abcdef ) when converting to or
from the string formabos

integer (octal). This source or target specifier indicates that the corresponding parameter
is an integer or, ifep is present, an integer array. The function performs conversions to
ASCII octal digits 01234567 ) when converting to or from the string fornas

integer (decimal). This format specifier is identicaldoand is included for
compatibility with the Qorintf  family of functions.

LabWindows/CVI Standard Libraries 2-34 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

f real number. This source or target specifier indicates that the corresponding parameter is
a real number, or ifep is present, a real array. The function performs conversions to
ASCII when converting to or from the string fornas

c character. This source or target specifier indicates that the corresponding parameter is an
integer with one significant byte, or,rép is present, an array of 1-byte integers. The
function doesot perform conversion to ASCII when converting to or from the string
format%s The byte is copiedirectly to or from the string.

Formatting Modifiers

modifiers  are optional codes used to describe the nature of the source or target data. If you
use them, you must enclose the modifiers in square brackets and place them immediately after
the format code they modify. If one format specifier requires more than one modifier, enclose all
modifiers in the same set of brackets.

There is a different set of modifiers for each possible format specifier.

Formatting Integer Modifiers (%i, %d, %X, %0, %c)

bn Specify Length. Theb integer modifier specifies the length of the integer
argument, or the length of an individual integer array element, in bytes. The
default length is 4 B; therefore, simple 4 B integers do not need this modifier.
The modifier b2 represents short integers. The modifier bl represents single-byte
integers.

in Specify Array Offset. Thei integer modifier specifies an offset within an
integer array argument. It indicates the location within the array where processing
begins. n is the zero-based index of the first element to process. Thus,
%10d[i2] applied to a source integer array reads the 10 integer values from the
third through the twelfth elements of the array. Thmodifier is valid only if
rep is present. If you use the modifier with thez modifier, them is in terms
of bytes.

z Treat String as Integer Array. Thez integer modifier indicates that the data
type of the corresponding argument is a string. Nevertheless, the data in the string
is treated as an integer array. Ehmodifier is valid only ifrep is present.

rn Specify Radix. Ther integer modifier specifies the radix of the integer
argument, which is important if the integer was to be converted into string format.
Legal radixes are 8 (octal), 10 (decimal, the default), 16 (hexadecimal), and 256 (a
special radix representing single 8-bit ASCII characters).

wn Specify String Size. Thew integer modifier specifies the exact number of bytes
in which to store a string representation of the integer argument, in the event that

© National Instruments Corporation 2-35 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

the integer is converted to a string format. You can enter any non-negative value
here. Ifn is less than the number of digits required to represent the integer, an
asterisk ) will be inserted into the string to signify an overflow. The default for

n is zero, which indicates that the integer can occupy whatever space is necessary.

pc Specify Padding. Thep integer modifier specifies a padding character c, which
fills the space to the left of an integer in the event it does not require the entire
width specified with thevn modifier. The default padding character is a blank.

S Specify as Two’'s Complement.Thes integer modifier indicates that the integer
argument is considered a signed two's complement number. This is the default
interpretation of integers, so teemodifier is never explicitly required.

u Specify as Unsigned.Theu integer modifier indicates that the integer is
considered an unsigned integer.

onnnn  Specify Byte Ordering. Theo integer modifier is used to describe the byte
ordering of raw data so that LabWindows/CVI can map it to the byte order
appropriate for the Intel (PC) or Motorola (SPARCstation) architecture. The
number ofn's must be equal to the byte size of the integer argument as specified
by thebn modifier, which must precede tbhemodifier. In the case of a four-byte
integer,00123 indicates that the bytes are in ascending order of precedence (Intel
style), and3210 indicates that the bytes are in descending order of precedence
(Motorola style).

In aFmt function, the buffer containing the raw instrument data should have the
o modifier describing the byte ordering. The buffer withoutdhmodifier is
guaranteed to be in the mode of the host processor. In other words,
LabWindows/CVI will reverse the byte ordering of the buffer without the

o modifier depending on which architecture the program is running on.

For example, if your GPIB instrument sends two-byte binary data in Intel byte
order, your code should appear as follows:

short int instr_buf{100];

short int prog_buf[100];

status = ibrd (ud, instr_buf, 200);

Fmt (prog_buf, "%100d<%2100d[b2001]", instr_buf);

If, instead, your GPIB instrument sends two-byte binary data in Motorola byte
order, theFmt function should appear as follows:

Fmt (prog_buf, "%6100d<%100d[b2010]", prog_buf);

In either case, the modifier is used only on the buffer containing the raw data
from the instrumentifstr_buf ). LabWindows/CVI will ensure that the
program buffergrog_buf ) is in the proper byte order for the host processor.

LabWindows/CVI Standard Libraries 2-36 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Note: When using both théon and on modifiers on an integer specifier, then modifier
must be first.

Formatting Floating-Point Modifiers (%f)

bn Specify Length. Theb floating-point modifier specifies the length of the
floating-point argument, or the length of an individual array element, in bytes. The
default length is 8 bytes; therefore, double-precision values do not need this modifier.
Single-precision floating-point values are indicated#y 8 and 4 are the only valid
values forn.

in Specify Array Offset. You usethei modifier to specify an offset within a
floating-point array argument. It indicates the location within the array where
processing is to begim is the zero-based index of the first element to process.
Thus,%10f[i2] applied to a source floating-point array reads the 10 floating-point
values from the third through the twelfth elements of the array.i Thedifier is
valid only ifrep is present. If the modifier is used with the modifier, them is in
terms of bytes.

z Treat String as Floating-Point Array. Thez floating-point modifier indicates that
the data type of the corresponding argument is a string. Nevertheless, the data in the
string is treated as a floating-point array. EZheodifier is valid only ifrep is
present.

wn  Specify String Size. Thew floating-point modifier specifies the exact number of
bytes in which to store a string representation of the floating-point argument, in the
event that the value is converted to a string format. Any non-negative value can be
entered here. Hi is less than the number of digits required to represent the
floating-point number, an asterisk)(will be inserted into the string to signify an
overflow. The default fon is zero, which indicates that the value can occupy
whatever space is necessary.

pn Specify Precision. Thep floating-point modifier specifies the number of digits to the
right of the decimal point in a string representation of the floating-point number. You
can lose significant digits by attempting to conform to the precision specification. If
thepn modifier is omitted, the default valuep$.

en Specify as Scientific Notation.Thee floating-point modifier specifies that a value
be converted to string format in scientific notation. If omitted, floating-point notation
is used.n is optional and specifies the number of digits in the exponent. For
example%f[e2] formats 10.0 as 1.0e+01. rifis omitted, a default of three is used.

f Specify as Floating-Point NotationThef floating-point modifier specifies the
value to be converted to string format in floating-point notation. This is the default.

© National Instruments Corporation 2-37 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

Truncate. Thet floating-point modifier indicates that in floating-point to integer
transformations, the floating-point value is truncated instead of rounded. This is the
default.

Round. Ther floating-point modifier indicates that in floating-point to integer
transformations, the floating-point value is rounded instead of truncated. The default
method is truncation.

Note: The value can be represented in scientific notation even wheretheodifier is absent.

This occurs when the absolute value of the argument is greater than 1.0e40 or less
than 1.0e-40, or when the absolute value of the argument is greater than 1.0e20 or less
than 1.0e-4 and neither thp modifier nor thew modifier is present.

Formatting String Modifier§%s)

in

wn

Specify Array Offset. Thei string modifier specifies an offset within a string. It
indicates the location within the string where processing is to begsthe zero-
based index of the first byte to process. TBtsi2] applied to a target string
begins placing data in the third byte of the string.

Append. When applied to a target format specifier, #ahgtring modifier specifies
that all formatted data kappendedo the target string. The data is appended
beginning at the first occurrence of an ASCII NUL in the target string.

Specify String Size.When modifying a source format specifier, thetring modifier
specifies the maximum number of bytes to be consumed from the string argument.
You can enter any non-negative value here, the default being zero, which indicates
that the entire string should be consumed.

When modifying a target format specifier, thestring modifier specifies the exact
number of bytes to store in the string, excluding the terminating ASCII NU#islf

zero or omitted, as many bytes are stored as are called for by the sources? ig/hen
greater than the number of bytes available from the source, the remaining bytes are
filled with ASCII NULs if theg modifier is used, or blanks if toemodifier is not
present.

When thew string modifier is used in conjunction with thestring modifier,n
indicates the number of bytes to append to the string excluding the terminating ASCII
NUL.

If wn modifies a target string antlis larger than the number of bytes in the target
argument, the target string is overwritten in compiled C.

Append NULs. When applied to a target string in conjunction withwitering
modifier, theq string modifier specifies that unfilled bytes at the end of the target
string be set to ASCII NULs instead of blanks.

LabWindows/CVI Standard Libraries 2-38 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

tn Terminate on Character. When applied to a source string, thetring modifier
specifies that the source string is terminated on the first occurrence of the character
wheren is the ASCII value of the character. Thiss[t44] causes reading of the
source string to stop on an ASCIl comma. U$iggjt44] and the source string
Hello, World! as an exampléjello is placed into the target. More than one
t modifier can occur in the same specifier, in which case the string terminates when
any of the terminators occur. If nomodifier is present, reading of the source string
stops on an ASCII NUL. This modifier has no effect when applied to the target
specifier.

t- Terminate when Full. This is similar tat n, except that it specifies that there ace
terminating characters. Reading of the source string terminates when the target is full
or when the number of bytes specified with weodifier have been read.

t# Terminate on Number. This is equivalent to repeating themodifier with the
ASCII values of the charactets- , and0 through9. It specifies that reading of the
source string be terminated upon occurrence of a numeric expression.%as§ip
with the source stringb567 , ab is placed in the target.

Fmt, FmtFile, FmtOut—Asterisks (*) Instead of Constants in Format Specifiers

Often, one or more integer values are required in a format specifier. The format specifier for an
integer array, for example, requires the number of elemegs ( You can use constants for

these integer values in format specifiers. Alternatively, you can specify an integer value using an
argument in the argument list. When you use this method, substitute an as)doskhe

constant in the format specifier.

You can use the asterisk in the following format specifier elements:

rep For integer or floating-point arrays

in For integer or floating-point arrays, or strings
wn For any format specifier

pn For floating-point specifiers only

en For floating-point specifiers only

rn For integer specifiers only

When you use one or more asterisks instead of constantarigeaspecifier, the arguments
corresponding to the asterisks must appdiar the format string in the same order as their
corresponding asterisks appear in the format specifier.

When you use one or more asterisks instead of constansour@especifier, the arguments
corresponding to the asterisks mpitcedethe source argument and must be in the same order
as their corresponding asterisks in the format specifier.

© National Instruments Corporation 2-39 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

Fmt, FmtFile, FmtOut—Literals in the Format String

Literal characters appearing in a formatting function format string indicate that the literal
characters are to be combined with the source parameters in the appropriate positions. They do
not correspond to any source parameters, but are copied directly into the target item.

Since the left side of the symbol must be a single format specifier, literal characters if present
must be on the right side of the symbol. Literals on the left side or more than one format
specifier on the left side result in a -1 error, indicating a faulty format string. You then can use
the functionGetFmtErrNdx to determine exactly where the error lies in the format string.

The character% [, ], <, and> have special meaning in the format strings. To specify that these
characters be taken literally, they should be precedéd by

Scanning Functions

The following information is a brief description of the three scanning functions.
* n = Scan (source, formatstring, targetptrl, ..., targetptrn);

TheScan function inspects thgource argument and applies transformations to it
according to descriptions in thematstring argument. The results of the
transformations are placed into tlaegetptrl ... targetptrn arguments.

* n = ScanFile (handle, formatstring, targetptrl, ..., targetptrn);

TheScanFile function reads data from the file corresponding tohéredle argument
and applies transformations to it according to descriptions ifothetstring argument.
The results of the transformations are placed intdatgetptrl ... targetptrn

arguments.

* n = Scanln (formatstring, targetptrl, ..., targetptrn);

TheScanin function reads data from standard input and applies transformations to it
according to descriptions in th@matstring argument. The results of the
transformations are placed into tlaegetptrl ... targetptrn arguments.

All of the above functions return the numbetarget format specifiers satisfied. The
function returns a -1 if there is an error in the format string.

The scanning functions break apart a source item into component parts and store the parts into
parameters passed to the function. The only difference between the three functions is the
location of the source data. For the funct8wan, the source item is a data item in memory

which is passed to the function. FRganFile , the source item is a file, whose handle is

passed as the first argument. The handle is obtained by a call to the LabWindows/CVI function
OpenFile . For the functiorScanin , the source is taken from Standard In (typically the
keyboard), and the source argument present in the other two functions is omitted.

All target parameters must be passed by reference.

LabWindows/CVI Standard Libraries 2-40 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Scanning Functions—Format String
Consider the following scanning function:
n = Scan(source, formatstring, targetptrl, ..., targetptrn);

whereformatstring contains the information to transform thaurce argument to the
targetptr arguments.

Format strings for the scanning functions are of the following form.
"source_spec > target_specs_and_literals"

wheresource_spec is a format specifier that describes the nature of the source parameter and
target_specs_and_literals is a sequence of format specifiers and literal characters that
indicate how to divide and reformat the source argument into the desired target.

Examples of format strings for the scanning functions are:

"%s> %i" "%s > %20f[w10x]"

The character is a visual reminder of the direction of the data transformation, and also
separates the single source format specifier from the (possibly multiple) target format specifiers
and literals. The source format specifier can be omitted, in which éasetang format is

assumed. If the source format specifier is omitted>tblearacter can be omitted also, or

retained for clarity.

Notice that the source format specifier is located to the left of §enbol, just as the source
parameter is located to the left of the format string. Likewise, the target format specifiers are
located to the right of the symbol, just as the target parameters are located to the right of the
format string.

Format specifiers describe the inputs and outputs of data transformations. Each format specifier
is of the following form.

% [rep] formatcode [[ modifiers]]

The characte¥introduces all format specifiersep indicates how many times the format
repeats with respect to the argumeritgmatcode is a code character which indicates the
nature of the data items being formattedodifiers  is an optional bracket enclosed sequence
of codes which further describe the data format.

The following are examples of format specifiers.
%s[t59] %100i[z] %f

Note: rep is not allowed wherformatcode iss or| (string).

© National Instruments Corporation 2-41 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

formatcode s specified with one of the following codes:

S

string. As a source or target specifier this indicates that the corresponding parameter is a
character string. As a source specifier the number of bytes of the source parameter that
are consumed depends on the target specifier. If the target speéigbiges are

consumed until a termination character is encountered (seentloglifier for strings for

more information on termination characters). If the target specifier is one of the numeric
formats, bytes are consumed as long as they correspond to the pattern for the particular
numeric item being converted. Leading spaces and tabs are skipped unjeswothiger

is used.

Note: When a target string is filled in, an ASCII NUL is always placed in the string
after the last byte.

string. This is allowed only as a source specifier. It is the same #s#pecifier,

except that bytes from the source argument are to be consumed only until a linefeed is
encountered. Also, when modified withas in%I[c], a comma is used as the target
string terminator in place of white space characters.

integer. As a source or target specifier this indicates that the corresponding parameter is
an integer or, ifep is present, an integer array. As a source specifier in conversions to
string formats, the integer is converted into digits of the specified radix (default is
decimal). As a target specifier in conversions from string format, bytes of the source
parameter are consumed as long as they match the pattern of integer ASCII numbers in
the appropriate radix, or until the end of the string is encountered. The scanned
characters are converted to integer values and placed into the corresponding target
parameter, which is an integer or integer array passed by reference. If the format is
repeated, the operation is repeated the appropriate number of times with successive
elements of the integer array parameter.

The pattern for integer ASCII numbers depends on the radix of the number, and consists
of an optional signK or - ), followed by a series of one or more digits in the appropriate
radix. The decimal digits a®.234 56789 . The octal digits ar@1234567 . The
hexadecimal digits af@123456789ABCDEFabcdef .

integer (hexadecimal). This specifier indicatésigdormat with hexadecimal radix.
integer (octal). This specifier indicate%w format with octal radix.

integer (decimal). This specifier indicate%oaformat with decimal radix. Since
decimal is the default radix for intege®sdis equivalent t&%i, and is included for
compatibility with the Gscanf family of functions.

LabWindows/CVI Standard Libraries 2-42 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

f

real number. As a source or target specifier, this indicates that the corresponding
parameter is a real number, orap is present, a real array. As a source specifier in
conversions to string formats, the floating-point value is converted into ASCII form. As

a target specifier in conversions from string format, bytes of the source parameter are
consumed as long as they match the pattern of floating-point ASCIl numbers, or until the
end of the string is encountered. The scanned characters are converted to a floating-point
value and placed into the corresponding floating-point or floating-point array target
parameter. If the format is repeated, the operation is repeated the appropriate number of
times with successive elements of the array parameter. The pattern for floating-point
ASCII numbers is an optional sigh ¢r - ), a series of one or more decimal digits

possibly containing a decimal point, and an optional exponent consistindeaifran

followed by an optionally signed decimal integer value.

character. As a source specifier, this indicates that the source parameter is an integer with
one significant byte or, flep is present, an array of 1-byte integers. As a target specifier
this indicates that a byte of the source parameter is to be consumed, and the scanned
character placed directly into the corresponding target parameter, which is an integer
passed by reference. If the format is repeated, this operation is repeated the appropriate
number of times and the results stored into successive elements of the integer array.

Scanning Modifiers

modifiers  are optional codes used to describe the nature of the source or target data. If you
use them, you must enclose the modifiers in square brackets and place them immediately after
the format code they modify. If one format specifier requires more than one modifier, enclose all
modifiers in the same set of brackets. There is a different set of modifiers for each possible
format specifier.

Scanning Integer Madifiers (%i, %d, %x, %0, %c)

bn

Specify Length. Theb integer modifier specifies the length of the integer argument,
or the length of an individual integer array element, in bytes. The default length is
4 B; therefore, simple 4 B integers do not need this modifier. The modifier b2
represents short integers. The modifier b1 represents single-byte integers.

Specify Array Offset. Use tha integer modifier to specify an offset within an

integer array argument. It indicates the location within the array where processing is
to begin. n is the zero-based index of the first element to process. %id][i2]

applied to a source integer array reads the 10 integer values from the third through the
twelfth elements of the array. Themodifier is valid only ifrep is present. If the

i modifier is used with the modifier, them is in terms of bytes.

Treat String as Integer Array. Thez integer modifier indicates that the data type of
the corresponding argument is a string. Nevertheless, the data in the string is treated
as an integer array. Thkemodifier is valid only ifrep is present.

© National Instruments Corporation 2-43 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

m

wn

onnnn

Specify Radix. Ther integer modifier specifies the radix of the integer argument,
which is important if the integer is converted from a string format. Legal radixes are
8 (octal), 10 (decimal, the default), 16 (hexadecimal), and 256 (a special radix
representing single 8-bit ASCII characters).

Specify String Size. Thew integer modifier specifies the exact number of bytes
occupied by a string representation of the integer argument, in the event that the
integer is converted from a string format. You can enter any non-negative value here.
If n is less than the number of digits required to represent the integer, an asderisk (
will be inserted into the string to signify an overflow. The defaulbfa zero, which
indicates that the integer can occupy whatever room is necessary.

Specify as Two’'s Complement.Thes integer modifier indicates that the integer
argument is to be considered a signed two's complement number. This is the default
interpretation of integers, so teemodifier is not required.

Specify as Non-negativeTheu integer modifier indicates that the integer is to be
considered a non-negative integer.

Discard Terminator. Thex integer causes the character that terminated the numeric
data to be discarded. In this way, terminator characters can be skipped when reading
lists of numeric input. Thu843i[x] reads three integer numbers, disregarding the
terminator character which appears after each one. You can use this specifier to scan
the string3, 7,-32 .

Discard Data. When applied to a target specifier, thenteger modifier indicates

that there is no target argument to correspond to the target specifier. The data that
otherwise is placed in the target argument is discarded instead. The count returned by
theScan/ScanFile /Scanin functions willincludethe target specifier even if the

d modifier is used.

Specify Byte Ordering. Theo integer modifier is used to describe the byte ordering
of raw data so that LabWindows/CVI can map it to the byte order appropriate for the
Intel (PC) or Motorola (SPARCstation) architecture. The numbsisahust be

equal to the byte size of the integer argument as specified bytihmdifier, which

must precede the modifier. In the case of a four-byte integad,123 indicates that

the bytes are in ascending order of precedence (Intel style)3240 indicates that

the bytes are in descending order of precedence (Motorola style).

In aScan function, the buffer containing the raw instrument data should have the

o modifier describing the byte ordering. The buffer withoutdheodifier is

guaranteed to be in the mode of the host processor. LabWindows/CVI will reverse the
byte ordering of the buffer without teemodifier depending on which architecture

the program is running.

For example, if your GPIB instrument sends two-byte binary data in Intel byte order,
your code should appear as follows.

LabWindows/CVI Standard Libraries 2-44 © National Instruments Corporation



Chapter 2

Formatting and 1/O Library

short int instr_buf[100];

short int prog_buf[100];

status = ibrd (ud, instr_buf, 200);

Scan (instr_buf, "%100d[b2001]>%2100d", prog_buf);

If, instead, your GPIB instrument sends two-byte binary data in Motorola byte order,
the Scan function should appear as follows.

Scan (instr_buf, "%100d[b2010]>%2100d", prog_buf);

In either case, the modifier is used only on the buffer containing the raw data from
the instrumentigstr_buf ). LabWindows/CVI will ensure that the program buffer
(prog_buf ) is in the proper byte order for the host processor.

Note: When using both thdén and on modifiers on an integer specifier, then modifier
must be first.

Scanning Floating-Point Modifiers (%f)

bn

wn

pn

Specify Length. Theb floating-point modifier specifies the length of the
floating-point argument, or the length of an individual array element, in bytes. The
default length is 8 B; therefore, double-precision values do not need this modifier.
Single-precision floating-point values are indicated#y 8 and 4 are the only valid
values forn.

Specify Array Offset. You can use the floating-point modifier to specify an offset
within a floating-point array argument. It indicates the location within the array
where processing is to begin.is the zero-based index of the first element to process.
Thus,%10f[i2] applied to a source floating-point array reads the 10 floating-point
values from the third through the twelfth elements of the array.i Thedifier is

valid only ifrep is present. If you use themodifier with thez modifier, them is

in terms of bytes.

Treat String as Floating Point. Thez floating-point modifier indicates that the data
type of the corresponding argument is a string. Nevertheless, the data in the string is
treated as a floating-point array. Thenodifier is valid only ifrep is present.

Specify String Size. Thew floating-point modifier specifies the exact number of

bytes occupied by a string representation of the floating-point argument, in the event
that the value is converted from a string format. You can enter any non-negative
value here. Ihis less than the number of digits required to represent the
floating-point number, an asterisk)(will be inserted into the string to signify an
overflow. The default fon is zero, which indicates that the value can occupy
whatever space is necessary.

Specify Precision. Thep floating-point modifier specifies the number of digits to the
right of the decimal point in a string representation of the floating-point number.
Significant digits may be lost in attempting to conform to the precision specification.

© National Instruments Corporation 2-45 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

en

Scanning

If the pn modifier is omitted, a default @6 is used. The modifier is valid for
sources only.

Specify as Scientific Notation.Thee floating-point modifier indicates that the

string representation of the floating-point value is in scientific notation. If omitted,
non-scientific notation is used is optional and specifies the number of digits to use
in the exponent. For examp¥f[e2] causes 10.0 to be formatted as 1.0e+01. If

n is omitted, a default of three is used. Ehmodifier is valid for sources only.

Specify as Floating Point. Thef floating-point modifier indicates that the string
representation of the floating-point value is in non-scientific notation. This is the
default even when thfe modifier is not present.

Discard Terminator. Thex floating-point modifier causes the character that

terminated the numeric data to be discarded. In this way, terminator characters can be
skipped when reading lists of numeric input. TBaG8f[x] reads three floating-

point numbers, disregarding the terminator character which appears after each one;
this specifier could then be used to scan the s&ibg7.6, -32.4

Discard Data. When applied to a target specifier, thenodifier indicates there is no
target argument to correspond to the target specifier. The data that otherwise is
placed in the target argument is discarded instead. The count returned by the
Scan/ScanFile /Scanin functions willincludethe target specifier even if the

d modifier is used.

String Modifier&os)

in

wn

Specify Array Offset. Thei string modifier specifies an offset within a string. It
indicates the location within the string where processing is to begmthe zero-
based index of the first byte to process. Thtsi2] applied to a target string
begins placing data in the third byte of the string.

Append. When applied to a target format specifier, #ahgtring modifier specifies
that all formatted data kappendedo the target string, beginning at the first
occurrence of an ASCII NUL in the target string.

Specify String Size.When modifying a source format specifier, thetring modifier
specifies the maximum number of bytes from the source string to be used for filling
the target arguments. You can enter any non-negative value here, the default being
zero, which indicates that the entire string can be used.S@gamfile and

Scanln , the entire source string is consumed even ifnh&odifier restricts the

number of bytes used to fill in the target arguments.)

When modifying a target format specifier, thenodifier specifies the exact number
of bytes to store in the string, excluding the terminating ASCIl NUln i$fzero or
omitted, as many bytes are stored as are called for by the sources.n\§lyaater

LabWindows/CVI Standard Libraries 2-46 © National Instruments Corporation



Chapter 2

tn

t#

Formatting and 1/O Library

than the number of bytes available from the source, the remaining bytes are filled
with ASCII NULs if theq modifier is used or blanks if trigemodifier is not present.

When thew modifier is used in conjunction with tl@emodifier, n indicates the
number of bytes to append to the string excluding the terminating ASCII NUL.

If wn modifies a target string antlis larger than the number of bytes in the target
argument, the target argument is overwritten in compiled C.

Append NULs. When applied to a target string in conjunction withwitering
modifier, theq string modifier specifies that unfilled bytes at the end of the target
string be set to ASCII NULs instead of blanks.

Append with Spacing. When the source is a string and yhenodifier is applied to a
target string format specifier, the target string is filled with bytes from the source
string without skipping leading spaces or tabs.

Terminate on Character. When applied to a source string, thenodifier specifies

that the source string is terminated on the first occurrence of the charaotezren

is the ASCII value of the character. Th¥ss[t44] causes reading of the source

string to stop on an ASCIlI comma. More than brmaodifier can occur in the same
specifier, in which case the string terminates when any of the terminators occur. If no
t modifier is present, reading of the source string stops on an ASCII NUL.

When applied to a target string that is being filled from a source string,ntfoelifier
specifies that filling of the target is terminated on the first occurrence of the character
n, wheren is the ASCII value of the character. Th4ss[t59] causes reading of

the source string to stop on an ASCII semicolon. More thamh enedifier can occur

in the same specifier, in which case filling of the target terminates when any of the
terminators occur. If nb modifier is present, filling of the target stops on any
whitespace character.

Terminate when Full. This is similar tat n, except that it specifies that there ace
terminating characters. When applied to a source stringpecifies that reading of

the source string terminates when all of the targets are full or when the number of
bytes specified with thes modifier have been read. When applied to a target string,

t- specifies that filling of the target string terminates when the source is exhausted or
when the number of bytes specified with #henodifier have been placed into the

target.

Terminate on Number. This is equivalent to repeating themodifier with the

ASCII values of the charactets- , and0 through9. When applied to a source
(target), it specifies that reading of the source string (filling of the target string) be
terminated upon occurrence of a numeric expression. sax§os[t#]%d with the
source stringab567 , ab is placed in the first target and the inte§6v is placed in
the second target.

© National Instruments Corporation 2-47 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

X Discard Terminator. When applied to a target string, thenodifier specifies that
the terminating character be discarded before the next target is filled in. Using
%5>%s[Xxt59]%s[xt59] with the source strintpbc; XYZ;" , "abc" is placed
in the first target antXYZ" is placed in the second target.

d Discard Data. When applied to a target specifier, thenodifier indicates that there
IS no target argument to correspond to the target specifier. The data that otherwise is
placed in the target argument is discarded instead. The count returned by the
Scan/ScanFile /Scanin functions willincludethe target specifier even if the
d modifier is used.

Scan, ScanFile, Scanin—Asteriskst() Instead of Constants in Format Specifiers

Often, a format specifier requires one or more integer values. The format specifier for an integer
array, for example, requires the number of elemeafs). You can use constants for these

integer values in format specifiers. Alternatively, you can specify an integer value using an
argument in the argument list. When you use this method, substitute an as)doskhe

constant in the format specifier. Use the asterisk in the following format specifier elements.

rep For integer or floating-point arrays.

in For integer or floating-point arrays, or strings.
wn For any format specifier.

pn For floating-point specifiers only.

en For floating-point specifiers only.

rn For integer specifiers only.

When you use one or more asterisks instead of constans®ur@especifier, the arguments
corresponding to the asterisks must appétar the format string in the same order as their
corresponding asterisks appear in the format specifier.

When you use one or more asterisks instead of constantarmeaspecifier, the arguments
corresponding to the asterisks mpistcedethe target argument and must be in the same order as
their corresponding asterisks in the format specifier.

Scan, ScanFile, Scanin—Literals in the Format String

Literal characters appearing in a scanning function format string indicate that the literal
characters are expected in the source parameter. They are not stored into any target parameter,
but are skipped over when encountered. If a literal character specified in the format string fails
to appear in the source in the expected position, the scanning function immediately returns.

LabWindows/CVI Standard Libraries 2-48 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Some formats may have been correctly detected in the input, and the corresponding target
parameters will have been filled in. Formats situated after the literal which did not appeatr,
however, will not have been executed.

The function return value can be used to determine exactly how many target parameters were
actually fulfilled by the input. You can use the functidimFmtdBytes to determine the
number of bytes consumed from the source parameter.

Because the left side of thesymbol must be a single format specifier, literal characters, if
present, must be on the right side of the symbol. Literals on the left side, or more than one
format specifier on the left side, result in a -1 error, indicating a faulty format string. The
functionGetFmtErrNdx can then be used to determine exactly where in the format string the
error lies.

The character%; [, ], <, and> have special meaning in the format strings. To specify that these
characters be taken literally, they should be precedéd by

Formatting and I/O Library Programming Examples

This section contains examples of program code that use the Formatting and 1/O Library
functions. The formatting and scanning functions are the basis of most of the examples.

TheFmt/FmtFile /FmtOut examples are logically organized as shown:

Integer to String

Long Integer to String

Real to String in Floating-Point Notation

Real to String in Scientific Notation

Integer and Real to String with Literals

Two Integers to ASCII File with Error Checking

Real Array to ASCII File in Columns and with Comma Separators
Integer Array to Binary File, Assuming a Fixed Number of Elements
Real Array to Binary File, Assuming a Fixed Number of Elements
Real Array to Binary File, Assuming a Variable Number of Elements
A Variable Portion of a Real Array to a Binary File

Concatenating Two Strings

Appending to a String

Creating an Array of File Names

Writing a Line Containing an Integer with Literals to the Standard Output
Writing to the Standard Output without a Linefeed/Carriage Return

TheScan/ScanFile /Scanin examples are logically organized as shown:

String to Integer
String to Long Integer
String to Real

© National Instruments Corporation 2-49 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

String to Integer and Real

String to String

String to Integer and String

String to Real, Skipping over Non-Numeric Characters in the String

String to Real, after Finding a Semicolon in the String

String to Real, after Finding a Substring in the String

String with Comma-Separated ASCII Numbers to Real Array

Scanning Strings That Are Not NUL-Terminated

Integer Array to Real Array

Integer Array to Real Array with Byte Swapping

Integer Array Containing 1-Byte Integers to Real Array

String Containing Binary Integers to Integer Array

String Containing an IEEE-Format Real Number to a Real Variable

ASCII File to Two Integers with Error Checking

ASCII File with Comma-Separated Numbers to Real Array, with Number of Elements
at Beginning of File

Binary File to Integer Array, Assuming a Fixed Number of Elements

Binary File to Real Array, Assuming a Fixed Number of Elements

Binary File to Real Array, with Number of Elements at Beginning of File

Reading an Integer from the Standard Input

Reading a String from the Standard Input

Reading a Line from the Standard Input

Fmt/FmtFile/FmtOut Examples in C

This section contains examples of program code that usenthe=mtFile , andFmtOut

functions from the Formatting and 1/O Library. To eliminate redundancy, error checking on 1/O
operations has been omitted from all of the examples in this section excépfthetegers to

ASCII File with Error Checkingxample.

Integer to String

char buf[10];

int a;

a = 16;

Fmt (buf, "%s<%i", a); [* result: "16" */

a = 16;

Fmt (buf, "%s<%Xx", a); /* result: "10" */
a = 16;

Fmt (buf, "%s<%0", a); [* result: "20" */
a=-1;

Fmt (buf, "%s<%i", a); [* result: "-1" */
a=-1;

Fmt (buf, "%s<%i[u]", a); [* result: "4294967295" */
a=1234;

Fmt (buf, "%s<%i[w6]", a); [* result: " 1234" */
a=1234;

LabWindows/CVI Standard Libraries 2-50 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Fmt (buf, "%s<%i[w6p0]", a); /* result: "001234" */

a=1234,

Fmt (buf, "%s<%i[w2]", a); [* result: "*4" */
Remarks

The results shown are the contentbuff after each call témt. The last call demonstrates
what occurs when the width specified by thmodifier is too small.

Long Integer to String

char buf[20];

long a;

a = 123456;

Fmt (buf, "%s<%i[b4]", a); /* result: "123456" */

a = 123456;

Fmt (buf, "%s<%x[b4]", a); [* result: "1e240" */

a = 123456;

Fmt (buf, "%s<%o0[b4]", a); /* result: "361100" */
a=-1,

Fmt (buf, "%s<%i[b4]", a); /* result: "-1" */

a=-1,

Fmt (buf, "%s<%i[b4u]", a); /* result: "4294967295" */
a = 123456;

Fmt (buf, "%s<%i[b4w8]", a); /* result: " 123456" */
a = 123456;

Fmt (buf, "%s<%i[b4w8p0]", a); * result: "00123456" */
a = 123456;

Fmt (buf, "%s<%i[b4w4]", a); [* result: "*456" */

Remarks

The results shown are the contentbwff after each call ttmt. The last call demonstrates
what occurs when the width specified by theodifier is too small.

Real to String in Floating-Point Notation

char buf[30]

double x;

x = 12.3456789;

Fmt (buf, "%s<%f", X); [* result: "12.345679" */
X = 12.3456789;

Fmt (buf, "%s<%f[p2]", X); [* result; "12.35" */

x = 12.3456789;

Fmt (buf, "%s<%f[p10]", X); /* result: "12.3456789000" */
X =12.345;

Fmt (buf, "%s<%f", X); [* result: "12.345" */

X =12.345;

© National Instruments Corporation 2-51 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

Fmt (buf, "%s<%f[p0]", x); [* result: "12." */

X = 12.345;

Fmt (buf, "%s<%f[p6]", X); [* result: "12.345000" */
X =-12.345;

Fmt (buf, "%s<%f[w12]", x); [* result: "-12.345" */
x =-12.3456789;

Fmt (buf, "%s<%f[w6]", X); [* result: "-12.3*" */

x = 0.00000012;

Fmt (buf, "%s<%f[p8]", x); /* result: "0.00000012" */
x = 0.00000012;

Fmt (buf, "%s<%f", x); /* result: "1.2e-007" */
X = 4.5e050;

Fmt (buf, "%s<%f", X); [* result: "4.5e050" */
Remarks

The results shown are the contentbuff after each call ttmt. The last two calls demonstrate
that very large and very small values are sometimes forced into scientific notation even when the
e modifier is absent.

Real to String in Scientific Notation

char buf[20];

double x;

x =12.3456789;

Fmt (buf, "%s<%f[e]", x); /* result: "1.234568e+001" */
x =12.3456789;

Fmt (buf, "%s<%f[ep2]", x); /* result: "1.23e+001" */
x =12.3456789;

Fmt (buf, "%s<%f[e2p2]", X); [* result: "1.23e+01" */

X = 12.345;

Fmt (buf, "%s<%fl[e]", x); /* result: "1.234500e+001" */
X = 12.345;

Fmt (buf, "%s<%f[ep2w12]", x); [*result: " 1.23e+001" */
X = 12.345;

Fmt (buf, "%s<%f[ep2w6]", x); * result: "1.23e*" */

Remarks

The results shown are the contentbuff after each call témt. The last call demonstrates
what occurs when the width specified by thmodifier is too small.

LabWindows/CVI Standard Libraries 2-52 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Integer and Real to String with Literals

char buf[20];

intf, r;

double v;

f=4;

r=3,;

v=12;

Fmt (buf, "%s<F%iR%i; V%f;", f, r, v);

Remarks

After theFmt call, buf contains'F4R3; V1.2;"

Two Integers to ASCII File with Error Checking

int a, b, n, file_handle;
a=12;
b = 456;
file_handle = OpenFile ("FILE.DAT", 2, 0, 1);
if (file_handle < 0) {
FmtOut ("Error opening file\n");

exit (1);
n = FmtFile (file_handle, "%s<%i %i", a, b);
if (n!1=2){

FmtOut ("Error writing file\n");

exit (1);
}

CloseFile (file_handle);
Remarks

OpenFile opens the fil&-ILE.DAT as an ASCII file for writing only. If the function
succeeds, it returns a file handle with a positive integer v#logFile writes the ASCII
representation of two integer values to the fileFriftFile  succeeds, it returris(because there
are two source specifiers in the format string).

Real Array to ASCII File in Columns and with Comma Separators

double x[100];
int file_handle, i;
file_handle = OpenFile ("FILE.DAT", 2, 0, 1);
for (i=0; i < 100; i++) {
FmtFile (file_handle, "%s<%f[w15],", X[i]);

© National Instruments Corporation 2-53 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

if ((i % 5) ==4)
WriteFile (file_handle, "\n", 1);

}
CloseFile (file_handle);

Remarks

TheFmtFile call writes the ASCII representation of a real array element to the file, followed
by a comma. The modifier specifies that the number be right-justified in a 15-character field.
TheWriteFile call writes a linefeed to the file after every fifth calRmtFile . Because

the file is opened in ASCII mode, the linefeed is automatically written as a linefeed/carriage
return combination.

Note: If the format string is "%s[w15]<%f, ", the number and the comma are left-justified
together in a 15-character field.

Integer Array to Binary File, Assuming a Fixed Number of Elements

int readings[100];

int file_handle, nbytes;

file_handle = OpenFile ("FILE.DAT", 2, 0, 0);
FmtFile (file_handle, "%100i<%100i", readings);
nbytes = NumFmtdBytes ();

CloseFile (file_handle)

Remarks

TheFmtFile call writes all 100 elements of the integer amegdings to a file in binary
form. If theFmtFile call is successfuhbytes =200 (100 integers, 2 bytes per integer).

Real Array to Binary File, Assuming a Fixed Number of Elements

double waveform[100];

int file_handle, nbytes;

file_handle = OpenFile ("FILE.DAT", 2, 0, 0);
FmtFile (file_handle, "%100f<%2100f", waveform);
nbytes = NumFmtdBytes ();

CloseFile (file_handle);

Remarks

TheFmtFile call writes all 100 elements of the real arvegveform to a file in binary form.
If the FmtFile call is successfuhbytes =800 (100 integers, 8 bytes per real number).

LabWindows/CVI Standard Libraries 2-54 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Real Array to Binary File, Assuming a Variable Number of Elements

void StoreArray (double x[], int count, char filename[])

{
int file_handle;
file_handle = OpenFile (filename, 2, 0, 0);
FmtFile (file_handle, "%*f<%*f", count, count, X);
CloseFile (file_handle);

}

Remarks

This example shows how a function can be used to write an array of real numbers to a binary file.
The function's parameters are a real array, the number of elements to be written, and the
filename.

TheFmtFile call writes the firstount  elements ok to a file in binary form. The two
asterisks¥) in the format string are matcheddount . For instance, i€ount is 100, then the
format string is equivalent &100f<100f .

A Variable Portion of a Real Array to a Binary File

void StoreSubArray (double x[], int start, int count, char filename[])

{
int file_handle;
file_handle = OpenFile (filename, 2, 0, 0);
FmtFile (file_handle, "%*f<%*f[i*]", count, count, start, X);
CloseFile (file_handle)
}
Remarks

This example is an extension of the previous example. The function also writes a variable
number of elements of a real array to a file. Instead of beginning at the first element of the array,
a starting index is passed to the function.

TheFmtFile call writescount elements ok , starting fromx[start] , to afile in binary
form. The first two asteriskd J in the format string are matcheddount . The third asterisk
is matched tgtart . For instance, ifount is 100 andstart is 30, then the format string is
equivalent td0100f<100f{i30] . Because the modifier specifies a zero-based index into
the real array, the array elements fe@0] throughx[129] are written to the file.

© National Instruments Corporation 2-55 LabWindows/CVI Standard Libraries



Formatting and 1/O Library

Concatenating Two Strings

char buf[30];
int wave_type, signal_output;
char *wave_str, *signal_str;
int nbytes;
wave_type = 1;
signal_output = 0;
switch (wave_type) {
case O:
wave_str = "SINE;"
break;
case 1:
wave_str = "SQUARE;"
break;
case 2:
wave_str = "TRIANGLE;"
break;
}
switch (signal_output) {
case O:
signal_str = "OUTPUT OFF;"
break;
case 1:
signal_str = "OUTPUT ON;"
break;
}
Fmt (buf, "%s<%s%s", wave_str, signal_str);
nbytes = NumFmtdBytes ();

Remarks

Chapter 2

The twoswitch  constructs assign constant strings to the string varialales _str and
signal_str . TheFmt call concatenates the contentswafve _str andsignal_str into

buf . After the callbuf contains'SQUARE;OUTPUT OFF;" .

the number of bytes in the concatenated string.

NumFmtdBytes returns

Appending to a String

char buf[30];
int wave_type, signal_output;
int nbytes;
switch (wave_type) {
case 0O:
Fmt (buf, "%s<SINE;");
break;
case 1:
Fmt (buf, "%s<SQUARE;");
break;

LabWindows/CVI Standard Libraries 2-56

© National Instruments Corporation



Chapter 2 Formatting and 1/O Library

case 2:
Fmt (buf, "%s<TRIANGLE;");
break;

}
switch (signal_output) {
case O:
Fmt (buf, "%s[a]J<OUTPUT OFF;");
break;
case 1:
Fmt (buf, "%s[a]l<OUTPUT ON;");
break;

}
nbytes = StringLength (buf);

Remarks

This example shows how to append characters to a string without writing over the existing
contents of the string. The firstvitch  construct writes one of three strings ibtd . The
secondswitch  construct appends one of two strings to the string alredalyfin After the

call, buf contains'SQUARE;OUTPUT OFF;" . Notice that the@ modifier applies to the
target specifier.

StringLength returns the number of bytes in the resulting string. In this case,
StringLength is used instead MlumFmtdBytes , becaus&umFmtdBytes would return
only the number of bytes appended.

Creating an Array of File Names

char *fname_array[4];
inti;
fname_array[0] =" ; /* 13 spaces */
fname_array[1] =" ; /* 13 spaces */
fname_array[2] =" " /* 13 spaces */
fname_array[3] =" ; /* 13 spaces */
for (i=0; i < 4; i++)

Fmt (fname_array[i], "%s<FILE%i[w4pO0].DAT", i);

Remarks

To allocate the space for each filename in the array, a separate constant string must be assigned
to each array element. ThEmt is used to format each file name. The resulting file names are
FILEOOOO.DAT , FILEOOOL1.DAT , FILEOOO2.DAT , andFILEOOO3.DAT .

© National Instruments Corporation 2-57 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

Writing a Line Containing an Integer with Literals to the Standard Output
inta, b;

a=12;

b = 34;

FmtOut ("%s<A = %i\n", a);

FmtOut ("%s<B = %i\n", b);

Remarks

In this example, the output is as follows:
A=12

B=34

Writing to the Standard Output without a Linefeed/Carriage Return

char *s;

int b;

double c;

a="0One";

FmtOut ("%s<%s", a);
b=2;

FmtOut ("%s<%i", b);
c =34,

FmtOut ("%s<%f", c);

Remarks

This example demonstrates how to write to the Standard Output without a linefeed/carriage
return by omitting thé&n ' from the format string. The output in this example is as follows.

One 234

The following code produces the same output:
a="0ne",

b=2;

c = 3.4,
FmtOut ("%s<%s %i %f", a, b, c);

LabWindows/CVI Standard Libraries 2-58 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

Scan/ScanFile/Scanin Examples in C

This section contains examples of program code that ussctre, ScanFile , andScanin
functions from the Formatting and 1/O Library. To eliminate redundancy, the examples include
no error checking on 1/0O operations in this section except foh8@ I File to Two Integers with
Error Checkingexample.

String to Integer

char *s;

int a, n;

s ="32";

n = Scan (s, "%s>%i", &a); [*result:a=32,n=1%
s ="-32"

n = Scan (s, "%s>%i", &a); [*result: a=-32,n=1%
s=" +32"

n = Scan (s, "%s>%i", &a); [*result: a=32,n=1%
s ="x32",

n = Scan (s, "%s>%i", &a); [*result: a=??,n=0%

Remarks

When locating an integer in a strirf§can skips over white space characters such as spaces,
tabs, linefeeds, and carriage returns. If a non-numeric character other than a white space
character;, or- is found before the first numeric character, 8oan call fails. ThusScan

fails on thex in x32 ; it leaves the value ia unmodified and returns zero, indicating that no
target specifiers were satisfied.

s ="032"

n = Scan (s, "%s>%i", &a); [*result:a=32,n=1%
s ="32a"

n = Scan (s, "%s>%i", &a); [*result:a=32,n=1%
s ="32";

n = Scan (s, "%s>%0", &a); [*result: a=26,n=1%*
s ="32";

n = Scan (s, "%s>%x", &a); [*result: a=50,n=1%*

Remarks

When the%i specifier is used, numeric characters are interpreted as decimal, even when they
might appear to be octal (as082 ) or hexadecimal (as B2a ). When thébospecifier is

used, the numeric characte@d234567 ) are always interpreted as octal. When%he

specifier is used, the numeric charact@i2@456789abcdef ) are always interpreted as
hexadecimal.

s ="32x1",
n = Scan (s, "%s>%i", &a); [*result:a=32,n=1%

© National Instruments Corporation 2-59 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2
Scan considers the occurrence of a non-numeric character (suchxagnh&2x1 ) to mark the
end of the integer.

s ="32567";
n = Scan (s, "%s>%i[w3]", &a); [*result: a =325, n=1"%*

Thew3 modifier specifies that only the first 3 bytes of the string are scanned.

String to Long Integer

char *s;

long a;

int n;

s ="99999";

n = Scan (s, "%s>%i[b4]", &a); [*result: a=99999, n=1*/
s ="303237";

n = Scan (s, "%s>%o[b4]", &a); [*result: a=99999, n=1*/
s = "ffff";

n = Scan (s, "%s>%x[b4]", &a); [*result: a=65535,n=1*%

Remarks

Scan extracts long integers from strings in the same way it extracts integers. The only
differences are that thel modifier must be used and the target argument must be a long integer.
See thestring to Integeexample earlier in this section for more details on uStan to extract
integers and long integers from strings.

String to Real

char *s;

double x;

int n;

s ="12.3"

n = Scan (s, "%s>%f", &x); /M result: x=12.3,n=1%
s ="-1.23e+1";

n = Scan (s, "%s>%f", &x); /*result: x =-1.23,n=1%*
s ="1.23e-1"

n = Scan (s, "%s>%f", &x); /*result: x =0.123,n=1*%/

Remarks

When locating a real number in a striggan accepts either floating-point notation or scientific
notation.

s=" 12.3%
n = Scan (s, "%s>%f", &x); /*result: x=12.3,n=1"%*
s ="p12.3%

n = Scan (s, "%s>%f", &x); /*result: x =????, n=0*/

LabWindows/CVI Standard Libraries 2-60 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

When locating a real number in a striggan skips over white space characters. If a non-
numeric character other than a white space charagter; is found before the first numeric
character, th&can call fails. ThusScan fails on thep inpl2.3 ; it leaves the value ix
unmodified and returns zero, indicating that no target specifiers were satisfied.

s="12.3m";
n = Scan (s, "%s>%f", &x); /*result: x=12.3,n=1"%*
s="12.3.4"
n = Scan (s, "%s>%f", &x); /*result: x =123, n=1"*
s ="1.23e";
n = Scan (s, "%s>%f", &x); /* result: x = 2?2?22, n=0"%*

Scan considers the occurrence of a non-numeric character (suchragth2.3m ) to mark the
end of the real number. A second decimal point also marks the end of the number. However,
Scan fails on"1.23e" because the value of the exponent is missing.

s = "1.2345";
n = Scan (s, "%s>%flw4]", &x);/* result: x =1.23, n=1*/

Thew4 modifier specifies that only the first 4 bytes of the string are scanned.

String to Integer and Real

char *s;

inta, n;

double x;

s="32 1.23"

n = Scan (s, "%s>%i%f", &a, &x);
[*result: a=32,x=1.23,n=2"%*

s="32, 1.23"

n = Scan (s, "%s>%i[x]%f", &a, &x);
[*result: a=32,x=1.23,n=2"%*

s="32, 1.23"

n = Scan (s, "%s>%i%f", &a, &x);
[Fresult: a=32,x=2???2?2,n=1%

Remarks

After each of the first two calls t8can, a = 32,x = 1.23, andh = 2 (indicating that two target
specifiers were satisfied). In the second call xtmeodifier is used to discard the separating
comma.

In the third call, there is a comma separator after the integer, butntioglifier is absent.
ConsequentlyScan fails when attempting to find the real numbgrremains unmodified, and
n = 1 (indicating that only one target specifier was satisfied).

© National Instruments Corporation 2-61 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

String to String

char *s;

char buf[10];

int n;

s=" abc "

n = Scan (s, "%s>%s", buf); [* result; buf = "abc" */
s="abc ",

n = Scan (s, "%s>%s[y]", buf); [* result: buf =" abc" */

Remarks

When extracting a substring from a striggan skips leading spaces and tabs unlesy the
modifier is present.

s="a b c; d"

n = Scan (s, "%s>%s", buf); * result: buf ="a" */
s="a b c; d¥

n = Scan (s, "%s>%s[t59]", buf); /* result: buf ="a b c"*/

WhenScan extracts a substring from a string andtth@odifier is not present, the substring is
considered to be terminated by a white space character. To include embedded white space in the
target string, use the modifier to change the target string termination character. In the second

call toScan, [t59] changes the termination character to a semicolon (ASCII 59).

s =" abcdefghijkimnop";
n = Scan (s, "%s>%s[w9]", buf);
/* result: buf = "abcdefghi” */

s=" abc",
n = Scan (s, "%s>%s[w9]", buf);  /* result: buf = "abc "*/
s=" abc"

n = Scan (s, "%s>%s[w9q]", buf); /* result: buf = "abc" */
Remarks

Thew modifier can be used to prevestan from writing beyond the end of a target string. The
width specified does not include the ASCII NUL tBaian places at the end of the target string.
Therefore, the width specified should be at least one less than the width of the target character
buffer.

When thew modifier is used and the string extracted is smaller than the width specified, the
remaining bytes in the target string are blank-filled. However, i§theodifier is also used,
ASCII NULs fill the remaining bytes.

LabWindows/CVI Standard Libraries 2-62 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

String to Integer and String

char *s;

char buf[10];

inta, n;

s = "32abc";

n = Scan (s, "%s>%i%s", &a, buf);

[* result: a =32, buf ="abc", n=2*/

s = "32abc";

n = Scan (s, "%s>%i %s", &a, buf);

Remarks

After the first call toScan, a = 32,buf ="abc" , andn = 2. Notice there are no spaces in the
format string between the two target specifiers. In the second call, there is a space %g¢tween
and%s ConsequentlyScan expects a space to occursiimmediately after the integer.
Because there is no spacesirScan fails at that point. It leavdsuf unmodified and returns 1
(indicating that only one target specifier is satisfied).

Note: Do not put spaces between specifiersScan, ScanFile , or Scanin format strings

String to Real, Skipping over Non-Numeric Characters in the String

char *s;

double x;

int n;

s ="VOLTS = 1.2

n = Scan (s, "%s>%s[dt#]%f", &x); [*result: x=1.2,n=2%*/
s ="VOLTS = 1.2

n = Scan (s, "%s[i8]>%f", &x); [Fresult: x=12,n=1%
s ="VOLTS =1.2"

n = Scan (s, "%s>VOLTS = %f", &x); /result: x=1.2,n=1%*

Remarks

The three different format strings represent different methods for skipping over non-numeric
characters. In the first call, the format string contains two target specifiers. In the first specifier
(%s[dt#] ), thet# modifier instructsScan to read bytes froma until a number is

encountered. Th& modifier indicates that the bytes must be discarded because there is no
argument corresponding to the specifier. Whertiten call succeeds, it returns 2, indicating

that two target specifiers were satisfied, even though there is only one target argument.

In the second call, the source speci¥i&si8] instructsScan to ignore the first 8 bytes sf.
This method works only if the location of the number withiis always the same.

In the third call, the format string contains the non-numeric characters literally. This method
works only if the non-numeric characterssimre always the same.

© National Instruments Corporation 2-63 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

String to Real, After Finding a Semicolon in the String

char *s;

double x;

int n;

s = "TIME 12:45:00; 7.34";

n = Scan (s, "%s>%s[xdt59]%f", &x);
[*result: x=7.34,n=2%*

Remarks

Some strings returned by programmable instruments contain headers that consist of numeric as
well as non-numeric data and are terminated by a particular character, such as a semicolon. This
example shows how such a header can be skipped.

The format string contains two target specifiers. In the first spediisixt#] ), thet#

modifier instructsScan to read bytes frora until a number is encountered. Tdhenodifier
indicates that the bytes must be discarded because there is no argument corresponding to the
specifier. Thex modifier indicates that the semicolon should also be discarded.

When theScan call succeeds, it returns 2, indicating that two target specifiers were satisfied,
even though there is only one target argument.

String to Real, After Finding a Substring in the String

char *s;
double x;
int index, n;
s = "HEADER: R5 D6; DATA 3.71E+2",
index = FindPattern (s, 0, -1, "DATA", 0, 0) + 4;
n = Scan (s, "%s[i*]>%f", index, &x);
/*result: x =371.0,n=1%

Remarks

This example is similar to the previous one, except that portion of the string to be skipped is
terminated by a substrin@ATA rather than by a single character. The Formatting and 1/0
Library functionFindPattern  is used to find the index whelBBATAbegins ins. Four is
added to the index so that it points to the first byte &#FA The index is then passed to
Scan and matched with the asterigk) (n the format string.

In this exampleFindPattern  returns 15, anthdex is 19. Whenndex is matched to the
asterisk in the format string in tisean call, the format string is interpreted %®s[i19]>%f
Theil9 indicates that the first 19 bytesothould be ignoredScan then extracts the real
number from the remaining string,71E+2 , and assigns it 8. Scan returns 1, indicating
that one target specifier is satisfied.

LabWindows/CVI Standard Libraries 2-64 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

String with Comma-Separated ASCIl Numbers to Real Array

char *s;

int n;

double a[5]; /* 5 8-byte real numbers */

s="12.3, 45, 6.5, -1.3E-2, 4"

n = Scan (s, "%s>%5f[x]", a);
/* result: a[0] = 12.3, a[1] =45.0, a[2] = 6.5, */
/* a[3] =-0.013,a[4]=4.0, n=1%

Remarks
Thex modifier causes the comma separators to be discarded.

Scan considers an array target to be satisfied when at least one element of the array is filled in.
If the source string in this example wé23 , only the first element & would be filled in, the
other elements would remain unmodified, &wdn would return 1.

Scanning Strings That Are Not NUL-Terminated

int bd;

double x;

char s[20];

ibrd (bd, s, 15);

Scan (s, "%s[w*]>%f", ibcnt, &x);

Remarks

All of the previous examples assume thas a NUL-terminated string. However, when reading
data from programmable instruments using the GPIB and RS-232 Library functions, the data
transferred is not NUL-terminated. This example uisebs to read up to 15 B from a GPIB
instrument. The global variabllecnt contains the actual number of bytes transferf&chn

uses the value itbbent  in conjunction with thev modifier to specify the width of the source
string.

For example, ifbcnt  is 12, the format string is interpreted%as[w12]>%f , causingScan to
use only the first 12 bytes ef

The following example is an alternative method for handling strings that are not
NUL-terminated:

int bd;

double x;

char s[20];

ibrd (bd, s, 15);

s[15]=0; /*ASCII NULis0*/
Scan (s, "%s>%f", &x);

© National Instruments Corporation 2-65 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

This code shows how to insert an ASCII NUL at the end of the transferred bytes. After the
assignments is NUL-terminated.

Integer Array to Real Array

int ivals[100];

double dvals[100];

Scan (ivals, "%100i>%2100f", dvals);
Remarks

Each integer ivals is converted to real number and then written duals .

Integer Array to Real Array with Byte Swapping

int ivals[100];
double dvals[100];
Scan (ivals, "%2100i[010]>%100f", dvals);

Remarks
Each integer invals is byte-swapped, converted to a real number, and writteglvats .

Byte swapping is useful when a programmable instrument sends back 2-byte integers with the
high byte first, followed by the low byte. When this data is read into an integer array, the
placement of the bytes is such that the high byte is interpreted as the low byte. The

010 modifier specifies that the bytes be interpreted in the opposite order.

Integer Array Containing 1-Byte Integers to Real Array

int ivals[50]; /* 100 1-byte integers */

double dvals[100]; /* 100 8-byte real numbers */
Scan (ivals, "%100i[b1]>%100f", dvals);

Scan (ivals, "%2100i[b1u]>%100f", dvals);

Remarks

Sometimes, each element in an integer array is used to store two 1-byte integers. This example
shows how to unpack the 1-byte integers and store them in a real arrayl iflicates that
each binary integer is only one byte long.

LabWindows/CVI Standard Libraries 2-66 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

The first call toScan treats the 1-byte integers as signed values (from -128 to +127). The
second call includeswain the format string. This causBsan to treat the 1-byte integers as
unsigned values (from 0 to 255).

String Containing Binary Integers to Integer Array

char s[200]; /* string containing 100 2-byte integers */
int ivals[100];/* 100 2-byte integers */

Scan (s, "%100i[z]>%100i", ivals);

Scan (s, "%97i[zi6]>%97i", ivals);

Remarks

Sometimes data from a programmable instrument is read into a character buffer even though it
contains binary data. This example shows how to treat a character buffer as an integer array.
The format string in eacBcan call specifies that the sourcg) (contains an array of 100

integers. The modifier is used to indicate that the source is actually a character buffer.

In some cases, the integer data may not start at the beginning of the character buffer. For
instance, the data in the buffer can begin with an ASCII header. In the secondbcalhtdhe
i6 modifier is used to indicate that the first 6 bytes afre to be ignored.

Note: When thei modifier is used in conjunction with a character buffer, the number
following thei specifieshe number of bytes within the buffer to ignore. This is true
even when the modifier is also present. On the other hand, when thenodifier is
used in conjunction with an array variable, the number following thandicates the
number of array elements to ignore.

String Containing an IEEE-Format Real Number to a Real Variable

char s[100];

double x;

Scan (s, "%1f[z]>%f", &X);
Scan (s, "%1f[zi5]>%f", &X);

Remarks

This example is similar to the previous example, excepstlantains a single binary real
number (in IEEE format), rather an array of binary integers. The format string i eacicall
indicates that the sourcg)(is to be treated as a 1-element array of real numbersz frioalifier
indicates that the source is actually a character buffer. The repetition cuint thie format
string is required; otherwise, taemodifier is not accepted.

© National Instruments Corporation 2-67 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

The first call toScan assumes that the real number is at the beginniag @he second call
assumes that the real number starts at the sixth bgte Diei5 modifier causes the first
5 bytes ofs to be ignored.

ASCII File to Two Integers with Error Checking

int file_handle, n, a, b;
file_handle = OpenFile ("FILE.DAT", 1, 2, 1);
if (file_handle < 0) {
FmtOut ("Error opening file\n");
exit (1);
}
n = ScanFile (file_handle, "%s>%i%i", &a, &b);
if (n'!=2){
FmtOut ("Error reading file\n");
exit (1);
}
CloseFile (file_handle);

Remarks

OpenFile opens the fil&-ILE.DAT as an ASCII file for reading only. @penFile
succeeds in opening the file, it returns a file handle with a positive integer \BdaaFile
reads the ASCII representation of two integer values from the filecahFile succeeds, it
returns 2 (indicating that two target specifiers were satisfied).

ASCII File with Comma Separated Numbers to Real Array, with Number of Elements at
Beginning of File

double values[1000];
int file_handle, count;
file_handle = OpenFile ("FILE.DAT", 1, 2, 1);
ScanFile (file_handle, "%s>%i", &count);
if (count > 1000) {
FmtOut ("Count too large\n");
exit(1);
}
ScanFile (file_handle, "%s>%*f[x]", count, values);
CloseFile (file_handle);

Remarks

The firstScanFile call reads the number of elements into the integer vartaiiet . If the
value incount exceeds the number of elements in the real aales , an error is reported.
Otherwise, the secorfécanFile call matchegount to the asterisk*() in the format string. It

LabWindows/CVI Standard Libraries 2-68 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

then reads the correct number of elementsviatoes . Thex modifier causes the comma
separators to be discarded.

Binary File to Integer Array, Assuming a Fixed Number of Elements

int readings[100];

int file_handle, nbytes;

file_handle = OpenFile ("FILE.DAT", 1, 2, 0);
ScanFile (file_handle, "%100i>%2100i", readings);
nbytes = NumFmtdBytes ();

CloseFile (file_handle);

Remarks

TheScanFile call reads 100 integers from a binary file and stores them in the integer array
readings . IftheScanFile call is successfuhbytes =200 (100 integers, 2 bytes per
integer).

Binary File to Real Array, Assuming a Fixed Number of Elements

double waveform[100];

int file_handle, nbytes;

file_handle = OpenFile ("FILE.DAT", 1, 2, 0);
ScanFile (file_handle, "%100f>%100f", waveform);
nbytes = NumFmtdBytes ();

CloseFile (file_handle);

Remarks

TheScanFile call reads 100 real numbers from a binary file and stores them in the real array
waveform . If theScanFile call is successfuhbytes =800 (100 integers, 8 bytes per real
number).

Binary File to Real Array, Assuming a Variable Number of Elements

void StoreArray (double x[], int count, char filename[])

{
int file_handle;
file_handle = OpenFile (filename, 1, 2, 0);
ScanFile (file_handle, "%*f>%*f", count, count, x);
) CloseFile (file_handle);

© National Instruments Corporation 2-69 LabWindows/CVI Standard Libraries



Formatting and 1/O Library Chapter 2

Remarks

This example shows how a subroutine can be used to read an array of real numbers from a binary
file. The subroutine takes as parameters a real array, the number of elements to be read, and the
filename.

TheScanFile call reads the firstount elements ok from a binary file. The two asterisks
(*) in the format string are matcheddount . For instance, itount is 100, then the format
string is equivalent t&6100f>100f

Reading an Integer from the Standard Input

int n, num_readings;

n=0;

while (n1=1){
FmtOut ("Enter number of readings: ");
n = Scanln ("%I>%i", &num_readings);

}

Remarks

This example shows how to get user input from the keyboard Fit@ut call writes the
prompt string to the screen without a linefeed or carriage returnSddrdn call attempts to
read an integer value from the keyboard and placeniiim_readings . If Scanin succeeds,
it returns 1, and the loop is exited. Otherwise, the prompt string is repeated.

The format string in th&8canln call contains a source specifier%f. This has two

consequences. FirS8canin returns whenever the user presses ENTER, even if the input line is
empty. This allows the prompt string to be repeated at the beginning of each line until the user
enters an integer value. Second, any characters entered after the integer value are discarded.

Reading a String from the Standard Input

char filename[41];
int n;
n=0;
while (n1=1) {
FmtOut ("Enter file name: ");
n = Scanlin ("%I>%s[w40q]", filename);

}

Remarks

This example is similar to the previous example, except that the item being read from the
keyboard is a string instead of an integer. Wheodifier is used to prevefcanin from

LabWindows/CVI Standard Libraries 2-70 © National Instruments Corporation



Chapter 2 Formatting and 1/O Library

writing beyond the end dilename . Notice that the width specified is one less than the size
of flename . This allows room for the ASCII NUL th&canin appends at the end of

filename . Theq modifier causeScanin to fill any unused bytes at the endfitdname

with ASCII NULs. Without theg modifier, all unused bytes are filled with spaces, except for the
ASCII NUL at the end.

The call toScanin in this example skips over leading spaces and tabs and terminates the string
on an embedded space. For other options, segttiing to Stringexample earlier in this section.

Reading a Line from the Standard Input

char buf[81];
nbytes = ReadLine (0, buf, 80);

Remarks

The previous two examples show how to read single items from the keyboard. When you are
prompted to enter several items on one line, it is often easier to read the entire line into a buffer
before parsing it. This can be done via the Formatting and 1/O Library fuidiadLine .

The first parameter tBeadLine is a file handle. In this case, the file handle is zero, which is
the handle reserved for the Standard Input. The other two parameters are a buffer and the
maximum number of bytes to place in the buffReadLine always appends an ASCIlI NUL at
the end of the bytes read. Thus, the maximum number of bytes paBs=ditone must be at
least one less than the size of the buffer.

ReadLine transfers every character from the input line to the buffer, including leading,
embedded, and trailing spaces, until the maximum number of bytes (for example, 80) have been
transferred. Any remaining characters at the end of the line are discarded. The linefeed is never
transferred to the buffer.

ReadLine returns the number of bytes read, including the number discarded, but excluding the
linefeed.

© National Instruments Corporation 2-71 LabWindows/CVI Standard Libraries



Chapter 3
Analysis Library

This chapter describes the functions in the LabWindows/CVI Analysis Library Ai&lgsis
Library Function Overvievgection contains general information about the Analysis Library
functions and panels. Thalysis Library Function Referensection contains an alphabetical
list of the function descriptions.

Analysis Library Function Overview

The Analysis Library includes functions for one-dimensional (1D) and two-dimensional (2D)
array manipulation, complex operations, matrix operations, and statistics. This section contains
general information about the Analysis Library functions and panels.

The Analysis Library Function Panels

The Analysis Library function panels are grouped in a tree structure according to the types of
operations performed. The Analysis Library function tree is shown in Table 3-1.

The first- and second-level bold headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The third-
level headings in plain text are the names of individual function panels. Each analysis function
panel generates one analysis function call. The names of the corresponding analysis function
calls appear in bold italics to the right of the function panel names.

Table 3-1. The Analysis Library Function Tree

Analysis
Array Operations
1D Operations

Clear Array ClearlD
Set Array SetlD
Copy Array CopylD
1D Array Addition Add1D
1D Array Subtraction SublD
1D Array Multiplication MullD
1D Array Division DiviD
1D Absolute Value Abs1D
1D Negative Value NeglD

(continues)

© National Instruments Corporation 3-1 LabWindows/CVI Standard Libraries



Analysis Library

Chapter 3

Table 3-1. The Analysis Library Function Tree (Continued)

1D Linear Evaluation
1D Maximum & Minimum
1D Array Subset
1D Sort Array
2D Operations
2D Array Addition
2D Array Subtraction
2D Array Multiplication
2D Array Division
2D Linear Evaluation
2D Maximum & Minimum
Complex Operations
Complex Numbers
Complex Addition
Complex Subtraction
Complex Multiplication
Complex Division
Complex Reciprocal
Rectangular to Polar
Polar to Rectangular
1D Complex Operations
1D Complex Addition
1D Complex Subtraction
1D Complex Multiplication
1D Complex Division
1D Complex Linear Evaluation
1D Rectangular to Polar
1D Polar to Rectangular
Statistics
Mean
Standard Deviation
Histogram
Vector & Matrix Algebra
Dot Product
Matrix Multiplication
Matrix Inversion
Transpose
Determinant
Array Utilities
Clear Array
Set Array
Copy Array
Get Error String

LinEvliD
MaxMinl1D
SubsetlD
Sort

Add2D
Sub2D
Mul2D
Div2D
LinEv2D
MaxMin2D

CxAdd
CxSub
CxMul
CxDiv
CxRecip
ToPolar
ToRect

CxAdd1D
CxSubl1D
CxMull1D
CxDivlD
CXLinEv1D
ToPolarlD
ToRectlD

Mean
StdDev
Histogram

DotProduct
MatrixMul
InvMatrix
Transpose
Determinant

ClearlD

SetlD

CopylD
GetAnalysisErrorString

LabWindows/CVI Standard Libraries 3-2

© National Instruments Corporation



Chapter 3 Analysis Library

The classes and subclasses in the function tree are described here.
* TheArray Operations function panels perform arithmetic operations on 1D and 2D arrays.

— 1D Operations a subclass of Array Operations, contains function panels that perform 1D
array arithmetic.

— 2D Operations a subclass of Array Operations, contains function panels that perform 2D
array arithmetic.

» TheComplex Operationsfunction panels perform complex arithmetic operations. The
Complex Operations function panels can operate on complex scalars or 1D arrays. The real
and imaginary parts of complex numbers are processed separately.

— Complex Numbers a subclass of Complex Operations, contains function panels that
perform scalar complex arithmetic.

— 1D Complex Operations a subclass of Complex Operations, contains function panels
that perform complex arithmetic on 1D complex arrays.

» The Statisticsfunction panels perform basic statistics functions.

» TheVector & Matrix Algebra function panels perform vector and matrix operations.
Vectors and matrices are represented by 1D and 2D arrays, respectively.

* TheArray Utilities function panels copy, initialize, and clear arrays.
» Miscellaneousis a class of function panels for miscellaneous Analysis Library functions.

The online help with each panel contains specific information about operating each function
panel.

Hints for Using Analysis Function Panels

With the analysis function panels, you can manipulate scalars and arrays of data interactively.
You will find it helpful to use the Analysis Library function panels in conjunction with the User
Interface Library function panels to view the results of analysis routines. When using the
Analysis Library function panels, remember the following things.

* The processing speed of the analysis functions is affected by the computer on which you are
running LabWindows/CVI. A numeric coprocessor, especially, increases the speed of
floating-point computations. If you are using an Analysis Library function panel and nothing
seems to happen for an inordinate amount of time, keep the constraints of your hardware in
mind.

* Many analysis routines for arrays run in place. That is, the input and output data can be
stored in the same array. This is very important to keep in mind when you are processing

© National Instruments Corporation 3-3 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

large amounts of data. Large double-precision arrays consume a lot of memory. If the
results you want do not require that you keep the original array or intermediate arrays of data,
perform analysis operations in place where possible.

* The Interactive window maintains a record of generated code. If you forget to keep the code
from a function panel, you can cut and paste code between the Interactive and Program
windows.

Reporting Analysis Errors

The functions in the Analysis Library return status information through a return value.

If the return valuestatusis zero after an Analysis Library function call, the function properly
executed with no errors. Otherwisgatusis set to the appropriate error value. Error messages
corresponding to the possildtatusvalues are listed at the end of this chapter.

Analysis Library Function Reference

This section describes each function in the LabWindows/CVI Analysis Library. The
LabWindows/CVI Analysis Library functions are arranged alphabetically.

Abs1D

int status=Abs1D (double inputArray [] ,int numberofElements,
double outputArray [] );

Purpose

Finds the absolute value of tigutArray . The function performs the operation in place;
inputArray andoutputArray can be the same array.

Parameters
Input inputArray double-precision | Input array.
array
numberofElements | integer Number of elements.
Output outputArray double-precision | Absolute value of input array.
array

LabWindows/CVI Standard Libraries 3-4 © National Instruments Corporation



Chapter 3 Analysis Library

Return Value

status integer Refer to error codes in
Table 3-2.

Add1D

int status=Add1D (double arrayX[] ,double arrayY[] ,int numberofElements,
double outputArray [] );

Purpose

Adds one-dimensional (1D) arrays. The function obtains the ith element of the output array by
using the following formula:

Z=xtY

The function performs the operation in place; thabigputArray can be the same array as
eitherarrayX orarrayY .

Parameters
Input arrayX double-precision | Input array.
array
arrayY double-precision | Input array.
array
numberofElements | integer Number of elements to be
added.
Output outputArray double-precision | Result array.
array
Return Value
status integer Refer to error codes in
Table 3-2.

Add2D

int status=Add2D (void *arrayX, void *arrayY, int numberofRows,
int numberofColumns,void *outputArray);

© National Instruments Corporation 3-5 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

Purpose

Adds two (2D) arrays. The function obtains the (ith, jth) element of the output array by using the
following formula.

Zi =%ty

The function performs the operation in placetputArray can be the same array as either
arrayX orarrayy .

Parameters
Input arrayX double-precision 2D Input array.
array
arrayY double-precision 2D Input array.
array
numberofRows integer Number of elements in first
dimension.
numberofColumns |integer Number of elements in second
dimension.
Output outputArray double-precision 2D Result array.
array
Return Value
status integer Refer to error codes in
Table 3-2.

ClearlD
int status=ClearlD (double array[] ,int numberofElements);
Purpose

Sets the elements of theray to zero.

Parameters
Input numberofElements | integer Number of elements iarray .
Output array double-precision |Cleared array.

array

LabWindows/CVI Standard Libraries 3-6 © National Instruments Corporation



Chapter 3 Analysis Library

Return Value

status integer Refer to error codes in
Table 3-2.

CopylD

int status=CopylD (double inputArray [] ,int numberofElements,
double outputArray [] );

Purpose

Copies the elements of tihmgutArray . This function is useful to duplicate arrays for in-place
operations.

Parameters
Input inputArray double-precisionInput array.
array
numberofElements | integer Number of elements in
inputArray .
Output outputArray double-precisionDuplicated array.
array
Return Value
status integer Refer to error codes in Table 3-2|

CxAdd

int status = CxAdd double xReal,double xImaginary, double yReal,
double ylmaginary, double *outputReal
double *outputimaginary);

Purpose

Adds two complex numbers. The function obtains the resulting complex number by using the
formulas.

Zr = Xr +yr

Zi=xi+yi

© National Instruments Corporation 3-7 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3
Parameters
Input | xReal double-precision Real part of x.
xImaginary double-precision | Imaginary part of x.
yReal double-precision | Real part of y.
ylmaginary double-precision | Imaginary part of y.
Output | outputReal double-precision | Real part of z.
outputlmaginary double-precision | Imaginary part of z.

Return Value

Refer to error codes in Table 3-2.

status integer

CxAdd1D

int status=CxAddl1D (double arrayXReal[] , double arrayXimaginary[] ,
double arrayYReal[] , double arrayYIimaginary|[] ,
int numberofElements double outputArrayReal[] ,
double outputArraylmaginary [] );

Purpose

Adds two 1D complex arrays. The function obtains the ith element of the resulting complex
array by using the following formulas.

ZE = XE +y§
Zi, = x| +]

The function performs the operations in place; that is, the input and output complex arrays can be
the same.

Parameters
Input arrayXReal double-precision array| Real part of x.
arrayXlmaginary double-precision array| Imaginary part of x.
arrayYReal double-precision array| Real part of y.

arrayYlmaginary
numberofElements

double-precision array|
integer

Imaginary part of y.
Number of elements.

Output

outputArrayReal
outputArraylmaginary

double-precision array|

double-precision array|

Real part of z.

Imaginary part of z.

LabWindows/CVI Standard Libraries

3-8

© National Instruments Corporation



Chapter 3 Analysis Library

Return Value

status integer Refer to error codes in
Table 3-2.

CxDiv

int status=CxDiv (double xReal, double xImaginary, double yReal, yimaginary,
double *outputReal, double *outputimaginary);

Purpose

Divides two complex numbers. The function obtains the resulting complex number by using the
following formulas.

zr = (xr*yr + xi*yi) / (yr 2 + yi2)
zi = (xi*yr - xrtyi ) [ (yr2 + yi2)

Parameters
Input xReal double-precision Real part of x.
xImaginary double-precision Imaginary part of x.
yReal double-precision Real part of y.
ylmaginary double-precision Imaginary part of y.
Output outputReal double-precision Real part of z.
outputlmaginary | double-precision Imaginary part of
Return Value
status integer Refer to error codes in
Table 3-2.

© National Instruments Corporation 3-9 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

CxDivlD

int status=CxDivlD (double arrayXReal[] ,double arrayXIimaginary [] ,
double arrayYReal[] , double arrayYlmaginary)[] ,
int numberofElements double outputArrayReal[] ,
double outputArraylmaginary [] );

Purpose

Divides two 1D complex arrays. The function obtains the ith element of the resulting complex
array by using the following formulas.

zr = (xe*yr+ xj* yi)/ (yr*+ vyi?)
zZi = (Xi*yr- x¢ yj)/(yr+ yi?)

The function performs the operations in place; that is, the input and output complex arrays can be
the same.

Parameters

Input

arrayXReal
arrayXlmaginary
arrayYReal
arrayYlmaginary

numberofElements

double-precision
array

double-precision
array

double-precision
array

double-precision
array

integer

Real part of x.
Imaginary part of x.
Real part of y.
Imaginary part of y.

Number of elements.

Output

outputArrayReal

outputArraylmaginary

double-precision
array

double-precision
array

Real part of z.

Imaginary part of z.

Return Value

status integer Refer to error codes in
Table 3-2.
LabWindows/CVI Standard Libraries 3-10 © National Instruments Corporation




Chapter 3 Analysis Library

CxLinEv1lD

int status=CxLinEv1D (double arrayXReal[] , double arrayXlmaginary [] ,
int numberofElements double aReal double almaginary,
double bReal double bimaginary,
double outputArrayReal]] ,
double outputArraylmaginary [] );

Purpose

Performs a complex linear evaluation of a 1D complex array. The function obtains the ith
element of the resulting complex array by using the following formulas.

yr = (ar*xr - at xiy br

yi, = (ar* xi + ai* xr )+ bi

The function performs the operations in place; that is, the input and output complex arrays can be
the same.

Parameters
Input arrayXReal double-precision | Real part of x.
array
arrayXlmaginary double-precision |Imaginary part of x.
array
numberofElements integer Number of elements.
aReal double-precision Real part of a.
almaginary double-precision Imaginary part of a.
bReal double-precision Real part of b.
blmaginary double-precision Imaginary part of b.
Output | outputArrayReal double-precision |Real part of y.
array
outputArraylmaginary |double-precision |Imaginary part of y.
array
Return Value
status integer Refer to error codes in

Table 3-2.

© National Instruments Corporation 3-11 LabWindows/CVI Standard Libraries



Analysis Library

CxMul

Chapter 3

int status=CxMul (double xReal, double xImaginary, double yReal,
double ylmaginary, double *outputReal,
double *outputimaginary);

Purpose

Multiplies two complex numbers. The function obtains the resulting complex number by using
the following formulas.

Zr = Xrryr - Xi*yi

Zi = Xr*yi + xi*yr

Parameters
Input | xReal double-precision Real part of x.
xImaginary double-precision Imaginary part of x.
yReal double-precision Real part of y.
ylmaginary double-precision Imaginary part of y.
Output |outputReal double-precision Real part of z.
outputlmaginary double-precision Imaginary part of z.

Return Value

status

integer

Refer to error codes in Table 3

2.

CxMull1D

int status=CxMullD (double arrayXReal[] , double arrayXlmaginary [] ,
double arrayYReal[] , double arrayYImaginary[] ,

Purpose

int

numberofElements double outputArrayReal[] ,

double outputArraylmaginary [] );

Multiplies two 1D complex arrays. The function obtains the ith element of the resulting complex

array by using the formulas:

ZE = XP* Y- X[ Y]

Zi = XE* Y+ Xy

LabWindows/CVI Standard Libraries

3-12

© National Instruments Corporation



Chapter 3 Analysis Library

The function performs the operations in place; that is, the input and output complex arrays can be
the same.

Parameters
Input arrayXReal double-precision | Real part of x.
array
arrayXlmaginary double-precision |Imaginary part of x.
array
arrayYReal double-precision | Real part of y.
array
arrayYlmaginary double-precision |Imaginary part of y.
array
numberofElements integer Number of elements.
Output | outputArrayReal double-precision | Real part of z.
array
outputArraylmaginary |double-precision |Imaginary part of z.
array
Return Value
status integer Refer to error codes in

Table 3-2.

CxRecip

int status=CxRecip (double xReal, double xImaginary, double *outputReal,
double *outputimaginary);

Purpose

Finds the reciprocal of a complex number. The function obtains the resulting complex number
by using the following formulas.

yr = xr [ (xr2 + xi2)

yi = -xi [ (xr2 + xi2)

© National Instruments Corporation 3-13 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

Parameters
Input | xReal double-precision Real part of x.
xImaginary double-precision Imaginary part of x.
Output | outputReal double-precision Real part of y.
outputlmaginary double-precision Imaginary part of y.

Return Value

status integer Refer to error codes in Table 342.

CxSub

int status=CxSub (double xReal, double xImaginary, double yReal,
double ylmaginary, double *outputReal,
double *outputimaginary);

Purpose

Subtracts two complex numbers. The function obtains the resulting complex number by using
the following formulas.

Zr = Xr-yr
Zi=Xi-yi
Parameters
Input xReal double-precision Real part of x.
xImaginary double-precision Imaginary part of x.
yReal double-precision Real part of y.
ylmaginary double-precision Imaginary part of y.
Output | outputReal double-precision Real part of z.
outputlmaginary double-precision Imaginary part of z.

Return Value

status integer Refer to error codes in
Table 3-2.

LabWindows/CVI Standard Libraries 3-14 © National Instruments Corporation



Chapter 3

CxSubl1D

Analysis Library

int status=CxSubl1D (double arrayXReal[] ,double arrayXIimaginary [] ,
double arrayYReal[] , double arrayYlmaginary [] ,
int numberofElements double outputArrayReal[] ,
double outputArraylmaginary [] );

Purpose

Subtracts two 1D complex arrays. The function obtains the ith element of the resulting complex

array by using the following formulas.

Zr =

zi =

The function performs the operations in place; that is, the input and output complex arrays can be

XE - yf

Xi - Vi

the same.
Parameters
Input arrayXReal double-precision | Real part of x.
array
arrayXlmaginary double-precision | Imaginary part of x.
array
arrayYReal double-precision | Real part of y.
array
arrayYlmaginary double-precision | Imaginary part of y.
array
numberofElements integer Number of elements.
Output | outputArrayReal double-precision | Real part of z.
array
outputArraylmaginary |double-precision |Imaginary part of z.
array

Return Value

status integer Refer to error codes in
Table 3-2.
© National Instruments Corporation 3-15 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

Determinant
int status=Determinant (void *inputMatrix ,int matrixSize, double *determinant);
Purpose

Finds the determinant ofraatrixSize by matrixSize 2D input matrix.

Parameters
Input inputMatrix double-precision 2D Input matrix.
array
matrixSize integer Dimension size of input matrix.
Output determinant double-precision Determinant.

Note: The input matrix must be anatrixSize by matrixSize square matrix.

Return Value

status integer Refer to error codes in
Table 3-2.

DiviD

int status=DivlD (double arrayX[] ,double arrayY[] ,int numberofElements
double outputArray [] );

Purpose

Divides two 1D arrays. The function obtains the ith element of the output array by using the
following formula.

z=x1y

The function performs the operation in place; thabugputArray can be the same array as
eitherarrayX or arrayY .

LabWindows/CVI Standard Libraries 3-16 © National Instruments Corporation



Chapter 3 Analysis Library

Parameters
Input [arrayX double-precision | Input array.
array
arrayY double-precision | Input array.
array
numberofElements |integer Number of elements to be divided,
Output | outputArray double-precision | Result array.
array
Return Value
status integer Refer to error codes in Table 3-2.

Div2D

int status=Div2D (void *arrayX,void *arrayY,int numberofRows
int numberofColumns, void *outputArray );

Purpose

Divides two 2D arrays. The function obtains the (ith, jth) element of the output array by using
the following formula.

Z =%y

The function performs the operation in place; thabugputArray can be the same array as
eitherarrayX orarrayy .

Parameters
Input arrayX double-precision 2D Input array.
array
arrayY double-precision 2D Input array.
array
numberofRows integer Number of elements in first
dimension.
numberofColumns | integer Number of elements in second
dimension.
Output outputArray double-precision 2D Result array.
array

© National Instruments Corporation 3-17 LabWindows/CVI Standard Libraries



Analysis Library

Return Value

Chapter 3

status

integer

Refer to error codes in
Table 3-2.

DotProduct

int status= DotProduct (double vectorX[] , double vectorY[] ,
int numberofElements
double *dotProduct);

Purpose

Computes the dot product of thectorX andvectorY input arrays. The function obtains the dot
product by using the following formula:

n-1
o]

dotproduct= x Xy
i=0
Parameters
Input vectorX double-precision | Input vector.
array
vectorY double-precision | Input vector.
array
numberofElements | integer Number of elements.
Output dotProduct double-precision Dot product.

Return Value

status

integer

Refer to error codes in
Table 3-2.

LabWindows/CVI Standard Libraries

3-18

© National Instruments Corporation



Chapter 3 Analysis Library

GetAnalysisErrorString
char *message= GetAnalysisErrorString (int  errorNum)
Purpose

Converts the error number returned by an Analysis Library function into a meaningful error
message.

Parameters

Input errorNum integer Status returned by an
Analysis function.

Return Value

message string Explanation of error.

Histogram

int status=Histogram (double inputArray [] ,int numberofElements double base
double top,int histogramArray[] , double axisArray[] ,
int intervals);

Purpose

Computes the histogram of thgutArray . The histogram is obtained by counting the number
of times that the elements in the input array fall in the ith interval. Let

Dx = (XTop - xBase) / intervals

_ J1 ifiDx £x - xBase < (i + 1D x
Ysi= 10 otherwise

The ith element of the histogram is:
. Bl
hist =a Y%, 1)
j=0

The values of the histogram axis are the mid-point values of the intervals:

axi§ = Dx+ Dx/ 2 + xBase

© National Instruments Corporation 3-19 LabWindows/CVI Standard Libraries



Analysis Library

Chapter 3

Parameters
Input inputArray double-precision | Input array.
array
numberofElements | integer Number of elements in
Input Array .
base double-precision Lower range.
top double-precision Upper range.
intervals integer Number of intervals.
Output histogramArray integer array Histogram ofinput Array .
axisArray double-precision | Histogram axis array.
array

Return Value

status integer Refer to error codes in
Table 3-2.

InvMatrix

int status=InvMatrix (void *inputMatrix ,int matrixSize, void *outputMatrix );

Purpose

Finds the inverse matrix of an input matrix. The operation can be performed in place; that is,

inputMatrix andoutputMatrix can be the same matrices.

Parameters
Input inputMatrix double-precision 2D Input matrix.
array
matrixSize integer Dimension of matrix.
Output outputMatrix double-precision 2D Inverse matrix.
array

Note: The input matrix must be anatrixSize by matrixSize square matrix

LabWindows/CVI Standard Libraries

3-20

© National Instruments Corporation




Chapter 3 Analysis Library

Return Value

status integer Refer to error codes in n
Table 3-2.

LinEv1D

int status=LinEv1D (double inputArray [] ,int numberofElements
double multiplier , double additiveConstant,
double outputArray [] );

Purpose

Performs a linear evaluation of a 1D array. The function obtains the ith element of the output
array by using the following formula.

y=ax+b

The operation can be performed in place; thahmjtArray andoutputArray can be the same
array.

Parameters
Input inputArray double-precision | Input array.
array
numberofElements | integer Number of elements.
multiplier double-precision Multiplicative constant.
additiveConstant | double-precision Additive constant.
Output outputArray double-precision | Linearly evaluated array.
array
Return Value
status integer Refer to error codes in

Table 3-2.

© National Instruments Corporation 3-21 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

LinEv2D

int status=LinEv2D (void *inputArray ,int numberofRows int numberofColumns,
double multiplier , double additiveConstant,
void *outputArray );

Purpose

Performs a linear evaluation of a 2D array. The function obtains the (ith, jth) element of the
output array by using the following formula.

—_ *
y,=a*x; + b

The function performs the operation in place; thahigutArray andoutputArray can be the
same array.

Parameters
Input inputArray double-precision 2D Input array.
array
numberofRows integer Number of elements in first
dimension.
numberofColumns | integer Number of elements in secord
dimension.
multiplier double-precision Multiplicative constant.
additiveConstant | double-precision Additive constant.
Output outputArray double-precision 2D Linearly evaluated array.
array
Return Value
status integer Refer to error codes in
Table 3-2.

LabWindows/CVI Standard Libraries 3-22 © National Instruments Corporation



Chapter 3 Analysis Library

MatrixMul

int status=MatrixMul (void *matrixX,void *matrixY ,int #ofRowsInX,
int cols/rowsInX/Y, int #ofColumnsinyY,
void *outputMatrix );

Purpose

Multiplies two 2D input matrices. The function obtains the (ith, jth) element of the output matrix
by using the following formula.

ko—l
Z;=a X, " ¥,
p=0

Parameters
Input matrixX double-precision 2D matrixX input matrix.
array
matrixyY double-precision 2D matrixY input matrix.
array
#ofRowsInX integer First dimension omatrixX .
cols/rowsInX/Y integer Second dimension @hatrixX .;
first dimension ofmatrixY .
#ofColumnsinY integer Second dimension @hatrixY .
Output outputMatrix double-precision 2D Output matrix.
array
Return Value
status integer Refer to error codes in
Table 3-2.

Parameter Discussion

Note: Be sure to use the correct array sizes. The following array sizes must be met:
* matrixX must be(#ofRowsInX by cols/rowsInX/Y).
* matrixY mustbe (cols/rowsInX/Y by #ofColumnsinY).

* outputMatrix must be(#ofRowsInX by #ofColumnsinY).

© National Instruments Corporation 3-23 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

MaxMin1D

int status=MaxMinlD (double inputArray [] ,int numberofElements
double *maximumValue, int *maximumindex,
double *minimumValue, int *minimumindex);

Purpose

Finds the maximum and minimum values in the input array, as well as the respective indices of
the first occurrence of the maximum and minimum values.

Parameters
Input inputArray double-precision | Input array.
array
numberofElements | integer Number of elements.
Output maximumValue double-precision Maximum value.
maximumindex integer Index ofmaximumValue in
inputArray .
minimumValue double-precision Minimum value.
minimumIindex integer Index ofminimumValue in
inputArray .
Return Value
status integer Refer to error codes in
Table 3-2.

MaxMin2D

int status=MaxMin2D (void *inputArray ,int numberofRows
int numberofColumns, double *maximumValue,
int *maximumRowlndex, int *maximumColumnindex,
double *minimumValue, int *minimumRowlndex,
int  *minimumColumnindex);

Purpose

Finds the maximum and the minimum values in the 2D input array, as well as the respective
indices of the first occurrence of the maximum and minimum valuesinpb&Array is
scanned by rows.

LabWindows/CVI Standard Libraries 3-24 © National Instruments Corporation



Chapter 3 Analysis Library

Parameters
Input inputArray double-precision | Input array.
2D array
numberofRows integer Number of elements in first
dimension ofnputArray .
numberofColumns integer Number of elements in second
dimension ofnputArray .
Output | maximumValue double-precision | Maximum value.
maximumRowIndex integer Index ofmaximumValue in
inputArray array (first
dimension).
maximumColumnindex |integer Index ofmaximumValue in
inputArray (second
dimension).
minimumValue double-precision | Minimum value.
minimumRowIndex integer Index ofminimumValue in
inputArray (first dimension).
minimumColumnindex |integer Index ofminimumValue in
inputArray array (second
dimension).
Return Value
status integer Refer to error codes in
Table 3-2.

Mean
int status=Mean (double inputArray [] ,int numberofElements double *mean);
Purpose

Compute the mean (average) value of the input array. The function uses the following formula
to find the mean.

n-1

[o}
meanvakF g x/ n
i=0

© National Instruments Corporation 3-25 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

Parameters
Input inputArray double-precision | Input array.
array
numberofElements | integer Number of elements in
inputArray .
Output mean double-precision Mean value.
Return Value
status integer Refer to error codes in
Table 3-2.

MullD

int status=MullD (double arrayX[] ,double arrayY[] ,int numberofElements
doulde outputArray [] );

Purpose

Multiplies two 1D arrays. The function obtains the ith element of the output array by using the
following formula.

z = X"y

The function performs the operation in place; thabugputArray can be the same array as
eitherarrayX orarrayy .

Parameters
Input arrayX double-precision | Input array.
array
arrayY double-precision | Input array.
array
numberofElements | integer Number of elements to be
multiplied.
Output outputArray double-precision | Result array.
array

LabWindows/CVI Standard Libraries 3-26 © National Instruments Corporation



Chapter 3 Analysis Library

Return Value

status integer Refer to error codes in
Table 3-2.

Mul2D

int status=Mul2D (void *arrayX,void *arrayY,int numberofRows
int numberofColumns, void *outputArray );

Purpose

Multiplies two 2D arrays. The function obtains the (ith, jth) element of the output array by using
the following formula.

Zj =% "y

The function performs the operation in place; thabigputArray can be the same array as
eitherarrayX or arrayy .

Parameters
Input arrayX double-precision 20 Input array.
array
arrayY double-precision 20 Input array.
array
numberofRows integer Number of elements in first
dimension.
numberofColumns | integer Number of elements in secord
dimension.
Output outputArray double-precision 20 Result array.
array
Return Value
status integer Refer to error codes in
Table 3-2.

© National Instruments Corporation 3-27 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

NeglD

int status=NeglD(double inputArray [] ,int numberofElements
double outputArray [] );

Purpose

Negates the elements of the input array. The function performs the operation in place; that is,
inputArray andoutputArray can be the same array.

Parameters
Input inputArray double-precision| Input array.
array
numberofElements |integer Number of elements.
Output | outputArray double-precision| Negated values of thaputArray .
array
Return Value
status integer Refer to error codes in Table 3-2.

SetlD
int status=SetlD(double array[] ,int numberofElements double setValue);
Purpose

Sets the elements of the input array to a constant value.

Parameters
Input numberofElements | integer Number of elements iarray.
setValue double-precision| Constant value.
Output |array double-precision| Result array (set to the value
array of setValue.
Return Value
status integer Refer to error codes in Table 3-2.

LabWindows/CVI Standard Libraries 3-28 © National Instruments Corporation



Chapter 3 Analysis Library

Sort

int status= Sort (double inputArray [] ,int numberofElements int direction,
double outputArray [] );

Purpose

Sorts the input array in ascending or descending order. The function performs the operation in
place; that isinputArray andoutputArray can be the same array.

Parameters
Input inputArray double-precision Input array.
array
numberofElements | integer Number of elements to be
sorted.
direction integer 0: ascending.
Non-zero: descending.
Output outputArray double-precision | Sorted array.
array
Return Value
status integer Refer to error codes in

Table 3-2.

StdDev

int status= StdDev(double inputArray [] ,int numberofElements double *mean,
double *standardDeviation);

Purpose

Computes the standard deviation and the mean (average) values of the input array. The formulas
used to find the mean and the standard deviation are as follows.

n-1

[¢}
meanvaF g x/ n

i=0

i=0

n-1
sDev= \/é [x, - avef / n

© National Instruments Corporation 3-29 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

Parameters
Input inputArray double-precision | Input array.
array
numberofElements | integer Number of elements in
inputArray .
Output mean double-precision Mean value.
standardDeviation | double-precision Standard deviation.
Return Value
status integer Refer to error codes in
Table 3-2.

SublD

int status=SublD(double arrayX[] ,double arrayY][] ,int numberofElements
double outputArray [] );

Purpose

Subtracts two 1D arrays. The function obtains the ith element of the output array by using the
following formula:

5=%X-Y

The operation can be performed in place; thaiugyutArray can be in place of eitharrayX
orarrayy .

Parameters
Input arrayX double-precision | Input array.
array
arrayY double-precision | Input array.
array
numberofElements | integer Number of elements to be
subtracted.
Output outputArray double-precision | Result array.
array

LabWindows/CVI Standard Libraries 3-30 © National Instruments Corporation



Chapter 3

Return Value

Analysis Library

status integer Refer to error codes in
Table 3-2.
Sub2D
int status =Sub2D(void *arrayX, void *arrayY,int numberofRows

Purpose

int

numberofColumns, void *outputArray );

Subtracts two 2D arrays. The function obtains the (ith, jth) element of the output array by using

the formula:

4i =X Yj

The function performs the operation in place; thabigputArray can be in place of either
arrayX orarrayy .

Parameters
Input arrayX double-precision 20 Input array.
array
arrayY double-precision 20 Input array.
array
numberofRows integer Number of elements in first
dimension.
numberofColumns | integer Number of elements in secor
dimension.
Output outputArray double-precision 20 Result array.
array

Return Value

d

status integer Refer to error codes in
Table 3-2.
© National Instruments Corporation 3-31 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

SubsetlD

int status =SubsetlD(double inputArray [] ,int numberofElementsint index,
int length, double outputArray [] );

Purpose

Extracts a subset of theputArray input array containing the number of elements specified by
thelength and starting at theadex element.

Parameters
Input inputArray double-precision | Input array.
array
numberofElements | integer Number of elements in
inputArray .
index integer Initial index for the subset.
length integer Number of elements copied tp
the subset.
Output outputArray double-precision | Subsetrray.
array
Return Value
status integer Refer to error codes in
Table 3-2.

ToPolar

int status =ToPolar (double xReal double ylmaginary, double *magnitude,
double *phaseRadiang,

Purpose

Converts the rectangular coordinateBéal, yimaginary) to polar coordinatesr(agnitude,
phaseRadian3. The formulas used to obtain the polar coordinates are as follows.

mag=+ X + ¥
phase = arctan (y/x)

ThephaseRadiansvalue is in the range of ptop ]

LabWindows/CVI Standard Libraries 3-32 © National Instruments Corporation



Chapter 3

Analysis Library

Parameters
Input xReal double-precision X coordinate.
ylmaginary double-precision X coordinate.
Output magnitude double-precision Magnitude.
phaseRadians double-precision Phase (in radians).

Return Value

status

integer

Refer to error codes in
Table 3-2.

ToPolarlD

int status =ToPolarlD (double arrayXReal[] , double arrayYIimaginary|] ,
int numberofElements double magnitudd] ,
double phaseRadianf );

Purpose

Converts the set of rectangular coordinate pomrtayXReal, arrayYImaginary ) to a set of
polar coordinate pointsriiagnitude, phaseRadian3. The function obtains the ith element of the
polar coordinate set by using the following formulas.

mag = X+ y’

phase= arctan y/ x

ThephaseRadiansvalue is in the range of ptop ].

The function performs the operations in place; thansyXReal andmagnitude, and
arrayYIlmaginary andphaseRadianscan be the same arrays, respectively.

© National Instruments Corporation

3-33

LabWindows/CVI Standard Libraries



Analysis Library Chapter 3
Parameters
Input arrayXReal double-precision | X coordinate.
array
arrayYlmaginary |double-precision |Y coordinate.
array
numberofElements | integer Number of elements.
Output magnitude double-precision | Magnitude.
array
phaseRadians double-precision | Phase (in radians).
array

Return Value

status

integer

Refer to error codes in
Table 3-2.

ToRect

int status =ToRect(double magnitude, double phaseRadiansdouble *xReal,
double *ylmaginary);

Purpose

Converts the polar coordinataadgnitude, phaseRadian3 to rectangular coordinatesReal,
ylmaginary). The formulas used to obtain the rectangular coordinates are as follows.

X = mag * cos(phase)

y = mag * sin(phase)

Parameters
Input magnitude double-precision Magnitude.
phaseRadians double-precision Phase (in radians).
Output xReal double-precision X coordinate.
ylmaginary double-precision Y coordinate.

LabWindows/CVI Standard Libraries

3-34

© National Instruments Corporation



Chapter 3 Analysis Library

Return Value

status integer Refer to error codes in
Table 3-2.

ToRectlD

int status =ToRectlD(double magnitude]] , double phaseRadianf ,
int numberofElements double outputArrayReal[] ,
double outputArraylmaginary [] );

Purpose

Converts the set of polar coordinate poimagnitude, phaseRadian$ to a set of rectangular
coordinate pointsoutputArrayReal , outputArraylmaginary ). The function obtains the ith
element of the rectangular set by using the following formulas.

X

mag* cos( phase)

y; = mag*sin( phasg

The function performs the operations in place; thaiugputArrayReal andmagnitude, and
outputArraylmaginary andphaseRadianscan be the same arrays, respectively.

Parameters
Input magnitude double-precision | Magnitude.
array
phaseRadians double-precision | Phase (in radians).
array
numberofElements integer Number of elements.
Output | outputArrayReal double-precision | X coordinate.
array
outputArraylmaginary |double-precision |Y coordinate.
array
Return Value
status integer Refer to error codes in

Table 3-2.

© National Instruments Corporation 3-35 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

Transpose

int status =Transpose(void *inputMatrix ,int numberofRows
int  numberofColumns, void *outputMatrix );

Purpose

Finds the transpose of a 2D input matrix. The (ith, jth) element of the resulting matrix uses the
formula:

yiJ = Xiyj
Parameters
Input inputMatrix double-precision 2D Input matrix.
array
numberofRows integer Size of first dimension.
numberofColumns | integer Size of second dimension.
Output outputMatrix double-precision 2D Transpose matrix.
array

Note: If the input matrix is dimensionedriumberofRowsby numberofColumns), then the
output matrix must be dimensionediimberofColumns by numberofRows).

Return Value

status integer Refer to error codes in
Table 3-2.

LabWindows/CVI Standard Libraries 3-36 © National Instruments Corporation



Chapter 3 Analysis Library

Error Conditions

If an error condition occurs during a call to any of the functions in the LabWindows/CVI
Analysis Library, the status return value contains the error code. This code is a value that
specifies the type of error that occurred. The currently defined error codes and their associated
meanings are given in Table 3-2.

Table 3-2. Analysis Library Error Codes

Symbolic Name Code Error Message

BaseGETopAnlysErr -20101 Base must be less than Top.

DivByZeroAnlysErr -20060 Divide by zero err.

IndexLengthAnlysErr -20018 The following condition must be met:
0 £ (index + length) < samples.

NoAnlysErr 0 No error; the call was successful.

OutOfMemAnlysErr -20001 | There is not enough space left to perform the specified
routine.

SamplesGEZeroAnlysErr -20004 | The number of samples must be greater than or equal to
zero.

SamplesGTZeroAnlysErr -20003 | The number of samples must be greater than zero.

SingularMatrixAnlysErr -20041 | The input matrix is singular. The system of equations

cannot be solved.

© National Instruments Corporation 3-37 LabWindows/CVI Standard Libraries



Chapter 4
GPIB/GPIB-488.2 Library

This describes the NI-488 and NI-488.2 functions in the LabWindows/CVI GPIB Library, as
well as the Device Manager functions in LabWindows/CVI. GRB Library Function

Overview section contains general information about the GPIB Library functions and panels, the
GPIB DLL, and guidelines and restrictions you should know when using the GPIB Library.
Detailed descriptions of the NI-488 and NI-488.2 functions can be found in your NI-488.2
function reference manual. TIB&PIB Function Referencgection contains an alphabetical list of
descriptions for the Device Manager functions, the callback installation functions, and the
functions for returning the thread-specific status variables.

GPIB Library Function Overview

This section describes the functions in the LabWindows/CVI GPIB Library. These functions are
arranged alphabetically according to their names in C. For detailed function descriptions, refer to
the NI-488.2 function reference manual that accompanied your GPIB interface board.

GPIB Functions Library Function Panels

The GPIB Functions Library function panels are grouped in a tree structure according to the
types of operations performed. The GPIB Functions Library function tree is in Table 4-1.

The first- and second-level bold headings in the function tree are names of the function classes.
Function classes are groups of related function panels. The third-level headings in plain text are
the names of individual function panels. Each GPIB function panel generates a GPIB function
call. The actual function names are in bold italics in columns to the right.

© National Instruments Corporation 4-1 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library

Chapter 4

Table 4-1. The GPIB Functions Library Function Tree

1/O

GPIB/GPIB-488.2 Library
Open/Close

Open Device

Close Device

Close Instrument Devices
Find Board/Device

Find Unused Device
Offline/Online

Configuration

Change Primary Address
Change Secondary Address
Change Access Board
Change Time Out Limit

Set EOS Character
Enable/Disable END
Enable/Disable DMA
System Control

Change Config Parameter
Get Config Parameter

Read

Read Asynchronously
Read to File

Write

Write Asynchronously
Write from File

Stop Asynchronous I/0

Device Control

Get Serial Poll Byte
Clear Device

Trigger device

Check for Listeners
Wait for Event (Dev)
Go to Local (Dev)
Parallel Poll Cfg (Dev)
Pass Control

OpenDev
CloseDev
CloselnstrDevs
ibfind

ibdev

ibonl

ibpad
ibsad
ibbna
ibtmo
ibeos
ibeot
ibdma
ibrsc
ibconfig
ibask

ibrd
ibrda
ibrdf
ibwrt
ibwrta
ibwrtf
ibstop

ibrsp
ibclr
ibtrg
ibln
ibwait
ibloc
ibppc
ibpct

LabWindows/CVI Standard Libraries 4-2

(continues)

© National Instruments Corporation




Chapter 4

GPIB/GPIB-488.2 Library

Table 4-1. The GPIB Functions Library Function Tree (Continued)

Bus Control
Send Interface Clear
Become Active Controller
Go to Standby
Set/Clear Remote Enable
Send Commands
Send Commands (Async)
Parallel Poll
Read Control Lines
Board Control
Wait for Board Event
Dequeue Board Event
Set UNIX Signal Request
Go to Local Mode
Parallel Poll Configuration
Request Service
Set/Clear IST
Write to Board Key
Read from Board Key
Callbacks (Windows only)
Install Synchronous Callback
Install Asynchronous Callback
Thread-Specific Status
Get Ibsta for Thread
Get Iberr for Thread
Get Ibcnt for Thread
Get Ibcntl for Thread
GPIB-488.2 Functions
Device I/O
Send
Send to Multiple Devices
Receive
Trigger and Clear
Trigger Device
Trigger Multile Devices
Clear Device
Clear Multiple Devices

ibsic
ibcac
ibgts
ibsre
ibcmd
ibcmda
ibrpp
iblines

ibwait
ibevent
ibsignal
ibloc
ibppc
ibrsv
ibist
ibwrtkey
ibrdkey

ibInstallCallback
ibNotify

Threadlbsta
Threadlberr

Threadlbcnt
Threadlbcntl

Send
SendList
Receive

Trigger
TriggerList
DevClear
DevClearList

© National Instruments Corporation 4-3

(continues)

LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library

Table 4-1. The GPIB Functions Library Function Tree (Continued)

Chapter 4

SRQ and Serial Polls
Test SRQ line
Wait for SRQ
Find Requesting Device
Read Status Byte
Serial Poll All Devices
Parallel Polls
Parallel Poll
Parallel Poll Config
Parallel Poll Unconfig
Remote/Local
Enable Remote Operation
Enable Local Operation
Set remote with Lockout
Send Local Lockout
System Control
Reset System
Send Interface Clear
Conduct Self-Tests
Find All Listeners
Pass Control
Low-Level I/O
Send Commands
Setup for Sending
Send Data Bytes
Setup for Receiving

Receive Response Message

TestSRQ
WaitSRQ
FindRQS
ReadStatusByte
AllSpoll

PPoll
PPollConfig
PPollUnconfig

EnableRemote
EnableLocal
SetRWLS
SendLLO

ResetSys
SendIFC
TestSys
FinsLstn
PassControl

SendCmds
SendSetup
SendDataBytes
ReceiveSetup
RcvRespMsg

The classes and subclasses in the tree are described here.

The Open/Closefunction panels open and close GPIB boards and devices.

TheConfiguration function panels alter configuration parameters that were set during
installation of the GPIB handler or during the execution of previous program statements.

Thel/O function panels read and write data over the GPIB. These functions can be used at

either the board or the device level.

TheDevice Control function panels provide high-level, commonly used GPIB services for

instrument control applications.

LabWindows/CVI Standard Libraries

4-4 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

TheBus Control function panels provide low-level control of the GPIB bus.

TheBoard Control function panels provide low-level control of the GPIB board. These
functions are normally used when the GPIB board is not controller-in-charge.

The Callbacks function panels install callback functions that are invoked when certain GPIB
events occur. The functions in this class are available only under Windows. Under UNIX,
you can use thibsgnl function.

TheThread-Specific Statusfunction panels return the value of the thread-specific GPIB
status variables for the current thread. The functions in this class are needed only for
multithreaded applications and are available only on Windows 95 and NT.

The GPIB 488.2 Functionsfunction panels directly adhere to the IEEE-488.2 standard for
communicating with and controlling GPIB devices.

- TheDevice I/Ofunction panels read data from, and write data to, devices on the GPIB.
- TheTrigger and Clear function panels trigger and clear GPIB devices.

-  TheSRQ and Serial Pollsfunction panels handle service requests and perform
serial polls.

- TheParallel Pollsfunction panels conduct parallel polls and configure devices to
respond to them.

- TheRemote/Localfunction panels enable and disable operation of devices remotely via
the GPIB or locally via the front panel of the device.

- TheSystem Controlfunction panels perform system-wide functions, obtain system-wide
status information, and pass system control to other devices.

- ThelLow-Level I/O function panels perform 1/O functions at a lower-level than the
function panels in the other classes.

GPIB Library Concepts

This section contains general information about the GPIB Library, the GPIB device driver,
guidelines and restrictions you should know when using the GPIB Library, and descriptions of
the types of GPIB functions that the GPIB Library contains.

GPIB Libraries and the GPIB Dynamic Link Library/Device Driver

LabWindows/CVI for Windows uses National Instruments standard Win@GB.DLL .
LabWindows/CVI for Sun uses the standard Sun Solaris-installed GPIB device drivers. These

© National Instruments Corporation 4-5 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

drivers are packaged with your GPIB interface board and are not included with
LabWindows/CVI. LabWindows/CVI does not require any special procedures for installing and
using the device driver. Follow the directions outlined in your board documentation.

You can use a utility program call#8CONF, included with your GPIB software, to specify
configuration parameters for devices on the GPIB. If your device has special configuration
parameters, such as a secondary address or a special termination character, you can specify these
usingIBCONF. When you are using the LabWindows/CVI GPIB Library function panels,
parameters that you specified usIBEEONF are still in effect. You can also modify

configuration parameters directly from one of the LabWindows/CVI configuration function

panels, or from your program.

If you are using a LabWindows/CVI Instrument Library module, you do not need to make any
changes usinBCONF. The module takes into account any special configuration requirements
for the instrument controlled by the module. If special parameters must be specified, the module
sets them programmatically.

Guidelines and Restrictions for Using the GPIB Libraries
Follow these guidelines when using the GPIB Libraries:

» Before performing any other operations, open the device. You must use either the
OpenDev, theibfind , or theibdev function. Instrument modules must use the
OpenDev function. When you open a device, an integer value representing a device
descriptor is returned. All subsequent operations that involve a particular device require that
you specify this device descriptor.

» If OpenDev is used, th€loseDev function should be used to close the device at the end
of the program.

» Each GPIB Library function panel has three global controls labeled Status, Error, and Count.
These controls show the values of the GPIB stabtsta( ), error {(berr ) and byte count
(ibcntl ) variables.

— The Status control displays in hexadecimal format. The help information for Status
explains the meaning of each bit in the status word. If the most significant bit is set, a
GPIB error has occurred.

— When an error occurs, the Error control displays an error number. The help information
for Error describes the type of error associated with each error number.

— Count displays the number of bytes transferred over the GPIB during the most recent bus
transfer.

LabWindows/CVI Standard Libraries 4-6 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

Note: When writing instrument modules, you must use the Device Manager functions
(OpenDev and CloseDev ) instead ofibfind  oribdev . You must also use the
Device Manager functions in application programs that make calls to instrument
modules. The Device Manager functions allow instrument modules to open devices
without specific device names, thereby preventing device name conflicts. They also
help the LabWindows/CVI interactive program ensure that devices are closed when no
longer needed.

Device and Board Functions

Device functions are high-level functions that execute command sequences to handle bus
management operations required by activities such as reading from and writing to devices or
polling them for status. Device functions access a specific device and take care of the addressing
and bus management protocol for that device. Because they execute automatically, you do not
need to know any GPIB protocol or bus management details. A descriptor of the accessed device
is one of the arguments of the function.

In contrast, board functions are low-level functions that perform rudimentary GPIB operations.
They are necessary because high-level functions may not always meet the requirements of
applications. In such cases, low-level functions offer the flexibility to meet your application
needs.

Board functions access the GPIB interface board directly and require you to do the addressing
and bus management protocol for the bus. A descriptor of the accessed board is one of the
arguments of the function.

Automatic Serial Polling

Automatic Serial Polling relieves you of the burden of sorting out occurrences of SRQ and status
bytes of a device you can enable. To enable Automatic Serial PolliAgt@polling, use the
configuration utility,IBCONF, or the configuration functiompconfig . If you enable

Autopolling, the handler automatically conducts serial polls when SRQ is asserted.

As part of the Autopoll procedure, the handler stores each positive serial poll response in a queue
associated with each device. A positive response has the RQS or hex 40 bit set in the device
status byte. Queues are necessary because some devices can send multiple positive status bytes
back-to-back. When a positive response from a device is received, the RQS bit of its status word
(ibsta ) is set. The polling continues until SRQ is unasserted or an error condition is detected.

If the handler cannot locate the device requesting service (no known device responds positively
to the poll) or if SRQ becomes stuck on (because of a faulty instrument or cable), a GPIB system
error exists that will interfere with the proper evaluation of the RQS bit in the status words of
devices. The error ESRQ is reported to you when you issilvait  call with the RQS bit

© National Instruments Corporation 4-7 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

included in the wait mask. Aside from the difficulty caused by ESRQ in waiting for RQS, the
error will have no detrimental effects on other GPIB operations.

If you call the serial poll functioibrsp and have received one or more responses previously

via the automatic serial poll feature, thesp function returns the first queued response. Other
responses are read in FIFO (first-in-first-out) fashion. If the RQS bit of the status word is not set
when you callbrsp , the function conducts a serial poll and returns whatever response it
receives.

If your application requires that requests for service be noticed, cdiirige function

whenever the RQS bit appears in the status word. A serial poll response queue of a device can
overflow with old status bytes when you neglect toitaip . ibrsp returns the error

condition ESTB when status bytes have been discarded because the queue is full. If your
application has no interest in SRQ or status bytes, you can ignore the occurrence of the automatic
polls.

Note: If the RQS bit of the device status word is still set after youitadip , the response
byte queue has at least one more response byte remaining. You shouitrsall
until RQS is cleared to gather all stored response bytes and to guard against queue
overflow.

Autopolling Compatibility

You cannot detect the SRQI bit in device status wobd$a( ) if you enable Autopolling. The
goal of Autopolling is to remove the SRQ from the IEEE 488 bus, thus preventing visibility of
the SRQI bit in status words for both board calls and device calls. If you choose to look for
SRQI in your program, you must disable Autopolling.

Board functions are also incompatible with Autopolling. The handler disables Autopolling
whenever you make a board call, and re-enables it at the end of a subsequent device call.

Hardware Interrupts and Autopolling

If you have disabled the interrupts of the GPIB interface boartB@®NF or theibconfig
function, the handler detects SRQ only during calls to the handler, and Autopolling can occur
only at the following events.

* During a devicebwait for RQS,

* Immediately after a device function has completed and is about to return to the application
program.

If you have enabled hardware interrupts, the handler can respond to SRQI interrupts and perform
Autopolling even when the handler is not performing a function. However, the handler will not
conduct an Autopoll if any of the following conditions exist.

LabWindows/CVI Standard Libraries 4-8 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

» The last GPIB call was a board call. Autopolling is re-instated after a subsequent device call.

* GPIB I/Oisin progress. In particular, during asynchronous GPIB 1/O, autopolling will not
occur until the asynchronous I/0O has completed.

» The "stuck SRQ" condition exists.

 Autopolling has been disabled BCONF or byibconfig

Read and Write Termination

The IEEE 488 specification defines two methods of identifying the last byte of device-dependent
(data) messages. The two methods permit a Talker to send data messages of any length without
the Listener(s) knowing in advance the number of bytes in the transmission. The two methods
are as follows.

 END message. The Talker asserts the EOI (End Or Identify) signal simultaneously with
transmission of the last data byte. By design, the Listener stops reading when it detects a
data message accompanied by EOI, regardless of the value of the byte.

* End-of-string (EOS) character. The Talker uses a special character at the end of its data
string. By prior arrangement, the Listener stops receiving data when it detects that character.
You can use either a 7-bit ASCII character or a full 8-bit binary byte.

You can use these methods individually or in combination. However, the Listener must be
properly configured to unambiguously detect the end of a transmission.

Using the configuration program, you can accommodate all permissible forms of read and write
termination. (You cannot force the handler to ignore END on read operations.) The default
configuration settings for read and write termination can also be changed at run time using the
ibeos andibeot functions.

Timeouts

A timeout mechanism regulates the GPIB routines that transfer command sequences or data
messages. A default timeout period of 10 sec is preconfigured in the handler; thus, all I/O must
complete within that period to avoid a timeout error. The default timeout value can be changed
with the IBCONF utility. In addition, you can use the NI-488 board functionhtatio to
programmatically alter the timeout period.

Regardless of the 1/0 and Wait timeout period, a much shorter timeout is enforced for responses
to serial polls. This shorter timeout period takes effect whenever a serial poll is conducted.
Because devices normally respond quickly to polls, there is no need to wait the relatively lengthy
I/O timeout period for a nonresponsive device.

© National Instruments Corporation 4-9 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

Global Variables for the GPIB Library
The following global variables are used by the GPIB Library and the GPIB-488.2 Library:

e Status Wordibsta )
e Error (bcnt ,ibentl )

These variables are updated after each NI-488 or NI-488.2 routine to reflect the status of the
device or board just accessed. Refer to your NI-488.2 user manual for detailed information on
the GPIB global variables.

Different Levels of Functionality Depending on Platform and GPIB Board

In general, the GPIB library is same for all platforms and GPIB boards. There are, however,
some exceptions, most notably relating to SRQ notification, support for multithreading, and
limitations on transfer size. These particular issues are discussed later in this chapter. This
section explains the various categories of GPIB support.

Windows 95

There are two kinds of GPIB support for Windows 95. The “native 32-bit” driver and the
“compatibility” driver. You can see which one you have installed on your system by running the
GPIB Information program in your GPIB Software group and noting the name of the driver.

Driver Name | Description
NI-488.2M Native 32-bit driver.
NI-488.2 Compatibility driver.

Native 32-Bit Driver

The native 32-bit driver is a 32-bit device driver written specifically for Windows 95. It is
supported on the following boards.

AT-GPIB/TNT
AT-GPIB/TNT+
AT-GPIB/TNT (PnP)
PCI-GPIB
PCMCIA-GPIB
PCMCIA-GPIB+

LabWindows/CVI Standard Libraries 4-10 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

If you want to use GPIB under Windows 95 and you have an older board, it is recommended that
you upgrade to one of the boards in this list.

Compatibility Driver

The compatibility driver is a 32-to-16-bit thunking DLL that you can use with the Windows 3.1
GPIB driver under Windows 95. All GPIB boards are supported by the compatibility driver. The
compatibility driver has several limitations. In particular, it does not support multithreading and
transfers are limited to 64k bytes.

Windows NT

The GPIB driver for Windows NT is a native 32-bit driver written specifically for Windows NT.
Version 1.0 supports the following boards:

AT-GPIB
AT-GPIB/TNT

Version 1.2, due to be released in the second half of 1996, will add support for the PCI-GPIB and
PCMCIA-GPIB.

Limitations on Transfer Size

There are no limitations on transfer size except for the compatibility driver under Windows 95.
The compatibility driver is limited to 64 KB transfers.

Multithreading

If you are using multithreading in an external compiler, you can call GPIB functions from more
than one thread at the same time under Windows NT or under Windows 95 with the native 32-bit
driver. In order to be truly multithreaded safe, you must use on of the following versions of the
GPIB driver.

For Windows 95: Version 1.1 or later.

For Windows NT: Version 1.2 or later.

Although previous versions of the drivers support multithreading, they do not support the
Threadlbsta , Threadlberr , Threadlbcnt , or Threadlbcntl functions. You need
these functions to obtain thread-specific status values when calling GPIB functions from more
than one thread. The global status varialtleg® , iberr ,ibcnt , andibcntl |, are not

reliable in this case because they are maintainedpen procesdasis.

© National Instruments Corporation 4-11 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

Notification of SRQ and Other GPIB Events

Synchronous Callbacks

Under Windows 3.1, you can uddnstallCallback to specify a function to be called
when an SRQ is asserted on the GPIB or when an asynchronous I/O operation has completed. It
is a board-level function only.

The same functionality exists on Windows 95 when you are using the compatibility driver.

If you are using Windows NT or the native 32-bit driver for Windows 95, you can use
ibInstallCallback to specify functions to be invoked on the occurrence of any board-level
or device-level condition on which you can wait usingibveait  function.

Callback functions installed witibInstallCallback aresynchronougallbacks, that is,

they are invoked only when LabWindows/CVI is processing events. (LabWindows/CVI
processes events when you ¢aibcessSystemEvents  or GetUserEvent , or when
RunUserInterface is active and you are not in a callback function.) Consequently, the
latency between the occurrence of the GPIB event and the invocation of the callback can be
large. On the other hand, you are not restricted in what you can do in the callback function.

Asynchronous Callbacks

You have the ability to instatisynchronousallbacks on Windows NT and on Windows 95 with

the native 32-bit driver. Asynchronous callbacks are installed witttizeify function and

can be called at any time with respect to the rest of your program. Consequently, the latency
between the occurrence of the GPIB event and the invocation of the callback is smaller than with
synchronous callbacks, but you are restricted in what you can do in the callback function. See the
documentation of thibnotify function later in this chapter for more details.

Driver Version Requirements

If you are using Windows NT, you must have version 1.2 or later of the GPIB driver to use the
ibInstallCallback andibnotify functions.

If you are using the native 32-bit GPIB driver on Windows 95, you must have version 1.1 or later
to use theblnstallCallback andibnotify functions.

If you are using the Windows 3.1 compatibility driver on Windows 95, you can use the limited
version ofibinstallCallback , but you cannot usenotify

LabWindows/CVI Standard Libraries 4-12 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

GPIB Function Reference

Most of the functions in the GPIB/GPIB-488.2 Library are described in the software reference
manual that you received with your GPIB board. This section contains descriptions only for the
Device Manager functions, the callback installation functions, and the functions for returning the
thread-specific status variables.

Note: ResetDevs is not available in LabWindows/CVI. This function was available in a
previous LabWindows version.

CloseDev

int result = CloseDe\Vint Device);

Purpose

Closes a device.

Parameter

Input Device integer The device to be closed.

Return Value

result integer Result of the close device
operation.

Return Codes

-1 Error—cannot find device.
0 Success.

Using This Function

Takes a device offlineCloseDev performs anbloc , then aribonl  with a value of zero.
Deviceis the device descriptor returned when the device was opene@peatiDev. If
CloseDev cannot find the device descriptor in its tablel ais returned.CloseDev should
be used only in conjunction withpenDev. Never callCloseDev with a device descriptor
obtained by callingbfind

© National Instruments Corporation 4-13 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

CloselnstrDevs

int result = CloselnstrDevs(char *instrumentPrefix);
Purpose

Closes instrument devices.

Parameter

Input instrumentPrefix | string Must be null-terminated.

Return Value

result integer Result of the close instrumen
devices operation.

Return Codes

0 Success.

Using This Function

Closes all devices associated with the instrument module whose prefix is specified.
instrumentPrefix is a string that specifies the prefix of the instrument module being closed.
CloselnstrDevs always returns zercCloselnstrDevs should be used only in
conjunction withOpenDev.

ibInstallCallback

int status = ibInstallCallback (int boardOrDevice, int eventMask
GPIBCallbackPtr  callbackFunction,
void * callbackData)

Note: This function is available only on Microsoft Windows. On UNIX, use titbsgnl
function. On Windows 3.1, the data type of the return value and the first two
parameters ishort rather thanint

Purpose

This function allows you to install a synchronous callback function for a specified board or
device. If you want to install an asynchronous callback, usitiogify function instead.

LabWindows/CVI Standard Libraries 4-14 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

The callback function is called when any of the GPIB events specified in the Event Mask
parameter have occurred on the board or device, but only while you allow the system to process
events. The system can process events when yoRroakssSystemEvents  or

GetUserEvent , or when you have calldfunUserinterface and none of your callback
functions are currently active. The callbacks are termed "synchronous" because they can be
invoked only in the context of normal event processing.

Unlike asynchronous callbacks, there are no restrictions on what you can do in a synchronous
callback. On the other hand, the latency between the occurrence of a GPIB event and the
invocation of the callback function is greater and more unbounded with synchronous callbacks
than with asynchronous callbacks.

Only one callback function can apply for each board or device. Each call to this function for the
same board or device supersedes the previous call.

To disable callbacks for a board or device, pass O farwbet Mask parameter.

To use this function with the NI-488.2M (native 32-bit) driver, you must have one of the
following versions.

For Windows 95: Version 1.1 or later.

For Windows NT: Version 1.2 or later.

If you use the NI-488.2 driver (the Windows 3.1 driver or the compatibility driver in Windows 95),
you must pass a board index for the first parameter, and you can u§Rellpr CMPLfor the
event mask parameter.

Parameters

Input | boardOrDevice integer A board index, or a board or device descriptpr
(short integer on| returned byOpenDeyv, ibfind , oribdev .
Windows 3.1) (On Windows 3.1, must be a board index).

eventMask integer Specifies the events upon which the callback
(short integer on| function is called. Pass 0 to disable callbacks.
Windows 3.1) See discussion below.

callbackFunction | GPIBCallbackPtn The name of the user function that is called
when the specified events occur. See
discussion below.

callbackData void pointer A pointer to a user-defined four-byte value that
is passed to the callback function.

© National Instruments Corporation 4-15 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

Return Value

status integer The same value as tiiesta  status variable.
(short integer on| Refer to your NI-488.2 or NI-488.2M user
Windows 3.1) manual for a description of the values of
ibsta status variable.

eventMask

The conditions upon which to invoke the callback function are specified as bits in the
eventMask parameter. The bits corresponds to the bits oifastes  status word. This value
reflects a sum of one or more events. If any one of the conditions occur, the callback is called.

If, when you install the callback, one of the bits you have set in the mask is already TRUE, the
callback is scheduled immediately. For example, if you ga4BLas theeventMask, and the

ibwait  function would currently return a status word wWitNMPLset, the callback is scheduled
immediately.

If you are using a NI-488.2M (native 32-bit) driver then the following mask bits are valid:

At the board level, you can specify any of the status word bits that can be specified in the
waitMask parameter to thiowait function for a board, other th&RR This includes
SRQI, ENQ CMPL.TIMO, CIC, and others.

At the device level, you can specify any of the status word bits that can be specified in the
waitMask parameter to thibbwait  function for a device, other th&RR This includes
RQS END CMPL. andTIMO.

If you are using a NI-488.2 driver (Windows 3.1 or compatibility driver for Windows 95), then
the only following mask bits are valid:

SRQI or CMPLbut not both.

SRQI, RQS, and Auto Serial Polling

If you want to install a callback for tf#&RQI (board-level) event, Auto Serial Polling must be
disabled. You can disable Auto Serial Polling with the following function call:

ibconfig (boardindex, IbcAUTOPOLL, 0);

If you want to install a callback for tHeQS(device-level) event, Auto Serial Polling must be
enabled for the board. You can enable Auto Serial Polling with the following function call:

ibconfig (boardindex, IbcAUTOPOLL, 1);

LabWindows/CVI Standard Libraries 4-16 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

CallbackFunction
The callback function must have the following form.
void CallbackFunctionName(int boardOrDevice, int mask void * callbackData);

Themask andcallbackData parameters are the same values that were passed to
ibInstallCallback

If invoked because of @8R QI or RQScondition, the callback function should call thesp
function to read the status byte. ForSRQI (board-level) condition, calling thibrsp
function is necessary to cause the requesting device to turn off the SRQ line.

char statusByte;
ibrsp (device, &statusByte);

If invoked because an asynchronous I/O operation (startémtdsy , ibwrta , oribcmda )
completed, the callback function should contain the following call:

ibwait (boardOrDevice, TIMO | CMPL);

Theibcnt  andibentl  status variables are not updated until this cabwait is made.

See Also
ibnotify
ibNotify
int status = ibnotify (int boardOrDevice, int eventMask
GpibNotifyCallback_t callbackFunction, void * callbackData);
Note: This function is available only on Windows 95 and NT. On UNIX, use thggnl
function.
Purpose

This function allows you to install an asynchronous callback function for a specified board or
device. If you want to install a synchronous callback, uséthstallCallback function
instead.

The callback function is called when any of the GPIB events specified avémeMask

parameter have occurred on the specified board or device. Asynchronous callbacks can be called
at any time while your program is running. You do not have to allow the system to process
events. Because of this, you are restricted in what you can do in the callback. See the
Restrictions on Operations in Asynchronous Callbacksliscussion below.

© National Instruments Corporation 4-17 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

Only one callback function can apply for each board or device. Each call to this function for the
same board or device supersedes the previous call.
To disable callbacks for a board or device, pass 0 faewbpetMask parameter.

Parameters

Input | boardOrDevice integer A board index, or a board or device
descriptor returned b®penDev,
ibfind , oribdev .

eventMask integer Specifies the events upon which the
callback function is called. Pass O to
disable callbacks. See discussion belgw.

callbackFunction | GpibNotifyCallback_t | The name of the user function that is
called when the specified events occury.
See discussion below.

callbackData void pointer A pointer to a user-defined four-byte
value that is passed to the callback
function.

Return Value

status integer The same value as theta status
variable. Refer to your NI-488.2M user
manual for a description of the values |of
ibsta status variable.

eventMask

The conditions upon which to invoke the callback function are specified as bits in the
eventMask parameter. The bits corresponds to the bits oib$ta  status word. This value
reflects a sum of one or more events. If any one of the conditions occur, the callback is called.

If, when you install the callback, one of the bits you have set in the mask is already TRUE, the
callback is called immediately. For example, if you gasiLas theeventMask and the

ibwait  function would currently return a status word witNMPLset, the callback is called
immediately.

At the board level, you can specify any of the status word bits that can be specified in the
waitMask parameter to thibbwait  function for a board, other th&RR This includesSRQI,
END CMPL. TIMO, CIC, and others.

At the device level, you can specify any of the status word bits that can be specified in the
waitMask parameter to thibwait  function for a device, other th&RR This includefRQS
END CMPL.andTIMO.

LabWindows/CVI Standard Libraries 4-18 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

SRQI, RQS, and Auto Serial Polling

If you want to install a callback for tf#RQI (board-level) event, Auto Serial Polling must be
disabled. You can disable Auto Serial Polling with the following function call:

ibconfig (boardindex, IbcAUTOPOLL, 0);

If you want to install a callback for tHeQS(device-level) event, Auto Serial Polling must be
enabled for the board. You can enable Auto Serial Polling with the following function call:

ibconfig (boardindex, IbcAUTOPOLL, 1);

CallbackFunction
The callback function must have the following form.

void __stdcall CallbackFunctionName(int boardOrDevice, int sta int err,
long cntl, void *callbackData);

ThecallbackData parameter is the samallbackData value passed to

ibInstallCallback . Thesta, err, andcntl parameters contain the information that you
normally obtain using thibsta , iberr , andibcntl  global variables or the

Threadlbsta , Threadlberr , andThreadlbcntl functions. The global variables and

thread status functions return undefined values within the callback function. So you must use the
sta, err andcntl parameters instead.

The value that you return from the callback function is very important. It is the event mask that is
used taearmthe callback. If you return 0, the callback is disarmed (that is, it is not called again
until you make another call tbnotify ). If you return an event mask different than the one

you originally passed tibnotify  , the new event mask is used. Normally, you want to return

the same event mask that you originally passéahiatify

If you return an invalid event mask or if there is an operating system error in rearming the
callback, the callback is called with tba set toERR, err set toEDVR andcntl set to
IBNOTIFY_REARM_FAILED

Warning: Because the callback can be called as the result of a rearming error, you should
always check the value of theda parameter to make sure that one of the
requested events has in fact occurred.

If invoked because of @8RQI or RQScondition, the callback function should call thesp
function to read the status byte. ForSRQI (board-level) condition, calling thibrsp
function is necessary to cause to requesting device to turn off the SRQ line.

char statusByte;
ibrsp (device, &statusByte);

© National Instruments Corporation 4-19 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

If invoked because an asynchronous I/0O operation (startémtdesy , ibwrta , oribcmda )
completed, the callback function should contain the following call:

ibwait (boardOrDevice, TIMO | CMPL);

Theibcnt  andibentl  status variables are not updated until this cabwait is made.

Restrictions on Operations in Asynchronous Callbacks

Callbacks installed witibnotify can be called at any time while your program is running.
You do not have to allow the system to process events. Because of this, you are restricted in what
you can do in the callback. You can do the following:

Call the User Interface LibraRostDeferredCall function, which schedules a different
callback function to be called synchronously.

Call any GPIB function, exceginotify oribinstallCallback

Manipulate global variables, but only if you know that the callback has not been called at a
point when the main part of your program is modifying or interrogating the same global
variables.

Call ANSI C functions such agrcpy andsprintf |, which affect only the arguments
passed in (that is, have no side effects). You canngpgatf  or file 1/O functions.

Callmalloc , calloc ,realloc ,orfree .

If you need to perform operations that fall outside these restrictions, do the following.

1. In your asynchronous callback, perform the time-critical operations in the asynchronous
callback, and calPostDeferredCall to schedule a synchronous callback.

2. In the synchronous callback, perform the other operations.

See Also

iblnstallCallback

LabWindows/CVI Standard Libraries 4-20 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

OpenDev
int bd = OpenDev(char *deviceNamegchar *instrumentPrefix);
Purpose

Opens a GPIB device.

Parameters

Input deviceName string Must be null-terminated.

instrumentPrefix | string Must be null-terminated.

Return Value

bd integer Result of the open device

operation.

Return Codes

-1 Device table is full, or no more devices available.

Parameter Discussion

deviceNamaeis a string specifying a device name that appears iIB@ONF device table. If
deviceNameis not™ , OpenDev acts identically tabfind . If deviceNames™ , OpenDev
acts identically tabdev . OpenDev uses the first available unopened device.

instrumentPrefix is a string that specifies the instrument prefix associated with the instrument
module. The instrument prefix must be identical to the prefix entered when creating the function
tree for the instrument module. If the instrument module has no prefipeiriDev is not

being used in an instrument module, pass the sttinfpr instrumentPrefix.

Using This Function

This function attempts to find an unused device in the GPIB handler's device table and open it. If
successfulDpenDev returns a device descriptor. Otherwise, it returns a negative number.

© National Instruments Corporation 4-21 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

Threadlbcnt

int threadSpecificCount = Threadlbcnt(void );
Note: This function is available only under Windows 95 and NT.
This function returns the value of the thread-speditat variable for the current thread.

The global variablegsta ,iberr ,ibcnt , andibcntl  are maintained on a process-specific
(rather than thread-specific) basis. If you are calling GPIB functions in more than one thread, the
values in these global variables may not always be reliable.

Status variables analogousilbgta , iberr ,ibcnt |, andibcntl  are maintained for each
thread. This function returns the value of the thread-spélodit  variable.

If you are not using multiple threads, the value returned by this function is identical to the value
of theibcnt  global variable.

Parameters

none

Return Value

threadSpecificCount | integer| The number of bytes actually transferred by the most recent
GPIB read, write, or command operation for the current thread
of execution. If an error occurred loading the GPIB DLL, this
is the error code returned by the MS Windows
LoadLibrary  function.

See Also

Threadlbsta, Threadlberr, Threadlbcntl.

Threadlbcntl
long threadSpecificCount = Threadlbcntl (void );

Note: This function is available only under Windows 95 and NT.
This function returns the value of the thread-speditotl  variable for the current thread.

The global variablegsta ,iberr ,ibcnt , andibcntl  are maintained on a process-specific
(rather than thread-specific) basis. If you are calling GPIB functions in more than one thread, the
values in these global variables may not always be reliable.

Status variables analogousibsta ,iberr ,ibcnt , andibcntl  are maintained for each
thread. This function returns the value of the thread-spdélodidl  variable.

LabWindows/CVI Standard Libraries 4-22 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

If you are not using multiple threads, the value returned by this function is identical to the value
of theibcntl  global variable.

Parameters
none

Return Value

threadSpecificCount | long The number of bytes actually transferred by the most
integer recent GPIB read, write, or command operation for the
current thread of execution. If an error occurred loadin
the GPIB DLL, this is the error code returned by the M
WindowsLoadLibrary  function.

na

See Also

Threadlbsta, Threadlberr, Threadlbcnt.

Threadlberr

int threadSpecificError = Threadlberr (void );

Note: This function is available only under Windows 95 and NT.
This function returns the value of the thread-spediger variable for the current thread.

The global variablegsta ,iberr ,ibcnt , andibcntl  are maintained on a process-specific
(rather than thread-specific) basis. If you are calling GPIB functions in more than one thread, the
values in these global variables may not always be reliable.

Status variables analogousibsta ,iberr ,ibcnt , andibcntl  are maintained for each
thread. This function returns the value of the thread-spélodic  variable.

If you are not using multiple threads, the value returned by this function is identical to the value
of theiberr  global variable.

Parameters
none

Return Value

threadSpecificError | integer The most recent GPIB error code for the current thread|of
execution. The value is meaningful only when
Threadlbsta  returns a value with thERRDbit set.

© National Instruments Corporation 4-23 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library

Return Codes

Chapter 4

Defined

Constant | Value | Description

EDVR 0 Operating system error. The system-specific error code is returned by
Threadlbcntl

ECIC 1 Function requires GPIB-PC to be CIC.

ENOL 2 No listener on write function.

EADR 3 GPIB-PC addressed incorrectly.

EARG 4 Invalid function call argument.

ESAC 5 GPIB-PC not System Controller as required.

EABO 6 /O operation aborted.

ENEB 7 Non-existent GPIB-PC board.

EDMA 8 Virtual DMA device error.

EOIP 10 I/O started before previous operation completed.

ECAP 11 Unsupported feature.

EFSO 12 File system error.

EBUS 14 Command error during device call.

ESTB 15 Serial Poll status byte lost.

ESRQ 16 SRQ stuck in on position.

ETAB 20 Device list error during BindLstn  or FindRQS call.

ELCK 21 Address or board is locked.

ELNK 200 The GPIB library was not linked. Dummy functions were linked instead.

EDLL 201 Error loading GPIB32.DLL. The MS Windows error code is returned by
Threadlbcntl

EFNF 203 Unable to find the function in GPIB32.DLL. The MS Windows error
code is returned byhreadlbcntl

EGLB 205 Unable to find globals in GPIB32.DLL. The MS Windows error code|is
returned byThreadlbcntl

ENNI 206 Not a National Instruments GPIB32.DLL.

EMTX 207 Unable to acquire Mutex for loading DLL. The MS Windows error cqde
is returned byrhreadlbcntl

EMSG 210 Unable to register callback function with MS Windows.

ECTB 211 The callback table is full.

LabWindows/CVI Standard Libraries 4-24 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

See Also

Threadlbsta, Threadlbcnt, Threadlbcntl.

Threadlbsta

int threadSpecificStatus = Threadlbstalvoid );

Note: This function is available only under Windows 95 and NT.

This function returns the value of the thread-spedita variable for the current thread.

The global variablegsta ,iberr ,ibcnt , andibcntl  are maintained on a process-specific
(rather than thread-specific) basis. If you are calling GPIB functions in more than one thread, the
values in these global variables may not always be reliable.

Status variables analogousilbgta , iberr ,ibcnt |, andibcntl  are maintained for each
thread. This function returns the value of the thread-spélosiia variable.

If you are not using multiple threads, the value returned by this function is identical to the value
of theibsta global variable.

Parameters
none

Return Value

threadSpecificStatus integer | The status value for the current thread of execution. The
status value describes the state of the GPIB and the result
of the most recent GPIB function call in the thread. Any
value with theERRDbit set indicates an error. Call
Threadlberr  for a specific error code.

© National Instruments Corporation 4-25 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library

Return Codes

The return value is a sum of the following bits.

Chapter 4

Defined

Constant | Hex Value | Condition

ERR 8000 GPIB error.

END 2000 END or EOS detected.

SRQI 1000 SRQ is on.

RQS 800 Device requesting service.
CMPL 100 I/0 completed.

LOK 80 GPIB-PC in Lockout State.

REM 40 GPIB-PC in Remote State.

CIC 20 GPIB-PC is Controller-In-Charge.
ATN 10 Attention is asserted.

TACS 8 GPIB-PC is Talker.

LACS 4 GPIB-PC is Listener.

DTAS 2 GPIB-PC in Device Trigger State.
DCAS 1 GPIB-PC in Device Clear State.
See Also

Threadlberr, Threadlbcnt, Threadlbcntl

LabWindows/CVI Standard Libraries 4-26

© National Instruments Corporation



Chapter 5
RS-232 Library

This chapter describes the functions in the LabWindows/CVI RS-232 LibraryR34282
Library Function Overvievgection contains general information about the RS-232 Library
functions and panels. THS-232 Library Function Referensection contains an alphabetical
list of function descriptions.

In order to use the RS-232 Library on UNIX, your UNIX kernel must support asynchronous 1/O
functions (for examplegioread andaiowrite ). You can enable this by building your
UNIX kernel asGeneric instead ofGeneric Small

RS-232 Library Function Overview

This section contains general information about the RS-232 Library functions and panels. The
RS-232 Library can also be used with a National Instruments RS-485 serial board.

The RS-232 Library Function Panels

The RS-232 Library function panels are grouped in a tree structure according to the types of
operations performed. The RS-232 Library function tree appears in Table 5-1.

The first- and second-level bold headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The third-
level headings in plain text are the names of individual function panels. Each RS-232 function
panel generates one or more RS-232 function calls. The names of functions are in bold italics to
the right of the function panel name.

Table 5-1. The RS-232 Library Function Tree

RS-232

Open/Close
Open COM and Configure OpenComConfig
Close COM CloseCom
Open COM—Current State OpenCom

Input/Output
Read Buffer ComRd
Read Terminated Buffer ComRdTerm
Read Byte ComRdByte

(continues)

© National Instruments Corporation 5-1 LabWindows/CVI Standard Libraries



RS-232 Library

Table 5-1. The RS-232 Library Function Tree (Continued)

Chapter 5

Read To File
Write Buffer
Write Byte
Write From File

XModem

XModem Send File
XModem Receive File
XModem Configure

Control

Set Time-out Limit
Set XON/XOFF Mode
Set CTS Mode

Flush Input Queue
Flush Output Queue
Send Break Signal
Set Escape Code

Status

Get COM Status

Get Input Queue Length
Get Output Queue Length

Return RS232 Error
Get Error String

Callbacks

Install COM Callback

ComToFile
ComWrt
ComWrtByte
ComFromFile

XModemSend
XModemReceive
XModemConfig

SetComTime
SetXMode
SetCTSMode
FlushinQ
FlushOutQ
ComBreak
ComSetEscape

GetComStat
GetInQLen
GetOutQLen
ReturnRS232Err
GetRS232ErrorString

InstallComCallback

The classes and subclasses in the tree are described below.

The Open/Closefunction panels open, close and configure a com port.

* Thelnput/Output function panels read from and write to a com port.

TheXModem function panels transfer files using the XModem protocol.

» TheControl function panels set the time-out limit, set communication modes, flush the 1/0
gueues, and send the break signal.

* TheStatusfunction panels return the com port status and the length of the I/O queues.

» TheCallbacks function panel installs callback functions for COM events.

The online help with each panel contains specific information about operating each function

panel.

LabWindows/CVI Standard Libraries

© National Instruments Corporation



Chapter 5 RS-232 Library

Using RS-485

You can use all of the functions in the RS-232 Library with the National Instruments RS-485
AT-Serial board. Th€omSetEscape function allows you to control the transceiver mode of
the board.

Reporting RS-232 Errors

The functions in the RS-232 Library return negative values when an error occurs. In addition, the
global variables232err  is updated after each function call to the RS-232 Library. If the
function executes properly, it seg232err  to zero. Otherwise, it sets232err  to the same

error code that it returns. A list of the possible error conditions that can occur while using the
RS-232 Library functions are at the end of this chapter.

XModem File Transfer Functions

With the XModem functions, you can transfer files using a data transfer protocol. The protocol
uses a generally accepted technique for serial file transfers with error-checking. Files transfer
packets that contain data from the files plus error-checking and synchronization information.

You do not need to understand the protocol to use the functions. To transfer a file, open the com
port, use th&KModemSendfunction on the sender side of the transfer and the

XModemReceive function on the receiver side of the transfer, and then close the com port.

The XModem functions handle all aspects of the transfer protocol.

You can treat the XModem functions as higher-level functions that perform a more precisely
defined task than the functio@@®mToFile andComFromFile . UseComToFile and
ComFromkFile if you need finer control over the file operations. Remember that the Xmodem
functions calculate the check sum and retransmit when an error is detected, whereas
ComToFile andComFromFile do not do so.

Troubleshooting

Establishing communication between two RS-232 devices can be difficult because of the many
different possible configurations. When using this library, you must know the device
requirements, such as baud rate, parity, number of data bits, and number of stop bits. Basically,
these configurations must match between the two parties of communication.

If you encounter difficulty in establishing initial communication with the device, refer to an
elementary RS-232 communications handbook for information about cable requirements and
general RS-232 communication. Refer also to the seR®A32 Cable Informatidater in this
chapter.

© National Instruments Corporation 5-3 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

All functions, except th®pen andClose functions, require the com port to be opened with
OpenComor OpenComConfig.

If the program writes data to the output queue and then immediately closes the com port, the data
in the queue may be lost if it has not had time to be sent over the port. To guarantee that all bytes
were written before closing the port, monitor the length of the output queue with the

GetOutQLen function. When the output queue length becomes zero, it is safe to close the port.

If the XModemReceive function fails to complete properly, verify that the input queue length
is greater than or equal to the packet size. Refer to the fun€@mersComConfig and
XModemConfig .

If the receiver appears to lose data transmitted by the sender, the input queue of the receiver may
be overflowing. This means that the input queue of the receiver is not emptied as quickly as data
is coming in. You can solve this problem using handshaking, provided both devices offer the
same handshaking support. Refer toHlaadshakingsection of this chapter for further

information.

If an XModem file transfer with a large packet size and a low baud rate fails, you might need to
increase the wait period. Ten seconds is sufficient for most transfers.

RS-232 Cable Information

An RS-232 cable consists of wires, or lines, that are joined with a connector at each end. The
connectors plug into the serial ports of each device to form a communications link over which
data and control signals flow. Each serial port consists of pins that are numbered and have
meaning. The PC pins are numbered and described as shown in Table 5-2.

Table 5-2. PC Cable Configuration

Pin Meaning

2 TxD—Transmit Data *

3 RxD—Receive Data

4 RTS—Request to Send *

5 CTS—Clear to Send

6 DSR—Data Set Ready

20 DTR—Data Terminal Ready *
7 Common

The items with an asterisk (*) indicate the lines that the PC drives, and all other items indicate
the lines the PC monitors.

LabWindows/CVI Standard Libraries 5-4 © National Instruments Corporation



Chapter 5 RS-232 Library

All serial devices are either of the type Data Communication Equipment (DCE) or Data
Transmission Equipment (DTE). The PC is of tipeE. The difference between the two

devices is in the meaning assigned to the pinBICk device reverses the meaning of pins 2 and
3,4 and 5, and 6 and 20. In the simplest scenario, a DTE device is attached to a DCE device,

such as a modem. Therefore, the cable required for a PC (or DTE) to talk to a device that is a
DCE is shown in Table 5-3.

Table 5-3. DTE to DCE Cable Configuration

(PC) Connect pins as indicated: (Device)
TxD* 2 2 RxD
RxD 3 3 TxD*
RTS* 4 4 CTS
CTS 5 5 RTS*
DSR 6 6 DTR
DTR* 20 20 DSR*
common Y4 7 common

You need a different cable for the PC to talk to a DTE device, because both devices transmit data
over pin 2. The cable to connect a PC to a DTE is calledlanodem cable A null modem
cable must be built as shown in Table 5-4.

Table 5-4. PC to DTE Cable Configuration

(PC) Connect pins as indicated: (Device)
TxD* 2 3 RxD
RxD 3 2 TxD*
RTS* 4 5 CTS
CTS 5 4 RTS*
DSR 6 20 DTR
DTR* 20 DSR*
common Y4 7 common

For further information on the meaning of DTE and DCE, refer to a reference book on RS-232
communication.

In the simplest case, a serial cable needs lines 2, 3, and 7 for basic communication to take place.
Hardware handshaking and modem control can require other lines, depending on your

© National Instruments Corporation 5-5 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

application. Refer to thdardware Handshakingection later in this chapter for more
information about using the lines 4, 5, 6, and 20.

Another area that requires special attention igygrelerof the connectors of your serial cable.

The serial cable plugs into sockets in the PC and the serial device just as a lamp cord plugs into a
wall socket. Both the connector and the socket can be male, with pins (like a lamp plug), or
female, with holes (like an outlet). If your serial cable connector and PC socket are the same
gender, you cannot plug the cable into the socket. You can change this by attaching a small
device called gender changeto your cable. One type of gender changer converts a female
connector to a male connector and the other type converts a male connector to a female
connector.

The size of the connector on your serial cable can also differ from the size of the socket. Most
serial ports require a 25-pin connector. However, some serial ports require a 9-pin connector.
To resolve this incompatibility, you must either change the connector on your serial cable or
attach a small device that converts from a 25-pin connector to a 9-pin connector.

Handshaking

A common error condition in RS-232 communications is that the receiver appears to lose data
transmitted by the sender. This condition typically results from the input queue of the receiver
not being emptied quickly enough.

Handshaking prevents overflow of the input queue that occurs when the receiver is unable to
empty its input queue as quickly as the sender is able to fill it. The RS-232 Library has two types
of handshaking: software handshaking and hardware handshaking. You should enable one or the
other if you want to ensure that your application program synchronizes its data transfers with
other serial devices that perform handshaking.

Software Handshaking

The SetXMode function enables software handshaking. You can use software handshaking
when you are transferring ASCII data or text and your serial device uses software handshaking.
The RS-232 Library performs software handshaking by sending and monitoring incoming data
for special data bytes (XON and XOFF, or decimal 17 and 19). These bytes indicate whether the
receiver is ready to receive data.

You must not enable software handshaking when transmitting binary data because the special
XON/XOFF characters can occur as part of the data stream and are mistaken as control codes.
However, you can enable hardware handshaking regardless of the type of data transferred.

No special cable configuration is required to perform software handshaking.

LabWindows/CVI Standard Libraries 5-6 © National Instruments Corporation



Chapter 5 RS-232 Library

Hardware Handshaking

The SetCTSMode function enables hardware handshaking. For hardware handshaking to work,
two conditions must exist. First, the serial devices must follow the same or similar hardware
handshake protocols (they must use the same lines for the handshake and assign the same
meanings to those lines). Second, the serial cable connecting the two devices must include the
lines required to support the protocol. Because no single well-defined hardware handshake
protocol exists, resolve any differences between the LabWindows/CVI hardware handshake
protocol and the one your device uses.

Most serial devices primarily rely on the CTS and RTS lines to perform hardware handshaking,
and the DTR line is used to signal its online presence to the other device. Some serial devices
also may use the DTR line for hardware handshaking similarly to the CTS line. The
SetCTSMode function has two different modes to handle either case.

This SetCTSMode function employs the following line behaviors for each mode.
Note: Under UNIX, changes to the DTR line have no effect on the communication port.
LWRS _HWHANDSHAKE_OFF

 The RTS and DTR lines are raised when opening the port and lowered when closing the port.
Data is sent out the port regardless of the status of CTS.

Note: Under Windows, thesetComEscape function can be used to change the value of
the RTS and DTR lines.

LWRS_HWHANDSHAKE_CTS_RTS

« When the PC is the receiver:

If the port is opened, the library raises RTS and DTR.

If the input queue of the port is nearly full, the library lowers RTS.

If the input queue of the port is nearly empty, the library raises RTS.

If the port is closed, the library lowers RTS and DTR.
* When the PC is the sender:
— The RS-232 library must detect that its CTS line is high before sending data out the port.
LWRS_HWHANDSHAKE_CTS_RTS_DTR
* When the PC is the receiver:

— If the port is opened, the library raises RTS and DTR.

© National Instruments Corporation 5-7 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

— If the input queue of the port is nearly full, the library lowers RTS and DTR.
— If the input queue of the port is nearly empty, the library raises RTS and DTR.
— If the port is closed, the library lowers RTS and DTR.
* When the PC is the sender:
— The RS-232 library must detect that its CTS line is high before sending data out the port.

Note: The only difference betweebtWRS HWHANDSHAKE_CTS_ Rm8
LWRS_HWHANDSHAKE_CTS_RTS_BTRe behavior of the DTR line.

If the handshaking mechanism used by your device uses the CTS and RTS lines, use a serial
cable as shown in Table 5-3 if your device is a DCE, or Table 5-4 if your device is a DTE.
Optionally, your cable can omit the connection between pins 6 and 20 if your device does not
monitor DSR when sending data. Notice that the RTS pin of the receiver translates to the CTS
pin of the sender, and the DSR pin of the receiver translates to the DTR pin of the sender.

If you want to use hardware handshaking but your device uses a different hardware handshake
protocol than the ones described here, you can build a cable that overcomes the differences. You
can construct a cable to serve your special needs be referencing the pin description in Table 5-2.

RS-232 Library Function Reference

This section describes each function in the LabWindows/CVI RS-232 Library. The
LabWindows/CVI RS-232 Library functions are arranged alphabetically.
CloseCom

int result = CloseCom(int COMPort);

Purpose

Closes a COM port.

Parameter

Input COMPort integer Range 1 through 32.

Return Value

result integer Refer to error codes in
Table 5-6.

LabWindows/CVI Standard Libraries 5-8 © National Instruments Corporation



Chapter 5 RS-232 Library

Parameter Discussion

The function does nothing if the port numbers are invalid (port is not open or parameter value is
not in the range 1 through 32).

ComBreak
int result = ComBreak(int COMPort, int breakTimeMseo;
Purpose

Generates a break signal.

Parameters
Input COMPort integer Range 1 through 32.
breakTimeMsec integer Range 1 through 255, or 0 to
select 250.
Return Value
result integer Refer to error codes in
Table 5-6.

Using This Function

The function generates a break signal for the number of milliseconds indicated or for 250 ms if
thebreakTimeMsecparameter is zero. For most applications, 250 ms is adequate.

Errors may occur if the port is not open or parameter values are invalid.

ComFromkFile

int nbytes = ComFromFile(int COMPort, int fileHandle, int count,
int terminationByte);

Purpose

Reads from the specified file and writes to output queue of the specified COM port.

© National Instruments Corporation 5-9 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

Parameters
Input COMPort integer Range 1 through 32.
fileHandle integer File handle returned by
OpenFile
count integer If O, this value is ignored.
terminationByte integer If -1, this value is ignored.
Return Value
nbytes integer Number of bytes written to thg
output queue.
<0 Error. Refer to error codes in
Table 5-6.

Parameter Discussion

Readscount bytes from the file unless it encountegaminationByte, reaches EOF, or

encounters an error. The function returns the number of bytes successfully written to the output
gueue. The function returns immediately after placing all bytes in the output queue, not when
bytes have all been sent out the com port.

If countis zero, the function terminates arminationByte, EOF, or error.

If terminationByte is -1, it is ignored, and the function terminatesouant bytes written, EOF,
or error. IfterminationByte is not -1, reading from the file stops whermminationByte is
encountered. It does not wrikrminationByte to the output queue. términationByte is CR
or LF, then the function treats CR-LF and LF-CR combinations jusbatRdTermdoes.

If both count andterminationByte are disabled, the function terminates on EOF or error.
Using This Function

To guarantee that all bytes were removed from the output queue before closing the port, call
GetOutQLen to determine the number of bytes remaining in the output queue. If you close the
port before every byte has been sent, you lose the bytes remaining in the queue.

The function returns a negative error code if the output queue remains full for the duration of the
time-out period, the file handle is bad, a read error occurs, the port is not operC ORIt
is invalid.

LabWindows/CVI Standard Libraries 5-10 © National Instruments Corporation



Chapter 5 RS-232 Library

ComRd
int nbytes = ComRd(int COMPort, char buffer[] ,int count);
Purpose

Readscount bytes from input queue of the specified port and stores theoffer. Returns
either on time-out or wheecount bytes have been read. Returns an integer value indicating the
number of bytes read from queue.

Parameters
Input COMPort integer Range 1 through 16.
count integer 0 value takes no bytes from
queue.
Output buffer string The buffer in which to store the
data.
Return Value
nbytes integer Number of bytes read from the
input queue.

Using This Function

This function times out if the input queue remains empty in the specified time-out period. This
may occur when no data has been received within the time-out period.

The function returns an error code if the port is not open or parameter values are invalid.

Example

/* Read 100 bytes from input queue of COML1 into buf. */
int n;
char buf[100];

n = ComRd (1, buf, 100);
if (n !'=100)
/* Time-out or error occurred before read completed. */;

© National Instruments Corporation 5-11 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

ComRdByte
int byte = ComRdByte(int COMPort);
Purpose

Reads a byte from the input queue of the specified port. Returns an integer whose low-order byte
contains the byte read. Returns either on time-out, when the byte is read, or when an error occurs.
If an error or a time-out occur€omRdByte returns a negative error code. See Table 5-6. This is

the only case in which the high-order byte of the return value is non-zero.

Parameter

Input COMPort integer Range 1 through 32.

Return Value

byte integer Low order byte contains the
byte read.
<0 Error.

Using This Function

This function times out if the input queue remains empty in the specified time-out period. This
may occur when no data has been received within the time-out period.

The function returns an error code if the port is not of€iyIPort is invalid, or a time-out
occurs.

ComRdTerm

int nbytes = ComRdTerm(int COMPort, char buffer[] ,int count,
int terminationByte);

Purpose

Reads from input queue untirminationByte occurs inbuffer, count is met, or a time-out
occurs. Returns integer value indicating number of bytes read from queue.

LabWindows/CVI Standard Libraries 5-12 © National Instruments Corporation



rary

m

e

Chapter 5 RS-232 Lib
Parameters
Input COMPort integer Range 1 through 32.
count integer If 0, no bytes are removed frg
queue.
terminationByte integer Low byte contains the numer
equivalent of the terminating
character.
Output buffer string The buffer in which to store th
data.
Return Value
nbytes integer Number of bytes read from th

input queue.

e

Using This Function

This function times out if the input queue remains empty within the specified time-out period.
This may occur when no data has been received during the time-out period. If the read
terminates on the termination byte, the byte is neither written to the buffer nor included in the

count.

If the termination character is either a carriage return (CR or decimal 13) or a linefeed (LF or

decimal 10), the function handles it as follows:

» If terminationByte = CR, and if the character immediately following CR is LF, discard the

LF in addition to the CR.

» If terminationByte = LF, and if the character immediately following LF is CR, discard the

CR in addition to the LF.

Only the bytes placed in buffer are included in the return count. If CR or LF is discarded
because it follows an LF or CR, it is not counted toward satisfyingatinet.

The function returns an error if the port is not open or parameter values are invalid.

© National Instruments Corporation

LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

ComSetEscape
int result =ComSetEscapdint COMPort, int escapeCodg
Purpose

Directs the specified com port to carry out an extended function such as clearing or setting the
RTS signal line or setting the transceiver mode for RS-485. The extended functions are defined
by the serial device driver.

Not all device drives support all escape codes. Unknown System Error (-1) is returned when the
device driver does not support a particular escape code.

Note: This function is supported in the MS Windows version of LabWindows/CVI only.

Parameters
Input COMPort integer | Range 1 through 32.
escapeCode integer | Specifies the escape code of the extended
function.
Return Value
result integer Error Code. Refer to Table 5-6.

Parameter Discussion

The following values can be used for escape code.
CLRDTR—Clears the DTR (data-terminal-ready) signal.
CLRRTS—Clears the RTS (request-to-send) signal.

GETMAXCOMReturns the maximum com port identifier supported by the system. This value
ranges from 0x00 to 0x7F, such that 0x00 corresponds to COM1, 0x01 to COM2, 0x02 to
COMS, and so on.

SETDTR-Sends the DTR (data-terminal-ready) signal.
SETRTS—Sends the RTS (request-to-send) signal.
SETXOFF—Causes the port to act as if an XOFF character has been received.

SETXON-Causes the port to act as if an XON character has been received.

LabWindows/CVI Standard Libraries 5-14 © National Instruments Corporation



Chapter 5 RS-232 Library
The following values may be used only with the RS-485 serial driver developed by National
Instruments:

WIRE_4—Sets the transceiver to Four Wire Mode.

WIRE_2_ECHO-Sets the transceiver to Two Wire DTR controlled with echo mode.
WIRE_2 CTRI—Sets the transceiver to Two Wire DTR controlled without echo.

WIRE_2_AUTG-Sets the transceiver to Two Wire auto TXRDY controlled mode.

ComToFile

int nbytes = ComToFile(int COMPort, int fileHandle, int count,
int terminationByte);

Purpose

Reads from input queue of specified com port and write data to file specifféeHgndle.
Returns number of bytes successfully written to file. Bytes are read from input quewewmttil
is satisfiedferminationByte is encountered, or an error occurs, whichever occurs first.

Parameters
Input COMPort integer Range 1 through 32.
fileHandle integer File handle returned by
OpenFile
count integer If O, this value is ignored.
terminationByte integer If -1, this value is ignored.
Return Value
nbytes integer Number of bytes written to the
file.

Parameter Discussion
If countis zero, the function ignores it and terminateseominationByte or error.

If terminationByte is -1, the function ignores it and terminatesounnt bytes read or an error.

If terminationByte is valid, the function stops when it encountersninationByte.

terminationByte is removed from the input queue and is not written to the file. If
terminationByte is CR or LF, then CR-LF and LF-CR combinations are treated just as they are

© National Instruments Corporation 5-15 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5
for ComRdTerm If both count andterminationByte are disabled, the function terminates on
error (which can include a time-out).

Using This Function

The function returns an error if the output queue remains full for the duration of the time-out
period, the file handle is bad, a read error occurs, the port is not openC@MPort is
invalid.

ComWrt

int nbytes = ComWrt(int COMPort, char buffer[] ,int count);

Purpose

Writescount bytes to the output queue of the specified port. Returns an integer value indicating

the number of bytes placed in the queue. Returns immediately without waiting for the bytes to
be sent out of the serial port.

Parameters
Input COMPort integer Range 1 through 32.
buffer string Buffer containing data to be written, or actual
string.
count integer 0 value places no bytes in queue.
Return Value
nbytes integer Number of bytes placed in the output queug.
<0 Error code; See Table 5-6. Byte not placed |in
the output queue.

Using This Function

This function times out if the output queue has not been updated in the specified time-out period.
This can occur if the output queue is full and no further data can be sent because XON/XOFF is
enabled and the device has sent an XOFF character without sending the follow-on XON
character. It can also occur if Hardware Handshaking is enabled and the Clear To Send (CTS)
line is not asserted.

Bytes are sent from the output queue to the serial device under interrupt control without program
intervention. If you close the port before all bytes have been sent, you lose the bytes remaining in
the queue. To guarantee that all bytes have been removed from the output queue before closing

LabWindows/CVI Standard Libraries 5-16 © National Instruments Corporation



Chapter 5 RS-232 Library

the port, callGetOutQLen . GetOutQLen returns the number of bytes remaining in the output
queue.

The function returns an error if the port is not open or parameter values are invalid.

Example

/* Place the string "Hello, world!" in the output queue of */
/* COM2 and check if operation was successful. */

if (ComWrt (2, "Hello, World!", 13) !=13)

/* Operation was unsuccessful */;

or

char buf[100];

Fmt(buf,"%s","Hello, World!");

if (ComWrt (2, buf, 13) != 13)

/* Operation was unsuccessful */;

ComWritByte
int status = ComWrtByte(int COMPort, int byte);
Purpose

Writes a byte to the output queue of the specified port. The byte written is the low-order byte of
the integer. Returns a 1 to indicate the operation is successful, or a negative error code to indicate
the operation has failed. Returns immediately without waiting for the byte to be transmitted out
through the serial port.

Parameters
Input COMPort integer Range 1 through 32.
byte integer Only the low-order byte is
significant.
Return Value
status integer Result of the write operation.
<0 Error code; See Table 5-6.
1 One byte placed in the output
queue.

© National Instruments Corporation 5-17 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

Parameter Discussion

This function times out if the output queue has not been updated in the specified time-out period.
This can occur if the output queue is full and no further data can be sent because XON/XOFF is
enabled and the device has sent an XOFF character without sending the follow-on XON
character. It can also occur if Hardware Handshaking is enabled and the Clear To Send (CTS)
line is not asserted.

Bytes are sent from the output queue to the serial device under interrupt control without program
intervention. If you close the port before all bytes have been sent, you lose the bytes remaining in
the queue. To guarantee that all bytes have been removed from the output queue before closing
the port, callGetOutQLen . GetOutQLen returns the number of bytes remaining in the output
queue.

The function returns an error if the port is not open or parameter values are invalid.

FlushinQ

int status= FlushinQ (int COMPort);

Purpose

Removes all characters from the input queue of the specified port.

Parameter

Input COMPort integer Range 1 through 32.

Return Value

status integer Refer to Error Codes in
Table 5-6.

Using This Function

You can use this function to flush a flawed transmission in preparation for re-transmission. It
alleviates the need to read bytes into a buffer to empty the queue. If the queue is already empty,
this function does nothing.

The function returns a negative error code if the port is not opertC@MPort is invalid.

LabWindows/CVI Standard Libraries 5-18 © National Instruments Corporation



Chapter 5 RS-232 Library

FlushOutQ

int status= FlushOutQ (int COMPort);

Purpose

Removes all characters from the output queue of the specified port.

Parameter

Input COMPort integer Range 1 through 32.

Return Value

status integer Refer to Error Codes in
Table 5-6.

Using This Function

The function returns an error if the port is not open @OMPort is invalid.

GetComStat
int status = GetComSta(int COMPort);
Purpose

Returns information about the status of the specified COM port. COM port conditions are
accumulated until you cabetComStat .

Parameter

Input COMPort integer Range 1 through 16.

Return Value

status integer Bits indicate COM port status.

<0 Error. Refer to Table 5-5.

Using This Function

Table 5-5 lists definitions of specific bits in the return value. Several bits can be set to indicate
the presence of more than one condition.

© National Instruments Corporation 5-19 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

Table 5-5. Bit Definitions for the GetComStat Function

Hex Mnemonic Description

Value

0001 INPUT LOST Input queue filled and input characters lost (characterg
were not removed fast enough).

0002 ASYNCH ERROR Problem determining number of characters in input queue.
This is an internal error and normally should not occur.

0010 PARITY Parity error detected.

0020 OVERRUN Overrun error detected; a character was received before
the receiver data register was emptied.

0040 FRAMING Framing error detected; stop bits were not received when
expected.

0080 BREAK Break signal detected.

1000 REMOTE XOFF | XOFF character received. If XON/XOFF was enabled (see

the SetXMode function description), no characters are
removed from the output queue and sent to the other device
until that device sends an XON character.

4000 LOCAL XOFF XOFF character sent to the other device. If XON/XOFF
was enabled (see tlsetXMode function description),
XOFF is transmitted when the input queue is 50%, 75%
and 90% full. If the other device is sensitive to

XON/XOFF protocol, it transmits no further characters
until it receives an XON character. You use this process to
avoid the INPUT LOST error.

Notice the ambiguity in this status information. If an error occurs on the indicated port, the
application program knows that one or more bytes are invalid. The program cannot know from
the status word which byte read since the last c&@ldetComStat is invalid.

The function returns a negative error code if the port is not opefC@MPort is invalid.

GetlnQLen
int len = GetiInQLen (int COMPort);
Purpose

Returns the number of characters in the input queue of the specified port. This function does not
change the input queue.

LabWindows/CVI Standard Libraries 5-20 © National Instruments Corporation



Chapter 5 RS-232 Library

Parameter

Input COMPort integer Range 1 through 32.

Return Value

len integer Number of characters in the
input queue.

Parameter Discussion

The function returns an error if the port is not open @OMPort is invalid.

GetOutQLen

int len = GetOutQLen(int COMPort);

Purpose

Returns the number of characters in the output queue of the specified port.

Parameter

Input COMPort integer Range 1 through 32.

Return Value

len integer Number of characters in the
output queue.

Using This Function

You can use this function to ensure the output queue has emptied before you close the port. This
function has no effect on the output queue.

The function returns an error if the port is not open @OMPort is invalid.

© National Instruments Corporation 5-21 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

GetRS232ErrorString
char *message= GetRS232ErrorString (int  errorNum)
Purpose

Converts the error number returned by an RS-232 Library function into a meaningful error
message.

Parameters
Input errorNum integer Error Code returned by RS-2B32
function.
Return Value
message string Explanation of error.

InstallComCallback

int status=InstallComCallback (int COMPort, int eventMask int notifyCount,
int eventCharacter, ComCallbackPtr  callbackPtr,
void *callbackData);

Note: This function is available only in the Windows version of LabWindows/CVI
Purpose

This function allows you to install a callback function for a particular COM port. The callback
function is called whenever any of the events specified ietbeatMask parameter occur on the
COM port and you allow the system to process events. The system can process events in the
following situations.

You have calledRunUserinterface and none of your callback functions is currently
executing, or

You callGetUserEvent , or

You callProcessSystemEvents

Only one callback function can apply for each COM port. Each call to this function for the same
COM port supersedes the previous call.

To disable callbacks for a board or device, pass 0 fawbetMask and/orcallbackFunction
parameters.

LabWindows/CVI Standard Libraries 5-22 © National Instruments Corporation



Chapter 5

RS-232 Library

Note: The callback function may receive more than one event at a time. When using this
function at higher baud rates, somMéVRS_RXCHA&ents may be missed. It is
recommended to useWRS_RECEIVEr LWRS_RXFLAGstead.

Note: Once theLWRS_RECEIVEevent occurs, it is not triggered again until the input queue
falls below, and then rises back abovetifyCount bytes.

Example

notifyCount = 50; /* Wait for at least 50 bytes in queue */
eventChar = 13; /* Wait for LF */

eventMask =LWRS_RXFLAG | LWRS_TXEMPTY | LWRS_RECEIVE;

InstallComCallback (comport, eventMask, notifyCount,

eventChar, ComcCallback, NULL);

/* Callback Function */

void ComCallback(int portNo, int evnetMask, void *data)

{

if (eventMask & LWRS_RXFLAG)
printf("Received specified character\n™);

if (eventMask & LWRS_TXEMPTY)
printf("Transmit queue now empty\n");

if (eventMask & LWRS_RECEIVE)
printf("50 or more bytes in input queue\n®);

}

Parameters

Input

COMPort
eventMask

notifyCount

eventCharacter

callbackPtr

callbackData

integer
integer

integer

integer

ComcCallbackPtr

void *

Range 1 through 32.

The events upon which the callback funct
is called. See thBarameter Discussiofor a
list of valid events. If you want to disable
callbacks, pass 0.

The minimum number of bytes the input
gueue must contain before sending the
LWRS_RECEIVEvent to the callback
function.

Valid Range: 0 to Size of Input Queue.

Specifies the character or byte value that
triggers thdlWRS_RXFLA@Gvent.
Valid Range: 0 to 255.

The name of the user function that proce
the event callback.

A pointer to a user-defined four-byte value
that is passed to the callback function.

on

5S€S

© National Instruments Corporation

5-23 LabWindows/CVI Standard Libral

ries



RS-232 Library Chapter 5

Return Value

status integer Refer to error codes in Table 5-6.

Parameter Discussion

The callback function must have the following form.

void CallbackFunctionName (int COMPort, int eventMask,void * callbackData);

TheeventMaskandcallbackData parameters are the same values that were passed to
InstallComCallback

The events are specified using bits in ¢wentMask parameter. You can specify multiple event
bits in theeventMask parameter. The valid event bits are listed in the table below.

Bit Hex Value Com Port Event Constant Name
0 0x0001 Any character received. LWRS_RXCHAR
1 0x0002 Received certain character. | LWRS_RXFLAG
2 0x0004 Transmit Queue empty. LWRS_TXEMPTY]
3 0x0008 CTS changed state. LWRS_CTS

4 0x0010 DSR changed state. LWRS_DSR

5 0x0020 RLSD changed state. LWRS_RLSD

6 0x0040 BREAK received. LWRS_BREAK

7 0x0080 Line status error occurred. LWRS_ERR

8 0x0100 Ring signal detected. LWRS_RING

15 0x8000 notifyCount bytes in inqueue. | LWRS_RECEIVE

LabWindows/CVI Standard Libraries 5-24 © National Instruments Corporation



Chapter 5

RS-232 Library

The following table further describes the events.

Event Constant
Name

Description

LWRS_RXCHAR

LWRS_RXFLAG

LWRS_TXEMPTY
LWRS_CTS
LWRS_DSR
LWRS_RLSD

LWRS_BREAK
LWRS_ERR

LWRS_RING
LWRS_RECEIVE

Set when any character is received and placed in the
receiving queue.

Set when the event character is received and placed in {
receiving queue. The event character is specified in the
eventCharacter parameter of this function.

Set when the last character in the transmission queue ig
Set when the CTS (clear-to-send) line changes state.
Set when the DSR (data-set-ready) line changes state.

Set when the RLSD (receive-line-signal-detect) line cha
state.

Set when a break is detected on input.

Set when a line-status error occurs. Line-status errors a
CE_FRAMECE_OVERRUMNMNACE_RXPARITY

Set to indicate that a ring indicator was detected.

Set to detect when at leasdtifyCount bytes are in the
input queue. Once this event has occurred, it does not
trigger again until the input queue falls below, and then

he

sent.

nges

e

fises

back abovenotifyCount bytes.

OpenCom
int
Purpose

Opens a com port.

Parameter

result = OpenCom(int

COMPort, char deviceNam§] );

Input

COMPort
deviceName

integer | Range 1 through 32.

Name of the COM port.

string

© National Instruments Corporation

5-25 LabWindows/CVI

Standard Libraries



RS-232 Library Chapter 5

Return Value

result integer | Refer to error codes in Table 5-6.

Parameter Discussion

deviceNameis the name of the com port in the ASCII string. For exan@gDaViifor com port 1
on Microsoft Windows usin@OMM.DRVand/dev/ttya for com port 1 on UNIX using the
Zilog 8530 SCC serial comm driver.

If you pass a NULL pointer or an empty string faviceName the library uses the following
device names depending on the COM port number you have specified.

Port Number deviceName on Windows | deviceName on UNIX
1 “COMYL” “/devl/ttya”

2 “COM2’ “/devi/ttyb”

3 “COM3” “/devl/ttys1”

4 “COM4” “/devittys2”

and so on

Using This Function

OpenComuses 512 bytes of the buffer for the input queue, 512 bytes for the output. The
function assumes the default baud rate, parity, stop bits, data bits, port address, and handshake
mode established through tbem portconfiguration of the operating system. The time-out for

I/O operations is 5 seconds. Refer to the funct@etXMode, SetCTSMode, and

SetComTime if you want to change these defaults.

OpenComConfig

int result = OpenComConfig(int COMPort, char deviceNam§ ,long baudRate
int parity, int dataBits, int stopBits,
int inputQueueSizeint outputQueueSiz¢,

Purpose

Opens a com port, and sets port parameters as specifiagutiQueueSizeor
outputQueueSizes between 1 and 29, it is forced to 30.

LabWindows/CVI Standard Libraries 5-26 © National Instruments Corporation



Chapter 5 RS-232 Library

Parameters
Input COMPort integer Range 1 through 32.
deviceName string Name of the COM port.
baudRate long Either 110, 150, 300, 600, 1200, 2400, 48Q0,

9600, 14400, 19200, 28800, 38400, 56000
57600, 115200, 128000, or 256000.

SPARCSstations do not support 14400, 28800,
56000, 57600, 115200, 128000, and 2560Q0.
PCs do not support 150. Some PC serial
drivers do not support 115200, 128000,
and 256000.

parity integer | 0—no parity.

1—odd parity.

2—even parity.

3—mark parity.

4—space parity.

dataBits integer Either 5, 6, 7, or 8.

stopBits integer Either 1 or 2.

inputQueueSize | integer 0 selects 512. See discussion below.

outputQueueSize| integer 0 selects 512. See discussion below.

Return Value

result integer Refer to error codes in Table 5-6.

Parameter Discussion

deviceNameis the name of the com port in the ASCII string. For exangiayifor com port 1
on Microsoft Windows usin@OMM.DRVand/dev/ttya for com port 1 on UNIX using the
Zilog 8530 SCC serial comm driver.

If you pass a NULL pointer or an empty string flmviceName the library uses the following
device names depending on the COM port number you have specified.

Port Number deviceName on Windows | deviceName on UNIX
1 “COM1” “/devittya”

2 “COM2’ “/devi/ttyb”

3 “COM3” “/devi/ttysl”

4 “COM4” “/devl/ttys2”

and so on

© National Instruments Corporation 5-27 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

Under UNIX, theinputQueueSizeandoutputQueueSizeparameters are ignored. The serial
driver determines the queue size.

Under Windows, if you specify 0 fanputQueueSizeor outputQueueSize 512 is used. If you
specify a value between 0 and 30, 30 is used. On Windows 95 and NT, there is no maximum
limitation on the queue size. On Windows 3.1, the maximum queue size is 65535. However,
some serial drivers have a maximum of 32767 and give undefined behavior when you use a
larger queue size. It is recommended that you use a queue size no greater than 32767.

Under Windows 3.1, theaudRate value may be fror@ to Oxffff . Values belowDxff0O0 are
interpreted by the comm driver literally. Values froxff00 to Oxffff ~ are codes defined by
the particular comm driver to represent rates higher @iréeff

Under Windows 95 and NT, dlaudRate values are interpreted literally by the comm driver.
Using This Function

The function disables XON/XOFF mode, and CTS hardware handshaking. The default time-out
for 1/0O operations is 5 seconds. Refer to the funct®etXMode, SetCTSMode, and
SetComTime if you want to change these defaults.

If the specified port is already opgdpenComConfig closes the port (seé@loseCom ) then
opens it again.

ReturnRS232Err
int status=ReturnRS232Err (void );
Purpose
Returns the value a232err
Parameters

None

Return Value

status integer Refer to error codes in
Table 5-6.

LabWindows/CVI Standard Libraries 5-28 © National Instruments Corporation



Chapter 5 RS-232 Library

SetComTime

int result = SetComTime(int COMPort, double timeoutSecondy,
Purpose

Sets time-out limit for input/output operations.

Parameters

Input COMPort integer Range 1 through 32.

timeoutSeconds double-precision Time-out period for all
read/write functions.

Return Value

result integer Refer to error codes in
Table 5-6.

Using This Function

This function sets the time-out parameters for all read and write operations. The default value of
timeoutSecondss 5.

For an RS-232 read operatidgimeoutSecondsspecifies the time allowed from the start of the
transfer to the arrival of the first byte. It also specifies the time allowed to elapse between the
arrival of any two consecutive bytes. An RS-232 read operation waits for at least the specified
amount of time for the next incoming byte before it returns a time-out error.

For an RS-232 write operatiotiimeoutSecondsspecifies the time allowed before the first byte

is transferred to the output queue. It also specifies the time allowed between the transfer of any
two consecutive bytes to the output queue. The transfer of bytes to the output queue can become
stalled if the output queue is full and hardware or software handshaking is held off. If the hold-

off is not resolved within the time-out period, the RS-232 write operation returns a time-out

error.

If the timeoutSecondgarameter is zero, it disables time-outs and the read or write functions
wait indefinitely for the operation to complete.

The function returns an error if the port is not open or parameter values are invalid.

© National Instruments Corporation 5-29 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

SetCTSMode
int result = SetCTSModeg(int COMPort, int mode);
Purpose

Enables or disables hardware handshaking as describedHarithware Handshakingection of
theRS-232 Library Function Overview

Parameters

Input COMPort integer Range 1 through 32.

mode integer 0 to disable hardware
handshaking, non-zero to enable
hardware handshaking. See
discussion below.

Return Value

result integer Refer to error codes in Table 516.

Parameter Discussion
The following are the valid values farode

0—WRS_HWHANDSHAKE_©frardware handshaking is disabled. The CTS line is ignored.
The RTS and DTR lines are raised the entire time the port is open.

1—LWRS_HWHANDSHAKE_CTS_RTS -BHardware handshaking is enabled. The CTS line
is monitored. Both the RTS and DTR lines are used for handshaking.

2—L WRS_HWHANDSHAKE_CTS_R¥F&rdware handshaking is enabled. The CTS line is
monitored. The RTS is used for handshaking. The DTR line is raised the entire time the port is
open.

Using This Function
By default, hardware handshaking is not used.

The function returns an error if the port is not open or parameter values are invalid.

LabWindows/CVI Standard Libraries 5-30 © National Instruments Corporation



Chapter 5 RS-232 Library

SetXMode
int result = SetXMode(int COMPort, int mode);
Purpose

Enables or disables software handshaking by enabling or disabling XON/XOFF sensitivity on
transmission and reception of data.

Parameters
Input COMPort integer Range 1 through 16.
mode integer 0 to disable, non-zero to enable.
Return Value
result integer Refer to error codes in
Table 5-6.

Using This Function

By default, XON/XOFF sensitivity is disabled. See 8wdtware Handshakingection at the
beginning of this chapter.

The function returns an error if the port is not open or parameter values are invalid.

XModemConfig

int result = XModemConfig (int COMPort, double startDelay,
int  maximum#ofRetries double waitPeriod,
int packetSizé;

Purpose

Sets the XModem configuration parameters for the specified com port.

© National Instruments Corporation 5-31 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

Parameters
Input COMPort integer Range 1 through 32.
startDelay double-precision 0.0 selects the default value
10.0 seconds.
maximum#ofRetries | integer 0 selects the default value 10.
waitPeriod double-precision 0.0 selects the default value
10.0 seconds.
>5.0 is recommended.
packetSize integer 0 selects the default value 128.

Return Value

result integer Result of the XModem

configuration operation.
(Less than zero) Error code; See Table 5-6.
(Zero) Success.

Parameter Discussion

XModemSendandXModemReceive use the baud rate, and the input/output queue sizes
specified byOpenComConfig . But they ignore the data bits, the parity and the stop bits
settings olOpenComConfig , and always use 8 bits, no parity, and one stop bit. Instead of using
the time-out value defined by ti&=tComTime function, XModem functions use a 1 second
time-out between data bytes.

A zero input for any parameter exc€MPort sets that parameter to its default value.

startDelay sets the timing for the initial connection between the two communication parties.
When a LabWindows/CVI program assumes the role of receitatDelay specifies the

interval (in seconds) during which to send the initial negative acknowledgment character to the
transmitter. That character is sent ev&@artDelay seconds, up tmaximum#ofRetriestimes.

When a LabWindows/CVI program assumes the role of transnstégtDelay specifies the

interval (in seconds) during which the transmitter waits for the initial negative acknowledgment.
The transmitter waits up tstartDelay* maximum#ofRetries)seconds. The default value of
startDelay is 10.0.

maximum#ofRetriessets the maximum number of times the transmitter retries sending a packet
to the receiver on the occurrence of an error condition. The default value of
maximum#ofRetriesis 10.

waitPeriod sets the period of time between the transfers of two packets. When a
LabWindows/CVI program assumes the role of transmitter, it waits forwpitBeriod seconds

LabWindows/CVI Standard Libraries 5-32 © National Instruments Corporation



Chapter 5 RS-232 Library

for an acknowledgment before it re-sends the current packet. When LabWindows/CVI plays the
role of receiver, it waits for up waitPeriod seconds for the next packet after it sends out an
acknowledgment for the current packet. If it does not receive the next packetdeityPeriod
seconds, it re-sends the acknowledgment, and waits againmgxiimum#ofRetriestimes. The
default value ofvaitPeriod is 10.0.

packetSizesets the packet size in bytes. Its value must be less than or equal to the input and
gqueue sizes. The standard XModem protocol defines packet sizes to be 128 or 1024. If you are
using any other size, make sure the two communication parties understand each other. The
default value opacketSizeis 128.

Using This Function

For transfers with a large packet size and a low baud rate, a large delay period is recommended.

XModemReceive
int result = XModemReceivgint COMPort, char fileNam€]] );
Purpose

Receives packets of information over the com port specifigd@yPort and writes the packets
to the specified file.

Parameters

Input COMPort integer Range 1 through 32.

fileName string Contains the pathname.

Return Value

result integer Result of the XModem receive

operation.
<0 Failure.
0 Success.

Using This Function

This function uses the XModem file transfer protocol. The transmitter must also follow this
protocol for this function to work properly.

The Xmodem protocol requires that the sender and receiver agree on the error checking protocol.
This agreement is negotiated at the beginning of the transfer, and can cause a significant delay.

© National Instruments Corporation 5-33 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

XModemReceivetries (fnaximum#ofTries + 1) / 2) times to negotiate a CRC error check
transfer. If there is no response, it tries to negotiate a check sum transfer up to
((maximum#ofTries -1) / 2) times.

The file is opened in binary mode, and carriage returns and linefeeds are not treated as ASCI|
characters. They are written to the RS-232 line, untouched.

If the size of the file being sent is not an even multiple of the packet size, the file received is
padded with NUL (0) bytes. For example, if the file being sent contains only thel$EligQ

the file written to disk contains the letté#&LLOfollowed by (packet size - 5) bytes of zero. If
the packet size is 128, the file contains the five letteiEbLOand 123 zero bytes.

The standard XModem protocol only supports 128 and 1024 packet sizes. The sender sends an
SOH (0x01) character to indicate that the packet size is 128, or an STX character (0x02) to
indicate that the packet size is 1024. LabWindows/CVI attempts to support any packet size. As a
receiver, when LabWindows/CVI receives an STX character from the sender, it switches to

1024 packet size regardless of what the user specifies. When it receives an SOH character from
the sender, it uses the packet size specified by the user.

For transfers with a large packet size and a low baud rate, a large delay period is recommended.

Example

/* Receive the file c:\test\data from COML1 */
/* NOTE: use \\in path name in C instead of \. */
int n;
OpenComConfig(1, 9600, 1, 8, 1, 256, 256, 0, 0);
n = XModemReceive (1, "c:\\test\\data");
if (n!=0)

FmtOut ("Error %d in receiving file",rs232err);
else

FmtOut ("File successfully received.");

XModemSend

int result = XModemSend(int COMPort, char fileNamd]] );

Purpose

Reads data frorfileName file and sends it in packets over the com port specificd@W Port .

Parameters

Input COMPort integer Range 1 through 32.
fileName string Contains the pathname.

LabWindows/CVI Standard Libraries 5-34 © National Instruments Corporation



Chapter 5 RS-232 Library

Return Value

result integer Result of the XModem send
operation.

<0 Failure.

0 Success.

Using This Function

The file is opened in binary mode. Carriage returns and linefeeds are not treated as ASCI|I
characters. They are sent to the receiver untouched.

This function uses the XModem file transfer protocol. The receiver must also follow this
protocol for this function to work properly.

If the size of the file being sent is not an even multiple of the packet size, the last packet is
padded with NUL (0) bytes. For example, if the file being sent contains only therEinidD
and the packet size is 128, the packet of data sent contains theH&tt&iSfollowed by

123 (packet size - 5) zero bytes.

The standard XModem protocol only supports 128 and 1024 packet sizes. The sender sends an
SOH character (0x01) to indicate that the packet size is 128, or an STX character (0x02) to
indicate that the packet size is 1024. LabWindows/CVI attempts to support any packet size. As a
sender, LabWindows/CVI sends an STX character when you specify packet size as 1024. For
any other packet size, it sends an SOH character.

For transfers with a large packet size and a low baud rate, a large delay period is recommended.

© National Instruments Corporation 5-35 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

Error Conditions

If an error condition occurs during a call to any of the functions in the LabWindows/CVI RS-232
Library, the function returns an error code and the global vanap&2err  contains that error
code. This code is a non-zero value that specifies the type of error that occurred. The currently
defined error codes and their meanings are given in Table 5-6.

Table 5-6. RS-232 Library Error Codes

Code Error Message
-1 Unknown system error.
-2 Invalid port number.
-3 Port is not open.
-4 Unknown 1/O error.
-5 Unexpected internal error.
-6 No serial port found.
-7 Cannot open port.
-11 Memory allocation error in creating buffers.
-13 Invalid parameter.
-14 Invalid baud rate.
-24 Invalid parity.
-34 lllegal number of data bits.
-44 lllegal number of stop bits.
-90 Bad file handle.
91 Error in performing file 1/0O.
-94 Invalid count (Must be greater than or equal to 0).
-97 Invalid interrupt level.
-99 I/O operation timed out.
-104 Value must be between 0 and 255.
-114 Requested input queue size must be 0 or greater.
-124 Requested output queue size must be 0 or greater.
-151 General I/O error.
-152 Buffer parameter is NULL.
-257 Packet was sent but no acknowledgment was received.

(continues)

LabWindows/CVI Standard Libraries 5-36 © National Instruments Corporation



Chapter 5

Table 5-6. RS-232 Library Error Codes (Continued)

RS-232 Library

-258
-259
-260

-261
-262
-263
-264
-265

-269
-300
-301
-302

-303

-304
-305

-402

-503
-504
-505
-506
-507
-508

Packet not sent within retry limit.
Packet not received within retry limit.

data character expected.

Packet number could not be read.
Packet number inconsistency.
Packet data could not be read.
Checksum could not be read.

Checksum received did not match computed
checksum .

Packet size exceeds input queue size.
Error opening file.
Error reading file.

Did not receive the initial negative acknowledgment
character.

Did not receive acknowledgment after the end of
transmission character was sent.

Error while writing to file.

Did not receive either a start of data or end of
transmission character when expected.

received.

Invalid start delay.

Invalid maximum number of retries.
Invalid wait period.

Invalid packet size.

Unable to read CRC.

CRC error.

End of transmission character encountered when stait of

Transfer was canceled because the CAN character was

The value ofs232err

is zero if the most recently called RS-232 function completed

successfully. Errors above 200 occur onlyXodemfunction calls. Errors 261 through 265
are recorded when the maximum number of retries has been exhausted in trying to receive an
XModemfunction packet.

© National Instruments Corporation 5-37 LabWindows/CVI Standard Libraries



Chapter 6
DDE Library

This chapter describes the functions in the LabWindows/CVI DDE (Dynamic Data Exchange)
Library. TheDDE Library Function Overviewection contains general information about the
DDE Library functions and panels. TB®E Library Function Referencgection contains an
alphabetical list of function descriptions. This library is available for LabWindows/CVI for

Microsoft Windows only.

DDE Library Function Overview

The DDE Library includes functions specifically for Microsoft Windows DDE support. This
section contains general information about the DDE Library functions and panels.

The DDE Library Function Panels

The DDE Library function tree appears in Table 6-1. The first- and second-level bold headings in
the tree are the names of function classes and subclasses. Function classes and subclasses are

groups of related function panels. The third-level headings in plain text are the names of
individual function panels. Each DDE function panel generates one or more DDE function
calls. The names of functions are in bold italics to the right of the function panel name.

Table 6-1. DDE Library Function Tree

Server Functions
Register DDE Server
Server DDE Write
Advise DDE Data Ready
Broadcast DDE Data Ready
Unregister DDE Server
Client Functions
Client DDE Execute
Client DDE Read
Client DDE Write
Connect To DDE Server
Set Up DDE Hot Link
Set Up DDE Warm Link
Terminate DDE Link
Disconnect From DDE Server
Get Error String

RegisterDDEServer
ServerDDEWTrite
AdviseDDEDataReady
BroadcastDDEDataReady
UnregisterDDEServer

ClientDDEExecute
ClientDDERead
ClientDDEWrite
ConnectToDDEServer
SetUpDDEHotLink
SetUpDDEWarmLink
TerminateDDELink
DisconnectFromDDEServer
GetDDEErrorString

© National Instruments Corporation 6-1

LabWindows/CVI Standard Libraries



DDE Library Chapter 6

DDE Clients and Servers

Interprocess communication with DDE involves a client and a server in each DDE conversation.
A DDE server can execute commands sent from another application, and send and receive
information to and from a client application under Windows. A DDE client can send commands
to a server application to be executed, and request data from a server application.

With the LabWindows/CVI DDE Library, you can write programs to act as a DDE client or
server. A detailed example using Microsoft Excel and LabWindows/CVI follows later in this
chapter to illustrate how to use the DDE Library functions.

To connect to a DDE server from a LabWindows/CVI program, you must know some

information about the application to which you would like to connect. All DDE server

applications have a name and topic that defines the connection. For example, you can connect to
Microsoft Excel as a server in two ways with hennectToDDEServer function from a
LabWindows/CVI program. If you want to send commands to be executed by the Excel
application, such as opening worksheets and creating charts, you should epeslifyas the

server name anglstem as the topic name in the call to tBennectToDDEServer

function. However, if you want to send data to an Excel spreadsheet, you shouldespestify

as the server name and the filename of the worksheet that is already loaded in Excel as the topic
name.

If your program acts as a DDE server, where other Windows applications will be sending and
receiving commands and data, you need to caRRémisterDDEServer  function in your
program. ThdRegisterDDEServer  function establishes your program as a valid DDE server
so that other applications can connect to it and exchange information. The server callback
function will then be invoked as discussed in the following section.

The DDE Callback Function

Callback functions provide the mechanism for sending and receiving data to and from other
applications through DDE. Similar to the method in which a callback function responds to user
interface events from your User Interface Library object files, a DDE callback function responds
to incoming DDE information.

As shown in Table 6-2, a callback function in a client application can respond to only two types
of DDE message®©DE_DISCONNECandDDE_DATAREADY After you set up a warm link

or hot link (also called an advisory loop) to another application, the callback function defined in
theSetUpDDEHotLink or SetUpDDEWarmLink function will be called whenever the data
values change in the other application, or when the other application is closed.

LabWindows/CVI Standard Libraries 6-2 © National Instruments Corporation



Chapter 6 DDE Library

DDE callback functions used in a program that acts as a DDE server can be triggered in a
number of ways from client applications. Whenever a client application attempts to connect to
your server program or requests information from your program, the callback function in your
program is executed to process the request. The parameter prototypes for the DDE callback
functions in LabWindows/CVI are defined below:

int CallbackFunction (int handle, char *topicName,
char *itemName, int xType, int dataFmt,
int dataSize, void *dataPtr,
void *callbackData);

Parameters
Input handle The conversation handle which uniquely identifies the client

server connection.

topicName The server application triggering the callback.

itemName The data item within the server application that triggers the
callback. Exception: When xTypeDE_EXECUTE
itemNamerepresents the command string from the client
program.

xtype The transaction type (see Table 6-2).

dataFmt The format of the data being transmitted.

dataSize The number of bytes in the data. May actually be greater
than the number of bytes transmitted. It is recommended
that you encode size information in your data.

dataPtr Points to the transmitted data.

callbackData A user-defined data value.

Note: The value of the dataSize parameter is greater than or equal to the actual size of
the data. Itis recommended that you encode size information in your data.

Return Value

The callback function should return 1 to indicate success or 0 to indicate failure or rejection of
the requested action.

Transaction Types

All of the DDE transaction types (xType) that can trigger a callback function are listed in
Table 6-2.

© National Instruments Corporation 6-3 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

Table 6-2. DDE Transaction Types (xType)

xType Server Client When ?

DDE_CONNECT Y N When a new client requests a
connection.

DDE_DISCONNECT Y Y When conversation partner quits.

DDE_DATAREADY Y Y When conversation partner sends
data.

DDE_REQUESTDATA Y N When client requests data.

DDE_ADVISELOOP Y N When client requests advisory loop.

DDE_ADVISESTOP Y N When client terminates request for
advisory loop.

DDE_EXECUTE Y N When client requests execution of|a
command.

Refer to the description fdtegisterDDEServer  andConnectToDDEServer for more
information about the DDE callback function.

DDE Links

Whenever a client program needs to be informed of changes to the value of a particular data item
in the server application, a DDE data link is required. You can establish a DDE data link in
LabWindows/CVI by calling th&etUpDDEWarmLink or SetUpDDEHotLink functions.

Whenever the data value changes, the client callback function is triggered, and the data is
available in thelataPtr parameter.

Within one client-server connection, there can be multiple data links, each applying to a different
data item. For example, you can establish a link between your LabWindows/CVI program and a
particular cell in Excel. The data item to which the link applies is specified itethiame

parameter in the call t8etUpDDEWarmLink or SetUpDDEHotLink functions.

As defined in Windows, warm and hot links differ in that under a warm link the client is merely
alerted when the data value changes, whereas under a hot link the data is actually sent.

LabWindows/CVI makes no distinction between warm links and hot links. In both cases, your
client application receives the data through the client callback function when the data value
changes. (If a warm link is in effect, LabWindows/CVI requests and receives the data from the
server before the callback function is called.) FedUpDDEWarmLink and

SetUpDDEHotLink functions are provided because some DDE server applications offer only
one type of link.

LabWindows/CVI Standard Libraries 6-4 © National Instruments Corporation



Chapter 6 DDE Library

A DDE Library Example Using Microsoft Excel and LabWindows/CVI

LabWindows/CVI includes a sample program catleeédemo.prj that uses DDE to send data

to Microsoft Excel. The example program can be found isdneples\ddetcp  directory.

The following discussion outlines the process required to open an Excel worksheet file, send data
over DDE, and setup a DDE link with one of the cells in the worksheet from a LabWindows/CVI
program. Start Excel and load the worksheet file call®CVI.XLS. The sample program

performs the following operations.

1. Connects to the Microsoft Excel worksheet as a client.

The function,ConnectToDDEServer , with excel as the server name ab@/CVI.XLS

as the topic name, establishes a connection with the worksheet. The Callback Function
Pointer,ClientCallback , identifies the function which will process the DDE
transactions generated from this particular conversation.

2. Establishes a DDE warm link with a particular cell in the Excel worksheet.

The function SetUpDDEWarmLink , with the cell addresfR6C2) as the item name,

establishes a DDE link between the cell in the worksheet. Thereafter, whenever the value of
cell B5 (row 5, column 2) changes, Excel sends information to LabWindows/CVI by
triggering theclientCallbackFunction.

3. Sends data to the Excel worksheet from LabWindows/CVI.

After the data is formatted as a string, it is sent to Excel usingligneDDEWrite
function with the Excel cell regioRRLC2:R50C2) as the item name, and the character
array, containing 50 elements, as the buffer pointer.

4. The callback function responds to DDE transactions from the Excel worksheet.

The callback function automatically returns the following information:

handle—The conversation which triggered the callback (multiple DDE conversations can be
processed by the same callback function).

item name—The cell(s) involved.

topic name—The Excel system or file in Excel involved.
transaction type—EitherDDE_DATAREADS" DDE_DISCONNECT
data format—CF_TEXTin this case.

data size—Number of bytes in the data.

data pointer—Pointer to the data.

callback data—User defined (NULL in this case).

© National Instruments Corporation 6-5 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

When theDDE_DATAREADansaction is received in the callback function, a numeric
display is updated by passing the data pointer value to a numeric control on the UIR file.
When the DDE event BDE_DISCONNEGCTheDisconnectFromDDEServer

function ends the DDE conversation and program execution is halted.

DDE Library Function Reference

AdviseDDEDataReady

int status = AdviseDDEDataReadyunsigned int

Purpose

unsigned int

conversationHandle
char itemNamd] , unsigned int
void *dataPointer, unsigned int
timeout);

dataFormat,
dataSize

Called by a server to write data to a DDE client application. The server should call this only
when the value of a data item changes, and a warm or hot link has been established for the data

item.

Parameters

Input

conversationHandle

unsigned integer

Uniquely identifies the
conversation.

CF_TEXT

Return Value

status

integer

Refer to error codes in
Table 6-3.

LabWindows/CVI Standard Libraries

6-6

itemName string Uniquely identifies the output
item; for example,system .
dataFormat unsigned integer Valid data format; for examgle,

dataPointer void pointer Pointer to buffer holding data
dataSize unsigned integer Number of bytes in data. Myst
be 0 ifdataPointer is NULL.
Limited to 64 kbytes under
Windows 3.1 and Windows 95.
timeout unsigned integer Timeout in ms.

© National Instruments Corporation



Chapter 6 DDE Library

Parameter Discussion

dataFormat must be a valid data format recognized by Microsoft Windows. The following are
the valid data formats supported by Microsoft Windows:

CF_TEXT CF_PALETTE
CF_BITMAP CF_PENDATA
CF_METAFILEPICT CF_RIFF

CF_SYLK CF_WAVE

CF _DIF CF_OWNERDISPLAY
CF_TIFF CF_DSPTEXT
CF_OEMTEXT CF_DSPBITMAP

CF DIB CF_DSPMETAFILEPICT

The Microsoft Windows 3.x Programmer’'s Reference contains an in-depth discussion of DDE
programming and meaning of each data format type.

Using This Function

This function allows your program, acting as a DDE server, to send data to a client that has set
up a hot or warm link.

When a hot or warm link is set up, your server callback function receDBEaADVISELOOP
transaction type (xType) for a particular data object (identifiedeoyName). When the hot or
warm link is terminated, your server callback function receivieBB_ADVISESTOP
transaction type for the data object.

During the period when the hot or warm link is in effect, your server program is responsible for
notifying the client whenever the value of the data object changes. When the data object's value
changes, you can call this functigxgviseDDEDataReady , or

BroadcastDDEDataReady

AdviseDDEDataReady differs fromBroadcastDDEDataReady in that you specify a
particular conversation with a clietdviseDDEDataReady sends the data only to the

specified client, even if other clients have hot or warm links to the same item.
AdviseDDEDataReady sends the data without invoking your server callback function.
However, if there are other clients with warm links to the same item, they are all notified that
new data is available. If they request the new data, your server callback function is invoked with
theDDE_REQUESTDATRAessage. If you do not want to send the data to those other clients,
you must write your server callback function so that it does noEeallerDDEWrite  in this

case.

If you pass NULL (0) as theataPointer and O as thdataSize no data is sent to the specified
client. Instead, all clients with warm links to the item are notified. If they request the new data,
your server callback function is invoked with DBE_REQUESTDATRAessage, and you can

use theServerDDEWrite  function to send the data in response.

© National Instruments Corporation 6-7 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

If successful, this function returns the number of bytes sent. Otherwise, this function returns a
negative error code. See the help forgtagus control for the error code values.

Note: Your program should not calAdviseDDEDataReady in a tight loop because the
iterations will compete with user interface events for the CPU time. You should use
this function sparingly, and only when the value of the hot- or warm-linked data object
changes. In cases when large data objects are to be returned from the server, your
program should only calAdviseDDEDataReady when the user interface is not
busy.

See Also

RegisterDDEServer , SetUpDDEHotLink , SetUpDDEWarmLink ,
BroadcastDDEDataReady

BroadcastDDEDataReady

int status = BroadcastDDEDataReadychar serverNamd], char itemNamd],
char topicNam¢]], unsigned int dataFormat,
void *dataPointer, unsigned int dataSize

Purpose

Called by a server to send, to send data to all clients that have set up hot or warm links on the
specified topic and item.

Parameters
Input | serverName string Identifies the server from which to send the data.
topicName string Identifies the topic with which the data is
associated.
itemName string Identifies the item with which the data is
associated.
dataFormat unsigned Valid data format; for exampl&€F_TEXT.
integer
dataPointer void pointer | Pointer to buffer holding data.
dataSize unsigned Number of bytes in data. Limited to 64 KB on
integer Windows 3.1 and Windows 95.
Return Value
status integer Refer to error codes in Table 6-3.

LabWindows/CVI Standard Libraries 6-8 © National Instruments Corporation



Chapter 6 DDE Library

Parameter Discussion

serverName,topicName, anditemName must be strings of length from 1 to 255. They are used
without regard to case.

Using this Function

This function allows your program, acting as a DDE server, to send data to all clients that have
set up hot or warm links on the specified topic and item.

When a hot or warm link is set up, your server callback function recedBEaADVISELOOP
transaction type (xType) for a particular data object (identifieiieoyName). When the hot or
warm link is terminated, your server callback function receivieBB_ADVISESTOP
transaction type for the data object.

During the period when the hot or warm link is in effect, your server program is responsible for
notifying the client whenever the value of the data object changes. When the data object's value
changes, your server program should call either of the following functions,
BroadcastDDEDataReady or AdviseDDEDataReady .

BroadcastDDEDataReady differs fromAdviseDDEDataReady in that it is not restricted
to a particular clientBroadcastDDEDataReady sends the data automatically to all clients
with hot links to the itemBroadcastDDEDataReady notifies all clients with warm links to
the item. For each warm-linked client that requests the data, your server callback function is
invoked with theDDE_ REQUESTDATAessage. You must c8erverDDEWrite  in the
callback to send the data.

When successful, this function returns the number of bytes sent. Otherwise, this function returns
a negative error code. Consult the table at the end of this chapter to see the error code values.

Note: Your program should not call this function within a tight loop, because it will compete
with user interface events for the CPU time. This function should be used sparingly,
and only when the value of the hot or warm linked data object changes. In cases when
large data objects are to be returned from the server, it should only be called when the
user interface is not busy.

See Also

RegisterDDEServer , SetUpDDEHotLink , SetUpDDEWarmLink ,
AdviseDDEDataReady |,

ClientDDEEXxecute

int status = ClientDDEExecutgunsigned int conversationHandle
char commandString] , unsigned int timeout);

© National Instruments Corporation 6-9 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

Purpose

Called by client to send a command to be executed by a DDE server application.

Parameters
Input conversationHandle | unsigned integer Uniquely identifies the
conversation.
commandString string Command to be executed by
the server application.
timeout unsigned integer Timeout in ms.
Return Value
status integer Refer to error codes in
Table 6-3.

Parameter Discussion

ThecommandString represents a valid command sequence for the server application to execute.
Refer to the command function reference manual for the application to which you are connecting
for more information on the commands supported.

See Also

ConnectToDDEServer , ClientDDERead , ClientDDEWrite

ClientDDERead

int status = ClientDDEReadunsigned int conversationHandle char itemNamd] ,
unsigned int dataFormat, void *dataBuffer,
unsigned int dataSize unsigned int timeout);

Purpose

Called by client to read data from a DDE server application.

Parameters
Input conversationHandle | unsigned integer A handle uniquely identifies [the
conversation.
itemName string Uniquely identifies the output

item; for examplesystem .

LabWindows/CVI Standard Libraries 6-10 © National Instruments Corporation



Chapter 6 DDE Library

dataFormat unsigned integer Valid data format; for example,
CF_TEXT
dataSize unsigned integer Number of bytes to read.

Limited to 64 KB under
Windows 3.1 and Windows 95%.

timeout unsigned integer Timeout in ms.
Output dataBuffer void pointer Buffer in which to receive datg.
Return Value
status integer Refer to error codes in
Table 6-3.

Parameter Discussion

dataFormat must be a valid data format recognized by Microsoft Windows. The following are
the valid data formats supported by Microsoft Windows:

CF_TEXT CF_PALETTE
CF_BITMAP CF_PENDATA
CF_METAFILEPICT CF_RIFF

CF_SYLK CF_WAVE

CF_DIF CF_OWNERDISPLAY
CF_TIFF CF_DSPTEXT
CF_OEMTEXT CF_DSPBITMAP
CF_DIB CF_DSPMETAFILEPICT

Refer to Microsoft programmers' documention for Windows 3.x for an in-depth discussion of
DDE programming and meaning of each data format type.

statusreturns a positive number representing the number of bytes that were successfully read. A
negative number corresponds to the error code.

See Also

ConnectToDDEServer , ClientDDEWrite

ClientDDEWTrite
int status = ClientDDEWrite (unsigned int conversationHandle char itemNamd] ,

unsigned int dataFormat, void *dataPointer,
unsigned int dataSize unsigned int timeout);

© National Instruments Corporation 6-11 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

Purpose

Called by client to write data to a DDE server application.

Parameters
Input conversationHandle | unsigned integer Uniquely identifies the

conversation.

itemName string Uniquely identifies the output
item; for examplesystem .

dataFormat unsigned integer Valid data format; for examgle,
CF_TEXT.

dataPointer void pointer Buffer holding data.

dataSize unsigned integer Number of bytes to write.
Limited to 64 KB under
Windows 3.1 and Windows 95.

timeout unsigned integer Timeout in ms.

Return Value

status integer Refer to error codes in
Table 6-3.

Parameter Discussion

dataFormat must be a valid data format recognized by Microsoft Windows. The following are
the valid data formats supported by Microsoft Windows:

CF_TEXT CF_PALETTE
CF_BITMAP CF_PENDATA
CF_METAFILEPICT CF_RIFF

CF_SYLK CF_WAVE

CF_DIF CF_OWNERDISPLAY
CF_TIFF CF_DSPTEXT
CF_OEMTEXT CF_DSPBITMAP
CF_DIB CF_DSPMETAFILEPICT

Refer to Microsoft programmers' documention for Windows 3.x for an in-depth discussion of
DDE programming and meaning of each data format type.

statusreturns a positive number representing the number of bytes that were successfully read. A
negative number corresponds to the error code.

LabWindows/CVI Standard Libraries 6-12 © National Instruments Corporation



Chapter 6 DDE Library

See Also

ConnectToDDEServer , ClientDDERead

ConnectToDDEServer

int status = ConnectToDDEServefunsigned int *conversationHandle
char serverNam¢g] , char topicNamd] ,
ddeFuncPtr clientCallbackFunction,
void *callbackData);

Purpose

Establishes a connection (conversation) between your program and a named server on a given
topic name.

Parameters
Input serverName string Name of the server application.
topicName string Specifies the type of
conversation with the server.
clientCallbackFunction | DDE function Pointer to the user callback
pointer function.
callbackData void pointer User-defined data.
Output | conversationHandle unsigned integer Uniquely identifies the
conversation.
Return Value
status integer Refer to error codes in
Table 6-3.

Parameter Discussion

TheconversationHandlereturns an integer value that uniquely represents a conversation
between a server and a client.

serverNameandtopicName must be strings of length from 1 to 255. They are used without
regard to case.

Each server application defines its own set of valid topic names. Refer to the command function
reference manual for the server application. A client and a server can have multiple connections
as long as they are under different topic names.

© National Instruments Corporation 6-13 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

clientCallbackFunction defines a callback function through which all messages from the server
will be routed.

The callback function must be of the following form:

int (*ddeFuncPtr) (int handle, char *topicName, char *itemName,
int xType, int dataFmt, int dataSize,
void*dataPtr, void *callbackData);

ThexType (transaction type) parameter specifies the type of message received from the server.

TheclientCallbackFunction can receive only two transaction typd3DE_DISCONNECa&nd
DDE_DATAREADY

DDE_DISCONNEGHFReceived when a server is requesting the termination of a connection, or
when Windows terminates the connection due to an internal error.

DDE_DATAREAD¥Received when you have already set up a hot or warm link by calling
SetUpDDEHotLink or SetUpDDEWarmLink , and the server notifies you that new data is
available. (If the server program uses the LabWindows/CVI DDE Library, it notifies you by
calling AdviseDDEDataReady orBroadcastDDEDataReady .) The data is received in
the callback in thelataPtr parameter. ThwpicName itemName dataFmt, dataSize and
dataPtr parameters contain significant data. TieenName can specify an object to which the
data refers. For example, in Excel, the item name specifies a cetlaldtent is one of the
Windows-defined data types, for exam@l#;_TEXT ThedataSizespecifies the number of
bytes in the data pointed to bDataPtr.

Note: ThedataSizevalue is the value LabWindows/CVI receives from Microsoft Windows.
This value can be larger than the actual number of bytes written by the client.

Note: The callback function should return TRUE if the message can be processed
successfully. Otherwiseét should return FALSE. The callback function should be
short and return as soon as possible.

callbackDatais a four-byte value that will be passed to the callback function each time it is
called for this client.

You can define the meaning of the callback data. For example, you can use the callback data as a
pointer to a data object that you need to access in the callback function. In this way, you would
not need to declare the data object as a global variable.

If you do not want to use the callback data, you can pass zero.
Note: In the case oDDE_DISCONNEGCThe value ofcallbackData is undefined.
See Also

DisconnectFromDDEServer , RegisterDDEServer

LabWindows/CVI Standard Libraries 6-14 © National Instruments Corporation



Chapter 6 DDE Library

DisconnectFromDDEServer
int status = DisconnectFromDDEServe(unsigned int conversationHandlg;
Purpose

Disconnects your client program from a server application.

Parameters
Input conversationHandle | unsigned integer Uniquely identifies the
conversation.
Return Value
status integer Refer to error codes in
Table 6-3.

Note: This function ends a conversation between a client and server corresponding to the
conversationHandlethat was passed. Remember that there can be more than one
conversation between a client and a server.

See Also

ConnectToDDEServer , RegisterDDEServer

GetDDEErrorString

char *message= GetDDEErrorString (int errorNum)

Purpose

Converts the error number returned by a DDE Library function into a meaningful error message.

Parameters

Input errorNum integer Status returned by a
DDE function.

© National Instruments Corporation 6-15 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

Return Value

message string Explanation of error.

RegisterDDEServer

int status = RegisterDDEServefchar serverNamd] ,
ddeFuncPtr serverCallbackFunction,
void *callbackData);

Purpose

Registers your program as a valid DDE server, allowing other Windows applications to connect
to it for interprocess communication.

Parameters
Input | serverName string Name of the server application.
serverCallbackFunction | DDE function Pointer to the user callback
pointer function.
callbackData void pointer Pointer to the user data.
Return Value
status integer Refer to error codes in
Table 6-3.

Parameter Discussion
serverNamemust be a string of length from 1 to 255. It is used without regard to case.

TheserverCallbackFunctionis the name of the callback function that will be invoked to
process client requests.

The callback function must be of the following form:
int (*ddeFuncPtr) (int handle, char *topicName, char *itemName,

int xType, int dataFmt, int dataSize,
void *dataPtr, void *callbackData);

ThexType (transaction type) parameter specifies the type of request received from the client.
The following transaction types are supported:

DDE_CONNECT

LabWindows/CVI Standard Libraries 6-16 © National Instruments Corporation



Chapter 6 DDE Library

DDE_DISCONNECT
DDE_DATAREADY
DDE_REQUEST
DDE_ADVISELOOP
DDE_ADVISESTOP
DDE_EXECUTE

DDE_CONNEGHFThis transaction type is received when a client is requesting a connection.
ThetopicName parameter specifies the connection topic. The set of valid topic names is defined
by the server and can be used in different ways. For example, Excel uses the topic name to
specify the file on which the client requests to operate. A client can have multiple connections to
the same server as long as there is a different topic name for each connection.

DDE_DISCONNEGHFReceived when a client is requesting the termination of a connection, or
when Windows terminates the connection due to an internal error.

DDE_DATAREAD¥Received when the client has sent data via DDE to the server. The
topicName itemName dataFmt, dataSize anddataPtr parameters contain significant data.

TheitemName can specify an object to which the data refers. For example, in Excel, the item
name specifies a cell. TldataFmt is one of the Windows-defined data types, for example,
CF_TEXT. ThedataSizespecifies the number of bytes in the data pointed tiakgPtr.

Note: ThedataSizevalue is the value LabWindows/CVI receives from Microsoft Windows.
This value can be larger than the actual number of bytes written by the client.

DDE_REQUESFReceived when the client is requesting that data be sent to it via DDE. The
itemName can specify an object to which the data refers. For example, in Excel, the item name
specifies a cell. ThdataFmt is one of the Windows-defined data types, for example,

CF_TEXT.

DDE_ADVISELOOPR-Received when the client is requesting a hot or warm link (advisory loop)
on a specific item. When a hot or warm link is in effect, the server is supposed to notify the
client whenever the specified item changes value. The server notifies the client of the change in
value by calling the functioAdviseDDEDataReady orBroadcastDDEDataReady . The
itemName anddataFmt parameters contain significant values. TteemName can specify an

object to which the data item refers. For example, in Excel, the item name specifies a cell. The
dataFmt is one of the Windows-defined data types, for exan@@pie, TEXT.

DDE_ADVISESTOR-Received when the client is requesting the termination of an advisory
loop. TheitemName contains the same value that was used to set up the advisory loop.

DDE_EXECUTE-Received when the client requests the execution of a command. The
itemName parameter contains the command string. The set of valid command strings is defined
by the server. For example, Excel uses "[Save()]" to save a file.

Using This Function

© National Instruments Corporation 6-17 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

This function registers your program as a DDE server with the specified name. Clients
attempting to connect to your program must use the specified name. Thereafter, all requests by
the client will be routed through the specifetverCallbackFunction.

You can register your program as a DDE server multiple times as long as you specify different
server names.

Note: The callback function should return TRUE if the request is successful else return
FALSE. The callback function should be short and should retuas soon as possihle

callbackData is a four-byte value that will be passed to the callback function each time it is
called for this server.

You can define the meaning of the callback data. The following are examples of how the
callback data can be used:

1. You can register your program as a DDE server multiple times under different names. For
instance, you can use the same callback function for all of the server instances by using the
callback data to differentiate between them.

2. You can use the callback data to point to a data object that you need to access in the callback
function. In this way, you would not need to declare the data object as a global variable.

If you do not want to use the callback data, you can pass zero.
Note: In the case oDDE_DISCONNECThe value ofcallbackData is undefined.
See Also

ConnectToDDEServer , UnregisterDDEServer

LabWindows/CVI Standard Libraries 6-18 © National Instruments Corporation



Chapter 6 DDE Library

ServerDDEW rite

conversationHandle char itemNamq] ,
dataFormat, void *dataPointer,
dataSize unsigned int timeout);

int status = ServerDDEWrite(unsigned int
unsigned int
unsigned int

Purpose
Writes data to a DDE client application when it requests data.

Parameters

Uniquely identifies the
conversation.

Input conversationHandle | unsigned integer

itemName string Uniquely identifies the output
item; for examplesystem .
dataFormat unsigned integer Valid data format; for example,

CF_TEXT.

dataPointer void pointer Buffer holding data.

dataSize unsigned integer Number of bytes to write.
Limited to 64 KB under
Windows 3.1 and Windows 95.
timeout unsigned integer Timeout in ms.

Return Value

Refer to error codes in
Table 6-3.

status integer

Parameter Discussion

dataFormat must be a valid data format recognized by Microsoft Windows. The following are
the valid data formats supported by Microsoft Windows:

CF_TEXT CF_PALETTE
CF_BITMAP CF_PENDATA
CF_METAFILEPICT CF_RIFF

CF_SYLK CF_WAVE

CF_DIF CF_OWNERDISPLAY
CF_TIFF CF_DSPTEXT
CF_OEMTEXT CF_DSPBITMAP
CF_DIB CF_DSPMETAFILEPICT

© National Instruments Corporation 6-19

LabWindows/CVI Standard Libraries



DDE Library Chapter 6
Refer to Microsoft programmers' documention for Windows 3.x for an in-depth discussion of
DDE programming and meaning of each data format type.

Using This Function

This function allows your program, acting as a DDE server, to send data to a client. You should
call this function only when yowgerverCallbackFunction receives transaction type (xType) of
DDE_REQUESTDATA

If you call the function at any other time, the data is stored until the client requests data. If you
call the function multiple times on the same conversation before the client requests the data, each
new data set is appended to the buffer containing the stored data.

If the client has set up a hot or warm link and you need to sendttiatathanin response to a
DDE_REQUESTDATwansaction, use thedviseDDEDataReady or
BroadcastDDEDataReady function.

If successful, this function returns the number of bytes written. Otherwise, this function returns a
negative error code.

See Also

RegisterDDEServer , AdviseDDEDataReady

SetUpDDEHotLink

int status = SetUpDDEHotLink(unsigned int conversationHandle itemNamd]
unsigned int dataFormat,
unsigned int timeout);

Purpose

Sets up a hot link (advisory loop) between the client and the server. The function returns zero for
success and a negative error code for failure.

Parameters
Input | conversationHandle |unsigned integer | Uniquely identifies the conversation.
itemName string Uniquely identifies the output item; for
examplesystem .
dataFormat unsigned integer | Valid data format; for example,
CF_TEXT.
timeout unsigned integer | Timeout in ms.

LabWindows/CVI Standard Libraries 6-20 © National Instruments Corporation



Chapter 6 DDE Library

Return Value

status integer Refer to error codes in Table 6-3.

Parameter Discussion

TheitemNamerepresents the information in the server application where the DDE link is

established. For example, the item name could represent an Excel range of cells by using the

range descriptioR1C1:R10C10.

Note: To the clientf LabWindows/CVI does not distinguish between a hot link and a warm
link. For both types of linksthe clientCallbackFunction is called with a transaction
type ofDDE_DATAREADWhen the data item is changed at the server,sated the new
data is available in thelataPtr parameter of the callback functionLabWindows/CVI
has two different functions for setting up a warm link or hot link in case some
applications only accept one or the other kind of link.

See Also

RegisterDDEServer , SetUpDDEWarmLink

SetUpDDEWarmLink

int status = SetUpDDEWarmLink (unsigned int conversationHandle
char itemNamq] , unsigned int dataFormat,
unsigned int timeout);

Purpose

Sets up a warm link (advisory loop) between the client and the server. The function returns zero

for success and a negative error code for failure.

Parameters
Input | conversationHandle | unsigned integef Uniquely identifies the conversation.
itemName string Uniquely identifies the output item; for
examplesystem .
dataFormat unsigned integef Valid data format; for example,
CF_TEXT
timeout unsigned integef Timeout in ms.

Return Value

status integer Refer to error codes in Table 6-3.

© National Instruments Corporation 6-21 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

Parameter Discussion

TheitemNamerepresents the information in the server application where the DDE link is

established. For example, the item name could represent an Excel range of cells by using the

range descriptioR1C1:R10C10 .

Note: To the clienf LabWindows/CVI does not distinguish between a hot link and a warm
link. For both types of linksthe clientCallbackFunction is called with a transaction
type ofDDE_DATAREADWhen the data item is changed at the server,sated the new
data is available in thelataPtr parameter of the callback functionLabWindows/CVI
has two different functions for setting up a warm link or hot link in case some
applications only accept one or the other kind of link.

See Also

RegisterDDEServer , SetUpDDEHotLink

TerminateDDELink

int status=TerminateDDELInk (unsigned int conversationHandle
char itemNamd] , unsigned int dataFormat,
unsigned int timeout);

Purpose

Lets your program, acting as a DDE client, terminate an advisory link, previously set up with the

server either throug8etUpDDEWarmLink or SetUpDDEHotLink .

This function returns zero for success or a negative error code for failure.

Parameters
Input | conversationHandle | unsigned integer Uniquely identifies the conversation.
itemName string Uniquely identifies the output item; for
examplesystem .
dataFormat unsigned integer Valid data format; for exam@€&, TEXT.
timeout unsigned integer Timeout in ms.

Return Value

status integer Refer to error codes in Table 6-3.

LabWindows/CVI Standard Libraries 6-22 © National Instruments Corporation



Chapter 6 DDE Library

UnregisterDDEServer

int status = UnregisterDDEServei(char serverNamdg] );
Purpose

Unregisters your application program as a DDE server.

Parameters

>

Input serverName string Name of the server applicatio

Return Value

status integer Refer to error codes in
Table 6-3.
See Also
RegisterDDEServer

Error Conditions

If an error condition occurs during a call to any of the functions in the LabWindows/CVI DDE
Library, the status return value contains the error code. This code is a non-zero value that
specifies the type of error that occurred. Error code return values are negative numbers. The
currently defined error codes and their associated meanings are shown in Table 6-3.

© National Instruments Corporation 6-23 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

Table 6-3. DDE Library Error Codes

Code Error Message
0 kDDE_NoError
-1 -KDDE_UnableToRegisterService
-2 -KDDE_EXxistingServer
-3 -kDDE_FailedToConnect
-4 -KDDE_ ServerNotRegistered
-5 -KDDE_TooManyConversations
-6 -kKDDE_ReadFailed
-7 -KDDE_ WriteFailed
-8 -kDDE_ ExecutionFailed
-9 -KDDE_ InvalidParameter
-10 -kDDE_OutOfMemory
-11 rkDDE_TimeOutErr
-12 -kDDE_NoConnectionEstablished
-13 -kDDE_ FailedToSetUpHotLink
-14 -kDDE_FailedToSetUpWarmLink
-15 -kDDE_GenerallOErr
-16 -rkDDE_AdvAckTimeOut
-17 -kDDE_Busy
-18 -kDDE_DataAckTimeOut
-19 -kDDE_DIINotlInitialized
-20 -rkDDE_DIllUsage
-21 -kDDE_ExecAckTimeOut
-22 -kDDE_DataMismatch
-23 -kDDE_LowMemory
-24 -kDDE_MemoryError
-25 -rkDDE_NotProcessed
-26 -kDDE_NoConvEstablished
-27 -kDDE_PokeAckTimeOut
-28 -kDDE_ PostMsgFailed
-29 -rkDDE_Reentrancy
-30 -kDDE_ServerDied
-31 -kDDE_SysError
-32 -kDDE_UnadvAckTimeOut
-33 rkDDE_UnfoundQueueld

Note: Error codes from -16 to -33 are native DDEML errors which correspond to Windows
DDE error codes starting from 0x4000.

LabWindows/CVI Standard Libraries 6-24 © National Instruments Corporation



Chapter 7
TCP Library

This chapter describes the functions in the LabWindows/CVI TCP (Transmission Control
Protocol) Library. Th&@CP Library Function Overviewection contains general information
about the TCP Library functions and panels. TG@® Library Function Referen@ection
contains an alphabetical list of function descriptions.

In order to use this library in Microsoft Windows, a versioMdNSOCK.DLLhas to be present.
The DLL comes with the program that drives the network card.

TCP Library Function Overview

This section contains general information about the TCP Library functions and network
communication using TCP. TCP Library functions provide a platform-independent interface to
the reliable, connection-oriented, byte-stream, network communication protocol.

The TCP Library Function Panels

The first- and second-level bold headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The
third-level headings in plain text are the names of individual function panels. Each TCP Library
function panel generates one TCP Library function call. The names of the corresponding TCP
Library function calls appear in bold italics to the right of the function panel names. The TCP
Library function tree appears in Table 7-1.

Table 7-1. The TCP Library Function Tree

Server Functions
Register TCP Server RegisterTCPServer
Server TCP Read ServerTCPRead
Server TCP Write ServerTCPWrite
Unregister TCP Server UnregisterTCPServer
Disconnect TCP Client DisconnectTCPClient
Client Functions
Connect To TCP Server ConnectToTCPServer
Client TCP Read ClientTCPRead
Client TCP Write ClientTCPWrite
Disconnect From TCP Server DisconnectFromTCPServer
Get Error String GetTCPErrorString

© National Instruments Corporation 7-1 LabWindows/CVI Standard Libraries



TCP Library Chapter 7

TCP Clients and Servers

Network communication using the TCP library involves a client and a server in each connection.
A TCP server can send and receive information to and from a client application through a
network. A TCP client can send and request data to and from a server application. Once
registered, a server waits for clients to request connection to it. A client, however, can only
request connection to a pre-existing server.

With the LabWindows/CVI TCP Library, you can write programs to act as a TCP client or
server. Under Windows, you cannot run both a server and a client on the same computer. The
procedure for writing a program using TCP is similar to the procedure followed for using DDE.
Refer to the sample program discussion in Chapteb&, Library. Two additional sample
programs,TCPSERV.PRJandTCPCLNT.PRJ provide some guidelines on structuring your
TCP programs as a server or client. These programs are provided as templates only, and will
require modification for operation on your machine.

To connect to a TCP server from a LabWindows/CVI program, you must have some information
about the application to which you would like to connect. All TCP server applications must run
on a specified host, which either has a known host name (for examaglbpb.ccc ) or a

known IP address (for exampl23.456.78.90 ) associated with it. In addition, each server
specifies its own unique port number. These two pieces of information identify different servers
either on the same machine or on different machines. Before any client program can connect to a
server, it has to know the host name and server port number.

If your program is to act as a TCP server, you must caRdgsterTCPServer  function in

your program. Th®&egisterTCPServer  function establishes your program as the server
associated with a port number on the local host. Client applications can connect to your program
by using either the host name (where the server application is currently running) or the IP
address, and the port number associated with the server application. The callback function is
invoked whenever the conversation partner requests communication. This is discussed in the
following section.

The TCP Callback Function

Callback functions provide the mechanism for receiving notification of connection, connection
termination, and data availability. Similar to the method in which callback function responds to
user interface events from your User Interface Library object files, a TCP callback function
responds to incoming TCP messages and information.

As shown in Table 7-2, a callback function can respond to three types of TCP messages:
TCP_CONNECTCP_DISCONNECTandTCP_DATAREADY

TCP callback functions, used in a program acting as a TCP server, can be triggered in a number

of ways from client applications. Whenever a client application attempts to connect to your
server program or requests information from your program, the callback function in your

LabWindows/CVI Standard Libraries 7-2 © National Instruments Corporation



Chapter 7 TCP Library

program is invoked to process the request. The parameter prototypes for the TCP callback
functions in LabWindows/CVI are defined below:

int CallbackFunction (int handle, int xType, int errCode,
void *callbackData);

where

handle represents the conversation handle

XType represents the transaction type (see table below)

errCode for TCP_DISCONNECTis negative if the connection is being terminated due to an
error

callbackData s a user-defined data value.

All of the TCP transaction types (xType) that can trigger a callback function are listed in
Table 7-2.

Table 7-2. TCP Transaction Types (xType)

xType Server Client When ?

TCP_CONNECT Y N When a new client requests for
connection.

TCP_DISCONNECT | Y Y When conversation partner quits.

TCP_DATAREADY |Y Y When conversation partner sends
data.

Refer to the descriptions f&egisterTCPServer andConnectToTCPServer for more
information about the TCP callback function.

TCP Library Function Reference

ClientTCPRead

int status = ClientTCPReadunsigned int conversationHandle void *dataBuffer,
unsigned int dataSize unsigned int timeout);

Purpose

Reads data from a TCP server application when it contains data that is ready for TCP network
transmission.

© National Instruments Corporation 7-3 LabWindows/CVI Standard Libraries



TCP Library Chapter 7

Parameters
Input conversationHandle | unsigned integer Uniquely identifies the
conversation.
dataBuffer void pointer Buffer in which to receive datg.
dataSize unsigned integer Maximum number of bytes tp
read.
timeout unsigned integer Timeout in ms.
Return Value
status integer Returns the number of bytes

f

read, or a negative error code
an error occurs; Refer to error
codes in Table 7-3.

See Also

ConnectToTCPServer , ClientTCPWrite

ClientTCPWrite

int status = ClientTCPWrite (unsigned int conversationHandle void *dataPointer,
int dataSize unsigned int timeout);

Purpose

Writes data to a TCP server application.

Parameters
Input conversationHandle | unsigned integer Uniquely identifies the
conversation.
dataPointer void pointer Buffer holding data.
dataSize unsigned integer Number of bytes to write.
timeout unsigned integer Timeout in ms.

LabWindows/CVI Standard Libraries 7-4 © National Instruments Corporation



Chapter 7

Return Value

TCP Library

status integer Returns the number of bytes
written, or a negative error cogle
if an error occurs; Refer to errpr
codes in Table 7-3.
See Also
ConnectToTCPServer , ClientTCPRead
ConnectToTCPServer

int status = ConnectToTCPServefunsigned int

Purpose

tcpFuncPtr

*conversationHandle

unsigned int portNumber,

char serverHostNam¢] ,
clientCallbackFunction,
void *callbackData, unsigned int timeout);

Establishes a conversation between your program and a pre-existing server. Your program
becomes a client.

Parameters
Input portNumber unsigned integer Uniquely identifies a server
a single machine.
serverHostName character array Can either be the host namg

clientCallbackFunction

callbackData
timeout

TCP function
pointer

void pointer
unsigned integer

IP address string.

For exampleaaa.bbb.ccc
or 123.456.78.90

Pointer to the user callback
function.

User-defined data.
Timeout in ms.

on

2 Or

Output

conversationHandle

unsigned integer

Uniquely identifies the

conversation.

© National Instruments Corporation

LabWindows/CVI Standard Libraries



TCP Library Chapter 7

Return Value

status integer Refer to error codes in
Table 7-3.

Parameter Discussion

clientCallbackFunction is the name of the function called to process messages to your program
as a TCP client.

The callback function must be of the following form:
int (*tcpFuncPtr) (int handle, int xType, int errCode, void *callbackData);

ThexType (transaction type) parameter specifies the type of message received from the server.
The client callback function can receive the following transaction types.

TCP_DISCONNECT

TCP_DATAREADY
TheerrCode parameter is used only when the transaction typ€R _DISCONNECT
The following describes each transaction type.

TCP_DISCONNEGCHReceived when a server is requesting the termination of a connection, or
when a connection is being terminated due to an error. If the connection is terminated due to an
error, theerrCode parameter contains a negative error code. Refer to Table 7-3 for the list of
error codes.

TCP_DATATREADY¥-Received when the server has sent data via TCP to the client. Your
program, acting as the client, should €&llentTCPRead to obtain the data.

The client callback function should return TRUE if the message can be processed successfully.
Otherwise, the function should return FALSE.

Note: The callback function should be short and should retuas soon as possible.

callbackData is a four-byte value that will be passed to the callback function each time it is
called for this client.

You should define the meaning of the callback data. One way to usalltheckData is as a
pointer to a data object that you need to access in the callback function. In this way, you would
not need to declare the data object as a global variable.

If you do not want to use tlmllbackData, you can pass zero.

LabWindows/CVI Standard Libraries 7-6 © National Instruments Corporation



Chapter 7 TCP Library

See Also

RegisterTCPServer , DisconnectFromTCPServer

DisconnectFromTCPServer

int status = DisconnectFromTCPServe(unsigned int conversationHandlg;
Purpose

Disconnects your client program from a server application.

Parameters

Input | conversationHandle| unsigned integef Uniquely identifies the conversation.

Return Value

status integer Refer to error codes in Table 7-3.

Note: This function terminates a connection identified by the conversation handle passed.
There can be more than one conversation between a client and a server.

See Also

ConnectToTCPServer , RegisterTCPServer

DisconnectTCPClient
int status = DisconnectTCPClien{unsigned int conversationHandle);
Purpose

Called by a TCP server to terminate a connection with a client. (Be aware that there can be more
than one conversation between a server and a client.)

Parameters

Input | conversationHandle | unsigned integef Uniquely identifies the connection.

Return Value

status integer Refer to error codes in Table 7-3.

© National Instruments Corporation 7-7 LabWindows/CVI Standard Libraries



TCP Library Chapter 7

See Also

RegisterTCPServer

GetTCPErrorString

char *message= GetTCPErrorString (int errorNum)

Purpose

Converts the error number returned by a TCP Library function into a meaningful error message.

Parameters

Input errorNum integer Status returned by a TCP functign.

Return Value

message string Explanation of error.

RegisterTCPServer

int status = RegisterTCPServefunsigned int portNumber,
tcpFuncPtr  serverCallbackFunction,
void *callbackData);

Purpose

Registers your program as a valid TCP server and allows other applications to connect to it for
network communication.

Parameters
Input portNumber unsigned integer Uniquely identifies a server pn
a single machine.
serverCallbackFunction | TCP function Pointer to the user callback
pointer function.
callbackData void pointer Pointer to the user data.

LabWindows/CVI Standard Libraries 7-8 © National Instruments Corporation



Chapter 7 TCP Library

Return Value

status integer Refer to error codes in
Table 7-3.

Parameter Discussion
serverCallbackFunctionis the name of the function to be called to process client requests.

The callback function must be of the following form:

int (*tcpFuncPtr) (int handle, int xType, int errCode,
void *callbackData)

ThexType parameter specifies the type of message received from the server. The server
callback function can receive the following transaction types.

TCP_CONNECT
TCP_DISCONNECT
TCP_DATAREADY
TheerrCode parameter is used only when the transaction typ€R _DISCONNECT
The following describes each transaction type.
TCP_CONNEGHThe transaction type is received when a client is requesting a connection.

TCP_DISCONNEGCHReceived when a client is requesting the termination of a connection, or
when a connection is being terminated due to an error. If the connection is terminated due to an
error, theerrCode parameter contains a negative error code. Refer to Table 7-3 for the list of
error codes.

TCP_DATATREAD¥-Received when the client has sent data via TCP to the server. Your
program, acting as the server, should SellverTCPRead to obtain the data.

The server callback function should return TRUE if the request is successful. Otherwise, the
function should return FALSE.

Note: Server callback should be short and should return as soon as possible

callbackData is a four-byte value that will be passed to the callback function each time it is
called for this server.

© National Instruments Corporation 7-9 LabWindows/CVI Standard Libraries



TCP Library Chapter 7
It is up to you to define the meaning of the callback data. The following are examples of how the
callback data can be used:

* You can register your program as a TCP server multiple times under different port numbers.
You could use the same callback function for all of the server instances by using the callback
data to differentiate between them.

* You can use the callback data to point to a data object that you need to access in the callback
function. In this way, you would not need to declare the data object as a global variable.

If you do not want to use the callback data, you can pass zero.
See Also

ConnectToTCPServer , UnregisterTCPServer

ServerTCPRead

int status = ServerTCPReadunsigned int conversationHandle void *dataBuffer,
unsigned int dataSize unsigned int timeout);

Purpose

Reads data from a TCP client application.

Parameters
Input conversationHandle | unsigned integer Uniquely identifies the
conversation.
dataBuffer void pointer Buffer in which to receive datg.
dataSize unsigned integer Number of bytes to read.
timeout unsigned integer Timeout in ms.
Return Value
status integer Returns the number of bytes

written, or a negative error cogle
if an error occurs; Refer to errpr
codes in Table 7-3.

See Also

RegisterTCPServer , ServerTCPWrite

LabWindows/CVI Standard Libraries 7-10 © National Instruments Corporation



Chapter 7 TCP Library

ServerTCPWrite

int status = ServerTCPWrite(unsigned int conversationHandle void *dataPointer,
unsigned int dataSize unsigned int timeout);

Purpose

Writes data to a TCP client application.

Parameters
Input | conversationHandle| unsigned integer| Uniquely identifies the conversation.
dataPointer void pointer Buffer holding data.
dataSize unsigned integer| Number of bytes to write.
timeout unsigned integer| Timeout in ms.

Return Value

status integer Returns the number of bytes written, or p
negative error code if an error occurs; Refer
to error codes in Table 7-3.

See Also

RegisterTCPServer , ServerTCPRead

UnregisterTCPServer
int status = UnregisterTCPServei(unsigned int portNumber);

Purpose

Unregisters your server application program as a TCP server.

Parameters

Input | portNumber unsigned integef Uniquely identifies a server on a single
machine.

© National Instruments Corporation 7-11 LabWindows/CVI Standard Libraries



TCP Library Chapter 7

Return Value

status integer Refer to error codes in Table 7-3.

See Also
RegisterTCPServer

Error Conditions

If an error condition occurs during a call to any of the functions in the LabWindows/CVI TCP
Library, the status return value contains the error code. This code is a non-zero value that
specifies the type of error that occurred. Error code return values are negative numbers. The
currently defined error codes and their associated meanings are shown in Table 7-3.

Table 7-3. TCP Library Error Codes

Code Error Message

0 KTCP_NoError

1 -kTCP_UnableToRegisterService

-2 -KTCP_UnableToEstablishConnection
-3 -kKTCP_ExistingServer

-4 -kKTCP_FailedToConnect

-5 -kTCP_ServerNotRegistered

-6 -kTCP_TooManyConnections

-7 -kTCP_ReadFailed

-8 -kKTCP_WriteFailed

-9 -kKTCP_InvalidParameter

-10 -kTCP_OutOfMemory

11 -KTCP_TimeOutErr

-12 -kTCP_NoConnectionEstablished
-13 -kTCP_GenerallOErr

-14 -kTCP_ConnectionClosed

-15 -kTCP_UnableToLoadWinsockDLL
-16 -KTCP_IncorrectWinsockDLLVersion
17 -kKTCP_NetworkSubsystemNotReady
-18 -kTCP_ConnectionsStillOpen

LabWindows/CVI Standard Libraries 7-12 © National Instruments Corporation



Chapter 8
Utility Library

This chapter describes the functions in the LabWindows/CVI Utility Library. The Utility
Library contains functions that do not fit into any of the other LabWindows/CVI libraries. The
Utility Library Function Panelsection contains general information about the Utility Library
functions and panels. Théility Library Function Referencsection contains an alphabetical

list of function descriptions.

The Utility Library Function Panels

The Utility Library function panels are grouped in a tree structure according to the type of
operations they perform.

The Utility Library function tree is shown in Table 8-1.

The bold headings in the tree are the names of function classes. Function classes are groups of
related function panels. The headings in plain text are the names of the individual function
panels. The names of the Utility Library functions appear in bold italics beneath the
corresponding function panel names.

Table 8-1. The Utility Library Function Tree

Timer/Wait
Timer Timer
Delay Delay
Synchronized Wait SyncWait
Date/Time
Date in ASCII Format DateStr
Time in ASCII Format TimeStr
Get System Date GetSystemDate
Set System Date SetSystemDate
Get System Time GetSystemTime
Set System Time SetSystemTime
Keyboard
Key Hit? KeyHit
Get a Keystroke GetKey

(continues)

© National Instruments Corporation 8-1 LabWindows/CVI Standard Libraries



Utility Library

Table 8-1. The Utility Library Function Tree (Continued)

Chapter 8

File Utilities
Delete File
Rename File
Copy File
Get File Size
Get File Date
Set File Date
Get File Time
Set File Time
Get File Attributes
Set File Attributes
Get First File
Get Next File
Make Pathname
Split Path
Directory Utilities
Get Directory
Get Project Directory
Get Module Directory
Get Full Path From Project
Set Directory
Make Directory
Delete Directory
Get Drive
Set Drive
External Modules
Load External Module
Load External Module Ex
Run External Module
Get External Module Address
Unload External Module
Release External Module
Port 1/0

DeleteFile
RenameFile
CopyFile
GetFileSize
GetFileDate
SetFileDate
GetFileTime
SetFileTime
GetFileAttrs
SetFileAttrs
GetFirstFile
GetNextFile
MakePathname
SplitPath

GetDir

GetProjectDir
GetModuleDir
GetFullPathFromProject
SetDir

MakeDir

DeleteDir

GetDrive

SetDrive

LoadExternalModule
LoadExternalModuleEx
RunExternalModule
GetExternalModuleAddr
UnloadExternalModule
ReleaseExternalModule

Input Byte From Port inp
Input Word From Port inpw
Output Byte To Port outp
Output Word To Port outpw
(continues)
LabWindows/CVI Standard Libraries 8-2 © National Instruments Corporation




Chapter 8

Utility Library

Table 8-1. The Utility Library Function Tree (Continued)

Standard Input/Output Window
Clear Screen
Get Stdio Window Options
Set Stdio Window Options
Get Stdio Window Position
Set Stdio Window Position
Get Stdio Window Size
Set Stdio Window Size
Get Stdio Window Visibility
Set Stdio Window Visibility
Get Stdio Port
Set Stdio Port
Run-Time Error Reporting
Set Break On Library Errors
Get Break On Library Errors
Set Break On Protection Errors
Get Break On Protection Errors
Old-Style Functions
Enable Break On Library Errors
Disable Break On Library Errors
Interrupts
Disable Interrupts
Enable Interrupts
Get Interrupt State
Physical Memory Access
Read From Physical Memory
Read From Physical Memory Ex
Write To Physical Memory
Write To Physical Memory Ex
Persistent Variable
Set Persistent Variable
Get Persistent Variable
Task Switching
Disable Task Switching
Enable Task Switching

Cls
GetStdioWindowOptions
SetStdioWindowOptions
GetStdioWindowPosition
SetStdioWindowPosition
GetStdioWindowSize
SetStdioWindowSize
GetStdioWindowVisibility
SetStdioWindowVisibility
GetStdioPort
SetStdioPort

SetBreakOnLibraryErrors
GetBreakOnLibraryErrors
SetBreakOnProtectionErrors
GetBreakOnProtectionErrors

DisableBreakOnLibraryErrors
EnableBreakOnLibraryErrors

Disablelnterrupts
Enablelnterrupts
GetlinterruptState

ReadFromPhysicalMemory
ReadFromPhysicalMemoryEx
WriteToPhysicalMemory
WriteToPhysicalMemoryEx

SetPersistentVariable
GetPersistentVariable

DisableTaskSwitching
EnableTaskSwitching

© National Instruments Corporation

8-3

(continues)

LabWindows/CVI Standard Libraries




Utility Library Chapter 8

Table 8-1. The Utility Library Function Tree (Continued)

Launching Executables
Launch Executable LaunchExecutable
Extended Functions
Launch Executable Extended LaunchExecutableEx
Has Executable Terminated? ExecutableHasTerminated
Terminate Executable TerminateExecutable
Retire Executable Handle RetireExecutableHandle
Miscellaneous
System Help SystemHelp
Get CVI Version GetCVIVersion
Get Current Platform GetCurrentPlatform
In Standalone Executable? InStandaloneExecutable
Initialize CVI Run-Time Engine INitCVIRTE
Close CVI Run-Time Engine CloseCVIRTE
Low-Level Support Driver Loaded CVILowLevelSupportDriverLoaded
Beep Beep
Breakpoint Breakpoint
Round Real To Nearest Integer RoundRealToNearestinteger
Truncate Real Number TruncateRealNumber
Get Window Display Setting GetWindowDisplaySetting

The classes in the function tree are described here:
* Timer/Wait functions use the system timer, including functions that wait on a timed basis.

» Date/Timefunctions return the date or time in ASCII or integer formats, and set the date or
time.

» Keyboard functions provide access to user keystrokes.
» File Utilities functions manipulate files.
» Directory Utilities functions manipulate directories and disk drives.

» External Modules functions load, execute, and unload files that contain compiled C object
modules.

* Port I/O functions read and write data from 1/0O ports (Supported only under Microsoft
Windows).

LabWindows/CVI Standard Libraries 8-4 © National Instruments Corporation



Chapter 8 Utility Library

e Standard Input/Output Window functions control various attributes of the Standard
Input/Output Window.

* Run-Time Error Reporting functions enable and disable the feature which breaks execution
when a LabWindows/CVI library function returns an error code.

* Interrupts functions disable and enable the occurrence of interrupts.

» Physical Memory Accesgunctions read and write data from and to physical memory
addresses. (Supported only under Microsoft Windows).

» Persistent Variable functions store and retrieve an integer value across multiple builds and
executions of a project in the LabWindows/CVI development environment.

» Task Switching functions control whether a user can switch to another task under Microsoft
Windows.

» Launching Executablesfunctions start another executable, check whether it is still running,
and terminate it.

* Miscellaneousfunctions perform a variety of operations that do not fit into any of the other
function classes.

The online help with each panel contains specific information about operating each function
panel.

Utility Library Function Reference
This section describes the functions in the LabWindows/CVI Utility Library. The
LabWindows/CVI Utility Library functions are arranged alphabetically.
Beep
void Beep(void );
Purpose
Sounds the speaker.
Parameters
None
Return Value

None

© National Instruments Corporation 8-5 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Breakpoint
void Breakpoint (void );
Purpose

During execution of a program, a callBoeakpoint  suspends program operation. While the
program is suspended, you can inspect or modify variables, and use many other features of the
LabWindows/CVI interactive program.

Calling Breakpoint  with the debugging level set to None, or from a compiled module, has no
effect.

Parameters
None
Return Value

None

CloseCVIRTE
void CloseCVIRTE (void )
Purpose

This function releases memory in the LabWindows/CVI Run-Time Engine that was allocated by
INitCVIRTE for a particular DLL.

If you call InitCVIRTE  from DIIMain , you also should calloseCVIRTE from
DlIMain . You should call it in response to théL._PROCESS_ DETAQiHessage after your
other detach code.

Parameters
None
Return Value

None

LabWindows/CVI Standard Libraries 8-6 © National Instruments Corporation



Chapter 8

Cls

void Cls(void );

Purpose

Utility Library

In the LabWindows/CVI environment, this function clears the Standard I/O window.

Parameters

None

Return Value

None

CopyFile

int result = CopyFile(char sourceFileNam§ , char targetFileNam¢] );

Purpose

Copies the contents of an existing file to another file.

Parameters
Input sourceFileName |string File to copy.
targetFileName string Copy of original file.
Return Value
result integer Result of copy operation.

Return Codes

Success.

File not found or directory in path not found.

General 1/O error occurred.
Insufficient memory to complete operation.
Invalid path (for either of the file names).

Access denied.

Specified path is a directory, not a file.

Disk is full.

© National Instruments Corporation

8-7

LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Parameter Discussion

sourceFileNameandtargetFileNamemay contain wildcard characters ‘?” and **’. If
sourceFileNamehas wildcards, all matching files are copiedtatfetFileNamehas wildcards,
it will be matched tsourceFileName If the target file is a directory, the existing file (or group
of files) will be copied into the directory.

sourceFileNamemay also be the empty striny (), in which case the file found by the most
recent call tadGetFirstFile or GetNextFile is copied.

CVILowLevelSupportDriverLoaded

int loaded=CVILowLevelSupportDriverLoaded (void );

Note: This function is available only in the Windows 95 and NT version of
LabWindows/CVI.

Purpose

This function returns an indication of whether the LabWindows/CVI low-level support driver
was loaded at startup. The following Utility Library functions require the LabWindows/CVI low-
level driver to be loaded at startup.

Platforms where low-level

Function support driver is needed
inp Windows NT

inpw Windows NT

outp Windows NT

outpw Windows NT
ReadFromPhysicalMemory Windows 95 and NT
ReadFromPhysicalMemoryEx Windows 95 and NT
WriteToPhysicalMemory Windows 95 and NT
WriteToPhysicalMemoryEx Windows 95 and NT
Disablelnterrupts Windows 95
Enablelnterrupts Windows 95
DisableTaskSwitching Windows 95

Most of these functions do not return an error if the low-level support driver is not loaded. To
make sure your calls to these functions can execute correctly, call
CVILowLevelSupportDriverLoaded at the beginning of your program.

LabWindows/CVI Standard Libraries 8-8 © National Instruments Corporation



Chapter 8 Utility Library

Return Value

loaded integer | Indicates whether the LabWindows/CVI low-level
support driver was loaded at startup.

Return Codes

Low-level support driver was loaded at startup.

Low-level support driver was not loaded at startup.

DateStr
char *s = DateStr(void );
Purpose

Returns a 10-character string in the fdvill-DD-YYYY whereMM is the monthDD is the day,
andYYYYis the year.

Parameters
None

Return Value

S 10-character string| The date in MM-DD-YYYY
format.

Delay
void Delay(double numberofSeconds;
Purpose

Waits the number of seconds indicatechioynberofSeconds The resolution on Windows is
normally 1 millisecond. However, if the following line appears in the CVI section of your
WINL.INI file, the resolution is 55 milliseconds.

useDefaultTimer = True

The resolution on Sun Solaris is 1 millisecond.

© National Instruments Corporation 8-9 LabWindows/CVI Standard Libraries



Utility Library Chapter 8
Parameter
Input numberofSeconds | double-precision Number of seconds to wait.

Return Value

None

DeleteDir

int result = DeleteDir(char directoryName][] );

Purpose

Deletes an existing directory.

Parameters

Input directoryName String.
Return Value

result integer Result of operation.
Return Codes

0 Success.

-1 Directory not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-6 Access denied, or directory not empty.

-7 Path is a file, not a directory.
DeleteFile

int result = DeleteFile(char fileNamd]] );

Purpose

Deletes an existing file from disk.

LabWindows/CVI Standard Libraries 8-10

© National Instruments Corporation



Chapter 8 Utility Library

Parameter

Input fileName string File to delete.

Return Value

result integer Result of delete operation.

Return Codes

0 Success.

-1 File not found or directory in path not found.

-3 General 1/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path (for examples:filename  in Windows).
-6 Access denied.

-7 Specified path is a directory, not a file.

Parameter Discussion

fileName may contain wildcard characters “?” and " in which case all matching files are
deleted.

fileName may also be the empty string () in which case the file found by the most recent call
to GetFirstFile or GetNextFile is deleted.

DisableBreakOnLibraryErrors
void DisableBreakOnLibraryErrors (void );
Purpose

If debugging is enabled (if the debugging level in the Run Options dialog box @ptlons

menu in the Project window is set to Standard or Extended), this function directs
LabWindows/CVI not to display a run-time error dialog box when a National Instruments library
function reports an error. If debugging is disabled, this function has no effect.

© National Instruments Corporation 8-11 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

You can use this function in conjunction wiEnableBreakOnLibraryErrors to

temporarily suppress the Break on Library Errors feature around a segment of code. It does not
affect the state of thBreak on Library Errors check box in the Run Options dialog box of the
Options menu in the Project window.

Note: This function has been superseded $gtBreakOnLibraryErrors

Disablelnterrupts
void Disablelnterrupts (void );
Purpose

Under Windows 3.1 and Windows 95, this function uses the CLI instruction to turn off all
maskable 80x86 interrupts. On UNIX, this function usgblock to block all blockable
signals.

Note: For you to be able to use this function under Windows 95, the LabWindows/CVI low-
level support driver must be loaded.

Note: Under Windows NT, thé&enablelnterrupts andDisablelnterrupts
functions have no effect. Interrupts are always enabled while your program is running
at the user (as opposed to the kernel) level.

Parameter
None
Return Value

None

DisableTaskSwitching

void DisableTaskSwitching(void );

Note: This function is available only on the Windows versions of LabWindows/CVI.
Purpose

This function prevents the end-user from using one of the following Windows features to switch
another task.

LabWindows/CVI Standard Libraries 8-12 © National Instruments Corporation



Chapter 8 Utility Library

The <Alt-Tab>, <Alt-Esc>, or <Ctrl-Esc> key combination under Windows 3.1 or Windows 95.

The Switch To item in the system menu under Windows 3.1.

This function affects the behavior of these keys only while LabWindows/CVI or a
LabWindows/CVI Standalone Executable is the active application under Microsoft Windows.

This function has no effect in Windows NT. See Miiernatives inWindows NTsection for
instructions on how to achieve the desired effect.

Note: To use this function on Windows 95, the LabWindows/CVI low-level support driver
must be loaded.

Disabling the Task List

DisableTaskSwitching does not prevent the user from clicking on the desktop to get the
task list in Windows 3.1, or clicking on the task bar in Windows 95. You can prevent the user
from clicking on the desktop by forcing your window to cover the entire screen.

Forcing Window to Cover Entire Screen

You can force your window to cover the entire screen by making the following calls to functions
in the User Interface Library.

SetPanelAttribute (panel, ATTR_SIZABLE, FALSE);
SetPanelAttribute (panel, ATTR_CAN_MINIMIZE, FALSE);
SetPanelAttribute (panel, ATTR_CAN_MAXIMIZE, FALSE);
SetPanelAttribute (panel, ATTR_SYSTEM_MENU_VISIBLE, FALSE);
SetPanelAttribute (panel, ATTR_MOVABLE, FALSE);
SetPanelAttribute (panel, ATTR_WINDOW_ZOOM, VAL_MAXIMIZE);

In these callspanel is the panel handle for your top-level window. These calls will work in
Windows 3.1, Windows 95, and Windows NT.

Alternatives in Windows 3.1

Under Windows 3.1, you can prevent the end-user accessing the task list by disabling the Task
Manager. Change a line in yogystem.ini [boot] section from

taskman.exe = taskman.exe

to

taskman.exe =

Forcing your window to cover the entire screen or disabling the Task Manager does not prevent
the user from task switching using the <Alt-Tab> and <Alt-Esc> key combinations. You must

also callDisableTaskSwitching to disable the <Alt-Tab> and <Alt-Esc> key
combinations. As an alternative to callidgsableTaskSwitching , you can arrange for

© National Instruments Corporation 8-13 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

your standalone application to be brought up in place of the Program Manager when Windows
boots. You can do this by changing the following line in yaystem.ini [boot] section.

shell = progman.exe
to

shell = <full-path-of-your-executable>

Alternatives in Windows 95

Under Windows 95, you can arrange for your standalone application to appear in place of the
desktop when Windows boots.

You can do this by changing the following line in ygystem.ini [boot] section.

shell = Explorer.exe
to

shell = <full-path-of-your-executable>

Alternatives in Windows NT

Under Windows NT, you can achieve the same resullssadble TaskSwitching by

arranging for your LabWindows/CVI application to be brought up in place of the Program
Manager and by disabling the Task Manager. You can do this by making following changes to
the registry entry for the key name,

KEY_LOCAL_MACHINE\Software\Microsoft\CurrentVersion\Winlogon
Change the value f@HELL to the pathname of your application executable.

Add a value with the namBASKMANSet the data to an empty string.

Preventing Interference With Real-Time Processing

Under Windows, many user actions can interfere with real-time processing. The actions in the
following list suspend the processing of events.

Moving and sizing top-level windows
Bringing down the System menu

Pressing the <Alt-Tab> key combination

You can prevent these user actions from interfering with event processing by doing all of the
following.

Call DisableTaskSwitching(or use the alternative for Windows NT mentioned in this
section).

Make all of your top-level panels non-movable and non-sizable.

LabWindows/CVI Standard Libraries 8-14 © National Instruments Corporation



Chapter 8 Utility Library

Do not use the Standard 1/0 Window in your final application.

If you use any of the built-in pop-ups in the User Interface Library, make the following calls.

SetSystemPopupsAttribute (ATTR_MOVABLE, 0);
SetSystemPopupsAttribute (ATTR_SYSTEM_MENU_VISIBLE, 0);

An alternative approach is available on Windows 95 and NT. You can enable timer control
callbacks while <Alt-Tab> is pressed, while the system menu is pulled down, or (in some cases)
while a window is being moved or sized. You can do this by using the following function call.

SetSystemAttribute (ATTR_ALLOW_UNSAFE_TIMER_EVENTS, 1);

This alternative is incomplete and can be unsafe. See the discus&iosaie Timer Evenia
theUsing the System Attributesction ofChapter 3, Programming with the User Interface
Library, of the LabWindows/CVI User Interface Reference Manual

EnableBreakOnLibraryErrors
void EnableBreakOnLibraryErrors (void );
Purpose

If debugging is enabled (if the debugging level in the Run Options dialog box ©ptlons
menu in the Project window is set to Standard or Extended), this function directs
LabWindows/CVI to display a run-time error dialog box when a National Instruments library
function reports an error. If debugging is disabled, this function has no effect.

In general, you should check tBeeak on Library Errors check box in the Run Options dialog
box of theOptions menu in the Project window to enable this feature. However, you can use this
function in conjunction wittbisableBreakOnLibraryErrors to temporarily suppress the
Break on Library Errors feature around a segment of code. It does not affect the state of the
Break on Library Errors check box.

Note: This function has been superseded $gtBreakOnLibraryErrors

Enablelnterrupts
void Enablelnterrupts (void );

Under Windows 3.1 and Windows 95, this function uses the STI instruction to turn on all
maskable 80x86 interrupts. On UNIX, this function reverses the effect of the last call to
Disablelnterrupts . It restores the signal processing state to the condition prior to the
Disablelnterrupts call.

© National Instruments Corporation 8-15 LabWindows/CVI Standard Libraries



Utility Library Chapter 8
Note: For you to be able to use this function under Windows 95, the LabWindows/CVI low-
level support driver must be loaded.

Note: Under Windows NT, thé&enablelnterrupts and Disablelnterrupts
functions have no effect. Interrupts are always enabled while your program is running
at the user (as opposed to the kernel) level.

Parameter
None
Return Value

None

EnableTaskSwitching

void EnableTaskSwitching(void );

Note: This function is available only on the Windows versions of LabWindows/CVI.
Purpose

This function lets the user switch to another task by using the <Alt-Tab>, <Alt-Esc>, and
<Ctrl-Esc> key combinations, as well as 8witch-To item in theControl/Systemmenu. This
function only affects the behavior of these keys while LabWindows/CVI or a LabWindows/CVI
standalone executable is the active application.

ExecutableHasTerminated

int status= ExecutableHasTerminated(int executableHandl¢;

Purpose

Determines whether an application started WwalhinchExecutableEx  has terminated.

Parameters

Input |executableHandle integer | The executable handle acquired from
LaunchExecutableEx

LabWindows/CVI Standard Libraries 8-16 © National Instruments Corporation



Chapter 8 Utility Library

Return Value

status integer | Result of operation.

Return Codes

-1 Handle is invalid.
0 Executable is still running.
Executable has been terminated.

Note: If you launch another LabWindows/CVI executable under Windows 3.x, the launched
executable process will terminate itself after launching the new copy of the
CVI Run-time Engine. If you usd&xecutableHasTerminated , the return value
will always be 1 because the process identification for the second Run-time Engine
cannot be tracked. SdeaunchExecutableEx  for more information.

GetBreakOnLibraryErrors
int state = GetBreakOnLibraryErrors (void );
Purpose

This function returns the state of tBeeak on library errors option. It returns a 1 if thBreak
on library errors option is enabled, or a O if it is disabled.

The state of th&reak on Library errors option can be changed interactively usingRlus
Options command in th®ptions menu of the Project window. The state of Break on
Library errors option can also be changed programmatically using
SetBreakOnLibraryErrors , or theEnableBreakOnLibraryErrors and
DisableBreakOnLibraryErrors functions.

If debugging is disabled, this function always returns 0.

Return Value

state integer | The current state of tH&reak on library errors option.

Return Codes

Break on Library Errors option enabled.

0 Break on Library Errors option disabled.

© National Instruments Corporation 8-17 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

GetBreakOnProtectionErrors
int state= GetBreakOnProtectionErrors (void );
Purpose

This function returns the state of thieak on protection errors feature. It returns a 1 if the
option is enabled, or a 0 if it is disabled. If debugging is disabled, this function always returns 0.

For more information on the feature, see the documentation for
SetBreakOnProtectionErrors

Return Value

state integer The current state of the break on protection errors option.

Return Codes

Break on protection errors option enabled.

0 Break on protection errors option disabled.

GetCVIVersion
int versionNum = GetCVIVersion (void );

Purpose

This function returns the version of LabWindows/CVI you are running. In a standalone
executable, this tells you which version of the LabWindows/CVI run-time libraries you are
using.

The value is in the forlinn, where theN.nn is the version number that shows in the About
LabWindows/CVI dialog box.

For example, for LabWindows/CVI version 4®@etCVIVersion returns 400. For version 4.1,
it would return 410. The values will always increase with each new version of
LabWindows/CVI1.

The return value oGetCVIVersion should not be confused with the predefined macro
_CVI_, which specifies the version of LabWindows/CVI in which the source file is compiled.

Return Value

versionNum integer The version number of LabWindows/CVI or the rur
time libraries.

LabWindows/CVI Standard Libraries 8-18 © National Instruments Corporation



Chapter 8 Utility Library

Return Codes

Nnn WhereN.nnis the LabWindows/CVI version.

GetCurrentPlatform
int platformCode = GetCurrentPlatform (void );
Purpose

This function returns a code representing the operating system under which a project or
standalone executable is running.

The return value oBetCurrentPlatform should not be confused with the predefined
macros such asNl_mswin_ , NI _unix_ , and others, which specify the platform on which
the project is compiled.

This function is useful when you have a program that can run on multiple operating systems but
must take different actions on the different systems. For example, the same standalone
executable can run on both Windows 95 and Windows NT. If the program needs to behave
differently on the two platforms, you can usetCurrentPlatform to determine the

platform at run-time.

Return Value

plattormCode integer Indicates the current operating system.

Return Codes

kPlatformWin16 1 Windows 3.1
kPlatformWin95 2 Windows 95
kPlatformWinnt 3 Windows NT
kPlatformSunos4 4 Sun Solaris 1
kPlatformSunos5 5 Sun Solaris 2
kPlatformHPUX9 6 HP-UX 9.x
kPlatformHPUX10 7 HP-UX 10.x

© National Instruments Corporation 8-19 LabWindows/CVI Standard Libraries



Utility Library

GetDir

Chapter 8

int result = GetDir (char currentDirectory[] );

Purpose

Gets the current working directory on the default drive.

Parameter

Output currentDirectory string Current directory.
Return Value

result integer Result of operation.

Return Codes

0
-3
-4

Success.

General I/0O error occurred.

Insufficient memory to complete operation.

Parameter Discussion

currentDirectory must be at leadlAX_ PATHNAME_LHBNtes long.

GetDrive

int result = GetDrive (int

*currentDriveNumber, int  *numberofDrives);

Note: This function is available only on the Windows versions of LabWindows/CVI.

Purpose

Gets the current default drive number and the total number of logical drives in the system.

Parameters

Output

currentDriveNumber

numberofDrives

integer
integer

Current default drive number

Number of logical drives.

LabWindows/CVI Standard Libraries

8-20 © National Instruments Corporation



Chapter 8 Utility Library

Return Value

result integer Result of operation.

Return Codes

0 Success.

-1 Current directory is on a network drive that is not mapped to a local drive.
(currentDriveNumber is set correctly, butumberOfDrives is set to -1.)

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-6 Access denied.

Parameter Discussion
The mapping between the drive number and the logical drive letter is 0 = A, 1 = B, and so on.

The total number of logical drives includes floppy-disk drives, hard-disk drives, RAM disks, and
networked drives.

GetExternalModuleAddr
void *address= GetExternalModuleAddr (char nam€] ,int modulelD, int *status);
Purpose

Obtains the address of an identifier in a module that was loaded using
LoadExternalModule

Parameters
Input name string Name of identifier.
modulelD integer ID of loaded module.
Output status integer Zero or error code.
Return Value
address void pointer Address of the identifier.

© National Instruments Corporation 8-21 LabWindows/CVI Standard Libraries



Utility Library

Return Codes

Chapter 8

0 Success.
-1 Out of memory.
-4 Invalid file format.
-5 Undefined references.
-8 Cannot open file.
-9 Invalid module ID.
-10 Identifier not defined globally in module.
-25 DLL initialization failed (e.g. DLL file not found).

Parameter Discussion

modulelD is the valud.oadExternalModule returns

nameis the name of the identifier whose address is obtained from the external module. The
identifier must be a variable or function name defined globally in the external module.

statusis zero if the function is a success, or a negative error code if it fails.

If GetExternalModuleAddr succeeds, it returns the address of the variable or function in

the module. If the function fails, it returns NULL.

Example

void (*funcPtr) (char buff], double dval, int *ival);
int module_id;
int status;
char buf[100];
double dval;
int ival;
char *pathname;
char *funcname;
pathname = "EXTMOD.OBJ";
funcname ="my_function";
module_id = LoadExternalModule (pathname);
if (module_id < 0)
FmtOut ("Unable to load %s\n", pathname);

else

{

funcPtr = GetExternalModuleAddr (module_id, funcname, &status);

if (funcPtr == NULL)
FmtOut ("Could not get address of %s\n", funcname);

else
(*funcPtr) (buf, dval, &ival);

}

LabWindows/CVI Standard Libraries 8-22 © National Instruments Corporation



Chapter 8 Utility Library

GetFileAttrs

int result = GetFileAttrs (char fileNam¢] ,int *read-only,int *systemint *hidden,
int *archive);

Note: Only available on the Windows version of LabWindows/CVI.
Purpose

Gets the following attributes of a file:

* Read-Only
e System
* Hidden
* Archive

Theread-only attribute makes it impossible to write to the file or create a file with the same
name.

Thesystemattribute and hidden attribute both prevent the file from appearing in a directory list
and exclude it from normal searches.

Thearchive attribute is set whenever you modify the file, and cleared by the DOS BACKUP
command.

Parameters
Input fileName string File to get attributes.
Output read-only integer Read only attribute.
system integer System attribute.
hidden integer Hidden attribute.
archive integer Archive attribute.
Return Value
result integer Result of operation.
Return Codes
Success.

Specified file is a directory.

-1 File not found.

© National Instruments Corporation 8-23 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Parameter Discussion
Each attribute parameter will contain one of the following values:
O—attribute is not set

1—attribute is set

fileName may be the empty string"(), in which case the attributes of the file found by the most
recent call tadGetFirstFile or GetNextFile are returned.

Example

[* get the attributes of WAVEFORM.DAT */
int read_only,system,hidden,archive;
GetFileAttrs ("waveform.dat”,&read_only,&system,&hidden,&archive);
if (read_only)
FmtOut("WAVEFORM.DAT is a read-only file!");

GetFileDate
int result = GetFileDate(char fileNam¢]] ,int *month,int *day, int *year);
Purpose

Gets the date of a file.

Parameters
Input fileName string File to get date.
Output month integer Month (1 to 12).
day integer Day of month (1 to 31).
year integer Year (1980-2099).
Return Value
result integer Result of operation.

LabWindows/CVI Standard Libraries 8-24 © National Instruments Corporation



Chapter 8

Return Codes

Utility Library

0 Success.

-1 File not found or directory in path not found.

-3 General 1/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path (for examples:filename  in Windows).
-6 Access denied.

Parameter Discussion

fileName may be the empty strin§'(), in which case the date of the file found by the most
recent call taGetFirstFile

Example

or GetNextFile

/* get the date of WAVEFORM.DAT */
int month, day, year;
GetFileDate ("waveform.dat",&month,&day,&year);

is returned (Windows only).

GetFileSize

int result = GetFileSize(char fileNamd] ,long *fileSize);

Purpose

Returns the size of a file.

Parameters
Input fileName string Name of file.
Output fileSize long Size of file in bytes.
Return Value
result integer Result of operation.

© National Instruments Corporation

8-25

LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Return Codes

0 Success.

-1 File not found or directory in path not found.

-3 General 1/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path (for examples:filename  in Windows).
-6 Access denied.

Parameter Discussion

fileName may be the empty strin§'(), in which case the size of the file found by the most
recent call tadGetFirstFile or GetNextFile is returned (Windows only).

Example
long size;

if (GetFileSize ("waveform.dat",&size) == 0)
FmtOut("The size of WAVEFORM.DAT is %i[b4]",size);

GetFileTime
int result = GetFileTime (char fileNam¢] ,int *hours,int *minutes, int *seconds,
Purpose

Gets the time of a file.

Parameters
Input fileName string File to get date.
Output hours integer Hours (0 to 23).
minutes integer Minutes (0 to 59).
seconds integer Number of 2-second increments
(0-29).
Return Value
result integer Result of operation.

LabWindows/CVI Standard Libraries 8-26 © National Instruments Corporation



Chapter 8 Utility Library

Return Codes

0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path (for examples:filename  in Windows).
-6 Access denied.

Parameter Discussion

fileName may be the empty string'(), in which case the time of the file found by the most
recent call tadGetFirstFile or GetNextFile is returned (Windows only).

Example

/* get the time of WAVEFORM.DAT */
int hours,minutes,seconds;
GetFileTime ("waveform.dat",&hours,&minutes,&seconds);

GetFirstFile

int result = GetFirstFile (char searchPatlf] ,int normal, int read-only,int system
int hidden, int archive, int directory, char fileName]] );

Purpose

Starts a search for files with specified attributes and returns the first matching file. If you select
multiple attributes, a match occurs on the first file for which one or more of the specified
attributes are set and which matches the pattern isetlrehPathparameter. The search

attributes are:

« Normal
* Read-only

e System
* Hidden
* Archive
* Directory

Under UNIX, only thedirectory attribute is honored. If you pass 1 for theectory attribute,
only directories match. If you pass 0 for thieectory attribute, only non-directories match.

© National Instruments Corporation 8-27 LabWindows/CVI Standard Libraries



Utility Library

Chapter 8

Under Windows, all of the attributes are honored. fidwenal attribute specifies files with no
other attributes set or with only the archive bit set. dilctive attribute specifies files that have
been modified because they were last backed up using the DOS BACKUP commarsédFhe
only attribute specifies files that are protected from being modified or overwrittersy$tesm
andhidden attributes specify files which normally do not appear in a directory listing. The
directory attribute specifies directories.

If you pass 1 only for theormal attribute, any file that is not read-only, not a system file, not
hidden, and not a directory can matchm@mal file’s archive bit may be either on or off. The
normal attribute is the only attribute that requires other attribnbeto be set. For example, if
you use theead-only attribute, any read-only file can match regardless of its other attributes.
This holds true for theystem hidden, directory, andarchive attributes.

If you use more than one attribute, the effect is additive. For example, if you usadhenly
anddirectory attributes, all read-only files and all directories can match. If you usethsl
andread-only attributes, all normal files and all read-only files can match.

Parameters
Input searchPath string Path to search.
normal integer Normal attribute.
read-only integer Read-only attribute.
system integer System attribute.
hidden integer Hidden attribute.
archive integer Archive attribute.
directory integer Directory attribute.
Output fileName string First file found.
Return Value
result integer Result of search.
Return Codes
0 Success.
-1 No files found that match criteria.
-3 General I/O error occurred.
-4 Insufficient memory to complete operation.
-5 Invalid path (for examples:filename  in Windows).
-6 Access denied.
LabWindows/CVI Standard Libraries 8-28 © National Instruments Corporation



Chapter 8 Utility Library

Parameter Discussion
searchPathmay contain the wildcard characters *' and '?'.
Each attribute parameter can have one of the following values:
0— do not search for files with the attribute
1— search for files with the attribute

fileName contains the basename and extension of the first matching file and must be at least
MAX_FILENAME_LENharacters in length.

GetFullPathFromProject
int result = GetFullPathFromProject (char fileName[] , char fullPathNamel[] );
Purpose

Gets the full pathname for the specified file, if the file is in the currently loaded project.

Parameters
Input fileName string Name of file in project.
Output fullPathName string Full pathname of file.

Return value

result integer Result of operation.

Return codes

0 Success.
-1 File was not found in project.

Parameter Discussion

fileName is the name of a file that is in the currently loaded project. The name must be a simple
file name and should not contain any directory paths. For exafiple, is a simple file
name, whereadir\file.c IS not.

fullPathName must be at leastAX_PATHNAME_LBNtes long.

© National Instruments Corporation 8-29 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Using This Function

This function is useful when your program needs to access a file in the project and you do not
know what directory the file is in.

Example

char *fileName;

char fullPath[MAX_PATHNAME_LEN];

fileName = "myfile.c"

if (GetFullPathFromProject (fileName, fullPath) < 0)
FmtOut ("File %s is not in the project\n”, fileName);

Note: Runtime errors are not reported for this function.

GetlInterruptState

int interruptstate = GetinterruptState (void );

Note: This function is available only on the Windows versions of LabWindows/CVI.
Purpose

This function returns the state of the interrupt bit of the 80x86 CPU status flag.

On Windows NT, this function always returns 1. Interrupts are always enabled while your
program is running at the user (as opposed to the kernel) level.

Return Value

interrupt state integer Interrupt bit of 80x86 CPU
status flag.

GetKey

int k= GetKey (void );

Purpose

Waits for the user to press a key and returns the key code as an integer value.

Note: This function only detects keystrokes in the Standard I/0 window. It does not detect
keystrokes in windows created with the User Interface Library or in the console
window in a Windows Console Application.

LabWindows/CVI Standard Libraries 8-30 © National Instruments Corporation



Chapter 8 Utility Library

Parameters
None

Return Value

k integer Key code.

Using This Function

The values returned are the same as the key values used in the User Interface Library. See
userint.h

Keystroke Return Value

<b> 'n'

<Ctrl-b> (VAL_MENUKEY_MODIFIER | 'B")

<F4> VAL_F4_VKEY

<Shift-F4> (MAL_SHIFT_MODIFIER | VAL_F4_VKEY)

Note: This function returns -1 if you are running on UNIX and have done one of the
following.

Selected “Use hosts system’s standard Input/Output” in the dialog box brought up
by selectingOptions » Environmentin the Project window; or

CalledSetStdioPortto set the port ttdlOST_SYSTEM_STDIO

Example
/* Give the user a chance to quit the program */
int k;
FmtOut ("Enter 'g' to quit, any other key to continue ");
k = GetKey ();
if ((k == 0x0051) || (k == 0x0071)) *qorQ?*
exit (0);
GetModuleDir

int result = GetModuleDir (char directoryName[] , void * moduleHandle);

Note: This function is available only in the Windows 95 and NT versiais
LabWindows/CVI

© National Instruments Corporation 8-31 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Purpose
This function obtains the name of the directory of the specified DLL module.

This function is useful when a DLL and its related files are distributed to multiple users who may
place them in different directories. If your DLL needs to access a file that is in the same directory
as the DLL, you can use ti@etModuleDir andMakePathname functions to construct the

full pathname.

If the specified module handle is zero, then this function returns the same result as
GetProjectDir

Parameter List

Output | directoryPathname string Directory of module.
Input | moduleHandle void Module handle of DLL, or zero for the
pointer project.

Parameter Discussion
directoryPathname must be at leastAX_PATHNAME_LBNtes long.

If you want to obtain the directory name of the DLL in which the caBé¢tModuleDir

resides, then pass CVIUserHInst  as themoduleHandle.You can pass any valid Windows
module handle. If you pass 0 for ttn@duleHandle, this function obtains the directory of the
project or standalone executable.

Return Value

result integer | Result of the operation.

Return Codes

0 Success.

-1 The current project has no pathname (that is, it is untitled).

-2 There is no current project.

-3 Out of memory.

-4 The operating system is unable to determine the module direatodu{eHandleis
probably invalid).

LabWindows/CVI Standard Libraries 8-32 © National Instruments Corporation



Chapter 8 Utility Library

GetNextFile

int result = GetNextFile(char fileNam€d[] );

Purpose

Gets the next file found in the search starting @#tFirstFile

Parameters

Output | fileName string Next file found.

Return Value

result integer Result of search.

Return Codes

0 Success.
-1 No more files found matching criteria.
-2 GetFirstFile must initiate search.

Parameter Discussion

fileName will contain the basename and extension of the next matching file and must be at least
MAX_FILENAME_LENharacters in length.

GetPersistentVariable

void GetPersistentVariable(int *value);

Purpose
Returns the value set I8etPersistentVariable . However, if you unloaded the project
since you last calle8etPersistentVariable , Zero is returned.

In a standalone executable, zero is returned if you have not SallPdrsistentVariable
since the start of execution.

Parameters

Output value integer | The current value of the persistent variable.

© National Instruments Corporation 8-33 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

GetProjectDir

int result = GetProjectDir (char directoryName[] );

Purpose

Gets the name of the directory containing the currently loaded project file.

Parameters

Output directoryName string Directory of project.

Return value

result integer Result of operation.

Return codes

0 Success.
-1 Current project has no pathname (it is untitled).

Parameter Discussion
directoryName must be at leastAX_PATHNAME_LBNtes long.
Using This Function

This function is useful when a project and its related files are distributed to multiple users who
may place them in a different directory on each machine. If your program needs to access a file
that is in the same directory as the project, you caiGeserojectDir and

MakePathname to construct the full pathname.

Example

char *fileName;
char projectDirfMAX_PATHNAME_LEN];
char fullPath[MAX_PATHNAME_LEN];
fileName = "myfile";
if (GetProjectDir (projectDir) < 0)
FmtOut ("Project is untitled\n™);
else
MakePathname (projectDir, fleName, fullPath);

LabWindows/CVI Standard Libraries 8-34 © National Instruments Corporation



Chapter 8 Utility Library

GetStdioPort
void GetStdioPort (int *stdioPort);
Purpose

Gets a value indicating the current destination for data written to the standard output (and the
source of data read from the standard input.)

The Standard 1/0O port can be either the CVI Standard Input/Output window or the standard
Input/Output of the host system.

This function is valid only on the UNIX version.

Parameters
Output stdioPort integer 0 = the CVI Standard
Input/Output window.
1 = the host system's standard
output.
GetStdioWindowOptions

void GetStdioWindowOptions (int *maxNumLines, int *bringToFrontWhenModified ,
int  *showLineNumbers);

Purpose

Gets the current value of the following Standard Input/Output window options:
Maximum Number of Lines
Bring To Front When Modified

Show Line Numbers

© National Instruments Corporation 8-35 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Parameters

Output | maxNumLines integer The maximum number of lines
that can be stored in the Standard
Input/Output window. If this
amount is exceeded, lines are
discarded from the top.

bringToFrontWhenModified |integer Indicates whether the Standard
Input/Output window is brought
to the front each time a string o
character is added to it.
1=Yes.

0 = No.

showLineNumbers integer Indicates whether line numbers
are shown in the Standard
Input/Output window.
1=Yes.

0 = No.

Parameter Discussion

If you do not want to obtain any of these values, you can pass NULL.

GetStdioWindowPosition
void GetStdioWindowPosition(int *top, int  *left);
Purpose

Gets the current position, in pixels, of the client area of the Standard Input/Output window
relative to the upper left corner of the screen. The client area begins under the title bar and to the
right of the frame.

LabWindows/CVI Standard Libraries 8-36 © National Instruments Corporation



Chapter 8 Utility Library

Parameters

Output top integer The current distance, in pixels|,
from the top of client area of the
Standard Input/Output window
to the top of the screen.

left integer The current distance, in pixels|,
from the leftmost edge of client
area of the Standard
Input/Output window to the left
edge of the screen.

GetStdioWindowSize
void GetStdioWindowSize(int *height, int *width);
Purpose

Gets the height and width, in pixels, of the client area of the Standard Input/Output window. The
client area excludes the frame and the title bar.

Parameters

(@)
=

Output height integer The current height, in pixels,
the client area of the Standard
Input/Output window.

—h

width integer The current width, in pixels, @
the client area of the Standardl
Input/Output window.

GetStdioWindowVisibility
void GetStdioWindowVisibility (int *visible);
Purpose

Indicates whether the Standard Input/Output window is currently visible. If the window has been
made into an icon, it is considered tortm visible. If the window cannot be seen merely
because its position is off the screeis itonsidered to be visible.

© National Instruments Corporation 8-37 LabWindows/CVI Standard Libraries



Utility Library Chapter 8
Parameters
Output visible integer 1 = Standard I/0O window is

visible.
0 = Standard I/O window is nat
visible.

GetSystemDate

int status=GetSystemDate(int *month, int *day, int *year);

Note: This function is only available on the Windows version of LabWindows/CVI

Purpose

Obtains the system date in numeric format.

[1°)

Parameters
Output month integer Month (1-12).
day integer Day of month (1-31).
year integer Year (Under Windows 3.1, th
year is limited to the values
1980-2099).
Return Value
status integer Success or failure.
Return Codes
0 Success.
-1 Failure reported by operating system.

LabWindows/CVI Standard Libraries

8-38

© National Instruments Corporation



Chapter 8

GetSystemTime

int status= GetSystemTiméint

*hours, int

Utility Library

*minutes, int  *second$,

Note: This function is only available on the Windows version of LabWindows/CVI

Purpose

Obtains the system time in numeric format.

Parameters
Output hours integer Hours (0-23).
minutes integer Minutes (0-59).
seconds integer Seconds (0-59).
Return Value
status integer Success or failure.
Return Codes
0 Success.
-1 Failure reported by operating system.
GetWindowDisplaySetting

void GetWindowDisplaySetting (int

*visible, int  *zoomState;

Note: This function is only available on the Windows version of LabWindows/CVI

Purpose

Indicates how the user of your application wants the initial application window to be displayed.
The values returned by this function reflect the display options set for the program in Program
Manager and other MS Windows shells.

© National Instruments Corporation

8-39 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Parameters
Output visible integer 0, if window is to be hidden;
1, if window is to be displayed.
zoomState integer ATTR_NO_ZOOMnormal
display;

ATTR_MINIMIZE
ATTR_MAXIMIZE

Return Value
None
Example

If you want to honor the user’s display options, put the following code where you display your
initial panel.

int showWindow, zoomState;

GetWindowDisplaySetting (&showWindow, &zoomState);

/* load panel or create panel) */

if (showWindow){
SetPanelAttribute (panel, ATTR_WINDOW_ZOOM, zoomState);
SetPanelAttribute (panel, ATTR_VISIBLE, 1);

INnitCVIRTE
int status = InitCVIRTE (void * hinstance char* argv[] ,void * reserved;

Purpose

This function performs initialization of the CVI Run-Time Engine. It is needed only in
executables or DLLs that are linked using an external compiler. Otherwise, it is harmless.

Note: In LabWindows/CVI version 4.0.1, this function was expanded from one to three
parameters. Executables and DLLs created with the one-parameter version of the
function will continue to work properly.

LabWindows/CVI Standard Libraries 8-40 © National Instruments Corporation



Chapter 8

Utility Library

Parameters
Input | hinstance void 0 if called frommain .
pointer hinstanceif called fromWinMain (first parameter).
hinstDLL if called fromDIIMain  (first parameter).
argv string argv if called from main (second parameter).
array Otherwise, 0.
reserved void Reserved for future use. Pass 0.
pointer
Return Value
status integer 1 indicates success.

0 indicates failure (probably out of memory).

Using this Function

The function should be called in yamain , WinMain , or DIIMain

function. Which of these

three functions you are using determines the parameter values you shouldpéSYIBTE

The following examples show how to Uus¢#CVIRTE

int main (int argc, char *argv[])

if (INitCVIRTE (0, argv, 0) == 0)

return -1; /* out of memory */
/* your other code */
return O;

}
int __stdcall WinMain (HINSTANCE hinstance,

HINSTANCE hPrevinstance,
LPSTR IpszCmdLine,

int nCmdShow)
{
if (InitCVIRTE (hinstance, 0, 0) == 0)
return -1; /* out of memory */
/* your other code */
return O;

int __stdcall DlIMain (void *hinstDLL, int fdwReason,
void *lpvReserved)

if (fdwReason == DLL_PROCESS_ATTACH)

{

if (INitCVIRTE (hinstDLL, 0, 0) == 0)
return O;  /* out of memory */

* your other ATTACH code */

}
else if (fdwReason == DLL_PROCESS_DETACH)
{

© National Instruments Corporation 8-41

in each case.

LabWindows/CVI Standard Libraries



Utility Library Chapter 8

[* your other DETACH code */
CloseCVIRTE ();

}

return 1;

}

Note: The prototypes foinitCVIRTE and CloseCVIRTE are incvirte.h |, which is
included byutility.h

inp

char byteRead=inp (int portNumber);

Note: This function is available only on the Windows versions of LabWindows/CVI.
Purpose

Reads a byte from a port.

Note: For you to be able to use this function under Windows NT, the LabWindows/CVI low-
level support driver must be loaded.

Parameters

Input portNumber integer The port.

Return Value

byteRead char Byte read from port.

inpw

short wordRead =inpw (int portNumber);

Note: This function is available only on the Windows versions of LabWindows/CVI.
Purpose

Reads a word from a port.

Note: For you to be able to use this function under Windows NT, the LabWindows/CVI low-
level support driver must be loaded.

LabWindows/CVI Standard Libraries 8-42 © National Instruments Corporation



Chapter 8 Utility Library

Parameters

Input portNumber integer The port.

Return Value

wordRead short Word read from port.

InStandaloneExecutable
int standalone= InStandaloneExecutablg¢void );
Purpose

Returns a non-zero value if your program is running as a standalone executable. If your program
is running in the LabWindows/CVI development environment, a zero is returned.

Return Value

standalone integer | 1= Program is running as a standalone executable.
0 = Program is running as in LabWindows/CVI

KeyHit

int result = KeyHit (void );

Purpose

Indicates whether the user has pressed a key on the keyboard.

Note: This function only detects keystrokes in the Standard I/0O window. It does not detect
keystrokes in windows created with the User Interface Library or in the console
window in a Windows Console Application.

Parameters
None

Return Value

result integer Indicates if a key has been
pressed.

© National Instruments Corporation 8-43 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Return Codes

0 Key has not been pressed.
1 Key has been pressed.

Using This Function

The function returns 1 if a keystroke is available in the keyboard buffer, O otherwise. After a
keystroke is available, you should make a calb&dKey to flush the keyboard buffer.
Otherwise KeyHit will continue to return 1.

Note: This function always returns O if you are running on UNIX and have done one of the
following.

SelectedJse hosts system'’s standard Input/Outpuin the dialog box brought up
by selectingOptions » Environmentin the Project window; or

CalledSetStdioPortto set the port tétiOST_SYSTEM_STDIO

Example

/* flush any pending keystrokes */
while (KeyHit())
GetKey();
/* perform loop indefinitely until the user presses key */
while (!KeyHit()) {
}

LaunchExecutable
int result = LaunchExecutable(char fileName]] );
Purpose

Starts running a program and returns without waiting for it to exit. The program must be an
actual executable; that is, you cannot launch commands intrinsic to a command interpreter.

Under Microsoft Windows the executable can be either an DOS or Windows executable,
including*.exe ,*.com ,*.bat , and*.pif files.

If you need to execute a command built intonmand.com such agopy , dir , and others,
you can calLaunchExecutable  with the command

command.com /C DosCommand args , whereDosCommandis the shell command you
would like executed. For example, the following command string would fdegynp from
thetemp directory to themp directory:

command.com /C copy c:\\temp\\file.tmp c:\\tmp

LabWindows/CVI Standard Libraries 8-44 © National Instruments Corporation



Chapter 8 Utility Library

Refer to your DOS documentation for further help witmmand.com. DOS executables

(.exe ,.com, and.bat files) use the settings irdefault.pif (in your Windows

directory) when they are running. You can change their priority, display options, and more by
editing_default.pif or by creating anothepif file. Refer to your Microsoft Windows
documentation for help on creating and editipify files.

Parameter
Input fileName string Pathname of executable file gnd
arguments.
Return Value
result integer Result of operation.
Return Codes Under UNIX
0 Command was successfully started.
-1 The system-imposed limit on the total number of processes under execution pr the

total number of processes per user would be exceeded. This limit is determined
when the system is generated.

-2 There is insufficient swap space for the new process.
-3 vfork failed for unknown reason.
-4 Search permission is denied for a directory listed in the path prefix of the new

process image file, or the new process image file denies execution permission, or
the new process image file is not a regular file.

-5 The length of the path or file, or an element of the environment vaRadlél
prefixed to a file exceed®ATH_MAX}, or a pathname component is longer than
{NAME_MAX}while { POSIX_NO_TRUNC]}is in effect for that file (see man
page forpathconf(2V) ).

-6 One or more components of the pathname of the new process image file do not
exist.

-7 A component of the path prefix of the new process image file is not a directony.

-8 The number of bytes used by the new process image's argument list and

environment list is greater thfARG_MAX} bytes (see man page for
sysconf(2V) ).

-9 The new process image file has the appropriate access permission, but is not in the
proper format.

© National Instruments Corporation 8-45 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Return Codes under Microsoft Windows

0 Command was successfully started.

-1 System was out of memory, executable file was corrupt, or relocations were invalid.

-3 File was not found.

-4 Path was not found.

-6 Attempt was made to dynamically link to a task, or there was a sharing or network-
protection error.

-7 Library required separate data segments for each task.

-9 There was insufficient memory to start the application.

-11 Windows version was incorrect.

-12 Executable file was invalid. Either it was not a Windows application or there was an
error in the .EXE image.

-13 Application was designed for a different operating system.
-14 | Application was designed for MS-DOS 4.0.
-15 | Type of executable file was unknown.

-16 Attempt was made to load a real-mode application (developed for an earlier version of
Windows).

-17 Attempt was made to load a second instance of an executable file containing multiple
data segments that were not marked read-only.

-20 Attempt was made to load a compressed executable file. The file must be
decompressed before it can be loaded.

21 Dynamic-link library (DLL) file was invalid. One of the DLLs required to run this
application was corrupt.

-22 Application requires Microsoft Windows 32-bit extensions.

Parameter Discussion
fileName is the program to be run.

If the program is not in one of the directories specified irPA&@Henvironment variable, you
must specify the full path. The path can include arguments to be passed to the program.

Under Microsoft Windows, if the program is@f , .bat , or.com file, the extension must be
included in the path name.

For example, under Microsoft Windows the following command string launches the Edit
program with the fildile.dat

c:\\dos\\edit.com c:\\file.dat

LabWindows/CVI Standard Libraries 8-46 © National Instruments Corporation



Chapter 8 Utility Library

LaunchExecutableEx
int result = LaunchExecutableEx(char *fileName, int windowState int *handle);
Purpose

LaunchExecutableEx  performs the same operationlasinchExecutable  with the
following extended features:

» Under Windows, you can specify how the Windows application displays.

« This function returns a handle to the executable that can show whether the executable is still
running and also terminate the executable.

Parameters

Input |fileName string Pathname of executable file and arguments.
windowState integer | Specifies how a Windows program is to be shown.

(Ignored under UNIX).

Output |handle integer | A handle representing the executable launchef.

Return Value

result integer | Result of operation.

Return Codes

0 Success.

(non-zero value) Failure (refer kaunchExecutable ).

Parameter Discussion
The following values are valid favindowState

LE_HIDE application window is hidden

LE_SHOWNORMAL application window is shown normally and is activated

LE_SHOWMINIMIZED application window is displayed as an icon and is activated

LE_SHOWMAXIMIZED  application window is displayed as a maximized window and
is activated

LE_SHOWNA application window is shown normally but is not activated

LE_ SHOWMINNOACTIVE application window is shown as an icon but is not activated

© National Instruments Corporation 8-47 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

A handle can be passedHgecutableHasTerminated andTerminateExecutable
When you no longer need the handle, you shouldRetireExecutableHandle . When
you do not want to obtain a handle, you can pass NULL.

When you launch several processes WwahnchExecutableEx  but do not call
RetireExecutableHandle on them, you might reach the limit for the maximum number of
processes the system imposes. This happens even when the processes have already terminated,;
the program does not recognize that the processes have terminated until you call
RetireExecutableHandle

Checking Termination of CVI Executables Under Windows 3.1

If you launch another LabWindows/CVI executable under Windows 3.1, the launched executable
process will terminate itself after launching the new copy of the CVI Run-time Engine. If you
useExecutableHasTerminated , the return value always will be 1 because the process
identification for the second Run-time Engine cannot be tracked. This behavior can also occur
with non-LabWindows/CVI executables.

You can work around this problem when launching LabWindows/CVI runtime executables by
executing the Run-Time Engine directly and passing it the pathname of the executable. For
example:

c:\cvilcvirtd.exe c:\testimyapp.exe

The pathname of the Run-Time Engine might not:kevi\cvirt4.exe . You can
determine the pathname of the Run-Time Engine by looking atvivel[ ] section in

win.ini . (If the runtime executable was made with a different version of CVI, look in the
[cvirt nn] section for that version.)

If you need to pass arguments to your application, create a file containing the arguments and pass
the pathname of that file as the second argument to the Run-Time Engine. For example:

c:\cvilcvirtd.exe c:\testimyapp.exe myargs

The file containing the arguments must be in the same directory as the executable. The first three
characters in the file containing the arguments must be “CVI” in uppercase, as in the following
example:

CVI argl arg2 arg3

The Run-Time Engine deletes the file containing the arguments after reading it.

LabWindows/CVI Standard Libraries 8-48 © National Instruments Corporation



Chapter 8

LoadExternalModule

Utility Library

int module_id = LoadExternalModule (char pathNamd] );

Purpose

Loads a file containing one or more object modules.

Parameter
Input pathName string Relative or absolute pathnam’e
of the module to be loaded.
Return Value
module_id integer ID of the loaded module.

Return Codes

-1 Out of memory.
-2 File not found.
-4 Invalid file format.

-6 Invalid path name.

-7 Unknown file extension.

-8 Cannot open file.

-11 | .PTH file open error.

-12 | .PTH file read error.

-13 | .PTH file invalid contents.

-14 | DLL header file contains a static function prototype.

-15 DLL function has an unsupported argument type.
-16 DLL has a variable argument function.
-17 DLL header contains a function without a proper prototype.
-18 DLL function has an unsupported return type.

-19 A DLL function’s argument or return type is a function pointer.
-20 | A function in the DLL header file was not found in the DLL.

© National Instruments Corporation

8-49

(continues)

LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Return Codes (Continued)

-21 | Could not load the DLL.

-22 | Could not find the DLL header file.

-23 Could not load the DLL header file (out of memory or the file is corrupted).
-24 Syntax error in the DLL header file.

-25 | DLL initialization function failed.

-26 | Module already loaded with different calling module handle. (See
LoadExternalModuleEx )

-27 Invalid calling module handle. (SéeadExternalModuleEx )

-28 Module loaded in Borland mode in the LabWindows/CVI development
environment contains uninitialized global variables that are also defined in other
modules.

Parameter Discussion

This function loads an external object module file. The file need not be listed in your project nor
loaded as an instrument module.

Under Windows 3.1, the file may be an object fitth{ ), a library file (lib ), ora
dynamically linked library.@ll ). Object and library modules must be compiled with the
Watcom C compiler for Windows or the LabWindows/CVI compiler.

Under Windows 95 and NT, the file may be an object fobj( ), a library file (lib ), ora
DLL import library (lib ). You cannot load a DLL directly. Object and library modules can be
compiled in LabWindows/CVI or an external compiler.

In UNIX, the file may be an object fileq ) or a statically linked library.& ).

All files must conform to the rules for loadable compiled modules ihdb&Vindows/CVI
Programmer Reference Manual

By loading external object modules, you can execute code that is not in your project and not in a
loaded instrument module. You can load the external modules only when needed and unload
them when they are no longer needed.

After a module has been loaded, you can execute its code in one of two ways:

* You can obtain pointers to functions in the module by calling
GetExternalModuleAddr . You can then call the module's functions through the
function pointers.

LabWindows/CVI Standard Libraries 8-50 © National Instruments Corporation



Chapter 8 Utility Library

* You can calRunExternalModule . This requires that the module contain a function with
a pre-defined name and prototype. The function serves as the entry point to the module. See
RunExternalModule  for more information.

LoadExternalModule can also be used on a source fite)(that is part of the current

project or a source file that has been loaded as the program for an instrument module. This
allows you to develop your module in source code form and test it using the LabWindows/CVI
debugging capabilities. After you have finished testing your module and compiled it into an
external object or library file, you need to make no modifications to your application source code
other than to change the pathname in the calbaaExternalModule

Avoid calling LoadExternalModule on a file in the project when you plan to link your
program in an external compiler. The LabWindows/CVI Utility library does not know the
locations of symbols in executables or DLLs linked in external compilers. You can provide this
information by using the Other Symbols section ofElkeernal Compiler Support dialog box

(in theBuild menu of the LabWindows/CVI Project window) to create an object module
containing a table of symbols you want to find usBejExternalModuleAddr . If you use

this method, you should pass the empty strihg (o LoadExternalModule for the module
pathname.

If successfullLoadExternalModule returns an integer module ID which can later be passed
to RunExternalModule , GetExternalModuleAddr , andUnloadExternalModule
If unsuccessfull.oadExternalModule returns a negative error code.

Resolving External References from Object and Static Library Files on Windows 95/NT

There is an important difference between loading an object or static library module and loading a
DLL via an import library. DLLs are prelinked, that is, when an DLL is loaded, no external
references need to be resolved. Object and static library modules, on the other hand, do have
external references that need to be resolveddExternalModule resolves them using

symbols defined in the project or in object, static library, or import library modules that have
already been loaded usihgadExternalModule . This is true even when you call
LoadExternalModule from a DLL.LoadExternalModule does not use symbols in a

DLL to resolve external references unless those symbols have been exported in the import
library.

When you load an object or library module from a DLL, you may want external references to be
resolved through global symbols in the DLL that have not been exported in the import library. If
this is your intention, you must célbadExternalModuleEx rather than

LoadExternalModule

Using This Function

pathnamemay be a relative or absolute pathname. If it is a simple file name (such as
module.obj ), LoadExternalModule attempts to find the file as follows.

1. It first looks for the file in the project list.

2. It then looks for the file in the directory that contains the currently loaded project.

© National Instruments Corporation 8-51 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

3. If the file has not been found and its extensiodlis , LoadExternalModule searches
for the file in the directories specified in the WindoveadLibrary  call.

If it is a relative pathname with one or more directory paths (sudmasdule.obj ),

LoadExternalModule creates an absolute pathname by appending the relative pathname to
the directory that contains the currently loaded project.

If the pathnameis for a DLL import library]l oadExternalModule finds the DLL using the
DLL name embedded in the import library and the standard Windows DLL search algorithm.

Example

void (*funcPtr) (char buff], double dval, int *ival);
int module_id;
int status;
char buf[100];
double dval;
int ival;
char *pathname;
char *funcname;
pathname = "EXTMOD.OBJ";
funcname = "my_function™;
module_id = LoadExternalModule (pathname);
if (module_id < 0)
FmtOut ("Unable to load %s\n", pathname);
else
{
funcPtr = GetExternalModuleAddr (module_id, funcname, &status);
if (funcPtr == NULL)
FmtOut ("Could not get address of %s\n", funcname);
else
(*funcPtr) (buf, dval, &ival);

}

LoadExternalModuleEx

int moduleld = LoadExternalModuleEx (char pathNam¢] ,
void * callingModuleHandle);

Purpose

LoadExternalModuleEx loads a file containing one or more object modules. It is similar to
LoadExternalModule , except that, on Windows 95 and NT, external references in object
and library modules loaded from a DLL can be resolved using DLL symbols that are not
exported. On platforms other than Windows 95 and IMBdExternalModuleEx works
exactly likeLoadExternalModule

LabWindows/CVI Standard Libraries 8-52 © National Instruments Corporation



Chapter 8 Utility Library

Parameters
Input | pathName string Relative or absolute pathname of the module to
be loaded.
callingModuleHandle | void Usually, the module handle of the calling DLL.
pointer | You can use CVIUserHInst. Zero
indicates the project or executable

Return Value

moduleld integer | ID of the loaded module.

Return Codes

Same as the return codes fmadExternalModule

Using this Function

Refer to the function help faroadExternalModule for detailed information on that
function.

When you calLoadExternalModule on an object or library module, external references

need to be resolved. They are resolved using symbols defined in the project or in object, library,
or DLL import library modules that have already been loaded wsagExternalModule

(or LoadExternalModuleEx ). This is true even if you cdlloadExternalModule from

a DLL.

You may want to load an object or library module from a DLL and have the module link back to
symbols that you defined in (but did not export from) the DLL. You can do this using
LoadExternalModuleEx . You must specify the module handle of the DLL as the
callingModuleHandle parameter. You can do so by using the LabWindows/CVI pre-defined
variable__ CVIUserHInst

LoadExternalModuleEx first searches the global DLL symbols to resolve external

references. Any remaining unresolved references are resolved by searching the symbols defined
in the project or in object, library, or import library modules that have already been loaded using
LoadExternalModule (or LoadExternalModuleEx ).

LoadExternalModuleEx expects the DLL to contain a table of symbols that can be used to
resolve references. If you create the DLL in LabWindows/CVI, the table is included
automatically. If you create the DLL using an external compiler, you must arrange for this table
to be included in the DLL. You can do this by creating an include file that includes all of the
symbols that need to be in this table. You can then udextkeenal Compiler Support

© National Instruments Corporation 8-53 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

command in th&uild menu of the Project Window to create an object file containing the table.
You must include this object file in the external compiler project you use to create the DLL.

LoadExternalModuleEx acts identically td.oadExternalModule if either,
you pass zero farallingModuleHandle, or

you pass_CVIUserHInst for callingModuleHandle, but you are calling the function
from a file that is in the project or your executable, rather than in a DLL, or

you are not running in Windows 95 or NT.

You cannot load the same external module using two different calling module handles. The
function reports an error if you attempt to load the an external module when it is already loaded
under a different module handle.

MakeDir

int result = MakeDir (char directoryName][] );

Purpose

Creates a new directory based on the specified directory name.

Note: You can create only one directory at a time.

Parameters

Input directoryName string New directory name.

Return Value

result integer Result of operation.

Return Codes

0 Success.

-1 One of the path components not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path (for examples:filename  in Windows).
-6 Access denied.

-8 Disk is full.

-9 Directory or file already exists with same pathname.

LabWindows/CVI Standard Libraries 8-54 © National Instruments Corporation



Chapter 8

Example

Utility Library

/* make a new directory named \DATA\WAVEFORM on drive C /*
/* assuming that C:\\DATA does not exist

MakeDir ("C:\DATA");
MakeDir ("C:\DATAWWAVEFORM");

*/

MakePathname

void MakePathname(char directoryName[] , char fileNamef] , char pathNamd] );

Purpose

Constructs a path name from a directory path and a filename. The subroutine ensures that the
directory path and the filename are separated by a backslash.

Parameters
Input directoryName string Directory path.
fileName string Base file name and extension
Output pathName string Path name.

Return Value

None

Parameter Discussion

pathName must be at leadAX_PATHNAME_LBWtes long. If thgpathName constructed
from directoryName andfileName exceeds that size, an empty string is returngéiihName

Example

char dirname[MAX_PATHNAME_LEN];

char pathname[MAX_PATHNAME_LEN];
GetProjectDir (dirname);
MakePathname (dirname, "FILE.DAT", pathname);

© National Instruments Corporation

8-55 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

outp

char byteWritten =outp(int portNumber, char byteToWrite);

Note: This function is available only on the Windows versions of LabWindows/CVI.
Purpose

Writes a byte to a port.

Note: For you to be able to use this function under Windows NT, the LabWindows/CVI low-
level support driver must be loaded.

Parameters
Input | portNumber integer The port.
byteToWrite char The byte to be written.

Return Value

byteWritten char The byte that was written.

outpw

short wordWritten = outpw (short portNumber, int wordToWrite);

Note: This function is available only on the Windows versions of LabWindows/CVI.
Purpose

Writes a word to a port.

Note: For you to be able to use this function under Windows NT, the LabWindows/CVI low-
level support driver must be loaded.

Parameters

Input portNumber integer The port.
wordToWrite short The word to be written.

Return Value

wordWritten short The word that was written.

LabWindows/CVI Standard Libraries 8-56 © National Instruments Corporation



Chapter 8 Utility Library

ReadFromPhysicalMemory

int status = ReadFromPhysicalMemoryunsigned int physicalAddress
void *destinationBuffer,
unsigned int numberOfBytes);

Note: This function is available only on the Windows versions of LabWindows/CVI.
Purpose

Copies the contents of a region of physical memorydegiinationBuffer. The function does
not check whether the memory actually exists. If the memory does not exist, the success value is
returned but no data is read.

Note: For you to be able to use this function under Windows 95 or NT, the LabWindows/CVI
low-level support driver must be loaded.

Parameters

U

Input physicalAddress unsigned integer The physical address to be read
from. There are no restrictions
on the address; it can be beloy
or above 1 MB.

destinationBuffer | void pointer The buffer into which the
physical memory will be copie

<

j -

numberOfBytes unsigned integer The number of bytes to copyj
from physical memory.

Return Value

status integer Indicates whether the function
succeeded.

Return Codes

Success.

Failure reported by the operating system, or low-lgvel
support driver not loaded.

© National Instruments Corporation 8-57 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

ReadFromPhysicalMemoryEx

int status= ReadFromPhysicalMemoryEx(unsigned int physicalAddress
void * destinationBulffer,
unsigned int numberOfBytes,
int  bytesAtATime);

Note: This function is available only in the Windows version of LabWindows/CVI

Purpose

This function copies the contents of a region of physical memory into the specified buffer. It can
copy the data in units of 1, 2, or 4 bytes at a time.

The function does not check whether the memory actually exists. If the memory does not exist,
the success value is returned but no data is read.

Note: For you to be able to use this function under Windows 95 or NT, the LabWindows/CVI
low-level support driver must be loaded.

Parameters
Input physicalAddress | unsigned The physical address to read from. There afe
integer no restrictions on the address; it can be above
or below 1 MB.
destinationBuffer | void pointer | The buffer into which the physical memory |s
copied.
numberOfBytes unsigned The number of bytes to copy from physical
integer memory.
bytesAtATime integer The unit size in which to copy the data. Can be
1,2, or4.
Return Value
status integer Indicates whether the function succeeded.
Return Codes
1 Success.
0 Failure reported by operating system, or low-level support driver not loaded, or
numberOfBytes is not a multiple obytesAtATime, orinvalid value for
bytesAtATime.

Parameter Discussion

numberOfBytes must be a multiple dfytesAtATime.

LabWindows/CVI Standard Libraries 8-58 © National Instruments Corporation



Chapter 8 Utility Library

ReleaseExternalModule

int status= ReleaseExternalModule(int modulelD);

Purpose

Decreases the reference count for a module loaded lusaatxternalModule

WhenLoadExternalModule is called successfully on a module, that module's reference
count is incremented by one. When you EaleaseExternalModule , its reference count
is decremented by one.

If the reference count is decreased to zero, then the module ID is invalidated and you cannot
access the module throu@etExternalModuleAddr or RunExternalModule . If, in
addition, the module file is not in the project and not loaded as an instrument, the external
module is removed from memory.

If you want to unload the module regardless of the reference count, call
UnloadExternalModule rather tharReleaseExternalModule . Use
ReleaseExternalModule when multiple calls may have been made to
LoadExternalModule on the same module and you do not want to unload the module in
case it is still being used by other parts of the application.

Parameter

Input | modulelD integer The module ID returned hpadExternalModule

Return Value

status integer Indicates the result of the operation.

Return Codes

>0 Success, but the module was not unloaded. The value indicates the numbgr of
remaining references.

0 Success, and the module was unloaded.

-5 The module cannot be unloaded because it is referenced by another external
module that is currently loaded.

-9 Invalid module ID.

© National Instruments Corporation 8-59 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

RenameFile
int result = RenameFile(char existingFileNamd] , char newFileNamd] );
Purpose

Renames an existing file.

Parameters

Input existingFileName | string Existing file name.

newFileName string New file name.

Return Value

result integer Result of rename operation.
Return Codes

0 Success.

-1 File not found or directory in path not found.

-3 General 1/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path (for either of the file names).

-6 Access denied.

-7 Specified existing path is a directory, not a file.

-8 Disk is full.

-9 New file already exists.

Parameter Discussion

existingFileNameandnewFileNamemay contain DOS wildcard characters ‘?” and *". If
existingFileNamehas wildcards, all matching files are renamecdhelivFileNamehas
wildcards, it will be matched texistingFileName

existingFileNamemay be the empty string"(), in which case the file found by the most recent
call toGetFirstFile or GetNextFile is renamed.

Under Microsoft Windows, if the argumentsRenameFile specify files on different disk
drives,RenameFile copies the source to the target and then deletes the source file.

LabWindows/CVI Standard Libraries 8-60 © National Instruments Corporation



Chapter 8 Utility Library

Under UNIX, if the arguments tRenameFile specify files on different file systems,
RenameFile copies the source to the target and then deletes the source file.

RetireExecutableHandle
int status= RetireExecutableHandle(int executableHandlé¢;
Purpose

Informs the Utility Library that you no longer intend to use the handle acquired from
LaunchExecutableEx . When you call this function the Utility Library can reuse the
memory allocated to keep track of the state of the executable.

Under UNIX, if the process has terminated, the system removes the process from the list of
processes. This keeps the system from reaching the limit on the total number of processes under
execution by a single user which the system imposes.

Parameters

Input  |executableHandle integer | The executable handle acquired from
LaunchExecutableEx

-1 = handle is invalid.

0 = success.

Return Value

status integer | Result of operation.

RoundRealToNearestinteger
long n = RoundRealToNearestintegefdouble inputRealNumber);
Purpose

Rounds its floating-point argument and returns the result as a long integer. A value with a
fractional part of exactly 0.5 is rounded to the nearest even number. This function is encountered
in translations.

Parameter

Input inputRealNumber | Double-precision.

© National Instruments Corporation 8-61 LabWindows/CVI Standard Libraries



Utility Library

Return Value

Chapter 8

n long Result of the rounding operation.
Example

long n;

n =round (1.2); /* result: 1L */
n = round (1.8); /* result: 2L */
n = round (1.5); /* result: 2L */
n = round (0.5); /* result: OL */
n =round (-1.2); /* result: -1L */
n =round (-1.8); /* result: -2L */
n =round (-1.5); /* result: -2L */
n = round (-0.5); /* result: OL */

RunExternalModule

int result = RunExternalModule (int

Purpose

modulelD, char *buffer);

Calls the pre-defined entry point function in an external moduleL@a@ExternalModule ).

Parameters

Input modulelD integer | ID of loaded module.

buffer string Parameter buffer.

Return Value

result integer | Indicates the result of the operation.
Return Codes

0 Success.

-1 Out of memory.

-3 Entry point is undefined.

-4 Invalid file format.

-5 Undefined references.

-8 Cannot open file.

-9 Invalid module ID.

LabWindows/CVI Standard Libraries

8-62 © National Instruments Corporation



Chapter 8 Utility Library

Parameter Discussion

modulelD is the valud.oadExternalModule returns. buffer is a character array in
which you can pass information to and from the module.

RunExternalModule  requires that the module define the following function:
void _xxx_entry_point (char [])

wherexxx is the base name of the file, in lowercase. For example, if the pathname of the
file is as follows:

CALW\PROGRAMS\TEST01.0BJ

then the name of the entry point must be:
_test01_entry_point

Example

int module_id;
int status;
char *pathname;
pathname = "EXTMOD.OBJ";
module_id = LoadExternalModule (pathname);
if (module_id <0)
FmtOut ("Unable to load %s\n", pathname);
else {
RunExternalModule (module_id, ™);
UnloadExternalModule (module_id);

SetBreakOnLibraryErrors
int oldState= SetBreakOnLibraryErrors (int newStatg;
Purpose

When debugging is enabled and a National Instruments library function reports an error,
LabWindows/CVI can display a runtime error dialog box and suspend execution. You can use
this function to enable or disable this feature.

In general, it is best to use tBeeak on library errors checkbox in th&un Options command
of the Project window to enable or disable this feature. You should use this function only when
you want the temporarily disable tBeeak on library errors feature around a segment of code.

This function does not affect the state of Break on library errors checkbox in thé&kun
Options command of the Project window.

© National Instruments Corporation 8-63 LabWindows/CVI Standard Libraries



Utility Library

Chapter 8

If debugging is disabled, this function has no effect. Run-time errors are never reported when

debugging is disabled.

Parameters

Input newState integer | Pass a nonzero value to enable. Pass zero to disable.
Return Value

oldState integer | Previous state of the break on library errors featuyre.

Return Codes

Was previously enabled.
Was previously disabled, or debugging is disabled.

Example

int oldValue;

oldValue = SetBreakOnLibraryErrors (0);
/* function calls that may legitimately return errors */
SetBreakOnLibraryErrors (oldValue);

SetBreakOnProtectionErrors

int oldState= SetBreakOnProtectionErrors (int newState);

Purpose

If debugging is enabled, LabWindows/CVI uses information it gathers from compiling your
source code to make extensive run-time checks to protect your program. When it encounters a
protection error at run-time, LabWindows/CVI displays a dialog box and suspends execution.

Examples of protection errors are

An invalid pointer value is dereferenced in source code.

An attempt is made in source code to read or write beyond the end of an array.

A function call is made in source code in which an array is smaller than is expected by the
function.

Pointer arithmetic is performed in source code which generates an invalid address.

LabWindows/CVI Standard Libraries

8-64 © National Instruments Corporation



Chapter 8 Utility Library

You can use this function to prevent LabWindows/CVI from displaying the dialog box and
suspending execution when it encounters a protection error. In general, it is better not to disable
thebreak on protection errors feature. Nevertheless, you may want to disable it temporarily
around a line of code for which LabWindows/CVI is erroneously reporting a protection error.

If debugging is disabled, this function has no effect. Run-time errors are not reported when
debugging is disabled.

Note: If an invalid memory access generates a processor exception, LabWindows/CVI reports
the error and terminates your program regardless of the debugging level or the state of
the break on protection errors feature.

Parameters
Input | newState integer Pass a nonzero value to enable. Pass zero to
disable.
Return Value
oldState integer Previous state of the break on protection errorg
feature.

Return Codes

Was previously enabled.
Was previously disabled, or debugging is disabled.

Example

int oldValue;

oldValue = SetBreakOnProtectionErrors (0);

/* the statement that erroneously reports an error */

SetBreakOnProtectionErrors (oldValue);

© National Instruments Corporation 8-65 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

SetDir
int result = SetDir (char directoryNameJ[] );
Purpose

Sets the current working directory to the specified directory. Under Windows 3.1, this function
can change the current working directory on any drive, however it does not change the default
drive. To change the default drive, use 8®Drive  function.

Parameters

Input directoryName string New current working directory.

Return Value

result integer Result of operation.

Return Codes

0 Success.

-1 Specified directory not found or out of memory.

Parameter Discussion

Under Windows 3.1directoryName must not contain a drive letter.

SetDrive

int result = SetDrive(int driveNumber);

Note: This function is available only on the Windows versions of LabWindows/CVI.
Purpose

Sets the current default drive.

Parameters

Input driveNumber integer New drive number (0 to 25).

LabWindows/CVI Standard Libraries 8-66 © National Instruments Corporation



Chapter 8 Utility Library

Return Value

result integer Result of operation.

Return Codes

0 Success.

-1 Invalid drive number.

Using This Function

The mapping between the drive number and the logical drive letter is 0 = A, 1 = B, and so on.

SetFileAttrs

int result = SetFileAttrs (char fileNam€[] ,int read-only,int systemint hidden,
int archive);

Note: This function is available only on the Windows versions of LabWindows/CVI.
Purpose
Sets theead-only, system hidden andarchive attributes of a file.

Theread-only attribute protects a file from being overwritten and prevents the creation of a file
with the same name.

Thesystemattribute andhidden attribute both prevent the file from appearing in a directory list
and exclude it from normal searches.

Thearchive attribute is set whenever the file is modified, and cleared by the DOS BACKUP
command.

Parameters
Input fileName string File to set attributes.
read-only integer Read-only attribute.
system integer System attribute.
hidden integer Hidden attribute.
archive integer Archive attribute.

© National Instruments Corporation 8-67 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Return Value

result return value Result of operation.

Return Codes

0 Success.

-1 One of the following errors occurred:
* File not found.

« Attribute cannot be changed.

Parameter Discussion

Each attribute parameter can have one of the following values:
O—clears the attribute
1—sets the attribute
-1—leaves the attribute unchanged

fileName may be the empty string’(), in which case the attributes of the file found by the most
recent call tadGetFirstFile or GetNextFile are set.

SetFileDate
int status = SetFileDatdchar fileNam€]] ,int month,int day, int year);
Purpose

Sets the date of a file.

LabWindows/CVI Standard Libraries 8-68 © National Instruments Corporation



Chapter 8 Utility Library

Parameters
Input fileName string File to set attributes.
month integer Month (1 to 12)
1 —January
2 —February
3 —March
4 —April
5 —May
6 —June
7 —July
8 —August
9 —September
10 —October
11 —November
12 —December
day integer Day of month (1 to 31)
year integer Year (1980-2099)
Return Value
status integer Result of operation.
Return Codes
0 Success.
-1 File not found or directory in path not found.
-3 General I/O error occurred.
-4 Insufficient memory to complete operation.
-5 Invalid date, or invalid path (for examptefilename  in Windows).
-6 Access denied.

Parameter Discussion

fileName may be the empty string’(), in which case the date of the file found by the most
recent call tadGetFirstFile or GetNextFile is set.

© National Instruments Corporation 8-69 LabWindows/CVI Standard Libraries



Utility Library

SetFileTime

int result = SetFileTime(char fileNam¢g[] , int

Purpose

Sets the time of a file.

Chapter 8

hours, int minutes, int secondy,

Parameters
Input fileName string File to set date.
hours integer Hours (0 to 23).
minutes integer Minutes (0 to 59).
seconds integer Seconds (0-58); Odd Values jare
rounded down.
Return Value
result integer Result of operation.
Return Codes
0 Success.
-1 File not found or directory in path not found.
-3 General 1/O error occurred.
-4 Insufficient memory to complete operation.
-5 Invalid time, or invalid path (for examplefilename  in Windows).
-6 Access denied.

Parameter Discussion

fileName may be the empty strin§'(), in which case the time of the file found by the most

recent call tadGetFirstFile or GetNextFile

is set.

secondsvalue must be entered in increments of 2.

LabWindows/CVI Standard Libraries

8-70

© National Instruments Corporation



Chapter 8 Utility Library

SetPersistentVariable
void SetPersistentVariable(int value);
Purpose

Lets you store an integer value across multiple builds and executions of your project in the
LabWindows/CVI development environment. When you unload a project or load a new project,
the value is reset to zero.

This function is useful when your program performs an action (such as setting up your
instruments) that takes a long time and that you do not want to be repeated each time you re-run
your program. Global variables in your program are reinitialized to zero each time you run your
project. Thus, they cannot be used to indicate that you have already taken the action once.

To get around this problem, LabWindows/CVI maintains an integer variable across multiple
builds and executions of your project. This function sets the value of that variable. To retrieve
the variable value, calbetPersistentVariable()

Parameters
Input value integer The value to assign to the
persistent variable.
SetStdioPort

int status= SetStdioPort(int stdioPort);
Purpose

Sets the current destination for data written to the standard output (and the source of data read
from standard input).

You can specify either the CVI Standard Input/Output window or the standard input/output of
the host system.

Note: This function is valid only on the UNIX version of LabWindows/CVI.

© National Instruments Corporation 8-71 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Parameters
Input stdioPort integer CVI_STDIO_WINDOWQO) =
the CVI Standard Input/Output
window.

HOST_SYSTEM_STDIQL) =
the host system's standard

output.
Return Value
status integer Indicates whether the function
succeeded.
Return Codes
0 Success.
-2 Destination was not a valid range.

Parameter Discussion
In a standalone executable, the default valustftioPort is CVI_STDIO_WINDOW

In the CVI Development System, the default valuestdioPort is the current state of thése

host system's standard input/outputoption in the dialog box brought up by tBavironment
command in th@®ptions menu of the Project window. The value that you set using this function
is reflected the next time you bring up the environment dialog.

SetStdioWindowOptions

int status = SetStdioWindowOptiongint maxNumLines,
int bringToFrontWhenModified ,
int showLineNumbers);

Purpose

Sets the current value of the following Standard Input/Output window options:
Maximum Number of Lines
Bring To Front When Modified

Show Line Numbers

LabWindows/CVI Standard Libraries 8-72 © National Instruments Corporation



Chapter 8 Utility Library

Parameters

U7

Input maxNumLines integer The maximum number of line
that can be stored in the
Standard Input/Output Window.
If this amount is exceeded, lings
are discarded from the top.
Valid range: 100 to 1000000.
bringToFrontWhenModified integer Indicates whether the Standard
Input/Output window is brough
to the front each time a string or
character is added to it.

—

1=Yes.
0 = No.
showLineNumbers integer Indicates whether line numbefs
are shown in the Standard
Input/Output window.
1=Yes.
0 = No.
Return Value
status integer Indicates whether the functior
succeeded.
Return Codes
0 Success.
-1 Maximum number of lines is not within the valid
range.

Parameter Discussion

maxNumLines—In an executable, the default value is 10000. In the CVI Development System,
the default value is the value set in the dialog box brought up Bynthieonment command in

the Options menu of the Project window. The value that you set using this function is reflected
the next time you bring up the Environment dialog box.

bringToFrontWhenModified —In an executable, the default value is 1 ("bring to front when
modified"). In the CVI Development System, the default value is the current state of the "Bring
Standard Input/Output window to front whenever modified" option in the dialog box brought up
by the Environment command in t@gptions menu of the Project window. The value that you

set using this function is reflected the next time you bring up the Environment dialog box.

© National Instruments Corporation 8-73 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

showLineNumbers—In an executable, the default value is 0 ("do not show line numbers"). In
the CVI Development System, the default value is the current statelahthBlumbers option

in theView menu of the Standard Input/Output Window. The value that you set using this
function is reflected the next time you bring up Yhew menu.

SetStdioWindowPosition
int status = SetStdioWindowPositior(int top, int left);
Purpose

Sets the current position, in pixels, of the client area of the Standard Input/Output window
relative to the upper left corner of the screen. The client area begins under the title bar and to the
right of the frame.

Parameters

Input top integer The distance, in pixels, of the top of client
area of the Standard Input/Output window
relative to the top of the screen.

Valid Range: VAL AUTO CENTER

-16000 to +16000.

left integer The distance, in pixels, of the leftmost edgg of
client area of the Standard Input/Output
window relative to the leftmost edge of the
screen.

Valid Range:VAL_AUTO_CENTER
-16000 to +16000.

D

Return Value

status integer | Indicates whether the function succeeded.

Return Codes

0 Success.
-1 top is not within the valid range.
-2 left is not within the valid range.

LabWindows/CVI Standard Libraries 8-74 © National Instruments Corporation



Chapter 8 Utility Library

Parameter Discussion

To vertically center the Standard Input/Output window client area within the area of the screen,
passVAL_AUTO_CENTERSs theop parameter.

To horizontally center the Standard Input/Output window client area within the area of the
screen, pasgAL_AUTO_CENTERs thdeft parameter.

SetStdioWindowSize
int status = SetStdioWindowSizdint height, int width);
Purpose

Sets the height and width, in pixels, of the client area of the Standard Input/Output window. The
client area excludes the frame and the title bar.

Parameters

Input height integer | The height, in pixels, of the client area of the
Standard Input/Output window.

Valid Range: 0 to 16000.

width integer | The width, in pixels, of the client area of the
Standard Input/Output window.

Valid Range: 0 to 16000.

Return Value

status integer | Indicates whether the function succeeded.

Return Codes

0 Success.
-1 height is not within the valid range.
-2 width is not within the valid range.

© National Instruments Corporation 8-75 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

SetStdioWindowVisibility
void SetStdioWindowVisibility (int  visible);
Purpose

Either brings to the front or hides the Standard Input/Output window.

Parameters
Input visible integer | 1 = Standard I/O window is visible.
0 = Standard I/O window is hidden.
SetSystemDate

int status= SetSystemDatdint month, int day, int year);

Note: This function is only available on the Windows version of LabWindows/QWhder
Windows NT, you must have system administrator status to use this function.

Purpose

Sets the system date.

Parameters
Input month integer | Month (1-12).
day integer | Day of month (1-31).
year integer | Year (Under Windows 3.1, the year is limited to

the values 1980-2099).

Return Value

status integer | Success or failure.

Return Codes

0 sSuccess.

-1 Failure reported by operating system, probably due to invalid parameter.

LabWindows/CVI Standard Libraries 8-76 © National Instruments Corporation



Chapter 8

SetSystemTime

int status= SetSystemTiméint hours, int

Utility Library

minutes, int  second$,

Note: This function is only available on the Windows version of LabWindows/QWhder
Windows NT, you must have system administrator status to use this function.

Purpose

Sets the system time.

Parameters
Input hours integer Hours (0-23).
minutes integer Minutes (0-59).
seconds integer Seconds (058). Odd values are
rounded down.
Return Value
status integer Success or failure.
Return Codes
0 Success.
-1 Failure reported by operating system, probably dug to
an invalid parameter.
SplitPath

void SplitPath (char pathNamd] , char driveName]] , char directoryName[] ,

char fileName]] );

Purpose

Splits a path name into the drive name, the directory name, and the file name.

© National Instruments Corporation

8-77

LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Parameters
Input pathName string Path name to be split.
Output driveName string Drive name.
directoryName string Full directory path, ending with

directory separator character.

fileName string Simple file name.

Return Value
None
Parameter Discussion

ThedriveName, directoryName, andfileName parameters can each be NULL. If not NULL,
they must be buffers of the following size or greater.

drive name MAX_DRIVENAME_LEN
directory name MAX_DIRNAME_LEN
file name MAX_FILENAME_LEN

On operating systems without drive names (such as UNIX)eName will always be filled in
with the empty string.

Example

char pathName[MAX_PATHNAME_LEN];

char driveName[MAX_ DRIVENAME_LEN];

char dirName[MAX_DIRNAME_LEN];

char fileName[MAX_FILENAME_LEN];

SplitPath (pathName, driveName, dirName, fileName);

[* If pathName contains
c:\cvilsamples\apps\update.c

then
driveName contains “c:”
dirName contains “\cvilsamples\apps\
fileName contains “update.c

If pathName is
\\computer\share\dirname\foo.c
then
drive name is
directory name is " \\computer\share\dirname\"
file name is "foo.c"

*

LabWindows/CVI Standard Libraries 8-78 © National Instruments Corporation



Chapter 8 Utility Library

SyncWait
void SyncWait(double beginTime, double interval);
Purpose

Waits until the number of seconds indicated by interval have elapsedsigicd ime.

Parameters
Input beginTime double-precision Value returned Bymer .
interval double-precision Number of seconds to wait gfter
begin_time.

Parameter Discussion
beginTime must be a value returned by thiener function.

The resolution on Windows is normally 1 millisecond. However, if the following line appears
in the CVI section of youWIN.INI file, the resolution is 55 milliseconds.

useDefaultTimer = True
The resolution on Sun Solaris is 1 millisecond.
Return Value

None

SystemHelp

int status = SystemHelgdchar helpFile[] , unsigned int command,
unsigned long additionalLongData,
char additionalStringData[] );

Note: This function is available only on the Windows versions of LabWindows/CVI.
Purpose

Starts Windows HelpW/INHELP.EXE and passes optional data indicating the nature of the help
requested by the application. The application specifies the path of the help file that the
application is to display.

For information about creating help files, see the Microsoft Windows Programming
Documentation (not included with LabWindows/CVI).

© National Instruments Corporation 8-79 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Parameters

Input helpFile string Points to a string containing the
help file that the Help
application is to display.
command unsigned integer Specifies the type of help
requested.

additionalLongData unsigned long This value parameter dependj
integer on thecommand parameter as
described in th®arameter
Discussion.

additionalStringData | string This value parameter depend
on thecommand parameter as
described in th®arameter
Discussion.

\"2J

(%)

Return Value

status integer Non-zero on success, zero on
failure.

Parameter Discussion

helpFile contains a filename that may be followed by an angle bracket (<) and the name of a
secondary window if the topic is to be displayed in a secondary window rather than in the
primary window. The name of the secondary window must have been defined\i QWS
section of the Help ProjectHPJ ) file.

commandcan be one of the following values:

HELP_COMMANEExecute a Help Macro. In this caséditionalStringData is the Help
macro to be executed.

HELP_CONTENTSDisplays the Help contents topic as defined by the Contents option in the
[OPTIONS section of theHPJ file.

HELP_CONTEXFDisplay Help for a particular topic identified by a context number that has
been defined in theMAR section of theHPJ file. In this caseadditionalLongData is the
context number of the topic.

HELP_CONTEXTNOFOCUY®isplay Help for a particular topic identified by a context number
that has been defined in tHdAR section of theHPJ file. Help does not change the focus to
the window displaying the topic.

LabWindows/CVI Standard Libraries 8-80 © National Instruments Corporation



Chapter 8 Utility Library

HELP_CONTEXTPOPUHDisplays in a pop-up window a particular Help topic identified by a
context number that has been defined in MAR section of theHPJ file. The main help
window is not displayed. In this caselditionalLongData is the context number of the topic.

HELP_HELPONHELPRDisplays the contents topic of the designated Using Help file.

HELP_KEY—Displays the topic in the keyword list that matches the keyword passed in the
additionalStringData parameter if there is one exact match. If there is more than one match, it
displays the first topic found. If there is no match it displays an error message.

HELP_PARTIALKEY—Displays the topic found in the keyword list that matches the keyword
passed in thadditionalStringData parameter if there is one exact match. If there is more than
one match, displays the Search dialog box with the topics listed in the Go To list box. If there is
no match, it displays the Search dialog box. If you just want to bring up the Search dialog box
without passing a keyword, you should use a pointer to an empty Stripg (

HELP_POPUPIB-Displays in a pop-up window the topic identified by a context string. The
main window help is not displayed.

HELP_QUIT—Closes the help file. It will have no effect if the help file was opened by another
executable.

HELP_SETCONTENTFSDetermines which Contents topic Help should display when the user
chooses the Contents button in Help. This call should never be usddBiith CONTENT.SIf

a Help file has two or more Contents topics, the application must assign one as the default. To
ensure that the correct Contents topic remains set, the application shoSigstathHelp()

with commandset toHELP_SETCONTENT&nd theadditionalLongData parameter

specifying the corresponding context identifier.

© National Instruments Corporation 8-81 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

TerminateExecutable

int status= TerminateExecutable(int executableHandl¢;

Purpose

Attempts to terminate an executable if it has not already terminated.

Under Windows the system terminates an executable by sending close messages to each window
in the application. If the application does not honor the close messages, then the application does
not terminate. Th&erminateExecutable function gives up control for a limited period to

give the application an opportunity to process the close messages. This period should be
sufficient for all applications. When you need to allow more time, your program can call the
ProcessSystemEvents  function in a loop, as shown in the following example.

Example

#define TIME_LIMIT 5.0 /* number of seconds */
double startTime;
startTime = Timer ();
TerminateExecutable (handle);
while (IExecutableHasTerminated(handle)
&& (Timer()-startTime > TIME_LIMIT))
ProcessSystemEvents();

Under UNIX, you can allow more time by sending $iI&KILL message to the process. The
SIGKILL message cannot be blocked, caught, or ignored, and therefore should always succeed.

Parameters

Input executableHandle |integer The executable handle acquired from
LaunchExecutableEx

Return Value

status integer Result of operation.

Return Codes

-1 Handle is invalid.

0 Handle is invalid.

LabWindows/CVI Standard Libraries 8-82 © National Instruments Corporation



Chapter 8 Utility Library

Timer
double t=Timer (void );
Purpose

Returns the number of seconds that have elapsed since the firsfl¢aleto, Delay , or
SyncWait or the first operation on a timer control. The value is never reset to zero except
when you restart your program. The resolution on Windows is normally 1 millisecond.
However, if the following line appears in the CVI section of yalN.INI file, the

resolution is 55 milliseconds.

useDefaultTimer = True
The resolution on Sun Solaris is 1 millisecond.
Parameters
None

Return Value

t double-precision Number of seconds since first
call toTimer .

TimeStr
char *s = TimeStr(void );
Purpose

Returns an 8-character string in the fdtitd:MM:SS whereHH is the hourMM is in minutes,
andSSis in seconds.

Parameters
None

Return Value

S 8-character string The time in HH:MM:SS format.

© National Instruments Corporation 8-83 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

TruncateRealNumber

double y = TruncateRealNumber(double inputRealNumber);

Purpose

Truncates the fractional part imputRealNumber and returns the result as a real number.

Parameters

Input inputRealNumber | double-precision.

Return Value

y double-precision | Value ofinputRealNumber
without its fractional part.

UnloadExternalModule

int status_id = UnloadExternalModule(int modulelD);
Purpose

Unloads an external module file loaded k@adExternalModule

Parameter

Output modulelD integer ID of loaded module.

Return Value

status_id integer Indicates the result of the
operation.

Return Codes

0 Success.
-9 Failure due to invalignodule_id

Parameter Discussion

modulelD is the value returned dyoadExternalModule , or -1. If -1 is used, all
external modules are unloaded.

LabWindows/CVI Standard Libraries 8-84 © National Instruments Corporation



Chapter 8 Utility Library

Example

int module_id;
int status;
char *pathname’
pathname = "PROG.OBJ";
module_id = LoadExternalModule (pathname);
if (module_id <0)
FmtOut ("Unable to load %s\n", pathname);
else {
RunExternalModule (module_id, "™);
UnloadExternalModule (module_id);

WriteToPhysicalMemory

int status = WriteToPhysicalMemory (unsigned int physicalAddress
void *sourceBuffer,
unsigned int numberOfBytes);

Note: This function is available only on the Windows versions of LabWindows/CVI.
Purpose

Copies the contents destinationBuffer into a region of physical memory. The function does
not check whether the memory actually exists. If the memory does not exist, the success value is
returned but no data is read.

Note: For you to be able to use this function under Windows 95 or NT, the LabWindows/CVI
low-level support driver must be loaded.

Parameters

Input physicalAddress unsigned integer The physical address to be written
to. There are no restrictions on
the address; it can be below or
above 1 MB.

sourceBuffer void pointer The buffer from which the
physical memory will be copied.

numberOfBytes unsigned integer The number of bytes to copy tp
physical memory.

© National Instruments Corporation 8-85 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Return Value

status integer Indicates whether the function
succeeded.

Return Codes

1 Success.

0 Failure reported by the operating system, or low-lgvel
support driver not loaded.

WriteToPhysicalMemoryEx
int status= WriteToPhysicalMemoryEx (unsigned int physicalAddress
void *  sourceBuffer,
unsigned int numberOfBytes,
int bytesAtATime);
Note: This function is available only in the Windows version of LabWindows/CVI
Purpose

This function copies the contents of the specified buffer to a region of physical memory. It can
copy the data in units of 1, 2, or 4 bytes at a time.

The function does not check whether the memory actually exists. If the memory does not exist,
success is returned but no data is written.

Note: For you to be able to use this function on Windows 95 or NT, the LabWindows/CVI
low-level support driver must be loaded.

Parameters
Input | physicalAddress | unsigned The physical address to write to. There are no
integer restrictions on the address; it can be above or
below 1 MB.
sourceBuffer void pointer The buffer from which the physical memory is
written.
numberOfBytes | unsigned The number of bytes to copy to physical memary.
integer
bytesAtATime integer The unit size in which to copy the data. Can bg 1,
2,0r4.

LabWindows/CVI Standard Libraries 8-86 © National Instruments Corporation



Chapter 8

Return Value

Utility Library

status

integer

Indicates whether the function succeeded.

Return Codes

Success.

Failure reported by operating system, or low-level support driver not loaded, or
numberOfBytes is not a multiple obytesAtATime, or invalid value for

bytesAtATime.

Parameter Discussion

numberOfBytes must be a multiple diytesAtATime.

© National Instruments Corporation

8-87 LabWindows/CVI Standard Libraries



Chapter 9
X Property Library

This chapter describes the functions in the Lab/Windows CVI X Property Library. The X
Property Library contains functions that read and write properties to and from X Windows. The
X Property Library Overvievgection contains general information about the X Property Library
functions and panel3he X Property Library Function Referersection contains an

alphabetical list of function descriptions.

These functions provide a mechanism for communication among X clients. This library provides
capabilities similar to those available in the TCP library, but differs from the TCP library in the
following significant ways.

* |t conforms to a conventional method for X interclient communication.

» It works between any X clients that are connected to the same display, and does not require
any particular underlying communication protocol such as TCP.

» It provides a method for sharing data among X clients without explicit point-to-point
connections between them.

TheX Property Library Overvievgection contains general information about the X Property
Library. TheX Property Library Function Referensection alphabetically lists function names,
with descriptions.

X Property Library Overview

The X Property Library is available only in the UNIX versions of LabWindows/CVI. This
section contains general information about the X Property Library functions and panels.

The X Property Library Function Panels

The X Property Library function panels are grouped in a tree structure according to the types of
operations performed. The X Property Library Function tree appears in Table 9-1.

The first- and second-level bold headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The third-
level headings in plain text are the names of individual function panels. Each X Property Library
function panel generates an X Property Library function call. The name of the function is in bold
italics to the right of the function panel name.

© National Instruments Corporation 9-1 LabWindows/CVI Standard Libraries



X Property Library Chapter 9
Table 9-1. The X Property Library Function Tree

Accessing Remote Hosts

Connect To X Server ConnectToXDisplay

Disconnect From X Server DisconnectFromXDisplay
Managing Property Types

Create New Property Type CreateXPropType

Get Property Type Name GetXPropTypeName

Get Property Type Size GetXPropTypeSize

Get Property Type Unit GetXPropTypeUnit

Destroy Property Type DestroyXPropType
Managing Property Information

Create New Property CreateXProperty

Get Property Name GetXPropertyName

Get Property Type GetXPropertyType

Destroy Property DestroyXProperty
Accessing Window Properties

Get Single Window Property Item GetXWindowPropertyltem

Put Single Window Property Item PutXWindowPropertyltem

Get Window Property Value GetXWindowPropertyValue

Put Window Property Value PutXWindowPropertyValue

Remove Window Property RemoveXWindowProperty
Handling Property Events

Install Property Callback InstallXPropertyCallback

Uninstall Property Callback UninstallXPropertyCallback
Get Error String GetXPropErrorString

X Interclient Communication

X applications often use X properties to communicate with each other. Properties are essentially
tagged data associated with a window. Applications communicate by reading and writing
properties to and from windows. In addition, an X application can request that the X server
notify it whenever a specific property value changes on a window.

The X applications that need to communicate with each other must first connect to the same X
display. Then they must agree upon the names and types of properties as well as the X window
IDs that they use to transfer the data. Although it is a simple matter to agree upon the names and
types of properties in advance, the window IDs cannot be known in advance because they are
different for each invocation of the program. There must be a mechanism for transferring the
window IDs from one client to another. A client usually accomplishes this by placing a property
that contains the window ID on the root window, which is a window that all clients can access.
The window ID refers to the window containing the data for transfer to other clients. The other
clients read this property from the root window to determine where the data is stored.

LabWindows/CVI Standard Libraries 9-2 © National Instruments Corporation



Chapter 9 X Property Library

With the LabWindows/CVI X Property Library functions, you can connect to X displays and
obtain the root window ID, read and write properties on windows, and monitor when specific
properties change.

Property Handles and Types

Before you can read or write properties on windows, you must create the property and its type.
The functionCreateXProperty takes a property name and a property type and returns a
property handle you can use to access properties on windows. The property type, created by the
functionCreateXPropType , contains the attributes that determine how data for the property

are stored and retrieved. More specifically, these attributes are the size and unit. The size is the
number of bytes in a single property item. The unit is the number of bytes in the basic entities
that make up a property item. See the descripti®@reateXPropType for more information

on the meanings of the size and unit attributes.

Table 9-2 lists the three predefined property types that you do not have to create. These types are
useful for defining properties to store X window IDs, integers, and strings.

Table 9-2. Predefined Property Types

Property Type Name Size/Unit
WINDOW_X_ PROP_TYPE "WINDOW"  sizeof(WindowX)
INTEGER_X_PROP_TYPH "INTEGER'| sizeof(int)
STRING_X_PROP_TYPE | "STRING" | sizeof(char)

Communicating with Local Applications

You can use the functid@onnectToXDisplay  to connect to any X server on a network.
However, if your program communicates only with other applications connected to the same
display as LabWindows/CVI, you do not need to connect to the display using
ConnectToXDisplay . Instead, use the global variad¥I1XDisplay , which is a pointer to
the X display that LabWindows/CVI uses. The varigbl@XRootWindow contains the

X window ID of the root window of the display that LabWindows/CVI uses.

The Hidden Window

Before you can read or write property data, you need the X window IDs of the windows that will
have the properties associated with them.

One option is to always use the root window ID for attaching properties. You could get the root
window ID for the local display from the varial®/IXRootWindow . To get the root window

ID for a remote display you could use the value returne@dmnectToXDisplay . This

approach has disadvantages. First, if your program adds a property to the root window and does

© National Instruments Corporation 9-3 LabWindows/CVI Standard Libraries



X Property Library Chapter 9

not delete it, the property remains there indefinitely. Second, because there is only one root
window, there may be conflicts when multiple applications attempt to access the same properties.

To overcome those disadvantages, LabWindows/CVI provides a hidden window. Before it runs
your program, LabWindows/CVI creates a window that never displays. The X window ID for
this window is available in the X Property Library from the global variable

CVIXHiddenWindow . This window ID is always available to your program for reading and
writing properties. When your program terminates, LabWindows/CVI removes the window and
all of its properties.

Property Callback Functions

You can use the X Property Library to instruct LabWindows/CVI to notify your program
whenever a property (or set of properties) on a window (or set of windows) changes. The
functioninstallPropertyCallback registers a function that is called whenever any of the
specified properties changes. The callback function must have the type
PropertyCallbackTypeX as defined ixproplib.h . LabWindows/CVI passes the X
display, window, and property that changed to the callback functionst@tesparameter of the
callback function will be eithedewValueX, if the property value changed, DeleteX , if the
property was deleted. The functiominstallPropertyCallback disables the callback
function.

Error Codes

PropLibXErType is the data type of all return values in the X Property Library functions.
PropLibXErType is an enumerate@ium) type containing descriptive constant names and
numeric values for the error®ropLibXErType and its enumerated values are all integers.
All error values are negative numbers.

The following table lists all the enumerated constant names and their corresponding numeric
values. Detailed descriptions of these error types appear in the function descriptions in the
following section.

LabWindows/CVI Standard Libraries 9-4 © National Instruments Corporation



Chapter 9

X Property Library

Table 9-3. X Property Library Error Types and Descriptions

Constant Name

Value

Description

NoXErr
InvalidParamXErr

InvalidDisplayXErr

InvalidWindowXErr

InvalidPropertyXErr

InvalidPropTypeXErr

TooManyConnectionsXErr

CannotConnectXErr

DupPropertyXErr

0
-1

The function was successful.

The value passed to one or more of the parameters

was invalid. Refer to each function description fq
specific information.

Thedisplay argument is not a valid display. The
value for this argument must either be the value
returned byConnectToXDisplay  or be the
predefined valu€VIXDisplay

Thewindow argument is not a valid window.

InstallXPropertyCallback —One or more
of the windows in th&vindowList argument are ng
valid.

Theproperty argument is not a valid property
handle. This argument must be the value returng
by CreateXProperty

InstallXPropertyCallback —One or more
of the property handles in tipeopertyList
argument are not valid.

ThepropertyType argument is not a valid propert
type. This value must either be one of the
predefined property types or be a value returned
CreateXPropType

The program has already made the maximum
number of connections as defined by the constat
MAX_X_DISPLAYS. Use
DisconnectFromXDisplay to allow more
connections.

The connection could not be made to the X serve
This happens for a number of reasons including
invalid display name, a network problem, or a
security problem.

A property with the sampropertyName, but with
differentpropertyType already exists.

-

by

nt

el
AN

© National Instruments Corporation

(continues)

9-5 LabWindows/CVI Standard Libraries



X Property Library

Chapter 9

Table 9-3. X Property Library Error Types and Descriptions (Continued)

DupPropTypeXErr

PropertylnUseXErr

PropTypelnUseXErr

TypeMismatchXErr

UnitMismatchXErr

InvalidindexXErr
SizeMismatchXErr
OverflowXErr
InvalidCallbackXErr

MissingPropertyXErr
InsuffMemXErr

GeneralXErr
BrokenConnectionXErr

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18
-19

A property type with the santgpeName but with
differentsizeor unit already exists.

A property callback was installed with
InstallPropertyCallback for this property.
It is not possible to destroy properties for which
callbacks are installed

There is a property created by
CreateXProperty that has this property typét

is not possible to destroy property types if there are

properties that use them

The actual X type of the property value on the
window does not match the type specified for
property.

The actual X format of the property value on the
window does not match the unit specified for
property.

Theindex specified is larger than the actual number

of property items on the window.

The number of bytes in the property value is notja

multiple of the size specified f@roperty.

Arithmetic overflow occurred with calculations
involving the property item sizes and the number
items specified.

of

The function specified is not installed as a callback.

The property does not exist on the window.

There is insufficient memory to perform the
operation.

CreateXProperty = —There is insufficient
memory to store the property information or there
are already 256 properties.

CreateXPropType —There is insufficient
memory to store the property information or there
are already 64 property types.

An Xlib function failed for an unknown reason.

The connection to the X server was broken. Thi
occurs if the remote server terminated.

U7

LabWindows/CVI Standard Libraries

9-6 © National Instruments Corporation



Chapter 9 X Property Library

Using the Library Outside of LabWindows/CVI

You can use the LabWindows/CVI X Property Library in applications developed outside of
LabWindows/CVI. By linking your program with the library fiibxprop.a in the

misc/lib  directory of the LabWindows/CVI installation directory, you can use all the
functions of the X Property Library in your program. You cannot uskitkgrop.a library
within LabWindows/CVI. The following two functions are available only outside of
LabWindows/CVI:

o void _InitXPropertyLib (DisplayPtrX  cviDisplay, WindowX rootWindow,
WindowX hiddenWindow)

This function sets the global variable¥1XDisplay , CVIXRootWindow |,
CVIXHiddenWindow of the X Property Library.

» void HandlePropertyNotifyEvent(EventPtrX even)

This function calls the functions that are installed as property callbacks. You should call this
function whenever you receive XiPropertyNotify event to automatically invoke
callback functions. The event must be a valRropertyEvent

X Property Library Function Reference

This section describes the functions in the LabWindows/CVI X Property Library. The
LabWindows/CVI X Property functions are arranged alphabetically.

ConnectToXDisplay

PropLibXErType  status = ConnectToXDisplay(const char *displayName
DisplayPtrX  *display,
WindowX *rootWindow);

Purpose
Connect to a remote X server.

Use this function to access an X server on a remote computer. This function returns a display
pointer and the root window, which you can use to read and write properties on the root window
of the remote X server.

If you want to communicate only with applications using the same display as your application,
you do not need this function. Instead, use the global vari@Mp&Display and
CVIXRootWindow , which contain the display and root window of the X server used by
LabWindows/CVI1.

© National Instruments Corporation 9-7 LabWindows/CVI Standard Libraries



X Property Library Chapter 9

Parameters
Input |displayName | string Determines the X server connection and
which communication domain to use.
Output | display DisplayPtrX Pointer to the display of the remote X server.
(passed by Use this value as the argument to other
reference) library functions to communicate with the
remote X server.
rootWindow WindowX Root window of the remote X server. Use
(passed by this value as the parameter to other library
reference) functions to access properties on the root
window of the remote X server.

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an errorstatusvalues are shown in the following table.

NoXErr 0| The function was successful.
InvalidParamXErr -1| NULL was passed to one or more of the parameters.
TooManyConnectionsXErr -6 | The program has already made the maximum

number of connections as defined by the constant
MAX_X_DISPLAYS. Use
DisconnectFromXDisplay to allow more
connections.

CannotConnectXErr -7 | The connection could not be made to the X serv
This happens for a number of reasons including gn
invalid display name, a network problem, or a
security problem.

11%
—_

Parameter Discussion

Valid values fordisplayNameinclude any valid arguments to the Xlib function
XOpenDisplay . The format isiostname:server or hostname:server.screen ,
where:

* hostname specifies the name of the host computer on which the display is physically
connected.

» server specifies the number of the server on its host computer (usually 0).

» screen specifies the number of the default screen on the server (usually 0).

LabWindows/CVI Standard Libraries 9-8 © National Instruments Corporation



Chapter 9 X Property Library

See Also

Refer to theXlib Programming Manuabr to Xlib—C Language X Interface, MIT X Consortium
Standardfor more information about thé¢OpenDisplay andDefaultRootWindow
functions.

CreateXProperty

PropLibXErType  status = CreateXProperty(const char *propertyName,
PropTypeHandleX propertyType,
PropertyHandleX  *property);

Purpose
Create X property information.

Use this function to define the attributes of the properties that you read and write on X windows.
You must create properties with this function before you can access them on X windows.

Each property has a unique name and a type (creat€cehyeXPropType ) that you cannot
change except by destroying the property and recreating it.

Note: You can create a maximum of 256 different properties.

Parameters

Input | propertyName | string Name of the property. Each property
name is unique and has a type, which
cannot be changed once the property is
created.

propertyType |PropTypeHandleX | Type of the property. This value must be
either a predefined type or a value returped
by CreateXPropType

Output | property PropertyHandleX Handle to the property information
(passed by reference)| created. Use this value as the parametgr to
other library functions to access the
property on X windows.

© National Instruments Corporation 9-9 LabWindows/CVI Standard Libraries



X Property Library Chapter 9

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an error. The following taldbows status values.

NoXErr 0| The function was successful.
InvalidParamXErr -1| NULL was passed to one or more of the parameters.
InvalidPropTypeXErr -5| ThepropertyType argument is not a valid property type

This value must either be one of the predefined property
types or be a value returned GyeateXPropType

DupPropertyXErr -8 | A property with the sampropertyName, but with
differentpropertyType already exists.
InsuffMemXErr -19| There is insufficient memory to store the property

information or there are already 256 properties.

Parameter Discussion

propertyType is added with the property the first time you write a property to a window. When
you access a property on a window on which the property already exists, its type must match this
value for the access to succeed.

See Also

Refer to theXlib Programming Manuabr to Xlib—C Language X Interface, MIT X Consortium
Standardfor more information about thé¢lnternAtom  function.

CreateXPropType

PropLibXErType  status = CreateXPropType(const char *typeName
unsigned int size unsigned int unit,
PropTypeHandleX *propertyType);

Purpose

Creates X property type. You can use this function to define the attributes of the properties that
you read and write on X windows. You must create property types with this function before you
can create properties.

Each property type has a unique name and set of attributes that cannot be changed except by
destroying the property and recreating it.

LabWindows/CVI Standard Libraries 9-10 © National Instruments Corporation



Chapter 9 X Property Library

There are three predefined property types that you do not need to create using this function.
These types, listed below, are useful for defining properties to store window IDs, integers and
strings.

Property Type Name Size/Unit
WINDOW_X_ PROP_TYPE| "WINDOW" sizeof(WindowX)
INTEGER_X_PROP_TYPE| "INTEGER' sizeof(int)
STRING_X_ PROP_TYPE "STRING" | sizeof(char)

Note: You can create a maximum of 64 different property types.

Parameters

Input | typeName string Name of the property type. Each
property type name is unique and has
one set of attributes, which cannot be
changed after you create the property
type.

size unsigned integer Number of bytes in a single property
item.

unit unsigned integer Number of bytes in the basic units thiat
make up a property item.

Output | propertyType | PropTypeHandleX Property type created. Use this value @s
(passed by reference) | the type parameter to
CreateXProperty to create
properties.

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an errorstatusvalues are shown in the following table.

NoXErr 0| The function was successful.

InvalidParamXErr -1| NULL was passed to one or more of the paramesérs;
argument is Ounit is not 1, 2, or 4; osizeis not a multiple
of unit.

DupPropTypeXErr -9 | A property type with the samgpeName but with
differentsizeor unit already exists.

InsuffMemXErr -19| There is insufficient memory to store the property
information or there are already 64 property types.

© National Instruments Corporation 9-11 LabWindows/CVI Standard Libraries



X Property Library Chapter 9

Parameter Discussion

Usually, you can use the expresssireof (TYPE for thesizeparameter, wher@YPEis the
C data typechar , int , and others) used to store the property value. This value must be a
multiple of theunit argument.

unit specifies how the X server should view the property item (as an array of 1-byte, 2-byte or
4-byte objects) and is necessary to perform simple byte-swapping between different types of
computers. See the notes near the end of this function description.

If the property item consists of a single object, such as an integer or a character, the unit should
be just the size of the object. An exception istieble type, for which the default unit
should be 4 bytes.

If the property item is a structure or array containing a number of smaller objects, then the unit
should be the number of bytes in the smaller objects.

Note: If you are communicating with a remote X server on a computer that has different
byte-ordering than your application, the unit specified is used to perform the byte
swapping. However, byte swapping cannot be properly performed for structures
containing different size members or faouble type. For these special cases, use a
unit of 1 and then explicitly perform byte swapping where needed.

Note: The LabWindows/CVI X Property Library specifies units in the number of BYTES as
opposed to BITS. Thus, the "format” values of 8, 16 and 32 used by Xlib functions
correspond to units of 1, 2 and 4, respectively in the functions of the LabWindows/CVI
X Property Library.

See Also

Refer to theXlib Programming Manuabr to Xlib—C Language X Interface, MIT X Consortium
Standardfor more information about thélnternAtom  function.

DestroyXProperty

PropLibXErType  status= DestroyXProperty (PropertyHandleX  property);

Purpose

Destroys X property information. You can use this function when you no longer need to access a
property. This function frees memory allocateddrgateXProperty . The property handle

cannot be used after this function is called.

All property information is destroyed when the program terminates.

Note: Itis not possible to destroy properties for which callbacks are installed.

LabWindows/CVI Standard Libraries 9-12 © National Instruments Corporation



Chapter 9 X Property Library

Parameter

Input | property PropertyHandleX Handle to the property information to be
destroyed. This value must either be one
of the predefined property types or be a
value returned bZreateXPropType

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an erroihe following table showstatusvalues.

NoXErr 0| The function was successful.

InvalidPropertyXErr -4 | Theproperty argument is not a valid property. This
argument must be the value returned by
CreateXProperty

PropertylnUseXErr -10| A property callback was installed with
InstallPropertyCallback for this property.

DestroyXPropType

PropLibXErType  status= DestroyXPropType (PropTypeHandleX propertyType);

Purpose

Destroys X property type. You can use this function when you no longer need a property type.
This function frees memory that was allocateddogateXPropType . The property type
cannot be used after this function is called.

All property types are destroyed when the program terminates.
Note: Itis not possible to destroy property types if there are properties that use them.

Parameter

Input | propertyType | PropertyHandleX Handle of the property type to be destroyed.
This value must either be one of the
predefined property types or be a value
returned byCreateXPropType

© National Instruments Corporation 9-13 LabWindows/CVI Standard Libraries



X Property Library Chapter 9

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an erroilhe following table showstatusvalues.

NoXErr 0| The function was successful.

InvalidPropTypeXErr -5| ThepropertyType argument is not a valid property type
This value must either be one of the predefined property
types or be a value returned GyeateXPropType

PropTypelnUseXErr -11| There is a property created ®yeateXProperty  that
has this property type.

DisconnectFromXDisplay
PropLibXErType  status= DisconnectFromXDisplay(DisplayPtrX  display);
Purpose

Disconnects from a remote X server. You can use this function to end access to a remote
X server you connected usi@pnnectToXDisplay . After this function is called, you can no
longer access the remote X server.

Parameter

Input | display DisplayPtrX A pointer to the display of the remote

X server to be disconnected. This value
must have been obtained from
ConnectToXDisplay

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an erroilhe following table showstatusvalues.

NoXErr 0| The function was successful.

InvalidParamXErr -1| NULL was passed to the parameter.

InvalidDisplayXErr -2 | Thedisplay argument is not a valid display. This value
must be the value returned BpnnectToXDisplay

LabWindows/CVI Standard Libraries 9-14 © National Instruments Corporation



Chapter 9 X Property Library

See Also

Refer to theXlib Programming Manuabr to Xlib—C Language X Interface, MIT X Consortium
Standardfor more information about théCloseDisplay  function.

GetXPropErrorString
char *message= GetXPropErrorString (PropLibXErType  errorNum)
Purpose

Converts the error number returned by an X Property Library function into a meaningful error
message.

Parameters

Input errorNum PropLibXErrType Status returned by an X Property
function.

Return Value

message string Explanation of error.

GetXPropertyName

PropLibXErType  status = GetXPropertyName(PropertyHandleX  property,
char **propertyName);

Purpose

Gets a property name. This function returns a pointer to the name associated with the property
handle.

Parameters
Input | property PropertyHandleX Property handle for which the name is td
be obtained. This value must have been
obtained fronCreateXProperty
Output | propertyName | character pointer Pointer to the property name.
(passed by reference

© National Instruments Corporation 9-15 LabWindows/CVI Standard Libraries



X Property Library Chapter 9
Warning: The propertyName pointer points to memory allocated IGreate XProperty
You must not attempt to free this pointer or to change its contents.

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an errorThe following table showstatusvalues.

NoXErr 0| The function was successful.
InvalidParamXErr -1| NULL was passed to the name parameter.
InvalidPropertyXErr -4 | Theproperty argument is not a valid property handle. This
argument must be the value returned by
CreateXProperty
GetXPropertyType

PropLibXErType  status = GetXPropertyType(PropertyHandleX  property,
PropTypeHandleX *propertyType);

Purpose
Gets the type of a property.
This function returns a pointer to the type associated with the property handle.

Parameters

Input | property PropertyHandleX Property handle for which the name is td
be obtained. This value must have been
obtained fronCreateXProperty

Output | propertyType | PropTypeHandleX | The property type. Use the functions
(passed by reference) GetXPropTypeName ,
GetXPropTypeSize , and
GetXPropTypeUnit  to get more
information about the property type.

LabWindows/CVI Standard Libraries 9-16 © National Instruments Corporation



Chapter 9 X Property Library

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an errorThe following table showstatusvalues.

NoXErr 0| The function was successful.

InvalidParamXErr -1| NULL was passed to the parameter.

InvalidPropertyXErr -4 | Theproperty argument is not a valid property handle. This
argument must be the value returned by
CreateXProperty

GetXPropTypeName

PropLibXErType  status = GetXPropTypeNamgPropTypeHandleX propertyType,
char ** typeName);

Purpose

Gets a property type name. This function returns the name associated with the property type.

Parameters

Input | propertyType |PropTypeHandleX |Handle to property type for which the
name is to be obtained. This value must
either be one of the predefined property
types or be a value returned by
CreateXPropType

Output | typeName character pointer The property type name.
(passed by reference

Warning: ThetypeNamepointer points to memory allocated I&reateXPropType . You
must not attempt to free this pointer or to change its contents.
Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an errorThe following table showstatusvalues.

NoXErr 0| The function was successful.
InvalidParamXErr -1 | NULL was passed to the name parameter.
InvalidPropTypeXErr -5| ThepropertyType argument is not a valid property type

This value must either be one of the predefined property
types or be a value returned ByeateXPropType

© National Instruments Corporation 9-17 LabWindows/CVI Standard Libraries



X Property Library Chapter 9

See Also

CreateXPropType

GetXPropTypeSize

PropLibXErType  status = GetXPropTypeSiz€PropTypeHandleX propertyType,
unsigned int *size);

Purpose

Gets a property type size. This function returns the size associated with the property type. The
size is the number of bytes in a single property item.

Parameters

Input | propertyType |PropTypeHandleX |Handle to property type for which the size
is to be obtained. This value must either
be one of the predefined property types |or
be a value returned by
CreateXPropType

Output | size unsigned integer The size associated with the property type.
(passed by reference) The size is the number of bytes in a single
property item.

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an errorThe following table showstatusvalues.

NoXErr 0| The function was successful.
InvalidParamXErr -1| NULL was passed to thezeparameter.
InvalidPropTypeXErr -5| ThepropertyType argument is not a valid property type

This value must either be one of the predefined property
types or be a value returned GyeateXPropType

See Also

CreateXPropType

LabWindows/CVI Standard Libraries 9-18 © National Instruments Corporation



Chapter 9 X Property Library

GetXPropTypeUnit

PropLibXErType  status = GetXPropTypeUnit(PropTypeHandleX propertyType,
unsigned int *unit);

Purpose
Get a property type unit.

This function returns the unit associated with the property type. The unit is the number of bytes
(1, 2, or 4) in the basic objects that make up a property item.

Parameters

Input | propertyType | PropTypeHandeX Handle to property type for which the unit is
to be obtained. This value must either be one

of the predefined property types or be a valpie
returned byCreateXPropType

Output | unit unsigned integer | Theunit associated with the property type.
(passed by The unit is the number of bytes (1, 2 or 4) in
reference) the basic objects that make up a property item.

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an errorThe following table showstatusvalues.

NoXErr 0 | The function was successful.
InvalidParamXErr -1 | NULL was passed to thenit parameter.
InvalidPropTypeXErr -5 | ThepropertyType argument is not a valid property type

This value must either be one of the predefined propert
types or be a value returned Gyeate XPropType

S

See Also

CreateXPropType

© National Instruments Corporation 9-19 LabWindows/CVI Standard Libraries



X Property Library

GetXWindowPropertyltem

PropLibXErrType

Purpose

Get a single property item from a window.

Chapter 9

status = GetXWindowPropertyltem (DisplayPtrX  display,

WindowX window,
PropertyHandleX  property,
void *propertyltem);

This function obtains the value of the specified property on the window and copies a single item
into the supplied buffer. When there are more than one item in the property value, this function
obtains only the first one. This function does not change the property value.

If the property does not exist on the window, this function reports the
MissingPropertyXErr

error.

Use the functiorGetXWindowPropertyValue

to get multiple property items.

o

Parameters
Input | display DisplayPtrX A pointer to the display of the X server
which the window belongs.
window WindowX The window from which the property
item is to be obtained.
property PropertyHandleX Handle of the property to be obtained.
This value must have been obtained with
CreateXProperty
Output | propertyltem generic pointer Property item obtained from window.

LabWindows/CVI Standard Libraries

9-20

© National Instruments Corporation



Chapter 9 X Property Library

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an errorThe following table showstatusvalues.

NoXErr 0 | The function was successful.
InvalidParamXErr -1 | NULL was passed to one or more parameters.
InvalidDisplayXErr -2 | Thedisplay argument is not a valid display. This

argument must either be the predefined value
CVIXDisplay or be the value returned by

ConnectToXDisplay
InvalidWindowXErr -3 | Thewindow argument is not a valid window.
InvalidPropertyXErr -4 | Theproperty argument is not a valid property handle.
This argument must be the value returned by
CreateXProperty
TypeMismatchXErr -12 | The actual X type of the property value on the window
does not match the type specified fooperty .
UnitMismatchXErr -13| The actual X format of the property value on the windgw
does not match the unit specified fooperty .
SizeMismatchXErr -15 | The number of bytes in the property value is not a multiple
of the size specified fqroperty .
MissingProperty XErr -18 | The property does not exist on the window.
InsuffMemXErr -19 | There is insufficient memory to perform the operation.
GeneralXErr -20 | An Xlib function failed for some unknown reason.
BrokenConnectionXErr -21| The connection to the X server was broken. This occurs if

the remote server terminated.

Parameter Discussion

display must either be the predefined valb¥IXDisplay or be the value returned by
ConnectToXDisplay . UseCVIXDisplay if the window is on the same display used by
LabWindows/CVI.

For thewindow parameter, us€VIXRootWindow to access the default root window of the
display used by LabWindows/CVI. U&¥/IXHiddenWindow to access the hidden window
associated with your application.

propertyltem must point to an object of the same size as the property item. You can get the size
of the property item by calling the functi@etXPropertySize

© National Instruments Corporation 9-21 LabWindows/CVI Standard Libraries



X Property Library Chapter 9

See Also

Refer to theXlib Programming Manuabr to Xlib—C Language X Interface, MIT X Consortium
Standardfor more information about th¢GetWindowProperty  function.

GetXWindowPropertyValue

PropLibXErType  status = GetXWindowPropertyValue(DisplayPtrX  display,
WindowX window, PropertyHandleX  property,
unsigned int index, unsigned int numberofltemsRequested
int delete unsigned int *numberofltemsReturned,
unsigned int *numberOfltemsRemaining,
void *propertyValue);

Purpose
Get the value of a property on a window.

This function obtains the value of the specified property on the window and copies it into the
supplied buffer.

Note: If the property does not exist on the window, this function does NOT report an error.
Instead, the number of items returned is set to O.

LabWindows/CVI Standard Libraries 9-22 © National Instruments Corporation



Chapter 9

X Property Library

Parameters
Input | display DisplayPtrX A pointer to the display of the
X server to which the window
belongs.
window WindowX The window from which the
property value is to be obtained.
property PropertyHandleX | Handle of the property to be
obtained. This value must have
been obtained with
CreateXProperty
index unsigned integer Index into the property value

numberofltemsRequested

delete

unsigned integer

integer

where reading is to begin.
Specify the number of property

items to skip from the start of the

property value.

Number of property items to
obtain from the window.

Flag indicating whether to dele
the property value from the
window after it is obtained.
Specify 1 to delete the portion ¢
the property value that was
obtained. Specify O to leave thq
property value as it is.

te

—

A\1”4

Output

numberofltemsReturned

numberOfltemsRemaining

propertyValue

unsigned integer
(passed by refereng

unsigned integer
(passed by refereng

generic pointer

Number of property items that
@)ere obtained from the window

Number of property items on th
@yindow that were neither skipp4
nor obtained. Pass NULL for
this parameter if you do not nee
this information.

Property value obtained from
window. This parameter must
point to an array of sizd by M
bytes, wherd is the size of the
property item, andlis the
number of items requested.

112

D
o

d

© National Instruments Corporation

9-23

LabWindows/CVI Standard Libraries



X Property Library Chapter 9

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an errorThe following table showstatusvalues.

NoXErr 0 | The function was successful.

InvalidParamXErr -1 | NULL was passed to one or more parameters.

InvalidDisplayXErr -2 | Thedisplay argument is not a valid display. This
argument must either be the predefined value
CVIXDisplay or be the value returned by
ConnectToXDisplay

InvalidWindowXErr -3 | Thewindow argument is not a valid window.

InvalidPropertyError -4 | Theproperty argument is not a valid property handle.
This argument must be the value returned by
CreateXProperty

TypeMismatchXErr -12 | The actual X type of the property value on the window,
does not match the type specified fooperty .

UnitMismatchXErr -13 | The actual X format of the property value on the windgw
does not match the unit specified fooperty .

InvalidindexXErr -14 | Theindex specified is larger than the actual number of
property items on the window.

SizeMismatchXErr -15 | The number of bytes in the property value is not a multiple
of the size specified fqroperty .

InsuffMemXErr -19 | There is insufficient memory to perform the operation.

GeneralXErr -20| An Xlib function failed for some unknown reason.

BrokenConnectionXErr -21 | The connection to the X server was broken. This occurs if
the remote server terminated.

Parameter Discussion

display must either be the predefined valb¥IXDisplay or be the value returned by
ConnectToXDisplay . UseCVIXDisplay if the window is on the same display used by
LabWindows/CVI1.

For thewindow parameter, us€VIXRootWindow to access the default root window of the
display used by LabWindows/CVI. U&d/IXHiddenWindow to access the hidden window
associated with your application.

numberofltemsReturned will be less than or equal to the number of property items requested.
If the property does not exist on the window or there is no property value, this value will be O.
You must check this value to determine if any property items were read.

LabWindows/CVI Standard Libraries 9-24 © National Instruments Corporation



Chapter 9 X Property Library

See Also

Refer to theXlib Programming Manuabr to Xlib—C Language X Interface, MIT X Consortium
Standardfor more information about th¢GetWindowProperty  function.

InstallXPropertyCallback

PropLibXErType  status = InstallXPropertyCallback (DisplayPtrX  display,
const WindowX windowList[] ,
unsigned int numberofWindows,
const PropertyHandleX  propertyList[] , unsigned
int  numberofProperties,
const void *callbackData, PropertyCallbackTypeX
*callbackFunction);

Purpose
Install a property callback function.

The specified function is called whenever one of the specified properties on one of the specified
windows changes in any way. If more than one function is installed for the same property, the
functions are called in the reverse order in which they were installed.

If the function is already installed as a callback function, the list of windows and properties that
are associated with that function are replaced with those specified by the new installation.

Parameters
Input | display DisplayPtrX A pointer to the display of the
X server to which the window
belongs.
windowList const WindowX [] An array of windows on which
the properties may exist.
numberofWindows | unsigned integer Number of windows in the

Window List. This value must
be greater than 0.
propertyList const An array of handles to
PropertyCallbackTypeX ] properties for which the
callback is called.

(continues)

© National Instruments Corporation 9-25 LabWindows/CVI Standard Libraries



X Property Library Chapter 9

Parameters (Continued)

numberofProperties | unsigned integer Number of properties in the
Property List.
callbackData generic pointer Pointer to data to be passed to

the callback function. This
value is passed to the callbagk
function as theiserData
parameter.

callbackFunction PropertyCallbackTypeX * Pointer to the function to be
called when the properties
change.

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an errorThe following table showstatusvalues.

Table 9-4. Status Values for InstallXPropertyCallback

NoXErr 0| The function was successful.

InvalidParamXErr -1| NULL was passed to one or more parameters. The
number of windows argument is 0.

InvalidDisplayXErr -2| Thedisplay argument is not a valid display. This

argument must either be the predefined value
CVIXDisplay or be the value returned by

ConnectToXDisplay

InvalidWindowXErr -3| One or more of the windows in tiéndowList argument
are not valid.

InvalidPropertyXErr -4 | One or more of the property handles in phepertyList

argument are not valid. These properties must be valles
returned byCreateXProperty

InsuffMemXErr -19| There is insufficient memory to perform the operation.

BrokenConnectionXErr -21| The connection to the X server was broken. This occurs if
the remote server terminated.

Parameter Discussion

display must either be the predefined valb¥IXDisplay or be the value returned by
ConnectToXDisplay . UseCVIXDisplay if the window is on the same display used by
LabWindows/CVI1.

To specify a single window, namewn , pass the expressi&win for thewindowList
parameter and padsfor thenumberOfWindows. Use&CVIXRootWindow to access the

LabWindows/CVI Standard Libraries 9-26 © National Instruments Corporation



Chapter 9 X Property Library

default root window of the display used by LabWindows/CVI. &6&IXHiddenWindow to
specify the hidden window associated with your application.

If numberofPropertiesis O or thepropertyList value iSANY_X_ PROPERTYhe callback
function is called whenever any property changes on any of the windowsmmutewList.

The values in theropertyList array must have been obtained witteateXProperty

To specify a single property, nampabp , pass the expressi@&prop for this parameter and

passl for thenumberOfProperties. If this value iIsSANY_X PROPERTUYr the

numberOfProperties is 0, the callback function is called whenever any property changes on any
of the windows in thevindowList.

See Also

Refer to theXlib Programming Manuabr to Xlib—C Language X Interface, MIT X Consortium
Standardfor more information about tHeropertyNotify event.

PutXWindowPropertyltem

PropLibXErType  status = PutXWindowPropertyltem (DisplayPtrX  display,
WindowX window, PropertyHandleX  property,
void *propertyltem);

Purpose

This function stores the supplied property item with the specified property on the window. Any
existing property value is replaced by this value.

To store multiple property items, use the funckRutXWindowPropertyValue

Parameters

Input | display DisplayPtrX A pointer to the display of the X server to
which the window belongs.

window WindowX The window on which the property item is fto
be stored.

property PropertyHandleX Handle of the property to be stored. This
value must have been obtained with
CreateXProperty

propertyltem | generic pointer Property item to be stored on the window.
This parameter must point to an object of the
same size as a property item. You can gett
the property item size by calling the function
GetXPropertySize

© National Instruments Corporation 9-27 LabWindows/CVI Standard Libraries



X Property Library Chapter 9

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an errorThe following table showstatusvalues.

NoXErr 0| The function was successful.
InvalidParamXErr -1| NULL was passed to one or more parameters.
InvalidDisplayXErr -2| Thedisplay argument is not a valid display. This

argument must either be the predefined value
CVIXDisplay or be the value returned by

ConnectToXDisplay
InvalidWindowXErr -3| Thewindow argument is not a valid window.
InvalidPropertyXErr -4| Theproperty argument is not a valid property handle.
This argument must be the value returned by
CreateXProperty
InsuffMemXErr -19| There is insufficient memory to perform the operation.
GeneralXErr -20| An Xlib function failed for some unknown reason.
BrokenConnectionXErr -21| The connection to the X server was broken. This occurs if

the remote server terminated.

Parameter Discussion

display must either be the predefined valb¥IXDisplay or be the value returned by
ConnectToXDisplay . UseCVIXDisplay if the window is on the same display used by
LabWindows/CVI.

For thewindow parameter, us€VIXRootWindow to access the default root window of the
display used by LabWindows/CVI. US¥/IXHiddenWindow to access the hidden window
associated with your application.

See Also

Refer to theXlib Programming Manuabr to Xlib—C Language X Interface, MIT X Consortium
Standardfor more information about théChangeProperty  function.

LabWindows/CVI Standard Libraries 9-28 © National Instruments Corporation



Chapter 9

PutXWindowPropertyValue

X Property Library

PropLibXErType  status = PutXWindowPropertyValue (DisplayPtrX  display,
WindowX window, PropertyHandleX  property,
unsigned int numberofltems,int mode
void *propertyValue);

Purpose

This function stores the supplied value with the property on the window.

To store a single property item, you can use the fun&idgXWindowPropertyltem

Parameters
Input | display DisplayPtrX A pointer to the display of the X server to
which the window belongs.
window WindowX The window on which the property value is
be stored.
property Handle of the property to be stored. This

numberofltems

mode
propertyValue

PropertyHandleX

unsigned integer

integer
generic pointer

to

value must have been obtained with
CreateXProperty

Number of property items to store on the
window.

Mode in which property value is stored.

Property value to be stored on the window,.
This parameter must be an array of $idey M
bytes, wherdN is the size of a property item,
andMis the number of items to be written.

© National Instruments Corporation

9-29

LabWindows/CVI Standard Libraries



X Property Library Chapter 9

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an errorThe following table showstatusvalues.

NoXErr 0| The function was successful.

InvalidParamXErr -1| NULL was passed to one or more parametersdeis not
ReplaceXPropMode , PrependXPropMode or
AppendXPropMode .

InvalidDisplayXErr -2| Thedisplay argument is not a valid display. This

argument must either be the predefined value
CVIXDisplay or be the value returned by

ConnectToXDisplay

InvalidWindowXErr -3| Thewindow argument is not a valid window.

InvalidPropertyXErr -4 | Theproperty argument is not a valid property handle.
This argument must be the value returned by
CreateXProperty

TypeMismatchXErr -12| The actual X type of the property value on the window

does not match the type specified fooperty. This can
only occur if you setnodeto append or prepend.

UnitMismatchXErr -13| The actual X format of the property value on the windgw
does not match the unit specified fwoperty. This can
only occur if you setnodeto append or prepend.

OverflowXErr -16| Arithmetic overflow occurred with calculations involving
the property item sizes and the number of items specifjed.
InsuffMemXErr -19| There is insufficient memory to perform the operation.
GeneralXErr -20| An Xlib function failed for some unknown reason.
BrokenConnectionXErr -21| The connection to the X server was broken. This occurs if

the remote server terminated.

Parameter Discussion

display must either be the predefined valb¥IXDisplay or be the value returned by
ConnectToXDisplay . UseCVIXDisplay if the window is on the same display used by
LabWindows/CVI1.

For thewindow parameter, us€VIXRootWindow to access the default root window of the
display used by LabWindows/CVI. U&¥/IXHiddenWindow to access the hidden window
associated with your application.

LabWindows/CVI Standard Libraries 9-30 © National Instruments Corporation



Chapter 9 X Property Library

The following values are valid for theode parameter:

ReplaceXPropMode —Replace the existing property value with the new value.
PrependXPropMode —Add the new property value to the beginning of the existing value.
AppendXPropMode —Add the new property value to the end of the existing value.

See Also

Refer to theXlib Programming Manuabr to Xlib—C Language X Interface, MIT X Consortium
Standardfor more information about théChangeProperty  function.

RemoveXWindowProperty

PropLibXErType  status = RemoveXWindowProperty(DisplayPtrX  display,
WindowX window,
PropertyHandleX  property);

Purpose
Remove the property from a window.

This function deletes the property value and removes the property from the window.

Parameters
Input | display DisplayPtrX A pointer to the display of the X server fo
which the window belongs.
window WindowX The window from which the property is
to be removed.
property PropertyHandleX | Handle of the property to be removed.
This value must have been obtained with
CreateXProperty

© National Instruments Corporation 9-31 LabWindows/CVI Standard Libraries



X Property Library Chapter 9

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an errorThe following table showstatusvalues.

NoXErr 0| The function was successful.
InvalidParamXErr -1| NULL was passed to one or more parameters.
InvalidDisplayXErr -2 | Thedisplay argument is not a valid display. This

argument must either be the predefined value
CVIXDisplay or be the value returned by

ConnectToXDisplay
InvalidWindowXErr -3| Thewindow argument is not a valid window.
InvalidPropertyXErr -4 | Theproperty argument is not a valid property handle.
This argument must be the value returned by
CreateXProperty
InsuffMemXErr -19| There is insufficient memory to perform the operation.
BrokenConnectionXErr -21| The connection to the X server was broken. This occurs if

the remote server terminated.

Parameter Discussion

display must either be the predefined valb¥IXDisplay or be the value returned by
ConnectToXDisplay . UseCVIXDisplay if the window is on the same display used by
LabWindows/CVI.

For thewindow parameter, us€VIXRootWindow to access the default root window of the
display used by LabWindows/CVI. U¥/IXHiddenWindow to access the hidden window
associated with your application.

See Also

Refer to theXlib Programming Manuabr to Xlib—C Language X Interface, MIT X Consortium
Standardfor more information about théDeleteProperty function.

LabWindows/CVI Standard Libraries 9-32 © National Instruments Corporation



Chapter 9 X Property Library

UninstallXPropertyCallback

PropLibXErType  status = UninstallXPropertyCallback
(PropertyCallbackTypeX *callbackFunction);

Purpose
Uninstall a property callback function.

After a callback function is uninstalled, it is no longer called when properties change. All
property callback functions are automatically uninstalled when the program terminates.

Note: Although you cannot selectively uninstall certain properties or windows associated
with a callback function, you can reinstall a callback function with a new set of
windows and properties usinigpstallXPropertyCallback

Parameters

Input | callbackFunction | PropertyCallbackTypeX* The function that was installed witfy
InstallXPropertyCallback

Return Values

The return value indicates the success or failure status of the function call. A negative value
indicates an errorThe following table showstatusvalues.

NoXErr 0| The function was successful.
InvalidCallbackXErr -17| The function specified is not installed as a callback.

© National Instruments Corporation 9-33 LabWindows/CVI Standard Libraries



Chapter 10
Easy I/O for DAQ Library

This chapter describes the functions in the Easy I/O for DAQ LibraryE&keg I/O for DAQ
Library Function Overvievgection contains general information about the functions, and
guidelines and restrictions you should know when using the Easy I/O for DAQ LibrarizaBlye
I/O for DAQ Library Function Referen@ection contains an alphabetical list of function
descriptions.

Easy 1/0O for DAQ Library Function Overview

The functions in the Easy I/O for DAQ Library make it easier to write simple DAQ programs
than if you use the Data Acquisition Library.

This library implements a subset of the functionality of the Data Acquisition Library, but it does
not use the same functions as the Data Acquisition Library. Read the advantages and limitations
listed here to see if the Easy I/O for DAQ Library is appropriate for your application.

You must have NI-DAQ for PC Compatibles installed to use the Easy I/O for DAQ library. The
Easy I/0O for DAQ library has been tested using version 4.6.1 and later of NI-DAQ. It has not
been tested using previous versions of NI-DAQ.

The sample programs for the Easy I/O for DAQ library are located in the
cvilsamples\easyio directory. These sample programs are discussed in the EASYIO
section ofcvi\samples.doc

Note: Itis recommended that you do not mix calls to the Data Acquisition Library with
similar types of calls to the Easy I/O for DAQ Library in the same application. For
example, do not mix analog input calls to the Data Acquisition Library with analog
input calls to the Easy I/O for DAQ Library in the same program

Advantages of Using the Easy I/O for DAQ Library

If you want to scan multiple analog input channels on an MIO board using the Data Acquisition
Library, you have to programmatically build a channel list and a gain list before calling
SCAN_Op

The Easy I/0O for DAQ functions accept a channel string and upper and lower input limit
parameters so that you can easily perform a scan in one step.

In the Data Acquisition Library you may have to lsd ISCAN_Op, or SCAN_Opor
MDAQ_Start depending on which DAQ device you are using. Also, if you are using SCXI,
there are a number of SCXI specific functions that must be called prior to actually acquiring data.

© National Instruments Corporation 10-1 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

The Easy I/0 for DAQ functions are device independent which means that you can use the same
function on a Lab series board, an MIO board, an EISA-A2000 or SCXI module.

Limitations of Using the Easy I/O for DAQ Library

The Easy I/O for DAQ Library currently only works with Analog 1/0, Counter/Timers, and
simple Digital 1/0O.

The Easy I/O for DAQ Library does not currently work with multirate scanning.

Easy I/O for DAQ Library Function Panels

The Easy I/0O for DAQ Library function panels are grouped in a tree structure according to the
types of operations performed. The Easy I/O for DAQ Library function tree is in Table 10-1.

The first- and second-level bold headings in the function tree are names of the function classes.
Function classes are groups of related function panels. The third-level headings in plain text are
the names of individual function panels. Each Easy I/O for DAQ function panel generates a
function call. The actual function names are in bold italics in columns to the right.

Table 10-1. Easy I/O for DAQ Function Tree

Analog Input

Al Sample Channel AlSampleChannel

Al Sample Channels AlSampleChannels

Al Acquire Waveform(s) AlAcquireWaveforms

Al Acq. Triggered Waveform(s) AlAcquireTriggeredWaveforms
Asynchronous Acquisition

Al Start Acquisition AlStartAcquisition

Al Check Acquisition AlCheckAcquisition

Al Read Acquisition AlReadAcquisition

Al Clear Acquisition AlClearAcquisition

Plot Last Waveform(s) to Popup PlotLastAlWaveformsPopup
Analog Output

AO Update Channel AOUpdateChannel

AO Update Channels AOUpdateChannels

AO Generate Waveform(s) AOGenerateWaveforms

AO Check Waveform(s) AOCheckWaveforms

AO Clear Waveform(s) AOClearWaveforms

(continues)

LabWindows/CVI Standard Libraries 10-2 © National Instruments Corporation



Chapter 10

Easy I/O for DAQ Library

Table 10-1. Easy I/O for DAQ Function Tree (Continued)

Digital Input/Output
Read From Digital Line
Read From Digital Port
Write To Digital Line
Write To Digital Port
Counter/Timer
Counter Measure Frequency
Counter Event or Time Configure
Continuous Pulse Gen Configure
Delayed Pulse Gen Configure
Frequency Divider Configure
Pulse Width or Period Meas Conf
Counter Start
Counter Read
Counter Stop
| Counter Control
Miscellaneous
Get DAQ Error Description
Get Number Of Channels
Get Channel Indices
Get Channel Name From Index
Get Al Limits of Channel
Group By Channel
Set Multitasking Mode

ReadFromDigitalLine
ReadFromDigitalPort
WriteToDigitalLine
WriteToDigitalPort

CounterMeasureFrequency
CounterEventOrTimeConfig
ContinuousPulseGenConfig
DelayedPulseGenConfig
FrequencyDividerConfig
PulseWidthOrPeriodMeasConfig
CounterStart

CounterRead

CounterStop

ICounterControl

GetDAQErrorString
GetNumChannels
GetChannelindices
GetChannelNameFromindex
GetAlLimitsOfChannel
GroupByChannel
SetEasylOMultitaskingMode

TheAnalog Input function class contains all of the functions that perform A/D conversions.

The Asynchronous Acquisitionfunction class contains all of the functions that perform
asynchronous (background) A/D conversions.

TheAnalog Output function class contains all of the functions that perform D/A
conversions.

TheDigital Input/Output function class contains all of the functions that perform digital
input and output operations.

TheCounter/Timer function class contains all of the functions that perform counting and
timing operations.

TheMiscellaneousfunction class contains functions that do not fit into the other categories,
but are useful when writing programs using the Easy I/O for DAQ Library.

© National Instruments Corporation 10-3 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

Device Numbers

The first parameter to most of the Easy 1/O for DAQ functions is the device number of the DAQ
device you want to use for the given operation. After you have followed the installation and
configuration instructions in Chapterlfhfroduction to NI-DAQ of theNI-DAQ User Manual

for PC Compatiblesthe configuration utility displays the device number for each device you
have installed in the system. You can use the configuration utility to verify your device numbers.
You can use multiple DAQ devices in one application; to do so, simply pass the appropriate
device number to each function.

Channel String for Analog Input Functions

The second parameter to most of the analog input functions is the channel string containing the
analog input channels that are to be sampled.

Refer to Chapter Hardware Overviewin yourNI-DAQ User Manual for PC Compatiblés
determine exactly what channels are valid for your hardware.

The syntax for the Channel String is as follows:

If you are using an MIO board, NEC-AI-16E-4, or NEC-AI-16XE-50,list the channels in
the order in which they are to be read, as in the following example:

"0,2,5" /* reads channels 0, 2, and 5 in that order */
"0:3" [*reads channels 0 through 3 inclusive  */

If you are using AMUX-64T boards:

You can address AMUX-64T channels when you attach one, two, or four AMUX-64T boards
to a plug-in data acquisition board.

Refer to Chapter ZHardware Overviewin yourNI-DAQ User Manual for PC Compatibles
to determine how AMUX-64T channels are multiplexed onto onboard channels.

The onboard channel to which each block of four, eight, or 16 AMUX-64T channels are
multiplexed and the scanning order of the AMUX-64T channels are fixed. To specify a range
of AMUX-64T channels, therefore, you enter in the channel list the onboard channel into
which the range is multiplexed. For example, if you have one AMUX-64T:

"0" /* reads channels 0 through 3 on each AMUX-64T board in that order */

To sample a single AMUX-64T channel, you must also specify the number of the AMUX-
64T board, as in the following example:

"AM1!3" /* samples channel 3 on AMUX-64T board 1 */
"AMA418" [* samples channel 8 on AMUX-64T board 4 */

LabWindows/CVI Standard Libraries 10-4 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

If you are using a Lab-PC+, DAQCard-500/700/1200, DAQPad-1200, PC-LPM-16:

These devices can only sample input channels in descending order, and you must end with
channel 0'@3:0" ). If you are using a Lab-PC+ or 1200 product in differential mode, you
must use even-numbered chann&ds4(2,0" ).

If you are using a DAQPad-MIO-16XE-50Q
You can read the value of the cold junction compensation temperature sensor using the
following string as the channel:

"cjtemp”

If you are using SCXI:

You can address SCXI channels when you attach one or more SCXI chassis to a plug-in data
acquisition board. If you operate a module in parallel mode, you can select a SCXI channel
either by specifying the corresponding onboard channels or by using the SCXI channel
syntax described below. If you operate the modules in multiplexed mode, you must use the
SCXI channel syntax.

The SCXI channel syntax is as follows:

"OB1!SCx!MDy!a" /* channel a on the module in slot y of the chassis with
ID x is multiplexed into onboard channel 1 */

"OBO!SCx!MDy'a:b" /* channels a through b inclusive on the module in slot
y of the chassis with ID x is multiplexed into onboard channel 0 */

SCXI channel ranges cannot cross module boundaries. SCXI channel ranges must always
increase in channel number.

The following examples of the SCXI channel syntax introduce the special SCXI channels:

"OBOISCx!MDy!MTEMP"  /* The temperature sensor configured in MTEMP mode
on the multiplexed module in slot y of the chassis with ID x. */

"OB1ISCx!MDy!DTEMP" /* The temperature sensor configured in DTEMP mode
on the parallel module in slot y of the chassis with ID x. */

"OBOISCx!MDy!CALGND" /* (SCXI-1100 and SCXI-1122 only) The grounded
amplifier of the module in slot y of the chassis with ID x. */

"OBO!SCx!IMDy!SHUNTO" /* (SCXI-1121, SCXI-1122 and SCXI-1321 only) Channel
0 of the module in slot y of the chassis with ID x, with the shunt resistor
applied. */

"OBOISCx!MDy!SHUNTO0:3" /* (SCXI-1121, SCXI-1122 and SCXI-1321 only) Channel
0 through 3 of the module in slot y of the chassis with ID x, with the
shunt resistors applied at each channel. */

© National Instruments Corporation 10-5 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

Command Strings

You can use command strings within the Channel String to set per-channel limits and an
interchannel sample rate. For example,

"cmd hi 10.0 low -10.0; 7:4; cmd hi 5.0 low -5.0; 3:0"

specifies that channefsthrough4 should be scanned with limits f- 10.0  volts and
channels3 throughO should be scanned with limits & 5.0  volts. As you view the

Channel String from left to right, when a high/low limit command is encountered, those limits
are assigned to the following channels until the next high/low limit command is encountered.
The High Limit and Low Limit parameters AdSampleChannels are the initial high/low
limits. These parameters can be thought of as the left-most high/low limit command.

The following Channel String,
"cmd interChannelRate 1000.0; 0:3"

specifies that channelsthrough3 should be sampled at 1000.0 Hz, in other words, there should
be 1/1000.0 = 1ms of delay between each channel. If you do not set an interchannel sample rate,
the channels are sampled as fast as possible for your hardware to achieve pseudo simultaneous
scanning.

The syntax for the command string can be described using the following guide:
items enclosed iff are optional
<number> is an integer or real number
<LF> is a line-feed character

;|[<LF> means you may use either ;<itF> to separate command strings from channel
strings

I may be used as an optional command separator

spaces are optional
The syntax for the initial command string that appears before any channels are specified is:
"cmd [interChannelRate <number>[!]] [hi <number> [!]low <number>[]];|<LF>"
The syntax for command strings that appear after any channels are specified is:

"|<LF> cmd hi <number>[!] low <number>[] ;|<LF>"

LabWindows/CVI Standard Libraries 10-6 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

Channel String for Analog Output Functions

The second parameter to most of the analog output functions is the channel string containing the
analog output channels that are to be driven.

Refer to the chapter specific to your DAQ device indA€) Hardware Overview Guid®
determine what channels are valid for your hardware. The document is an Adobe Acrobat file,
daghwov.pdf , that you can view on screen and also pdaghwov.pdf is part of a set of

pdf files that come with every DAQ device sold by National Instruments.

The syntax for the Channel String is as follows:

If you are using a DAQ device without SCXI list the channels to be driven, as in the
following example:

"0,2,5" /* drives channels 0, 2, and 5 */
"0:3" /* drives channels 0 through 3 inclusive */

If you are using SCXI, you can address SCXI channels when you attach one or more SCXI
chassis to a plug-in data acquisition board.

The SCXI channel syntax is as follows:
"SCx!MDy!a" [* channel a on the module in slot y of the chassis with ID x */
"SCx!MDy!a:b" /* channels a through b inclusive on the module in slot y of

the chassis with ID x */

SCXI channel ranges cannot cross module boundaries. SCXI channel ranges must always
increase in channel number.

Valid Counters for the Counter/Timer Functions

The second parameter to most of the counter/timer functions is the counter used for the
operation. The valid counters you can use depends on your hardware as shown in Table 10-2.

Table 10-2. Valid Counters

Device Type Valid Counters
DAQ-STC Devices Oand 1
Am9513 MIO boards 1,2,and 5
PC-TIO-10 1 through 10
EISA-A2000 2

© National Instruments Corporation 10-7 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

Easy 1/0O for DAQ Function Reference

This section describes each function in the Easy I/O for DAQ Library. The function descriptions
are arranged alphabetically.

AlAcquireTriggeredWaveforms

short error = AlAcquireTriggeredWaveforms (short device char channelString] ,
long numberOfScans
double scansPerSecond
double highLimitVolts,
double lowLimitVolts,
double *actualScanRate
unsigned short triggerType,
unsigned short edgeSlope
double triggerLevelV,
char triggerSource]
long pretriggerScans
double timeLimitsec,
short fillMode, double waveformd] );

Purpose

This function performs a timed acquisition of voltage data from the analog channels specified in
thechannelString. The acquisition does not start until the trigger conditions are satisfied.

If you have an E Series DAQ device, you can select Equivalent Time Sampling for the Trigger
Type to sample repetitive waveforms at up to 20 MHz. See the help for the Trigger Type
parameter for details.

LabWindows/CVI Standard Libraries 10-8 © National Instruments Corporation



Chapter 10

Parameters

Easy I/O for DAQ Library

Input

device

short integer

Assigned by configuration utility.

bre

it

channelString string Analog input channels that are to be sampled
numberOfScans | long integer | Number of scans to be acquired complete. O
scan involves sampling every channel in the
channelString once.
scansPerSecond| double Number of scans performed per second. Any
particular channel to be scanned at this rate.
highLimitVolts double Maximum voltage to be measured.
lowLimitVolts double Minimum voltage to be measured.
triggerType unsigned The trigger type.
short integer
edgeSlope unsigned The edge/slope condition for triggering.
short integer
triggerLevelV double Voltage at which the trigger is to occur.
triggerSource string Specifies which channel is the trigger source.
pretriggerScans | long integer | Specifies the number of scans to retrieve beft
the trigger point.
timeLimitsec double The maximum length of time in seconds to wa
for the data.
filMode short integer | Specifies whether the waveforms array are in
GROUP_BY_CHANNBLGROUP_BY_ SCAN
mode.

Output | actualScanRate | double The actual scan rate. The actual scan rate mg
differ slightly from the scan rate you specified,
given the limitations of your particular DAQ
device.

waveforms double array | Array containing the voltages acquired on the

channels specified in trehannelString.

24

Return Value

error

short integer

Refer to error codes in Table 10-5.

© National Instruments Corporation

10-9

LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

Parameter Discussion

channelString is the analog input channels that are to be sampled. ReferGbdheel String
for Analog Input Functionsubsection of thEasy 1/0 for DAQ Library Function Overview
section of this chapter for the syntax of this string.

triggerType is the trigger type. The trigger types are:

Hardware Analog Trigger: HW_ANALOG_TRIGGER

Digital Trigger A: DIGITAL_TRIGGER_A
Digital Triggers A & B: DIGITAL_TRIGGER_AB
Scan Clock Gating: SCAN_CLOCK_GATING

Software Analog Trigger: SW_ANALOG_TRIGGER
Equivalent Time Sampling ETS_TRIGGER

If you choose Hardware or Software Analog Trigger data is retrieved after the analog
triggering parameters have been satisfied. Be sure that the Trigger Source is one of the
channels listed in the channel string. Hardware triggering is more accurate than software
triggering, but it is not available on all boards.

If you choose Digital Trigger A

— If pretriggerScansis 0, the trigger starts the acquisition. For the MIO-16, connect the
digital trigger signal to the START TRIG input.

— If pretriggerScansis greater than 0, the trigger stops the acquisition after all posttrigger
data is acquired. For the MIO-16, connect the digital trigger signal to the STOP TRIG
input.

If you choose Digital Trigger A & B:

— pretriggerScansmust be greater than 0. A digital trigger starts the acquisition and a
digital trigger stops the acquisition after all posttrigger data is acquired.

— For the MIO-16, the START TRIG input starts the acquisition and the STOP TRIG input
stops the acquisition.

If you choose Scan Clock Gatingan external signal gates the scan clock on and off. If the

scan clock gate becomes FALSE, the current scan completes, and the scan clock ceases
operation. When the scan clock gate becomes TRUE, the scan clock immediately begins
operation again.

If you choose Equivalent Time SamplingThis is a mode in which the Equivalent Time
Sampling technique is used on an E Series DAQ device to achieve an effective acquisition
rate of up to 20 MHz.

— The signal that is being measured must be a periodic waveform.

— The trigger conditions must be satisfied or this function times out.

— Equivalent Time Sampling is the process of taking A/D conversions from a periodic
waveform at special points in time such that when the A/D conversions are placed side-
by-side, they represent the original waveform as if it had been sampled at a high
frequency.

LabWindows/CVI Standard Libraries 10-10 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

For example, if the A/D conversions (represented'byon the waveform shown below are
placed side-by-side, they represent one cycle of the waveform.

X

AN A LA S B A A
FA XN IN TN SN x ]
x \J \J \J \J \J \J xJ

X
XX
X X
X X

Equivalent Time Sampling is accomplished in this function as follows:

1. Set a hardware analog trigger condition for measuring your waveform using the Edge/Slope,
Trigger Level, and Trigger Source parameters of this function.

2. Whenever a hardware analog trigger occurs, the internal ATCOUT signal is strobed.

3. The ATCOUT signal is internally routed to the gate of GPCTRO, which is configured to
generate a pulse each time it receives a rising edge at it's gate input.

4. The output of GPCTRO is internally routed to the data acquisition sample clock to control the
A/D conversion rate.

5. The very high effective scan rate is achieved through a pre-pulse delay that is programmed
into GPCTRO. This delay automatically increments before each GPCTRO pulse so that the
A/D conversions occur at slightly larger intervals from the trigger condition as trigger
conditions occur over time.

6. Because the waveform being measured is periodic, A/D conversions that are at particular
intervals from trigger conditions over time can look the same as A/D conversions at
particular intervals from one unique trigger point in time.

In the following figure:

tn => the nth trigger condition

dn => delay between the nth trigger and the nth conversion
X =>an A/D conversion

--- => the trigger level

X

/AN AU S WY A WY b SR A W A

IN X NN TN x
X- - A\ e A e N A A

t0 t1 2 t3 t4 t5 6

I R e R e e
do di d2 d3 d4 d5 dé

© National Instruments Corporation 10-11 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

When the A/D conversions are placed side-by-side, they represent the original waveform as if it
had been sampled at a high frequency.

X
XX
X X
X X

edgeSlopespecifies whether the trigger occurs when the trigger signal voltage is leading
(POSITIVE_SLOPE) or trailing NEGATIVE_SLOPI

triggerLevelV the voltage at which the trigger is to ocduggerLevelV is valid only when the
Trigger Type is hardware or software analog trigger.

triggerSource specifies which channel is the trigger soutdggerSource must be one of the
channels listed in thehannelString. Or if you pass ™ or NUL, the first channel in the
channelString is used as thigiggerSource. triggerSource is valid only when the Trigger Type
is hardware or software analog trigger.

timeLimitsec is the maximum length of time in seconds to wait for the data. If the time you set
expires, the function returns a timeout erton¢OutErr  =-10800 ).

Other Values:

-2.0 disables the time limit.

Warning: This setting leaves your computer in a suspended state until the trigger
condition occurs

-1.0 (default) lets the function calculate the timeout based on the acquisition rate and number
of scans requested.

fiMode specifies whether th@aveformsarray is grouped by channels or grouped by scans.
Consider the following examples:

If you scan channels A through C and Number of Scans is 5, then the possible fill modes are:

GROUP_BY_CHANNEL
A1 A2 A3A4 A5B1B2B3B4B5C1C2C3C4C5
\ / \ [\ /

or

GROUP_BY_SCAN
A1B1C1A2B2C2A3B3C3A4B4C4A5B5C5
S N O W
If you are to pass the array to a graph, you should acquire the data grouped by channel.
If you are to pass the array to a strip chart, you should acquire the data grouped by scan.

You can also acquire the data grouped by scan and later reorder it to be grouped by channel
using theGroupByChannel function.

LabWindows/CVI Standard Libraries 10-12 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

waveformsis an array containing the voltages acquired on the channels specified in the
channelString. The acquired voltages are placed into the array in the order specified by
fiMode . This array must be declared as large as:

(number of channel$) (humberOfScang

You can determine the number of channels using#i&lumChannels function.

AlAcquireWaveforms

short error = AlAcquireWaveforms (short device char channelStrind] ,
long numberOfScans double scansPerSecond
double highLimitVolts , double lowLimitVolts,
double * actualScanRateshort fillMode,
double waveformd] );

Purpose

This function performs a timed acquisition of voltage data from the analog channels specified in
thechannelString.

Parameters
Input | device short Assigned by configuration utility.
integer
channelString string Analog input channels that are to be sampled.
numberOfScans | long Number of scans to be acquired. One scan involves
integer sampling every channel in tiebannelString once.
scansPerSecond| double Number of scans performed per second. Any

particular channel is scanned at this rate.
highLimitVolts double Maximum voltage to be measured.
lowLimitVolts double Minimum voltage to be measured.

filMode short Specifies one of the following modes for the
integer waveformsarray:GROUP_BY_CHANNIBL
GROUP_BY_SCAN

Output | actualScanRate | double The actual scan rate may differ slightly from the scan
rate you specified, given the limitations of your
particular DAQ device.

waveforms double Array containing the voltages acquired on the
array channels specified in trehannelString.

© National Instruments Corporation 10-13 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

Return Value

error short Refer to error codes in Table 10-5.
integer

Parameter Discussion

channelString is the analog input channels that are to be sampled. ReferGbdhael String
for Analog Input Functionsubsection of thEasy 1/0 for DAQ Library Function Overview
section of this chapter for the syntax of this string.

fiMode specifies whether th@aveformsarray is grouped by channels or grouped by scans.
Consider the following examples:

If you scan channels A through C and Number of Scans is 5, then the possible fill modes are:

GROUP_BY_CHANNEL
A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4C5
\ /\ I\ /

or

GROUP_BY_SCAN

A1 B1C1A2B2C2A3B3C3A4B4C4A5B5C5

| R A T A
If you are to pass the array to a graph, you should acquire the data grouped by channel.
If you are to pass the array to a strip chart, you should acquire the data grouped by scan.

You can also acquire the data grouped by scan and later reorder it to be grouped by channel
using theGroupByChannel function.

waveformsis an array containing the voltages acquired on the channels specified in the
channelString. The acquired voltages is placed into the array in the order specifiéiVioge .
This array must be declared as large as:

(number of channels) humberOfScang

You can determine number of channels using the fun@etNumChannels .

LabWindows/CVI Standard Libraries 10-14 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

AlCheckAcquisition

short error = AlCheckAcquisition (unsigned long taskiD,
unsigned long * scanBacklog;

Purpose

This function can be used to determine the backlog of scans that have been acquired into the
circular buffer but have not been read uskiBeadAcquisition

If AIReadAcquisition is called with read mode settATEST MODEscanBacklogis
reset to zero.

Parameters

Input | taskID unsigned The task ID that was returned from
long integer| AlStartAcquisition

Output | scanBacklog | unsigned Returns the backlog of scans that have been acquired
long integer| into the circular buffer but have not been read using
AlReadAcquisition

Return Value

error short integer Refer to error codes in Table 10-5.

AlClearAcquisition
short error = AlClearAcquisition (unsigned long taskiD);
Purpose

This function clears the current asynchronous acquisition that was started by
AlStartAcquisition

Parameters

Input | taskID unsigned The task ID that was returned from
long integer | AlStartAcquisition

Return Value

error short integer Refer to error codes in Table 10-5.

© National Instruments Corporation 10-15 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

AlReadAcquisition

short error = AIReadAcquisition (unsigned long taskiD, long scanstoRead,
unsigned short readMode,
unsigned long * scanBacklog,
short fillMode, double waveformd] );

Purpose

This function reads the specified number of scans from the internal circular buffer established by
AlStartAcquisition

If the specified number of scans is not available in the buffer, the function waits until the scans
are available. You can ca#llCheckAcquisition before callingAIReadAcquisition to
determine how many scans are available.

Parameters

Input | taskID unsigned long The task ID that was returned from
integer AlStartAcquisition

scanstoRead | long integer The number of scans that are read from the internal
circular buffer.

readMode unsigned Specifies whether scans are read from the circular
short integer | buffer in CONSECUTIVE_MODd#
LATEST_MODE

filMode short integer | Specifies one of the following modes for the
waveforms arrayGROUP_BY_CHANNEdr
GROUP_BY_SCAN

Output | scanBacklog | unsigned long Returns the backlog of scans that have been acquired
integer into the circular buffer but have not been read using
AlReadAcquisition

waveforms double array | Array containing the voltages acquired on the
channels specified in trehannelString.

Return Value

error short integer | Refer to error codes in Table 10-5.

Parameter Discussion

readMode specifies whether scans are read from the circular buff@ONSECUTIVE_MODdt
LATEST_MODHNn CONSECUTIVE_MODEeans are read from the internal circular buffer
starting from the last scan that was read. Using this mode, you are guaranteed that you will not
lose data unless an error occursLATEST MODIHEhe most recently acquired n scans are read

LabWindows/CVI Standard Libraries 10-16 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

from the internal circular buffer, where nseanstoReadCalling AIReadAcquisition in
this mode resets tlszanBacklogto zero.

scanBacklogreturns the backlog of scans that have been acquired into the circular buffer but
have not been read usiAgReadAcquisition . If AIReadAcquisition is called in

"latest” read mode, the scan backlog is reset to zero. You can aladGlaickAcquisition

to determine the scan backlog before caliiBeadAcquisition

waveformsis an array containing the voltages acquired on the channels specified in the
channelString. The acquired voltages are placed into the array in the order specified by
fiMode . This array must be declared as large as:

(number of channels) ('scanstoReadl

You can determine the number of channels by using the furGgtiumChannels .

AlSampleChannel

short error = AlSampleChannel(short devicg char singleChanne]] ,
double highLimitVolts , double lowLimitVolts,
double * voltage);

Purpose

This function acquires a single voltage from a single analog input channel.

Parameters
Input | device short integer| Assigned by configuration utility.
singleChannel string The analog input channel that is to be sampled.
highLimitVolts double Maximum voltage to be measured.
lowLimitVolts double Minimum voltage to be measured.
Output | voltage double Returns the measured voltage.
(passed by
reference)
Return Value
error short integer| Refer to error codes in Table 10-5.

© National Instruments Corporation 10-17 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

Parameter Discussion

singleChannelis the analog input channel that is to be sampled. Séghtdnenel String for
Analog Input Functionsubsection of theasy 1/O for DAQ Library Function Overviesection
in this chapter for the syntax of this string.

AlSampleChannels

short error = AlSampleChannels(short device char channelStrind] ,
double highLimitVolts , double lowLimitVolts,
double voltageArray[] );

Purpose

This function performs a single scan on a set of analog input channels.

Parameters
Input | device short Assigned by configuration utility.
integer
channelString string Analog input channels that are to be sampled.
highLimitVolts double Maximum voltage to be measured.
lowLimitVolts double Minimum voltage to be measured.
Output | voltageArray double Array containing the voltages acquired on the
array channels specified in trehannelString.
Return Value
error short Refer to error codes in Table 10-5.
integer

Parameter Discussion

channelString is the analog input channels that are to be sampled. ReferGbdhael String
for Analog Input Functionsubsection of thEasy 1/0 for DAQ Library Function Overview
section of this chapter for the syntax of this string.

voltageArray is an array containing the voltages acquired on the channels specified in the
channelString. The acquired voltages are placed into the array in the order specified in the
channelString. This array must be declared as large as the number of channels specified in the
channelString. You can use the functiddetNumChannels to determine the number of
channels.

LabWindows/CVI Standard Libraries 10-18 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

AlStartAcquisition

short error = AlStartAcquisition (short device char channelStrind] ,
int  bufferSize, double scansPerSecond
double highLimitVolts , double lowLimitVolts,
double * actualScanRate
unsigned long * taskiD);

Purpose

This function starts a continuous asynchronous acquisition on the analog input channels specified
in thechannelString. Data is acquired into an internal circular buffer. Use

AlReadAcquisition to retrieve scans from the internal buffer.
Parameters
Input device short integer| Assigned by configuration utility.
channelString string Analog input channels that are to be sampled
bufferSize integer The size of the internal circular buffer in scans.
scansPerSecond | double Number of scans performed per second. Any
particular channel is scanned at this rate.

highLimitVolts double Maximum voltage to be measured.
lowLimitVolts double Minimum voltage to be measured.

Output | actualScanRate | double The actual scan rate may differ slightly from the
scan rate you specified, given the limitations gf
your particular DAQ device.

taskiD unsigned An identifier for the asynchronous acquisition.
long integer

Return Value

error short integer| Refer to error codes in Table 10-5.

Parameter Discussion

channelString is the analog input channels that are to be sampled. ReferGbdheel String
for Analog Input Functionsubsection of thEasy 1/0 for DAQ Library Function Overview
section of this chapter for the syntax of this string.

tasklD is an identifier for the asynchronous acquisition that must be passed to
AlCheckAcquisition

AlReadAcquisition
AlClearAcquisition

© National Instruments Corporation 10-19 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library

AOClearWaveforms

short error = AOClearWaveforms (unsigned long

Purpose

Chapter 10

This function clears the waveforms generated\@®GenerateWaveforms when you passed 0

for its Iterations parameter.

Parameters

Input | taskID

unsigned

long integer

The task ID that was returned from
AOGenerateWaveforms

Return Value

error

short integer

Refer to error codes in Table 10-5.

LabWindows/CVI Standard Libraries

10-20

© National Instruments Corporation



Chapter 10

AOGenerateWaveforms

short error = AOGenerateWaveforms(short

Purpose

double

Easy I/O for DAQ Library

device char channelString] ,
updatesPerSecond

int updatesPerChannelint iterations,

double

waveformq] ,

unsigned long * taskiD);

This function generates a timed waveform of voltage data on the analog output channels
specified in thehannelString.

Parameters

Input

device
channelString

short integer
string

Assigned by configuration utility.

The analog output channels to which the
voltages are applied.

per

se

0

updatesPerSecond | double The number of updates that are performed
second. Any particular channel is updated a
this rate.
updatesPerChannel | integer The number of D/A conversions that compg
a waveform for a particular channel.
iterations integer The number of waveform iterations that are
performed before the operation is complete;
= continuous.
Output | waveforms double array] The voltages to be applied to the channels
specified in thehannelString.
taskiD unsigned Returns an identifier for the waveform
long integer | generation. If you pass 0 as iterations

parameter you need to pass taskiD to
AOCIlearWaveforms to clear the waveform
generation.

Return Value

error

short integer

Refer to error codes in Table 10-5.

Parameter Discussion

channelString is the analog output channels to which the voltages are applied. Refer to the
Channel String for Analog Output Functiosigbsection of thEasy 1/0 for DAQ Library
Function Overvievgection of this chapter for the syntax of this string.

© National Instruments Corporation

10-21

LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

updatesPerChannelis the number of D/A conversions that compose a waveform for a particular
channel. lfupdatesPerChannelis 10, then each waveform is composed of 10 elements from the
waveformsarray.

iterations is the number of waveform iterations that are performed before the operation is
complete. If you pass 0, the waveform(s) are generated continuously and you need to call
AOClearWaveforms to clear waveform generation.

waveformsis the array containing the voltages to be applied to the channels specified in the
channelString. The voltages are applied to the analog output channels in the order specified in
thechannelString. For example, if thehannelString is

"0:3,5",
the array should contain the voltages in the following order:

waveforms[0] /* the 1st update on channel 0 */
waveforms[1l] /* the 1st update on channel 1 */
waveforms[2] /* the 1st update on channel 2 */
waveforms[3] /* the 1st update on channel 3 */
waveforms[4] /* the 1st update on channel 5 */
waveforms[5] /* the 2nd update on channel 0 */
waveforms[6] /* the 2nd update on channel 1 */
waveforms[7] /* the 2nd update on channel 2 */
waveforms[8] /* the 2nd update on channel 3 */
waveforms[9] /* the 2nd update on channel 5 */

waveforms[n-5] /* the last update on channel O */
waveforms[n-4] /* the last update on channel 1 */
waveforms[n-3] /* the last update on channel 2 */
waveforms[n-2] /* the last update on channel 3 */
waveforms[n-1] /* the last update on channel 5 */

AOUpdateChannel

short error = AOUpdateChannel(short device char singleChanne]] ,
double voltage);

Purpose

This function applies a specified voltage to a single analog output channel.

LabWindows/CVI Standard Libraries 10-22 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

Parameters
Input device short integer | Assigned by configuration utility.
singleChannel | string The analog output channel to which the voltage jare
applied.
voltage double The voltage that is applied to the analog output
channel.
Return Value
error short integer | Refer to error codes in Table 10-5.

Parameter Discussion

singleChannelis the analog output channel to which the voltage are applied. Refer to the
Channel String for Analog Output Functiosisbsection of thEasy I/O for DAQ Library
Function Overvievsection of this chapter for the syntax of this string.

AOUpdateChannels

short AOUpdateChannels(short device char channelString] ,
double voltageArray[] );

Purpose

This function applies specified voltages to the analog output channel specified in the
channelString.

Parameters
Input | device short integer | Assigned by configuration utility.
channelString | string The analog output channels to which the voltages

are applied.

voltageArray | double array | The voltages that are applied to the specified arjalog
output channels.

Return Value

error short integer | Refer to error codes in Table 10-5.

© National Instruments Corporation 10-23 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

Parameter Discussion

channelString is the analog output channels to which the voltages are applied. Refer to the
Channel String for Analog Output Functiosisbsection of thEasy I/O for DAQ Library
Function Overvievsection of this chapter for the syntax of this string.

voltageArray is the voltages that are applied to the specified analog output channels. This array
should contain the voltages to be applied to the analog output channels in the order that is
specified in thehannelString. For example, if thehannelString contains:

"0,1,3"
then
voltage[0] = 1.2; /* 1.2 volts applied to channel 0 */

voltage[1] = 2.4; [* 2.4 volts applied to channel 1 */
voltage[2] = 3.6; /* 3.6 volts applied to channel 3 */

ContinuousPulseGenConfig

short error = ContinuousPulseGenConfigshort device char counter]] ,
double frequency, double dutyCycle,
unsigned short gateMode
unsigned short pulsePolarity,
double * actualFrequency,
double * actualDutyCycle,
unsigned long * taskID);

Purpose
Configures a counter to generate a continuous TTL pulse train on its OUT pin.

The signal is created by repeatedly decrementing the counter twice, first for the delay to the pulse
(phase 1), then for the pulse itself (phase 2). The function selects the highest resolution timebase
to achieve the desired characteristics.

You can also call th€ounterStart  function to gate or trigger the operation with a signal on
the counter's GATE pin.

LabWindows/CVI Standard Libraries 10-24 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

Parameters
Input device short Assigned by configuration utility.
integer
counter string The counter to be used for the counting operatign.
frequency double The desired repetition rate of the continuous pulse
train.
dutyCycle double The desired ratio of the duration of the pulse phase
(phase 2) to the period (phase 1 + phase 2).
gateMode unsigned | Specifies how the signal on the counter's GATE [pin
short is used.
integer
pulsePolarity unsigned | The polarity of phase 2 of each cycle.
short
integer
Output | actualFrequency | double The achieved frequency based on the resolution and
range of your hardware.
actualDutyCycle | double The achieved duty cycle based on the resolution and
range of your hardware.
taskiD unsigned | The reference number assigned to this operatior).
long You pasdaskiID to CounterStart
integer CounterRead , andCounterStop

Return Value

error short Refer to error codes in Table 10-5.
integer

Parameter Discussion

counter is the counter to be used for the counting operation. The valid counters are shown in
Table 10-2, which is found in théalid Counters for the Counter/Timer Functiagbsection of
theEasy I/O for DAQ Library Function Overviesection of this chapter.

dutyCycle is the desired ratio of the duration of the pulse phase (phase 2) to the period (phase 1
+ phase 2). The default of 0.5 generates a square wave.

If dutyCycle = 0.0, the function computes the closest achievable duty cycle using a
minimum pulse phase (phase 2) of three timebase cycles.

If dutyCycle = 1.0, the function computes the achievable duty cycle using a minimum delay
phase (phase 1) of three timebase cycles.

A duty cycle very close to 0.0 or 1.0 may not be possible.

© National Instruments Corporation 10-25 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

gateModespecifies how the signal on the counter's GATE pin is used. The options are:

UNGATED_SOFTWARE_STAR@nore the gate signal and start wigsunterStart is
called.

COUNT_WHILE_GATE_HIGHcount while the gate signal is TTL high after
CounterStart  is called.

COUNT_WHILE_GATE_LGY¥ount while the gate signal is TTL low after
CounterStart is called.

START_COUNTING_ON_RISING_EDGEstart counting on the rising edge of the TTL
gate signal afteCounterStart  is called.

START_COUNTING_ON_FALLING_EDG#start counting on the falling edge of the TTL
gate signal afteCounterStart  is called.

pulsePolarity is the polarity of phase 2 of each cycle. The options are:

POSITIVE_POLARITY —the delay (phase 1) is a low TTL level and the pulse (phase 2) is a
high level.

NEGATIVE_POLARITY—the delay (phase 1) is a high TTL level and the pulse (phase 2) is
a low level.

CounterEventOrTimeConfig

short error = CounterEventOrTimeConfig (short device char counter] ,
unsigned short counterSize
double sourceTimebase
unsigned short countLimitAction ,
short sourceEdge
unsigned short gateMode
unsigned long *taskID);

Purpose

Configures one or two counters to count edges in the signal on the specified counter's SOURCE
pin or the number of cycles of a specified internal timebase signal.

When you use this function with the internal timebase and in conjunctioiCaithterStart
andCounterRead your program can make more precise timing measurements than with the
Timer function.

You can also call th€ounterStart ~ function to gate or trigger the operation with a signal on
the counter's GATE pin.

LabWindows/CVI Standard Libraries 10-26 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

Parameters
Input device short Assigned by configuration utility.
integer
counter string The counter to be used for the counting operation.
counterSize unsigned | Determines the size of the counter used to
short perform the operation.
integer

sourceTimebase | double USE_COUNTER_SOURGBunt TTL edges at
counter’s SOURCE pin; or supply a valid
internal timebase frequency to count the TTL
edges of an internal clock.

countLimitAction | unsigned | The action to take when the counter reaches

short terminal count.
integer
sourceEdge short The edge of the counter source or timebase signal
integer on which it increments.
gateMode unsigned | Specifies how the signal on the counter's GATE
short pin is used.
integer
Output | taskIiD unsigned | The reference number assigned for the counter
long reserved for this operation. You paaskID to
integer CounterStart , CounterRead , and
CounterStop
Return Value
error short Refer to error codes in Table 10-5.
integer

Parameter Discussion

counter is the counter to be used for the counting operation. The valid counters are shown in
Table 10-2, which is found in théalid Counters for the Counter/Timer Functiagsection of
theEasy I/O for DAQ Library Function Overviesection of this chapter.

counterSizedetermines the size of the counter used to perform the operation.
For a device with DAQ-STC countexyunterSizemust beONE_COUNTER4-bit).

For a device with Am9513 countergiunterSizecan beONE_COUNTER6-bit) or
TWO_COUNTERS2-bit).

© National Instruments Corporation 10-27 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

If you useTWO_COUNTER&unter+1 is cascaded with the specified counter. Counter+1 is
defined as shown in Table 10-3.

Table 10-3. Definition of Am 9513: Counter +1

counter counter+1
1 2
2 3
3 4
4 5
5 1
6 7
7 8
8 9
9 10
10 6

sourceTimebasedetermines whether the counter uses its SOURCE pin or an internal timebase
as its signal source. PA4SE_ COUNTER_SOURG@Ecount TTL edges abunters SOURCE
pin, or pass a valid internal timebase frequency to count the TTL edges of an internal clock.

Valid internal timebase frequencies are:

1000000 (AmM9513)

100000 (AM9513)
10000 (AM9513)
1000 (AM9513)
100 (AmM9513)
20000000  (DAQ-STC)
100000 (DAQ-STC)

countLimitAction is the action to take when the counter reaches terminal count. The parameter
accepts the following attributes:

COUNT _UNTIL_TE&—count until terminal count, and set the overflow status when it is
reached. This mode is not available on the DAQ-STC.

COUNT_CONTINUOUSEYcount continuously. The Am9513 does not set the overflow
status at terminal count, but the DAQ-STC does.

LabWindows/CVI Standard Libraries 10-28 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

sourceEdgeis the edge of the counter source or timebase signal on which it increments, and this
parameter accepts the following attributes:

COUNT_ON_RISING_EDGE
COUNT_ON_FALLING_EDGE

gateModespecifies how the signal on the counter's GATE pin is used. The options are:

UNGATED_SOFTWARE_STARnore the gate signal and start witgsunterStart  is
called.

COUNT_WHILE_GATE_HIGHcount while the gate signal is TTL high after
CounterStart s called.

COUNT_WHILE_GATE_LGYount while the gate signal is TTL low after
CounterStart is called.

START_COUNTING_ON_RISING_EDGEstart counting on the rising edge of the TTL
gate signal afteCounterStart  is called.

START_COUNTING_ON_FALLING_EDG#start counting on the falling edge of the TTL
gate signal afte€CounterStart is called.

CounterMeasureFrequency

short error = CounterMeasureFrequency(short device char counter] ,
unsigned short counterSize
double gateWidthSampleTimeinSe¢
double maxDelayBeforeGateSec
unsigned short counterMinus1GateMode
double * actualGateWidthSeg
short*  overflow, short *  valid,
short* timeout, double * frequency);

Purpose

Measures the frequency of a TTL signal on the specified counter's SOURCE pin by counting
rising edges of the signal during a specified period of time. In addition to this connection, you
must also wire the counter's GATE pin to the OUT pin of counter-1. For a specified Counter,

Counter-1 and Counter+1 are defined as shown in Table 10-4.

© National Instruments Corporation 10-29 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library

Table 10-4. Adjacent Counters

Am9513

counter-1

counter

counter+1

9

© 00O N o O &~ W N P

[
o

© 0 N Fk O b WODN

(o) I g
o

DAQ-STC

counter-1

counter

counter+1

1

0

Chapter 10

0 1 0

This function is useful for relatively high frequency signals when many cycles of the signal occur
during the timing period. Use thulseWidthOrPeriodMeasConfig function for
relatively low frequency signals. Keep in mind that

period = 1frequency

This function configures the specified counter and counter+1 (optional) as event counters to
count rising edges of the signal on counter's SOURCE pin. The function also configures
counter-1 to generate a minimum-delayed pulse to gate the event counter, starts the event
counter and then the gate counter, waits the expected gate period, and then reads the gate
counter until its output state is low. Next the function reads the event counter and computes the
signal frequency (number of events/actual gate pulse width) and stops the counters. You can
optionally gate or trigger the operation with a signal on counter-1's GATE pin.

LabWindows/CVI Standard Libraries 10-30 © National Instruments Corporation



Chapter 10

Easy I/O for DAQ Library

Parameters
Input device short Assigned by configuration utility.
integer
counter string The counter to be used for the counting
operation.
counterSize unsigned | Determines the size of the counter used o
short perform the operatiotONE_COUNTE®&
integer | TWO_COUNTERS
gateWidthSampleTimeinSeq double The desired length of the pulse used to gate
the signal. The lower the signal frequency,
the longer the Gate Width must be.
maxDelayBeforeGateSec | double The maximum expected delay between the
time the function is called and the start of
the gating pulse. If the gate signal does not
start in this time, a timeout occurs.
counterMinus1GateMode | unsigned | The gate mode fazounter-1.
short
integer
Output | actualGateWidthSec double The length in seconds of the gating pulse
that is used.
overflow short 1 = counter rolled past terminal count; O £
integer | counter did not roll past terminal count. |
overflow is 1, the value direquency is
inaccurate.
valid short Set to 1 if the measurement completes
integer | without a counter overflow. A timeout angd
a valid measurement may occur at the same
time. A timeout does not produce an errqr.
timeout short Set to 1 if the time limit expires during the
integer | function call. A timeout and a valid
measurement may occur at the same time.
A timeout does not produce an error.
frequency double The frequency of the signal. It is computed
as the (number of rising edges) /
(actualGateWidthSeq.
© National Instruments Corporation 10-31 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

Return Value

error short Refer to error codes in Table 10-5.
integer

Parameter Discussion

counter is the counter to be used for the counting operation. The valid counters are shown in
Table 10-2, which is found in théalid Counters for the Counter/Timer Functiagbsection of
theEasy I/O for DAQ Library Function Overviesection of this chapter.

counterSizedetermines the size of the counter used to perform the operation.
For a device with DAQ-STC countesyunterSizemust beONE_COUNTER4-bit).

For a device with Am9513 counterunterSizecan beONE_COUNTER6-bit) or
TWO_COUNTERS2-bit).

If you useTWO_COUNTER®unter+1 is cascaded with the specified counteunter+1 is
defined as shown in Table 10-3 in the function description for
CounterEventOrTimeConfig

counterMinus1GateModeis the gate mode faounter-1. The possible values are:
UNGATED_SOFTWARE_START
COUNT_WHILE_GATE_HIGH
COUNT_WHILE_GATE_LOW

START_COUNTING_ON_RISING_EDGE

counter-1 is used to gateounter so that rising edges are counted over a precise sample time.
For a specifieeounter, counter-1 is defined as shown in Table 10-4.

CounterRead

short error =CounterRead (unsigned long taskiD, short *  overflow,
long * count);

Purpose

Reads the counter identified tgskiD.

LabWindows/CVI Standard Libraries 10-32 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

Parameters
Input taskiD unsigned long| The reference number assigned to the counting
integer operation by one of the counter configuration
functions.
Output | overflow short integer 1 = counter rolled past terminal count; O = counter
did not roll past terminal count.
count long integer The value of the counter at the time it is read.

Return Value

error short integer Refer to error codes in Table 10-5.

Parameter Discussion

overflow indicates whether the counter rolled over past its terminal cowvetflow is 1, the
value ofcount is inaccurate.

CounterStart
short error = CounterStart (unsigned long taskiD);
Purpose

Starts the counter identified bgskID.

Parameters
Input | taskID unsigned The reference number assigned to the counting
long integer | operation by one of the counter configuration
functions.
Return Value
error short integer | Refer to error codes in Table 10-5.

© National Instruments Corporation 10-33 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

CounterStop

short error = CounterStop (unsigned long taskiD);
Purpose
Stops a count operation immediately.

Parameters

Input | taskID unsigned The reference number assigned to the
long integer | counting operation by one of the counter
configuration functions.

Return Value

error short integer Refer to error codes in Table 10-5.

DelayedPulseGenConfig

short error =DelayedPulseGenConfigshort device char counter|] ,
double pulseDelay double pulseWidth,
unsigned short timebaseSource
unsigned short gateMode
unsigned short pulsePolarity,
double * actualDelay,
double * actualPulseWidth,
unsigned long * taskID);

Purpose
Configures a counter to generate a delayed TTL pulse or triggered pulse train on its OUT pin.

The signal is created by decrementing the counter twice, first for the delay to the pulse (phase 1),
then for the pulse itself (phase 2). The function selects the highest resolution timebase to achieve
the desired characteristics.

You can also call th€ounterStart ~ function to gate or trigger the operation with a signal on
the counter's GATE pin.

LabWindows/CVI Standard Libraries 10-34 © National Instruments Corporation



Chapter 10

Easy I/O for DAQ Library

Parameters
Input device short integer Assigned by configuration utility.
counter string The counter to be used for the counting
operation.
pulseDelay double The desired duration of the delay (phase 1)
before the pulse.
pulseWidth double The desired duration of the pulse (phase 2)

timebaseSource

gateMode

pulsePolarity

unsigned short
integer

unsigned short
integer

unsigned short
integer

after the delay.
The signal that causes the counter to cour

Specifies how the signal on the counter's
GATE pin is used.

The polarity of phase 2 of each cycle.

—

Output

actualDelay
actualPulseWidth

taskID

double

double

unsigned long
integer

The achieved delay based on the resoluti
and range of your hardware.

The achieved pulse width based on the
resolution and range of your hardware.

The reference number assigned to this
operation. You pagsiskiD to
CounterStart , CounterRead , and
CounterStop

Return Value

error

short integer

Refer to error codes in Table 10-5.

Parameter Discussion

counter is the counter to be used for the counting operation. The valid counters are shown in
Table 10-2, which is found in théalid Counters for the Counter/Timer Functiagbsection of
theEasy I/O for DAQ Library Function Overviesection of this chapter.

pulseDelayis the desired duration of the delay (phase 1) before the pulse. This parameter accepts

the following attributes:

The unit is seconds fimebaseSourcas USE_INTERNAL_TIMEBASEand cycles if
timebaseSourcas USE_ COUNTER_SOURCE

If pulseDelay= 0.0 andimebaseSourcas internal, the function selects a minimum delay of
three cycles of the timebase used.

© National Instruments Corporation

10-35

LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

pulseWidth is the desired duration of the pulse (phase 2) after the delay

The unit is seconds fimebaseSourcas USE_INTERNAL_TIMEBASEand cycles if
timebaseSourcas USE_ COUNTER_SOURCE

If pulseDelay= 0.0 andimebaseSourcas internal, the function selects a minimum delay of
three cycles of the timebase used.

timebaseSourcds the signal that causes the counter to count. This parameter accepts the
following attributes:

USE_INTERNAL_TIMEBASE-An internal timebase is selected based on the pulse delay
and width, in units of seconds.

USE_COUNTER_SOURERhe signal on the counter's SOURCE pin is used and the units
of pulse delay and width are cycles of that signal.

gateModespecifies how the signal on the counter's GATE pin is used. This parameter accepts

the following attributes:

UNGATED_SOFTWARE_STAR@nore the gate signal and start wigsunterStart IS
called.

COUNT_WHILE_GATE_HIGHcount while the gate signal is TTL high after
CounterStart  is called.

COUNT_WHILE_GATE_LGY¥ount while the gate signal is TTL low after
CounterStart is called.

START_COUNTING_ON_RISING_EDGEstart counting on the rising edge of the TTL
gate signal afteCounterStart is called.

START_COUNTING_ON_FALLING_EDG#start counting on the falling edge of the TTL
gate signal afteCounterStart  is called.

RESTART_ON_EACH_RISING_EDGHestart counting on each rising edge of the TTL
gate signal afteCounterStart is called.

RESTART_ON_EACH_FALLING_EDG¥estart counting on each falling edge of the TTL
gate signal afteCounterStart  is called.

pulsePolarity is the polarity of phase 2 of each cycle. This parameter accepts the following
attributes:

POSITIVE_POLARITY —the delay (phase 1) is a low TTL level and the pulse (phase 2) is a
high level.

NEGATIVE_POLARITY—the delay (phase 1) is a high TTL level and the pulse (phase 2) is
a low level.

LabWindows/CVI Standard Libraries 10-36 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

FrequencyDividerConfig

short error =FrequencyDividerConfig (short device char counter]] ,
double sourceTimebase
double timebaseDivisor
unsigned short gateMode
unsigned short outputBehavior,
short sourceEdgeunsigned long * taskiD);

Purpose

This function configures the specified counter to count the number of signal transitions on its
SOURCE pin or on an internal timebase signal, and to strobe or toggle the signal on its OUT pin.

To divide an external TTL signal, connect it to counter's SOURCE pin, and set the
sourceTimebasgarameter ttdSE_ COUNTER_SOURCE

To divide an internal timebase signal, setdberceTimebaseparameter to a desired valid
frequency.

Set thedimebaseDivisorto the desired value. For a valuehoénd a pulsed output, an output
pulse equal to the period of the source or timebase signal appears on counter's OUT pin once
eachN cycles of that signal. For a toggled output, the output toggles afteNeyckes. The

toggled output frequency is thus half that of the pulsed output, in other words,

pulsedFrequency = sourceFrequehty/

and

toggledFrequency = sourceFrequenz¥iN)

thus, ifN=3, the OUT pin would generate pulses as follows:

source _| || [ 1[I 1=l IZHZH =T

pulsed | | | ] | | [ |

toggled _| | I

If gateModeis notUNGATED_SOFTWARE_STARGNnect your gate signal tounter's
GATE pin.

© National Instruments Corporation 10-37 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10
Parameters
Input device short integer| Assigned by configuration utility.
counter string The counter to be used for the counting

operation.

E

-

signal

sourceTimebase | double USE_COUNTER_SOURGBunt TTL edges at
counter’s SOURCE pin; or supply a valid
internal timebase frequency to count the TTL
edges of an internal clock.
timebaseDivisor | double The source frequency divisor.
gateMode unsigned Specifies how the signal on the counter's GAT
short integer| pin is used.
outputBehavior | unsigned The behavior of the output signal when countg
short integer | reaches terminal count.
sourceEdge short integer| The edge of the counter source or timebase
on which it decrements:
COUNT_ON_RISING_EDG&
COUNT_ON_FALLING_EDGE
Output | taskID unsigned The reference number assigned to this operat
long integer | You pasdaskID to CounterStart

CounterRead , andCounterStop

on.

Return Value

error

short integer

Refer to error codes in Table 10-5.

Parameter Discussion

counter is the counter to be used for the counting operation. The valid counters are shown in
Table 10-2, which is found in théalid Counters for the Counter/Timer Functiasgsection of
theEasy I/O for DAQ Library Function Overviesection of this chapter.

sourceTimebasedetermines whether the counter uses its SOURCE pin or an internal timebase
as its signal source. PA4SE_ COUNTER_SOURG@Ecount TTL edges abunters SOURCE
pin, or pass a valid internal timebase frequency to count the TTL edges of an internal clock.

Valid internal timebase frequencies are:

1000000 (AmM9513)
100000 (AM9513)
10000 (AM9513)
1000 (AM9513)
100 (AmM9513)
20000000  (DAQ-STC)
100000 (DAQ-STC)

LabWindows/CVI Standard Libraries

10-38

© National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

timebaseDivisoris the source frequency divisor. For example, if the source signal is 1000 Hz,
thetimebaseDivisoris 10, and the output is pulsed, the frequency of the counter's OUT signal is
100 Hz. If the output is toggled, the frequency is 50 Hz.

gateModespecifies how the signal on the counter's GATE pin is used. This parameter accepts
the following attributes:

UNGATED_SOFTWARE_STAR@nore the gate signal and start witgsunterStart is
called.

COUNT_WHILE_GATE_HIGHcount while the gate signal is TTL high after
CounterStart  is called.

COUNT_WHILE_GATE_LGY¥ount while the gate signal is TTL low after
CounterStart is called.

START_COUNTING_ON_RISING_EDGEstart counting on the rising edge of the TTL
gate signal afteCounterStart is called.

START_COUNTING_ON_FALLING_EDG#start counting on the falling edge of the TTL
gate signal afteCounterStart  is called.

outputBehavior is the behavior of the output signal when counter reaches terminal count. This
parameter accepts the following attributes:

HIGH_PULSE—high pulse lasting one cycle of the source or timebase signal.
LOW_PULSE-low pulse lasting one cycle of the source or timebase signal.
HIGH_TOGGLE-high toggle lasting until the next TC.

LOW_TOGGLEIlow toggle lasting until the next TC.

For a Timebase Divisor & and a pulsed output, an output pulse equal to the period of the
source or timebase signal appears on counter's OUT pin oncl epcles of that signal For a
toggled output, the output toggles after edlatycles. The toggled output frequency is thus half
that of the pulsed output, in other words,

pulsedFrequency = sourceFrequengy/

and

toggledFrequency = sourceFrequenz}iN)

thus, ifN =3, the OUT pin would generate pulses as follows:

source  _[|_| |l |- ZHZH T

HIGH_PULSE | | | O [

HIGH_TOGGLE _| | I I

© National Instruments Corporation 10-39 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

GetAlLimitsOfChannel

short error = GetAlLimitsOfChannel (short device char channelString] ,
char singleChanne]] ,
double initialHighLimitVolts ,
double initialLowLimitVolts ,
double * highLimitVolts ,
double * lowLimitVolts );

Purpose

Returns the high and low limits for a particular channel in the channel string.

Parameters
Input device short Assigned by configuration utility.
integer
channelString string Analog input channels that are to be sampled.
singleChannel string A single channel of the channel string.
initialHighLimitVolts | double Specifies the maximum voltage to be measuired
for all channels in the channel string listed
before a command string that specifies a ney
high limit.
initialLowLimitVolts double The minimum voltage to be measured for all
channels in the channel string listed before a
command string that specifies a new low limjt.
Output | highLimitVolts double Returns the high limit for the specified chanpel.
lowLimitVolts double Returns the low limit for the specified chanqel.
Return Value
error short Refer to error codes in Table 10-5.
integer

Parameter Discussion

channelString is the analog input channels that are to be sampled. ReferGbdheel String
for Analog Input Functionsubsection of thEasy 1/0 for DAQ Library Function Overview
section of this chapter for the syntax of this string.

singleChannelis a single channel of the channel string. For example, if the channel string is
"0:3,5"

a single channel could be

"2" or"5" and so on.

LabWindows/CVI Standard Libraries 10-40 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

initialHighLimitVolts specifies the maximum voltage that is measured for all channels in the
channel string listed before a command string that specifies a new high limit. For the following
channel string:

"0,1; cmd hi 10.0 low -10.0; 2,3"

If initialHighLimitVolts is 5.0, channel®" and"1" have a high limit of 5.0 and channels
"2" and"3" have a high limit of 10.0.

initialLowLimitVolts is the minimum voltage that is measured for all channels in the channel
string listed before a command string that specifies a new low limit. For the following channel
string:

"0,1; cmd hi 10.0 low -10.0; 2,3"

If the initialLowLimitVolts is -5.0, channel®" and"1" have a low limit of -5.0 and channels
"2" and"3" have a low limit of -10.0.

GetChannelindices

short error = GetChannelindices(short device char channelString] ,
char channelSubStrind] , short channelType
long channelindiceg] );

Purpose

Determines the indices of the channels indhannelSubString For example, if the
channelString is

6"
and thechannelSubStringis

"1,3,6"

thechannellndicesarray would be filled as follows:
channelindiceg0] = 0O;

channelindicegl] = 2;

channelindiceg2] = 5;

This function is useful if you want to verify that a particular channel is part of the
channelString.

© National Instruments Corporation 10-41 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

Parameters
Input device short integen Assigned by configuration utility.
channelString string The analog channel string.
channelSubString string A sub-string of thehannelString.
channelType short integern Specifies whether thehannelString is
ANALOG_INPUTor ANALOG_OUTPUT
Output | channelindices long integer | Returns the indices of the channels in the
array channelSubString
Return Value
error short integer| Refer to error codes in Table 10-5.

Parameter Discussion

channelString is the analog channels that are to be sampled. Refer @h#drenel String for
Analog Input Functionsubsection of theasy I/O for DAQ Library Function Overviesection
of this chapter for the syntax of this string.

channelSubStringis a sub-string of thehannelString. For example, if thehannelString is
"0:3,5"

the sub-string could be

"2" or

ll1’3ll

GetChannelNameFromIndex

short error = GetChannelNameFromindex(short device char channelStrind] ,
long index, short channelType
char channelNam¢] );

Purpose

Determines the name of the particular channel ircti@nelString indicated byindex.

LabWindows/CVI Standard Libraries 10-42 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library
Parameters
Input device short integer| Assigned by configuration utility.
channelString string Analog input channels that are to be sampled.
index long integer | The index of a particular channel in the
channelString.
channelType short integer| Specifies whether thehannelString is
ANALOG_INPUTor ANALOG_OUTPUT
Output | channelName string Returns the name of the particular channel in the
channelString indicated byindex.

Return Value

error Refer to error codes in Table 10-5.

short integer

Parameter Discussion

channelString is the analog channels that are to be sampled. Refer @h#drenel String for
Analog Input Functionsr Channel String for Analog Output Functiosisbsection of thEasy
I/0O for DAQ Library Function Overviewection of this chapter for the syntax of this string.

channelNamereturns the name of the particular channel irctitennelString indicated by
index. This string should be declared to hawaX_ CHANNEL NAME_LENGTIHes.

GetDAQErrorString

char * errorString = GetDAQErrorString (short errorNumber);
Purpose

This function returns a string containing the description for the numeric error code.

Parameters
Input errorNumber short The error number that was returned from an
integer | Easy I/O for DAQ function.
Return Value
errorString string The string containing the description for the

numeric error code.

© National Instruments Corporation 10-43 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

GetNumChannels

short error = GetNumChannels(short device char channelString] ,
short channelType
unsigned long * numberOfChannels);

Purpose
Determines the number of channels contained ichla@nelString.

You need to know the number of channels indh@nnelString so that you can interpret (for
analog input) or build (for analog output) waveform arrays correctly.

Parameters
Input device short Assigned by configuration utility.
integer
channelString string The analog channel string.
channelType short Specifies whether thehannelString is
integer ANALOG_INPUTor ANALOG_OUTPUT
Output | numberOfChannels | unsigned Returns the number of channels contained|in
long integer| thechannelString.

Return Value

error short Refer to error codes in Table 10-5.
integer

Parameter Discussion

channelString is the analog channels that are to be sampled. Refer @h#drenel String for
Analog Input Functionsr Channel String for Analog Output Functiosisbsection of thEasy
I/0O for DAQ Library Function Overviewection of this chapter for the syntax of this string.

GroupByChannel

short error =GroupByChannel (float array[] ,long numberOfScans
unsigned long numberOfChannels);

Purpose

This function can be used to reorder an array of data from "grouped by scan" mode into "grouped
by channel” mode.

LabWindows/CVI Standard Libraries 10-44 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library
If you acquire data in "grouped by scan" mode, you need to reorder the array into "grouped by
channel” mode before it can be passed to graph plotting functions, analysis functions, and others.

See the description of tfidMode parameter oAlAcquireWaveforms  for an explanation of
"grouped by scan” versus "grouped by channel”.

Parameters
Input/ | array double Pass in the “grouped by scan” array and it i
Output array grouped by channel in place.
Input | numberOfScans long integer| The number of scans contained in the data

array.

numberOfChannels | unsigned Specifies the number of channels that were
long integer| scanned. You can u§etNumChannels to

determine the number of channels contained in
your channel string.

Return Value

error short integer| Refer to error codes in Table 10-5.

ICounterControl

short error =ICounterControl (short device short counter, short controlCode,
unsigned short count, short binaryorBCD,
short outputState, unsigned short * readValue);

Purpose

Controls counters on devices that use the 8253 timer chip (Lab boards, SCXI-1200,
DAQPad-1200, PC-LPM-16, DAQCard 700).

© National Instruments Corporation 10-45 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10
Parameters
Input | device short integer| Assigned by configuration utility.
counter short integer| The counter to be controlled (valid counters jare

controlCode

short integer

0 through 2).
Determines the counter's operating mode.

S

short integer

controlCode = 6 (_READ).

count unsigned The period between output pulses.
short integer

binaryorBCD short integer| I_BINARY : The counter operates as a 16-bit
binary counter (0 to 65,539);BCD: The
counter operates as a 4-decade BCD counter (0
to 9,999).

outputState short integer| I_HIGH_STATE: Output state of the counter
high;1_LOW_STATE Output state of the
counter is low. Valid when theontrolCode = 7
(_RESET).

Output | readValue unsigned Returns the value read from the counter when

Return Value

error

short integer

Refer to error codes in Table 10-5.

Parameter Discussion

controlCode determines the counter's operating mode. This parameter accepts the following

attributes:

0:1_TOGGLE_ON_TE&-counter's output becomes low after the mode set operation and the
counter decrements frooount to O while the gate is high. The output toggles from low to
high once the counter reaches 0.

1:1_PROGRAMMABLE_ONE_SHOgdounter's output becomes low on the count following
the leading edge of the gate input and becomes high on TC.

2:1_RATE_GENERATOR-counter's output becomes low for one period of the clock input.
Thecount indicates the period between output pulses.

3:1_SQUARE_WAVE_RATE_GENERATFo®dunter's output stays high for one-half of the
count clock pulses and stays low for the other half.

4:1_SOFTWARE_TRIGGERED_STROBIfounter's output is initially high, and the
counter begins to count down while the gate input is high. On terminal count, the output
becomes low for on clock pulse, then becomes high again.

LabWindows/CVI Standard Libraries

10-46

© National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

5:1 HARDWARE_TRIGGERED_STRGOB&E&imilar to mode 4, except that a rising edge at
the gate input triggers the count to start.

6:1_READ—read the counter and return the value inrdasVValue parameter.

7:1_RESET—resets the counter and sets its outpuiLtiputState.

count is the period between output pulses. This parameter accepts the following attributes:

If controlCodeis 0, 1, 4, or 5¢ount can be 0 through 65,535 in binary counter operation
and 0 through 9,999 in binary-coded decimal (BCD) counter operation.

If controlCode is 2 or 3,count can be 2 through 65,535 in binary counter operation and 2
through 9,999 in BCD counter operation.

Note: O is equivalent to 65,535 in binary counter operation and 10,000 in BCD counter
operation.

PlotLastAlWaveformsPopup
short error = PlotLastAlWaveformsPopup (short device double waveformsBuffer]] );
Purpose

This function plots the last Al waveform that was acquired. It is intended for demonstration
purposes.

Data must be grouped by channel before it is passed to this function:

Either use th&&ROUP_BY_CHANNEE theillMode parameter when acquiring the data or call
GroupByChannel before calling this function.

Parameters

Input | device short integer| Assigned by configuration utility.
waveformsBuffer | double array| Array containing the last Al waveform acquired.

Return Value

error short integer| Refer to error codes in Table 10-5.

© National Instruments Corporation 10-47 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

PulseWidthOrPeriodMeasConfig
short error =PulseWidthOrPeriodMeasConfig(short device char counter]] ,
unsigned short typeOfMeasurement

double sourceTimebase
unsigned long * taskiD);

Purpose

Configures the specified counter to measure the pulse width or period of a TTL signal connected
to its GATE pin. The measurement is done by counting the number of cycles of the specified
timebase between the appropriate starting and ending events.

Connect the signal you want to measure to the counter's GATE pin.
To measure with an internal timebase,ssetrceTimebaseo the desired frequency.

To measure with an external timebase, connect that sigoalitders SOURCE pin and set the
sourceTimebasgrarameter ttdSE. COUNTER_SOURCE

Call CounterStart to start the measurement. Then €dunterRead to read the value. A
valid countvalue is greater than 3 without overflow.

Parameters
Input device short Assigned by configuration utility.

integer

counter string The counter to be used for the counting

operation.

typeOfMeasurement | unsigned Identifies the type of pulse width or period
short measurement to make.
integer

sourceTimebase double USE_COUNTER_SOURGBunt TTL edges

atcounter’'s SOURCE pin; or supply a valid
internal timebase frequency to count the TT|L
edges of an internal clock.

Output | taskID unsigned | The reference number assigned for the coupter
long integer| reserved for this operation. You paaskiD
to CounterStart , CounterRead , and
CounterStop

Return Value

error short integerl Refer to error codes in Table 10-5.

LabWindows/CVI Standard Libraries 10-48 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

Parameter Discussion

typeOfMeasurementidentifies the type of pulse width or period measurement to make. This
parameter accepts the following attributes:

MEASURE_HIGH_PULSE_WID¥measure high pulse width from rising to falling edge.
MEASURE_LOW_PULSE_WID¥rheasure low pulse width from falling to rising edge.

MEASURE_PERIOD_BTW_RISING_EDGE®easure period between adjacent rising
edges.

MEASURE_PERIOD_BTW_FALLING_EDGE®easure period between adjacent falling
edges.

sourceTimebasedetermines whether the counter uses its SOURCE pin or an internal timebase
as its signal source. PA4SE_ COUNTER_SOURG@Ecount TTL edges abunter's SOURCE
pin, or pass a valid internal timebase frequency to count the TTL edges of an internal clock.

Valid internal timebase frequencies are:

1000000 (AmM9513)

100000 (AM9513)
10000 (AM9513)
1000 (AM9513)
100 (AM9513)
20000000  (DAQ-STC)
100000 (DAQ-STC)

ReadFromDigitalLine

short error = ReadFromDigitalLine (short device char portNumber[] , short line,
short portWidth , long configure,
unsigned long * lineState);

Purpose

Reads the logical state of a digital line on a port that you configure as input.

© National Instruments Corporation 10-49 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10
Parameters
Input device short integer| Assigned by configuration utility.
portNumber string Specifies the digital port this function
configures.
line short integer| Specifies the individual bit or line within the
port to be used for 1/0O (zero-based).
portWidth short integer| The total width in bits of the port. For example,
you can combine two 4-bit ports into an 8-bit
port on an MIO (non E-Series) board by setting
portWidth to 8.
configure long integer | 1: Configure the digital port before reading;
0: Don't configure the digital port before
reading. When this function is called in a loop,
it can be optimized by only configuring the
digital port on the first iteration.
Output | lineState unsigned Returns the state of the digital line. 1 = logical
long integer | high; 0 = logical low.

Return Value

error

short integer

Refer to error codes in Table 10-5.

Parameter Discussion

portNumber specifies the digital port this function configures.

A portNumber value of 0 signifies port O, @ortNumber of 1 signifies port 1, and so on. If
you use an SCXI-1160, SCXI-1161, SCXI-1162, or SCXI-1163 module, use the

"SCx!MDy!0"

syntax, where is the chassis ID andis the module device number, to specify the port on a

module.

portWidth is the total width in bits of the port. For example, you can combine two 4-bit ports
into an 8-bit port on an MIO (non E-Series) board by segortVidth to 8.

WhenportWidth is greater than the physical port width of a digital port, the following
restrictions apply. ThportWidth must be an integral multiple of the physical port width,
and the port numbers in the combined port must begin with the port nampediymber
and must increase consecutively. For examplggrifNumber is 3 andportWidth is
24(bits), LabWindows/CVI uses ports 3, 4, and 5.

LabWindows/CVI Standard Libraries

10-50 © National Instruments Corporat

ion



Chapter 10 Easy I/O for DAQ Library

TheportWidth for the 8255-based digital 1/0 ports (including all digital ports on Lab
boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96, and
AT-MIO-16DE-10/AT-MIO-16D ports 2, 3 and 4) should be at least 8.

configure specifies whether to configure the digital port before reading.

When this function is called in a loop, it can be optimized by only configuring the digital port
on the first iteration.

When you configure a digital 1/0O port that is part of an 8255 PPI (including all digital ports

on Lab boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96,

and AT-MIO-16DE-10/AT-MIO-16D ports 2, 3 and 4), the 8255 PPI goes through a
configuration phase, where all the ports within the same PPI chip get reset to logic low,
regardless of the data direction. The data directions on other ports, however, are maintained.

ReadFromDigitalPort

short error = ReadFromDigitalPort (short device char portNumber[] ,
short portWidth , long configure,
unsigned long * pattern);

Purpose

Reads a digital port that you configure for input.

Parameters
Input device short integer| Assigned by configuration utility.
portNumber string Specifies the digital port this function
configures.
line short integer| Specifies the individual bit or line within the port
to be used for I/O.
portWidth short integer| The total width in bits of the port. For example,

you can combine two 4-bit ports into an 8-bit
port on an MIO (non E-Series) board by setting
portWidth to 8.

configure long integer | 1: Configure the digital port before reading;
0: Don't configure the digital port before
reading. When this function is called in a loop
can be optimized by only configuring the digitg
port on the first iteration.

t

=

Output | pattern unsigned The data read from the digital port.
long integer

© National Instruments Corporation 10-51 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

Return Value

error short integer | Refer to error codes in Table 10-5.

Parameter Discussion
portNumber specifies the digital port this function configures.

A portNumber value of 0 signifies port O, @rtNumber of 1 signifies port 1, and so on. If you
use an SCXI-1160, SCXI-1161, SCXI-1162, or SCXI-1163 module, use the

"SCxIMDy!0"

syntax, where is the chassis ID andis the module device number, to specify the port on a
module.

portWidth is the total width in bits of the port. For example, you can combine two 4-bit ports
into an 8-bit port on an MIO (non E-Series) board by segortWidth to 8.

WhenportWidth is greater than the physical port width of a digital port, the following
restrictions apply. ThportWidth must be an integral multiple of the physical port width,
and the port numbers in the combined port must begin with the port nampediymber
and must increase consecutively. For examplggrifNumber is 3 andportWidth is
24(bits), LabWindows/CVI uses ports 3, 4, and 5.

TheportWidth for the 8255-based digital 1/0 ports (including all digital ports on Lab
boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96, and
AT-MIO-16DE-10/AT-MIO-16D ports 2, 3 and 4) should be at least 8.

configure specifies whether to configure the digital port before reading.

When this function is called in a loop, it can be optimized by only configuring the digital port
on the first iteration.

When you configure a digital 1/0O port that is part of an 8255 PPI (including all digital ports

on Lab boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96,

and AT-MIO-16DE-10/AT-MIO-16D ports 2, 3 and 4), the 8255 PPI goes through a
configuration phase, where all the ports within the same PPI chip get reset to logic low,
regardless of the data direction. The data directions on other ports, however, are maintained.

LabWindows/CVI Standard Libraries 10-52 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

SetEasylOMultitaskingMode
void SetEasylOMultitaskingMode (int multitaskingMode);
Purpose

By default, if you call the non-timed Easy I/O for DAQ functions repetitively, these functions do
not reconfigure the hardware unless you change the parameters to the functions. Thus, the
performance of these functions is improved by only reconfiguring the hardware when necessary.

However, if you run multiple data acquisition programs simultaneously, any non-timed Easy 1/0
for DAQ functions will not know when the hardware has been reconfigured by another
application accessing the same DAQ device, and the functions will run incorrectly.

To get around this problem, you can force these functions to always reconfigure the hardware by
setting the multitasking mode MULTITASKING_AWARE

You should set the multitasking modeM®LTITASK _AWARE your program calls the non-
timed Easy I/0 for DAQ functions and you expect another data acquisition program to be
accessing the same board while your program is running. In this mode, the Easy I/O for DAQ
functions always reconfigure the hardware on each invocation, which means they will not be
adversely affected by other applications but they will not be optimized for speed.

You should set the multitasking modeM&LTITASK_UNAWARiEyou know there will not be
another program accessing the same DAQ device while your program is running.

Parameters

Input | multitaskingMode integer | When activated, DAQ devices are reconfigyred
to default settings every time an Easy I/O fo
DAQ function invokes such devices.

Return Value

None.

WriteToDigitalLine

short error =WriteToDigitalLine (short device char portNumber[] , short line,
short portWidth , long configure,
unsigned long lineState);

Purpose

Sets the output logic state of a digital line on a digital port.

© National Instruments Corporation 10-53 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

Parameters
Input | device short integer | Assigned by configuration utility.
portNumber string Specifies the digital port this function configures.
line short integer | Specifies the individual bit or line within the port|to
be used for 1/0.
portWidth short integer | The total width in bits of the port. For example, you
can combine two 4-bit ports into an 8-bit port on an
MIO (non E-Series) board by settipgrtWidth
to 8.
configure long integer 1: Configure the digital port before writing; 0: Don’t
configure the digital port before writing. When this
function is called in a loop, it can be optimized by
only configuring the digital port on the first
iteration.
lineState unsigned long| Specifies the new state of the digital line. 1 = logical
integer high; O = logical low.
Return Value
error short integer Refer to error codes in Table 10-5.

Parameter Discussion
portNumber specifies the digital port this function configures.

A portNumber value of O signifies port O, @ortNumber of 1 signifies port 1, and so on. If you
use an SCXI-1160, SCXI-1161, SCXI-1162, or SCXI-1163 module, use the

"SCx!IMDy!0"

syntax, where x is the chassis ID and y is the module device number, to specify the port on a
module.

portWidth is the total width in bits of the port. For example, you can combine two 4-bit ports
into an 8-bit port on an MIO (non E-Series) board by sepgortwidth to 8.

WhenportWidth is greater than the physical port width of a digital port, the following
restrictions apply. ThportWidth must be an integral multiple of the physical port width,
and the port numbers in the combined port must begin with the port namediymber
and must increase consecutively. For examplegrfNumber is 3 andportWidth is
24(bits), LabWindows/CVI uses ports 3, 4, and 5.

LabWindows/CVI Standard Libraries 10-54 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

TheportWidth for the 8255-based digital 1/0 ports (including all digital ports on Lab
boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96, and
AT-MIO-16DE-10/AT-MIO-16D ports 2, 3 and 4) should be at least 8.

configure specifies whether to configure the digital port before writing.

When this function is called in a loop, it can be optimized by only configuring the digital port
on the first iteration.

When you configure a digital 1/0O port that is part of an 8255 PPI (including all digital ports
on Lab boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96,
and AT-MIO-16DE-10/AT-MIO-16D ports 2, 3 and 4), the 8255 PPI goes through a
configuration phase, where all the ports within the same PPI chip get reset to logic low,

regardless of the data direction. The data directions on other ports, however, are maintained.

WriteToDigitalPort

short error =WriteToDigitalPort (short devicg char portNumber[] , short portWidth,
long configure, unsigned long pattern);

Purpose

Outputs a decimal pattern to a digital port.

Parameters
Input | device short integer| Assigned by configuration utility.
portNumber string Specifies the digital port this function configures.
portWidth short integer| The total width in bits of the port. For example,

you can combine two 4-bit ports into an 8-bit port
on an MIO (non E-Series) board by setting
portWidth to 8.

configure long integer | 1: Configure the digital port before writing;
0: Don’t configure the digital port before writing.
When this function is called in a loop, it can be
optimized by only configuring the digital port o
the first iteration.

pattern unsigned Specifies the new state of the lines in the port.
long integer

© National Instruments Corporation 10-55 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

Return Value

error short integer | Refer to error codes in Table 10-5.

Parameter Discussion
portNumber specifies the digital port this function configures.

A portNumber value of 0 signifies port O, @rtNumber of 1 signifies port 1, and so on. If you
use an SCXI-1160, SCXI-1161, SCXI-1162, or SCXI-1163 module, use the

"SCx!MDy!0"

syntax, where is the chassis ID andis the module device number, to specify the port on a
module.

portWidth is the total width in bits of the port. For example, you can combine two 4-bit ports
into an 8-bit port on an MIO (non E-Series) board by segorgWidth to 8.

WhenportWidth is greater than the physical port width of a digital port, the following
restrictions apply. ThportWidth must be an integral multiple of the physical port width,
and the port numbers in the combined port must begin with the port nampediymber
and must increase consecutively. For examplggrifNumber is 3 andportWidth is
24(bits), LabWindows/CVI uses ports 3, 4, and 5.

TheportWidth for the 8255-based digital 1/0 ports (including all digital ports on Lab
boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96, and
AT-MIO-16DE-10/AT-MIO-16D ports 2, 3 and 4) should be at least 8.

configure specifies whether to configure the digital port before writing.

When this function is called in a loop, it can be optimized by only configuring the digital port
on the first iteration.

When you configure a digital 1/0O port that is part of an 8255 PPI (including all digital ports

on Lab boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96,

and AT-MIO-16DE-10/AT-MIO-16D ports 2, 3 and 4), the 8255 PPI goes through a
configuration phase, where all the ports within the same PPI chip get reset to logic low,
regardless of the data direction. The data directions on other ports, however, are maintained.

LabWindows/CVI Standard Libraries 10-56 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

Error Conditions

All of the functions in the Easy I/O for DAQ Library return an error code. A negative number
indicates that an error occurred. If the return value is positive, it has the same description as if it
were negative, but it is considered a warning.

Table 10-5. Easy I/O for DAQ Error Codes

0 Success.

-10001 | syntaxErr An error was detected in the input string; the arrangement or ordering of
the characters in the string is not consistent with the expected ordering.

-10002 | semanticsErr An error was detected in the input string; the syntax of the string i
correct, but certain values specified in the string are inconsistent with other valyes
specified in the string.

[72)

-10003 | invalidvalueErr The value of a numeric parameter is invalid.

-10004 | valueConflictErr The value of a numeric parameter is inconsistent with another|
parameter, and the combination is therefore invalid.

-10005 | badDeviceErr The device parameter is invalid.

-10006 | badLineErr The line parameter is invalid.

-10007 | badChanErr A channel is out of range for the device type or input configuration, the
combination of channels is invalid, or you must reverse the scan order so that
channel O is last.

-10008 | badGroupErr The group parameter is invalid.

-10009 | badCounterErr The counter parameter is invalid.

-10010 | badCountErr The count parameter is too small or too large for the specified counter.

-10011 | badintervalErr The interval parameter is too small or too large for the associated
counter or I/O channel.

-10012 | badRangeErr The analog input or analog output voltage range is invalid for the
specified channel.

-10013 | badErrorCodeErr The driver returned an unrecognized or unlisted error code.

-10014 | groupTooLargeErr The group size is too large for the device.

-10015 | badTimeLimitErr The time limit parameter is invalid.

-10016 | badReadCountErr The read count parameter is invalid.

-10017 | badReadModeErr The read mode parameter is invalid.
-10018 | badReadOffsetErr The offset is unreachable.

(continues)

© National Instruments Corporation 10-57 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library

Table 10-5. Easy I/O for DAQ Error Codes (Continued)

Chapter 10

-10019 | badClkFrequencyErr The frequency parameter is invalid.

-10020 | badTimebaseErr The timebase parameter is invalid.

-10021 | padLimitsErr The limits are beyond the range of the device.

-10022 | pbadwriteCountErr Your data array contains an incomplete update, or you are
trying to write past the end of the internal buffer, or your output operation is
continuous and the length of your array is not a multiple of one half of the interpal
buffer size.

-10023 | padWriteModeErr The write mode is out of range or is invalid.

-10024 | padWriteOffsetErr The write offset plus the write mark is greater than the interpal
buffer size or it must be set to 0.

-10025 | limitsOutOfRangeErr The voltage limits are out of range for this device in the
current configuration. Alternate limits were selected.

-10026 | badInputBufferSpecification The input buffer specification is invalid. This error
results if, for example, you try to configure a multiple-buffer acquisition for a deyice
that cannot perform multiple-buffer acquisition.

-10027 | badDAQEventErr For DAQEvents 0 and 1, general value A must be greater than 0
and less than the internal buffer size. If DMA is used for DAQEvent 1, general Vyalue
A must divide the internal buffer size evenly, with no remainder. If the TIO-10 ig
used for DAQEvent 4, general value A must be 1 or 2.

-10028 | badFilterCutoffErr The cutoff frequency is not valid for this device.

-10080 | badGainErr The gain parameter is invalid.

-10081 | badPretrigCountErr The pretrigger sample count is invalid.

-10082 | badPosttrigCountErr The posttrigger sample count is invalid.

-10083 | badTrigModeErr The trigger mode is invalid.

-10084 | badTrigCountErr The trigger count is invalid.

-10085 | badTrigRangeErr The trigger range or trigger hysteresis window is invalid.

-10086 | badExtRefErr The external reference value is invalid.

-10087 | badTrigTypeErr The trigger type parameter is invalid.

-10088 | badTrigLevelErr The trigger level parameter is invalid.

-10089 | badTotalCountErr The total count specified is inconsistent with the buffer
configuration and pretrigger scan count or with the device type.

-10090 | badRPGEIr The individual range, polarity, and gain settings are valid but the

combination specified is invalid for this device.

(continues)

LabWindows/CVI Standard Libraries 10-58 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

Table 10-5. Easy I/O for DAQ Error Codes (Continued)

-10091 | paditerationsErr The analog output buffer iterations count is invalid. It must be|0
(for indefinite iterations) or 1.

-10100 | badPortWidthErr The requested digital port width is not a multiple of the hardware
port width.

-10240 | noDriverErr The driver interface could not locate or open the driver.
-10241 | oldDriverErr The driver is out of date.
-10242 | functionNotFoundErr The specified function is not located in the driver.

-10243 | configFileErr The driver could not locate or open the configuration file, or the
format of the configuration file is not compatible with the currently installed driv

1%
-

-10244 | devicelnitErr The driver encountered a hardware-initialization error while
attempting to configure the specified device.

-10245 | osInitErr The driver encountered an operating system error while attempting tg
perform an operation, or the driver performed an operation that the operating system
does not recognize.

-10246 | communicationsErr The driver is unable to communicate with the specified external
device.

-10247 | cmosConfigErr The CMOS configuration memory for the computer is empty or
invalid, or the configuration specified does not agree with the current configuration of
the computer.

-10248 | dupAddressErr The base addresses for two or more devices are the same;
consequently, the driver is unable to access the specified device.

-10249 | intConfigErr The interrupt configuration is incorrect given the capabilities of the
computer or device.

-10250 | dupIntErr The interrupt levels for two or more devices are the same.

-10251 | dmaConfigErr The DMA configuration is incorrect given the capabilities of the
computer/DMA controller or device.

-10252 | dupDMAErr The DMA channels for two or more devices are the same.

-10253 | switchlessBoardErr NI-DAQ was unable to find one or more switchless boards you
have configured using WDAQCONF.

-10254 | DAQCardConfigErr Cannot configure the DAQCard because: 1) The correct
version of card and socket services software is not installed. 2) The card in the
PCMCIA socket is not a DAQCard. 3) The base address and/or interrupt level
requested are not available according to the card and socket services resource
manager. Try different settings or use AutoAssign in the NIDAQ configuration
utility.

(continues)

© National Instruments Corporation 10-59 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library Chapter 10

Table 10-5. Easy I/O for DAQ Error Codes (Continued)

-10340 | noConnectErr No RTSI signal/line is connected, or the specified signal and the
specified line are not connected.

-10341 | padConnectErr The RTSI signal/line cannot be connected as specified.

-10342 | multConnectErr The specified RTSI signal is already being driven by a RTSI line,
or the specified RTSI line is already being driven by a RTSI signal.

-10343 | SCXIConfigErr The specified SCXI configuration parameters are invalid, or thg
function cannot be executed given the current SCXI configuration.

-10360 | DSPInitErr The DSP driver was unable to load the kernel for its operating system.

-10370 | badScanListErr The scan list is invalid. This error can result if, for example, yol
mix AMUX-64T channels and onboard channels, or if you scan multiplexed SCKI
channels out of order.

-10400 | userOwnedRsrcErr The specified resource is owned by the user and cannot be
accessed or modified by the driver.

-10401 | unknownDeviceErr The specified device is not a National Instruments product, |or
the driver does not work with the device (for example, the driver was released before
the features of the device existed).

-10402 | deviceNotFoundErr No device is located in the specified slot or at the specified
address.

-10403 | deviceSupportErr The requested action does not work with specified device (thp
driver recognizes the device, but the action is inappropriate for the device).

-10404 | noLineAvailErr No line is available.

-10405 | noChanAvailErr No channel is available.

-10406 | noGroupAvailErr No group is available.

-10407 | lineBusyErr The specified line is in use.

-10408 | chanBusyErr The specified channel is in use.

-10409 | groupBusyErr The specified group is in use.

-10410 | relatedLCGBusyErr A related line, channel, or group is in use; if the driver
configures the specified line, channel, or group, the configuration, data, or
handshaking lines for the related line, channel, or group will be disturbed.

-10411 | counterBusyErr The specified counter is in use.

-10412 | noGroupAssignErr No group is assigned, or the specified line or channel canngt be
assigned to a group.

-10413 | groupAssignErr A group is already assigned, or the specified line or channel is

already assigned to a group.

(continues)

LabWindows/CVI Standard Libraries 10-60 © National Instruments Corporation



Chapter 10

Easy I/O for DAQ Library

Table 10-5. Easy I/O for DAQ Error Codes (Continued)

-10414 | reservedPinErr Selected signal indicates a pin reserved by NI-DAQ. You cannat
configure this pin yourself.

-10440 | sysOwnedRsrcErr The specified resource is owned by the driver and cannot be
accessed or modified by the user.

-10441 | memConfigErr No memory is configured to work with the current data transfer
mode, or the configured memory does not work with the current data transfer mode.
(If block transfers are in use, the memory must be capable of performing block
transfers.)

-10442 | memDisabledErr The specified memory is disabled or is unavailable given the
current addressing mode.

-10443 | memAlignmentErr The transfer buffer is not aligned properly for the current data
transfer mode. For example, the memory buffer is at an odd address, is not aligned to
a 32-bit boundary, is not aligned to a 512-bit boundary, and so on. Alternatively, the
driver is unable to align the buffer because the buffer is too small.

-10444 | memFullErr No more system memory is available on the heap, or no more memory
is available on the device.

-10445 | memLockErr The transfer buffer cannot be locked into physical memory.

-10446 | memPageErr The transfer buffer contains a page break; system resources may
require reprogramming when the page break is encountered.

-10447 | memPagelLockErr The operating environment is unable to grant a page lock.

-10448 | stackMemErr The driver is unable to continue parsing a string input due to stagk
limitations.

-10449 | cacheMemErr A cache-related error occurred, or caching does not work in the
current mode.

-10450 | physicalMemErr A hardware error occurred in physical memory, or no memory|is
located at the specified address.

-10451 | virtualMemErr The driver is unable to make the transfer buffer contiguous in virtual
memory and therefore cannot lock the buffer into physical memory; thus, you cannot
use the buffer for DMA transfers.

-10452 | noIntAvailErr No interrupt level is available for use.

-10453 | intinUseErr The specified interrupt level is already in use by another device.

-10454 | noDMACEIr No DMA controller is available in the system.

-10455 | noDMAAvailErr No DMA channel is available for use.

-10456 | DMAInUseErr The specified DMA channel is already in use by another device,

(continues)

© National Instruments Corporation 10-61 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library

Table 10-5. Easy I/O for DAQ Error Codes (Continued)

Chapter 10

itis
lestion

un
ation
any

nally

will

lock

on.

-10457 | badDMAGroupErr DMA cannot be configured for the specified group because
too small, too large, or misaligned. Consult the user manual for the device in gy
to determine group ramifications with respect to DMA.

-10459 | DLLInterfaceErr The DLL could not be called due to an interface error.

-10460 | interfacelnteractionErr You have attempted to mix LabVIEW 2.2 Vis and
LabVIEW 3.0 VIs. You may run an application consisting only of 2.2 VIs, then r
the 2.2 Board Reset VI, before you can run any 3.0 VIs. You may run an applic
consisting of only 3.0 Vls, then run the 3.0 Device Reset VI, before you can run
2.2 VIs.

-10560 | invalidDSPhandleErr The DSP handle input to the VI is not a valid handle.

-10600 | noSetupErr No setup operation has been performed for the specified resources.

-10601 | multSetupErr The specified resources have already been configured by a setu
operation.

-10602 | nowriteErr No output data has been written into the transfer buffer.

-10603 | groupWriteErr The output data associated with a group must be for a single channel
or must be for consecutive channels.

-10604 | activeWriteErr Once data generation has started, only the transfer buffers origi
written to can be updated. If DMA is active and a single transfer buffer containg
interleaved channel data, all output channels currently using the DMA channel
require new data.

-10605 | endWriteErr No data was written to the transfer buffer because the final data b
has already been loaded.

-10606 | notArmedErr The specified resource is not armed.

-10607 | armedErr The specified resource is already armed.

-10608 | noTransferinProgErr No transfer is in progress for the specified resource.

-10609 | transferinProgErr A transfer is already in progress for the specified resource.

-10610 | transferPauseErr A single output channel in a group cannot be paused if the odtput
data for the group is interleaved.

-10611 | padDirOnSomeLinesErr Some of the lines in the specified channel are not
configured for the transfer direction specified. For a write transfer, some lines were
configured for input. For a read transfer, some lines were configured for output,

-10612 | padLineDirErr The specified line does not support the specified transfer directi

-10613 | padChanDirErr The specified channel does not support the specified transfer

direction.

(continues)

LabWindows/CVI Standard Libraries 10-62 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

Table 10-5. Easy I/O for DAQ Error Codes (Continued)

-10614 | badGroupDirErr The specified group does not support the specified transfer
direction.

-10615 | masterCIKErr The clock configuration for the clock master is invalid.

-10616 | slaveCIKErr The clock configuration for the clock slave is invalid.

-10617 | noCIkSrcErr No source signal has been assigned to the clock resource.

-10618 | badCIkSrcErr The specified source signal cannot be assigned to the clock resgurce.

-10619 | multCIkSrcErr A source signal has already been assigned to the clock resource.

-10620 | noTrigErr No trigger signal has been assigned to the trigger resource.

-10621 | padTrigErr The specified trigger signal cannot be assigned to the trigger resource.

-10622 | preTrigErr The pretrigger mode is not supported or is not available in the currgnt
configuration, or no pretrigger source has been assigned.

-10623 | postTrigErr No posttrigger source has been assigned.

-10624 | delayTrigErr The delayed trigger mode is not supported or is not available in the
current configuration, or no delay source has been assigned.

-10625 | masterTrigErr The trigger configuration for the trigger master is invalid.

-10626 | slaveTrigErr The trigger configuration for the trigger slave is invalid.

-10627 | noTrigDrvErr No signal has been assigned to the trigger resource.

-10628 | multTrigDrvErr A signal has already been assigned to the trigger resource.

-10629 | invalidOpModeErr The specified operating mode is invalid, or the resources have
not been configured for the specified operating mode.

-10630 | invalidReadErr An attempt was made to read O bytes from the transfer buffer, ¢r an
attempt was made to read past the end of the transfer buffer.

-10631 | nolnfiniteModeErr Continuous input or output transfers are invalid in the curremt
operating mode.

-10632 | somelnputsignoredErr Certain inputs were ignored because they are not relevant in
the current operating mode.

-10633 | invalidRegenModeErr This device does not support the specified analog outpuf
regeneration mode.

-10680 | badChanGainErr All channels must have an identical setting for this device.

-10681 | badChanRangeErr All channels of this device must have the same range.

-10682 | padChanPolarityErr All channels of this device must have the same polarity.

-10683 | badChanCouplingErr All channels of this device must have the same coupling.

(continues)

© National Instruments Corporation 10-63 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library

Table 10-5. Easy I/O for DAQ Error Codes (Continued)

Chapter 10

-10684 | badChanlnputModeErr All channels of this device must have the same input
range.

-10685 | clkExceedsBrdsMaxConvRateThe clock rate selected exceeds the recommended
maximum rate for this device.

-10686 | scanListinvalidErr A configuration change has invalidated the scan list.

-10687 | pufferinvalidErr A configuration change has invalidated the allocated buffer.

-10688 | noTrigEnabledErr The total number of scans and pretrigger scans implies that|a
trigger start is intended, but no trigger is enabled.

-10689 | digitalTrigBErr Digital trigger B is illegal for the total scans and pretrigger scans
specified.

-10690 | digitalTrigAandBErr With this device, you cannot enable digital triggers A and |B
at the same time.

-10691 | extConvRestrictionErr With this device, you cannot use an external sample clogk
with an external scan clock, start trigger, or stop trigger.

-10692 | chanClockDisabledErr Cannot start the acquisition because the channel clock is
disabled.

-10693 | extScanClockErr Cannot use an external scan clock when performing a single scan
of a single channel.

-10694 | unsafeSamplingFregErr The sampling frequency exceeds the safe maximum rgte
for the ADC, gains, and filters you are using.

-10695 | DMAnNotAllowedErr You must use interrupts. DMA does not work.

-10696 | multiRateModeErr Multi-rate scanning can not be used with AMUX-64, SCXI, ar
pre-triggered acquisitions.

-10697 | rateNotSupportedErr NI-DAQ was unable to convert your timebase/interval paif to
match the actual hardware capabilities of the specified board.

-10698 | timebaseConflictErr You cannot use this combination of scan and sample clock
timebases for the specified board.

-10699 | polarityConflictErr You cannot use this combination of scan and sample clock
source polarities for this operation, for the specified board.

-10700 | signalConflictErr You cannot use this combination of scan and convert clock signal
sources for this operation, for the specified board.

-10740 | SCXITrackHoldErr A signal has already been assigned to the SCXI track-and-hold
trigger line, or a control call was inappropriate because the specified module is |not

configured for one-channel operation.

(continues)

LabWindows/CVI Standard Libraries 10-64 © National Instruments Corporation



Chapter 10 Easy I/O for DAQ Library

Table 10-5. Easy I/O for DAQ Error Codes (Continued)

-10780 | sc2040InputModeErr When you have an SC2040 attached to your device, all apalog
input channels must be configured for differential input mode.

-10800 | timeOutErr The operation could not complete within the time limit.

-10801 | calibrationErr An error occurred during the calibration process.

-10802 | dataNotAvailErr The requested amount of data has not yet been acquired, or the
acquisition has completed and no more data is available to read.

-10803 | transferStoppedErr The transfer has been stopped to prevent regeneration of qutput
data.

1%

-10804 | earlyStopErr The transfer stopped prior to reaching the end of the transfer buffer.

-10805 | overRunErr The clock source for the input transfer is faster than the maximum
input-clock rate; the integrity of the data has been compromised. Alternatively, the
clock source for the output transfer is faster than the maximum output-clock rate; a
data point was generated more than once because the update occurred before|new
data was available.

-10806 | noTrigFoundErr No trigger value was found in the input transfer buffer.

-10807 | earlyTrigErr The trigger occurred before sufficient pretrigger data was acquired.

-10809 | gateSignalErr Attempted to start a pulse width measurement with the pulse in the
active state.

-10840 | softwareErr The contents or the location of the driver file was changed between
accesses to the driver.

-10841 | firmwareErr The firmware does not support the specified operation, or the firmware
operation could not complete due to a data-integrity problem.

-10842 | hardwareErr The hardware is not responding to the specified operation, or the
response from the hardware is not consistent with the functionality of the hardware.

-10843 | underFlowErr The update rate exceeds your system's capacity to supply data {o the
output channel.

-10844 | underWriteErr At the time of the update for the device-resident memory,
insufficient data was present in the output transfer buffer to complete the updatg.

D

-10845 | overFlowErr At the time of the update clock for the input channel, the device-
resident memory was unable to accept additional data—one or more data points may
have been lost.

-10846 | overWriteErr New data was written into the input transfer buffer before the old |data
was retrieved.

-10847 | dmaChainingErr New buffer information was not available at the time of the DNA
chaining interrupt; DMA transfers will terminate at the end of the currently activs
transfer buffer.

D

(continues)

© National Instruments Corporation 10-65 LabWindows/CVI Standard Libraries



Easy I/O for DAQ Library

Table 10-5. Easy I/O for DAQ Error Codes (Continued)

Chapter 10

-10848

noDMACountAvalilErr The driver could not obtain a valid reading from the
transfer-count register in the DMA controller.

-10849

openFileErr Unable to open a file.

-10850

closeFileErr Unable to close a file.

-10851

fileSeekErr Unable to seek within a file.

-10852

readFileErr Unable to read from a file.

-10853

writeFileErr Unable to write to a file.

-10854

miscFileErr An error occurred accessing a file.

-10880

updateRateChangeErrA change to the update rate is not possible at this time
because: 1) When waveform generation is in progress, you cannot change the
timebase. 2) When you make several changes in a row, you must wait long eng
for each change to take effect before you request further changes.

interval
pugh

-10920

gpctrDataLossErr One or more data points may have been lost during buffered
GPCTR operations due to speed limitations of your system.

LabWindows/CVI Standard Libraries 10-66 © National Instruments Corporation



Appendix A
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve technical problems you might have as well as a form you can use to comment on
the product documentation. Filling out a copy of Teehnical Support Forrhefore contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S.
and Canada, applications engineers are available Monday through Friday from 8:00 a.m. to

6:00 p.m. (central time). In other countries, contact the nearest branch office. You may fax
guestions to us at any time.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded
instructions on how to use the bulletin board and FTP services and for BBS automated
information, call (512) 795-6990. You can access these services at:

United States: (512) 794-5422 or (800) 327-3077
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 148 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FaxBack Support

FaxBack is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access FaxBack from a touch-tone telephone at the
following number: (512) 418-1111.

© National Instruments Corporation A-1 LabWindows/CVI Standard Libraries



Customer Communication

FTP Support

To access our FTP site, log on to our Internet lipshatinst.com
Internet address, suchjagsmith@anywhere.com
documents are located in tlipport  directories.

Appendix A

, @S anonymous and use your
, as your password. The support files and

E-Mail Support (currently U.S. only)

You can submit technical support questions to the appropriate applications engineering team through e-
mail at the Internet addresses listed below. Remember to include your name, address, and phone number
SO we can contact you with solutions and suggestions.

GPIB: gpib.support@natinst.com
DAQ: dag.support@natinst.com
VXI: vXi.support@natinst.com
LabVIEW: Iv.support@natinst.com
LabWindows: Iw.support@natinst.com

HiQ: hig.support@natinst.com
VISA: visa.support@natinst.com
Lookout: lookout.support@natinst.com

Fax and Telephone Support

National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact the
source from which you purchased your software to obtain support.

Telephone

Fax

Australia 03 9879 9422 0398799179
Austria 0662 4579900 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 519 622 9310

Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 90 527 2321 90 502 2930
France 148 14 24 24 1481424 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505

Italy 02 413091 02 41309215
Japan 035472 2970 035472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5520 3282
Netherlands 0348 433466 0348 430673
Norway 3284 8400 3284 86 00
Singapore 2265886 2265887

Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 73043 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154
LabWindows/CVI Standard Libraries A-2 © National Instruments Corporation



Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware, and use the completed
copy of this form as a reference for your current configuration. Completing this form accurately before contacting
National Instruments for technical support helps our applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem, include the
configuration forms from their user manuals. Include additional pages if necessary.

Name

Company

Address

Fax ( ) Phone ( )
Computer brand Model Processor

Operating system: Windows 3.1, Windows for Workgroups 3.11, Windows NT 3.1, Windows NT 3.5,
Windows 95, other (include version number)

Clock Speed MHz RAM MB Display adapter
Mouse yes no Other adapters installed
Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model Revision

Configuration

National Instruments software product Version

Configuration

The problem is

List any error messages

The following steps will reproduce the problem




Hardware and Software Configuration Form

Record the settings and revisions of your hardware and software on the line to the right of each item. Complete a
new copy of this form each time you revise your software or hardware configuration, and use this form as a
reference for your current configuration. When you complete this form accurately before contacting National
Instruments for technical support, our applications engineers can answer your questions more efficiently.

National Instruments Products

Data Acquisition Hardware Revision

Interrupt Level of Hardware

DMA Channels of Hardware

Base I/0O Address of Hardware

NI-DAQ, LabVIEW, or
LabWindows Version

Other Products

Computer Make and Model

Microprocessor

Clock Frequency

Type of Video Board Installed

Operating System

Operating System Version

Operating System Mode

Programming Language

Programming Language Version

Other Boards in System

Base I/0O Address of Other Boards

DMA Channels of Other Boards

Interrupt Level of Other Boards




Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our products. This
information helps us provide quality products to meet your needs.

Title: LabWindows®/CVI Standard Libraries Reference Manual
Edition Date: July 1996
Part Number: 320682C-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Fax ( ) Phone ( )

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678

Austin, TX 78730-5039



Glossary

Prefix Meaning Value
n- nano- 10°
m micro- 10°
m- milli- 10°
k- kilo- 10
M- mega- 10°

Numbers/Symbols

1D

2D

A
A
A/D
AC

ADC A/D
converter

ADC resolution

analog trigger

© National Instruments Corporation G-1

One-dimensional.

Two-dimensional.

Analog input.
Analog-to-digital.
Alternating current.

An electronic device, often an integrated circuit, that converts an analog
voltage to a digital number.

The resolution of the ADC, which is measured in bits. An ADC with
16 bits has a higher resolution, and thus a higher degree of accuracy, than a
12-bit ADC.

A trigger that occurs at a user-selected point on an incoming analog signal.
Triggering can be set to occur at a specific level on either an increasing or a
decreasing signal (positive or negative slope). Analog triggering can be
implemented either in software or in hardware. When implemented in
software, all data is collected, transferred into system memory, and
analyzed for the trigger condition. When analog triggering is implemented

LabWindows/CVI Standard Libraries



Glossary

ANSI
AO

asynchronous

automatic serial

B
B

background
acquisition

bipolar

block-mode

C

CodeBuilder

cold-junction
compensation

conversion time

counter/timer

coupling

LabWindows/CVI Standard Libraries G-2

in hardware, no data is transferred to system memory until the trigger
condition has occurred.

American National Standards Institute.
Analog output.

(1) Hardware—A property of an event that occurs at an arbitrary time,
without synchronization to a reference clock.
(2) Software—A property of a function that begins an operation and
returns prior to the completion or termination of the operation.

A feature in which serial polls are executed automatically by the GPIB
polling driver whenever a device asserts the SRQ line.

Bytes.

Data is acquired by a DAQ system while another program or processing
routine is running without apparent interruption.

A signal range that includes both positive and negative values (for
example, -5V to +5 V).

A high-speed data transfer in which the address of the data is sent followed
by a specified number of back-to-back data words.

The LabWindows/CVI feature that creates code basedion dfile to
connect your GUI to the rest of your program. This code is complete and
can be compiled and run as soon as it is created.

A method of compensating for inaccuracies in thermocouple circuits.
The time required, in an analog input or output system, from the moment a

channel is interrogated (such as with a read instruction) to the moment that
accurate data is available.

A circuit that counts external pulses or clock pulses (timing).

The manner in which a signal is connected from one location to another.

© National Instruments Corporation



D
D/A

DAC D/A
converter

Data acquisition

DC

device

differential input

digital port

DIO

E

external trigger

F

FIFO

format string

© National Instruments Corporation G-3

Glossary

Digital-to-analog.

An electronic device, often an integrated circuit, that converts a digital
number into a corresponding analog voltage or current.

(1) Collecting and measuring electrical signals from sensors, transducers,
and test probes or fixtures and inputting them to a computer for processing.
(2) Collecting and measuring the same kinds of electrical signals with A/D
and/or DIO boards plugged into a PC, and possibly generating control
signals with D/A and/or DIO boards in the same PC.

Direct current.

Device is used to refer to a DAQ device inside your computer or attached
directly to your computer via a parallel port. Plug-in boards, PCMCIA
cards, and devices such as the DAQPad-1200, which connects to your
computer parallel port, are all examples of DAQ devices. SCXI modules
are distinct from devices, with the exception of the SCXI-1200, which is a
hybrid.

An analog input consisting of two terminals, both of which are isolated
from computer ground, whose difference is measured.

See port.

Digital 1/0.

A voltage pulse from an external source that triggers an event such as A/D
conversion.

A first-in first-out memory buffer; the first data stored is the first data sent
to the acceptor.

A mini-program that instructs the formatting and scanning functions how
to transform the input arguments to the output arguments. For conciseness,
format strings are constructed using single-character codes.

LabWindows/CVI Standard Libraries



Glossary

G
G gain

gender

gender changer

GPIB

group

H

handshaking

Instrument Library

interrupt

The factor by which a signal is amplified, sometimes expressed in decibels.

Refers to cable connector types. A male connector is one with protruding
pins, like a lamp plug. A female connector has holes, like an outlet.

A small device that can be attached to serial cable connectors or PC
sockets, among others, to convert a female connector into a male, or a male
connector into a female.

General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE Standards
488.1-1987 and 488.2-1992.

A collection of digital ports, combined to form a larger entity for digital
input and/or output.

Prevents overflow of the input queue that occurs when the receiver is
unable to empty its input queue as quickly as the sender is able to fill it.
The RS-232 Library has two types of handshaking—software handshaking,
and hardware handshaking. You should enable one or the other if you want
to ensure that your application program synchronizes its data transfers with
other serial devices that perform handshaking.

Hertz.

Input/output.
Identification.
Institute of Electrical and Electronics Engineers.
Inches.
A LabWindows/CVI library that contains instrument drivers.

A computer signal indicating that the CPU should suspend its current task
to service a designated activity.

LabWindows/CVI Standard Libraries G-4 © National Instruments Corporation



K
KB
kS

ksamples

LSB

M

manual scaling

MB
MIO
ms

mux

N

NI-488 functions

NI-488.2 routines

P

port

postriggering

© National Instruments Corporation G-5

Glossary

Kilobytes of memory.
1,000 samples.

1,000 samples.

Least significant bit.

Wher8etAxRange is called to explicitly set the maximum and
minimum X and Y values.

Megabytes of memory.
Multifunction 1/O.
Milliseconds.

Multiplexer; a switching device with multiple inputs that sequentially
connects each of its inputs to its output, typically at high speeds, in order to
measure several signals with a single analog input channel.

National Instruments functions you use to communicate with GPIB devices
built according to the ANSI/IEEE Standards 488.1-1987 and 488.2-1992.

National Instruments routines you use to communicate with GPIB devices
built according to the ANSI/IEEE Standard 488.2-1992.

A digital port, consisting of four or eight lines of digital input and/or
output.

The technique used on a DAQ board to acquire a programmed number of
samples after trigger conditions are met.

LabWindows/CVI Standard Libraries



Glossary

pretriggering The technique used on a DAQ board to keep a continuous buffer filled with
data, so that when the trigger conditions are met, the sample includes the
data leading up to the trigger condition.

pts Points.
R
resolution The smallest signal increment that can be detected by a measurement

system. Resolution can be expressed in bits, in proportions, or in percent of
full scale. For example, a system has 12-bit resolution, one part in
4,096 resolution, and 0.0244 percent of full scale.

RTD Resistance temperature detector. A metallic probe that measures
temperature based upon its coefficient of resistivity.

S
S Seconds.
S/s Samples per second; used to express the rate at which a DAQ board

samples an analog signal.

Sample-and-Hold A circuit that acquires and stores an analog voltage on a capacitor for a
(S/H) short period of time.

SCXI Signal Conditioning eXtensions for Instrumentation; the National
Instruments product line for conditioning low-level signals within an
external chassis near sensors so only high-level signals are sent to DAQ
boards in the noisy PC environment.

self-calibrating A property of a DAQ board that has an extremely stable onboard reference
and calibrates its own A/D and D/A circuits without manual adjustments
by the user.

Single-Ended (SE) An analog input that is measured with respect to a common ground.
Inputs

software trigger A programmed event that triggers an event such as data acquisition.

standard libraries ~ The LabWindows/CVI Analysis, ANSI C, DDE, Formatting and 1/O, GPIB
and GPIB-488.2, RS-232, TCP, and Utility libraries.

STC System Timing Controller.

synchronous (1) Hardware—Property of an event that is synchronized to a referekce cloc
(2) Software—Property of a function that begins an operation and returns
only when the operation is complete.

LabWindows/CVI Standard Libraries G-6 © National Instruments Corporation



Glossary

T

TC Terminal count.

throughput rate The data, measured in bytes/s, for a given continuous operation, calculated
to include software overhead. Throughput Rate = Transfer Rate - Software
Overhead Factor.

transfer rate The rate, measured in bytes/s, at which data is moved from source to
destination after software initialization and set up operations; the maximum
rate at which the hardware can operate.

U

unipolar A signal range that is always positive (for example, 0 to +10 V).

\Y

\% Volts.

VDC Volts direct current.

X

Xmodem functions Allow you to transfer files using a data transfer protocol. The protocol uses
a generally accepted technique for performing serial file transfers with
error-checking. Files are sent in packets that contain data from the files
plus error-checking and synchronization information.

© National Instruments Corporation G-7 LabWindows/CVI Standard Libraries



Index

Numbers/Symbols

1D array functionsSeeone-dimensional
array operation functions.
1D complex operation functionSeeone-
dimensional complex operation functions.
2D array functionsSeetwo-dimensional
array operation functions.
* (asterisks) in format specifiers
formatting functions, 2-39
scanning functions, 2-48

A

Abs1D function, 3-4 to 3-5
accessing physical memoi§eephysical
memory access functions.
accessing window propertieSeewindow
properties, accessing.
Add1D function, 3-5
Add2D function, 3-5 to 3-6
AdviseDDEDataReady function, 6-6 to 6-8
AlAcquireTriggeredWaveforms function,
10-8 to 10-13
AlAcquireWaveforms function, 10-13
to 10-14
AlCheckAcquisition function, 10-15
AlClearAcquisition function, 10-15
AlReadAcquisition function, 10-16 to 10-17
AlSampleChannel function, 10-17 to 10-18
AlSampleChannels function, 10-18
AlStartAcquisition function, 10-19
analog input functionsSee alsdeasy /0 for
DAQ Library.
AlAcquireTriggeredWaveforms, 10-8
to 10-13
AlAcquireWaveforms, 10-33 to 10-34
AlSampleChannel, 10-17 to 10-18
AlSampleChannels, 10-18
Channel String, 10-4 to 10-5

© National Instruments Corporation -1

analog output function§ee alsdeasy 1/0
for DAQ Library.
AOClearWaveforms, 10-20
AOGenerateWaveforms, 10-21 to 10-22
AOUpdateChannel, 10-22 to 10-23
AOUpdateChannels, 10-23 to 10-24
Channel String, 10-7
Analysis Library functions
error conditions, 3-37
function panels
classes and subclasses, 3-3
function tree (table), 3-1 to 3-2
hints for using, 3-3 to 3-4
function reference
Abs1D, 3-4 to 3-5
Addi1D, 3-5
Add2D, 3-5to 3-6
ClearlD, 3-6 to 3-7
CopylD, 3-7
CxAdd, 3-7 to 3-8
CxAdd1D, 3-8 to 3-9
CxDiv, 3-9
CxDiv1D, 3-10
CxLinEvlD, 3-11
CxMul, 3-12
CxMul1D, 3-12 to 3-13
CxRecip, 3-13 to 3-14
CxSub, 3-14
CxSublD, 3-15
Determinant, 3-16
DivlD, 3-16 to 3-17
Div2D, 3-17 to 3-18
DotProduct, 3-18
GetAnalysisErrorString, 3-19
Histogram, 3-19 to 3-20
InvMatrix, 3-20 to 3-21
LinEvlD, 3-21
LinEv2D, 3-22
MatrixMul, 3-23
MaxMinlD, 3-24

LabWindows/CVI Standard Libraries



Index

MaxMin2D, 3-24 to 3-25
Mean, 3-25 to 3-26
MullD, 3-26 to 3-27
Mul2D, 3-27
NeglD, 3-28
SetlD, 3-28
Sort, 3-29
StdDev, 3-29 to 3-30
SublD, 3-30 to 3-31
Sub2D, 3-31
SubsetlD, 3-32
ToPolar, 3-32 to 3-33
ToPolarlD, 3-33 to 3-34
ToRect, 3-34 to 3-35
ToRectlD, 3-35
Transpose, 3-36
overview, 3-1
reporting analysis errors, 3-4
ANSI C Library
C locale, 1-2 to 1-5
information values (table), 1-3
LC_COLLATE, 1-5
LC_CTYPE, 1-4to 1-5
LC_MONETARY, 1-4
LC_NUMERIC, 1-4
LC_TIME, 1-5
character processing, 1-5
classes (table), 1-1 to 1-2
control functions, 1-7 to 1-9
errno set by file I/O functions, 1-6
fdopen function, 1-9 to 1-10
input/output facilities, 1-6
low-level 1/O functions, 1-2
mathematical functions, 1-6
standard language additions, 1-2 to 1-5
string processing, 1-5
time and date functions, 1-6 to 1-7
ANSI C macros, 1-2
AOClearWaveforms function, 10-20
AOGenerateWaveforms function, 10-21
to 10-22
AOUpdateChannel function, 10-22 to 10-23
AOUpdateChannels function, 10-23
to 10-24
array operation functions
Absl1D, 3-4 to 3-5

LabWindows/CVI Standard Libraries -2

Add1D, 3-5
Add2D, 3-5to 3-6
DivlD, 3-16 to 3-17
Div2D, 3-17 to 3-18
LinEvlD, 3-21
LinEv2D, 3-22
MaxMinlD, 3-24
MaxMin2D, 3-24 to 3-25
MullD, 3-26 to 3-27
Mul2D, 3-27
NeglD, 3-28
SublD, 3-30 to 3-31
Sub2D, 3-31
SubsetlD, 3-32
array utility functions
ClearlD, 3-6 to 3-7
CopylD, 3-7
SetlD, 3-28
ArrayToFile function, 2-4 to 2-6
asterisks (*) in format specifiers
formatting functions, 2-39
scanning functions, 2-48
asynchronous acquisition functions
AlCheckAcquisition, 10-15
AlClearAcquisition, 10-15
AlReadAcquisition, 10-16 to 10-17
AlStartAcquisition, 10-19
PlotLastAlWaveformsPopup, 10-47
asynchronous callbacks
notification of SRQ and other GPIB
events, 4-12
restrictions with ibNotify function, 4-20
automatic serial polling
compatibility, 4-8
hardware interrupts, 4-8 to 4-9
purpose and use, 4-7 to 4-8
RQS events
ibInstallCallback function, 4-17
ibNotify function, 4-19
SRQI events
ibInstallCallback function, 4-17
ibNotify function, 4-19

© National Instruments Corporation



B

Beep function, 8-5
board control functions, GPIB, 4-7
board control functions, GPIB Library, 4-3
break on library error functions
DisableBreakOnLibraryErrors, 8-11
to 8-12
EnableBreakOnLibraryErrors, 8-15
GetBreakOnLibraryErrors, 8-17
GetBreakOnProtectionErrors, 8-18
SetBreakOnLibraryErrors, 8-63 to 8-64
SetBreakOnProtectionErrors, 8-64
to 8-65
Breakpoint function, 8-6
BroadcastDDEDataReady function, 6-8
to 6-9
bus control functions, GPIB Library, 4-3
byte count variable (ibcntl), 4-6

C

C locale, 1-2 to 1-5
information values (table), 1-3
LC _COLLATE, 1-5
LC_CTYPE, 1-4to 1-5
LC_MONETARY, 1-4
LC_NUMERIC, 1-4
LC _TIME, 1-5
cablesSeeRS-232 cables.
callback functions
DDE Library functions, 6-2 to 6-4
DDE transaction types (table), 6-4
example using Excel, 6-5 to 6-6
parameter prototypes (table), 6-3
GPIB/GPIB-488.2 Libraries
function tree, 4-3
ibInstallCallback, 4-12, 4-14 to 4-17
ibNotify, 4-12, 4-17 to 4-20
Windows NT and Windows 95
asynchronous callbacks, 4-12
driver version requirements, 4-12
ibInstallCallback, 4-14 to 4-17

ibNotify function, 4-17 to 4-20
synchronous callbacks, 4-12

© National Instruments Corporation 1-3

Index

RS-232 Library
function tree, 5-2
InstallComCallback, 5-22 to 5-25
TCP Library functions
overview, 7-2 to 7-3
TCP transaction types (table), 7-3
X Property Library functions
InstallXPropertyCallback, 9-4, 9-25
to 9-27
overview, 9-4
UninstallXPropertyCallback, 9-4, 9-33
character processing, ANSI C, 1-5
classes, ANSI C Library, 1-1 to 1-2
clear functions, GPI1B-488.2 Library, 4-3
Clear1D function, 3-6 to 3-7
ClientDDEExecute function, 6-10
ClientDDERead function, 6-10 to 6-11
ClientDDEWTrite function, 6-12 to 6-13
clients and servers
DDE Library functions, 6-2
TCP Library functions, 7-2
ClientTCPRead function, 7-3 to 7-4
ClientTCPWrite function, 7-4 to 7-5
close functions
GPIB and GPIB-488.2 Libraries, 4-2
RS-232 Library, 5-1
CloseCom function, 5-8 to 5-9
CloseCVIRTE function, 8-6
CloseDev function, 4-6 to 4-7, 4-13
CloseFile function, 2-7
CloselnstrDevs function, 4-14
Cls function, 8-7
ComBreak function, 5-9
ComFromkFile function, 5-3, 5-9 to 5-10
communications function§eeRS-232
Library functions.
CompareBytes function, 2-7 to 2-8
CompareStrings function, 2-8 to 2-9
complex operation functions
CxAdd, 3-7 to 3-8
CxAdd1D, 3-8 to 3-9
CxDiv, 3-9
CxDiv1D, 3-10
CxLinEv1D, 3-11
CxMul, 3-12
CxMullD, 3-12 to 3-13

LabWindows/CVI Standard Libraries



Index

CxRecip, 3-13 to 3-14
CxSub, 3-14
CxSublD, 3-15
ToPolar, 3-32 to 3-33
ToPolarlD, 3-33 to 3-34
ToRect, 3-34 to 3-35
ToRectlD, 3-35
ComRd function, 5-11
ComRdByte function, 5-12
ComRdTerm function, 5-12 to 5-13
ComSetEscape function, 5-14 to 5-15
ComTokFile function, 5-3, 5-15 to 5-16
ComWrt function, 5-16 to 5-17
ComWrtByte function, 5-17 to 5-18
configuration functions, GPIB Library, 4-2
ConnectToDDEServer function, 6-2, 6-13
to 6-15
ConnectToTCPServer function, 7-5 to 7-7
ConnectToXDisplay function, 9-3, 9-7
to 9-9
ContinuousPulseGenConfig, 10-24 to 10-26
control functions
ANSI C library, 1-7 to 1-9
error codes, 1-8
RS-232 Library
ComBreak, 5-9
ComSetEscape, 5-14 to 5-15
FlushinQ, 5-18
SetComTime, 5-29
SetCTSMode, 5-7, 5-30
SetXMode, 5-6, 5-31
CopylD function, 3-7
CopyBytes function, 2-9 to 2-10
CopyFile function, 8-7 to 8-8
CopyString function, 2-10
Count control, GPIB, 4-6
Count Variables (ibcnt, ibcntl), 4-6, 4-10
CounterEventOrTimeConfig function, 10-26
to 10-29
CounterMeasureFrequency function, 10-29
to 10-32
CounterRead function, 10-32 to 10-33
CounterStart function, 10-33
CounterStop function, 10-34
counter/timer functionsSee alsdeasy I/0
for DAQ Library.

LabWindows/CVI Standard Libraries -4

ContinuousPulseGenConfig, 10-24
to 10-26
CounterEventOrTimeConfig, 10-26
to 10-29
CounterMeasureFrequency, 10-29 to
10-32
CounterRead, 10-32 to 10-33
CounterStart, 10-33
CounterStop, 10-34
DelayedPulseGenConfig, 10-34 to 10-36
FrequencyDividerConfig, 10-37 to 10-39
ICounterControl, 10-45 to 10-47
PulseWidthOrPeriodMeasConfig, 10-48
to 10-49
valid counters (table), 10-7
CreateXProperty function, 9-3, 9-9 to 9-10
CreateXPropType function, 9-3, 9-10
to 9-12
customer communicationx, Appendix-1
CVILowLevelSupportDriverLoaded
function, 8-8 to 8-9
CVIXDisplay global variable, 9-3
CVIXHiddenWindow global variable, 9-4
CVIXRootWindow variable, 9-3
CxAdd function, 3-7 to 3-8
CxAdd1D function, 3-8 to 3-9
CxDiv function, 3-9
CxDiv1D function, 3-10
CxLinEv1D function, 3-11
CxMul function, 3-12
CxMul1D function, 3-12 to 3-13
CxRecip function, 3-13 to 3-14
CxSub function, 3-14
CxSubl1D function, 3-15

D

data acquisition function§eeEasy 1/O for
DAQ Library.

data formatting functionSeeformatting
functions; scanning functions; status
functions.

DateStr function, 8-9

date/time functions

ANSI C Library, 1-6 to 1-7

© National Instruments Corporation



DateStr, 8-9
GetSystemDate, 8-38
GetSystemTime, 8-39
SetSystemDate, 8-76
SetSystemTime, 8-77
TimeStr, 8-83
DCE device, 5-5
DDE Library functions
callback function, 6-2 to 6-4
functions capable of trigger callback
function (table), 6-4
parameter prototypes (table), 6-3
clients and servers, 6-2
connecting to DDE server, 6-2
DDE data links, 6-4
error conditions, 6-23 to 6-24
function reference
AdviseDDEDataReady, 6-6 to 6-8
BroadcastDDEDataReady, 6-8 to 6-9
ClientDDEExecute, 6-10
ClientDDERead, 6-10 to 6-11
ClientDDEWrite, 6-12 to 6-13
ConnectToDDEServer, 6-2, 6-13
to 6-15
DisconnectFromDDEServer, 6-15
GetDDEErrorString, 6-15 to 6-16
RegisterDDEServer, 6-2, 6-16
to 6-18
ServerDDEWrite, 6-19 to 6-20
SetUpDDEHOotLink, 6-2, 6-4, 6-20
to 6-21
SetUpDDEWarmLink, 6-2, 6-4, 6-21
to 6-22
TerminateDDELInk, 6-22
UnregisterDDEServer, 6-23
function tree (table), 6-1
Microsoft Excel example, 6-5 to 6-6
DDE transaction types (table), 6-4
Delay function, 8-9 to 8-10
DelayedPulseGenConfig function, 10-34
to 10-36
DeleteDir function, 8-10
DeleteFile function, 8-10 to 8-11
DestroyXProperty function, 9-12 to 9-13
DestroyXPropType function, 9-13 to 9-14
Determinant function, 3-16

© National Instruments Corporation I-5

Index

device control functions, GPIB
Library, 4-2, 4-7
device drivers, GPIB, 4-5 to 4-7
device I/O functions, GPIB-488.2
Library, 4-3
Device Manager functions, GPIB
CloseDev, 4-6 to 4-7, 4-13
CloselnstrDevs, 4-14
ibInstallCallback, 4-12, 4-14 to 4-17
ibNotify, 4-12
ibNotify function, 4-17 to 4-20
OpenDeyv, 4-6, 4-21
Threadlbcnt, 4-22
Threadlbcntl, 4-22 to 4-23
Threadlberr, 4-23 to 4-25
Threadlbsta, 4-25 to 4-26
writing instrument modules (note), 4-7
device numbers, Easy 1/O for DAQ
Library, 10-4
digital input/output functions
ReadFromDigitalLine, 10-49 to 10-51
ReadFromDigitalPort, 10-51 to 10-52
WriteToDigitalLine, 10-53 to 10-55
WriteToDigitalPort, 10-55 to 10-56
directory utility functions
DeleteDir, 8-10
GetDir, 8-20
GetDrive, 8-20 to 8-21
GetFullPathFromProject, 8-29 to 8-30
GetModuleDir, 8-31 to 8-32
GetProjectDir, 8-34
MakeDir, 8-54 to 8-55
MakePathname, 8-55
SetDir, 8-66
SetDrive, 8-66 to 8-67
SplitPath, 8-77 to 8-78
DisableBreakOnLibraryErrors function,
8-11to 8-12
Disablelnterrupts function, 8-12
DisableTaskSwitching function, 8-12
to 8-15
DisconnectFromDDEServer function, 6-15
DisconnectFromTCPServer function, 7-7
to 7-8
DisConnectFromXDisplay function, 9-14
to 9-15

LabWindows/CVI Standard Libraries



Index

DisconnectTCPClient function, 7-7

Div1D function, 3-16 to 3-17

Div2D function, 3-17 to 3-18

documentation
conventions used in manuaix
LabWindows/CVI documentation sexx
organization of manuakvii-xviii
related documentatiorx

DotProduct function, 3-18

DTE device, 5-5

Dynamic Data Exchange (DDEJeeDDE

Library functions.
dynamic link library, GPIB, 4-5 to 4-6

E

Easy 1/0 for DAQ Library
advantages, 10-1 to 10-2
calls to Data Acquisition Library
(note), 10-1
Channel String
analog input functions, 10-4 to 10-5
analog output functions, 10-7
classes, 10-3
command strings, 10-6
device numbers, 10-4
error conditions (table), 10-57 to 10-66
function reference
AlAcquireTriggeredWaveforms,
10-8 to 10-13
AlAcquireWaveforms, 10-33
to 10-34
AlICheckAcquisition, 10-15
AlClearAcquisition, 10-15
AlReadAcquisition, 10-16 to 10-17
AlSampleChannel, 10-17 to 10-18
AlSampleChannels, 10-18
AlStartAcquisition, 10-19
AOClearWaveforms, 10-20
AOGenerateWaveforms, 10-21
to 10-22
AOUpdateChannel, 10-22 to 10-23
AOUpdateChannels, 10-23 to 10-24
ContinuousPulseGenConfig, 10-24
to 10-26

LabWindows/CVI Standard Libraries -6

CounterEventOrTimeConfig, 10-26
to 10-29
CounterMeasureFrequency, 10-29
to 10-32
CounterRead, 10-32 to 10-33
CounterStart, 10-33
CounterStop, 10-34
DelayedPulseGenConfig, 10-34
to 10-36
FrequencyDividerConfig, 10-37
to 10-39
GetAlLimitsOfChannel, 10-40 to
10-41
GetChannelindices, 10-41 to 10-42
GetChannelNameFromindex, 10-42
to 10-43
GetDAQErrorString, 10-43 to 10-44
GetNumChannels, 10-44
GroupByChannel, 10-44 to 10-45
ICounterControl, 10-45 to 10-47
PlotLastAlWaveformsPopup, 10-47
PulseWidthOrPeriodMeasConfig,
10-48 to 10-49
ReadFromDigitalLine, 10-49
to 10-51
ReadFromDigitalPort, 10-51
to 10-52
SetEasylOMultitaskingMode, 10-53
WriteToDigitalLine, 10-53 to 10-55
WriteToDigitalPort, 10-55 to 10-56
function tree, 10-2 to 10-3
limitations, 10-2
overview, 10-1
valid counters for counter/timer
functions (table), 10-7
EnableBreakOnLibraryErrors function, 8-15
Enablelnterrupts function, 8-15 to 8-16
EnableTaskSwitching function, 8-16
END message, GPIB, 4-9
end-of-string (EOS) character, GPIB, 4-9
end-or-identify (EOI) signal, GPIB, 4-9
errno global variable, set by file /0
functions, 1-6
error codes
control functions, 1-8
X Property Library, 9-4 to 9-6

© National Instruments Corporation



error conditions
Analysis Library functions, 3-37
DDE Library functions, 6-23 to 6-24
Easy I/0O for DAQ Library, 10-57
to 10-66
RS-232 Library functions, 5-36 to 5-37
TCP Library functions, 7-12
Error control, GPIB, 4-6
Error (iberr) global variable, 4-6, 4-11
error reporting
Analysis Library functions, 3-4
RS-232 Library functions, 5-3
error-related functionsSee alsstatus
functions.
DisableBreakOnLibraryErrors, 8-11
to 8-12
EnableBreakOnLibraryErrors, 8-15
GetAnalysisErrorString, 3-19
GetBreakOnLibraryErrors, 8-17
GetBreakOnProtectionErrors, 8-18
GetDDEErrorString, 6-15 to 6-16
GetFmtErrNdx, 2-18
GetRS232ErrorString, 5-22
GetTCPErrorString, 7-8
GetXPropErrorString, 9-15
ReturnRS232Err, 5-28
SetBreakOnLibraryErrors, 8-63 to 8-64
SetBreakOnProtectionErrors, 8-64
to 8-65
example program$eeformatting function
programming examples; scanning function
programming examples.
ExecutableHasTerminated function, 8-16
to 8-17
executables, launchin§eestandalone
executables, launching.
extended character sets, 1-2
external module utility functions
GetExternalModuleAddr, 8-21 to 8-22
LoadExternalModule, 8-49 to 8-52
LoadExternalModuleEXx, 8-52 to 8-54
ReleaseExternalModule, 8-59
RunExternalModule, 8-62 to 8-63
UnloadExternalModule, 8-84 to 8-85

© National Instruments Corporation I-7

Index

F

fax technical support, Appendix-1
fdopen function, ANSI C Library, 1-9
to 1-10
file 1/0O functions
CloseFile, 2-7
errno global variable, 1-6
GetFilelnfo, 2-17
OpenFile, 2-20 to 2-22
ReadFile, 2-22 to 2-23
SetFilePtr, 2-26 to 2-28
WriteFile, 2-29 to 2-30
file utility functions
CopyFile, 8-7 to 8-8
DeleteFile, 8-10 to 8-11
GetFileAttrs, 8-23 to 8-24
GetFileDate, 8-24 to 8-25
GetFileSize, 8-25 to 8-26
GetFileTime, 8-26 to 8-27
GetFirstFile, 8-27 to 8-29
GetNextFile, 8-33
RenamekFile, 8-60 to 8-61
SetFileAttrs, 8-67 to 8-68
SetFileDate, 8-68 to 8-69
SetFileTime, 8-70
SplitPath, 8-77 to 8-78
FileToArray function, 2-11 to 2-12
FillBytes function, 2-13
FindPattern function, 2-13 to 2-14
floating-point modifiers (%of)
formatting functions, 2-37 to 2-38
scanning functions, 2-45 to 2-46
FlushInQ function, 5-18
FlushOutQ function, 5-19
Fmt, FmtFile, and FmtOut functionSee
formatting function programming
examples; formatting functions.
format codes
formatting functions, 2-34 to 2-35
scanning functions, 2-42 to 2-43
format string
formatting functions, 2-33 to 2-35
examples, 2-33 to 2-34
form of, 2-34
format codes, 2-34 to 2-35

LabWindows/CVI Standard Libraries



Index

using literals, 2-40

scanning functions, 2-41 to 2-43
examples, 2-41
form of, 2-41
format codes, 2-42 to 2-43
using literals, 2-48 to 2-49

Formatting and 1/O Library functions

function panels
classes and subclasses, 2-2 to 2-3
function tree (table), 2-2

function reference
ArrayToFile, 2-4 to 2-6
CloseFile, 2-7
CompareBytes, 2-7 to 2-8
CompareStrings, 2-8 to 2-9
CopyBytes, 2-9 to 2-10
CopyString, 2-10
FileToArray, 2-11 to 2-12
FillBytes, 2-13
FindPattern, 2-13 to 2-14
Fmt, 2-14 to 2-15, 2-32
FmtFile, 2-15 to 2-16, 2-32
FmtOut, 2-16 to 2-17, 2-32
GetFilelnfo, 2-17
GetFmtErrNdx, 2-18
GetFmtlIOError, 2-18 to 2-19
GetFmtlOErrorString, 2-19
NumFmtdBytes, 2-20
OpenFile, 2-20 to 2-22
ReadFile, 2-22 to 2-23
ReadLine, 2-23 to 2-24
Scan, 2-24, 2-40
ScanFile, 2-25, 2-40
Scanin, 2-25 to 2-26, 2-40
SetFilePtr, 2-26 to 2-28
StringLength, 2-28
StringLowerCase, 2-28 to 2-29
StringUpperCase, 2-29
WriteFile, 2-29 to 2-30
WriteLine, 2-30 to 2-31

formatting function programming examples

appending to a string, 2-56 to 2-57

concatenating two strings, 2-56

creating array of file names, 2-47

integer and real to string with
literals, 2-53

LabWindows/CVI Standard Libraries -8

integer array to binary file, assuming
fixed number of elements, 2-54
integer to string, 2-50 to 2-51
list of examples, 2-49 to 2-50
long integer to string, 2-51
real array to ASCII file in columns with
comma separators, 2-53 to 2-54
real array to binary file
assuming fixed number of
elements, 2-54
assuming variable number of
elements, 2-55
real to string
in floating-point notation, 2-51
to 2-52
in scientific notation, 2-52
two integers to ASCII file with error-
checking, 2-53
variable portion of real array to binary
file, 2-55
writing line containing integer with
literals to standard output, 2-58
writing to standard output without
linefeed/carriage return, 2-58
formatting functionsSee alsscanning
functions; string manipulation functions.
asterisks (*) instead of constants in
format specifiers, 2-39
Fmt
description, 2-14 to 2-15
examples, 2-32
FmtFile
description, 2-15 to 2-16
examples, 2-32
FmtOut
description, 2-16 to 2-17
examples, 2-32
format string, 2-33 to 2-35
introductory examples, 2-31 to 2-32
literals in format string, 2-40
purpose and use, 2-31
special nature of, 2-3 to 2-4
formatting modifiers, 2-35 to 2-3%ee also
scanning modifiers.
floating-point modifiers (%f), 2-37
to 2-38

© National Instruments Corporation



integer modifiers (%i, %d, %X, %0, %cC),
2-35 to 2-37
string modifiers (%s), 2-38 to 2-39
FrequencyDividerConfig function, 10-37
to 10-39

G

gender changer, 5-6
GetAlLimitsOfChannel function, 10-40

to 10-41
GetAnalysisErrorString function, 3-19
GetBreakOnLibraryErrors function, 8-17
GetBreakOnProtectionErrors function, 8-18
GetChannelindices function, 10-41 to 10-42
GetChannelNameFromindex function, 10-42

to 10-43
GetComStat function, 5-19 to 5-20
GetCurrentPlatform function, 8-19
GetCVIVersion function, 8-18 to 8-19
GetDAQErrorString function, 10-43

to 10-44
GetDDEErrorString function, 6-15 to 6-16
GetDir function, 8-20
GetDrive function, 8-20 to 8-21
GetExternalModuleAddr function, 8-21

to 8-22
GetFileAttrs function, 8-23 to 8-24
GetFileDate function, 8-24 to 8-25
GetFilelnfo function, 2-17
GetFileSize function, 8-25 to 8-26
GetFileTime function, 8-26 to 8-27
GetFirstFile function, 8-27 to 8-29
GetFmtErrNdx function, 2-18
GetFmtIOError function, 2-18 to 2-19
GetFmtlOErrorString function, 2-19
GetFullPathFromProject function, 8-29

to 8-30
GetlnQLen function, 5-20 to 5-21
GetlnterruptState function, 8-30
GetKey function, 8-30 to 8-31
GetModuleDir function, 8-31 to 8-32
GetNextFile function, 8-33
GetNumChannels function, 10-44
GetOutQLen function, 5-4, 5-21

© National Instruments Corporation 1-9

Index

GetPersistentVariable function, 8-33
GetProjectDir function, 8-34
GetRS232ErrorString function, 5-22
GetStdioPort function, 8-35
GetStdioWindowOptions function, 8-35
to 8-36
GetStdiowWindowPosition function, 8-36
to 8-37
GetStdiowindowSize function, 8-37
GetStdioWindowVisibility function, 8-37
to 8-38
GetSystemDate function, 8-38
GetSystemTime function, 8-39
GetTCPErrorString function, 7-8
GetWindowDisplaySetting function, 8-39
to 8-40
GetXPropErrorString function, 9-15
GetXPropertyName function, 9-15 to 9-16
GetXPropertyType function, 9-16 to 9-17
GetXPropTypeName function, 9-17 to 9-18
GetXPropTypeSize function, 9-18
GetXPropTypeUnit function, 9-19
GetXWindowPropertyltem function, 9-20
to 9-22
GetXWindowPropertyValue function, 9-22
to 9-25
global variablesSee alsatatus functions.
CVIXDisplay, 9-3
CVIXHiddenWindow, 9-4
Error (iberr), 4-6, 4-11
GPIB/GPIB-488.2 libraries, 4-10
rs232err, 5-3
Status Word (ibsta), 4-6, 4-10
GPIB and GPIB-488.2 Libraries
automatic serial polling, 4-7 to 4-8
board functions, 4-7
device functions, 4-7
function panels
classes and subclasses, 4-4 to 4-5
function tree (table), 4-2 to 4-4
functions.SeeDevice Manager
functions, GPIB.
global variables, 4-10
GPIB dynamic link library/device
driver, 4-6
guidelines and restrictions, 4-6 to 4-7

LabWindows/CVI Standard Libraries



Index

hardware interrupts and autopolling, 4-8
to 4-9
overview, 4-1
platform and board considerations, 4-10
to 4-11
read and write termination, 4-9
status and error controls, 4-6
timeouts, 4-9
Windows 95 support, 4-10 to 4-11
compatibility driver, 4-11
native 32-bit driver, 4-10
Windows NT and GPIB driver, 4-11
limitations on transfer size, 4-11
multithreading, 4-11
notification of SRQ and other GPIB
events, 4-12
writing instrument modules (note), 4-7
GPIB device drivers, 4-5 to 4-6
GPIB.DLL, 4-5
GroupByChannel function, 10-44 to 10-45

H

handshaking for RS-232 communications,
5-6 to 5-8
hardware handshaking, 5-7 to 5-8
software handshaking, 5-6
hardware handshaking, 5-7 to 5-8
hardware interrupts and autopolling, 4-8
to 4-9
help, startingSeeSystemHelp function.
hidden window for providing X window
IDs, 9-3t0 9-4
Histogram function, 3-19 to 3-20

I/O functions.See alsdeasy 1/O for DAQ
Library; Formatting and 1/O Library
functions; Standard Input/Output window
functions.

GPIB Library, 4-2
low-level GPIB/GPIB-488.2 1/0
functions, 4-4

LabWindows/CVI Standard Libraries [-10

port I/O utility functions
inp, 8-42
inpw, 8-42 to 8-43
outp, 8-56
outpw, 8-56
RS-232 Library
ComFromFile, 5-3, 5-9 to 5-10
ComRd, 5-11
ComRdByte, 5-12
ComRdTerm, 5-12 to 5-13
ComToFile, 5-3, 5-15 to 5-16
ComWirt, 5-16 to 5-17
ComWrtByte, 5-17 to 5-18
IBCONF utility, 4-6
ibdev function, 4-6
ibfind function, 4-6
ibInstallCallback function, 4-14 to 4-17
callback function, 4-17
driver version requirements, 4-12
purpose and use, 4-14 to 4-17
SRQI, RQS, and auto serial polling, 4-16
synchronous callbacks, 4-12
ibNotify function, 4-17 to 4-20
asynchronous callbacks, 4-12
callback function, 4-19 to 4-20
driver version requirements, 4-12
purpose and use, 4-17 to 4-20
rearming error (warning), 4-19

restrictions in asynchronous callbacks, 4-20

SRQI, RQS, and auto serial polling, 4-19
ICounterControl function, 10-45 to 10-47
InitCVIRTE function, 8-40 to 8-42
inp function, 8-42
input/output facilities, ANSI C, 1-6
inpw function, 8-42 to 8-43
InstallComCallback function, 5-22 to 5-25
InstallXPropertyCallback function, 9-4, 9-25

to 9-27
InStandaloneExecutable function, 8-43
integer modifiers (%i, %d, %X, %0, %cC)

formatting functions, 2-35 to 2-37

scanning functions, 2-43 to 2-45
interrupts

Disablelnterrupts function, 8-12

Enablelnterrupts function, 8-15 to 8-16

GetlinterruptState function, 8-30

© National Instruments Corporation



hardware interrupts and autopolling, 4-8
to 4-9
InvMatrix function, 3-20 to 3-21

K

keyboard utility functions
GetKey, 8-30 to 8-31
KeyHit, 8-43 to 8-44

L

LaunchExecutable function, 8-44 to 8-46
LaunchExecutableEx function, 8-47 to 8-48
launching executableSeestandalone
executables, launching.

LC_COLLATE locale, 1-5
LC_CTYPE locale, 1-4 to 1-5
LC_MONETARY locale, 1-4
LC_NUMERIC locale, 1-4
LC_TIME locale, 1-5
LinEv1D function, 3-21
LinEv2D function, 3-22
literals in format string

formatting functions, 2-40

scanning functions, 2-48 to 2-49
LoadExternalModule function, 8-49 to 8-52
LoadExternalModuleEx function, 8-52

to 8-54

local functions, GPIB-488.2 Library, 4-4
locale.SeeC locale.
low-level 1/O functions

ANSI C Library, 1-2

GPIB-488.2 Library, 4-4

M

MakeDir function, 8-54 to 8-55
MakePathname function, 8-55
managing property informatioSee
property information, managing.
manual.Seedocumentation.
mathematical functions, ANSI C, 1-6

© National Instruments Corporation -11

Index

matrix algebra functionsSeevector and
matrix algebra functions.
MatrixMul function, 3-23
MaxMin1D function, 3-24
MaxMin2D function, 3-24 to 3-25
Mean function, 3-25 to 3-26
memory acces$Seephysical memory access
functions.
miscellaneous Easy 1/0 for DAQ functions
GetAlLimitsOfChannel, 10-40 to 10-41
GetChannelindices, 10-41 to 10-42
GetChannelNameFromindex, 10-42
to 10-43
GetDAQErrorString, 10-43 to 10-44
GetNumChannels, 10-44
GroupByChannel, 10-44 to 10-45
SetEasylOMultitaskingMode, 10-53
miscellaneous utility functions
Beep, 8-5
Breakpoint, 8-6
CloseCVIRTE, 8-6
Cls, 8-7
CVILowLevelSupportDriverLoaded, 8-8
to 8-9
Disablelnterrupts, 8-12
Enablelnterrupts, 8-15 to 8-16
GetCurrentPlatform, 8-19
GetCVIVersion, 8-18 to 8-19
GetinterruptState, 8-30
GetWindowDisplaySetting, 8-39 to 8-40
InitCVIRTE, 8-40 to 8-42
InStandaloneExecutable, 8-43
RoundRealToNearestinteger, 8-61
to 8-62
SystemHelp, 8-79 to 8-81
TruncateRealNumber, 8-84
Mul1D function, 3-26 to 3-27
Mul2D function, 3-27
multithreading, Windows 95 and
Windows NT, 4-11

LabWindows/CVI Standard Libraries



Index

N

NeglD function, 3-28
null modem cable, 5-5
NumFmtdBytes function, 2-20

O

one-dimensional array operation functions
Abs1D, 3-4 to 3-5
Addi1D, 3-5
DivlD, 3-16 to 3-17
LinEvlD, 3-21
MaxMinlD, 3-24
MullD, 3-26 to 3-27
NeglD, 3-28
SublD, 3-30 to 3-31
SubsetlD, 3-32
one-dimensional complex operation
functions
CxAdd1D, 3-8 to 3-9
CxDivl1D, 3-10
CxLinEv1D, 3-11
CxMul1D, 3-12 to 3-13
CxSublD, 3-15
ToPolarlD, 3-33to 3-34
ToRectl1D, 3-35
open functions
GPIB Library, 4-2
RS-232 Library, 5-1
OpenCom function, 5-4, 5-25 to 5-26
OpenComConfig function, 5-4, 5-26 to 5-28
OpenDev function, 4-6, 4-20
OpenFile function, 2-20 to 2-22
outp function, 8-56
outpw function, 8-56

P

parallel poll functions, GPIB-488.2
Library, 4-4
persistent variable functions
GetPersistentVariable, 8-33 to 8-34
SetPersistentVariable, 8-71

LabWindows/CVI Standard Libraries -12

physical memory access functions

ReadFromPhysicalMemory, 8-57
ReadFromPhysicalMemoryEx, 8-58
WriteToPhysicalMemory, 8-85 to 8-86
WriteToPhysicalMemoryEXx, 8-86

to 8-87

PlotLastAlWaveformsPopup
function, 10-47
port I/O utility functions
inp, 8-42
inpw, 8-42 to 8-43
outp, 8-56
outpw, 8-56
propertiesSee alsX Property Library
functions.
definition, 9-2
handles and types, 9-3
property events, handling
GetXPropErrorString, 9-15
InstallXPropertyCallback, 9-4, 9-25
to 9-27
UninstallXPropertyCallback, 9-4, 9-33
property information, managing
CreateXProperty, 9-3, 9-9 to 9-10
DestroyXProperty, 9-12 to 9-13
GetXPropertyName, 9-15 to 9-16
GetXPropertyType, 9-16 to 9-17
property types, managing
CreateXPropType, 9-3, 9-10 to 9-12
DestroyXPropType, 9-13 to 9-14
GetXPropTypeName, 9-17 to 9-18
GetXPropTypeSize, 9-18
GetXPropTypeUnit, 9-19
PulseWidthOrPeriodMeasConfig function,
10-48 to 10-49
PutXWindowPropertyltem function, 9-27
to 9-28
PutXWindowPropertyValue function, 9-29
to 9-31

© National Instruments Corporation



R

read termination, GPIB, 4-9
ReadFile function, 2-22 to 2-23
ReadFromDigitalLine function, 10-49
to 10-51
ReadFromDigitalPort function, 10-51
to 10-52
ReadFromPhysicalMemory function, 8-57
ReadFromPhysicalMemoryEx
function, 8-58
ReadLine function, 2-23 to 2-24
RegisterDDEServer function, 6-2, 6-16
to 6-18
RegisterTCPServer function, 7-2, 7-8
to 7-10
ReleaseExternalModule function, 8-59
remote functions, GPI1B-488.2 Library, 4-4
remote hosts
ConnectToXDisplay function, 9-3, 9-7
to 9-9
DisConnectFromXDisplay, 9-14 to 9-15
RemoveXWindowProperty function, 9-31
to 9-32
RenamekFile function, 8-60 to 8-61
ResetDevs function no longer supported
(note), 4-13
RetireExecutableHandle function, 8-61
ReturnRS232Err function, 5-28
RoundRealToNearestinteger function, 8-61
to 8-62
RQS events, and auto serial polling
ibInstallCallback function, 4-17
ibNotify function, 4-19
RS-232 cables, 5-4 to 5-6
DTE to DCE cable configuration
(table), 5-5
gender of connectors, 5-6
PC cable configuration (table), 5-4
PC to DTE cable configuration
(table), 5-5
RS-232 Library functions
error conditions, 5-36 to 5-37
function panels
classes and subclasses, 5-2
function tree (table), 5-1 to 5-2

© National Instruments Corporation 1-13

Index

function reference
CloseCom, 5-8 to 5-9
ComBreak, 5-9
ComFromkFile, 5-3, 5-9 to 5-10
ComRd, 5-11
ComRdByte, 5-12
ComRdTerm, 5-12 to 5-13
ComSetEscape, 5-14 to 5-15
ComToFile, 5-3, 5-15 to 5-16
ComWrt, 5-16 to 5-17
ComWrtByte, 5-17 to 5-18
FlushinQ, 5-18
FlushOutQ, 5-19
GetComStat, 5-19 to 5-20
GetlnQLen, 5-20 to 5-21
GetOutQLen, 5-4, 5-21
GetRS232ErrorString, 5-22
InstallComCallback, 5-22 to 5-25
OpenCom, 5-4, 5-25 to 5-26
OpenComConfig, 5-4, 5-26 to 5-28
ReturnRS232Err, 5-28
SetComTime, 5-29
SetCTSMode, 5-7, 5-30
SetXMode, 5-31
XModemConfig, 5-4, 5-31 to 5-33
XModemReceive, 5-3, 5-4, 5-33
to 5-34
XModemSend, 5-34 to 5-35
handshaking, 5-6 to 5-8
reporting errors, 5-3
RS-232 cables, 5-4 to 5-6
troubleshooting, 5-3 to 5-4
XModem file transfer functions, 5-3
rs232err global variable, 5-3
RS-485 AT-Serial board, 5-3
RunExternalModule function, 8-62 to 8-63

LabWindows/CVI Standard Libraries



Index

S

scanning function programming examples
ASCI! file to two integers with error
checking, 2-68
ASCII file with comma separated
numbers to real array, with number of
elements at beginning of file, 2-68
to 2-69
binary file to integer array, assuming
fixed number of elements, 2-69
binary file to real array
assuming fixed number of
elements, 2-69
assuming variable number of
elements, 2-69 to 2-70
integer array containing 1-byte integers
to real array, 2-66 to 2-67
integer array to real array, 2-66
with byte swapping, 2-66
list of examples, 2-49 to 2-50
reading integer from standard input, 2-70
reading line from standard input, 2-71
reading string from standard input, 2-70
to 2-71
scanning strings that are not NUL-
terminated, 2-65 to 2-66
string containing binary integers to
integer array, 2-67
string containing IEEE-format real
number to real variable, 2-67 to 2-68
string to integer, 2-59 to 2-60
string to integer and real, 2-61
string to integer and string, 2-63
string to long integer, 2-60
string to real, 2-60 to 2-61
after finding semicolon in
string, 2-64
after finding substring in string, 2-64
skipping over non-numeric
characters, 2-63
string to string, 2-62
string with comma-separated ASCII
numbers to real array, 2-65

LabWindows/CVI Standard Libraries -14

scanning functionsSee alsd-ormatting and
I/O Library functions; formatting
functions; string manipulation functions.
asterisks (*) instead of constants in
format specifiers, 2-48
format string, 2-41 to 2-43
introductory examples, 2-31 to 2-32
literals in format string, 2-48 to 2-49
purpose and use, 2-40
Scan, 2-24, 2-40
ScanFile, 2-25, 2-40
Scanln, 2-25 to 2-26, 2-40
special nature of, 2-3 to 2-4
scanning modifiersSee alsdormatting
modifiers.
floating-point modifiers (%f), 2-45
to 2-46
integer modifiers (%i, %d, %x, %0, %c),
2-43 to 2-45
string modifiers (%s), 2-46 to 2-48
serial communications functiornSee
RS-232 Library functions.
serial poll functions, GPIB-488.2
Library, 4-4
serial polling, automaticSeeautomatic
serial polling.
ServerDDEWrite function, 6-19 to 6-20
ServerTCPRead function, 7-10
ServerTCPWrite function, 7-11
SetlD function, 3-28
SetBreakOnLibraryErrors function, 8-63
to 8-64
SetBreakOnProtectionErrors function, 8-64
to 8-65
SetComTime function, 5-29
SetCTSMode function, 5-7, 5-30
SetDir function, 8-66
SetDrive function, 8-66 to 8-67
SetEasylOMultitaskingMode
function, 10-53
SetFileAttrs function, 8-67 to 8-68
SetFileDate function, 8-68 to 8-69
SetFilePtr function, 2-26 to 2-28
SetFileTime function, 8-70
SetPersistentVariable function, 8-71
SetStdioPort function, 8-71 to 8-72

© National Instruments Corporation



SetStdioWindowOptions function, 8-72
to 8-74
SetStdiowindowPosition function, 8-74
to 8-75
SetStdiowindowsSize function, 8-75
SetStdioWindowVisibility function, 8-76
SetSystemDate function, 8-76
SetSystemTime function, 8-77
SetUpDDEHotLink function, 6-2, 6-4, 6-20
to 6-21
SetUpDDEWarmLink function, 6-2, 6-4,
6-21 to 6-22
SetXMode function, 5-6, 5-31
software handshaking, 5-6
Sort function, 3-29
SplitPath function, 8-77 to 8-78
SRQ functions, GPIB-488.2 Library
function tree, 4-4
Windows NT and Windows 95
asynchronous callbacks, 4-12
device version requirements, 4-12
synchronous callbacks, 4-12
SRQI event, and auto serial polling
ibInstallCallback function, 4-17
ibNotify function, 4-19
standalone executables, launching
ExecutableHasTerminated function, 8-16
to 8-17
LaunchExecutableEx function, 8-47
to 8-48
RetireExecutableHandle function, 8-61
TerminateExecutable function, 8-82
Standard Input/Output window functions
GetStdioPort, 8-35
GetStdioWindowOptions, 8-35 to 8-36
GetStdioWindowPosition, 8-36 to 8-37
GetStdioWindowsSize, 8-37
GetStdioWindowVisibility, 8-37 to 8-38
SetStdioPort, 8-71 to 8-72
SetStdioWindowOptions, 8-72 to 8-74
SetStdioWindowPosition, 8-74 to 8-75
SetStdioWindowSize, 8-75
SetStdiowWindowVisibility, 8-76
standard language additions, ANSI C, 1-2
to 1-5

© National Instruments Corporation [-15

Index

statistics functions

Histogram, 3-19 to 3-20

Mean, 3-25 to 3-26

Sort, 3-29

StdDev, 3-29 to 3-30

Status control, GPIB, 4-6
status functionsSee als@rror-related
functions.

Formatting and 1/O Library functions
GetFmtErrNdx, 2-18
GetFmtlIOError, 2-18 to 2-19
GetFmtlOErrorString, 2-19
NumFmtdBytes, 2-20

RS-232 library
GetComStat, 5-19 to 5-20
GetInQLen, 5-20 to 5-21
GetOutQLen, 5-4, 5-21
GetRS232ErrorString, 5-22
ReturnRS232Err, 5-28

thread-specific, GPIB Library
Threadlbcnt, 4-22
Threadlbcntl function, 4-22 to 4-23
Threadlberr, 4-23 to 4-25
Threadlbsta, 4-25 to 4-26

Status Word (ibsta) global variable, 4-6, 4-10
StdDev function, 3-29 to 3-30
string manipulation functions

CompareBytes, 2-7 to 2-8

CompareStrings, 2-8 to 2-9

CopyBytes, 2-9 to 2-10

CopyString, 2-10

definition, 2-3

FillBytes, 2-13

FindPattern, 2-13 to 2-14

ReadLine, 2-23 to 2-24

StringLength, 2-28

StringLowerCase, 2-28 to 2-29

StringUpperCase, 2-29

WriteLine, 2-30 to 2-31

string modifiers (%s)
formatting functions, 2-38 to 2-39
scanning functions, 2-46 to 2-48
string processing, ANSI C, 1-5
Sub1D function, 3-30 to 3-31
Sub2D function, 3-31
Subset1D function, 3-32

LabWindows/CVI Standard Libraries



Index

synchronous callbacks, 4-12

SyncWait function, 8-79

system control functions, GPI1B-488.2
Library, 4-4

SystemHelp function, 8-79 to 8-81

T

task switching functions
DisableTaskSwitching, 8-12 to 8-15
EnableTaskSwitching, 8-16
TCP Library functions
callback function, 7-2 to 7-3
clients and servers, 7-2
error conditions, 7-12
function reference
ClientTCPRead, 7-3to 7-4
ClientTCPWrite, 7-4 to 7-5
ConnectToTCPServer, 7-5to 7-7
DisconnectFromTCPServer, 7-7
to 7-8
DisconnectTCPClient, 7-7
GetTCPErrorString, 7-8
RegisterTCPServer, 7-2, 7-8 to 7-10
ServerTCPRead, 7-10
ServerTCPWrite, 7-11
UnregisterTCPServer, 7-11 to 7-12
function tree (table), 7-1
technical support, Appendix-1
TerminateDDELInk function, 6-22
TerminateExecutable function, 8-82
thread-specific status functions
Threadlbcnt, 4-22
Threadlbcntl function, 4-22 to 4-23
Threadlberr, 4-23 to 4-25
Threadlbsta, 4-25
time/date functions
ANSI C Library, 1-6 to 1-7
DateStr, 8-9
GetSystemDate, 8-38
GetSystemTime, 8-39
SetSystemDate, 8-76
SetSystemTime, 8-77
TimeStr, 8-83
timeouts, GPIB, 4-9

LabWindows/CVI Standard Libraries I-16

timer/wait utility functions

Delay, 8-9 to 8-10

SyncWait, 8-79

Timer, 8-83
TimeStr function, 8-83
ToPolar function, 3-32 to 3-33
ToPolarlD function, 3-33 to 3-34
ToRect function, 3-34 to 3-35
Transmission Control Protocol Library

functions.SeeTCP Library functions.
Transpose function, 3-36
trigger functions, GPIB-488.2 Library, 4-3
troubleshooting RS-232 Library functions,
5-3to 54

TruncateRealNumber function, 8-84
two-dimensional array operation functions

Add2D, 3-5to 3-6

Div2D, 3-17 to 3-18

LinEv2D, 3-22

MaxMin2D, 3-24 to 3-25

Mul2D, 3-27

Sub2D, 3-31

U

UninstallXPropertyCallback
function, 9-4, 9-33
UnloadExternalModule function, 8-84
to 8-85
UnregisterDDEServer function, 6-23
UnregisterTCPServer function, 7-11 to 7-12
Utility Library functions
function panels
classes and subclasses, 8-4 to 8-5
function tree (table), 8-1 to 8-4
function reference
Beep, 8-5
Breakpoint, 8-6
CloseCVIRTE, 8-6
Cls, 8-7
CopyFile, 8-7 to 8-8
CVILowLevelSupportDriverLoaded,
8-8to 8-9
DateStr, 8-9
Delay, 8-9 to 8-10

© National Instruments Corporation



DeleteDir, 8-10
DeleteFile, 8-10 to 8-11
DisableBreakOnLibraryErrors, 8-11

to 8-12
Disablelnterrupts, 8-12
DisableTaskSwitching, 8-12 to 8-15
EnableBreakOnLibraryErrors, 8-15
Enablelnterrupts, 8-15 to 8-16
EnableTaskSwitching, 8-16
ExecutableHasTerminated, 8-16

to 8-17
GetBreakOnLibraryErrors, 8-17
GetBreakOnProtectionErrors, 8-18
GetCurrentPlatform, 8-19
GetCVIVersion, 8-18 to 8-19
GetDir, 8-20
GetDrive, 8-20 to 8-21
GetExternalModuleAddr, 8-21

to 8-22
GetFileAttrs, 8-23 to 8-24
GetFileDate, 8-24 to 8-25
GetFileSize, 8-25 to 8-26
GetFileTime, 8-26 to 8-27
GetFirstFile, 8-27 to 8-29
GetFullPathFromProject, 8-29

to 8-30
GetlinterruptState, 8-30
GetKey, 8-30 to 8-31
GetModuleDir, 8-31 to 8-32
GetNextFile, 8-33
GetPersistentVariable, 8-33 to 8-34
GetProjectDir, 8-34
GetStdioPort, 8-35
GetStdiowWindowOptions, 8-35

to 8-36
GetStdiowindowPosition, 8-36

to 8-37
GetStdiowindowsSize, 8-37
GetStdioWindowVisibility,

8-37 to 8-38
GetSystemDate, 8-38
GetSystemTime, 8-39
GetWindowDisplaySetting, 8-39

to 8-40
InitCVIRTE, 8-40 to 8-42
inp, 8-42

© National Instruments Corporation I-17

Index

inpw, 8-42 to 8-43
InStandaloneExecutable, 8-43
KeyHit, 8-43 to 8-44
LaunchExecutable, 8-44 to 8-46
LaunchExecutableEx, 8-47 to 8-48
LoadExternalModule, 8-49 to 8-52
LoadExternalModuleEXx, 8-52
to 8-54
MakeDir, 8-54 to 8-55
MakePathname, 8-55
outp, 8-56
outpw, 8-56
ReadFromPhysicalMemory
function, 8-57
ReadFromPhysicalMemoryEXx, 8-58
ReleaseExternalModule, 8-59
RenamekFile, 8-60 to 8-61
RetireExecutableHandle, 8-61
RoundRealToNearestinteger, 8-61
to 8-62
RunExternalModule, 8-62 to 8-63
SetBreakOnLibraryErrors, 8-63
to 8-64
SetBreakOnProtectionErrors, 8-64
to 8-65
SetDir, 8-66
SetDrive, 8-66 to 8-67
SetFileAttrs, 8-67 to 8-68
SetFileDate, 8-68 to 8-69
SetFileTime, 8-70
SetPersistentVariable, 8-71
SetStdioPort, 8-71 to 8-72
SetStdiowindowOptions, 8-72
to 8-74
SetStdioWindowPosition, 8-74
to 8-75
SetStdioWindowSize, 8-75
SetStdioWindowVisibility, 8-76
SetSystemDate, 8-76
SetSystemTime, 8-77
SplitPath, 8-77 to 8-78
SyncWait, 8-79
SystemHelp, 8-79 to 8-81
TerminateExecutable, 8-82
Timer, 8-83
TimeStr, 8-83

LabWindows/CVI Standard Libraries



Index

TruncateRealNumber, 8-84
UnloadExternalModule, 8-84 to 8-85
WriteToPhysicalMemory, 8-85

to 8-86
WriteToPhysicalMemoryEXx, 8-86

to 8-87

Vv

va_arg() macro, 1-2
variable argument functions,
LabWindows/CVI support of, 1-2
vector and matrix algebra functions
Determinant, 3-16
DotProduct, 3-18
InvMatrix, 3-20 to 3-21
MatrixMul, 3-23
Transpose, 3-36
void HandlePropertyNotifyEvent
function, 9-7
void_InitXPropertyLib function, 9-7

wW

wait utility functions.Seetimer/wait utility
functions.
window functions, standard input/output.
SeeStandard Input/Output window
functions.
window properties, accessing
GetXWindowPropertyltem, 9-20 to 9-22
GetXWindowPropertyValue, 9-22
to 9-25
PutXWindowPropertyltem, 9-27 to 9-28
PutXWindowPropertyValue, 9-29
to 9-31
RemoveXWindowProperty, 9-31 to 9-32
Windows 95 GPIB support, 4-10 to 4-11
compatibility driver, 4-11
native 32-bit driver, 4-10
Windows NT and GPIB driver, 4-11
limitations on transfer size, 4-11
multithreading, 4-11

LabWindows/CVI Standard Libraries -18

notification of SRQ and other GPIB
events, 4-12
asynchronous callbacks, 4-12
driver version requirements, 4-12
synchronous callbacks, 4-12
write termination, GPIB, 4-9
WriteFile function, 2-29 to 2-30
WriteLine function, 2-30 to 2-31
WriteToDigitalLine function, 10-53
to 10-55
WriteToDigitalPort function, 10-55 to 10-56
WriteToPhysicalMemory function, 8-85
to 8-86
WriteToPhysicalMemoryEx function, 8-86
to 8-87

X

X Property Library functions
callback functions, 9-4
communicating with local
applications, 9-3
ConnectToXDisplay function, 9-3
error codes, 9-4 to 9-6
function panels, 9-1
function reference
ConnectToXDisplay, 9-7 to 9-9
CreateXProperty, 9-3, 9-9 to 9-10
CreateXPropType, 9-3, 9-10 to 9-12
DestroyXProperty, 9-12 to 9-13
DestroyXPropType, 9-13 to 9-14
DisConnectFromXDisplay, 9-14
to 9-15
GetXPropErrorString, 9-15
GetXPropertyName, 9-15 to 9-16
GetXPropertyType, 9-16 to 9-17
GetXPropTypeName, 9-17 to 9-18
GetXPropTypeSize, 9-18
GetXPropTypeUnit, 9-19
GetXWindowPropertyltem, 9-20
to 9-22
GetXWindowPropertyValue, 9-22
to 9-25
InstallXPropertyCallback, 9-4, 9-25
to 9-27
PutXWindowPropertyltem, 9-27
to 9-28

© National Instruments Corporation



Index

PutXWindowPropertyValue, 9-29
to 9-31
RemoveXWindowProperty, 9-31
to 9-32
UninstallXPropertyCallback, 9-4, 9-33
void HandlePropertyNotifyEvent, 9-7
void_InitXPropertyLib, 9-7
function tree (table), 9-2
hidden window, 9-3
overview, 9-1
property handles and types, 9-3 to 9-4
predefined property types (table), 9-3
using outside of LabWindows/CVI, 9-7
X interclient communication, 9-2 to 9-3
XModem file transfer functions
purpose and use, 5-3
XModemConfig, 5-4, 5-31 to 5-33
XModemReceive, 5-3, 5-4, 5-33 to 5-34
XModemSend, 5-3, 5-34 to 5-35

© National Instruments Corporation 1-19 LabWindows/CVI Standard Libraries



