COMPREHENSIVE SERVICES APEX WAVES

We offer competitive repair and calibration services, as well as easily
accessible documentation and free downloadable resources.

Bridging the gap between the
SELL YOUR SURPLUS manufacturer and your legacy

v ) test system.
We buy new, used, decommissioned, and surplus parts from every NI series.

We work out the best solution to suit your individual needs.

Sell For Cash Get Credit Receive a Trade-In Deal
O 1-800-915-6216

@ www.apexwaves.com

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

9 sales@apexwaves.com

Alltrademarks, brands, and brand names are the property of their respective owners.

Request a Quote =cucxswe SCX]-1162


https://www.apexwaves.com/modular-systems/national-instruments/scxi/SCXI-1162?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/scxi/SCXI-1162?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/scxi/SCXI-1162?aw_referrer=pdf

LabWindows/CVI

Standard Libraries
Reference Manual

July 1996 Edition

Part Number 320682C-01

© Copyright 1994, 1996 National Instruments Corporation.
All rights reserved.



Internet Support

GPIB: gpib. support@natinst.com

DAQ: dag. support@natinst.com

VXI: vxi.support@natinst.com
LabVIEW: 1v.support@natinst.com
LabWindows: 1w. support@natinst.com
HiQ: hig.support@natinst.com

VISA: visa.support@natinst.com
Lookout: 1ookout . support@natinst.com
FTP Site: ftp.natinst.com

Web Address: www.natinst.com

Bulletin Board Support

BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 148 65 1559

El FaxBack Support

(512) 418-1111

Q‘Z}
Telephone Support (U.S.)

Tel: (512) 795-8248
Fax: (512) 794-5678

Q«"Zzo
International Offices

Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,

Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico 95 800 010 0793,
Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039  Tel: (512) 794-0100



Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as
evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software
media that do not execute programming instructions if National Instruments receives notice of such defects during
the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted
or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the
outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the
shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS
WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The
warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s
failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification
of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of
third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole
or in part, without the prior written consent of National Instruments Corporation.

Trademarks

NI-DAQ®, NI-488.2™, and NI-488.2M™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.



WARNING REGARDING MEDICAL AND CLINICAL USE
OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on
the part of the user or application designer. Any use or application of National Instruments products for or
involving medical or clinical treatment must be performed by properly trained and qualified medical personnel, and
all traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to
prevent serious injury or death should always continue to be used when National Instruments products are being
used. National Instruments products are NOT intended to be a substitute for any form of established process,
procedure, or equipment used to monitor or safeguard human health and safety in medical or clinical treatment.



Contents

About This Manual...............cccooiiii e Xvii
Organization of This Manual ...........cccceeriiiiiiiiiiiiiece e Xvii
Conventions Used in This Manual.............ccoccoeiriiiiiiiiiniiiiiieeeeeeeeeee e Xix
The LabWindows/CVI Documentation Set ............ceveerieirieenieeiieenieeieenieeieeseeeieens XX
Related DOCUMENTAION .......oouviiiiiiiiiiiieeiieiecrteee ettt XX
Customer COMMUNICALION ....ceouveeuteriiieiieiieertte et esiteste et e et e e sbtesbeesaeessbeesbeesbeesaeeeaee XX

Chapter 1

ANST C LIDTATY ... 1-1
Low-Level I/O FUNCHONS ........ooiiiiiiiiieiieeiteeeete ettt s 1-2
Standard Language AdditiONS .........coocuiiiriiiiiniieiniee ettt 1-2
Character PrOCESSING ......ccccuvieiiuieeriieeeiieeeiteerieeesiteeesieeeeieeesteeesbeeensseeensseeensseesnsseeenns 1-5
SHING PTOCESSINE ....eeeiiiiiiiieiiiee ettt ettt et e st e s bt e et eeesabeeeaneesaaees 1-5
INput/OUtPUt FACIIItIES ..eeevvieiiiieeiiie ettt et e e e e 1-6
errno Set by File I/O FUNCHONS ........cocuiiiiiiiiiiiiciceeccceec e 1-6
Mathematical FUNCHONS .....ccc.uoiiiiiiiiiiiiiieiieete ettt 1-6
Time and Date FUNCHIONS ......cccuiiiiiiiiiiiiiiiieeeeeeeete et 1-6
CONLrol FUNCHIONS .....eoutiiiiiiiieieeteee ettt s 1-7
ANSI C Library Function Reference...........cccoovviiiiiiiiiiiiiiiiiiiccicccieeeeecee e 1-9

FAOPEIL. ..t et e 1-9

Chapter 2

Formatting and I/O Library ... 2-1
Formatting and I/O Library Function OVerview ..........cccceevveeriiieeniiieeniieeeiee e 2-1

The Formatting and I/O Library Function Panels ..........cc.cccccoceiniiinniinnenn, 2-1
The String Manipulation FUNCHONS ........ccccveviiiiieiiiiieniieceiie e 2-3
The Special Nature of the Formatting and Scanning Functions....................... 2-3
Formatting and I/O Library Function Reference...........c.cceoovveeviiiiiiieniieeeieeeiee e 2-4
ATTAYTOFIIC ...t 2-4
CLOSEFILE ...ttt e 2-7
COMPATEBYLES ..ottt ettt ettt e e sabee e 2-7
COMPATESIIINGS 1o euvveeeiiieeiereeerteeeireeesireeestreeesteeeeseeessseeensseeessseeessseeensseeensseennns 2-8
COPYBYLES -ttt ettt et e 2-9
L0107 0 85 11 V-SSP 2-10
FAIETOAITAY ..ottt ettt ettt e st e s e 2-11
FAIIBYEES 1.ttt ettt ettt et e e et e e stbeeenaeeenaaeeensaeesnseeenns 2-13
FINAPAIETN ..coveiieiiecee et 2-13
FINE oottt ettt ettt et 2-14
FIMUFILE ..ot 2-15
FINEOUL ...ttt ettt ae e 2-16
GEtFIEINTO ..o 2-17

© National Instruments Corporation v LabWindows/CVI Standard Libraries



Contents

GEetFMEEITINGX ...t 2-18
GEtFMUIOEITOT ..ottt 2-18
GetFMIOEITOTSIING ...eeiuiieiiiiieeie et 2-19
NUMFMEABYLES ....couiiiiiiiiieecee e 2-20
(00153 11 25 1 (<SPPSR 2-20
REAAFIIE ..ottt 2-22
REAALINE ...t 2-23
SCAN .ttt ettt ettt e st e st e e eabeeenabeeeaa 2-24
SCANFILE ...ttt 2-25
SCANIN ...t 2-25
SEUFIIEPIT ...ttt 2-26
SNGLENGEN ...t s et 2-28
SINGLOWETCASE ....veeiiiieeiieecite et eetee ettt e e e e e e areestaeeeaeeeesseeesseeens 2-28
SINGUPPEICASE ...ttt ettt sttt sttt e e sbee e 2-29
WIEFILC. ... e e 2-29
WIIELNE .ottt s 2-30
Using the Formatting and Scanning FUNCHONS .........ccceeeviiieriiiieniieciie e 2-31
Introductory Formatting and Scanning Examples.......ccccccocceevieeiiinicnneennene 2-31
Formatting FUNCLIONS ......cccuviiiiiieeiieceiie et 2-32
Formatting Functions—Format String.........cccccceeveevienieinienicnieennens 2-33
Formatting MOITIETs ......cccvveeiiiiiiieeciie ettt e 2-35
Formatting Integer Modifiers (%i, %d, %x, %0, %C).............. 2-35
Formatting Floating-Point Modifiers (%f).......c.cccccceeeeveeennenn. 2-37
Formatting String Modifiers (7%08) .....cccvevverveeneenceenieniieenneenns 2-38
Fmt, FmtFile, FmtOut—Asterisks (*) Instead of Constants

1N Format SPeCIfiers ........cooueiiiiiiiiiiiiieeiieeieceeeeee e 2-39
Fmt, FmtFile, FmtOut—Literals in the Format String......................... 2-40
Scanning FUNCHONS .......eiiiiiiiiiiiiiieeriteeite ettt ettt 2-40
Scanning Functions—Format String...........ccccceevevveenieeenieesniee e 2-41
Scanning MOAIfIerS ........covviiiriiiiiiieeieeeeeeeee e 2-43
Scanning Integer Modifiers (%i, %d, %x, %0, %C)................. 2-43
Scanning Floating-Point Modifiers (%f).......c..ccccceeveerveennnne. 2-45
Scanning String Modifiers (%0S) ....cceeeveeeriveeeriieeeiieeeireeeieeenns 2-46

Scan, ScanFile, Scanln—Asterisks (*) Instead of Constants
in FOrmat SPeCIfiers ........coovieeiiieiiiieeieecie e 2-48
Scan, ScanFile, Scanln—Literals in the Format String ....................... 2-48
Formatting and I/O Library Programming Examples ..........cccccceeveiiiniiiiniieeniieeinieens 2-49
Fmt/FmtFile/FmtOut Examples in C .......c.cccooiiiiiiniiniiiieieeecececeeeeen 2-50
INEEEET 1O STINE..ceiiuiiiiiieeiie ettt e e e e eaee e snee e 2-50
Long INteger t0 SINE ....ccoouveiiiiiiiiiieeeiieerite et 2-51
Real to String in Floating-Point Notation ............cccceeeveeriieencieeenieeens 2-51
Real to String in Scientific NOtation .........c.ccceevevieenienieenieeniennecnnen. 2-52
Integer and Real to String with Literals ........cccccoevviieviiieniiienieeiee 2-53
Two Integers to ASCII File with Error Checking........c.c.ccoceeveennennee. 2-53

Real Array to ASCII File in Columns and with Comma Separators ...2-53

LabWindows/CVI Standard Libraries vi © National Instruments Corporation



Contents

Integer Array to Binary File, Assuming a Fixed

Number of EIEMENtS........ccceeeciiiiiiriiiiiriieecniececeeec e 2-54
Real Array to Binary File, Assuming a Fixed
Number of EIEMENtS.......cccceeeciiiiiiriiiiieriieecnececeeeec e 2-54
Real Array to Binary File, Assuming a Variable
Number of EIEMENtS........ccceeeiiiiiiriiiiiiieeecnececeieeee e 2-55
A Variable Portion of a Real Array to a Binary File...........c.cccuee....... 2-55
Concatenating TWO SEHNES ....cocveeviiriiiiienieeeerieeeeseee e 2-56
Appending to @ SHNG ....cocovveeeiiieiiie et 2-56
Creating an Array of File Names ..........ccooceeiviiiniiiiniiiinieciceeieee 2-57
Writing a Line Containing an Integer with Literals to
the Standard OULPUL........cooiuviiiiiiiiie e 2-58
Writing to the Standard Output without
a Linefeed/Carriage Return .........coccueeviiiiiiiiiiniiiiiniieeicceeceeeeeeieeee 2-58
Scan/ScanFile/Scanln Examples in C ......cocooviiiiiiiiiniiiniiiceeeeeeeeeeen 2-59
StriNG t0 INEEZET..cueviieiiiieiiie et 2-59
String to Long INtEZET ....cccvvieeiiieeiieeiieeieeetee et 2-60
String to0 Real.....cooouiiiiiiiiii e 2-60
String to Integer and Real...........cooovveviiiiiiiiinieeece e 2-61
SEINE 10 SN c..eeeniieiieeeiie e 2-62
String to Integer and SN ........cccveeeriieeiiieeieeee e 2-63
String to Real, Skipping over Non-Numeric Characters
TN THE STINE weeeeiiieeiee ettt e e e e eenreeenaaeeen 2-63
String to Real, After Finding a Semicolon in the String..................... 2-64
String to Real, After Finding a Substring in the String........................ 2-64
String with Comma-Separated ASCII Numbers to Real Array ........... 2-65
Scanning Strings That Are Not NUL-Terminated ............ccccceeveenee. 2-65
Integer Array to Real Array.......c.cccooeeviiiiiiniiinienieceececec e 2-66
Integer Array to Real Array with Byte Swapping........cccccceevveevneennee. 2-66
Integer Array Containing 1-Byte Integers to Real Array ..................... 2-66
String Containing Binary Integers to Integer Array.........cccceeevveenunenne 2-67
String Containing an IEEE-Format Real Number
to a Real Variable.........ccooiiiiiiiiiiiiiceeee e 2-67
ASCII File to Two Integers with Error Checking ............ccocccevueeenenee. 2-68
ASCII File with Comma Separated Numbers to Real Array,
with Number of Elements at Beginning of File ............ccccccoeeiinien. 2-68
Binary File to Integer Array, Assuming a Fixed
Number of EIEmMEnts........cccc.ceeiiiiiiiiiiiiiiiiieeniieeieeeee e 2-69

Binary File to Real Array, Assuming a Fixed Number of Elements....2-69
Binary File to Real Array, Assuming a Variable

Number of EI€MENts.......c..ccceeieriiiiiniiiniiiiicecienrceeeeeee e 2-69
Reading an Integer from the Standard Input .........cccccoocveniiieiiiniennne 2-70
Reading a String from the Standard Input..........ccccccevviiiiiiiiiniienniens 2-70
Reading a Line from the Standard Input............ccoceeviininiiincnneennn. 2-71

© National Instruments Corporation vii LabWindows/CVI Standard Libraries



Contents

Chapter 3
ANALYSIS LIDTATY ......oooiiiiii s 3-1
Analysis Library FUNCtion OVEIVIEW ........ccceeriiieriieeriieeiieeeiieesiee e esreeeseveeeaeeens 3-1
The Analysis Library Function Panels...........ccccooiiiiiiiiniiininicceee 3-1
Hints for Using Analysis Function Panels ...........cccccoccveeviiieniiieininens 3-3
Reporting Analysis EITOTS .........oiiiiiiiiiiiiiieiieeetcee et 3-4
Analysis Library Function Reference............ccoccvveviieiniieeniieeiiceeeeeeeee e 3-4
ADSTD et ettt ettt be e 3-4
AQAID ottt st eneas 3-5
AA2D .t ettt et 3-5
CLEATTD ..ttt ettt st 3-6
COPYID ettt ettt ettt et e e e e 3-7
CXAAA ettt sttt ettt eaean 3-7
CXAAAID ..ottt ettt et ettt e st e et e sneeeareas 3-8
(54 B LRSSt 3-9
CXDAVID ittt sttt st 3-10
CXLINEVID .ottt s 3-11
CXMUL ..ttt et 3-12
CXMULTD ...ttt sttt st eaees 3-12
CXRECIP ettt ettt et et e st e et e eane 3-13
L0501 1 1o PSRRI 3-14
CXSUDTID ottt ettt st st st 3-15
DEtEIrMINANT ......eiiiiiiieiieei ettt et sttt 3-16
DIVID ettt ettt 3-16
DIV2D ettt ettt eneas 3-17
DOtPIOAUCE ...ttt et e e 3-18
GetAnalySISEITOISING ...cc.vviiiiiieciieeiee e s saee e 3-19
HISTOZIAM ... e 3-19
INVIMAEIIX ¢ttt et 3-20
LINEVID Lottt et e e 3-21
LINEV2D .ottt ettt ettt 3-22
MaAtTIXIMIUL ..ottt et 3-23
MAaXMINTD ..ttt ettt 3-24
MAXMIN2D ..ottt e 3-24
IMIBAN ...ttt ettt ettt et 3-25
IMULTD .ottt et et ettt e st e et e e b e enbeenes 3-26
IMIUIZDD ettt ettt ettt et a ettt b et enean 3-27
INEZID .ottt 3-28
SEELID ettt ettt et b et ettt eneas 3-28
SOOI ettt ettt et ettt ettt et eaeen 3-29
SEADBY ...ttt ettt ettt a ettt eneas 3-29
SUDID .ttt ettt et e st eabeenaeeeaeean 3-30
SUDZD ...ttt et eaean 3-31
SUDSELID ...ttt ettt st e e e e 3-32
TOPOIAT ..ot 3-32

LabWindows/CVI Standard Libraries viii © National Instruments Corporation



Contents

TOPOIATTD ... 3-33
TORECT ...ttt ettt e s et e e e st e e e e 3-34
TORECEID ...ttt ettt et 3-35
TTANSPOSE .ttt ettt ettt ettt e ettt e ettt e st e e s bt e e abeessabeeebaeeeabeeesbeeeas 3-36
EITOT CONAITIONS ...ttt st ettt ettt sateesbee st e ebee e 3-37
Chapter 4
GPIB/GPIB-488.2 LADIATY .....oooooooooooeoeoeoeoeeeoeeeeeeeeee oo 4-1
GPIB Library FUNCtION OVEIVIEW ......c.ciieiiiieiiieeiiieeieeeiieeeireeeieeesveeesveeesevee e e e 4-1
GPIB Functions Library Function Panels .........c..ccccoooiiiniiiiiiiiinniiceiniceiieens 4-1
GPIB Library CONCEPLS ......veeeeureeeiieeeiieeeieeesieeesiteeesteeeeteesseeesseeessseeessseeenssessnsseesnnes 4-5
GPIB Libraries and the GPIB Dynamic Link Library/Device Driver.............. 4-5
Guidelines and Restrictions for Using the GPIB Libraries..........c.cccccceeervennn. 4-6
Device and Board FUNCHONS ........cccueiiiiiiiiiiiiiiieiiceeeee e 4-7
Automatic Serial POIING .......ccccviiiiiiiiiiieeiieeeieeee e e 4-7
Autopolling Compatibility .........cocceereierrieriieiiiinieeeerieeeeseeere e 4-8
Hardware Interrupts and Autopolling..........ccceeevieerieeerieeeiiieeie e 4-8
Read and Write Termination ...........ccceecueeeriieiriieiiieeeiieeeieeeeieee st 4-9
THMEOULS ...ttt ettt st e st et e st e e b e saaeenes 4-9
Global Variables for the GPIB Library ..........ccccovoviiiniieniieenieeeieeniieeeieeee 4-10
Different Levels of Functionality Depending on Platform and GPIB Board...4-10
WINAOWS 95 ...t 4-10
Native 32-Bit DIiVer.....cccceeviiiiiiieeiieceeeeee e 4-10
Compatibility DIIVer ......cccceeiviiiiiiiiiiiieiiieeeceeeeeee e 4-11
WINdows NT ..o 4-11
Limitations on Transfer S1Ze .........ccccevvuiiiiiiiiiiiiiieeeecee e 4-11
MUItIRIEAAING ..ot ettt e e e e ennbeeenes 4-11
Notification of SRQ and Other GPIB Events.........ccccccceeieeieiiiiieieeeeeeeeeinnee, 4-12
Synchronous Callbacks .........cccveeriieeriiieiiiecieeeieeeee e 4-12
Asynchronous Callbacks ..........cceoriiiriiiiiiieiniieiiieeieeeee e 4-12
Driver Version Requir€ments..........c.cceecveeevieeeiieeniiieeniieesiee e 4-12
GPIB Function Reference .........ccoouueiiiiiiiiiiiiiiiieiie et 4-13
CIOSEDIEV ...ttt ettt et e e 4-13
CLOSEINSIIDEVS ...ttt ettt e e 4-14
1bINStAllCAIIDACK. ...c..eeiiiieiiiiiieee e 4-14
SRQI, RQS, and Auto Serial Polling .........ccccceeeviieiniiiiniieniieenieene 4-16
CallbaCKFUNCHON .....eoutiiiiiiiieiieeieeseeteete ettt 4-17
IDINOLIEY ottt ettt 4-17
EVENEIMASK ..ottt 4-18
SRQI, RQS, and Auto Serial Polling .........ccccceeeviieiiiiiiniieniicenieeee 4-19
CallbaCKFUNCHON .....eoutiiiiiiiieiieeieeseeteete ettt 4-19
Restrictions on Operations in Asynchronous Callbacks ...................... 4-20
OPENDIEV ...ttt e et e e e st e e st e e e et e e e naees 4-21
ThreadIDCNL ....co..eeiiiiiiiiee ettt e ens 4-22
ThreadIDCntl ........ooiiiiieiieeeeee et e e e e naaee e 4-22

© National Instruments Corporation ix LabWindows/CVI Standard Libraries



Contents

THIEAAIDEIT .....ceeuiiieeeiiee ettt e e e e e tee e e e e eeavee s 4-23
ThreadIbSta. ....ccouvieiiiieiee ettt 4-25
Chapter 5
RS-232 LADTATY ..ot 5-1
RS-232 Library FUNCtion OVEIVIEW.......ccoouiiiiiiiiiiieeiieeeiteeeiie et e s 5-1
The RS-232 Library Function Panels...........ccccceeiiiiiiniiieeniieciieceeeeee e 5-1
USING RS-485 ..ttt 5-3
Reporting RS-232 EITOTS......cccoiiiiiiieeieeeiteecie ettt evee e 5-3
XModem File Transfer FUNCHONS ..........cccuviiiiiiiiiieeciieec e 5-3
TrOUDIESNOOtING .....evieeiiieeiiee et ettt e e b e e sebeeenes 5-3
RS-232 Cable Information ............cceeeiieiiiiiieniieiniieeieeeeeeeeeeee e 5-4
HandshaKing..........ccveeiiiiiiiie e e sree e 5-6
Software Handshaking ..........ccccceoviiiiiiiiniiiiniiccee e 5-6
Hardware HandshaKing ...........cccceeeiiieniiiiniiieeieceeceeeee e 5-7
RS-232 Library Function Reference .............coooueeeiiiiiiiiiniiiiiiccicceeeieeeee e 5-8
[0 1011100731 USRS 5-8
L00) 1113 (T | OSSPSR 5-9
COMETOMEFILE ... e e e e s e 5-9
[010) 111 e KSR UR 5-11
COMRABYLE .....veieiieeie ettt e e e e e e e e e 5-12
COMRATEIM ...ttt ettt et et e bt e s abee e 5-12
COMSELESCAPE.....cccuiiieiiiieiiie ettt et ettt e e e e et e e e ae e e sbeeesbeeesnbeeesnseeenns 5-14
[10) 111 o) 2 1 (SRS 5-15
COMWI ittt et e et e e et e e s teeesabeeessaeeesnseeessseeesseeensseennns 5-16
COMWITBYLE ...ttt ettt et s bt eeitee e 5-17
FIUShINQ ...t e e e e e e e aataneeeeas 5-18
FIUSHOULQ ...t et e e e e e e atrnraee e 5-19
GEECOMSTAL .....vvieeiieeeiiee et e te et e et e et eeeteeesbeeessbeeessseeensaeessneessseeensseennns 5-19
L€ 10 1110 ) 1SS § PO USRS 5-20
GetOULQLEN .....cooiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 5-21
GetRS232EITOrSIIING ...eeentieeiiieeitee ettt ettt et e e 5-22
InstallCOMECAIIDACK ........eeeiiiieiieeciie et et 5-22
OPENCOIM ...ttt ettt et et e e esanees 5-25
OPENCOMEOCONTIZ ....vveeiiiieeiiieeeeeee ettt e et ee e ebeeessbeeeebeeesaneeenes 5-26
REtUINRS232EIT ....vviiieeiiiee ettt e e e e 5-28
SELCOMTIME ....eeeeiiieiie ettt aee e eree e enbee e sebeeenseeenene 5-29
SEUCTSMOAE ......eviieeeiiiie ettt et e e e ere e e e e saaa e e e ennaeeeeensaeeas 5-30
SEEXIMOUE. ....eeiiiieiiie ettt ettt e ettt e et e e et e e et e e ssbaeeesseeesabeeessseesnsseeensseeenns 5-31
XMOAEMOCONTIZ ..ottt 5-31
XMOAEMRECEIVE. .....eeeeiiieeiiieeiie ettt et e eire e e aee e st e e sbee e snaeeenabeesnaeeens 5-33
D €LY (016 1<) 14 N3 T USSR 5-34
EITOr CONAITIONS ....vvvieeiiieeiieeeiiee ettt e e seae e e eeetaeestaeesnsaeensseeensseeennseennns 5-36

LabWindows/CVI Standard Libraries X © National Instruments Corporation



Contents

Chapter 6
DDE LIDEATY ..o 6-1
DDE Library FUNCHON OVEIVIEW ......ccccuviieiiiieeiiiieeiieeeieeeeieeesieeesieeesaeeensseeensseesnsneens 6-1
The DDE Library Function Panels........c...ccocccoiiiiiiniiiniiniiicicneceee 6-1
DDE Clients and SETVETS........cccuvieiveeeiiieeiiieeiieeeiieeesieeesreeesseesssneesssseessseeenns 6-2
The DDE Callback FUNCHON .......cccuiiiiiiiiiiiiiieceiiceieee e 6-2
DDE LINKS....eiiiiieiiiieeiiie ettt ettt e e sveeeeveesssteessaeessseeessseeennseeenns 6-4
A DDE Library Example Using Microsoft Excel and LabWindows/CVI....... 6-5
DDE Library Function Reference ............ccoccuveeiiiiiiiiiiiie e 6-6
AdviseDDEDataReady...........coocuiiiiiiiiniiiiiiieeieeeiieeeeceete e 6-6
BroadcastDDEDataReady .........cc.coocvieiiiiiiiiiiieiieciee et 6-8
CHENtDDEEXECULE ......vtieeiiiieeiieeeiieeeiee ettt ettt st e s e s 6-10
CLEentDDER@Ad.........coouiiiiiiieiieeeieie ettt 6-10
CHENIDDEWIILE ......eiiiiiieiiteete ettt ettt ettt e e sbee e 6-12
CoNNECtTODDESEIVET ....cc.vviiiiiieiiie ettt e esveeearee e 6-13
DisconnectFromDDESEIVET........ccoiiiiiiiiiiiiieeiieeceeeee et 6-15
(€1514D) D) 23 23 5 (0] 13 85 11 V-SSRSO 6-15
RegiSterDDESEIVET ...ttt e 6-16
SEIVEIDDEWIILE .....veiiiiieeiiieciteeee ettt ee e et e e esesbeeennbeeenes 6-19
SetUPDDEHOLLINK ......eeiiiiiiiiiieeiiieeeeeteeeeeee et 6-20
SetUpDDEWArMLINK .....cccviiiiiiiiiieeeiieecieeeeite et s 6-21
TerminateDDELINK...........ooiiiiiiiicee e e 6-22
Unre@iSterDDESEIVET ......cooouiiiiiiiiciieeeee ettt 6-23
ErrOr CONAITIONS ..c..evieiiiiieeiieeeie ettt ettt et e st e st e e e sabeeesabeessateeeans 6-23
Chapter 7
TOCP LIDTATY ..ottt bbb 7-1
TCP Library FUNCtION OVETVIEW.......ccccuiiiiiiieiiiieeiieeeiieeeite ettt eieeesireesieeesieee e 7-1
The TCP Library Function Panels............ccccoeriiiieiiiiieniieeiieciecceeeeiee e 7-1
TCP Clients and SEIVETS .......cccueiiriieiriieeriieerieeesiteeeiteeeiteeeiee et eesbeeesaree e 7-2
The TCP Callback FUNCHON........cccviiiiiiiiiieeiie et 7-2
TCP Library Function Reference ............coovveiiiiiiiiiiiiiiiiiiccccteeeeeee e 7-3
CHENtTCPREAA ...ttt e 7-3
CIHENITCPWIILE. ....eeeiiteeeee ettt ettt e e e 7-4
CONNECITOTCPSEIVET ...eiiiiiieiieeiie ettt ettt are e st e e st e e sbeeesbeeees 7-5
DisconnectFromTCPSEIVer .......coooiiiiiiiiiiieeeeteeeee e 7-7
DiSCONNECtTCPCIENL . .....cc.vvieeiiieiie ettt ettt et e e eesbeeeareeenes 7-7
GEetTCPEITOISIIING. ..cuttieiiieeitteetee ettt ettt ettt e st e et e e sabeeesabeeeaes 7-8
ReGIStEITCPSEIVET ....cciiiiiiiie ettt e e e et e e s bee e 7-8
ServerTCPREad. .......coouiiiiiiie e 7-10
SEIVEITCPWIILE ...ttt et e st e e s e e eseeeenaee e 7-11
Unre@iSterTCPSEIVET ......oiiiiiiiiiiiiieee et 7-11
EITOr CONAITIONS ....vvvieeiiie ettt et e et e e eeestaeeeteeestaeesssaeessseeensseeennseennns 7-12

© National Instruments Corporation Xi LabWindows/CVI Standard Libraries



Contents

Chapter 8
UGLEY LADTATY ..o 8-1
The Utility Library Function Panels............cccccciviiiiiiiiiiieiiieciee e 8-1
Utility Library Function Reference............coeoviiiiiiiiiiiiiiiiiiiiceeeeeeeee e 8-5
7SS o USSR USRRPRRRPRRR 8-5
BreaKpOint ....coueiiiiiiiieieeeee et 8-6
CIOSECVIRTE ...ttt 8-6
CIS et ettt ettt ettt ettt sbe et 8-7
L0107 0)4 23 1 (<P 8-7
CVILowLevelSupportDriverLoaded............ccocoueeiiiiiiniiiiiiiiiiieiieeeiee e 8-8
DaAESII ... 8-9
DEIAY et ettt 8-9
DLELEDIT ...t 8-10
DEICIEFILE .....ceeiiieiiiee ettt ettt 8-10
DisableBreakOnLibraryEITOrs ...........coeoviieiiiieeiiieeiieecee e 8-11
DiSableINerTUPLS ...ccvveriieiiieiieieee et 8-12
DisableTaskSWItChING..........eiiiiiiiiiieeieeee e 8-12
EnableBreakOnLibraryEITOrS ........ccccoviiiiiiiiiniiiiecececeeceecee e 8-15
ENabIEINtEITUPLS ..eeeuvvieiiiieeiieeeiie ettt ettt e et e e etee s e e sve e enreesnaee e 8-15
EnableTaskSWItChing.........c.cooiiiiiiiiiiiiiieeee e 8-16
ExecutableHasTerminated............ccooeiiieiiiiiiiiiienicieeeeeeeeeeeee e 8-16
GetBreakOnLibrary EITOrS.......c.eiiiiiiiiiiieieeeieeeiteeeeeee e 8-17
GetBreakOnProteCtionEITOrS ......ccc.eiiiiiiiiiiiiiiiiieeiceeteeeee e 8-18
GEICVIVEISION. ..ceuitiiiiiieiite ettt ettt et s bt e st e st e e sbaee e 8-18
GetCurrentPlatform.........c.eoiiiiiiiiiee e 8-19
GEEDIAT ...ttt et 8-20
GEEDTIVE ..ttt ettt et st e bt s e e 8-20
GetExternalModule Addr...........oooiiiiiiiiiieee e 8-21
GEEFIIEALLTS ...ttt ettt e 8-23
GEFIEDALE ..ot 8-24
GEEFILESIZE ...ttt 8-25
GEtFIIETIME ...ttt e e 8-26
GEtFIrStFILE ... 8-27
GetFullPathFromProject ........coceovieiiiiiiiicceceece e 8-29
GEtINEITUPLSTALE ....eeeeeiiiieeeeiiiee ettt e e et e e e st e e e e e e e e eeaes 8-30
GEUKEY ettt s 8-30
GEtMOAUIEDIT ...t 8-31
GEtNEXTFILE .. 8-33
GetPersistentVariable.........coc.eoiiiiiiiiiiiie e 8-33
GEtPTOJECDIT ..t 8-34
GEtSHAIOPOIT ...ttt st 8-35
GetStdIOWINAOWOPLIONS ......eevuviriieiiieieeiieeteeie e 8-35
GetStdioWIndoOWPOSIHON. ......cc..eiiiiiiiiiiiiiceeeee e 8-36
GetStAIOWINAOWSIZE ....cooiiiiiiiiieiiieceeeeeeete et 8-37
GetStdioWIindoW VISiDility .......ceeriieiiiieeiiieciieecee e 8-37

LabWindows/CVI Standard Libraries Xii © National Instruments Corporation



Contents

GetSYSIEMDALE......eeiiiiiiiiee et e e e e e 8-38
GetSYSEMTIME .....eeiieiiiieiieeeee ettt et e e iree e 8-39
GetWindowDisplaySetting.........cooeeriieiiiniiiiieniceeeeeee e 8-39
INItCVIRTE ..o e e 8-40
1101 OSSPSRt 8-42
ITIPW ettt ettt et ettt ettt e st e bt e et e b e st e et e b e st e n e saneennee 8-42
InStandaloneEXecutable .........c..uvvvvviiiiiiiiiiieieieceeeeeeeeee e 8-43
KEYHIE .ttt 8-43
LaunChEXECULADIE .........cocoiiiiiiiieeiie e e 8-44
LaunchEXecutableEX . .........cooiiiiiiiiiiiiiieciieeee e 8-47
LoadEXternalMOAUIE. ........ccouvvveiiiieeiieeiieeeeeee et e e 8-49
LoadEXternalMOAUIEEX ..........uuuuuiiiiiiiiiiiiiiiiiiiiieirieeeeveeeeeeesessesesssssssesesnaeaneanea... 8-52
Y 1G] D § SRR 8-54
MAKEPANNAIMNIE .......vvviiiiiiiiiiiiieieeiieeeteeeeeeee et eeaaaeeeaeaeeeaaasaaaesesasesesessssssssannees 8-55
OULD -ttt enttteetteeeeteeettee ettt eesteeesaeeanssaeansseesnsaeeanseeeasseeeasseeensseeesseeesseeansseeensseennns 8-56
OULPW 1.ttt ettt ettt ettt et e s et et e bt e et e bt e st e e seeeab e e beesaneenneeeaneenneenaneen 8-56
ReadFromPhysicalMemOTy.........cocvuiieiuiieeiiiieniieecieeeieeesree e eieeeeveeesvee e 8-57
ReadFromPhysicalMemOryEX .........coooiiiiiiiiiiiiiiiiiiceeceeeceeee e 8-58
Release EXternalMOdUIE .............oveeiiiiiiiiiiiiiiiicce e 8-59
RENAMEFIIE.......oooviiiiiiiiiieeeeeeeeeeeeeeeeeee e aeeaaenees 8-60
RetireExecutableHandle...............ooviiiiiiiiiiiiiiiiciieeeeeeee e 8-61
RoundReal TONearestINteger........cooveiriiriiiriiiiieieeiecee et 8-61
RUNEXtErNalMOAUIE ........cooovvviiieiiici et 8-62
SetBreakOnLibraryEITOrS .......cociiiiiiiiiiiiiicniccecieee e 8-63
SetBreakOnProteCtioNEITOTIS .........ooovvvvviiiiiie e 8-64
SEDIT oo 8-66
AT 1 D) 5 TR 8-66
SEFIEALLTS oo 8-67
SEFIIEDALE .....vvvveeiiiieeeeee e 8-68
SEtFIETIME ....ccooiiiiiiieei e, 8-70
SetPersistentVariable ...........eeiiiiiiiiiiiiiieiiicieeeeieeeee e 8-71
N TS N Y 16 ) (0 S0y 8-71
SetStdIOWINAOWOPLIONS ....cccuvieeeiieeiiieeiie e eteeerree e e eireesaaeeeaaee e 8-72
SetStdiOWINAOWPOSILION ... 8-74
SetStAIOWINAOWSIZE. ....evvvvveeiiiieeiieieeieee et e e e e ee e 8-75
SetStdioWINdow VISIDILIEY ....coc.eeriiiiiiiiiiiiceiicccececeeee e 8-76
SetSYSIEMDALE ...ecueviieiiiieiiie ettt et e e e e eesebeeenabee e 8-76
SetSYSIEMTIME .ueveeeiiiiiiiie ettt s 8-77
SPIEPAtN ..o e e s 8-77
SYNCWALL ...ttt ettt 8-79
SYSEMHEIP .. enes 8-79
TerminateEXECULADIE. ..........uvuiiiieieiiiiiiiieiieieeeeeeee et aeeeeeeeeeeeeeneeeees 8-82
[ 301 SO UUPUPPRPPPPPPRPPRt 8-83
00T PPNt 8-83
TruncateREaAINUIMDET .........ooovviiiiiiiiicec e eeee e e e e e 8-84

© National Instruments Corporation Xiii LabWindows/CVI Standard Libraries



Contents

UnloadEXternalModule ...........cooeiiiiiiiiiieieeeteeete e 8-84
Write TOPhySICAIIMEIMOTY ......eeiiiiiiiiiiieiiieeeiteete ettt 8-85
WriteToPhysicalMemOTryEX........ccccviiiiiiiiiieeiiiecieeeeeeee e 8-86
Chapter 9
X Property LIDrary ... 9-1
X Property Library OVETVIEW........cccuiieciiieriieeeiieesiieesieeesiteeenereeeeaeessneessseeessseeessseens 9-1
The X Property Library Function Panels ............ccccccooiiiiiiiiiniiiiiice, 9-1
X Interclient COMMUNICAION .......couuieuiirieiiienieeiee et 9-2
Property Handles and TYPES ......eeevviiiiiiiiiiieeiieeieeeeeeeteeete e 9-3
Communicating with Local Applications .........c..cceceerieeieenienieenieeieeneeeeen 9-3
The Hidden WIndOow ..........c.cooiiiiiiiiiiiiieeiieeeeeeeeeete ettt s 9-3
Property Callback FUNCHONS ........ccviiiiiiiieiiieciieeciee e 9-4
EITOT COAES .ttt e 9-4
Using the Library Outside of LabWindows/CVI ..........ccccooiiiniiniiinee 9-7
X Property Library Function Reference............cceevviiiniiiiniiiiniiiiiieiiccceecceeeen 9-7
CoNNECtTOXDISPIAY ....eviieiiiieeiie ettt ettt et ere e et e e e e s aeeesbeeesbeeees 9-7
Create X PIrOPETLY ...coouvieiieiierieeieeete ettt 9-9
Create XProPTYPe . ...veeiiiieiiieeeteee ettt 9-10
DeeStrOYXPIOPETLY ... .ceiiuiiiiiiiiiiie ettt ettt s 9-12
DestrOy XPrOPTYPE...ceieeeiiiieeeiitee ettt 9-13
DisconnectFromXDISPlay ........cccccevueeriiiriiiniinieeieeeeeeeseeeeee e 9-14
GetXPropEITOISIING ....oeeeiiieeiieeeiie ettt et s e e e e saaeeees 9-15
GetXPropertyNAME ........covuieiiiiiiiie ettt st esare e 9-15
GetXProperty TYPE ...cooueieiiiieiiieeeeeee ettt 9-16
GetXPropTypPeNAME ......coouviiiiiiiiiiie ittt 9-17
GetXPIOPTYPESIZE...cceeiieeiiieeiieeeee ettt ettt e e e e e eeeaaeeens 9-18
GetXPropTyPeUNIL ...c.eeiiiiiiiiieiie ettt 9-19
GetXWindowPropertyltem .........coccoviiiiiiiiiiiieeeeeeee e 9-20
GetXWIndowWPropertyValue ...........cooviiiiiiiiiniiiiiieeeeeeeeeeeee e 9-22
InstalIXPropertyCallback .........c.ccevueieiiieeiiieeieeeieeeeiee e e 9-25
PutXWindowPropertyltem...........occueoviiiiiiiiiiiiieieeeeeeeeeeeee e 9-27
PutXWindowPropertyValue..........cccoeiieieiiieeiiieeieeeieeesee e e 9-29
RemoveXWiIndoOWPTIOPEItY ..........coceeiiieiiiniinieeiecieeecee e 9-31
UninstallXPropertyCallback ..........ccoeoiiieiiieiiiieiiiiceieeeiee e 9-33
Chapter 10
Easy I/O for DAQ Library ..o 10-1
Easy I/0 for DAQ Library FUNction OVEIrVIEW..........ccevuveeriiieeriieeniieeniee e eivee e 10-1
Advantages of Using the Easy I/O for DAQ Library ......ccccccoceeciiiieeneencnnen. 10-1
Limitations of Using the Easy I/O for DAQ Library .........ccccceeevveviveencieeennnn. 10-2
Easy I/0 for DAQ Library Function Panels............ccoccoviiniiniiiniinninieeene 10-2
Device NUMDETS ....coouviiiiiiiieieee e 10-4
Channel String for Analog Input FUnctions ..........ccccccecueevieniiernieniieeneennennen. 10-4
CoOmMMANA SEIINZS ...veeiiieeiiieeriieeriee et eeerteeeireeeareeebeeeebeeeesbeesssseeenaseesnseeennns 10-6

LabWindows/CVI Standard Libraries Xiv © National Instruments Corporation



Contents

Channel String for Analog Output FUNCtions ..........cccceevvuveeriiieeniieeeniee e
Valid Counters for the Counter/Timer Functions ..........ccccceevveeviiieeniieennneens
Easy I/0 for DAQ Function Reference ...........coccveeuieeniieeriieeciieeeiee e

ATAcquireTriggeredWaveforms ..........ccoceevieiiinicnicniieeeneeeee e

ATACQUITEWAVETOTINIS .....veeeiiiieeiiieeiieeeite ettt e e e e aae e et eeeaaeeenaeees

ATCheCKACQUISITEION ......tiiiiiieiiiieeiiee ettt ettt et et e s e s eesbeeesbeeeas
ATCIEAr ACQUISTHION ...eeuvieeiiieeiiieeieeeiteeeriteeeiteesteeesaeeesbeeessaeeesaeesnseeesseeenns
ATREAAACUISIEION ....eeuutiiiiiieiitie ettt ettt et e ettt esbeeesbeeees
ALSamPpleCRANNE] ......cc.eeiiiiiiiiie e et
ALSampleChannels.........cooiiiiiiiiiii e
ATSTATtACQUISTHON ..veeeuviieeiiieeiieeeiie et et e et e e e e eeaeeetreesteeesaeeessseeennseeenns

A O CIEArW AVETOIMIIS <ottt e e et e e e eeee e e e eeaeeeennaeeeenenns
AOGENETAEWAVETOTIIIS ettt e e e e e e et eeeaeeeeeeeereaeeaaeaeeaees

AOUPdateChannel ..........cooouiiiiiiiiiiiieie et
AOUPateCRANNEIS. ......eeiieiiieeiieeeiee ettt iee et e e sre e e sveeeenreesaaeeens
ContinuousPulseGenConfig . .......c..eeeiiiiiiiiiiiiiiiiiceiieee e
CounterEventOrTimeCOoNTig . .....coccvveiriieeiieeciie et

CounterMeasureFreqUENCY .........cocueiiiiiiiiiiiiiiieeiieeeeeeeee et

CounterRead..........ooiiiiiiiec e e
COUNLETISTALT ..uvvvveeieeeeeieeiiiieeeeeeeeeeeceirrreeeeeeeeeeerrreeeeeeeeeesassareeeeeeeeesassrseeeeaeeeens
@101 1<) S 1) o OO PSPPI
DelayedPulseGenConfig ..........oocerieeiiieiiiniinieeiecieeee e
FrequencyDividerConfig.........cccuviiiiieiiiieiiieeiieeeeeee et
GetAILIMitsOfChannel............ooooeiiiiiiiieeieieeeceieeeee e
GetChannelINdiCes ......c.uviiiiiiiiiee e et

GetChannelNameFromINAEX ......uueveeeiiiiiiiiiieeee ettt e e e e eeeaaaas

GEetDAQEITOISIING ..evvvieeiiieeiiieeiie ettt stee e sae e e saaeeeaaeesnaeeens
GetNUMCRANNELS .....oooiiiiiiiieccee e
GroupByCRannel.........c.oooiiiiiiiiieiie ettt e
TCOUNLETCONLIOL ...ttt et
PlotLastAIWaveformsPOPUD ........ccceeeiiiiiiiieiiieeeeee e
PulseWidthOrPeriodMeasConfig.........ccoeviieiiiiiiiiiiiniieeieeeeeeeee e
ReadFromDigitalLine. ..........ccocviiiiiiiiniiieeeiieesiee et sree e
ReadFromDigitalPort ..........cooviiiiiiiiiiieeiceeeee e
SetEasylOMultitaskingIMOde ..........eeevuvieeiiiieeiieeeiieeeieeeeire e e
WIiteTODIGIAILINE ....coouiiiiiiiieeiieeeiieeeeee et
W TODIZIAIPOTL......vvieeiiieeiie et e e e e e ebee e
ErrOr CONAITIONS ..c...vieiiiiieiiieeeiteeete ettt ettt et e et e st e e sabeeesabeessabeeeans

Appendix A
Customer COMIMUINECALION..............oooveoeeee et e e e e e e e e e e e e eeeeeseeereseenas

© National Instruments Corporation xv LabWindows/CVI Standard Libraries



Contents

Table 1-1.
Table 1-2.

Table 2-1.

Table 3-1.
Table 3-2.

Table 4-1.

Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.

Table 6-1.
Table 6-2.
Table 6-3.

Table 7-1.
Table 7-2.
Table 7-3.

Table 8-1.

Table 9-1.
Table 9-2.
Table 9-3.
Table 9-4.

Table 10-1.
Table 10-2.
Table 10-3.
Table 10-4.
Table 10-5.

Tables
ANSI C Standard Library CIaSSES .......c.eeerueeeriieiriieenieeerieeeiiee e eiree s e s 1-1
C Locale Information Values...........coceeriiiiiiiiiniiiiiiieieeeee e 1-3
The Formatting and I/O Library Function Tree.........cccovveviieiiiieniieeieeeieeeeieene 2-2
The Analysis Library FUNCtON Tree.......cccoviieiiiieiiieeieecieeeeeecee e 3-1
Analysis Library Error Codes ..........cooviriiiiiiniiiiieiiciieceeeeceecee e 3-37
The GPIB Functions Library Function Tree...........ccooceeviiieniiiiniieiniiinieeieeene 4-2
The RS-232 Library Function TTee.......c.cccooieriiiiiinieiiiinieeeecceceeeecee e 5-1
PC Cable Configuration...........ccoccueeerieeeiieeeiiieeeieeesieeesreeesveeeseveeesaseesnreesseeessnes 5-4
DTE to DCE Cable Configuration..........c..c.eeeruieeriiieniiieeniieeniieeeieeesiee e 5-5
PC to DTE Cable Configuration ...........ccccueeeiiieeiiieeniiieeeiee e eeieeesveeeineesvnee s 5-5
Bit Definitions for the GetComStat Function .........c..ccoceeveeriienicnieinicniicecneen 5-20
RS-232 Library Error COAes........ccuuiiiiiiiiiieeiiieeiee ettt eeieeesiee e esveeseaee e 5-36
DDE Library FUNCHON TTEE.......cccciiiiiiieiiieeiie et ettt sveeesaee e 6-1
DDE Transaction TYPes (XTYPE) ..ccuueeueeriiriiiiiinieeeenieeteenee et 6-4
DDE Library Error COAeSs .......cuuiiiiuiieiiiieeiieeeiieesieeeeieeesteeeveeeiveeeveeesaeeesneeees 6-24
The TCP Library FUNCHON TTEE ......eeeviiiiiiiieciieeeiieeeiee ettt 7-1
TCP Transaction Types (XTYPE).....ueeeueeruerniiniiiieerieeieeeeeeese e 7-3
TCP Library Error COdes.......cccuuiiiiieeiiieeiiieeieeeiteeeiteeeireesieeesveeesveeesveeenaseeens 7-12
The Utility Library FUNCHON TTEE ....cccvveeieiieeiiieeiiieeiieeceeeie e 8-1
The X Property Library FUnction Tree ..........coovuveeriieiniieeiiecieecreeeeeeeee e 9-2
Predefined Property TYPeS....c.coueeiiiiiinieiienieeeere ettt 9-3
X Property Library Error Types and DescCriptions............ccceeeeeerrieeneenicnieenneene 9-5
Status Values for InstallXPropertyCallback ............ccooceeiviiiniiiiniiiniiiinicenieeeee, 9-26
Easy I/O for DAQ Function TTee..........cceovuiiiiiiiiiiiiiieeeieeeeeeeeeeeee e 10-2
Valid COUNLETS ...ttt ettt sttt 10-7
Definition of Am 9513: Counter 41 .....ccccooiiriiiniiiiieeeeeeceeeeeee e 10-28
AdJACENT COUNLETS. ...ecuvvieeeiieeiieeeiieesieeeeieeesteeestaeeesereeeareesseeesseeessseeessseesssseesns 10-30
Easy 1/0 for DAQ Error Codes.........cooeeriiiiiniiiienieeieeeieeieesee e 10-57

LabWindows/CVI Standard Libraries Xxvi © National Instruments Corporation



About This Manual

The LabWindows/CVI Standard Libraries Reference Manual contains information about the
LabWindows/CVI standard libraries—the Graphics Library, the Analysis Library, the Formatting
and I/O Library, the GPIB Library, the GPIB-488.2 Library, the RS-232 Library, the Utility
Library, and the system libraries. The LabWindows/CVI Standard Libraries Reference Manual
is intended for use by LabWindows/CVI users who have already completed the Getting Started
with LabWindows/CVI tutorial and are familiar with the LabWindows/CVI User Manual. To use
this manual effectively, you should be familiar with LabWindows/CVI and DOS fundamentals.

Organization of This Manual

The LabWindows/CVI Standard Libraries Reference Manual is organized as follows.

Chapter 1, ANSI C Library, describes the ANSI C Standard Library as implemented in
LabWindows/CVL.

Chapter 2, Formatting and I/0 Library, describes the functions in the LabWindows/CVI
Formatting and I/O Library, and contains many examples of how to use them. The
Formatting and I/O Library contains functions that input and output data to files and
manipulate the format of data in a program.

Chapter 3, Analysis Library, describes the functions in the LabWindows/CVI Analysis
Library. The Analysis Library Function Overview section contains general information about
the Analysis Library functions and panels. The Analysis Library Function Reference section
contains an alphabetical list of the function descriptions.

Chapter 4, GPIB/GPIB-488.2 Library, describes the NI-488 and NI-488.2 functions in the
LabWindows/CVI GPIB Library, as well as the Device Manager functions in
LabWindows/CVI. The GPIB Library Function Overview section contains general
information about the GPIB Library functions and panels, the GPIB DLL, and guidelines
and restrictions you should know when using the GPIB Library. Detailed descriptions of the
NI-488 and NI-488.2 functions can be found in your NI-488.2 function reference manual.
The GPIB Function Reference section contains an alphabetical list of descriptions for the
Device Manager functions, the callback installation functions, and the functions for returning
the thread-specific status variables.

© National Instruments Corporation Xxvii LabWindows/CVI Standard Libraries



About This Manual

e Chapter 5, RS-232 Library, describes the functions in the LabWindows/CVI RS-232 Library.
The RS-232 Library Function Overview section contains general information about the RS-232
Library functions and panels. The RS-232 Library Function Reference section contains an
alphabetical list of function descriptions.

* Chapter 6, DDE Library, describes the functions in the LabWindows/CVI DDE (Dynamic
Data Exchange) Library. The DDE Library Function Overview section contains general
information about the DDE Library functions and panels. The DDE Library Function
Reference section contains an alphabetical list of function descriptions. This library is
available for LabWindows/CVI for Microsoft Windows only.

* Chapter 7, TCP Library, describes the functions in the LabWindows/CVI TCP (Transmission
Control Protocol) Library. The TCP Library Function Overview section contains general
information about the TCP Library functions and panels. The TCP Library Function
Reference section contains an alphabetical list of function descriptions.

» Chapter 8, Utility Library, describes the functions in the LabWindows/CVI Utility Library.
The Utility Library contains functions that do not fit into any of the other LabWindows/CVI
libraries. The Utility Library Function Panels section contains general information about the
Utility Library functions and panels. The Utility Library Function Reference section contains
an alphabetical list of function descriptions.

e Chapter 9, X Property Library, describes the functions in the Lab/Windows CVI X Property
Library. The X Property Library contains functions that read and write properties to and from
X Windows. The X Property Library Overview section contains general information about
the X Property Library functions and panels. The X Property Library Function Reference
section contains an alphabetical list of function descriptions.

e Chapter 10, Easy I/0 for DAQ Library describes the functions in the Easy I/O for DAQ
Library. The Easy I/0 for DAQ Library Function Overview section contains general
information about the functions, and guidelines and restrictions you should know when using
the Easy 1/0O for DAQ Library. The Easy I/O for DAQ Library Function Reference section
contains an alphabetical list of function descriptions.

* Appendix A, Customer Communication, contains forms you can use to request help from
National Instruments or to comment on our products and manuals.

* The Glossary contains an alphabetical list and description of terms used in this manual,
including abbreviations, acronyms, metric prefixes, mnemonics, and symbols.

* The Index contains an alphabetical list of key terms and topics in this manual, including the
page where you can find each one.

LabWindows/CVI Standard Libraries Xviii © National Instruments Corporation



About This Manual

Conventions Used in This Manual

The following conventions are used in this manual:

bold

italic

bold italic

monospace

italic monospace

<>

»

paths

Bold text denotes a parameter, menu item, return value, function
panel item, or dialog box button or option.

Italic text denotes emphasis, a cross reference, or an introduction to
a key concept.

Bold italic text denotes a note, caution, or warning.

Text in this font denotes text or characters that you should literally
enter from the keyboard. Sections of code, programming
examples, and syntax examples also appear in this font. This font
also is used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, variables,
filenames, and extensions, and for statements and comments taken
from program code.

Italic text in this font denotes that you must supply the appropriate
words or values in the place of these items.

Angle brackets enclose the name of a key. A hyphen between two
or more key names enclosed in angle brackets denotes that you
should simultaneously press the named keys—for example,
<Ctrl-Alt-Delete>.

The » symbol leads you through nested menu items and dialog
box options to a final action. The sequence

File » Page Setup » Options » Substitute Fonts
directs you to pull down the File menu, select the Page Setup
item, select Options, and finally select the Substitute Fonts
option from the last dialog box.

Paths in this manual are denoted using backslashes (\) to

separate drive names, directories, and files, as in
drivename\dirlname\dir2name\myfile

IEEE 488, IEEE 488 and IEEE 488.2 refer to the ANSI/IEEE Standard 488.1-1987, IEEE 488.2
and the ANSI/IEEE Standard 488.2-1992, respectively, which define the GPIB.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and terms are listed in the

Glossary.

© National Instruments Corporation Xix LabWindows/CVI Standard Libraries



About This Manual

The LabWindows/CVI Documentation Set

For a detailed discussion of the best way to use the LabWindows/CVI documentation set, see the
section Using the LabWindows/CVI Documentation Set in Chapter 1, Introduction to
LabWindows/CVI of Getting Started with LabWindows/CVI.

Related Documentation
The following documents contain information that you may find helpful as you read this manual:

* ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface for Programmable
Instrumentation

e ANSI/IEEE Standard 488.2-1992, IEEE Standard Codes, Formats, Protocols, and Common
Commands

* Harbison, Samuel P. and Guy L. Steele, Jr., C: A Reference Manual, Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1995.

* Nye, Adrian. Xlib Programming Manual. Sebastopol, California: O'Reilly & Associates,
1994. ISBN 0-937175-27-7

*  QGettys, James and Robert W. Scheifler. Xlib—C Language X Interface, MIT X Consortium
Standard. Cambridge, Massachussetts: X Consortium, 1994. ISBN (none)

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We are
interested in the applications you develop with our products, and we want to help if you have
problems with them. To make it easy for you to contact us, this manual contains comment and
technical support forms for you to complete. These forms are in the appendix, Customer
Communication, at the end of this manual.

LabWindows/CVI Standard Libraries XX © National Instruments Corporation



Chapter 1
ANSI C Library

This chapter describes the ANSI C Standard Library as implemented in LabWindows/CVI.

Note: When you link your executable or DLL with an external compiler, you are using the
ANSI C library of the external compiler.

Table 1-1. ANSI C Standard Library Classes

Class Header File
Character Handling <ctype.h>
Character Testing
Character Case Mapping
Date and Time <time.h>

Time Operations
Time Conversion
Time Formatting
Localization <locale.h>
Mathematics <math.h>
Trigonometric Functions
Hyperbolic Functions
Exp and Log Functions
Power Functions
Nonlocal Jumping <setymp.h>
Signal Handling <signal.h>
Input/Output <stdio.h>
Open/Close
Read/Write/Flush
Line Input/Output
Character Input/Output
Formatted Input/Output
Buffer Control
File Positioning
File System Operations
Error Handling

(continues)

© National Instruments Corporation 1-1 LabWindows/CVI Standard Libraries



ANSI C Library Chapter 1

Table 1-1. ANSI C Standard Library Classes (Continued)

General Utilities <stdlib.h>
String to Arithmetic Expression
Random Number Generation
Memory Management
Searching and Sorting
Integer Arithmetic
Multibyte Character Sets
Program Termination
Environment

String Handling <string.h>
Byte Operations
String Operations
String Searching
Collation Functions

Miscellaneous

Low-Level I/O Functions

Under UNIX you can use the low-level I/O functions (such as open, sopen, read, and
write) from the system library by including system header files in your program. Under
Windows you can use these functions by including cvilincludel\ansi\lowlvlio.hin
your program. No function panels are provided for these functions.

Standard Language Additions

LabWindows/CVI does not support extended character sets that require more than 8 bits per
character. As a result, the wide character type wchar_t is identical to the single-byte char
type. LabWindows/CVI accepts wide character constants specified with the L prefix (as in
L‘ab’), but only the first character is significant. Furthermore, library functions that use the
wchar_t type operate only on 8-bit characters.

LabWindows/CVI supports variable argument functions using the ANSI C macros, with one
exception: none of the unspecified arguments can have a struct type. As a result, the macro
va_arg (ap, type) should never be used when type is a structure.

Note: LabWindows/CVI will not warn you about this error.

Under UNIX, LabWindows/CVI implements only the C locale as defined by the ANSI C
standard. The native locale, which is specified by the empty string, "", is also the C locale. The
following table shows the locale information values for the C locale.

LabWindows/CVI Standard Libraries 1-2 © National Instruments Corporation



Chapter 1 ANSI C Library
Table 1-2. C Locale Information Values

Name Type | C locale Value| Description

decimal_point char "L Decimal point character for non-monetary

values.

thousands_sep char " Non-monetary digit group separator character
or characters.

grouping char " Non-monetary digit groupings.

int_curr_symbol char " The three-character international currency
symbol, plus the character used to separate the
international symbol from the monetary
quantity.

currency_symbol char " The local currency symbol for the current
locale.

mon_decimal_point |char " Decimal point character for monetary values.

mon_thousands_sep |char " Monetary digit group separator character or
characters.

mon_grouping char " Monetary digit groupings.

positive_sign char " Sign character or characters for non-negative
monetary quantities.

negative_sign char " Sign character or characters for negative
monetary quantities.

int_frac_digits char CHAR_MAX Digits appear to the right of the decimal point
for international monetary formats.

frac_digits char CHAR_MAX Digits appear to the right of the decimal point
for other than international monetary formats.

p_cs_precedes char CHAR_MAX 1 if currency_symbol precedes non-
negative monetary values; 0 if it follows.

p_sep_by_space char CHAR_MAX 1 if currency_symbol is separated from
non-negative monetary values by a space;
else 0.

n_cs_precedes char CHAR_MAX Like p_cs_precedes, for negative values.

n_sep_by_space char CHAR_MAX Like p_sep_by_space, for negative
values.

p_sign_posn char CHAR_MAX The positioning of positive_sign fora
non-negative monetary quantity, then its
currency_symbol.

n_sign_posn char CHAR_MAX | The positioning of negative_sign fora
negative monetary quantity, then its
currency_symbol.

© National Instruments Corporation 1-3 LabWindows/CVI Standard Libraries




ANSI C Library Chapter 1

Under Windows, LabWindows/CVI implements the default locale by using the appropriate items
from the Int1 section of the WIN. INT file and appropriate Microsoft Windows functions.
Anything not mentioned here has the same behavior under the default locale as specified in the C
locale.

For the LC_NUMERIC locale:

e decimal_point maps to the value of sDecimal.

e thousands_sep maps to the value of sThousand.

For the LC_MONETARY locale:

e currency_symbol maps to the value of sCurrency.

e mon_decimal_point maps to the value of sDbecimal.

e mon_thousands_sep maps to the value of sThousand.

e frac_digits maps to the value of iCurrDigits.

e int_frac_digits maps to the value of iCurrDigits.

e p_cs_precedesand n_cs_precedes are setto 1 if iCurrency equals 0 or 2,
otherwise they are set to 0.

e p_sep_by_spaceand n_sep_by_space aresetto 0if iCurrency equalsOor 1,
otherwise they are set to 0.

e p_sign_posnandn_sign_posn are determined by the value of iNegCurr as follows:

Value of
Value of iNegCurr | p_sign_posn/n_sign_posn
0,4 0
1,5,8,9 1
3,7,10 2
6 3
2 4

For the LC_CTYPE locale:
e isalnum maps to the Windows function isCharAlphaNumeric.

e isalpha maps to the Windows function i sCharAlpha.

LabWindows/CVI Standard Libraries 1-4 © National Instruments Corporation



Chapter 1 ANSI C Library

e islower maps to the Windows function isCharLower.
e isupper maps to the Windows function i sCharUpper.
e tolower maps to the Windows function AnsiLower.

e toupper maps to the Windows function AnsiUpper.
For the LC_TIME locale:

e strftime uses the following items from the WIN. INT file for the appropriate format
specifiers: sTime, iTime, s1159, s2359, iTLZero, sShortDate, and sLongDate.

* The names of the weekdays and the names of the months match the language version of
LabWindows/CVI. That is, a German version of LabWindows/CVI would use the German
names of months and days.

For the LC_COLLATE locale:
e strcoll maps to the Windows function 1strcmp.

Because LabWindows/CVI does not support extended character sets that require more than a
byte per character, a multibyte character in LabWindows/CVI is actually a single byte character.
Likewise, a multibyte sequence is a sequence of single byte characters. Because a multibyte
character is the same as a wide character, the conversion functions described in these sections do
little more than return their inputs as outputs.

Character Processing

LabWindows/CVI implements all the ANSI C character processing facilities as both macros and
functions. The macros are disabled when the LabWindows/CVI debugging level is set to
Standard or Extended, so that user protection is available for the arguments to the functions.

String Processing
Under UNIX, the strcoll function is equivalent to st rcmp and its behavior is not affected by
the LC_COLLATE locale. Under Windows, strcoll is equivalent to the Windows function

1strcmp. For both platforms, the function st rx frm performs a string copy using st rncpy
and returns the length of its second argument.

© National Instruments Corporation 1-5 LabWindows/CVI Standard Libraries



ANSI C Library Chapter 1

Input/Output Facilities

The function rename fails if the target file already exists. Under Microsoft Windows, rename
fails if the source and target files are on different disk drives. Under UNIX, rename fails if the
source and target files are on different file systems.

The functions fgetpos and ftell set errno to EFILPOS on error.

errno Set by File I/0 Functions

The errno global variable is set to indicate specific error conditions by the ANSI C file I/O
functions and the low-level I/O functions. The possible values of errno are declared in
cvilincludelansilerrno.h. There is a base set of values that is common to all
platforms. There are additional values that are specific to particular platforms.

Under Windows 3.1, errno gives very limited information. If the operating system returns an
error, errno is set to EIO.

Under Windows 95 and NT, you can call the Windows SDK GetLastError function to
obtain system specific information when errno is set to one of the following values:

EACCES
EBADF
EIO
ENOENT
ENOSPC

Mathematical Functions

The macro HUGE_ VAL defined in the header math . h as well as the macros FLT_EPSILON,
FLT_MAX,FLT_MIN,DBL_EPSILON, DBL_MAX, DBL_MIN, LDBL_EPSILON, LDBL_MAX,
and DBL_MIN defined in the header f1oat . h all refer to variables. Consequently, these
macros cannot be used in places where constant expressions are required, such as in global
initializations.

Time and Date Functions

Function t ime returns the number of seconds since January 1, 1990.

Functions mkt ime and 1ocalt ime require time zone information to produce correct results.
LabWindows/CVI obtains time zone information from the environment variable named TZ, if it
exists. The value of this variable should have the format AAA [S]HH [ : MM] BBB, where optional
items are in square brackets.

LabWindows/CVI Standard Libraries 1-6 © National Instruments Corporation



Chapter 1 ANSI C Library

The AAA and BBB fields specify the names of the standard and daylight savings time zones,
respectively (such as EST for Eastern Standard Time and EDT for Eastern Daylight Time). The
optional sign field S indicates whether the local time zone is to the west (+) or to the east () of
UTC (Greenwich Mean Time). The hour field (HH) and the optional minutes field (: MM) specify
the number of hours and minutes from UTC. As an example, the string ESTO5EDT specifies the
time zone information for the eastern part of the United States.

The functions gmt ime, localtime, and mkt ime make corrections for daylight savings time
(DST). LabWindows/CVI uses a set of rules for determining when daylight savings time begins
and ends. A string in the messages file cvimsgs. txt in the LabWindows/CVI bin directory
specifies these rules. The following is the default value of this string.

":(1986)040102+0:110102-0:(1967)040102-0:110102-0"

This states that for the years from 1986 to the present, DST begins at 2:00 a.m. on the first
Sunday in April, and ends at 2:00 a.m. on the last Sunday in October. For the years from 1967 to
1985, DST begins at 2:00 a.m. on the last Sunday in March, and ends at 2:00 a.m. on the last
Sunday in October. You can change the way LabWindows/CVI determines DST by changing
this string in the cvimsgs. txt file. The countmsg. exe program must be executed after
changing the text file. You should execute the following line.

countmsg cvimsgs.txt

Control Functions

The assert macro defined by LabWindows/CVI does not print diagnostics to the standard
error stream when the debugging level is anything other than None. Instead, when the value of
its argument evaluates to zero, LabWindows/CVI will display a dialog box with a message
containing the file name, line number, and expression that caused the assert to fail.

Under UNIX, system passes the specified command to the Bourne shell (sh) as input, as if the
current process was performing a wait (2V) system call and was waiting until the shell
terminated. Callbacks are not called while the command is executing.

Under Windows, the executable can be either an MS DOS or Microsoft Windows executable,
including * .exe, *.com, *.bat, and *.pif files. The function does not return until the
command terminates, and user keyboard and mouse events are ignored until the command exits.
Callbacks for asynchronous events, such as idle events, Windows messages, and VXI interrupts,
PostDeferredCall calls, and DAQ events are called while the command is executing. If
you need to execute a command built into command . com such as copy, dir, and others, you
can call system with the command command.com /C DosCommand args, where
DosCommand is the shell command you would like executed. Refer to your DOS
documentation for further help with command. com. DOS executables (.exe, .com, and
.bat files) use the settings in _default.pif (in your Windows directory) when they are
running. You can change their priority, display options, and more by editing _default.pif

© National Instruments Corporation 1-7 LabWindows/CVI Standard Libraries



ANSI C Library Chapter 1

or by creating another .pif file. Refer to your Microsoft Windows documentation for help on
creating and editing . pif files.

If the function is passed a null pointer, LabWindows/CVI returns a non zero value if a command
processor is available. Under UNIX, if the argument is not a null pointer, the program returns a
zero. Under Microsoft Windows, if the argument is not a null pointer, the program returns zero
if the program was successfully started, otherwise it returns one of the following error codes.

-1 System was out of memory, executable file was corrupt, or relocations were invalid.
-3 File was not found.
-4 Path was not found.

-6 Attempt was made to dynamically link to a task, or there was a sharing or network
protection error.

-7 Library required separate data segments for each task.
-9 There was insufficient memory to start the application.
-11 Windows version was incorrect.

-12 Executable file was invalid. Either it was not a Windows application or there was an error
in the . EXE image.

-13 Application was designed for a different operating system.

-14 Application was designed for MS-DOS 4.0.

-15 Type of executable file was unknown.

-16 Attempt made to load a real-mode application (developed for an earlier Windows version.)

-17 Attempt was made to load a second instance of an executable file containing multiple data
segments that were not marked read-only.

-20 Attempt was made to load a compressed executable file. The file must be decompressed
before it can be loaded.

-21 Dynamic-link library (DLL) file was invalid. One of the DLLs required to run this
application was corrupt.

-22  Application requires Microsoft Windows 32-bit extensions.
-23 Could not find toolhelp.dll or toolhelp.dll is corrupted.
-24 Could not allocate a GetProcUserDefinedHandle.

The exit function does not actually flush and close the open streams. LabWindows/CVI leaves
files open so that they may be used from within the Interactive Window after execution of the
project terminates. The Close Libraries menu option under the Run menu performs this library
cleanup. This library cleanup is also performed when you restart execution of the project by
selecting Run Project from the Run menu. The argument passed to function exit is not used
by the LabWindows/CVI environment. Under UNIX, standalone executables created by
LabWindows/CVI return the value of the argument passed to the exit function.

LabWindows/CVI Standard Libraries 1-8 © National Instruments Corporation



Chapter 1 ANSI C Library

The UNIX version of LabWindows/CVI works with all the signals supported by UNIX in
addition to the ANSI C signals.

ANSI C Library Function Reference

For ANSI C function descriptions, consult a reference work such as C: A Reference Manual
which is listed in the Related Documentation section of About This Manual. Alternatively, you
can use LabWindows/CVT function panel help. The following function description is provided
because it is an extension of the ANSI C function set.

fdopen
FILE *fp=fdopen (int fileHandle, char *mode);
Note: This function is available only in the Windows version of LabWindows/CVI.

Purpose

You can use this function to obtain a pointer to a buffered I/O stream from a file handle returned
by one of the following functions.

open (low-level I/0O)
sopen (low-level 1/0)

You can use the return value just as if you had obtained it from fopen.

(Although this function is not in the ANSI standard, it is included in this library because it
returns a pointer to a buffered I/O stream.)

Parameters
Input | fileHandle integer | File handle returned by open or sopen.
mode string Specifies the read/write, binary/text, and append modes.

Return Value

fp FILE * | Pointer to a buffered I/O file stream.

Return Codes

NULL (O) Failure. More specific information is in errno.

© National Instruments Corporation 1-9 LabWindows/CVI Standard Libraries



ANSI C Library Chapter 1

Parameter Discussion
mode is the same as the mode parameter to fopen.

You should use a mode value that is consistent with the mode in which you originally opened the
file. If you use write capabilities that were not enabled when the file handle was originally
opened, the call to fdopen succeeds, but any attempt to write fails. For instance, if you

originally opened the file for reading only, you can pass "rw" to fdopen, but any call to
fwrite fails.

LabWindows/CVI Standard Libraries 1-10 © National Instruments Corporation



Chapter 2
Formatting and 1/0 Library

This chapter describes the functions in the LabWindows/CVI Formatting and I/O Library, and
contains many examples of how to use them. The Formatting and I/O Library contains functions
that input and output data to files and manipulate the format of data in a program.

The Formatting and I/O Library Function Overview section contains general information about
the Formatting and I/O Library functions and panels. Because the Formatting and I/O Library
differs in many respects from the other LabWindows/CVI libraries, it is very important to read
the overview before reading the other sections of this chapter.

The Formatting and I/O Library Function Reference section contains an alphabetical list of
function descriptions. This section is helpful for determining the syntax of the file I/O and string
manipulation functions.

The Using the Formatting and Scanning Functions section describes in detail this special class of
functions. Although these functions are listed in the function reference, their versatility and
complex nature require a more complete discussion.

The final section, Formatting and I/O Library Programming Examples, contains many examples
of program code that call Formatting and I/O Library functions. Most of the examples use the
formatting and scanning functions.

Formatting and I/O Library Function Overview

This section contains general information necessary for understanding the Formatting and I/O
Library functions and panels.

The Formatting and I/O Library Function Panels

The Formatting and I/O Library function panels are grouped in a tree structure according to the
types of operations performed. The Formatting and I/O Library function tree is shown in
Table 2-1.

The first- and second-level bold headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The
third-level headings in plain text are the names of individual function panels. The names of the
functions are in bold italics to the right of the function panels. Refer to the Sample Function
Panels for the Formatting and Scanning Functions section later in this chapter for more
information.

© National Instruments Corporation 2-1 LabWindows/CVI Standard Libraries



Formatting and I/O Library

Chapter 2

Table 2-1. The Formatting and I/O Library Function Tree

Formatting and 1/0
File I/0
Open File
Close File
Read from File
Write to File
Array to File
File to Array
Get File Information
Set File Pointer
String Manipulation
Get String Length
String to Lowercase
String to Uppercase
Fill Bytes
Copy Bytes
Copy String
Compare Bytes
Compare Strings
Find Pattern
Read Line
Write Line
Data Formatting
Formatting Functions
Fmt to Memory (Sample Panel)
Fmt to File (Sample Panel)
Fmt to Stdout  (Sample Panel)
Scanning Functions
Scan from Mem (Sample Panel)
Scan from File (Sample Panel)
Scan from Stdin (Sample Panel)
Status Functions
Get # Formatted Bytes
Get Format Index Error
Get 1/0O Error
Get /O Error String

OpenkFile
CloseFile
ReadFile
WriteFile
ArrayToFile
FileToArray
GetFilelnfo
SetFilePtr

StringLength
StringLowerCase
StringUpperCase
FillBytes
CopyBytes
CopyString
CompareBytes
CompareStrings
FindPattern
ReadLine
WriteLine

Fmt
FmtFile
FmtOut

Scan
ScanFile
Scanln

NumFmtdBytes
GetFmtErrNdx
GetFmtlIOError
GetFmtlOErrorString

The classes and subclasses in the tree are described below:

* The File I/O function panels open, close, read, write, and obtain information about files.

e The String Manipulation function panels manipulate strings and character buffers.

LabWindows/CVI Standard Libraries 2-2

© National Instruments Corporation



Chapter 2 Formatting and I/O Library

* The Data Formatting function panels perform intricate formatting operations with a single
function call.

— Formatting Functions, a subclass of Data Formatting, contains function panels that
combine and format one or more source items into a single target item.

— Scanning Functions, a subclass of Data Formatting, contains function panels that
transform a single source item into several target items.

— Status Functions, a subclass of Data formatting, contains function panels that return
information about the success or failure of a formatting or scanning call.

The online help with each panel contains specific information about operating each function
panel.

The String Manipulation Functions

The functions in the String Manipulation class perform common operations such as copying one
string to another, comparing two strings, or finding the occurrence of a string in a character
buffer. These functions are similar in purpose to the standard C string functions.

The Special Nature of the Formatting and Scanning Functions

The formatting and scanning functions are different in nature from the other functions in the
LabWindows/CVI libraries. With few exceptions, each LabWindows/CVI library function has a
fixed number of parameters, and each parameter has a definite data type. Each formatting and
scanning function, however, takes a variable number of parameters, and the parameters can be of
various data types. This difference is necessary to give the formatting and scanning functions
versatility.

For instance, a single Scan function call performs disparate operations, such as the following.
* Find the two numeric values in the string:

"header: 45, -1.03e-2"

and place the first value in an integer variable and the second in a real variable.

» Take the elements from an integer array, swap the high and low bytes in each element, and
place the resulting values in a real array.

To perform these operations, each formatting and scanning function takes a format string as one
of its parameters. In effect, a format string is a mini-program that instructs the formatting and
scanning functions on how to transform the input arguments to the output arguments. For
conciseness, format strings are constructed using single-character codes. These codes are

© National Instruments Corporation 2-3 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

described in detail in the Using the Formatting and Scanning Functions section later in this
chapter.

You may find the formatting and scanning functions more difficult to learn than other
LabWindows/CVI functions. To help you in this learning process, read the discussions in the
Formatting and I/0O Library Programming Examples section at the end of this chapter.

Formatting and I/0 Library Function Reference

This section gives a brief description of each of the functions available in the LabWindows/CVI
Formatting and I/O Library. The LabWindows/CVI Formatting and I/O Library functions are
arranged alphabetically.

ArrayToFile

int status = ArrayToFile (char *fileName, void *array, int dataType,
int numberOfElements, i nt numberOfGroups,
int arrayDataOrder, int fileLayout, int colSepStyle,
int fieldWidth, int fileType, int fileAction);

Purpose

Saves an array to a file using various formatting options. The function handles creating, opening,
writing, and closing the file. The file can later be read back into an array using the
FileToArray function.

Parameters
Input fileName string File pathname.
array void * Numeric array.
dataType integer | Array element data type.

numberOfElements | integer | Number of elements in array.

numberOfGroups integer | Number of groups in array.
arrayDataOrder integer | How groups are ordered in file.
fileLayout integer | Direction to write groups in file.
colSepStyle integer | How data on one line are separated.
fieldWidth integer | Constant width between columns.
fileType integer | ASCII/binary mode.

fileAction integer | File pointer reposition location.

LabWindows/CVI Standard Libraries 24 © National Instruments Corporation



Chapter 2

Return Value

Formatting and I/O Library

status integer Indicates success/failure.
Return Codes

0 Success.

-1 Error attempting to open file.

-2 Error attempting to close file.

-3 An I/O error occurred.

-4 Invalid dataType parameter.

-5 Invalid numberOfElements parameter.

-6 Invalid numberOfGroups parameter.

-7 Invalid arrayDataOrder parameter.

-8 Invalid fileLayout parameter.

-9 Invalid fileType parameter.

-10 Invalid separationStyle parameter.

-11 Invalid fieldWidth parameter.

-12 Invalid fileAction parameter.

Parameter Discussion

FileName may be an absolute pathname or a relative file name. If you use a relative file name,

the file is created relative to the current working directory.

DataType must be one of the following.

VAL_CHAR
VAL_SHORT_INTEGER
VAL_INTEGER

VAL_FLOAT

VAL_DOUBLE
VAL_UNSIGNED_SHORT_INTEGER
VAL_UNSIGNED_INTEGER
VAL_UNSIGNED_CHAR

If you save the array data in ASCII format, you may divide the array data into groups. Groups
can be written as either columns or rows. NumberOfGroups specifies the number of groups into
which to divide the array data. If you do not want to divide your data into groups, use 1.

If you divide your array data into groups, arrayDataOrder specifies how the data is ordered in

the array. The two choices are as follows.

© National Instruments Corporation

2-5

LabWindows/CVI Standard Libraries




Formatting and I/O Library Chapter 2
* vAL_GRoOUPS_TOGETHER—all points of each data group are assumed to be stored consecutively
in the data array.

* VAL_DATA MULTIPLEXED—Itis assumed that the first point from each data group is stored
together, followed by the second point from each group and so on.

If you save the array data in ASCII format, fileL.ayout specifies how the data appears in the file.
The two choices are as follows.

¢ VAL_GROUPS_AS_COLUMNS
¢ VAL_GROUPS_AS_ROWS

If you have only one group, use VAL_GROUPS_AS_COLUMNS to write each array element on a
separate line.

If you specify that multiple values be written on each line, colSepStyle specifies how the values
are separated. The choices are as follows.

* VAL _coNST_wIDTH—constant field width for each column
* vaL_sep_BY_comMa—values followed by commas, except last value on line
* VAL_SEP_BY_TAB—Vvalues separated by tabs

If you have specified a colSepStyle of VAL_CONST_WIDTH, fieldWidth specifies the width of
the columns.

FileType specifies whether to create the file in ASCII or binary format.
The choices are as follows.
s VAL_ASCII

* VAL_BINARY

FileAction specifies the location in the file to begin writing data if the named file already exists.
The choices are as follows.

* VAL_TRUNCATE—Positions the file pointer to the beginning of the file and deletes its prior
contents.

* VAL_APPEND—AII write operations append data to file.

e VAL_OPEN_AS_TIS—Positions the file pointer at the beginning of the file but does not
affect the prior file contents.

LabWindows/CVI Standard Libraries 2-6 © National Instruments Corporation



Chapter 2

CloseFile

int status = CloseFile (int fileHandle);

Purpose

Formatting and I/O Library

Closes the file associated with fileHandle. fileHandle is the file handle that was returned from

the OpenFile function and specifies the file to close.

Parameter

Input fileHandle integer File handle.
Return Value

status integer Result of the close file

operation.

Return Codes

-1 Bad file handle.

0 Success.

CompareBytes

int result = CompareBytes (char *buffer#l1, int buffer#1Index, char *buffer#2,
int buffer#2Index, int numberofBytes, int caseSensitive);

Purpose

Compares the numberofBytes starting at position buffer#1Index of buffer#1 to the
numberofBytes starting at position buffer#2Index of buffer#2.

Parameters
Input buffer#1 string String 1.

buffer#1Index integer Starting position in buffer#1.
buffer#2 string String 2.
buffer#2Index integer Starting position in buffer#2.
numberofBytes integer Number of bytes to compare.
caseSensitive integer Case sensitivity mode.

© National Instruments Corporation 2-7 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

Return Value

result integer Result of the compare
operation.

Return Codes

-1 Bytes from buffer#1 less than bytes from buffer#2.
0 Bytes from buffer#1 identical to bytes from buffer#2.
1 Bytes from buffer#1 greater than bytes from
buffer#2.

Parameter Discussion
Both buffer#1Index and buffer#2Index are zero-based.

If caseSensitive is zero, alphabetic characters are compared without regard to case. If
caseSensitive is non-zero, alphabetic characters are considered equal only if they have the same
case.

The function returns an integer value indicating the lexicographic relationship between the two
sets of bytes.

CompareStrings

int result = CompareStrings (char *string#1, int string#lIndex, char *string#2,
int string#2Index, int caseSensitive);

Purpose

Compares the NUL-terminated string starting at position string#1Index of string#1 to the
NUL-terminated string starting at position string#2Index of string#2. Both string#1Index and
string#2Index are zero-based.

Parameters
Input string#1 string String 1.
string#1Index integer Starting position in string#1.
string#2 string String 2.
string#2Index integer Starting position in string#2.
caseSensitive integer Case sensitivity mode.

LabWindows/CVI Standard Libraries 2-8 © National Instruments Corporation



Chapter 2

Return Value

Formatting and I/O Library

result

integer

Result of the compare
operation.

Return Codes

Bytes from string#1 less than bytes from string#2.
Bytes from string#1 identical to bytes from string#2.
Bytes from string#1 greater than bytes from string#2.

Parameter Discussion

If caseSensitive is zero, alphabetic characters are compared without regard to case. If
caseSensitive is non-zero, alphabetic characters are equal only if they have the same case.

The function returns an integer value indicating the lexicographic relationship between the two

strings.

CopyBytes

void CopyBytes (char targetBuffer[], int targetIndex, char *sourceBuffer,
int sourcelndex, int numberofBytes);

Purpose

Copies the numberofBytes bytes starting at position sourcelndex of sourceBuffer to position
targetIndex of targetBuffer.

Parameters
Input targetIndex integer Starting position in
targetBuffer.
sourceBuffer string Source buffer.
sourcelndex integer Starting position in
sourceBuffer.
numberofBytes integer Number of bytes to copy.
Output targetBuffer string Destination buffer.
Return Value
None
© National Instruments Corporation 2-9 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

Parameter Discussion
Both sourcelndex and targetIndex are zero-based.

You can use this function even when sourceBuffer and targetBuffer overlap.

CopyString

void CopyString (char targetString[], int targetIndex, char *sourceString,
int sourcelndex, int maximum#Bytes);

Purpose

Copies the string starting at position sourcelndex of sourceString to position targetIndex of
targetString until an ASCII NUL is copied or maximum#Bytes bytes have been copied.
Appends an ASCII NUL if no ASCII NUL was copied.

Parameters
Input targetIndex integer Starting position in targetString.
sourceString string Source buffer.
sourcelndex integer Starting position in sourceString.
maximum#Bytes |integer Number of bytes to copy, excluding the ASCII
NUL.
Output | targetString string Destination buffer.

Return Value
None
Parameter Discussion

Both sourcelndex and targetIndex are zero-based. If you want to use maximum#Bytes to
prevent from writing beyond the end of targetString, make sure that you allow room for the
ASCII NUL. For example, if maximum#Bytes is 40, the destination buffer should contain at
least 41 bytes.

If you do not want to specify a maximum number of bytes to copy, use -1 for maximumi#Bytes.
You can use this function even when sourceString and targetString overlap.

Note: The value of maximum#Bytes must not exceed one less than the number of bytes in
the target variable.

LabWindows/CVI Standard Libraries 2-10 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

FileToArray

int status = FileToArray (char *fileName, void *array, int dataType,
int numberOfElements, i nt numberOfGroups,
int arrayDataOrder, int fileLayout, int fileType);

Purpose

Reads data from a file into an array. Can be used with files created using the ArrayToFile
function. The function handles creating, opening, reading, and closing the file.

Parameters

Input fileName string File pathname.
dataType integer Array element data type.
numberOfElements | integer Number of elements in array.
numberOfGroups integer Number of Groups in array.
arrayDataOrder integer How groups are ordered in file.
fileLayout integer Direction to write groups in file.
fileType integer ASClII/binary mode.

Output | array void* Numeric array.

Return Value

status integer Indicates success or failure.

Return Code

0 Success.
-1 Error attempting to open file.
-2 Error attempting to close file.
-3 An I/O error occurred.
-4 Invalid arrayDataType parameter.
-5 Invalid numberOfElements parameter.
-6 Invalid numberOfGroups parameter.
=7 Invalid arrayDataOrder parameter.
-8 Invalid fileLayout parameter.
-9 Invalid fileType parameter.

© National Instruments Corporation 2-11 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

Parameter Discussion

FileName may be an absolute pathname or a relative file name. If you use a relative file name,
the file is located relative to the current working directory.

DataType must be one of the following.

* VAL_CHAR

* VAL_SHORT_INTEGER

* VAL_INTEGER

* VAL_FLOAT

* VAL_DOUBLE

* VAL_UNSIGNED_SHORT_ INTEGER

* VAL_UNSIGNED_INTEGER

* VAL_UNSIGNED_CHAR

NumberOfGroups specifies the number of groups into which the data in the file is divided.

Groups can be in the form of either columns or rows. If there are no groups, use 1. This
parameter only applies if the file type is ASCII.

If the data is divided into groups, arrayDataOrder specifies the order in which the data is to be
stored in the array. The two choices are as follows.

* VAL_GROUPS_TOGETHER— all points from one data group are stored together followed by
all points from the next data group.

e VAL_DATA_MULTIPLEXED—the first points from each data group are stored
consecutively, followed by the second points from each group, etc.

If the file is in ASCII format, fileLayout specifies how the data appears in the file. The two
choices are as follows.

® VAL _GROUPS_AS_COLUMNS

® VAL_GROUPS_AS_ROWS

If there is only one group, VAL_GROUPS_AS_COLUMNS specifies that each value in the file is
on a separate line.

FileType specifies whether the file is in ASCII or binary format. The choices are as follows.

® VAL_ASCII

¢ VAL_BINARY

LabWindows/CVI Standard Libraries 2-12 © National Instruments Corporation



Chapter 2

FillBytes

Formatting and I/O Library

void FillBytes (char buffer[], int startinglndex, int numberofBytes, int value);

Purpose

Sets the numberofBytes bytes starting at position startingIndex of buffer to the value in the
lower byte of value. startingIndex is zero-based.

Parameters
Input buffer string Destination buffer.
startingIndex integer Starting position in buffer.
numberofBytes integer Number of bytes to fill.
value integer Value to place in bytes.

Return Value

None

FindPattern

int ndx = FindPattern (char *buffer, int startingIndex, int numberofBytes,
char *pattern, int caseSensitive, int startFromRight);

Purpose

Searches a character buffer for a pattern of bytes. The pattern of bytes is specified by the string

pattern.
Parameters
Input buffer string Buffer to be searched.

startingIndex integer Starting position in buffer.
numberofBytes integer Number of bytes to search.
pattern string Pattern to search for.
caseSensitive integer Case-sensitivity mode.
startFromRight integer Direction of search.

© National Instruments Corporation 2-13 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

Return Value

ndx integer Index in buffer where pattern
was found.
Return Code
-1 Pattern not found.

Parameter Discussion

The buffer searched is the set of numberofBytes bytes starting at position startingIndex of
buffer. Exception: If numberofBytes is -1, the buffer searched is the set of bytes starting at
position startingIndex of buffer up to the first ASCII NUL. startingIndex is zero-based.

If caseSensitive is zero, alphabetic characters are compared without regard to case. If
caseSensitive is non-zero, alphabetic characters are considered equal only if they have the same
case. If startFromRight is zero, the leftmost occurrence of the pattern in the buffer will be
found. If startFromRight is non-zero, the rightmost occurrence of the pattern in the buffer will
be found.

If the pattern is found, pattern returns the index relative to the beginning of buffer where it
found the first byte of the pattern. If the pattern is not found, pattern returns -1.

The following example returns 4, which is the index of the second of the three occurrences of ab
in the string 1ab2ab3ab4. The first occurrence is skipped because startingIndex is 3. Of the
two remaining occurrences, the leftmost is found because startFromRight is zero:

ndx = FindPattern ("lab2ab3ab4", 3, -1, "aB", 0, 0);

On the other hand, the following line returns 7, which is the index of the last occurrence of ab,
because startFromRight is non-zero:

ndx = FindPattern ("lab2ab3ab4", 3, -1, "AB", 0, 1);

Fmt
int n=Fmt (void *target, char *formatString, sourcel,...,sourcen);
Purpose

Formats the sourcel ... sourcen arguments according to descriptions in the formatString
argument.

LabWindows/CVI Standard Libraries 2-14 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

Parameters
Input formatString String.
sourcel,...,sourcen | Types must match formatString contents.
Output target Type must match formatString contents.

Return Value

n integer Number of source format
specifiers satisfied.

Return Code

-1 Format string error.

Using This Function

This function places the result of the formatting into the target argument, which you must pass by
reference. The return value indicates how many source format specifiers were satisfied, or

-1 if the format string is in error. A complete discussion of this function is in the Using the
Formatting and Scanning Functions section later in this chapter.

FmtFile
int n = FmtFile (int fileHandle, char *formatString, sourcel,...,sourcen);
Purpose

Formats the sourcel ... sourcen arguments according to descriptions in the formatString
argument. The result of the formatting is written into the file corresponding to the fileHandle
argument, which was obtained by a call to the LabWindows/CVI function OpenFile.

Parameters
Input fileHandle integer File handle.
formatString string
sourcel,...,sourcen types must match formatString
contents

© National Instruments Corporation 2-15 LabWindows/CVI Standard Libraries



Formatting and I/O Library

Return Value

Chapter 2

integer Number of source format
specifiers satisfied.

Return Codes

-1 Format string error
-2 I/O error.
Using This Function

The return value indicates how many source format specifiers were satisfied, —1 if the format
string is in error, or —2 if there was an I/O error. A complete discussion of this function is in the
Using the Formatting and Scanning Functions section later in this chapter.

FmtOut

int n = FmtOut (char *formatString, sourcel,...,sourcen);

Purpose

Formats the sourcel ... sourcen arguments according to descriptions in the formatString
argument. The result of the formatting is written to the Standard I/O window.

Parameters

Input

formatString

sourcel,...,sourcen

String.

Types must match formatString contents.

Return Value

integer Number of source format
specifiers satisfied.

Return Codes

-1
-2

Format string error.

I/O error.

LabWindows/CVI Standard Libraries

2-16 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

Using This Function

The return value indicates how many source format specifiers were satisfied, —1 if the format
string is in error, or —2 if there was an I/O error. A complete discussion of this function is in the
Using the Formatting and Scanning Functions section later in this chapter.

GetFilelnfo
int status = GetFileInfo (char *fileName, 1ong *fileSize);
Purpose

Verifies if a file exists. Returns an integer value of zero if no file is present and 1 if file is
present. fileSize is a long variable that contains the file size in bytes or zero if no file exists.

Parameters
Input fileName string Pathname of the file to be
checked.
Output fileSize long File size or zero.
Return Value
status integer Indicates if the file exists.
Return Codes
1 File exists.
0 File does not exist.
-1 Maximum number of files already open.
Example
/* Check for presence of file A:\DATA\TEST1.DAT. */
/* Print its size */
/* if file exists or message stating file does not exist. */
int n;

long size;
n = GetFileInfo("a:\\data\\testl.dat", &size);

if (n == 0)

FmtOut ("File does not exist.");
else

FmtOut ("File size = %i[b4]",size);

© National Instruments Corporation 2-17 LabWindows/CVI Standard Libraries



Formatting and I/O Library

GetFmtErrNdx
int n = GetFmtErrNdx (void);

Purpose

Chapter 2

Returns the zero-based index into the format string where an error occurred in the last formatting

or scanning call.
Parameters
None

Return Value

n integer Position of error in format
string.
Return Code
-1 No error.
Using This Function

If the format string of the preceding call contains an error, such as an invalid format, or
inappropriate modifier, the return value indicates the position within the format string, beginning
with position zero, where the error was found. The function can report only one error per call,
even if several errors existed within the string.

Example

int i, n;
Scan ("1234", "%s>%d",
n = GetFmtErrNdx ();

/* n will have the value -1,
/* there was no error found in the format string.

&i);

indicating that */

*/

GetFmtIOError

int status = GetFmtIOError (void);

Purpose

This function returns specific I/O information for the last call to a Formatting and I/O function
that performs file I/O. If the last function was successful, GetLastFmtIOError returns zero (no

LabWindows/CVI Standard Libraries

2-18

© National Instruments Corporation



Chapter 2

Formatting and I/O Library

error). If the last function that performs I/O encountered an I/O error, GetLastFmtIOError
returns a nonzero value.

Return Value

status integer Indicates success or failure of last function that
performed file I/O.
Return Codes
Fmt IONOErr 0 No error.
FmtIONoFileErr 1 File not found.
FmtIOGenErr 2 General /0O error.
FmtIOBadHandleErr 3 Invalid file handle.
FmtIOInsuffMemErr 4 Not enough memory.
FmtIOFileExistsErr |5 File already exists.
FmtIOAccessErr 6 Permission denied.
FmtIOInvalArgErr 7 Invalid argument.
FmtIOMaxFilesErr 8 Maximum number of files open.
FmtIODiskFullErr 9 Disk is full.
Fmt IONameTooLongkrr | 10 File name is too long.
GetFmtIOErrorString

char *message = GetFmtIOErrorString (int errorNum);

Purpose

Converts the error number returned by GetLastFmtIOError into a meaningful error message.

Parameters

Input | errorNum | integer Error Code returned by GetLastFmtIOErr.
Return Value

message string Explanation of error.

© National Instruments Corporation

2-19 LabWindows/CVI Standard Libraries




Formatting and I/O Library Chapter 2

NumFmtdBytes
int n = NumFmtdBytes (void);
Purpose
Returns the number of bytes formatted or scanned by the previous formatting or scanning call.
Parameters
None

Return Value

n integer Number of bytes formatted or
scanned.

Using This Function

If the previous call was a formatting call, NumFmt dBytes returns the number of bytes placed into
the target. If the previous call was a scanning call, NumFmt dBytes returns the number of bytes
scanned from the source. The return value is undefined if there have been no preceding formatting
or scanning calls.

Certain operations using the FmtFile and ScanFile routines can result in more than 64 KB
being formatted or scanned. Because NumFmt dBytes returns an integer, its value will not be

accurate in these cases. The value returned rolls over when formatting or scanning more than
65,535 bytes.

Example

double f£f; int nj;

Scan ("3.1416", "%$s>%f", &f);

n = NumFmtdBytes ();

/* n will have the value 6, indicating that six bytes */
/* were scanned from the source string. */

OpenkFile
int handle = OpenFile (char *fileName, int read/writeMode, int action, int fileType);
Purpose

Opens a file for input and/or output.

LabWindows/CVI Standard Libraries 2-20 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

Parameters
Input fileName string Pathname.
read/writeMode integer Read/write mode.
action integer File pointer reposition location.
fileType integer ASClII/binary mode.
Return Value
handle integer File handle to be used in
subsequent ReadFile/WriteFile
calls.
Return Code
-1 Function failed, unable to open file, or bad argument

to function.

Parameter Discussion

fileName is a pathname specifying the file to be opened. If the read/writeMode argument is
write or read/write, this function creates the file if it does not already exist. If a file is created, it
is created with no protection; that is, both reading and writing can be performed on it. Use the
function GetFileInfo if it is necessary to determine whether a file already exists.

read/writeMode specifies how the file is opened:

* VAL_READ_WRITE = open file for reading and writing
* VAL_READ_ONLY = open file for reading only

* VAL_WRITE_ONLY = open file for writing only

action specifies whether to delete the old contents of the file, and whether to force the file
pointer to the end of the file before each write operation. action is meaningful only if
read/writeMode = write or read/write. After read operations are performed, the file pointer
points to the byte following the last byte read. action values are as follows:

* VAL_TRUNCATE = truncate file (deletes its old contents and positions the file pointer at the
beginning of the file.

* VAL_APPEND = do not truncate file (all write operations append to end of file).

* VAL_OPEN_AS_TIS = do not truncate file (positions the file pointer at the beginning of the
file. )

© National Instruments Corporation 2-21 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

fileType specifies whether to treat file as ASCII or binary. When performing I/O on a file in
binary mode, no special treatment is given to carriage returns (CR) and line feeds (LF). When
you open the file in ASCII mode, CR LF combination translates to LE when reading, and LF
translates to CR LF when writing. fileType values are as follows:

* VAL_BINARY = binary

e VAL_ASCII = ASCII

ReadFile

int n = ReadFile (int fileHandle, char buffer[], int count);

Purpose

Reads up to count bytes of data from a file or STDIN into buffer. Reading starts at the current

position of the file pointer. When the function completes, the file pointer points to the next
unread character in the file.

Parameters

Input fileHandle integer File handle.

count integer Number of bytes to read.

Output buffer string Input buffer.
Return Value

n integer Number of bytes read.
Return Codes

-1 Error, possibly bad handle.

0 Tried to read past end-of-file.

Parameter Discussion

fileHandle is the file handle returned by the OpenFile function. fileHandle points to the file
from which you want to read. If fileHandle =0, input is read from STDIN, and no prior
OpenFile call is needed. buffer is the buffer into which you read data. You must allocate
space for this buffer before you call this function. count specifies the number of bytes to read.
count must not be greater than buffer size.

LabWindows/CVI Standard Libraries 2-22 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

Using This Function

The return value can be less than number of bytes requested if end of file was reached before
byte count was satisfied. Notice that if you open the file in ASCII mode, each CR LF
combination read is counted as 1 character, because the pair is translated into LF when stored in
the buffer.

Note: This function does not terminate the buffer with an ASCII NUL.

ReadLine
int n = ReadLine (int fileHandle, char lineBuffer [ ], int maximum#Bytes);
Purpose

Reads bytes from a file until a linefeed is encountered.

Parameters
Input fileHandle integer File handle.
maximumi#Bytes integer Maximum number of bytes to
read into line, excluding the
ASCII NUL.
Output lineBuffer string Input buffer.
Return Value
n integer Number of bytes read,

excluding linefeed.

Return Codes
-2 End of file.
-1 I/O error.

Parameter Discussion

This function places up to maximumiBytes bytes, excluding the linefeed, into lineBuffer.
Appends an ASCII NUL to lineBuffer. If there are more than maximum#Bytes bytes before the
linefeed, the extra bytes are discarded.

fileHandle is the file handle that was returned from the OpenFile function and specifies the
file from which to read the line. The file should be opened in ASCII mode so that a

© National Instruments Corporation 2-23 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

carriage-return/linefeed combination will be treated as a linefeed. If fileHandle is zero, the line
will be read from the standard input.

lineBuffer is a character buffer. It should be large enough to contain maximum#Bytes bytes
plus an ASCII NUL.

ReadLine returns the number of bytes read from the file, including discarded bytes, but
excluding the linefeed. Hence, the return value will exceed maximum#Bytes if and only if bytes
are discarded.

If no bytes are read because the end of the file has been reached, ReadLine returns —2. If an
1/O error occurs, ReadLine returns —1.

Scan
int n=Scan (void *source, char *formatString, targetptrl,... targetptrn);
Purpose

Scans a single source item in memory and breaks it into component parts according to format
specifiers found in a formatString. The components are then placed into the target parameters.

Parameters
Input source Type must match formatString contents
formatString string.
Output targetptrl,... ,targetptrn Types must match formatString contents.
Return Value
n integer Number of target format
specifiers satisfied.
Return Code
-1 Format string error.
Using This Function

The return value indicates how many target format specifiers were satisfied, or —1 if the format
string is in error. A complete discussion of this function is in the Using the Formatting and
Scanning Functions section later in this chapter.

LabWindows/CVI Standard Libraries 2-24 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

ScanFile
int n = ScanFile (int fileHandle, char *formatString, targetptrl,... targetptrn);
Purpose

Performs the same basic operation as the Scan function, except that the source material is
obtained from the file referred to by the fileHandle argument, which is obtained by calling the
LabWindows/CVI function OpenFile.

Parameters

Input fileHandle Integer.

formatString String.

Output targetptrl,... targetptrn Types must match formatString contents.
Return Value

n integer Number of target format

specifiers satisfied.

Return Codes

-1 Format string error.

-2 I/O error.
Using This Function

The amount of data read from the file depends on the amount needed to fulfill the formats in the
format string. The return value indicates how many target format specifiers were satisfied, —1 if
the format string is in error, or —2 if there was an I/O error. A complete discussion of this
function is in the Using the Formatting and Scanning Functions section later in this chapter.

Scanln
int n = Scanln (char *formatString, targetptrl,... targetptrn);
Purpose

Performs the same basic operation as the ScanFile function, except that the source material is
obtained from STDIN.

© National Instruments Corporation 2-25 LabWindows/CVI Standard Libraries



Formatting and I/O Library

Chapter 2

Parameters
Input formatString String.
Output targetptrl,... ,targetptrn Types must match formatString contents.

Return Value

integer Number of target format
specifiers satisfied.

Return Codes

-1 Format string error.
-2 I/O error.
Using This Function

No argument is required for the source item in the case of the ScanIn function. The return
value indicates how many target format specifiers were satisfied, -1 if the format string is in
error, or -2 if there was an I/O error. A complete discussion of this function is in the Using the
Formatting and Scanning Functions section later in this chapter.

SetFilePtr

long position = SetFilePtr (int fileHandle, 1ong offset, int origin);

Purpose

Moves the file pointer for the file specified by fileHandle to a location that is offset bytes from
origin. Returns the offset of the new file pointer position from the beginning of the file.

Parameters
Input fileHandle integer File handle returned by
OpenFile.
offset long integer Number of bytes from origin to
position of file pointer.
origin integer Position in file from which to
base offset.

LabWindows/CVI Standard Libraries

2-26 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

Return Value

position long integer Offset of the new file pointer
position from the beginning of
the file.
Return Code
-1 Error due to an invalid file handle, an invalid origin
value, or an offset value that is before the beginning
of the file.

Parameter Discussion

The valid values of origin are as follows:
* 0 = beginning of file

e 1 = current position of file pointer

e 2 =end of file

Using This Function

This function can also be used to obtain the file size by setting offset to O and origin to 2. In this
case, the return value indicates the file size and the pointer will be at the end of the file.

It is possible to position the file pointer beyond the end of the file. Intermediate bytes (bytes
between the old end of file and the new end of file) contain indeterminate values. An attempt to
position the file pointer before the beginning of the file causes the function to return an error.

If the file is a device that does not support random access (such as the standard input), the
function returns an indeterminate value.

Example

/* Open or create the file c:\TEST.DAT, move 10 bytes into the
file, and write a string to the file. */

/* Note: Use \\ in pathname in C instead of \. */

int handle, result;

long position;

handle = OpenFile ("c:\\TEST.DAT", 0, 2, 1);

if (handle == -1) {
FmtOut ("error opening file");
exit (1) ;

}
position = SetFilePtr (handle, 10L, 0);

if (position == 10) {

© National Instruments Corporation 2-27 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

result = WriteFile (handle, "Hello, World!", 13);
if (result == -1)
FmtOut ("error writing to file");
}
else
FmtOut ("error positioning file pointer");
CloseFile (handle);

StringLength

int n = StringLength (char *string);

Purpose

Returns the number of bytes in the string before the first ASCII NUL.

Parameter

Input string String.

Return Value

n integer Number of bytes in string
before ASCII NUL.
Example
char s[100];
int nbytes;
nbytes = StringlLength (s);
Stringl.owerCase

void StringLowerCase (char string[]);
Purpose
Converts all uppercase alphabetic characters in the NUL-terminated string to lowercase.

Parameter

Input/Output | string String.

LabWindows/CVI Standard Libraries 2-28 © National Instruments Corporation



Chapter 2

Return Value

None

Formatting and I/O Library

StringUpperCase

void StringUpperCase (char string [ ]);

Purpose

Converts all lowercase alphabetic characters in the NUL-terminated string to uppercase.

Parameter

Input/Output

string

String.

Return Value

None

WriteFile

int n = WriteFile (int fileHandle, char *buffer, unsigned int count);

Purpose

Writes up to count bytes of data from buffer to a file or to STDOUT. Writing starts at the
current position of the file pointer, and when the function completes, the file pointer is
incremented by the number of bytes written.

Parameters
Input fileHandle integer File handle.
buffer string Data buffer.
count integer Number of bytes to write.
Return Value
n integer Number of bytes written to the
file.
© National Instruments Corporation 2-29 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

Return Code

-1 Error.

Parameter Discussion

fileHandle is the file handle that was returned from the OpenFile function. If fileHandle=1,
data is written to STDOUT and no prior OpenFile call is needed.

buffer is the buffer from which to write data.

count specifies number of bytes to write. The count parameter overrides the buffer size in
determining the number of bytes to write. Buffers containing embedded NUL bytes are written in
full. count must not be greater than buffer size.

Using This Function

For files opened in ASCII mode, each LF character is replaced with a CR-LF combination in the
output. In this case, the return value does not include the CR character written to the output.

An error can indicate a bad file handle, an attempt to access a protected file, an attempt to write
to a file opened as ReadOnly, or no more space left on disk.

WriteLine
int n = WriteLine (int fileHandle, char *lineBuffer, int numberofBytes);
Purpose

Writes numberofBytes bytes from lineBuffer to a file and then writes a linefeed to the file.

Parameters
Input fileHandle integer File handle.
lineBuffer string Data buffer.
numberofBytes integer Number of bytes to write.
Return Value
n integer Number of bytes written.

including line feed.

LabWindows/CVI Standard Libraries 2-30 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

Return Code

-1 I/O error.

Parameter Discussion

If numberofBytes is -1, only the bytes in lineBuffer before the first ASCII NUL are written,
followed by a linefeed.

fileHandle is the file handle that was returned from the OpenFile function. The file should be
opened in ASCII mode so that a carriage return will be written before the linefeed. If fileHandle
is 1, the line will be written to the STDOUT.

Using This Function

WriteLine returns the number of bytes written to the file, excluding the linefeed. If an I/O
error occurs, WriteLine returns —1.

Using the Formatting and Scanning Functions

You use data formatting functions to translate or reformat data items into other forms. Typical
usages might be to translate between data stored on external files and the internal forms which
the program can manipulate, or to reformat a foreign binary representation into one on which the
program can operate.

There are three subclasses of data formatting functions in the LabWindows/CVI Formatting and
I/O Library:

* Formatting functions
* Scanning functions
* Status functions

You use formatting functions to combine and format one or more source items into a single
target item, and you use scanning functions to break apart a single source item into several target
items. The status functions return information regarding the success or failure of the formatting
or scanning functions.

Introductory Formatting and Scanning Examples

To introduce you to the formatting and scanning functions, consider the following examples.

© National Instruments Corporation 2-31 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

Convert the integer value 23 to its ASCII representation and place the contents in a string
variable:

char al[5];

int b, n;

b = 23;

n = Fmt (a, "%s<%i", Db);

After the Fmt call, a contains the string 2 3.

In this example, a is the target argument, b is the source argument, and the string $s<%1 is the
format string. The Fmt call uses the format string to determine how to convert the source
argument into the target argument.

With the Scan function, you can convert the string 23 to an integer:

char *a;
a = "23";
n = Scan (a$, "%s>%i", b%);

After the Scan call, b = 23.

In this example, a is the source argument, b is the target argument, and $s>%1 is the format
string. In both the formatting and the scanning functions, the format string defines the variable
types of the source and target arguments and the method by which the source arguments are
transformed into the target arguments.

Formatting Functions

The following information is a brief description of the three formatting functions:
. n = Fmt (target, formatstring, sourcel, ..., sourcen);

The Fmt function formats the sourcel, ..., sourcen arguments according to
descriptions in the format st ring argument. The function places the result of the
formatting into the target argument.

. n = FmtFile (handle, formatstring, sourcel, ..., sourcen);

The FmtF1ile function formats the sourcel, ..., sourcen arguments according to
descriptions in the format st ring argument. The function writes the result of the
formatting into the file corresponding to the handle argument.

. n = FmtOut (formatstring, sourcel, ..., sourcen);

The FmtOut function formats the sourcel, ..., sourcen arguments according to
descriptions in the format st ring argument. The function writes the result of the
formatting to Standard Out.

LabWindows/CVI Standard Libraries 2-32 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

Each of these formatting functions return the number of source format specifiers satisfied. If
there is an error in the format string, -1 is returned.

The formatting functions are used to format and combine multiple source items into a single
target item. The only difference in the workings of the three functions is the location of the
target data. For the function Fmt, the target is a data item in memory which is passed to the
function by reference. For FmtF1ile, the target is a file whose handle is passed as the first
argument. The LabWindows/CVI function OpenF i le returns this handle. For the function
FmtOut, the target is Standard Out (typically the display), and in this case the target argument
present in the other two functions is omitted. Except for these differences, the following
descriptions apply to all the formatting functions.

The target parameter for Fmt must be passed by reference (that is, must be a pointer).

Formatting Functions—Format String
Consider the following formatting function:
n = Fmt (target, formatstring, sourcel, ..., sourcen);

where format st ring contains the information to transform the source arguments to the target
argument.

Format strings for all the formatting functions are of the form:
"target_spec < source_specs_and_literals"

where target_spec is a format specifier that describes the nature of the target data item, and
source_specs_and_literals is a sequence of format specifiers and literal characters that
indicate how the source material is to be combined into the target.

Examples of format strings for the formatting functions are as follows.
"$s < RANGE $%i"
"$s < %s; %i

The character < is a visual reminder of the direction of the data transformation (that is, from the
sources to the target), and also separates the single target format specifier from the (perhaps
multiple) source format specifiers and literals. The target format specifier can be omitted, in
which case a $s string format is assumed. If the target format specifier is omitted, the

< character can be omitted also, or retained for clarity.

Notice that the target format specifier is located to the left of the < symbol, just as the target
parameter is located to the left of the format string. Likewise, the source format specifiers are
located to the right of the < symbol, just as the source parameters are located to the right of the
format string.

© National Instruments Corporation 2-33 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

Format specifiers describe the inputs and outputs of data transformations. Each format specifier
has the following form.

% [ rep 1 formatcode [[ modifiers 1]

The character % introduces all format specifiers. rep indicates how many times the format
repeats with respect to the arguments. formatcode is a code character which indicates the
nature of the data items being formatted. modifiers is an optional bracket-enclosed sequence
of codes which further describe the data format.

Examples of format specifiers are as follows.

%s $100f %1 [b2u]
Note: rep is not allowed when formatcode is s (string).
formatcode is specified with one of the following codes:

s string. As a source or target specifier, this indicates that the corresponding parameter is a
character string. As a target specifier (the default if no target specifier is present), this
can mean that numeric source parameters become converted into an ASCII form for
inclusion in the target string. See the individual numeric formats, such as %1 and % £, for
details of these conversions. Arrays of strings are not allowed. For example, $10s is not
a valid format string.

Note: When a target string is filled in, an ASCII NUL is always placed in the string
after the last byte.

i integer. This source or target specifier indicates that the corresponding parameter is an
integer or, if rep is present, an integer array. The function performs conversions to
ASCII digits when converting to or from the string format $s. A modifier is available to
specify the radix to be used in such a conversion (default is decimal).

x integer (hexadecimal). This source or target specifier indicates that the corresponding
parameter is an integer or, if rep is present, an integer array. The function performs
conversions to ASCII hexadecimal digits (012345678 9abcdef) when converting to or
from the string format %$s.

o integer (octal). This source or target specifier indicates that the corresponding parameter
is an integer or, if rep is present, an integer array. The function performs conversions to
ASCII octal digits (01234567) when converting to or from the string format %s.

d integer (decimal). This format specifier is identical to $1 and is included for
compatibility with the C print f family of functions.

LabWindows/CVI Standard Libraries 2-34 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

f real number. This source or target specifier indicates that the corresponding parameter is
a real number, or if rep is present, a real array. The function performs conversions to
ASCII when converting to or from the string format $s.

c character. This source or target specifier indicates that the corresponding parameter is an
integer with one significant byte, or, if rep is present, an array of 1-byte integers. The
function does not perform conversion to ASCII when converting to or from the string
format $s. The byte is copied directly to or from the string.

Formatting Modifiers

modifiers are optional codes used to describe the nature of the source or target data. If you
use them, you must enclose the modifiers in square brackets and place them immediately after
the format code they modify. If one format specifier requires more than one modifier, enclose all
modifiers in the same set of brackets.

There is a different set of modifiers for each possible format specifier.

Formatting Integer Modifiers (%i, %d, %x., %0, %c)

bn Specify Length. The b integer modifier specifies the length of the integer
argument, or the length of an individual integer array element, in bytes. The
default length is 4 B; therefore, simple 4 B integers do not need this modifier.
The modifier b2 represents short integers. The modifier b1 represents single-byte
integers.

in Specify Array Offset. The i integer modifier specifies an offset within an
integer array argument. It indicates the location within the array where processing
begins. n is the zero-based index of the first element to process. Thus,
%$10d[1i2] applied to a source integer array reads the 10 integer values from the
third through the twelfth elements of the array. The i modifier is valid only if
rep is present. If you use the 1 modifier with the z modifier, then n is in terms
of bytes.

z Treat String as Integer Array. The z integer modifier indicates that the data
type of the corresponding argument is a string. Nevertheless, the data in the string
is treated as an integer array. The z modifier is valid only if rep is present.

rn Specify Radix. The r integer modifier specifies the radix of the integer
argument, which is important if the integer was to be converted into string format.
Legal radixes are 8 (octal), 10 (decimal, the default), 16 (hexadecimal), and 256 (a
special radix representing single 8-bit ASCII characters).

wn Specify String Size. The w integer modifier specifies the exact number of bytes
in which to store a string representation of the integer argument, in the event that

© National Instruments Corporation 2-35 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

rcC

onnnn

the integer is converted to a string format. You can enter any non-negative value
here. If n is less than the number of digits required to represent the integer, an
asterisk (*) will be inserted into the string to signify an overflow. The default for
n is zero, which indicates that the integer can occupy whatever space is necessary.

Specify Padding. The p integer modifier specifies a padding character ¢, which
fills the space to the left of an integer in the event it does not require the entire
width specified with the wn modifier. The default padding character is a blank.

Specify as Two’s Complement. The s integer modifier indicates that the integer
argument is considered a signed two's complement number. This is the default
interpretation of integers, so the s modifier is never explicitly required.

Specify as Unsigned. The u integer modifier indicates that the integer is
considered an unsigned integer.

Specify Byte Ordering. The o integer modifier is used to describe the byte
ordering of raw data so that LabWindows/CVI can map it to the byte order
appropriate for the Intel (PC) or Motorola (SPARCstation) architecture. The
number of n's must be equal to the byte size of the integer argument as specified
by the bn modifier, which must precede the o modifier. In the case of a four-byte
integer, 00123 indicates that the bytes are in ascending order of precedence (Intel
style), and 03210 indicates that the bytes are in descending order of precedence
(Motorola style).

In a Fmt function, the buffer containing the raw instrument data should have the
o modifier describing the byte ordering. The buffer without the o modifier is
guaranteed to be in the mode of the host processor. In other words,
LabWindows/CVI will reverse the byte ordering of the buffer without the

o modifier depending on which architecture the program is running on.

For example, if your GPIB instrument sends two-byte binary data in Intel byte
order, your code should appear as follows:

short int instr_buf[100];

short int prog_buf[100];

status = ibrd (ud, instr_buf, 200);

Fmt (prog_buf, "%$100d<%100d[b2001]", instr_buf);

If, instead, your GPIB instrument sends two-byte binary data in Motorola byte
order, the Fmt function should appear as follows:

Fmt (prog_buf, "%$100d<%100d[b2010]", prog_buf);

In either case, the o modifier is used only on the buffer containing the raw data
from the instrument (instr_buf). LabWindows/CVI will ensure that the
program buffer (prog_buf) is in the proper byte order for the host processor.

LabWindows/CVI Standard Libraries 2-36 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

Note: When using both the bn and on modifiers on an integer specifier, the bn modifier
must be first.

Formatting Floating-Point Modifiers (%f)

bn Specify Length. The b floating-point modifier specifies the length of the
floating-point argument, or the length of an individual array element, in bytes. The
default length is 8 bytes; therefore, double-precision values do not need this modifier.
Single-precision floating-point values are indicated by b4. 8 and 4 are the only valid
values for n.

in Specify Array Offset. You use the i modifier to specify an offset within a
floating-point array argument. It indicates the location within the array where
processing is to begin. n is the zero-based index of the first element to process.

Thus, $10£[12] applied to a source floating-point array reads the 10 floating-point
values from the third through the twelfth elements of the array. The i modifier is
valid only if rep is present. If the i modifier is used with the z modifier, then n is in
terms of bytes.

z Treat String as Floating-Point Array. The z floating-point modifier indicates that
the data type of the corresponding argument is a string. Nevertheless, the data in the
string is treated as a floating-point array. The z modifier is valid only if rep is
present.

wn Specify String Size. The w floating-point modifier specifies the exact number of
bytes in which to store a string representation of the floating-point argument, in the
event that the value is converted to a string format. Any non-negative value can be
entered here. If n is less than the number of digits required to represent the
floating-point number, an asterisk (*) will be inserted into the string to signify an
overflow. The default for n is zero, which indicates that the value can occupy
whatever space is necessary.

pn Specify Precision. The p floating-point modifier specifies the number of digits to the
right of the decimal point in a string representation of the floating-point number. You
can lose significant digits by attempting to conform to the precision specification. If
the pn modifier is omitted, the default value is p6 .

en Specify as Scientific Notation. The e floating-point modifier specifies that a value
be converted to string format in scientific notation. If omitted, floating-point notation
is used. n is optional and specifies the number of digits in the exponent. For
example, $£ [e2] formats 10.0 as 1.0e+01. If n is omitted, a default of three is used.

f Specify as Floating-Point Notation. The f floating-point modifier specifies the
value to be converted to string format in floating-point notation. This is the default.

© National Instruments Corporation 2-37 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

Truncate. The t floating-point modifier indicates that in floating-point to integer
transformations, the floating-point value is truncated instead of rounded. This is the
default.

Round. The r floating-point modifier indicates that in floating-point to integer
transformations, the floating-point value is rounded instead of truncated. The default
method is truncation.

Note: The value can be represented in scientific notation even when the e modifier is absent.

This occurs when the absolute value of the argument is greater than 1.0e40 or less
than 1.0e-40, or when the absolute value of the argument is greater than 1.0e20 or less
than 1.0e-4 and neither the p modifier nor the w modifier is present.

Formatting String Modifiers (%$s)

in

wn

Specify Array Offset. The i string modifier specifies an offset within a string. It
indicates the location within the string where processing is to begin. n is the zero-
based index of the first byte to process. Thus, $s[12] applied to a target string
begins placing data in the third byte of the string.

Append. When applied to a target format specifier, the a string modifier specifies
that all formatted data be appended to the target string. The data is appended
beginning at the first occurrence of an ASCII NUL in the target string.

Specify String Size. When modifying a source format specifier, the w string modifier
specifies the maximum number of bytes to be consumed from the string argument.
You can enter any non-negative value here, the default being zero, which indicates
that the entire string should be consumed.

When modifying a target format specifier, the w string modifier specifies the exact
number of bytes to store in the string, excluding the terminating ASCII NUL. If nis
zero or omitted, as many bytes are stored as are called for by the sources. When n is
greater than the number of bytes available from the source, the remaining bytes are
filled with ASCII NULs if the g modifier is used, or blanks if the g modifier is not
present.

When the w string modifier is used in conjunction with the a string modifier, n
indicates the number of bytes to append to the string excluding the terminating ASCII
NUL.

If wn modifies a target string and n is larger than the number of bytes in the target
argument, the target string is overwritten in compiled C.

Append NULs. When applied to a target string in conjunction with the w string
modifier, the g string modifier specifies that unfilled bytes at the end of the target
string be set to ASCII NULs instead of blanks.

LabWindows/CVI Standard Libraries 2-38 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

tn Terminate on Character. When applied to a source string, the t string modifier
specifies that the source string is terminated on the first occurrence of the character n,
where n is the ASCII value of the character. Thus, $s[t44] causes reading of the
source string to stop on an ASCII comma. Using $s[t44] and the source string
Hello, World! asanexample, Hello is placed into the target. More than one
t modifier can occur in the same specifier, in which case the string terminates when
any of the terminators occur. If no t modifier is present, reading of the source string
stops on an ASCII NUL. This modifier has no effect when applied to the target
specifier.

t- Terminate when Full. This is similar to t n, except that it specifies that there are no
terminating characters. Reading of the source string terminates when the target is full
or when the number of bytes specified with the w modifier have been read.

t# Terminate on Number. This is equivalent to repeating the t modifier with the
ASCII values of the characters +, —, and 0 through 9. It specifies that reading of the
source string be terminated upon occurrence of a numeric expression. Using $s [t #]
with the source string alb567, ab is placed in the target.

Fmt, FmtFile, FmtOut—Asterisks (*) Instead of Constants in Format Specifiers

Often, one or more integer values are required in a format specifier. The format specifier for an
integer array, for example, requires the number of elements (rep). You can use constants for
these integer values in format specifiers. Alternatively, you can specify an integer value using an
argument in the argument list. When you use this method, substitute an asterisk (*) for the
constant in the format specifier.

You can use the asterisk in the following format specifier elements:

rep For integer or floating-point arrays

in For integer or floating-point arrays, or strings
wn For any format specifier

pn For floating-point specifiers only

en For floating-point specifiers only

rn For integer specifiers only

When you use one or more asterisks instead of constants in a target specifier, the arguments
corresponding to the asterisks must appear after the format string in the same order as their
corresponding asterisks appear in the format specifier.

When you use one or more asterisks instead of constants in a source specifier, the arguments
corresponding to the asterisks must precede the source argument and must be in the same order
as their corresponding asterisks in the format specifier.

© National Instruments Corporation 2-39 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

Fmt, FmtFile, FmtOut—Literals in the Format String

Literal characters appearing in a formatting function format string indicate that the literal
characters are to be combined with the source parameters in the appropriate positions. They do
not correspond to any source parameters, but are copied directly into the target item.

Since the left side of the < symbol must be a single format specifier, literal characters if present
must be on the right side of the symbol. Literals on the left side or more than one format
specifier on the left side result in a -1 error, indicating a faulty format string. You then can use
the function Get Fmt ErrNdx to determine exactly where the error lies in the format string.

The characters %, [, ], <, and > have special meaning in the format strings. To specify that these
characters be taken literally, they should be preceded by %.

Scanning Functions

The following information is a brief description of the three scanning functions.
. n = Scan (source, formatstring, targetptrl, ..., targetptrn);

The Scan function inspects the source argument and applies transformations to it
according to descriptions in the format st ring argument. The results of the
transformations are placed into the targetptrl ... targetptrn arguments.

. n = ScanFile (handle, formatstring, targetptrl, ..., targetptrn);

The ScanFile function reads data from the file corresponding to the handle argument
and applies transformations to it according to descriptions in the format st ring argument.

The results of the transformations are placed into the targetptrl ... targetptrn
arguments.
. n = ScanIn (formatstring, targetptrl, ..., targetptrn);

The ScanIn function reads data from standard input and applies transformations to it
according to descriptions in the format st ring argument. The results of the
transformations are placed into the targetptrl ... targetptrn arguments.

All of the above functions return the number of target format specifiers satisfied. The
function returns a -1 if there is an error in the format string.

The scanning functions break apart a source item into component parts and store the parts into
parameters passed to the function. The only difference between the three functions is the
location of the source data. For the function Scan, the source item is a data item in memory
which is passed to the function. For ScanFile, the source item is a file, whose handle is
passed as the first argument. The handle is obtained by a call to the LabWindows/CVI function
OpenFile. For the function ScanIn, the source is taken from Standard In (typically the
keyboard), and the source argument present in the other two functions is omitted.

All target parameters must be passed by reference.

LabWindows/CVI Standard Libraries 2-40 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

Scanning Functions—Format String
Consider the following scanning function:
n = Scan(source, formatstring, targetptrl, ..., targetptrn);

where format st ring contains the information to transform the source argument to the
targetptr arguments.

Format strings for the scanning functions are of the following form.
"source_spec > target_specs_and_literals"

where source_spec is a format specifier that describes the nature of the source parameter and
target_specs_and_literals is a sequence of format specifiers and literal characters that
indicate how to divide and reformat the source argument into the desired target.

Examples of format strings for the scanning functions are:
"$s > %i" "$s>%20f [wl0x]"

The character > is a visual reminder of the direction of the data transformation, and also
separates the single source format specifier from the (possibly multiple) target format specifiers
and literals. The source format specifier can be omitted, in which case a $s string format is
assumed. If the source format specifier is omitted, the > character can be omitted also, or
retained for clarity.

Notice that the source format specifier is located to the left of the > symbol, just as the source
parameter is located to the left of the format string. Likewise, the target format specifiers are

located to the right of the > symbol, just as the target parameters are located to the right of the
format string.

Format specifiers describe the inputs and outputs of data transformations. Each format specifier
is of the following form.

% [ rep 1 formatcode [[ modifiers 1]

The character % introduces all format specifiers. rep indicates how many times the format
repeats with respect to the arguments. formatcode is a code character which indicates the
nature of the data items being formatted. modifiers is an optional bracket enclosed sequence
of codes which further describe the data format.

The following are examples of format specifiers.
$s[t59] $1001i[z] Sf

Note: rep is not allowed when formatcode is s or 1 (string).

© National Instruments Corporation 2-41 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

formatcode is specified with one of the following codes:

S

string. As a source or target specifier this indicates that the corresponding parameter is a
character string. As a source specifier the number of bytes of the source parameter that
are consumed depends on the target specifier. If the target specifier is $s, bytes are
consumed until a termination character is encountered (see the t modifier for strings for
more information on termination characters). If the target specifier is one of the numeric
formats, bytes are consumed as long as they correspond to the pattern for the particular
numeric item being converted. Leading spaces and tabs are skipped unless the y modifier
is used.

Note: When a target string is filled in, an ASCII NUL is always placed in the string
after the last byte.

string. This is allowed only as a source specifier. It is the same as the % s specifier,
except that bytes from the source argument are to be consumed only until a linefeed is
encountered. Also, when modified with c asin $1[c], a comma is used as the target
string terminator in place of white space characters.

integer. As a source or target specifier this indicates that the corresponding parameter is
an integer or, if rep is present, an integer array. As a source specifier in conversions to
string formats, the integer is converted into digits of the specified radix (default is
decimal). As a target specifier in conversions from string format, bytes of the source
parameter are consumed as long as they match the pattern of integer ASCII numbers in
the appropriate radix, or until the end of the string is encountered. The scanned
characters are converted to integer values and placed into the corresponding target
parameter, which is an integer or integer array passed by reference. If the format is
repeated, the operation is repeated the appropriate number of times with successive
elements of the integer array parameter.

The pattern for integer ASCII numbers depends on the radix of the number, and consists
of an optional sign (+ or —), followed by a series of one or more digits in the appropriate
radix. The decimal digits are 01234 56789. The octal digits are 01234567. The
hexadecimal digits are 012345678 9ABCDEFabcdef.

integer (hexadecimal). This specifier indicates a $1 format with hexadecimal radix.
integer (octal). This specifier indicates a $1 format with octal radix.

integer (decimal). This specifier indicates a $i format with decimal radix. Since
decimal is the default radix for integers, $d is equivalent to %1, and is included for
compatibility with the C scanf family of functions.

LabWindows/CVI Standard Libraries 2-42 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

£

real number. As a source or target specifier, this indicates that the corresponding
parameter is a real number, or if rep is present, a real array. As a source specifier in
conversions to string formats, the floating-point value is converted into ASCII form. As
a target specifier in conversions from string format, bytes of the source parameter are
consumed as long as they match the pattern of floating-point ASCII numbers, or until the
end of the string is encountered. The scanned characters are converted to a floating-point
value and placed into the corresponding floating-point or floating-point array target
parameter. If the format is repeated, the operation is repeated the appropriate number of
times with successive elements of the array parameter. The pattern for floating-point
ASCII numbers is an optional sign (+ or —), a series of one or more decimal digits
possibly containing a decimal point, and an optional exponent consisting of an E or e
followed by an optionally signed decimal integer value.

character. As a source specifier, this indicates that the source parameter is an integer with
one significant byte or, if rep is present, an array of 1-byte integers. As a target specifier
this indicates that a byte of the source parameter is to be consumed, and the scanned
character placed directly into the corresponding target parameter, which is an integer
passed by reference. If the format is repeated, this operation is repeated the appropriate
number of times and the results stored into successive elements of the integer array.

Scanning Modifiers

modifiers are optional codes used to describe the nature of the source or target data. If you
use them, you must enclose the modifiers in square brackets and place them immediately after
the format code they modify. If one format specifier requires more than one modifier, enclose all
modifiers in the same set of brackets. There is a different set of modifiers for each possible

format

specifier.

Scanning Integer Modifiers (%i, %d, %x. %0, %c)

bn

in

Specify Length. The b integer modifier specifies the length of the integer argument,
or the length of an individual integer array element, in bytes. The default length is

4 B; therefore, simple 4 B integers do not need this modifier. The modifier b2
represents short integers. The modifier bl represents single-byte integers.

Specify Array Offset. Use the i integer modifier to specify an offset within an
integer array argument. It indicates the location within the array where processing is
to begin. n is the zero-based index of the first element to process. Thus, $10d[12]
applied to a source integer array reads the 10 integer values from the third through the
twelfth elements of the array. The 1 modifier is valid only if rep is present. If the

i modifier is used with the z modifier, then n is in terms of bytes.

Treat String as Integer Array. The z integer modifier indicates that the data type of
the corresponding argument is a string. Nevertheless, the data in the string is treated
as an integer array. The z modifier is valid only if rep is present.

© National Instruments Corporation 2-43 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

rn

wn

onnnn

Specify Radix. The r integer modifier specifies the radix of the integer argument,
which is important if the integer is converted from a string format. Legal radixes are
8 (octal), 10 (decimal, the default), 16 (hexadecimal), and 256 (a special radix
representing single 8-bit ASCII characters).

Specify String Size. The w integer modifier specifies the exact number of bytes
occupied by a string representation of the integer argument, in the event that the
integer is converted from a string format. You can enter any non-negative value here.
If n is less than the number of digits required to represent the integer, an asterisk (*)
will be inserted into the string to signify an overflow. The default for n is zero, which
indicates that the integer can occupy whatever room is necessary.

Specify as Two’s Complement. The s integer modifier indicates that the integer
argument is to be considered a signed two's complement number. This is the default
interpretation of integers, so the s modifier is not required.

Specify as Non-negative. The u integer modifier indicates that the integer is to be
considered a non-negative integer.

Discard Terminator. The x integer causes the character that terminated the numeric
data to be discarded. In this way, terminator characters can be skipped when reading
lists of numeric input. Thus, $31i [x] reads three integer numbers, disregarding the
terminator character which appears after each one. You can use this specifier to scan
the string 3, 7, =32.

Discard Data. When applied to a target specifier, the d integer modifier indicates
that there is no target argument to correspond to the target specifier. The data that
otherwise is placed in the target argument is discarded instead. The count returned by
the Scan/ScanFile/ScanIn functions will include the target specifier even if the
d modifier is used.

Specify Byte Ordering. The o integer modifier is used to describe the byte ordering
of raw data so that LabWindows/CVI can map it to the byte order appropriate for the
Intel (PC) or Motorola (SPARCstation) architecture. The number of n's must be
equal to the byte size of the integer argument as specified by the bn modifier, which
must precede the o modifier. In the case of a four-byte integer, 00123 indicates that
the bytes are in ascending order of precedence (Intel style), and 03210 indicates that
the bytes are in descending order of precedence (Motorola style).

In a Scan function, the buffer containing the raw instrument data should have the

o modifier describing the byte ordering. The buffer without the o modifier is
guaranteed to be in the mode of the host processor. LabWindows/CVI will reverse the
byte ordering of the buffer without the o modifier depending on which architecture
the program is running.

For example, if your GPIB instrument sends two-byte binary data in Intel byte order,
your code should appear as follows.

LabWindows/CVI Standard Libraries 2-44 © National Instruments Corporation



Chapter 2

Formatting and I/O Library

short int instr_buf[100];

short int prog_buf[100];

status = ibrd (ud, instr_buf, 200);

Scan (instr_buf, "%$100d[b2001]>%100d", prog_buf);

If, instead, your GPIB instrument sends two-byte binary data in Motorola byte order,
the Scan function should appear as follows.

Scan (instr_buf, "%$100d[b2010]>%100d", prog_buf);

In either case, the o modifier is used only on the buffer containing the raw data from
the instrument (instr_buf). LabWindows/CVI will ensure that the program buffer
(prog_buf) is in the proper byte order for the host processor.

Note: When using both the bn and on modifiers on an integer specifier, the bn modifier
must be first.

Scanning Floating-Point Modifiers (%f)

bn

in

wn

Specify Length. The b floating-point modifier specifies the length of the
floating-point argument, or the length of an individual array element, in bytes. The
default length is 8 B; therefore, double-precision values do not need this modifier.
Single-precision floating-point values are indicated by b4. 8 and 4 are the only valid
values for n.

Specify Array Offset. You can use the i floating-point modifier to specify an offset
within a floating-point array argument. It indicates the location within the array
where processing is to begin. n is the zero-based index of the first element to process.
Thus, $10£[12] applied to a source floating-point array reads the 10 floating-point
values from the third through the twelfth elements of the array. The i modifier is
valid only if rep is present. If you use the 1 modifier with the z modifier, then n is
in terms of bytes.

Treat String as Floating Point. The z floating-point modifier indicates that the data
type of the corresponding argument is a string. Nevertheless, the data in the string is
treated as a floating-point array. The z modifier is valid only if rep is present.

Specify String Size. The w floating-point modifier specifies the exact number of
bytes occupied by a string representation of the floating-point argument, in the event
that the value is converted from a string format. You can enter any non-negative
value here. If n is less than the number of digits required to represent the
floating-point number, an asterisk (*) will be inserted into the string to signify an
overflow. The default for n is zero, which indicates that the value can occupy
whatever space is necessary.

Specify Precision. The p floating-point modifier specifies the number of digits to the
right of the decimal point in a string representation of the floating-point number.
Significant digits may be lost in attempting to conform to the precision specification.

© National Instruments Corporation 2-45 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

en

If the pn modifier is omitted, a default of p6 is used. The p modifier is valid for
sources only.

Specify as Scientific Notation. The e floating-point modifier indicates that the
string representation of the floating-point value is in scientific notation. If omitted,
non-scientific notation is used. n is optional and specifies the number of digits to use
in the exponent. For example, $f [e2] causes 10.0 to be formatted as 1.0e+01. If

n is omitted, a default of three is used. The e modifier is valid for sources only.

Specify as Floating Point. The £ floating-point modifier indicates that the string
representation of the floating-point value is in non-scientific notation. This is the
default even when the £ modifier is not present.

Discard Terminator. The x floating-point modifier causes the character that
terminated the numeric data to be discarded. In this way, terminator characters can be
skipped when reading lists of numeric input. Thus, $3f [x] reads three floating-
point numbers, disregarding the terminator character which appears after each one;
this specifier could then be used to scan the string 3.5, 7.6, -32.4.

Discard Data. When applied to a target specifier, the d modifier indicates there is no
target argument to correspond to the target specifier. The data that otherwise is
placed in the target argument is discarded instead. The count returned by the
Scan/ScanFile/ScanIn functions will include the target specifier even if the

d modifier is used.

Scanning String Modifiers (%s)

in

wn

Specify Array Offset. The i string modifier specifies an offset within a string. It
indicates the location within the string where processing is to begin. n is the zero-
based index of the first byte to process. Thus, $s[12] applied to a target string
begins placing data in the third byte of the string.

Append. When applied to a target format specifier, the a string modifier specifies
that all formatted data be appended to the target string, beginning at the first
occurrence of an ASCII NUL in the target string.

Specify String Size. When modifying a source format specifier, the w string modifier
specifies the maximum number of bytes from the source string to be used for filling
the target arguments. You can enter any non-negative value here, the default being
zero, which indicates that the entire string can be used. (For ScanFile and
ScanlIn, the entire source string is consumed even if the w modifier restricts the
number of bytes used to fill in the target arguments.)

When modifying a target format specifier, the w modifier specifies the exact number
of bytes to store in the string, excluding the terminating ASCII NUL. If n is zero or
omitted, as many bytes are stored as are called for by the sources. When n is greater

LabWindows/CVI Standard Libraries 2-46 © National Instruments Corporation



Chapter 2

tn

t#

Formatting and I/O Library

than the number of bytes available from the source, the remaining bytes are filled
with ASCII NULs if the g modifier is used or blanks if the g modifier is not present.

When the w modifier is used in conjunction with the a modifier, n indicates the
number of bytes to append to the string excluding the terminating ASCII NUL.

If wn modifies a target string and n is larger than the number of bytes in the target
argument, the target argument is overwritten in compiled C.

Append NULs. When applied to a target string in conjunction with the w string
modifier, the g string modifier specifies that unfilled bytes at the end of the target
string be set to ASCII NULs instead of blanks.

Append with Spacing. When the source is a string and the y modifier is applied to a
target string format specifier, the target string is filled with bytes from the source
string without skipping leading spaces or tabs.

Terminate on Character. When applied to a source string, the t modifier specifies
that the source string is terminated on the first occurrence of the character n, where n
is the ASCII value of the character. Thus, $s[t44] causes reading of the source
string to stop on an ASCII comma. More than one t modifier can occur in the same
specifier, in which case the string terminates when any of the terminators occur. If no
t modifier is present, reading of the source string stops on an ASCII NUL.

When applied to a target string that is being filled from a source string, the t modifier
specifies that filling of the target is terminated on the first occurrence of the character
n, where n is the ASCII value of the character. Thus, $s[t59] causes reading of
the source string to stop on an ASCII semicolon. More than one t modifier can occur
in the same specifier, in which case filling of the target terminates when any of the
terminators occur. If no t modifier is present, filling of the target stops on any
whitespace character.

Terminate when Full. This is similar to t n, except that it specifies that there are no
terminating characters. When applied to a source string, t — specifies that reading of
the source string terminates when all of the targets are full or when the number of
bytes specified with the w modifier have been read. When applied to a target string,

t — specifies that filling of the target string terminates when the source is exhausted or
when the number of bytes specified with the w modifier have been placed into the
target.

Terminate on Number. This is equivalent to repeating the t modifier with the
ASCII values of the characters +, —, and 0 through 9. When applied to a source
(target), it specifies that reading of the source string (filling of the target string) be
terminated upon occurrence of a numeric expression. Using $s>%s [t#] %$d with the
source string ab567, ab is placed in the first target and the integer 567 is placed in
the second target.

© National Instruments Corporation 2-47 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

X Discard Terminator. When applied to a target string, the x modifier specifies that
the terminating character be discarded before the next target is filled in. Using
$s>%s [xt59]1%s [xt59] with the source string "abc; XYZ; ", "abc" is placed
in the first target and "XYZ" is placed in the second target.

d Discard Data. When applied to a target specifier, the d modifier indicates that there
is no target argument to correspond to the target specifier. The data that otherwise is
placed in the target argument is discarded instead. The count returned by the
Scan/ScanFile/ScanIn functions will include the target specifier even if the
d modifier is used.

Scan, ScanFile, ScanIn—Asterisks (*) Instead of Constants in Format Specifiers

Often, a format specifier requires one or more integer values. The format specifier for an integer
array, for example, requires the number of elements (rep). You can use constants for these
integer values in format specifiers. Alternatively, you can specify an integer value using an
argument in the argument list. When you use this method, substitute an asterisk (*) for the
constant in the format specifier. Use the asterisk in the following format specifier elements.

rep For integer or floating-point arrays.

in For integer or floating-point arrays, or strings.
wn For any format specifier.

pn For floating-point specifiers only.

en For floating-point specifiers only.

rn For integer specifiers only.

When you use one or more asterisks instead of constants in a source specifier, the arguments
corresponding to the asterisks must appear after the format string in the same order as their
corresponding asterisks appear in the format specifier.

When you use one or more asterisks instead of constants in a target specifier, the arguments
corresponding to the asterisks must precede the target argument and must be in the same order as
their corresponding asterisks in the format specifier.

Scan, ScanFile, ScanIn—Literals in the Format String

Literal characters appearing in a scanning function format string indicate that the literal
characters are expected in the source parameter. They are not stored into any target parameter,
but are skipped over when encountered. If a literal character specified in the format string fails
to appear in the source in the expected position, the scanning function immediately returns.

LabWindows/CVI Standard Libraries 2-48 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

Some formats may have been correctly detected in the input, and the corresponding target
parameters will have been filled in. Formats situated after the literal which did not appear,
however, will not have been executed.

The function return value can be used to determine exactly how many target parameters were
actually fulfilled by the input. You can use the function NumFmt dBytes to determine the
number of bytes consumed from the source parameter.

Because the left side of the > symbol must be a single format specifier, literal characters, if
present, must be on the right side of the symbol. Literals on the left side, or more than one
format specifier on the left side, result in a -1 error, indicating a faulty format string. The
function Get Fmt Er rNdx can then be used to determine exactly where in the format string the
error lies.

The characters %, [, ], <, and > have special meaning in the format strings. To specify that these
characters be taken literally, they should be preceded by %.

Formatting and I/0O Library Programming Examples

This section contains examples of program code that use the Formatting and I/O Library
functions. The formatting and scanning functions are the basis of most of the examples.

The Fmt/FmtFile/FmtOut examples are logically organized as shown:

Integer to String

Long Integer to String

Real to String in Floating-Point Notation

Real to String in Scientific Notation

Integer and Real to String with Literals

Two Integers to ASCII File with Error Checking

Real Array to ASCII File in Columns and with Comma Separators
Integer Array to Binary File, Assuming a Fixed Number of Elements
Real Array to Binary File, Assuming a Fixed Number of Elements
Real Array to Binary File, Assuming a Variable Number of Elements
A Variable Portion of a Real Array to a Binary File

Concatenating Two Strings

Appending to a String

Creating an Array of File Names

Writing a Line Containing an Integer with Literals to the Standard Output
Writing to the Standard Output without a Linefeed/Carriage Return

The Scan/ScanFile/ScanIn examples are logically organized as shown:

String to Integer
String to Long Integer
String to Real

© National Instruments Corporation 2-49 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

String to Integer and Real

String to String

String to Integer and String

String to Real, Skipping over Non-Numeric Characters in the String

String to Real, after Finding a Semicolon in the String

String to Real, after Finding a Substring in the String

String with Comma-Separated ASCII Numbers to Real Array

Scanning Strings That Are Not NUL-Terminated

Integer Array to Real Array

Integer Array to Real Array with Byte Swapping

Integer Array Containing 1-Byte Integers to Real Array

String Containing Binary Integers to Integer Array

String Containing an IEEE-Format Real Number to a Real Variable

ASCII File to Two Integers with Error Checking

ASCII File with Comma-Separated Numbers to Real Array, with Number of Elements
at Beginning of File

Binary File to Integer Array, Assuming a Fixed Number of Elements

Binary File to Real Array, Assuming a Fixed Number of Elements

Binary File to Real Array, with Number of Elements at Beginning of File

Reading an Integer from the Standard Input

Reading a String from the Standard Input

Reading a Line from the Standard Input

Fmt/FmtFile/FmtOut Examples in C

This section contains examples of program code that use the Fmt, FmtFile, and FmtOut
functions from the Formatting and I/O Library. To eliminate redundancy, error checking on I/O
operations has been omitted from all of the examples in this section except the Two Integers to
ASCII File with Error Checking example.

Integer to String
char buf[10];
int aj;
a = 16;
Fmt (buf, "%s<%i", a); /* result: "1l6" */
a = 16;
Fmt (buf, "%s<%x", a); /* result: "10" */
a = 16;
Fmt (buf, "%s<%o", a); /* result: "20" */
a = -1;
Fmt (buf, "%s<%i", a); /* result: "-1" */
a = -1;
Fmt (buf, "%$s<%i[ul", a); /* result: "4294967295" */
a = 1234;
Fmt (buf, "%s<%i[w6]", a); /* result: " 1234" */
a = 1234;

LabWindows/CVI Standard Libraries 2-50 © National Instruments Corporation



Chapter 2

Fmt (buf, "$s<%i[w6p0]", a);

a = 1234;

Fmt (buf, "%$s<%i[w2]", a);
Remarks

/* result:

/* result:

Formatting and I/O Library

"001234" */

LE VR

*/

The results shown are the contents of buf after each call to Fmt. The last call demonstrates
what occurs when the width specified by the w modifier is too small.

Long Integer to String

char buf[20];

long aj;

a = 12345¢6;

Fmt (buf, "%s<%i[b4]", a); /*
a = 12345¢6;

Fmt (buf, "%$s<%x[b4]", a); /*
a = 12345¢6;

Fmt (buf, "%s<%o[b4]", a); /*
a = -1;

Fmt (buf, "%s<%i[b4]", a); /*
a = -1;

Fmt (buf, "%$s<%i[b4ul", a);

a = 12345¢6;

Fmt (buf, "%$s<%i[b4w8]1", a);

a = 12345¢6;

Fmt (buf, "%s<%i[b4w8p0]", a);

a = 12345¢6;

Fmt (buf, "%s<%i[b4w4l", a);
Remarks

result:

result:

result:

result:

/*

result:

/*

result:

/*

result:

/*

result:

"123456"

"le240"

"361100"

"_l"

*/

*/

*/
*/
"4294967295" */
" 123456" */
"00123456" */

"x456" */

The results shown are the contents of buf after each call to Fmt. The last call demonstrates
what occurs when the width specified by the w modifier is too small.

Real to String in Floating-Point Notation

char buf[30]
double x;

x = 12.3456789;

Fmt (buf, "$%$s<%f", x); /*
x = 12.3456789;

Fmt (buf, "%$s<%f[p2]", x); /*
x = 12.3456789;

Fmt (buf, "%s<%f[pl0]", x);

x = 12.345;

Fmt (buf, "$%$s<%f", x); /*
x = 12.345;

© National Instruments Corporation

result:

result:

/* result:

result:

2-51

"12.345679"

"12.35"

"12.345"

*/
*/
"12.3456789000" */

*/

LabWindows/CVI Standard Libraries



Formatting and I/O Library

Fmt (buf, "$s<$f[p0]", x);
x = 12.345;

Fmt (buf, "$s<$f[p6]", x);
x = —12.345;

Fmt (buf, "%s<$f[wl2]", x);
x = —-12.3456789;

Fmt (buf, "$s<$f[w6]", x);
x = 0.00000012;

Fmt (buf, "$s<3$f[p8l", x);
x = 0.00000012;

Fmt (buf, "$s<$f", x);

x = 4.5e050;

Fmt (buf, "$s<$f", x);
Remarks

14

/*

/*

/*

/*

/*

/*

Chapter 2

result: "12." */
result: "12.345000" */
/* result: "-12.345" */
result: "-12.3*" */
result: "0.00000012" */
result: "1.2e-007" */
result: "4.5e050" */

The results shown are the contents of buf after each call to Fmt. The last two calls demonstrate
that very large and very small values are sometimes forced into scientific notation even when the

e modifier is absent.

Real to String in Scientific Notation

char buf[20];

double x;

12.3456789;

(buf, "%$s<%flel",
12.3456789;

(buf,
12.3456789;

(buf, "%$s<%fl[e2p2]",
12.345;

(buf, "%s<%flel",
12.345;

(buf, "%$s<%flep2wl2]",
12.345;

(buf, "%$s<%flep2w6b]",

X);

X);

Remarks

"$s<3f[ep2]", x);

14

X);

X);

X);

/*

/*

result: "1

/* result:

/* result:

result: "1

/* result:

/* result:

.234568e+001"

.234500e+001"

*/
"1.23e+001" */
"1.23e+01" */

*/
" 1.23e+001" */

"1l.23e*" */

The results shown are the contents of buf after each call to Fmt. The last call demonstrates
what occurs when the width specified by the w modifier is too small.

LabWindows/CVI Standard Libraries

2-52

© National Instruments Corporation



Chapter 2 Formatting and I/O Library

Integer and Real to String with Literals

char buf[20];
int £, r;
double v;

f = 4;
r = 3;
v = 1.2;

Fmt (buf, "%$s<F%iR%i; V%f£;", £, r, v);
Remarks

After the Fmt call, buf contains "F4R3; V1.2;".

Two Integers to ASCII File with Error Checking

int a, b, n, file_handle;
a = 12;
b = 456;
file_handle = OpenFile ("FILE.DAT", 2, 0, 1);
if (file_handle < 0) {
FmtOut ("Error opening file\n");
exit (1);
}

n = FmtFile (file_handle, "%s<%i %i", a, Db);
if (n != 2) {
FmtOut ("Error writing file\n");

exit (1);
}
CloseFile (file_handle);

Remarks

OpenFile opens the file FILE.DAT as an ASCII file for writing only. If the function
succeeds, it returns a file handle with a positive integer value. FmtFile writes the ASCII
representation of two integer values to the file. If FmtFile succeeds, it returns 2 (because there
are two source specifiers in the format string).

Real Array to ASCII File in Columns and with Comma Separators

double x[1007];
int file_handle, 1i;
file_handle = OpenFile ("FILE.DAT", 2, 0, 1);
for (i=0; i < 100; i++) {
FmtFile (file_handle, "%s<%f[wl5],", x[1i]);

© National Instruments Corporation 2-53 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

if ((i & 5) == 4)
WriteFile (file_handle, "\n", 1);

}
CloseFile (file_handle);

Remarks

The FmtF1ile call writes the ASCII representation of a real array element to the file, followed
by a comma. The w modifier specifies that the number be right-justified in a 15-character field.
The WriteFile call writes a linefeed to the file after every fifth call to FmtFile. Because
the file is opened in ASCII mode, the linefeed is automatically written as a linefeed/carriage
return combination.

Note: Ifthe format stringis "%s [wl15]<%f,", the number and the comma are left-justified
together in a 15-character field.

Integer Array to Binary File, Assuming a Fixed Number of Elements

int readings[100];

int file_handle, nbytes;

file_handle = OpenFile ("FILE.DAT", 2, 0, 0);
FmtFile (file_handle, "%100i<%100i", readings);
nbytes = NumFmtdBytes ();

CloseFile (file_handle)

Remarks

The FmtF1ile call writes all 100 elements of the integer array readings to a file in binary
form. If the FmtFile call is successful, nbytes =200 (100 integers, 2 bytes per integer).

Real Array to Binary File, Assuming a Fixed Number of Elements

double waveform[100];

int file_handle, nbytes;

file_handle = OpenFile ("FILE.DAT", 2, 0, 0);
FmtFile (file_handle, "%100f<%100f", waveform);
nbytes = NumFmtdBytes ();

CloseFile (file_handle);

Remarks

The FmtFile call writes all 100 elements of the real array waveform to a file in binary form.
If the FmtFile call is successful, nbytes = 800 (100 integers, 8 bytes per real number).

LabWindows/CVI Standard Libraries 2-54 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

Real Array to Binary File, Assuming a Variable Number of Elements

void StoreArray (double x[], int count, char filename[])
{
int file_handle;
file_handle = OpenFile (filename, 2, 0, 0);
FmtFile (file_handle, "%$*f<%*f", count, count, Xx);
CloseFile (file_handle);
}

Remarks

This example shows how a function can be used to write an array of real numbers to a binary file.
The function's parameters are a real array, the number of elements to be written, and the
filename.

The FmtF1ile call writes the first count elements of x to a file in binary form. The two
asterisks (*) in the format string are matched to count. For instance, if count is 100, then the
format string is equivalent to $100£<100f£.

A Variable Portion of a Real Array to a Binary File

void StoreSubArray (double x[], int start, int count, char filenamel])
{
int file_handle;
file_handle = OpenFile (filename, 2, 0, 0);
FmtFile (file_handle, "$*f<%*f[i*]", count, count, start, x);
CloseFile (file_handle)
}

Remarks

This example is an extension of the previous example. The function also writes a variable
number of elements of a real array to a file. Instead of beginning at the first element of the array,
a starting index is passed to the function.

The FmtFile call writes count elements of x, starting from x [start], to a file in binary
form. The first two asterisks (*) in the format string are matched to count. The third asterisk
is matched to start. For instance, if count is 100 and start is 30, then the format string is
equivalent to $100£<100£[130]. Because the i modifier specifies a zero-based index into
the real array, the array elements from x [ 30] through x [129] are written to the file.

© National Instruments Corporation 2-55 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

Concatenating Two Strings

char buf[30];
int wave_type, signal_output;
char *wave_str, *signal_str;
int nbytes;
wave_type = 1;
signal_output = 0;
switch (wave_type) {
case 0:

wave_str "SINE;"
break;

case 1:

wave_str "SQUARE; "
break;

case 2:

wave_str "TRIANGLE; "
break;
}
switch (signal_output) {
case 0:
signal_str = "OUTPUT OFF;"
break;
case 1:
signal_str = "OUTPUT ON;"
break;
}
Fmt (buf, "%s<%s%s", wave_str, signal_str);
nbytes = NumFmtdBytes ();

Remarks

The two switch constructs assign constant strings to the string variables wave_str and
signal_str. The Fmt call concatenates the contents of wave_str and signal_str into
buf. After the call, buf contains "SQUARE; OUTPUT OFF;". NumFmtdBytes returns
the number of bytes in the concatenated string.

Appending to a String

char buf[30];

int wave_type, signal_output;
int nbytes;

switch (wave_type) {

case 0:
Fmt (buf, "%$s<SINE;");
break;

case 1:
Fmt (buf, "$%$s<SQUARE;");
break;

LabWindows/CVI Standard Libraries 2-56 © National Instruments Corporation



Chapter 2

case 2:
Fmt (buf, "%$s<TRIANGLE;");
break;
}
switch (signal_output) {
case 0:
Fmt (buf, "%$s[a]<OUTPUT OFF;");
break;
case 1:
Fmt (buf, "%$s[a]<OUTPUT ON;");
break;
}
nbytes = StringLength (buf);
Remarks

Formatting and I/O Library

This example shows how to append characters to a string without writing over the existing

contents of the string. The first switch construct writes one of three strings into buf. The
second switch construct appends one of two strings to the string already in buf. After the
call, buf contains "SQUARE; OUTPUT OFF;". Notice that the a modifier applies to the

target specifier.

StringLength returns the number of bytes in the resulting string. In this case,
StringLength is used instead of NumFmtdBytes, because NumFmtdBytes would return

only the number of bytes appended.

Creating an Array of File Names

char *fname_array[4];

int i;
fname_array[0] = " ", /*
fname_array[1l] = " ", /*
fname_array[2] = " v; /*
fname_array[3] = " "; /*
for (i=0; i < 4; i++)

Fmt (fname_array([i], "%$s<FILE%i[w4pO].DAT",
Remarks

13
13
13
13

spaces
spaces
spaces
spaces

i);

*/
*/
*/
*/

To allocate the space for each filename in the array, a separate constant string must be assigned
to each array element. Then Fmt is used to format each file name. The resulting file names are
FILEOOOO.DAT,FILEOOO1.DAT,FILEOOO2.DAT, and FILEOOO3.DAT.

© National Instruments Corporation

2-57

LabWindows/CVI Standard Libraries



Formatting and I/O Library

Chapter 2

Writing a Line Containing an Integer with Literals to the Standard Output

int a, b;
a = 12;
b = 34;
FmtOut ("%s<A =
FmtOut ("%s<B

Remarks

In this example, the output is as follows:

A =12

B = 34

%i\n",
%i\n",

a);
b);

Writing to the Standard Output without a Linefeed/Carriage Return

char *s;

int b;

double c;

a = "One ";
FmtOut ("%s<%s",
b = 2;

FmtOut ("%$s<%i",
c = 3.4;

FmtOut ("%$s<%f",

Remarks

a);

b);

c)i

This example demonstrates how to write to the Standard Output without a linefeed/carriage
return by omitting the ' \n' from the format string. The output in this example is as follows.

One 2 3.4

The following code produces the same output:

a = "One";

b = 2;

c = 3.4;

FmtOut ("%$s<%s %i %$f",

a,

LabWindows/CVI Standard Libraries

2-58

© National Instruments Corporation



Chapter 2 Formatting and I/O Library

Scan/ScanFile/ScanIln Examples in C

This section contains examples of program code that use the Scan, ScanFile, and ScanIn
functions from the Formatting and I/O Library. To eliminate redundancy, the examples include
no error checking on I/O operations in this section except for the ASCII File to Two Integers with
Error Checking example.

String to Integer
char *s;
int a, n;
s = "32" ;
n = Scan (s, "%s>%i", &a); /* result: a = 32, n =1 */
s = "_32";
n = Scan (s, "%s>%i", &a); /* result: a = -32, n =1 */
s =" +32" ;
n = Scan (s, "%s>%i", &a); /* result: a = 32, n =1 */
s = "x32";
n = Scan (s, "%s>%i", &a); /* result: a = ?2?, n =0 */
Remarks

When locating an integer in a string, Scan skips over white space characters such as spaces,
tabs, linefeeds, and carriage returns. If a non-numeric character other than a white space
character, +, or — is found before the first numeric character, the Scan call fails. Thus, Scan
fails on the x in x32; it leaves the value in a unmodified and returns zero, indicating that no
target specifiers were satisfied.

s = "032";

n = Scan (s, "%$s>%i", &a); /* result: a = 32, n =1 */
s = "32a";

n = Scan (s, "%s>%i", &a); /* result: a = 32, n =1 */
s = "32";

n = Scan (s, "%$s>%o", &a); /* result: a = 26, n =1 */
s = "32";

n = Scan (s, "%$s>%x", &a); /* result: a = 50, n =1 */

Remarks

When the %1 specifier is used, numeric characters are interpreted as decimal, even when they
might appear to be octal (as in 032) or hexadecimal (as in 32a). When the %o specifier is
used, the numeric characters (01234567) are always interpreted as octal. When the $x
specifier is used, the numeric characters (0123456789abcdef) are always interpreted as
hexadecimal.

"32x1";
n = Scan (s, "%s>%i", &a); /* result: a = 32, n =1 */

]
Il

© National Instruments Corporation 2-59 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

Scan considers the occurrence of a non-numeric character (such as the x in 32x1) to mark the
end of the integer.

S
n

"32567";
Scan (s, "%s>%i[w3]", &a); /* result: a = 325, n =1 */

The w3 modifier specifies that only the first 3 bytes of the string are scanned.

String to Long Integer
char *s;
long a;
int n;
s = "99999";
n = Scan (s, "%$s>%i[b4]", &a); /* result: a = 99999, n =1 */
s = "303237";
n = Scan (s, "%$s>%o[b4]", &a); /* result: a = 99999, n =1 */
s = "ffff";
n = Scan (s, "%$s>%x[b4]", &a); /* result: a = 65535, n =1 */
Remarks

Scan extracts long integers from strings in the same way it extracts integers. The only
differences are that the b4 modifier must be used and the target argument must be a long integer.
See the String to Integer example earlier in this section for more details on using Scan to extract
integers and long integers from strings.

String to Real
char *s;
double x;
int n;
s = "12.3";
n = Scan (s, "%$s>%f", &x); /* result: x = 12.3, n =1 */
s = "-1.23e+1";
n = Scan (s, "%$s>%f", &x); /* result: x = -1.23, n =1 */
s = "1.23e-1";
n = Scan (s, "%$s>%f", &x); /* result: x = 0.123, n =1 */

Remarks

When locating a real number in a string, Scan accepts either floating-point notation or scientific
notation.

s =" 12.3";

n = Scan (s, "%$s>%f", &x); /* result: x = 12.3, n =1 */
s = "pl2.3";

n = Scan (s, "%$s>%f", &x); /* result: x = 2?2?22, n =0 */

LabWindows/CVI Standard Libraries 2-60 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

When locating a real number in a string, Scan skips over white space characters. If a non-
numeric character other than a white space character, +, or — is found before the first numeric
character, the Scan call fails. Thus, Scan failsonthe pin pl2.3; itleaves the value in x
unmodified and returns zero, indicating that no target specifiers were satisfied.

s = "12.3m";

n = Scan (s, "%$s>%f", &x); /* result: x = 12.3, n =1 */
s = "12.3.4";

n = Scan (s, "%$s>%f", &x); /* result: x = 12.3, n =1 */
s = "1.23e";

n = Scan (s, "%$s>%f", &x); /* result: x = ?2?2??, n =0 */

Scan considers the occurrence of a non-numeric character (such as the min 12 . 3m) to mark the
end of the real number. A second decimal point also marks the end of the number. However,
Scan fails on "1.23e" because the value of the exponent is missing.

s "1.2345";
n = Scan (s, "%$s>%f[w4]", &x);/* result: x = 1.23, n =1 */

The w4 modifier specifies that only the first 4 bytes of the string are scanned.

String to Integer and Real

char *s;
int a, n;
double x;

s = "32 1.23";
n = Scan (s, "%s>%i%f", &a, &x);

/* result: a = 32, x = 1.23, n =2 */
s = "32, 1.23";
n = Scan (s, "%s>%i[x]%f", &a, &x);

/* result: a = 32, x = 1.23, n =2 */
s = "32, 1.23";
n = Scan (s, "%s>%i%f", &a, &x);

/* result: a = 32, x = 2?2?22, n =1 */

Remarks

After each of the first two calls to Scan, a =32, x = 1.23, and n = 2 (indicating that two target
specifiers were satisfied). In the second call, the x modifier is used to discard the separating
comma.

In the third call, there is a comma separator after the integer, but the x modifier is absent.
Consequently, Scan fails when attempting to find the real number. x remains unmodified, and
n = 1 (indicating that only one target specifier was satisfied).

© National Instruments Corporation 2-61 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

String to String

char *s;

char buf[10];

int nj;

_n abc n;

Scan (s, "%s>%s", buf); /* result: buf
_n abc n;

= Scan (s, "%$s>%s[y]", buf); /* result: buf =" abc" */

"abe" */

S n B8 on
I

Remarks

When extracting a substring from a string, Scan skips leading spaces and tabs unless the y
modifier is present.

="a b c¢; d";
= Scan (s, "%s>%s", buf); /* result: buf = "a" */
="a b c¢; d";

= Scan (s, "%s>%s[t59]", buf); /* result: buf

S0 B on

"a b c" */

When Scan extracts a substring from a string and the t modifier is not present, the substring is
considered to be terminated by a white space character. To include embedded white space in the
target string, use the t modifier to change the target string termination character. In the second
call to Scan, [t59] changes the termination character to a semicolon (ASCII 59).

s = " abcdefghijklmnop";
n = Scan (s, "%s>%s[w9]", buf);
/* result: buf = "abcdefghi" */

s =" abc" ;

n = Scan (s, "%s>%s[w9]", buf); /* result: buf = "abc "*/

S - n ab c "

n = Scan (s, "%$s>%s[w9q]", buf); /* result: buf = "abc" */
Remarks

The w modifier can be used to prevent Scan from writing beyond the end of a target string. The
width specified does not include the ASCII NUL that Scan places at the end of the target string.
Therefore, the width specified should be at least one less than the width of the target character
buffer.

When the w modifier is used and the string extracted is smaller than the width specified, the
remaining bytes in the target string are blank-filled. However, if the g modifier is also used,
ASCII NUL:s fill the remaining bytes.

LabWindows/CVI Standard Libraries 2-62 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

String to Integer and String

char *s;
char buf[10];
int a, n;

s = "32abc";
n = Scan (s, "%s>%i%s", &a, buf);
/* result: a = 32, buf = "abc", n = 2 */
s = "32abc";
n = Scan (s, "%s>%1i %s", &a, buf);
/* result: a = 32, buf = ?2?27?2??, n =1 */
Remarks

After the first call to Scan, a =32, buf = "abc", and n = 2. Notice there are no spaces in the
format string between the two target specifiers. In the second call, there is a space between %1
and $s. Consequently, Scan expects a space to occur in s immediately after the integer.
Because there is no space in s, Scan fails at that point. It leaves buf unmodified and returns 1
(indicating that only one target specifier is satisfied).

Note: Do not put spaces between specifiers in Scan, ScanFile, or ScanIn format strings.

String to Real, Skipping over Non-Numeric Characters in the String

char *s;

double x;

int n;

s = "VOLTS = 1.2";

n = Scan (s, "%$s>%s[dt#]%f", &x); /* result: x = 1.2, n =2 */
s = "VOLTS = 1.2";

n = Scan (s, "%s[18]>%f", &x); /* result: x = 1.2, n =1 */
s = "VOLTS = 1.2";

n = Scan (s, "%$s>VOLTS = %f", &x); /* result: x =1.2, n=1 */

Remarks

The three different format strings represent different methods for skipping over non-numeric
characters. In the first call, the format string contains two target specifiers. In the first specifier
($s[dt#1), the t# modifier instructs Scan to read bytes from s until a number is
encountered. The d modifier indicates that the bytes must be discarded because there is no
argument corresponding to the specifier. When the Scan call succeeds, it returns 2, indicating
that two target specifiers were satisfied, even though there is only one target argument.

In the second call, the source specifier $s [18] instructs Scan to ignore the first 8 bytes of s.
This method works only if the location of the number within s is always the same.

In the third call, the format string contains the non-numeric characters literally. This method
works only if the non-numeric characters in s are always the same.

© National Instruments Corporation 2-63 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

String to Real, After Finding a Semicolon in the String

char *s;

double x;

int n;

s = "TIME 12:45:00; 7.34";

n = Scan (s, "%s>%s[xdtb59]%f", &x);

/* result: x = 7.34, n =2 */
Remarks

Some strings returned by programmable instruments contain headers that consist of numeric as
well as non-numeric data and are terminated by a particular character, such as a semicolon. This
example shows how such a header can be skipped.

The format string contains two target specifiers. In the first specifier ($s [xdt#]), the t#

modifier instructs Scan to read bytes from s until a number is encountered. The d modifier
indicates that the bytes must be discarded because there is no argument corresponding to the
specifier. The x modifier indicates that the semicolon should also be discarded.

When the Scan call succeeds, it returns 2, indicating that two target specifiers were satisfied,
even though there is only one target argument.

String to Real, After Finding a Substring in the String

char *s;

double x;

int index, n;

s = "HEADER: R5 D6; DATA 3.71E+2";

index = FindPattern (s, 0, -1, "DATA", 0, 0) + 4;
n = Scan (s, "%s[i*]>%f", index, &x);

/* result: x = 371.0, n =1 */
Remarks

This example is similar to the previous one, except that portion of the string to be skipped is
terminated by a substring (DATA) rather than by a single character. The Formatting and 1/0
Library function FindPattern is used to find the index where DATA begins in s. Four is
added to the index so that it points to the first byte after DATA. The index is then passed to
Scan and matched with the asterisk (*) in the format string.

In this example, FindPattern returns 15, and indexis 19. When index is matched to the
asterisk in the format string in the Scan call, the format string is interpreted as $s[119]>%£.
The 119 indicates that the first 19 bytes of s should be ignored. Scan then extracts the real
number from the remaining string, 3.71E+2, and assigns it to x. Scan returns 1, indicating
that one target specifier is satisfied.

LabWindows/CVI Standard Libraries 2-64 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

String with Comma-Separated ASCII Numbers to Real Array

char *s;

int n;

double al[5]; /* 5 8-byte real numbers */

s = "12.3, 45, 6.5, -1.3E-2, 4";

n = Scan (s, "%$s>%5f([x]", a);
/* result: a[0] = 12.3, a[l]l] = 45.0, a[2] = 6.5, */
/* a[3] = -0.013, af[4] = 4.0, n =1 */

Remarks

The x modifier causes the comma separators to be discarded.

Scan considers an array target to be satisfied when at least one element of the array is filled in.
If the source string in this example were 12 . 3, only the first element of a would be filled in, the
other elements would remain unmodified, and Scan would return 1.

Scanning Strings That Are Not NUL-Terminated

int bd;

double x;

char s[20];

ibrd (bd, s, 15);

Scan (s, "%s[w*]>%f", ibcnt, &x);

Remarks

All of the previous examples assume that s is a NUL-terminated string. However, when reading
data from programmable instruments using the GPIB and RS-232 Library functions, the data
transferred is not NUL-terminated. This example uses ibrd to read up to 15 B from a GPIB
instrument. The global variable ibcnt contains the actual number of bytes transferred. Scan
uses the value in ibent in conjunction with the w modifier to specify the width of the source
string.

For example, if ibcnt is 12, the format string is interpreted as $s [w12]>%£, causing Scan to
use only the first 12 bytes of s.

The following example is an alternative method for handling strings that are not
NUL-terminated:

int bd;

double x;

char s[207];

ibrd (bd, s, 15);

s[15] = 0; /* ASCII NUL is 0 */
Scan (s, "%s>%f", &x);

© National Instruments Corporation 2-65 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

This code shows how to insert an ASCII NUL at the end of the transferred bytes. After the
assignment, s is NUL-terminated.

Integer Array to Real Array
int ivals[100];
double dvals[100];
Scan (ivals, "%100i>%100f", dvals);

Remarks

Each integer in ivals is converted to real number and then written into dvals.

Integer Array to Real Array with Byte Swapping

int ivals[100];
double dvals[100];
Scan (ivals, "%100i[010]1>%100f", dvals);

Remarks
Each integer in ivals is byte-swapped, converted to a real number, and written into dvals.

Byte swapping is useful when a programmable instrument sends back 2-byte integers with the
high byte first, followed by the low byte. When this data is read into an integer array, the
placement of the bytes is such that the high byte is interpreted as the low byte. The

010 modifier specifies that the bytes be interpreted in the opposite order.

Integer Array Containing 1-Byte Integers to Real Array

int ivals[501]; /* 100 l-byte integers */

double dvals[100]; /* 100 8-byte real numbers */
Scan (ivals, "%100i[bl1]>%100f", dvals);

Scan (ivals, "%100i[blul>%100f", dvals);

Remarks

Sometimes, each element in an integer array is used to store two 1-byte integers. This example
shows how to unpack the 1-byte integers and store them in a real array. The b1 indicates that
each binary integer is only one byte long.

LabWindows/CVI Standard Libraries 2-66 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

The first call to Scan treats the 1-byte integers as signed values (from -128 to +127). The
second call includes a u in the format string. This causes Scan to treat the 1-byte integers as
unsigned values (from 0 to 255).

String Containing Binary Integers to Integer Array

char s[200]; /* string containing 100 2-byte integers */
int ivals[100];/* 100 2-byte integers */

Scan (s, "%100i[z]>%100i", ivals);

Scan (s, "%97i[zi6]>%97i", ivals);

Remarks

Sometimes data from a programmable instrument is read into a character buffer even though it
contains binary data. This example shows how to treat a character buffer as an integer array.
The format string in each Scan call specifies that the source (s) contains an array of 100
integers. The z modifier is used to indicate that the source is actually a character buffer.

In some cases, the integer data may not start at the beginning of the character buffer. For
instance, the data in the buffer can begin with an ASCII header. In the second call to Scan, the
i6 modifier is used to indicate that the first 6 bytes of s are to be ignored.

Note: When the i modifier is used in conjunction with a character buffer, the number
Jollowing the i specifies the number of bytes within the buffer to ignore. This is true
even when the z modifier is also present. On the other hand, when the i modifier is
used in conjunction with an array variable, the number following the i indicates the
number of array elements to ignore.

String Containing an IEEE-Format Real Number to a Real Variable

char s[100];

double x;

Scan (s, "%$1f[z]>%f", &x);

Scan (s, "%$1f[zi5]>%f", &x);
Remarks

This example is similar to the previous example, except that s contains a single binary real
number (in IEEE format), rather an array of binary integers. The format string in each Scan call
indicates that the source (s) is to be treated as a 1-element array of real numbers. The z modifier
indicates that the source is actually a character buffer. The repetition count of 1 in the format
string is required; otherwise, the z modifier is not accepted.

© National Instruments Corporation 2-67 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

The first call to Scan assumes that the real number is at the beginning of s. The second call
assumes that the real number starts at the sixth byte of s. The 15 modifier causes the first
5 bytes of s to be ignored.

ASCII File to Two Integers with Error Checking

int file_handle, n, a, b;
file_handle = OpenFile ("FILE.DAT", 1, 2, 1);
if (file_handle < 0) {

FmtOut ("Error opening file\n");

exit (1);
}
n = ScanFile (file_handle, "%s>%i%i", &a, &b);
if (n != 2) {

FmtOut ("Error reading file\n");

exit (1);
}
CloseFile (file_handle);

Remarks

OpenFile opens the file FILE.DAT as an ASCII file for reading only. If OpenFile
succeeds in opening the file, it returns a file handle with a positive integer value. ScanFile
reads the ASCII representation of two integer values from the file. If ScanFile succeeds, it
returns 2 (indicating that two target specifiers were satisfied).

ASCII File with Comma Separated Numbers to Real Array, with Number of Elements at
Beginning of File

double values[1000];
int file_handle, count;
file_handle = OpenFile ("FILE.DAT", 1, 2, 1);
ScanFile (file_handle, "%s>%i", &count);
if (count > 1000) {
FmtOut ("Count too large\n");
exit (1) ;
}
ScanFile (file_handle, "%s>%*f[x]", count, values);
CloseFile (file_handle);

Remarks

The first ScanFile call reads the number of elements into the integer variable count. If the
value in count exceeds the number of elements in the real array values, an error is reported.
Otherwise, the second ScanFile call matches count to the asterisk (*) in the format string. It

LabWindows/CVI Standard Libraries 2-68 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

then reads the correct number of elements into values. The x modifier causes the comma
separators to be discarded.

Binary File to Integer Array, Assuming a Fixed Number of Elements

int readings[100];

int file_handle, nbytes;

file_handle = OpenFile ("FILE.DAT", 1, 2, 0);
ScanFile (file_handle, "%100i>%100i", readings);
nbytes = NumFmtdBytes ();

CloseFile (file_handle);

Remarks

The ScanFile call reads 100 integers from a binary file and stores them in the integer array
readings. Ifthe ScanFile call is successful, nbytes =200 (100 integers, 2 bytes per
integer).

Binary File to Real Array, Assuming a Fixed Number of Elements

double waveform[100];

int file_handle, nbytes;

file_handle = OpenFile ("FILE.DAT", 1, 2, 0);
ScanFile (file_handle, "$%100f£>%100f", waveform);
nbytes = NumFmtdBytes ();

CloseFile (file_handle);

Remarks

The ScanFile call reads 100 real numbers from a binary file and stores them in the real array
waveform. Ifthe ScanFile call is successful, nbytes =800 (100 integers, 8 bytes per real
number).

Binary File to Real Array, Assuming a Variable Number of Elements

void StoreArray (double x[], int count, char filenamel])
int file_handle;
file_handle = OpenFile (filename, 1, 2, 0);

ScanFile (file_handle, "$*f>%*f", count, count, x);
CloseFile (file_handle);

© National Instruments Corporation 2-69 LabWindows/CVI Standard Libraries



Formatting and I/O Library Chapter 2

Remarks

This example shows how a subroutine can be used to read an array of real numbers from a binary
file. The subroutine takes as parameters a real array, the number of elements to be read, and the
filename.

The ScanFile call reads the first count elements of x from a binary file. The two asterisks
(*) in the format string are matched to count. For instance, if count is 100, then the format
string is equivalentto $100£>100f.

Reading an Integer from the Standard Input

int n, num_readings;

n = 0;
while (n !'= 1) {
FmtOut ("Enter number of readings: ")
n = ScanIn ("%1>%1i", &num_readings);
}
Remarks

This example shows how to get user input from the keyboard. The FmtOut call writes the
prompt string to the screen without a linefeed or carriage return. The ScanIn call attempts to
read an integer value from the keyboard and place it in num_readings. If ScanIn succeeds,
it returns 1, and the loop is exited. Otherwise, the prompt string is repeated.

The format string in the ScanIn call contains a source specifier of $1. This has two
consequences. First, ScanIn returns whenever the user presses ENTER, even if the input line is
empty. This allows the prompt string to be repeated at the beginning of each line until the user
enters an integer value. Second, any characters entered after the integer value are discarded.

Reading a String from the Standard Input

char filename([41];

int n;
n = 0;
while (n !'= 1) {
FmtOut ("Enter file name: ")
n = ScanIn ("%$1>%s[w40qg]", filename);
}
Remarks

This example is similar to the previous example, except that the item being read from the
keyboard is a string instead of an integer. The w modifier is used to prevent ScanIn from

LabWindows/CVI Standard Libraries 2-70 © National Instruments Corporation



Chapter 2 Formatting and I/O Library

writing beyond the end of £ilename. Notice that the width specified is one less than the size
of filename. This allows room for the ASCII NUL that ScanIn appends at the end of
filename. The g modifier causes ScanIn to fill any unused bytes at the end of £ilename
with ASCII NULs. Without the g modifier, all unused bytes are filled with spaces, except for the
ASCII NUL at the end.

The call to ScanIn in this example skips over leading spaces and tabs and terminates the string
on an embedded space. For other options, see the String to String example earlier in this section.

Reading a Line from the Standard Input

char buf[81];
nbytes = ReadLine (0, buf, 80);

Remarks

The previous two examples show how to read single items from the keyboard. When you are
prompted to enter several items on one line, it is often easier to read the entire line into a buffer
before parsing it. This can be done via the Formatting and I/O Library function ReadLine.

The first parameter to ReadLine is a file handle. In this case, the file handle is zero, which is
the handle reserved for the Standard Input. The other two parameters are a buffer and the
maximum number of bytes to place in the buffer. ReadLine always appends an ASCII NUL at
the end of the bytes read. Thus, the maximum number of bytes passed to ReadLine must be at
least one less than the size of the buffer.

ReadLine transfers every character from the input line to the buffer, including leading,
embedded, and trailing spaces, until the maximum number of bytes (for example, 80) have been
transferred. Any remaining characters at the end of the line are discarded. The linefeed is never
transferred to the buffer.

ReadLine returns the number of bytes read, including the number discarded, but excluding the
linefeed.

© National Instruments Corporation 2-71 LabWindows/CVI Standard Libraries



Chapter 3
Analysis Library

This chapter describes the functions in the LabWindows/CVI Analysis Library. The Analysis
Library Function Overview section contains general information about the Analysis Library
functions and panels. The Analysis Library Function Reference section contains an alphabetical
list of the function descriptions.

Analysis Library Function Overview

The Analysis Library includes functions for one-dimensional (1D) and two-dimensional (2D)
array manipulation, complex operations, matrix operations, and statistics. This section contains
general information about the Analysis Library functions and panels.

The Analysis Library Function Panels

The Analysis Library function panels are grouped in a tree structure according to the types of
operations performed. The Analysis Library function tree is shown in Table 3-1.

The first- and second-level bold headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The third-
level headings in plain text are the names of individual function panels. Each analysis function
panel generates one analysis function call. The names of the corresponding analysis function
calls appear in bold italics to the right of the function panel names.

Table 3-1. The Analysis Library Function Tree

Analysis
Array Operations
1D Operations

Clear Array ClearlD
Set Array SetlD
Copy Array CopylD
1D Array Addition AddID
1D Array Subtraction SublD
1D Array Multiplication MullD
1D Array Division DiviD
1D Absolute Value AbsID
1D Negative Value NeglD

(continues)

© National Instruments Corporation 3-1 LabWindows/CVI Standard Libraries



Analysis Library

Chapter 3

Table 3-1. The Analysis Library Function Tree (Continued)

1D Linear Evaluation LinEvlD
1D Maximum & Minimum MaxMinlD
1D Array Subset SubsetlD
1D Sort Array Sort
2D Operations
2D Array Addition Add2D
2D Array Subtraction Sub2D
2D Array Multiplication Mul2D
2D Array Division Div2D
2D Linear Evaluation LinEv2D
2D Maximum & Minimum MaxMin2D
Complex Operations
Complex Numbers
Complex Addition CxAdd
Complex Subtraction CxSub
Complex Multiplication CxMul
Complex Division CxDiy
Complex Reciprocal CxRecip
Rectangular to Polar ToPolar
Polar to Rectangular ToRect
1D Complex Operations
1D Complex Addition CxAdd1D
1D Complex Subtraction CxSublD
1D Complex Multiplication CxMullD
1D Complex Division CxDivlD
1D Complex Linear Evaluation CxLinEvID
1D Rectangular to Polar ToPolarlD
1D Polar to Rectangular ToRectlD
Statistics
Mean Mean
Standard Deviation StdDev
Histogram Histogram
Vector & Matrix Algebra
Dot Product DotProduct
Matrix Multiplication MatrixMul
Matrix Inversion InvMatrix
Transpose Transpose
Determinant Determinant
Array Ultilities
Clear Array ClearlD
Set Array SetlD
Copy Array CopylD
Get Error String GetAnalysisErrorString
LabWindows/CVI Standard Libraries 3-2 © National Instruments Corporation



Chapter 3 Analysis Library

The classes and subclasses in the function tree are described here.
* The Array Operations function panels perform arithmetic operations on 1D and 2D arrays.

— 1D Operations, a subclass of Array Operations, contains function panels that perform 1D
array arithmetic.

— 2D Operations, a subclass of Array Operations, contains function panels that perform 2D
array arithmetic.

* The Complex Operations function panels perform complex arithmetic operations. The
Complex Operations function panels can operate on complex scalars or 1D arrays. The real
and imaginary parts of complex numbers are processed separately.

— Complex Numbers, a subclass of Complex Operations, contains function panels that
perform scalar complex arithmetic.

— 1D Complex Operations, a subclass of Complex Operations, contains function panels
that perform complex arithmetic on 1D complex arrays.

* The Statistics function panels perform basic statistics functions.

* The Vector & Matrix Algebra function panels perform vector and matrix operations.
Vectors and matrices are represented by 1D and 2D arrays, respectively.

* The Array Utilities function panels copy, initialize, and clear arrays.

Miscellaneous is a class of function panels for miscellaneous Analysis Library functions.

The online help with each panel contains specific information about operating each function
panel.

Hints for Using Analysis Function Panels

With the analysis function panels, you can manipulate scalars and arrays of data interactively.
You will find it helpful to use the Analysis Library function panels in conjunction with the User
Interface Library function panels to view the results of analysis routines. When using the
Analysis Library function panels, remember the following things.

* The processing speed of the analysis functions is affected by the computer on which you are
running LabWindows/CVI. A numeric coprocessor, especially, increases the speed of
floating-point computations. If you are using an Analysis Library function panel and nothing
seems to happen for an inordinate amount of time, keep the constraints of your hardware in
mind.

* Many analysis routines for arrays run in place. That is, the input and output data can be
stored in the same array. This is very important to keep in mind when you are processing

© National Instruments Corporation 3-3 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

large amounts of data. Large double-precision arrays consume a lot of memory. If the
results you want do not require that you keep the original array or intermediate arrays of data,
perform analysis operations in place where possible.

* The Interactive window maintains a record of generated code. If you forget to keep the code
from a function panel, you can cut and paste code between the Interactive and Program
windows.

Reporting Analysis Errors

The functions in the Analysis Library return status information through a return value.

If the return value status is zero after an Analysis Library function call, the function properly
executed with no errors. Otherwise, status is set to the appropriate error value. Error messages
corresponding to the possible status values are listed at the end of this chapter.

Analysis Library Function Reference

This section describes each function in the LabWindows/CVI Analysis Library. The
LabWindows/CVI Analysis Library functions are arranged alphabetically.

Abs1D

int status = Abs1D (double inputArray [ ], int numberofElements,
double outputArray|[]);

Purpose

Finds the absolute value of the inputArray. The function performs the operation in place;
inputArray and outputArray can be the same array.

Parameters
Input inputArray double-precision Input array.
array
numberofElements | integer Number of elements.
Output outputArray double-precision Absolute value of input array.
array

LabWindows/CVI Standard Libraries 3-4 © National Instruments Corporation



Chapter 3 Analysis Library

Return Value

status integer Refer to error codes in
Table 3-2.

Add1D

int status = Add1D (double arrayX|[], double arrayY [ ], int numberofElements,
double outputArray|[]);

Purpose

Adds one-dimensional (1D) arrays. The function obtains the ith element of the output array by
using the following formula:

3 =Xty

The function performs the operation in place; that is, outputArray can be the same array as
either arrayX or arrayY.

Parameters
Input arrayX double-precision Input array.
array
arrayY double-precision Input array.
array
numberofElements | integer Number of elements to be
added.
Output outputArray double-precision Result array.
array
Return Value
status integer Refer to error codes in
Table 3-2.

Add2D

int status = Add2D (void *arrayX, void *arrayY, int numberofRows,
int numberofColumns, void *outputArray);

© National Instruments Corporation 3-5 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

Purpose

Adds two (2D) arrays. The function obtains the (ith, jth) element of the output array by using the
following formula.

Zij = Xij Vi

The function performs the operation in place; outputArray can be the same array as either
arrayX or arrayy.

Parameters
Input arrayX double-precision 2D | Input array.
array
arrayY double-precision 2D | Input array.
array
numberofRows integer Number of elements in first
dimension.
numberofColumns |integer Number of elements in second
dimension.
Output outputArray double-precision 2D | Result array.
array
Return Value
status integer Refer to error codes in
Table 3-2.

ClearlD
int status = Clear1D (double array [ ], int numberofElements);
Purpose

Sets the elements of the array to zero.

Parameters
Input numberofElements | integer Number of elements in array.
Output array double-precision Cleared array.
array

LabWindows/CVI Standard Libraries 3-6 © National Instruments Corporation



Chapter 3 Analysis Library

Return Value

status integer Refer to error codes in
Table 3-2.

CopylD

int status = CopylD (double inputArray [ ], int numberofElements,
double outputArray|[]);

Purpose

Copies the elements of the inputArray. This function is useful to duplicate arrays for in-place
operations.

Parameters
Input inputArray double-precision | Input array.
array
numberofElements | integer Number of elements in
inputArray.
Output outputArray double-precision | Duplicated array.
array
Return Value
status integer Refer to error codes in Table 3-2.

CxAdd

int status = CxAdd (double xReal, double xImaginary, double yReal,
double ylmaginary, double *outputReal
double*outputlmaginary);

Purpose

Adds two complex numbers. The function obtains the resulting complex number by using the
formulas.

r =Xxr+yr

Zi=Xxi +yi

© National Instruments Corporation 3-7 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

Parameters
Input xReal double-precision | Real part of x.
xImaginary double-precision | Imaginary part of x.
yReal double-precision | Real part of y.
yImaginary double-precision | Imaginary part of y.
Output | outputReal double-precision | Real part of z.
outputImaginary double-precision | Imaginary part of z.
Return Value
status integer Refer to error codes in Table 3-2.
CxAdd1D

int status = CxAdd1D (double arrayXReal [ ], double arrayXImaginary|[],
double arrayYReal [ ], double arrayYImaginary[],
int numberofElements, double outputArrayReal [ ],
double outputArraylmaginary[]);

Purpose

Adds two 1D complex arrays. The function obtains the ith element of the resulting complex
array by using the following formulas.

o = Xt yr,
2l = xi; + yi,

The function performs the operations in place; that is, the input and output complex arrays can be
the same.

Parameters

Input arrayXReal double-precision array | Real part of x.
arrayXImaginary double-precision array | Imaginary part of x.
arrayYReal double-precision array | Real part of y.
arrayYImaginary double-precision array | Imaginary part of y.
numberofElements integer Number of elements.

Output | outputArrayReal double-precision array | Real part of z.
outputArraylmaginary | double-precision array | Imaginary part of z.

LabWindows/CVI Standard Libraries 3-8 © National Instruments Corporation



Chapter 3

Return Value

Analysis Library

status

integer

Refer to error codes in
Table 3-2.

CxDiv

int status = CxDiv (double xReal, double xImaginary, double yReal, yImaginary,
double *outputReal, double *outputlmaginary);

Purpose

Divides two complex numbers. The function obtains the resulting complex number by using the

following formulas.

zr = (xr¥*yr + xi*yi) /(yr2 + yiz)

zi = (xi*yr - xr¥yi )/ (yr? + yi2)

Parameters
Input xReal double-precision Real part of x.
xImaginary double-precision Imaginary part of x.
yYReal double-precision Real part of y.
yImaginary double-precision Imaginary part of y.
Output outputReal double-precision Real part of z.
outputlmaginary |double-precision Imaginary part of z.

Return Value

status integer Refer to error codes in
Table 3-2.
© National Instruments Corporation 3-9 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

CxDivlD

int status = CxDivlD (double arrayXReal [ ], double arrayXImaginary [ ],
double arrayYReal [ ], double arrayYImaginary)([],
int numberofElements, double outputArrayReal [ ],
double outputArraylmaginary [ ]);

Purpose

Divides two 1D complex arrays. The function obtains the ith element of the resulting complex
array by using the following formulas.

zr; = (o, Oy + xiOyi) [ (yr+ yii?)
zi; = (xi, Oyr,= xrQyi) [ (yr+ i)

The function performs the operations in place; that is, the input and output complex arrays can be
the same.

Parameters
Input arrayXReal double-precision Real part of x.
array
arrayXImaginary double-precision Imaginary part of x.
array
arrayYReal double-precision Real part of y.
array
arrayYImaginary double-precision Imaginary part of y.
array
numberofElements integer Number of elements.
Output | outputArrayReal double-precision Real part of z.
array
outputArrayImaginary | double-precision Imaginary part of z.
array
Return Value
status integer Refer to error codes in

Table 3-2.

LabWindows/CVI Standard Libraries 3-10 © National Instruments Corporation



Chapter 3 Analysis Library

CxLinEv1D

int status = CxLinEv1D (double arrayXReal [ ], double arrayXImaginary [ ],
int numberofElements, double aReal, double almaginary,
double bReal, double blmaginary,
double outputArrayReal [ ],
double outputArraylmaginary[]);

Purpose

Performs a complex linear evaluation of a 1D complex array. The function obtains the ith
element of the resulting complex array by using the following formulas.

yr, = (arllxr,— allxi}+ br
yi, = (arlxi,+ allxr )} bi

The function performs the operations in place; that is, the input and output complex arrays can be
the same.

Parameters
Input arrayXReal double-precision Real part of x.
array
arrayXImaginary double-precision Imaginary part of x.
array
numberofElements integer Number of elements.
aReal double-precision Real part of a.
almaginary double-precision Imaginary part of a.
bReal double-precision Real part of b.
bImaginary double-precision Imaginary part of b.
Output | outputArrayReal double-precision Real part of y.
array
outputArrayImaginary | double-precision Imaginary part of y.
array
Return Value
status integer Refer to error codes in

Table 3-2.

© National Instruments Corporation 3-11 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

CxMul

int status = CxMul (double xReal, double xImaginary, double yReal,
double yImaginary, double *outputReal,
double *outputlmaginary);

Purpose

Multiplies two complex numbers. The function obtains the resulting complex number by using
the following formulas.
zr = xr¥yr - xi*yi

Zi = xr¥yi + xi*yr

Parameters
Input xReal double-precision Real part of x.
xImaginary double-precision Imaginary part of x.
yReal double-precision Real part of y.
ylmaginary double-precision Imaginary part of y.
Output | outputReal double-precision Real part of z.
outputImaginary double-precision Imaginary part of z.

Return Value

status integer Refer to error codes in Table 3-2.

CxMullD

int status = CxMullD (double arrayXReal [ ], double arrayXImaginary[],
double arrayYReal [ ], double arrayYImaginary[],
int numberofElements, double outputArrayReal [ ],
double outputArraylmaginary [ ]);

Purpose

Multiplies two 1D complex arrays. The function obtains the ith element of the resulting complex
array by using the formulas:

zr, = xr.Lyr,— xildyi,

zi; = xr;Lyi;+ xillyr,

LabWindows/CVI Standard Libraries 3-12 © National Instruments Corporation



Chapter 3

Analysis Library

The function performs the operations in place; that is, the input and output complex arrays can be

the same.
Parameters
Input arrayXReal double-precision Real part of x.
array
arrayXImaginary double-precision Imaginary part of x.
array
arrayY Real double-precision Real part of y.
array
arrayYImaginary double-precision Imaginary part of y.
array
numberofElements integer Number of elements.
Output | outputArrayReal double-precision Real part of z.
array
outputArrayImaginary | double-precision Imaginary part of z.
array

Return Value

status

integer

Refer to error codes in
Table 3-2.

CxRecip

int status = CxRecip (double xReal, double xImaginary, double *outputReal,
double *outputlmaginary);

Purpose

Finds the reciprocal of a complex number. The function obtains the resulting complex number

by using the

following formulas.

yr= xr/ (xr2 + xi2)

yi = xi/ (xr2 + xi2)

© National Instruments Corporation

3-13

LabWindows/CVI Standard Libraries



Analysis Library

Chapter 3

Parameters
Input xReal double-precision Real part of x.
xImaginary double-precision Imaginary part of x.
Output | outputReal double-precision Real part of y.
outputImaginary double-precision Imaginary part of y.

Return Value

status

integer

Refer to error codes in Table 3-2.

CxSub

int status = CxSub (double xReal, double xImaginary, double yReal,
double yImaginary, double *outputReal,
double *outputlmaginary);

Purpose

Subtracts two complex numbers. The function obtains the resulting complex number by using
the following formulas.

r = Xr-yr
i =Xi-Yyi
Parameters
Input xReal double-precision Real part of x.
xImaginary double-precision Imaginary part of x.
yReal double-precision Real part of y.
yImaginary double-precision Imaginary part of y.
Output | outputReal double-precision Real part of z.
outputImaginary double-precision Imaginary part of z.

Return Value

status

integer

Refer to error codes in

Table 3-2.

LabWindows/CVI Standard Libraries

3-14

© National Instruments Corporation



Chapter 3 Analysis Library

CxSubl1D

int status = CxSublD (double arrayXReal [ ], double arrayXImaginary [ ],
double arrayYReal [ ], double arrayYImaginary [ ],
int numberofElements, double outputArrayReal [ ],
double outputArraylmaginary [ ]);

Purpose

Subtracts two 1D complex arrays. The function obtains the ith element of the resulting complex
array by using the following formulas.

2 = xr; = yn,

Zi, = Xi; =i,

The function performs the operations in place; that is, the input and output complex arrays can be
the same.

Parameters
Input arrayXReal double-precision Real part of x.
array
arrayXImaginary double-precision Imaginary part of x.
array
arrayYReal double-precision Real part of y.
array
arrayYImaginary double-precision Imaginary part of y.
array
numberofElements integer Number of elements.
Output | outputArrayReal double-precision Real part of z.
array
outputArrayIlmaginary | double-precision Imaginary part of z.
array
Return Value
status integer Refer to error codes in

Table 3-2.

© National Instruments Corporation 3-15 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

Determinant
int status = Determinant (void *inputMatrix, i nt matrixSize, double *determinant);
Purpose

Finds the determinant of a matrixSize by matrixSize 2D input matrix.

Parameters
Input inputMatrix double-precision 2D | Input matrix.
array
matrixSize integer Dimension size of input matrix.
Output determinant double-precision Determinant.

Note: The input matrix must be a matrixSize by matrixSize square matrix.

Return Value

status integer Refer to error codes in
Table 3-2.

DivlD

int status = DivlD (double arrayX[], double arrayY [ ], int numberofElements,
double outputArray[]);

Purpose

Divides two 1D arrays. The function obtains the ith element of the output array by using the
following formula.

z, =x 1y,

The function performs the operation in place; that is, outputArray can be the same array as
either arrayX or arrayY.

LabWindows/CVI Standard Libraries 3-16 © National Instruments Corporation



Chapter 3

Analysis Library

Parameters
Input arrayX double-precision | Input array.
array
arrayY double-precision | Input array.
array
numberofElements | integer Number of elements to be divided.
Output | outputArray double-precision | Result array.
array

Return Value

status

integer

Refer to error codes in Table 3-2.

Div2D

int status = Div2D (void *arrayX, void *arrayY, int numberofRows,
int numberofColumns, void *outputArray);

Purpose

Divides two 2D arrays. The function obtains the (ith, jth) element of the output array by using
the following formula.

Zij =%y

The function performs the operation in place; that is, outputArray can be the same array as
either arrayX or arrayY.

Parameters
Input arrayX double-precision 2D | Input array.
array
arrayY double-precision 2D | Input array.
array
numberofRows integer Number of elements in first
dimension.
numberofColumns | integer Number of elements in second
dimension.
Output outputArray double-precision 2D | Result array.
array
© National Instruments Corporation 3-17 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

Return Value

status integer Refer to error codes in
Table 3-2.

DotProduct

int status = DotProduct (double vectorX[], double vectorY [],
int numberofElements,
double *dotProduct);

Purpose

Computes the dot product of the vectorX and vectorY input arrays. The function obtains the dot
product by using the following formula:

n-1
dotproduct = x* y = Z x, Oy,

i=0

Parameters
Input vectorX double-precision Input vector.
array
vectorY double-precision Input vector.
array
numberofElements | integer Number of elements.
Output dotProduct double-precision Dot product.
Return Value
status integer Refer to error codes in

Table 3-2.

LabWindows/CVI Standard Libraries 3-18 © National Instruments Corporation



Chapter 3 Analysis Library

GetAnalysisErrorString
char *message = GetAnalysisErrorString (int errorNum)
Purpose

Converts the error number returned by an Analysis Library function into a meaningful error
message.

Parameters

Input errorNum integer Status returned by an
Analysis function.

Return Value

message string Explanation of error.

Histogram

int status = Histogram (double inputArray [ ], int numberofElements, double base,
double top, int histogramArray [ ], double axisArray[],
int intervals);

Purpose

Computes the histogram of the inputArray. The histogram is obtained by counting the number
of times that the elements in the input array fall in the ith interval. Let

Ax = (xTop - xBase) / intervals

_J1 ifiAx < x - xBase < (i + 1)Ax
Ysi= 10 otherwise

The ith element of the histogram is:

n—1

hist, =Y y(x,,i)

The values of the histogram axis are the mid-point values of the intervals:

axis; = ilAx + Ax / 2 + xBase

© National Instruments Corporation 3-19 LabWindows/CVI Standard Libraries




Analysis Library

Chapter 3

Parameters
Input inputArray double-precision Input array.
array
numberofElements | integer Number of elements in
Input Array.
base double-precision Lower range.
top double-precision Upper range.
intervals integer Number of intervals.
Output histogramArray integer array Histogram of input Array.
axisArray double-precision Histogram axis array.
array

Return Value

status

integer

Refer to error codes in
Table 3-2.

InvMatrix

int status = InvMatrix (void *inputMatrix, int matrixSize, void *outputMatrix);

Purpose

Finds the inverse matrix of an input matrix. The operation can be performed in place; that is,
inputMatrix and outputMatrix can be the same matrices.

Parameters
Input inputMatrix double-precision 2D | Input matrix.
array
matrixSize integer Dimension of matrix.
Output outputMatrix double-precision 2D | Inverse matrix.
array

Note: The input matrix must be a matrixSize by matrixSize square matrix.

LabWindows/CVI Standard Libraries

3-20

© National Instruments Corporation



Chapter 3 Analysis Library

Return Value

status integer Refer to error codes in n
Table 3-2.

LinEv1D

int status = LinEvlD (double inputArray [ ], int numberofElements,
double multiplier, double additiveConstant,
double outputArray[]);

Purpose

Performs a linear evaluation of a 1D array. The function obtains the ith element of the output
array by using the following formula.

y, =allx,+ b

The operation can be performed in place; that is, inputArray and outputArray can be the same
array.

Parameters
Input inputArray double-precision Input array.
array
numberofElements | integer Number of elements.
multiplier double-precision Multiplicative constant.
additiveConstant | double-precision Additive constant.
Output outputArray double-precision Linearly evaluated array.
array
Return Value
status integer Refer to error codes in

Table 3-2.

© National Instruments Corporation 3-21 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

LinEv2D

int status = LinEv2D (void *inputArray, int numberofRows, int numberofColumns,
double multiplier, double additiveConstant,
void *outputArray);

Purpose

Performs a linear evaluation of a 2D array. The function obtains the (ith, jth) element of the
output array by using the following formula.

= g%
y,=a*x +b

The function performs the operation in place; that is, inputArray and outputArray can be the
same array.

Parameters
Input inputArray double-precision 2D | Input array.
array
numberofRows integer Number of elements in first
dimension.
numberofColumns | integer Number of elements in second
dimension.
multiplier double-precision Multiplicative constant.
additiveConstant | double-precision Additive constant.
Output outputArray double-precision 2D | Linearly evaluated array.
array
Return Value
status integer Refer to error codes in
Table 3-2.

LabWindows/CVI Standard Libraries 3-22 © National Instruments Corporation



Chapter 3 Analysis Library

MatrixMul

int status = MatrixMul (void *matrixX, void *matrixY, int #ofRowsInX,
int cols/rowsInX/Y, int #ofColumnsInY,
void *outputMatrix);

Purpose

Multiplies two 2D input matrices. The function obtains the (ith, jth) element of the output matrix
by using the following formula.

k-1
Zij = Z Xip Yy
=0

Parameters
Input matrixX double-precision 2D | matrixX input matrix.
array
matrixY double-precision 2D | matrixY input matrix.
array
#ofRowsInX integer First dimension of matrixX.
cols/rowsInX/Y integer Second dimension of matrixX.;
first dimension of matrixY.
#of ColumnsInY integer Second dimension of matrixY.
Output outputMatrix double-precision 2D | Output matrix.
array
Return Value
status integer Refer to error codes in

Table 3-2.

Parameter Discussion

Note: Be sure to use the correct array sizes. The following array sizes must be met:
*  matrixX must be (#ofRowsInX by cols/rowsInX/Y).
* matrixY must be (cols/rowsInX/Y by #ofColumnsInY).

* outputMatrix must be (#ofRowsInX by #ofColumnsInY).

© National Instruments Corporation 3-23 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

MaxMinlD

int status = MaxMinlD (double inputArray [ ], int numberofElements,
double *maximumValue, int *maximumlIndex,
double *minimumValue, int *minimumlIndex);

Purpose

Finds the maximum and minimum values in the input array, as well as the respective indices of
the first occurrence of the maximum and minimum values.

Parameters
Input inputArray double-precision Input array.
array
numberofElements | integer Number of elements.
Output maximumValue double-precision Maximum value.
maximumIndex integer Index of maximumValue in
inputArray.
minimumValue double-precision Minimum value.
minimumlIndex integer Index of minimumValue in
inputArray.
Return Value
status integer Refer to error codes in
Table 3-2.

MaxMin2D

int status = MaxMin2D (void *inputArray, int numberofRows,
int numberofColumns, double *maximumValue,
int *maximumRowIndex, int *maximumColumnIndex,
double *minimumValue, int *minimumRowIndex,
int *minimumColumnIndex);

Purpose

Finds the maximum and the minimum values in the 2D input array, as well as the respective
indices of the first occurrence of the maximum and minimum values. The inputArray is
scanned by rows.

LabWindows/CVI Standard Libraries 3-24 © National Instruments Corporation



Chapter 3

Analysis Library

Parameters
Input inputArray double-precision | Input array.
2D array
numberofRows integer Number of elements in first
dimension of inputArray.
numberofColumns integer Number of elements in second
dimension of inputArray.
Output | maximumValue double-precision | Maximum value.
maximumRowIndex integer Index of maximumValue in
inputArray array (first
dimension).
maximumColumnIndex |integer Index of maximumValue in
inputArray (second
dimension).
minimumValue double-precision | Minimum value.
minimumRowIndex integer Index of minimumValue in
inputArray (first dimension).
minimumColumnlIndex |integer Index of minimumValue in
inputArray array (second
dimension).
Return Value
status integer Refer to error codes in
Table 3-2.
Mean

int status = Mean (double inputArray [ ], int numberofElements, double *mean);

Purpose

Compute the mean (average) value of the input array. The function uses the following formula

to find the mean.

n-1
meanval = z x, /n
i=0

© National Instruments Corporation

3-25

LabWindows/CVI Standard Libraries




Analysis Library

Chapter 3

Parameters
Input inputArray double-precision Input array.
array
numberofElements | integer Number of elements in
inputArray.
Output mean double-precision Mean value.

Return Value

status

integer

Refer to error codes in
Table 3-2.

MullD

int status = MullD (double arrayX[], double arrayY [ ], int numberofElements,
double outputArray|[]);

Purpose

Multiplies two 1D arrays. The function obtains the ith element of the output array by using the
following formula.

z; =x Ly,

The function performs the operation in place; that is, outputArray can be the same array as
either arrayX or arrayY.

Parameters
Input arrayX double-precision Input array.
array
arrayY double-precision Input array.
array
numberofElements | integer Number of elements to be
multiplied.
Output outputArray double-precision Result array.
array

LabWindows/CVI Standard Libraries

3-26

© National Instruments Corporation



Chapter 3 Analysis Library

Return Value

status integer Refer to error codes in
Table 3-2.

Mul2D

int status = Mul2D (void *arrayX, void *arrayY, int numberofRows,
int numberofColumns, void *outputArray);

Purpose

Multiplies two 2D arrays. The function obtains the (ith, jth) element of the output array by using
the following formula.

= *
Zij =X Vi

The function performs the operation in place; that is, outputArray can be the same array as
either arrayX or arrayY.

Parameters
Input arrayX double-precision 2D | Input array.
array
arrayY double-precision 2D | Input array.
array
numberofRows integer Number of elements in first
dimension.
numberofColumns | integer Number of elements in second
dimension.
Output outputArray double-precision 2D | Result array.
array
Return Value
status integer Refer to error codes in
Table 3-2.

© National Instruments Corporation 3-27 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

NeglD

int status = NeglD (double inputArray [ ], int numberofElements,
double outputArray|[]);

Purpose

Negates the elements of the input array. The function performs the operation in place; that is,
inputArray and outputArray can be the same array.

Parameters
Input inputArray double-precision | Input array.
array
numberofElements |integer Number of elements.
Output | outputArray double-precision | Negated values of the inputArray.
array
Return Value
status integer Refer to error codes in Table 3-2.

SetlD
int status = SetlD (double array[ ], int numberofElements, double setValue);
Purpose

Sets the elements of the input array to a constant value.

Parameters
Input numberofElements | integer Number of elements in array.
setValue double-precision | Constant value.
Output | array double-precision | Result array (set to the value
array of setValue).
Return Value
status integer Refer to error codes in Table 3-2.

LabWindows/CVI Standard Libraries 3-28 © National Instruments Corporation



Chapter 3

Sort

Analysis Library

int status = Sort (double inputArray [ ], int numberofElements, int direction,
double outputArray|[]);

Purpose

Sorts the input array in ascending or descending order. The function performs the operation in
place; that is, inputArray and outputArray can be the same array.

Parameters
Input inputArray double-precision Input array.
array
numberofElements | integer Number of elements to be
sorted.
direction integer 0: ascending.
Non-zero: descending.
Output outputArray double-precision Sorted array.
array

Return Value

status

integer

Refer to error codes in
Table 3-2.

StdDev

int status = StdDev (double inputArray [ ], int numberofElements, double *mean,
double *standardDeviation);

Purpose

Computes the standard deviation and the mean (average) values of the input array. The formulas
used to find the mean and the standard deviation are as follows.

n—1

meanval = Z x,/n

i=0

n-1
sDev = \/ [x, - ave]’ / n
0

© National Instruments Corporation

3-29

LabWindows/CVI Standard Libraries



Analysis Library

Chapter 3

Parameters
Input inputArray double-precision Input array.
array
numberofElements | integer Number of elements in
inputArray.
Output mean double-precision Mean value.
standardDeviation |double-precision Standard deviation.

Return Value

status

integer

Refer to error codes in
Table 3-2.

Sub1D

int status = SublD (double arrayX[], double arrayY [ ], int numberofElements,
double outputArray[]);

Purpose

Subtracts two 1D arrays. The function obtains the ith element of the output array by using the
following formula:

Z =X 7Y,

The operation can be performed in place; that is, outputArray can be in place of either arrayX

or arrayy.
Parameters
Input arrayX double-precision Input array.
array
arrayY double-precision Input array.
array
numberofElements | integer Number of elements to be
subtracted.
Output outputArray double-precision Result array.
array

LabWindows/CVI Standard Libraries

3-30

© National Instruments Corporation



Chapter 3

Return Value

Analysis Library

status

integer

Refer to error codes in
Table 3-2.

Sub2D

int status = Sub2D (void *arrayX, void *arrayY, int numberofRows,
int numberofColumns, void *outputArray);

Purpose

Subtracts two 2D arrays. The function obtains the (ith, jth) element of the output array by using

the formula:

Zij =i

J Vi

The function performs the operation in place; that is, outputArray can be in place of either
arrayX or arrayyY.

Parameters
Input arrayX double-precision 2D | Input array.
array
arrayY double-precision 2D | Input array.
array
numberofRows integer Number of elements in first
dimension.
numberofColumns | integer Number of elements in second
dimension.
Output outputArray double-precision 2D | Result array.
array

Return Value

status integer Refer to error codes in
Table 3-2.
© National Instruments Corporation 3-31 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

Subset1D

int status = SubsetlD (double inputArray [ ], int numberofElements, int index,
int length, double outputArray|[]);

Purpose

Extracts a subset of the inputArray input array containing the number of elements specified by
the length and starting at the index element.

Parameters
Input inputArray double-precision Input array.
array
numberofElements | integer Number of elements in
inputArray.
index integer Initial index for the subset.
length integer Number of elements copied to
the subset.
Output outputArray double-precision Subset array.
array
Return Value
status integer Refer to error codes in
Table 3-2.

ToPolar

int status = ToPolar (double xReal, double ylmaginary, double *magnitude,
double *phaseRadians);

Purpose

Converts the rectangular coordinates (xReal, yImaginary) to polar coordinates (magnitude,
phaseRadians). The formulas used to obtain the polar coordinates are as follows.

phase = arctan (y/x)

The phaseRadians value is in the range of [ -Ttto T ]

LabWindows/CVI Standard Libraries 3-32 © National Instruments Corporation



Chapter 3

Analysis Library

Parameters
Input xReal double-precision X coordinate.
yImaginary double-precision X coordinate.
Output magnitude double-precision Magnitude.
phaseRadians double-precision Phase (in radians).

Return Value

status

integer

Refer to error codes in
Table 3-2.

ToPolarlD

int status = ToPolarlD (double arrayXReal[ ], double arrayYImaginary|[],
int numberofElements, double magnitude [ ],
double phaseRadians[]);

Purpose

Converts the set of rectangular coordinate points (arrayXReal, arrayYImaginary) to a set of
polar coordinate points (magnitude, phaseRadians). The function obtains the ith element of the
polar coordinate set by using the following formulas.

_ 2 2
mag; =4/x;” ty;

phase, = arctan y,/ x,

The phaseRadians value is in the range of [ -Ttto TT].

The function performs the operations in place; that is, arrayXReal and magnitude, and
arrayYImaginary and phaseRadians, can be the same arrays, respectively.

© National Instruments Corporation

3-33

LabWindows/CVI Standard Libraries



Analysis Library

Chapter 3

Parameters
Input arrayXReal double-precision X coordinate.
array
arrayYImaginary |double-precision Y coordinate.
array
numberofElements | integer Number of elements.
Output magnitude double-precision Magnitude.
array
phaseRadians double-precision Phase (in radians).
array

Return Value

status

integer

Refer to error codes in
Table 3-2.

ToRect

int status = ToRect (double magnitude, double phaseRadians, double *xReal,

Purpose

double *yImaginary);

Converts the polar coordinates (magnitude, phaseRadians) to rectangular coordinates (xReal,

yImaginary). The formulas used to obtain the rectangular coordinates are as follows.

x = mag * cos(phase)

y = mag * sin(phase)

Parameters
Input magnitude double-precision Magnitude.
phaseRadians double-precision Phase (in radians).
Output xReal double-precision X coordinate.
yImaginary double-precision Y coordinate.

LabWindows/CVI Standard Libraries

3-34

© National Instruments Corporation



Chapter 3 Analysis Library

Return Value

status integer Refer to error codes in
Table 3-2.

ToRect1D

int status = ToRect1D (double magnitude [ ], double phaseRadians|[ ],
int numberofElements, double outputArrayReal [ ],
double outputArraylmaginary[]);

Purpose

Converts the set of polar coordinate points (magnitude, phaseRadians) to a set of rectangular
coordinate points (outputArrayReal, outputArraylmaginary). The function obtains the ith
element of the rectangular set by using the following formulas.

x; = mag,[kos(phase,)
v, = mag,Lkin(phase,)

The function performs the operations in place; that is, outputArrayReal and magnitude, and
outputArraylmaginary and phaseRadians, can be the same arrays, respectively.

Parameters
Input magnitude double-precision Magnitude.
array
phaseRadians double-precision Phase (in radians).
array
numberofElements integer Number of elements.
Output | outputArrayReal double-precision X coordinate.
array
outputArraylmaginary | double-precision Y coordinate.
array
Return Value
status integer Refer to error codes in

Table 3-2.

© National Instruments Corporation 3-35 LabWindows/CVI Standard Libraries



Analysis Library Chapter 3

Transpose

int status = Transpose (void *inputMatrix, i nt numberofRows,
int numberofColumns, void *outputMatrix);

Purpose

Finds the transpose of a 2D input matrix. The (ith, jth) element of the resulting matrix uses the
formula:

y ij = xi,j
Parameters
Input inputMatrix double-precision 2D | Input matrix.
array
numberofRows integer Size of first dimension.
numberofColumns | integer Size of second dimension.
Output outputMatrix double-precision 2D | Transpose matrix.
array

Note: If the input matrix is dimensioned (numberofRows by numberofColumns), then the
output matrix must be dimensioned (numberofColumns by numberofRows).

Return Value

status integer Refer to error codes in
Table 3-2.

LabWindows/CVI Standard Libraries 3-36 © National Instruments Corporation



Chapter 3

Error Conditions

Analysis Library

If an error condition occurs during a call to any of the functions in the LabWindows/CVI
Analysis Library, the status return value contains the error code. This code is a value that
specifies the type of error that occurred. The currently defined error codes and their associated
meanings are given in Table 3-2.

Table 3-2. Analysis Library Error Codes

Symbolic Name Code Error Message

BaseGETopAnlysErr -20101 Base must be less than Top.

DivByZeroAnlysErr -20060 | Divide by zero err.

IndexLengthAnlysErr -20018 The following condition must be met:
0 < (index + length) < samples.

NoAnlysErr 0 No error; the call was successful.

OutOfMemAnlysErr -20001 There is not enough space left to perform the specified
routine.

SamplesGEZeroAnlysErr | -20004 The number of samples must be greater than or equal to
Zero.

SamplesGTZeroAnlysErr | -20003 The number of samples must be greater than zero.

SingularMatrixAnlysErr | -20041 The input matrix is singular. The system of equations

cannot be solved.

© National Instruments Corporation

3-37 LabWindows/CVI Standard Libraries




Chapter 4
GPIB/GPIB-488.2 Library

This describes the NI-488 and NI-488.2 functions in the LabWindows/CVI GPIB Library, as
well as the Device Manager functions in LabWindows/CVI. The GPIB Library Function
Overview section contains general information about the GPIB Library functions and panels, the
GPIB DLL, and guidelines and restrictions you should know when using the GPIB Library.
Detailed descriptions of the NI-488 and NI-488.2 functions can be found in your NI-488.2
function reference manual. The GPIB Function Reference section contains an alphabetical list of
descriptions for the Device Manager functions, the callback installation functions, and the
functions for returning the thread-specific status variables.

GPIB Library Function Overview

This section describes the functions in the LabWindows/CVI GPIB Library. These functions are
arranged alphabetically according to their names in C. For detailed function descriptions, refer to
the NI-488.2 function reference manual that accompanied your GPIB interface board.

GPIB Functions Library Function Panels

The GPIB Functions Library function panels are grouped in a tree structure according to the
types of operations performed. The GPIB Functions Library function tree is in Table 4-1.

The first- and second-level bold headings in the function tree are names of the function classes.
Function classes are groups of related function panels. The third-level headings in plain text are
the names of individual function panels. Each GPIB function panel generates a GPIB function
call. The actual function names are in bold italics in columns to the right.

© National Instruments Corporation 4-1 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library

Table 4-1. The GPIB Functions Library Function Tree

Chapter 4

1/0

GPIB/GPIB-488.2 Library
Open/Close

Open Device

Close Device

Close Instrument Devices
Find Board/Device

Find Unused Device
Offline/Online

Configuration

Change Primary Address
Change Secondary Address
Change Access Board
Change Time Out Limit
Set EOS Character
Enable/Disable END
Enable/Disable DMA
System Control

Change Config Parameter
Get Config Parameter

Read

Read Asynchronously
Read to File

Write

Write Asynchronously
Write from File

Stop Asynchronous I/O

Device Control

Get Serial Poll Byte
Clear Device

Trigger device

Check for Listeners
Wait for Event (Dev)
Go to Local (Dev)
Parallel Poll Cfg (Dev)
Pass Control

OpenDey
CloseDev
CloselnstrDevs
ibfind

ibdev

ibonl

ibpad
ibsad
ibbna
ibtmo
ibeos
ibeot
ibdma
ibrsc
ibconfig
ibask

ibrd
ibrda
ibrdf
ibwrt
ibwrta
ibwrtf
ibstop

ibrsp
ibclr
ibtrg
ibln
ibwait
ibloc
ibppc
ibpct

LabWindows/CVI Standard Libraries 4-2

(continues)

© National Instruments Corporation



Chapter 4

GPIB/GPIB-488.2 Library

Table 4-1. The GPIB Functions Library Function Tree (Continued)

Bus Control
Send Interface Clear
Become Active Controller
Go to Standby
Set/Clear Remote Enable
Send Commands
Send Commands (Async)
Parallel Poll
Read Control Lines
Board Control
Wait for Board Event
Dequeue Board Event
Set UNIX Signal Request
Go to Local Mode
Parallel Poll Configuration
Request Service
Set/Clear IST
Write to Board Key
Read from Board Key
Callbacks (Windows only)
Install Synchronous Callback
Install Asynchronous Callback
Thread-Specific Status
Get Ibsta for Thread
Get Iberr for Thread
Get Ibcnt for Thread
Get Ibcntl for Thread
GPIB-488.2 Functions
Device I/0
Send
Send to Multiple Devices
Receive
Trigger and Clear
Trigger Device
Trigger Multile Devices
Clear Device
Clear Multiple Devices

ibsic
ibcac
ibgts
ibsre
ibcmd
ibcmda
ibrpp
iblines

ibwait
ibevent
ibsignal
ibloc
ibppc
ibrsy
ibist
ibwrtkey
ibrdkey

ibInstallCallback
ibNotify

Threadlbsta
Threadlberr
Threadlbcnt
Threadlbcntl

Send
SendList
Receive

Trigger
TriggerList
DevClear
DevClearList

© National Instruments Corporation 4-3

(continues)

LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

Table 4-1. The GPIB Functions Library Function Tree (Continued)

SRQ and Serial Polls
Test SRQ line TestSRQ
Wait for SRQ WaitSRQ
Find Requesting Device FindRQS
Read Status Byte ReadStatusByte
Serial Poll All Devices AllSpoll
Parallel Polls
Parallel Poll PPoll
Parallel Poll Config PPollConfig
Parallel Poll Unconfig PPollUnconfig
Remote/Local
Enable Remote Operation EnableRemote
Enable Local Operation EnableLocal
Set remote with Lockout SetRWLS
Send Local Lockout SendLLO
System Control
Reset System ResetSys
Send Interface Clear SendIFC
Conduct Self-Tests TestSys
Find All Listeners FinsLstn
Pass Control PassControl
Low-Level I/O
Send Commands SendCmds
Setup for Sending SendSetup
Send Data Bytes SendDataBytes
Setup for Receiving ReceiveSetup
Receive Response Message RcvRespMsg

The classes and subclasses in the tree are described here.
* The Open/Close function panels open and close GPIB boards and devices.

* The Configuration function panels alter configuration parameters that were set during
installation of the GPIB handler or during the execution of previous program statements.

e The I/O function panels read and write data over the GPIB. These functions can be used at
either the board or the device level.

* The Device Control function panels provide high-level, commonly used GPIB services for
instrument control applications.

LabWindows/CVI Standard Libraries 4-4 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

* The Bus Control function panels provide low-level control of the GPIB bus.

* The Board Control function panels provide low-level control of the GPIB board. These
functions are normally used when the GPIB board is not controller-in-charge.

* The Callbacks function panels install callback functions that are invoked when certain GPIB
events occur. The functions in this class are available only under Windows. Under UNIX,
you can use the ibsgnl function.

* The Thread-Specific Status function panels return the value of the thread-specific GPIB
status variables for the current thread. The functions in this class are needed only for
multithreaded applications and are available only on Windows 95 and NT.

* The GPIB 488.2 Functions function panels directly adhere to the IEEE-488.2 standard for
communicating with and controlling GPIB devices.

— The Device 1/0 function panels read data from, and write data to, devices on the GPIB.
— The Trigger and Clear function panels trigger and clear GPIB devices.

— The SRQ and Serial Polls function panels handle service requests and perform
serial polls.

— The Parallel Polls function panels conduct parallel polls and configure devices to
respond to them.

— The Remote/Local function panels enable and disable operation of devices remotely via
the GPIB or locally via the front panel of the device.

— The System Control function panels perform system-wide functions, obtain system-wide
status information, and pass system control to other devices.

— The Low-Level I/0O function panels perform I/O functions at a lower-level than the
function panels in the other classes.

GPIB Library Concepts

This section contains general information about the GPIB Library, the GPIB device driver,
guidelines and restrictions you should know when using the GPIB Library, and descriptions of
the types of GPIB functions that the GPIB Library contains.

GPIB Libraries and the GPIB Dynamic Link Library/Device Driver

LabWindows/CVI for Windows uses National Instruments standard Windows GPIB.DLL.
LabWindows/CVI for Sun uses the standard Sun Solaris-installed GPIB device drivers. These

© National Instruments Corporation 4-5 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

drivers are packaged with your GPIB interface board and are not included with
LabWindows/CVI. LabWindows/CVI does not require any special procedures for installing and
using the device driver. Follow the directions outlined in your board documentation.

You can use a utility program called IBCONF, included with your GPIB software, to specify
configuration parameters for devices on the GPIB. If your device has special configuration
parameters, such as a secondary address or a special termination character, you can specify these
using IBCONF. When you are using the LabWindows/CVI GPIB Library function panels,
parameters that you specified using TBCONF are still in effect. You can also modify
configuration parameters directly from one of the LabWindows/CVI configuration function
panels, or from your program.

If you are using a LabWindows/CVI Instrument Library module, you do not need to make any
changes using IBCONF. The module takes into account any special configuration requirements
for the instrument controlled by the module. If special parameters must be specified, the module
sets them programmatically.

Guidelines and Restrictions for Using the GPIB Libraries
Follow these guidelines when using the GPIB Libraries:

» Before performing any other operations, open the device. You must use either the
OpenDev, the ibfind, or the ibdev function. Instrument modules must use the
OpenDev function. When you open a device, an integer value representing a device
descriptor is returned. All subsequent operations that involve a particular device require that
you specify this device descriptor.

* If OpenDev is used, the CloseDev function should be used to close the device at the end
of the program.

* Each GPIB Library function panel has three global controls labeled Status, Error, and Count.
These controls show the values of the GPIB status (ibsta), error (1berr) and byte count
(ibcntl) variables.

— The Status control displays in hexadecimal format. The help information for Status
explains the meaning of each bit in the status word. If the most significant bit is set, a
GPIB error has occurred.

— When an error occurs, the Error control displays an error number. The help information
for Error describes the type of error associated with each error number.

— Count displays the number of bytes transferred over the GPIB during the most recent bus
transfer.

LabWindows/CVI Standard Libraries 4-6 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

Note: When writing instrument modules, you must use the Device Manager functions
(OpenDev and CloseDev) instead of ibfind or ibdev. You must also use the
Device Manager functions in application programs that make calls to instrument
modules. The Device Manager functions allow instrument modules to open devices
without specific device names, thereby preventing device name conflicts. They also
help the LabWindows/CVI interactive program ensure that devices are closed when no
longer needed.

Device and Board Functions

Device functions are high-level functions that execute command sequences to handle bus
management operations required by activities such as reading from and writing to devices or
polling them for status. Device functions access a specific device and take care of the addressing
and bus management protocol for that device. Because they execute automatically, you do not
need to know any GPIB protocol or bus management details. A descriptor of the accessed device
is one of the arguments of the function.

In contrast, board functions are low-level functions that perform rudimentary GPIB operations.
They are necessary because high-level functions may not always meet the requirements of
applications. In such cases, low-level functions offer the flexibility to meet your application
needs.

Board functions access the GPIB interface board directly and require you to do the addressing
and bus management protocol for the bus. A descriptor of the accessed board is one of the
arguments of the function.

Automatic Serial Polling

Automatic Serial Polling relieves you of the burden of sorting out occurrences of SRQ and status
bytes of a device you can enable. To enable Automatic Serial Polling (or Autopolling), use the
configuration utility, IBCONF, or the configuration function, ibconfig. If you enable
Autopolling, the handler automatically conducts serial polls when SRQ is asserted.

As part of the Autopoll procedure, the handler stores each positive serial poll response in a queue
associated with each device. A positive response has the RQS or hex 40 bit set in the device
status byte. Queues are necessary because some devices can send multiple positive status bytes
back-to-back. When a positive response from a device is received, the RQS bit of its status word
(ibsta)is set. The polling continues until SRQ is unasserted or an error condition is detected.

If the handler cannot locate the device requesting service (no known device responds positively
to the poll) or if SRQ becomes stuck on (because of a faulty instrument or cable), a GPIB system
error exists that will interfere with the proper evaluation of the RQS bit in the status words of
devices. The error ESRQ is reported to you when you issue an ibwait call with the RQS bit

© National Instruments Corporation 4-7 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

included in the wait mask. Aside from the difficulty caused by ESRQ in waiting for RQS, the
error will have no detrimental effects on other GPIB operations.

If you call the serial poll function ibrsp and have received one or more responses previously
via the automatic serial poll feature, the ibrsp function returns the first queued response. Other
responses are read in FIFO (first-in-first-out) fashion. If the RQS bit of the status word is not set
when you call ibrsp, the function conducts a serial poll and returns whatever response it
receives.

If your application requires that requests for service be noticed, call the ibrsp function
whenever the RQS bit appears in the status word. A serial poll response queue of a device can
overflow with old status bytes when you neglect to call ibrsp. ibrsp returns the error
condition ESTB when status bytes have been discarded because the queue is full. If your
application has no interest in SRQ or status bytes, you can ignore the occurrence of the automatic
polls.

Note: If the RQS bit of the device status word is still set after you call ibrsp, the response
byte queue has at least one more response byte remaining. You should call ibrsp
until RQS is cleared to gather all stored response bytes and to guard against queue
overflow.

Autopolling Compatibility

You cannot detect the SRQI bit in device status words (ibsta) if you enable Autopolling. The
goal of Autopolling is to remove the SRQ from the IEEE 488 bus, thus preventing visibility of
the SRQI bit in status words for both board calls and device calls. If you choose to look for
SRQI in your program, you must disable Autopolling.

Board functions are also incompatible with Autopolling. The handler disables Autopolling
whenever you make a board call, and re-enables it at the end of a subsequent device call.

Hardware Interrupts and Autopolling

If you have disabled the interrupts of the GPIB interface board via IBCONF or the ibconfig
function, the handler detects SRQ only during calls to the handler, and Autopolling can occur
only at the following events.

* During a device ibwait for RQS,

* Immediately after a device function has completed and is about to return to the application
program.

If you have enabled hardware interrupts, the handler can respond to SRQI interrupts and perform
Autopolling even when the handler is not performing a function. However, the handler will not
conduct an Autopoll if any of the following conditions exist.

LabWindows/CVI Standard Libraries 4-8 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

* The last GPIB call was a board call. Autopolling is re-instated after a subsequent device call.

* GPIB I/O is in progress. In particular, during asynchronous GPIB I/O, autopolling will not
occur until the asynchronous I/0 has completed.

* The "stuck SRQ" condition exists.

* Autopolling has been disabled by IBCONF or by ibconfig.

Read and Write Termination

The IEEE 488 specification defines two methods of identifying the last byte of device-dependent
(data) messages. The two methods permit a Talker to send data messages of any length without
the Listener(s) knowing in advance the number of bytes in the transmission. The two methods
are as follows.

* END message. The Talker asserts the EOI (End Or Identify) signal simultaneously with
transmission of the last data byte. By design, the Listener stops reading when it detects a
data message accompanied by EOI, regardless of the value of the byte.

* End-of-string (EOS) character. The Talker uses a special character at the end of its data
string. By prior arrangement, the Listener stops receiving data when it detects that character.
You can use either a 7-bit ASCII character or a full 8-bit binary byte.

You can use these methods individually or in combination. However, the Listener must be
properly configured to unambiguously detect the end of a transmission.

Using the configuration program, you can accommodate all permissible forms of read and write
termination. (You cannot force the handler to ignore END on read operations.) The default
configuration settings for read and write termination can also be changed at run time using the
ibeos and ibeot functions.

Timeouts

A timeout mechanism regulates the GPIB routines that transfer command sequences or data
messages. A default timeout period of 10 sec is preconfigured in the handler; thus, all I/O must
complete within that period to avoid a timeout error. The default timeout value can be changed
with the IBCONF utility. In addition, you can use the NI-488 board function call ibtmo to
programmatically alter the timeout period.

Regardless of the I/O and Wait timeout period, a much shorter timeout is enforced for responses
to serial polls. This shorter timeout period takes effect whenever a serial poll is conducted.
Because devices normally respond quickly to polls, there is no need to wait the relatively lengthy
I/0O timeout period for a nonresponsive device.

© National Instruments Corporation 4-9 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

Global Variables for the GPIB Library

The following global variables are used by the GPIB Library and the GPIB-488.2 Library:
e Status Word (ibsta)

e FError (ibcnt, ibcntl)

These variables are updated after each NI-488 or NI-488.2 routine to reflect the status of the
device or board just accessed. Refer to your NI-488.2 user manual for detailed information on
the GPIB global variables.

Different Levels of Functionality Depending on Platform and GPIB Board

In general, the GPIB library is same for all platforms and GPIB boards. There are, however,
some exceptions, most notably relating to SRQ notification, support for multithreading, and
limitations on transfer size. These particular issues are discussed later in this chapter. This
section explains the various categories of GPIB support.

Windows 95

There are two kinds of GPIB support for Windows 95. The “native 32-bit” driver and the
“compatibility” driver. You can see which one you have installed on your system by running the
GPIB Information program in your GPIB Software group and noting the name of the driver.

Driver Name | Description
NI-488.2M Native 32-bit driver.
NI-488.2 Compatibility driver.

Native 32-Bit Driver

The native 32-bit driver is a 32-bit device driver written specifically for Windows 95. It is
supported on the following boards.

« AT-GPIB/TNT

« AT-GPIB/TNT+

« AT-GPIB/TNT (PnP)
« PCI-GPIB

« PCMCIA-GPIB

« PCMCIA-GPIB+

LabWindows/CVI Standard Libraries 4-10 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

If you want to use GPIB under Windows 95 and you have an older board, it is recommended that
you upgrade to one of the boards in this list.

Compatibility Driver

The compatibility driver is a 32-to-16-bit thunking DLL that you can use with the Windows 3.1
GPIB driver under Windows 95. All GPIB boards are supported by the compatibility driver. The
compatibility driver has several limitations. In particular, it does not support multithreading and
transfers are limited to 64k bytes.

Windows NT

The GPIB driver for Windows NT is a native 32-bit driver written specifically for Windows NT.
Version 1.0 supports the following boards:

 AT-GPIB
* AT-GPIB/TNT

Version 1.2, due to be released in the second half of 1996, will add support for the PCI-GPIB and
PCMCIA-GPIB.

Limitations on Transfer Size

There are no limitations on transfer size except for the compatibility driver under Windows 95.
The compatibility driver is limited to 64 KB transfers.

Multithreading

If you are using multithreading in an external compiler, you can call GPIB functions from more
than one thread at the same time under Windows NT or under Windows 95 with the native 32-bit
driver. In order to be truly multithreaded safe, you must use on of the following versions of the
GPIB driver.

¢ For Windows 95: Version 1.1 or later.

¢ For Windows NT: Version 1.2 or later.

Although previous versions of the drivers support multithreading, they do not support the
ThreadIbsta, ThreadIberr, ThreadIbcnt, or ThreadIbcntl functions. You need
these functions to obtain thread-specific status values when calling GPIB functions from more
than one thread. The global status variables ibsta, iberr, ibcnt, and ibent1, are not
reliable in this case because they are maintained on a per process basis.

© National Instruments Corporation 4-11 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

Notification of SRQ and Other GPIB Events

Synchronous Callbacks

Under Windows 3.1, you can use ibInstallCallback to specify a function to be called
when an SRQ is asserted on the GPIB or when an asynchronous I/O operation has completed. It
is a board-level function only.

The same functionality exists on Windows 95 when you are using the compatibility driver.

If you are using Windows NT or the native 32-bit driver for Windows 95, you can use
ibInstallCallback to specify functions to be invoked on the occurrence of any board-level
or device-level condition on which you can wait using the ibwait function.

Callback functions installed with ibInstallCallback are synchronous callbacks, that is,
they are invoked only when LabWindows/CVI is processing events. (LabWindows/CVI
processes events when you call ProcessSystemEvents or GetUserEvent, or when
RunUserInterface is active and you are not in a callback function.) Consequently, the
latency between the occurrence of the GPIB event and the invocation of the callback can be
large. On the other hand, you are not restricted in what you can do in the callback function.

Asynchronous Callbacks

You have the ability to install asynchronous callbacks on Windows NT and on Windows 95 with
the native 32-bit driver. Asynchronous callbacks are installed with the ibnotify function and
can be called at any time with respect to the rest of your program. Consequently, the latency
between the occurrence of the GPIB event and the invocation of the callback is smaller than with
synchronous callbacks, but you are restricted in what you can do in the callback function. See the
documentation of the ibnot ify function later in this chapter for more details.

Driver Version Requirements

If you are using Windows NT, you must have version 1.2 or later of the GPIB driver to use the
ibInstallCallback and ibnotify functions.

If you are using the native 32-bit GPIB driver on Windows 95, you must have version 1.1 or later
touse the ibInstallCallback and ibnotify functions.

If you are using the Windows 3.1 compatibility driver on Windows 95, you can use the limited
version of ibInstallCallback, but you cannot use ibnotify.

LabWindows/CVI Standard Libraries 4-12 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

GPIB Function Reference

Most of the functions in the GPIB/GPIB-488.2 Library are described in the software reference
manual that you received with your GPIB board. This section contains descriptions only for the
Device Manager functions, the callback installation functions, and the functions for returning the
thread-specific status variables.

Note: ResetDevs is not available in LabWindows/CVI. This function was available in a
previous LabWindows version.

CloseDev
int result = CloseDev (int Device);
Purpose

Closes a device.

Parameter

Input Device integer The device to be closed.

Return Value

result integer Result of the close device
operation.

Return Codes

-1 Error—cannot find device.
0 Success.
Using This Function

Takes a device offline. CloseDev performs an ibloc, then an ibonl with a value of zero.
Device is the device descriptor returned when the device was opened with OpenDev. If
CloseDev cannot find the device descriptor in its table, a —1 is returned. CloseDev should
be used only in conjunction with OpenDev. Never call CloseDev with a device descriptor
obtained by calling ibfind.

© National Instruments Corporation 4-13 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

CloselnstrDevs

int result = CloselnstrDevs (char *instrumentPrefix);
Purpose

Closes instrument devices.

Parameter

Input instrumentPrefix | string Must be null-terminated.

Return Value

result integer Result of the close instrument
devices operation.

Return Codes

0 Success.

Using This Function

Closes all devices associated with the instrument module whose prefix is specified.
instrumentPrefix is a string that specifies the prefix of the instrument module being closed.
CloseInstrDevs always returns zero. CloseInstrDevs should be used only in
conjunction with OpenDev.

ibInstallCallback

int status = ibInstallCallback (int boardOrDevice, int eventMask,
GPIBCallbackPtr callbackFunction,
void *callbackData)

Note: This function is available only on Microsoft Windows. On UNIX, use the ibsgnl
Junction. On Windows 3.1, the data type of the return value and the first two
parameters is short rather than int.

Purpose

This function allows you to install a synchronous callback function for a specified board or
device. If you want to install an asynchronous callback, use the ibnot i fy function instead.

LabWindows/CVI Standard Libraries 4-14 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

The callback function is called when any of the GPIB events specified in the Event Mask
parameter have occurred on the board or device, but only while you allow the system to process
events. The system can process events when you call ProcessSystemEvents or
GetUserEvent, or when you have called RunUserInterface and none of your callback
functions are currently active. The callbacks are termed "synchronous" because they can be
invoked only in the context of normal event processing.

Unlike asynchronous callbacks, there are no restrictions on what you can do in a synchronous
callback. On the other hand, the latency between the occurrence of a GPIB event and the
invocation of the callback function is greater and more unbounded with synchronous callbacks
than with asynchronous callbacks.

Only one callback function can apply for each board or device. Each call to this function for the
same board or device supersedes the previous call.

To disable callbacks for a board or device, pass O for the event Mask parameter.

To use this function with the NI-488.2M (native 32-bit) driver, you must have one of the
following versions.

¢ For Windows 95: Version 1.1 or later.

¢ For Windows NT: Version 1.2 or later.

If you use the NI-488.2 driver (the Windows 3.1 driver or the compatibility driver in Windows 95),
you must pass a board index for the first parameter, and you can use only SRQTI or CMPL for the
event mask parameter.

Parameters
Input | boardOrDevice integer A board index, or a board or device descriptor
(short integer on | returned by OpenDev, ibfind, or ibdev.
Windows 3.1) (On Windows 3.1, must be a board index).
eventMask integer Specifies the events upon which the callback
(short integer on | function is called. Pass O to disable callbacks.
Windows 3.1) See discussion below.

callbackFunction | GPIBCallbackPtr | The name of the user function that is called
when the specified events occur. See
discussion below.

callbackData void pointer A pointer to a user-defined four-byte value that
is passed to the callback function.

© National Instruments Corporation 4-15 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

Return Value

status integer The same value as the ibsta status variable.
(short integer on | Refer to your NI-488.2 or NI-488.2M user
Windows 3.1) manual for a description of the values of
ibsta status variable.

eventMask

The conditions upon which to invoke the callback function are specified as bits in the
eventMask parameter. The bits corresponds to the bits of the ibsta status word. This value
reflects a sum of one or more events. If any one of the conditions occur, the callback is called.

If, when you install the callback, one of the bits you have set in the mask is already TRUE, the
callback is scheduled immediately. For example, if you pass CMPL as the eventMask, and the
ibwait function would currently return a status word with CMPL set, the callback is scheduled
immediately.

If you are using a NI-488.2M (native 32-bit) driver then the following mask bits are valid:

* At the board level, you can specify any of the status word bits that can be specified in the
waitMask parameter to the ibwait function for a board, other than ERR. This includes
SRQT, END, CMPL, TIMO, CIC, and others.

* Atthe device level, you can specify any of the status word bits that can be specified in the
waitMask parameter to the ibwait function for a device, other than ERR. This includes
RQS, END, CMPL, and TIMO.

If you are using a NI1-488.2 driver (Windows 3.1 or compatibility driver for Windows 95), then
the only following mask bits are valid:

SRQTI or CMPL but not both.

SRQI, RQS, and Auto Serial Polling

If you want to install a callback for the SRQT (board-level) event, Auto Serial Polling must be
disabled. You can disable Auto Serial Polling with the following function call:

ibconfig (boardIndex, IbcAUTOPOLL, O0);

If you want to install a callback for the RQS (device-level) event, Auto Serial Polling must be
enabled for the board. You can enable Auto Serial Polling with the following function call:

ibconfig (boardIndex, IbcAUTOPOLL, 1);

LabWindows/CVI Standard Libraries 4-16 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

CallbackFunction
The callback function must have the following form.
void CallbackFunctionName (int boardOrDevice, int mask, void *callbackData);

The mask and callbackData parameters are the same values that were passed to
ibInstallCallback.

If invoked because of an SRQTI or RQS condition, the callback function should call the ibrsp
function to read the status byte. For an SRQT (board-level) condition, calling the ibrsp
function is necessary to cause the requesting device to turn off the SRQ line.

char statusByte;
ibrsp (device, &statusByte);

If invoked because an asynchronous I/O operation (started by ibrda, ibwrta, or ibcmda)
completed, the callback function should contain the following call:

ibwait (boardOrDevice, TIMO | CMPL);
The ibcnt and ibcntl status variables are not updated until this call to ibwait is made.

See Also

ibnotify

ibNotify

int status = ibnotify (int boardOrDevice, int eventMask,
GpibNotifyCallback_t callbackFunction, void *callbackData);

Note: This function is available only on Windows 95 and NT. On UNIX, use the ibsgnl
Junction.

Purpose

This function allows you to install an asynchronous callback function for a specified board or
device. If you want to install a synchronous callback, use the ibInstallCallback function
instead.

The callback function is called when any of the GPIB events specified in the eventMask
parameter have occurred on the specified board or device. Asynchronous callbacks can be called
at any time while your program is running. You do not have to allow the system to process
events. Because of this, you are restricted in what you can do in the callback. See the
Restrictions on Operations in Asynchronous Callbacks discussion below.

© National Instruments Corporation 4-17 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4
Only one callback function can apply for each board or device. Each call to this function for the
same board or device supersedes the previous call.

To disable callbacks for a board or device, pass O for the eventMask parameter.

Parameters

Input | boardOrDevice integer A board index, or a board or device
descriptor returned by OpenDev,
ibfind, or ibdev.

eventMask integer Specifies the events upon which the
callback function is called. Pass O to
disable callbacks. See discussion below.

callbackFunction | GpibNotifyCallback_t | The name of the user function that is
called when the specified events occur.
See discussion below.

callbackData void pointer A pointer to a user-defined four-byte
value that is passed to the callback
function.

Return Value

status integer The same value as the 1bsta status
variable. Refer to your NI-488.2M user
manual for a description of the values of
ibsta status variable.

eventMask

The conditions upon which to invoke the callback function are specified as bits in the
eventMask parameter. The bits corresponds to the bits of the ibsta status word. This value
reflects a sum of one or more events. If any one of the conditions occur, the callback is called.

If, when you install the callback, one of the bits you have set in the mask is already TRUE, the
callback is called immediately. For example, if you pass CMPL as the eventMask, and the
ibwait function would currently return a status word with CMPL set, the callback is called
immediately.

At the board level, you can specify any of the status word bits that can be specified in the
waitMask parameter to the ibwait function for a board, other than ERR. This includes SRQT,
END, CMPL, TIMO, CIC, and others.

At the device level, you can specify any of the status word bits that can be specified in the
waitMask parameter to the ibwait function for a device, other than ERR. This includes RQS,
END, CMPL, and TIMO.

LabWindows/CVI Standard Libraries 4-18 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

SRQI, RQS, and Auto Serial Polling

If you want to install a callback for the SRQT (board-level) event, Auto Serial Polling must be
disabled. You can disable Auto Serial Polling with the following function call:

ibconfig (boardIndex, IbcAUTOPOLL, O0);

If you want to install a callback for the RQS (device-level) event, Auto Serial Polling must be
enabled for the board. You can enable Auto Serial Polling with the following function call:

ibconfig (boardIndex, IbcAUTOPOLL, 1);

CallbackFunction
The callback function must have the following form.

void __ stdcall CallbackFunctionName (int boardOrDevice, int sta, int err,
long cntl, void *callbackData);

The callbackData parameter is the same callbackData value passed to
ibInstallCallback. The sta, err, and cntl parameters contain the information that you
normally obtain using the ibsta, iberr, and ibcnt1 global variables or the
ThreadIbsta, ThreadIberr, and ThreadIbcentl functions. The global variables and
thread status functions return undefined values within the callback function. So you must use the
sta, err and cntl parameters instead.

The value that you return from the callback function is very important. It is the event mask that is
used to rearm the callback. If you return 0, the callback is disarmed (that is, it is not called again
until you make another call to ibnotify). If you return an event mask different than the one
you originally passed to ibnotify, the new event mask is used. Normally, you want to return
the same event mask that you originally passed to ibnotify.

If you return an invalid event mask or if there is an operating system error in rearming the
callback, the callback is called with the sta set to ERR , err set to EDVR, and cntl set to
IBNOTIFY_REARM_FATILED.

Warning: Because the callback can be called as the result of a rearming error, you should
always check the value of the st a parameter to make sure that one of the
requested events has in fact occurred.

If invoked because of an SRQI or RQS condition, the callback function should call the ibrsp
function to read the status byte. For an SRQT (board-level) condition, calling the ibrsp
function is necessary to cause to requesting device to turn off the SRQ line.

char statusByte;
ibrsp (device, &statusByte);

© National Instruments Corporation 4-19 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

If invoked because an asynchronous I/O operation (started by ibrda, ibwrta, or ibcmda)
completed, the callback function should contain the following call:

ibwait (boardOrDevice, TIMO | CMPL);

The ibcnt and ibentl status variables are not updated until this call to ibwait is made.

Restrictions on Operations in Asynchronous Callbacks

Callbacks installed with ibnotify can be called at any time while your program is running.
You do not have to allow the system to process events. Because of this, you are restricted in what
you can do in the callback. You can do the following:

e (all the User Interface Library PostDeferredCall function, which schedules a different
callback function to be called synchronously.

e (all any GPIB function, except ibnotify or ibInstallCallback.

* Manipulate global variables, but only if you know that the callback has not been called at a
point when the main part of your program is modifying or interrogating the same global
variables.

e (Call ANSI C functions such as st rcpy and sprint £, which affect only the arguments
passed in (that is, have no side effects). You cannot call print £ or file I/O functions.

e Callmalloc,calloc, realloc,or free.

If you need to perform operations that fall outside these restrictions, do the following.

1. In your asynchronous callback, perform the time-critical operations in the asynchronous
callback, and call PostDeferredCall to schedule a synchronous callback.

2. In the synchronous callback, perform the other operations.

See Also

ibInstallCallback

LabWindows/CVI Standard Libraries 4-20 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

OpenDev
int bd = OpenDev (char *deviceName, char *instrumentPrefix);
Purpose

Opens a GPIB device.

Parameters

Input deviceName string Must be null-terminated.

instrumentPrefix | string Must be null-terminated.

Return Value

bd integer Result of the open device

operation.

Return Codes

-1 Device table is full, or no more devices available.

Parameter Discussion

deviceName is a string specifying a device name that appears in the IBCONF device table. If
deviceName is not "", OpenDev acts identically to ibfind. If deviceName is "", OpenDev
acts identically to ibdev. OpenDev uses the first available unopened device.

instrumentPrefix is a string that specifies the instrument prefix associated with the instrument
module. The instrument prefix must be identical to the prefix entered when creating the function
tree for the instrument module. If the instrument module has no prefix or if OpenDev is not
being used in an instrument module, pass the string " " for instrumentPrefix.

Using This Function

This function attempts to find an unused device in the GPIB handler's device table and open it. If
successful, OpenDev returns a device descriptor. Otherwise, it returns a negative number.

© National Instruments Corporation 4-21 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library Chapter 4

ThreadIbcent

int threadSpecificCount = ThreadlIbent (void);
Note: This function is available only under Windows 95 and NT.
This function returns the value of the thread-specific ibcnt variable for the current thread.

The global variables ibsta, iberr, ibcnt, and ibcent 1 are maintained on a process-specific
(rather than thread-specific) basis. If you are calling GPIB functions in more than one thread, the
values in these global variables may not always be reliable.

Status variables analogous to ibsta, iberr, ibcnt, and ibcnt 1l are maintained for each
thread. This function returns the value of the thread-specific ibcnt variable.

If you are not using multiple threads, the value returned by this function is identical to the value
of the ibcnt global variable.

Parameters

none

Return Value

threadSpecificCount | integer | The number of bytes actually transferred by the most recent
GPIB read, write, or command operation for the current thread
of execution. If an error occurred loading the GPIB DLL, this
is the error code returned by the MS Windows
LoadLibrary function.

See Also

ThreadIbsta, ThreadIberr, ThreadIbcntl.

ThreadIbcntl
long threadSpecificCount = Threadlbcntl (void);

Note: This function is available only under Windows 95 and NT.
This function returns the value of the thread-specific ibcnt 1 variable for the current thread.

The global variables ibsta, iberr, ibcnt, and ibcntl are maintained on a process-specific
(rather than thread-specific) basis. If you are calling GPIB functions in more than one thread, the
values in these global variables may not always be reliable.

Status variables analogous to ibsta, iberr, ibcnt, and ibcnt 1 are maintained for each
thread. This function returns the value of the thread-specific ibcnt1 variable.

LabWindows/CVI Standard Libraries 4-22 © National Instruments Corporation



Chapter 4 GPIB/GPIB-488.2 Library

If you are not using multiple threads, the value returned by this function is identical to the value
of the ibcnt1 global variable.

Parameters

none

Return Value

threadSpecificCount | long The number of bytes actually transferred by the most
integer recent GPIB read, write, or command operation for the
current thread of execution. If an error occurred loading
the GPIB DLL, this is the error code returned by the MS
Windows LoadLibrary function.

See Also

ThreadIbsta, ThreadIberr, ThreadIbcnt.

Threadlberr
int threadSpecificError = Threadlberr (void);

Note: This function is available only under Windows 95 and NT.
This function returns the value of the thread-specific iberr variable for the current thread.

The global variables ibsta, iberr, ibcnt, and ibcntl are maintained on a process-specific
(rather than thread-specific) basis. If you are calling GPIB functions in more than one thread, the
values in these global variables may not always be reliable.

Status variables analogous to ibsta, iberr, ibcnt, and ibcnt 1 are maintained for each
thread. This function returns the value of the thread-specific iberr variable.

If you are not using multiple threads, the value returned by this function is identical to the value
of the iberr global variable.

Parameters

none

Return Value

threadSpecificError | integer The most recent GPIB error code for the current thread of
execution. The value is meaningful only when
ThreadIbsta returns a value with the ERR bit set.

© National Instruments Corporation 4-23 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library

Chapter 4

Return Codes

Defined

Constant | Value | Description

EDVR 0 Operating system error. The system-specific error code is returned by
ThreadIbcntl.

ECIC 1 Function requires GPIB-PC to be CIC.

ENOL 2 No listener on write function.

EADR 3 GPIB-PC addressed incorrectly.

EARG 4 Invalid function call argument.

ESAC 5 GPIB-PC not System Controller as required.

EABO 6 /0 operation aborted.

ENEB 7 Non-existent GPIB-PC board.

EDMA 8 Virtual DMA device error.

EOIP 10 1I/0 started before previous operation completed.

ECAP 11 Unsupported feature.

EFSO 12 File system error.

EBUS 14 Command error during device call.

ESTB 15 Serial Poll status byte lost.

ESRQ 16 SRQ stuck in on position.

ETAB 20 Device list error during a FindLstn or FindRQS call.

ELCK 21 Address or board is locked.

ELNK 200 The GPIB library was not linked. Dummy functions were linked instead.

EDLL 201 Error loading GPIB32.DLL. The MS Windows error code is returned by
ThreadIbcntl.

EFNF 203 Unable to find the function in GPIB32.DLL. The MS Windows error
code is returned by ThreadIbcntl.

EGLB 205 Unable to find globals in GPIB32.DLL. The MS Windows error code is
returned by ThreadIbcntl.

ENNI 206 Not a National Instruments GPIB32.DLL.

EMTX 207 Unable to acquire Mutex for loading DLL. The MS Windows error code
is returned by ThreadIbcntl.

EMSG 210 Unable to register callback function with MS Windows.

ECTB 211 The callback table is full.

LabWindows/CVI Standard Libraries 4-24 © National Instruments Corporation




Chapter 4 GPIB/GPIB-488.2 Library

See Also

ThreadIbsta, ThreadIbcnt, ThreadIbcntl.

ThreadlIbsta

int threadSpecificStatus = Threadlbsta (void);
Note: This function is available only under Windows 95 and NT.
This function returns the value of the thread-specific ibsta variable for the current thread.

The global variables ibsta, iberr, ibcnt, and ibcntl are maintained on a process-specific
(rather than thread-specific) basis. If you are calling GPIB functions in more than one thread, the
values in these global variables may not always be reliable.

Status variables analogous to ibsta, iberr, ibcnt, and ibcnt 1 are maintained for each
thread. This function returns the value of the thread-specific ibsta variable.

If you are not using multiple threads, the value returned by this function is identical to the value
of the ibsta global variable.

Parameters
none

Return Value

threadSpecificStatus integer | The status value for the current thread of execution. The
status value describes the state of the GPIB and the result
of the most recent GPIB function call in the thread. Any
value with the ERR bit set indicates an error. Call
ThreadIberr for a specific error code.

© National Instruments Corporation 4-25 LabWindows/CVI Standard Libraries



GPIB/GPIB-488.2 Library

Return Codes

The return value is a sum of the following bits.

Chapter 4

Defined

Constant | Hex Value | Condition

ERR 8000 GPIB error.

END 2000 END or EOS detected.

SRQT 1000 SRQ is on.

ROS 800 Device requesting service.

CMPL 100 I/O completed.

LOK 80 GPIB-PC in Lockout State.

REM 40 GPIB-PC in Remote State.

CIC 20 GPIB-PC is Controller-In-Charge.

ATN 10 Attention is asserted.

TACS 8 GPIB-PC is Talker.

LACS 4 GPIB-PC is Listener.

DTAS 2 GPIB-PC in Device Trigger State.

DCAS 1 GPIB-PC in Device Clear State.
See Also
ThreadIberr, ThreadIbcnt, ThreadIbcntl
LabWindows/CVI Standard Libraries 4-26 © National Instruments Corporation




Chapter 5
RS-232 Library

This chapter describes the functions in the LabWindows/CVI RS-232 Library. The RS-232
Library Function Overview section contains general information about the RS-232 Library
functions and panels. The RS-232 Library Function Reference section contains an alphabetical
list of function descriptions.

In order to use the RS-232 Library on UNIX, your UNIX kernel must support asynchronous I/0
functions (for example, aioread and aiowrite). You can enable this by building your
UNIX kernel as Generic instead of Generic Small.

RS-232 Library Function Overview

This section contains general information about the RS-232 Library functions and panels. The
RS-232 Library can also be used with a National Instruments RS-485 serial board.

The RS-232 Library Function Panels

The RS-232 Library function panels are grouped in a tree structure according to the types of
operations performed. The RS-232 Library function tree appears in Table 5-1.

The first- and second-level bold headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The third-
level headings in plain text are the names of individual function panels. Each RS-232 function
panel generates one or more RS-232 function calls. The names of functions are in bold italics to
the right of the function panel name.

Table 5-1. The RS-232 Library Function Tree

RS-232

Open/Close
Open COM and Configure OpenComConfig
Close COM CloseCom
Open COM—Current State OpenCom

Input/Output
Read Buffer ComRd
Read Terminated Buffer ComRdTerm
Read Byte ComRdByte

(continues)

© National Instruments Corporation 5-1 LabWindows/CVI Standard Libraries




RS-232 Library

Chapter 5

Table 5-1. The RS-232 Library Function Tree (Continued)

Read To File ComToFile

Write Buffer ComWrt

Write Byte ComWrtByte

Write From File ComFromFile
XModem

XModem Send File XModemSend

XModem Receive File XModemReceive

XModem Configure XModemConfig
Control

Set Time-out Limit SetComTime

Set XON/XOFF Mode SetXMode

Set CTS Mode SetCTSMode

Flush Input Queue FlushInQ

Flush Output Queue FlushOutQ

Send Break Signal ComBreak

Set Escape Code ComSetEscape
Status

Get COM Status GetComStat

Get Input Queue Length GetInQLen

Get Output Queue Length GetOutQLen

Return RS232 Error ReturnRS232Err

Get Error String GetRS232ErrorString
Callbacks

Install COM Callback InstallComCallback

The classes and subclasses in the tree are described below.

* The Open/Close function panels open, close and configure a com port.

e  The Input/Output function panels read from and write to a com port.

* The XModem function panels transfer files using the XModem protocol.

* The Control function panels set the time-out limit, set communication modes, flush the I/O
queues, and send the break signal.

* The Status function panels return the com port status and the length of the I/O queues.
* The Callbacks function panel installs callback functions for COM events.

The online help with each panel contains specific information about operating each function
panel.

LabWindows/CVI Standard Libraries 5-2 © National Instruments Corporation



Chapter 5 RS-232 Library

Using RS-485

You can use all of the functions in the RS-232 Library with the National Instruments RS-485

AT-Serial board. The ComSetEscape function allows you to control the transceiver mode of
the board.

Reporting RS-232 Errors

The functions in the RS-232 Library return negative values when an error occurs. In addition, the
global variable rs232err is updated after each function call to the RS-232 Library. If the
function executes properly, it sets rs232err to zero. Otherwise, it sets rs232err to the same
error code that it returns. A list of the possible error conditions that can occur while using the
RS-232 Library functions are at the end of this chapter.

XModem File Transfer Functions

With the XModem functions, you can transfer files using a data transfer protocol. The protocol
uses a generally accepted technique for serial file transfers with error-checking. Files transfer
packets that contain data from the files plus error-checking and synchronization information.

You do not need to understand the protocol to use the functions. To transfer a file, open the com
port, use the XModemSend function on the sender side of the transfer and the
XModemReceive function on the receiver side of the transfer, and then close the com port.
The XModem functions handle all aspects of the transfer protocol.

You can treat the XModem functions as higher-level functions that perform a more precisely
defined task than the functions ComToFile and ComFromFile. Use ComToFile and
ComFromFile if you need finer control over the file operations. Remember that the Xmodem
functions calculate the check sum and retransmit when an error is detected, whereas
ComToFile and ComFromFile do not do so.

Troubleshooting

Establishing communication between two RS-232 devices can be difficult because of the many
different possible configurations. When using this library, you must know the device
requirements, such as baud rate, parity, number of data bits, and number of stop bits. Basically,
these configurations must match between the two parties of communication.

If you encounter difficulty in establishing initial communication with the device, refer to an
elementary RS-232 communications handbook for information about cable requirements and
general RS-232 communication. Refer also to the section RS-232 Cable Information later in this
chapter.

© National Instruments Corporation 5-3 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

All functions, except the Open and Close functions, require the com port to be opened with
OpenCom or OpenComConfig.

If the program writes data to the output queue and then immediately closes the com port, the data
in the queue may be lost if it has not had time to be sent over the port. To guarantee that all bytes
were written before closing the port, monitor the length of the output queue with the

GetOutQLen function. When the output queue length becomes zero, it is safe to close the port.

If the XModemReceive function fails to complete properly, verify that the input queue length
is greater than or equal to the packet size. Refer to the functions OpenComConfig and
XModemConfig.

If the receiver appears to lose data transmitted by the sender, the input queue of the receiver may
be overflowing. This means that the input queue of the receiver is not emptied as quickly as data
is coming in. You can solve this problem using handshaking, provided both devices offer the
same handshaking support. Refer to the Handshaking section of this chapter for further
information.

If an XModem file transfer with a large packet size and a low baud rate fails, you might need to
increase the wait period. Ten seconds is sufficient for most transfers.

RS-232 Cable Information

An RS-232 cable consists of wires, or lines, that are joined with a connector at each end. The
connectors plug into the serial ports of each device to form a communications link over which
data and control signals flow. Each serial port consists of pins that are numbered and have
meaning. The PC pins are numbered and described as shown in Table 5-2.

Table 5-2. PC Cable Configuration

Pin Meaning

2 TxD—Transmit Data *

3 RxD—Receive Data

4 RTS—Request to Send *

5 CTS—<Clear to Send

6 DSR—Data Set Ready

20 DTR—Data Terminal Ready *
7 Common

The items with an asterisk (*) indicate the lines that the PC drives, and all other items indicate
the lines the PC monitors.

LabWindows/CVI Standard Libraries 5-4 © National Instruments Corporation



Chapter 5 RS-232 Library

All serial devices are either of the type Data Communication Equipment (DCE) or Data
Transmission Equipment (DTE). The PC is of type DTE. The difference between the two
devices is in the meaning assigned to the pins. A DCE device reverses the meaning of pins 2 and
3,4 and 5, and 6 and 20. In the simplest scenario, a DTE device is attached to a DCE device,
such as a modem. Therefore, the cable required for a PC (or DTE) to talk to a device that is a
DCE is shown in Table 5-3.

Table 5-3. DTE to DCE Cable Configuration

PC) Connect pins as indicated: (Device)
TxD* 2 2 RxD
RxD 3 3 TxD*
RTS* 4 4 CTS
CTS 5 5 RTS*
DSR 6 6 DTR
DTR* 20 20 DSR*
common 7 7 common

You need a different cable for the PC to talk to a DTE device, because both devices transmit data
over pin 2. The cable to connect a PC to a DTE is called a null modem cable. A null modem
cable must be built as shown in Table 5-4.

Table 5-4. PC to DTE Cable Configuration

PO Connect pins as indicated: (Device)
TxD* 2 3 RxD
RxD 3 2 TxD*
RTS* 4 5 CTS
CTS 5 4 RTS*
DSR 6 20 DTR
DTR* 20 6 DSR*
common 7 7 common

For further information on the meaning of DTE and DCE, refer to a reference book on RS-232
communication.

In the simplest case, a serial cable needs lines 2, 3, and 7 for basic communication to take place.
Hardware handshaking and modem control can require other lines, depending on your

© National Instruments Corporation 5-5 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

application. Refer to the Hardware Handshaking section later in this chapter for more
information about using the lines 4, 5, 6, and 20.

Another area that requires special attention is the gender of the connectors of your serial cable.
The serial cable plugs into sockets in the PC and the serial device just as a lamp cord plugs into a
wall socket. Both the connector and the socket can be male, with pins (like a lamp plug), or
female, with holes (like an outlet). If your serial cable connector and PC socket are the same
gender, you cannot plug the cable into the socket. You can change this by attaching a small
device called a gender changer to your cable. One type of gender changer converts a female
connector to a male connector and the other type converts a male connector to a female
connector.

The size of the connector on your serial cable can also differ from the size of the socket. Most
serial ports require a 25-pin connector. However, some serial ports require a 9-pin connector.
To resolve this incompatibility, you must either change the connector on your serial cable or
attach a small device that converts from a 25-pin connector to a 9-pin connector.

Handshaking

A common error condition in RS-232 communications is that the receiver appears to lose data
transmitted by the sender. This condition typically results from the input queue of the receiver
not being emptied quickly enough.

Handshaking prevents overflow of the input queue that occurs when the receiver is unable to
empty its input queue as quickly as the sender is able to fill it. The RS-232 Library has two types
of handshaking: software handshaking and hardware handshaking. You should enable one or the
other if you want to ensure that your application program synchronizes its data transfers with
other serial devices that perform handshaking.

Software Handshaking

The Set XMode function enables software handshaking. You can use software handshaking
when you are transferring ASCII data or text and your serial device uses software handshaking.
The RS-232 Library performs software handshaking by sending and monitoring incoming data
for special data bytes (XON and XOFF, or decimal 17 and 19). These bytes indicate whether the
receiver is ready to receive data.

You must not enable software handshaking when transmitting binary data because the special
XON/XOFF characters can occur as part of the data stream and are mistaken as control codes.
However, you can enable hardware handshaking regardless of the type of data transferred.

No special cable configuration is required to perform software handshaking.

LabWindows/CVI Standard Libraries 5-6 © National Instruments Corporation



Chapter 5 RS-232 Library

Hardware Handshaking

The Set CTSMode function enables hardware handshaking. For hardware handshaking to work,
two conditions must exist. First, the serial devices must follow the same or similar hardware
handshake protocols (they must use the same lines for the handshake and assign the same
meanings to those lines). Second, the serial cable connecting the two devices must include the
lines required to support the protocol. Because no single well-defined hardware handshake
protocol exists, resolve any differences between the LabWindows/CVI hardware handshake
protocol and the one your device uses.

Most serial devices primarily rely on the CTS and RTS lines to perform hardware handshaking,
and the DTR line is used to signal its online presence to the other device. Some serial devices
also may use the DTR line for hardware handshaking similarly to the CTS line. The
SetCTSMode function has two different modes to handle either case.

This Set CTSMode function employs the following line behaviors for each mode.

Note: Under UNIX, changes to the DTR line have no effect on the communication port.

LWRS_HWHANDSHAKE_OFF

* The RTS and DTR lines are raised when opening the port and lowered when closing the port.
Data is sent out the port regardless of the status of CTS.

Note: Under Windows, the Set ComEscape function can be used to change the value of
the RTS and DTR lines.

LWRS_HWHANDSHAKE_CTS_RTS

*  When the PC is the receiver:
— If the port is opened, the library raises RTS and DTR.
— If the input queue of the port is nearly full, the library lowers RTS.
— If the input queue of the port is nearly empty, the library raises RTS.
— If the port is closed, the library lowers RTS and DTR.

*  When the PC is the sender:

— The RS-232 library must detect that its CTS line is high before sending data out the port.

LWRS_HWHANDSHAKE_CTS_RTS_DTR
¢  When the PC is the receiver:

— If the port is opened, the library raises RTS and DTR.

© National Instruments Corporation 5-7 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

— If the input queue of the port is nearly full, the library lowers RTS and DTR.
— If the input queue of the port is nearly empty, the library raises RTS and DTR.
— If the port is closed, the library lowers RTS and DTR.
*  When the PC is the sender:
— The RS-232 library must detect that its CTS line is high before sending data out the port.

Note: The only difference between LWRS_HWHANDSHAKE_CTS_RTS and
LWRS_HWHANDSHAKE_CTS_RTS_DTR is the behavior of the DTR line.

If the handshaking mechanism used by your device uses the CTS and RTS lines, use a serial
cable as shown in Table 5-3 if your device is a DCE, or Table 5-4 if your device is a DTE.
Optionally, your cable can omit the connection between pins 6 and 20 if your device does not
monitor DSR when sending data. Notice that the RTS pin of the receiver translates to the CTS
pin of the sender, and the DSR pin of the receiver translates to the DTR pin of the sender.

If you want to use hardware handshaking but your device uses a different hardware handshake
protocol than the ones described here, you can build a cable that overcomes the differences. You
can construct a cable to serve your special needs be referencing the pin description in Table 5-2.

RS-232 Library Function Reference

This section describes each function in the LabWindows/CVI RS-232 Library. The
LabWindows/CVI RS-232 Library functions are arranged alphabetically.
CloseCom

int result = CloseCom (int COMPort);

Purpose

Closes a COM port.

Parameter

Input COMPort integer Range 1 through 32.

Return Value

result integer Refer to error codes in
Table 5-6.

LabWindows/CVI Standard Libraries 5-8 © National Instruments Corporation



Chapter 5 RS-232 Library

Parameter Discussion

The function does nothing if the port numbers are invalid (port is not open or parameter value is
not in the range 1 through 32).

ComBreak
int result = ComBreak (int COMPort, int breakTimeMsec);
Purpose

Generates a break signal.

Parameters
Input COMPort integer Range 1 through 32.
breakTimeMsec integer Range 1 through 255, or 0 to
select 250.
Return Value
result integer Refer to error codes in
Table 5-6.

Using This Function

The function generates a break signal for the number of milliseconds indicated or for 250 ms if
the breakTimeMsec parameter is zero. For most applications, 250 ms is adequate.

Errors may occur if the port is not open or parameter values are invalid.

ComFromFile

int nbytes = ComFromFile (int COMPort, int fileHandle, int count,
int terminationByte);

Purpose

Reads from the specified file and writes to output queue of the specified COM port.

© National Instruments Corporation 5-9 LabWindows/CVI Standard Libraries



RS-232 Library

Chapter 5

Parameters
Input COMPort integer Range 1 through 32.
fileHandle integer File handle returned by
OpenFile.
count integer If O, this value is ignored.
terminationByte integer If -1, this value is ignored.
Return Value
nbytes integer Number of bytes written to the
output queue.
<0 Error. Refer to error codes in

Table 5-6.

Parameter Discussion

Reads count bytes from the file unless it encounters terminationByte, reaches EOF, or
encounters an error. The function returns the number of bytes successfully written to the output
queue. The function returns immediately after placing all bytes in the output queue, not when
bytes have all been sent out the com port.

If count is zero, the function terminates on terminationByte, EOF, or error.

If terminationByte is -1, it is ignored, and the function terminates on count bytes written, EOF,
or error. If terminationByte is not -1, reading from the file stops when terminationByte is
encountered. It does not write terminationByte to the output queue. If terminationByte is CR
or LF, then the function treats CR-LF and LF-CR combinations just as ComRdTerm does.

If both count and terminationByte are disabled, the function terminates on EOF or error.

Using This Function

To guarantee that all bytes were removed from the output queue before closing the port, call
GetOutQLen to determine the number of bytes remaining in the output queue. If you close the
port before every byte has been sent, you lose the bytes remaining in the queue.

The function returns a negative error code if the output queue remains full for the duration of the
time-out period, the file handle is bad, a read error occurs, the port is not open, or the COMPort

is invalid.

LabWindows/CVI Standard Libraries

© National Instruments Corporation



Chapter 5 RS-232 Library

ComRd
int nbytes = ComRd (int COMPort, char buffer[], int count);
Purpose

Reads count bytes from input queue of the specified port and stores them in buffer. Returns
either on time-out or when count bytes have been read. Returns an integer value indicating the
number of bytes read from queue.

Parameters
Input COMPort integer Range 1 through 16.
count integer 0 value takes no bytes from
queue.
Output buffer string The buffer in which to store the
data.
Return Value
nbytes integer Number of bytes read from the

input queue.

Using This Function

This function times out if the input queue remains empty in the specified time-out period. This
may occur when no data has been received within the time-out period.

The function returns an error code if the port is not open or parameter values are invalid.
Example

/* Read 100 bytes from input queue of COM1 into buf. */

int n;

char buf[100];

n = ComRd (1, buf, 100);

if (n != 100)
/* Time—-out or error occurred before read completed. */ ;

© National Instruments Corporation 5-11 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

ComRdByte
int byte = ComRdByte (int COMPort);
Purpose

Reads a byte from the input queue of the specified port. Returns an integer whose low-order byte
contains the byte read. Returns either on time-out, when the byte is read, or when an error occurs.
If an error or a time-out occurs, ComRdByte returns a negative error code. See Table 5-6. This is
the only case in which the high-order byte of the return value is non-zero.

Parameter

Input COMPort integer Range 1 through 32.

Return Value

byte integer Low order byte contains the
byte read.
<0 Error.
Using This Function

This function times out if the input queue remains empty in the specified time-out period. This
may occur when no data has been received within the time-out period.

The function returns an error code if the port is not open, COMPort is invalid, or a time-out
occurs.

ComRdTerm

int nbytes = ComRdTerm (int COMPort, char buffer[], int count,
int terminationByte);

Purpose

Reads from input queue until terminationByte occurs in buffer, count is met, or a time-out
occurs. Returns integer value indicating number of bytes read from queue.

LabWindows/CVI Standard Libraries 5-12 © National Instruments Corporation



Chapter 5

RS-232 Library

Parameters
Input COMPort integer Range 1 through 32.
count integer If 0, no bytes are removed from
queue.
terminationByte integer Low byte contains the numeric
equivalent of the terminating
character.
Output buffer string The buffer in which to store the
data.
Return Value
nbytes integer Number of bytes read from the
input queue.
Using This Function

This function times out if the input queue remains empty within the specified time-out period.
This may occur when no data has been received during the time-out period. If the read
terminates on the termination byte, the byte is neither written to the buffer nor included in the

count.

If the termination character is either a carriage return (CR or decimal 13) or a linefeed (LF or

decimal 10), the function handles it as follows:

* If terminationByte = CR, and if the character immediately following CR is LF, discard the

LF in addition to the CR.

* If terminationByte = LF, and if the character immediately following LF is CR, discard the

CR in addition to the LF.

Only the bytes placed in buffer are included in the return count. If CR or LF is discarded
because it follows an LF or CR, it is not counted toward satisfying the count.

The function returns an error if the port is not open or parameter values are invalid.

© National Instruments Corporation

5-13 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

ComSetEscape
int result = ComSetEscape (int COMPort, int escapeCode);
Purpose

Directs the specified com port to carry out an extended function such as clearing or setting the
RTS signal line or setting the transceiver mode for RS-485. The extended functions are defined
by the serial device driver.

Not all device drives support all escape codes. Unknown System Error (-1) is returned when the
device driver does not support a particular escape code.

Note: This function is supported in the MS Windows version of LabWindows/CVI only.

Parameters
Input COMPort integer | Range 1 through 32.
escapeCode integer | Specifies the escape code of the extended
function.
Return Value
result integer Error Code. Refer to Table 5-6.

Parameter Discussion

The following values can be used for escape code.
CLRDTR—Clears the DTR (data-terminal-ready) signal.
CLRRTS—Clears the RTS (request-to-send) signal.

GETMAXCOM—Returns the maximum com port identifier supported by the system. This value
ranges from 0x00 to 0x7F, such that 0x00 corresponds to COM1, 0x01 to COM2, 0x02 to
COM3, and so on.

SETDTR—Sends the DTR (data-terminal-ready) signal.
SETRTS—Sends the RTS (request-to-send) signal.
SETXOFF—Causes the port to act as if an XOFF character has been received.

SETXON—Causes the port to act as if an XON character has been received.

LabWindows/CVI Standard Libraries 5-14 © National Instruments Corporation



Chapter 5 RS-232 Library
The following values may be used only with the RS-485 serial driver developed by National
Instruments:

WIRE_4—Sets the transceiver to Four Wire Mode.

WIRE_2_ECHO—Sets the transceiver to Two Wire DTR controlled with echo mode.
WIRE_2_CTRL—Sets the transceiver to Two Wire DTR controlled without echo.

WIRE_2 AUTO—Sets the transceiver to Two Wire auto TXRDY controlled mode.

ComToFile

int nbytes = ComToFile (int COMPort, int fileHandle, int count,
int terminationByte);

Purpose

Reads from input queue of specified com port and write data to file specified by fileHandle.
Returns number of bytes successfully written to file. Bytes are read from input queue until count
is satisfied, terminationByte is encountered, or an error occurs, whichever occurs first.

Parameters
Input COMPort integer Range 1 through 32.
fileHandle integer File handle returned by
OpenFile.
count integer If 0, this value is ignored.
terminationByte integer If -1, this value is ignored.
Return Value
nbytes integer Number of bytes written to the
file.

Parameter Discussion
If count is zero, the function ignores it and terminates on terminationByte or error.

If terminationByte is -1, the function ignores it and terminates on count bytes read or an error.
If terminationByte is valid, the function stops when it encounters terminationByte.
terminationByte is removed from the input queue and is not written to the file. If
terminationByte is CR or LF, then CR-LF and LF-CR combinations are treated just as they are

© National Instruments Corporation 5-15 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5
for ComRdTerm. If both count and terminationByte are disabled, the function terminates on
error (which can include a time-out).

Using This Function

The function returns an error if the output queue remains full for the duration of the time-out
period, the file handle is bad, a read error occurs, the port is not open, or the COMPort is
invalid.

ComWrt
int nbytes = ComWrt (int COMPort, char buffer[], int count);
Purpose

Writes count bytes to the output queue of the specified port. Returns an integer value indicating
the number of bytes placed in the queue. Returns immediately without waiting for the bytes to
be sent out of the serial port.

Parameters
Input COMPort |integer Range 1 through 32.
buffer string Buffer containing data to be written, or actual
string.
count integer 0 value places no bytes in queue.
Return Value
nbytes integer Number of bytes placed in the output queue.
<0 Error code; See Table 5-6. Byte not placed in
the output queue.

Using This Function

This function times out if the output queue has not been updated in the specified time-out period.
This can occur if the output queue is full and no further data can be sent because XON/XOFF is
enabled and the device has sent an XOFF character without sending the follow-on XON
character. It can also occur if Hardware Handshaking is enabled and the Clear To Send (CTS)
line is not asserted.

Bytes are sent from the output queue to the serial device under interrupt control without program
intervention. If you close the port before all bytes have been sent, you lose the bytes remaining in
the queue. To guarantee that all bytes have been removed from the output queue before closing

LabWindows/CVI Standard Libraries 5-16 © National Instruments Corporation



Chapter 5 RS-232 Library
the port, call GetOutQLen. GetOutQLen returns the number of bytes remaining in the output
queue.

The function returns an error if the port is not open or parameter values are invalid.

Example

/* Place the string "Hello, world!" in the output queue of */
/* COM2 and check if operation was successful. */

if (ComWrt (2, "Hello, World!", 13) != 13)
/* Operation was unsuccessful */;
or

char buf[1007];

Fmt (buf, "%$s", "Hello, World!");

if (ComWrt (2, buf, 13) != 13)

/* Operation was unsuccessful */;

ComWrtByte
int status = ComWrtByte (int COMPort, int byte);
Purpose

Writes a byte to the output queue of the specified port. The byte written is the low-order byte of
the integer. Returns a 1 to indicate the operation is successful, or a negative error code to indicate
the operation has failed. Returns immediately without waiting for the byte to be transmitted out
through the serial port.

Parameters
Input COMPort integer Range 1 through 32.
byte integer Only the low-order byte is
significant.
Return Value
status integer Result of the write operation.
<0 Error code; See Table 5-6.
1 One byte placed in the output
queue.

© National Instruments Corporation 5-17 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

Parameter Discussion

This function times out if the output queue has not been updated in the specified time-out period.
This can occur if the output queue is full and no further data can be sent because XON/XOFF is
enabled and the device has sent an XOFF character without sending the follow-on XON
character. It can also occur if Hardware Handshaking is enabled and the Clear To Send (CTS)
line is not asserted.

Bytes are sent from the output queue to the serial device under interrupt control without program
intervention. If you close the port before all bytes have been sent, you lose the bytes remaining in
the queue. To guarantee that all bytes have been removed from the output queue before closing
the port, call GetOutQLen. GetOutQLen returns the number of bytes remaining in the output
queue.

The function returns an error if the port is not open or parameter values are invalid.

FlushInQ

int status = FlushInQ (int COMPort);

Purpose

Removes all characters from the input queue of the specified port.

Parameter

Input COMPort integer Range 1 through 32.

Return Value

status integer Refer to Error Codes in
Table 5-6.

Using This Function

You can use this function to flush a flawed transmission in preparation for re-transmission. It
alleviates the need to read bytes into a buffer to empty the queue. If the queue is already empty,
this function does nothing.

The function returns a negative error code if the port is not open or if COMPort is invalid.

LabWindows/CVI Standard Libraries 5-18 © National Instruments Corporation



Chapter 5

FlushOutQ

int status =

Purpose

FlushOutQ (int COMPort);

RS-232 Library

Removes all characters from the output queue of the specified port.

Parameter
Input COMPort integer Range 1 through 32.
Return Value
status integer Refer to Error Codes in
Table 5-6.
Using This Function

The function returns an error if the port is not open or if COMPort is invalid.

GetComStat

int status = GetComStat (int COMPort);

Purpose

Returns information about the status of the specified COM port. COM port conditions are
accumulated until you call GetComStat.

Parameter
Input COMPort integer Range 1 through 16.
Return Value
status integer Bits indicate COM port status.
<0 Error. Refer to Table 5-5.
Using This Function

Table 5-5 lists definitions of specific bits in the return value.

the presence of more than one condition.

© National Instruments Corporation

Several bits can be set to indicate

LabWindows/CVI Standard Libraries



RS-232 Library

Chapter 5

Table 5-5. Bit Definitions for the GetComStat Function

Hex Mnemonic Description

Value

0001 INPUT LOST Input queue filled and input characters lost (characters
were not removed fast enough).

0002 ASYNCH ERROR | Problem determining number of characters in input queue.
This is an internal error and normally should not occur.

0010 PARITY Parity error detected.

0020 OVERRUN Overrun error detected; a character was received before
the receiver data register was emptied.

0040 FRAMING Framing error detected; stop bits were not received when
expected.

0080 BREAK Break signal detected.

1000 REMOTE XOFF XOFF character received. If XON/XOFF was enabled (see
the Set XMode function description), no characters are
removed from the output queue and sent to the other device
until that device sends an XON character.

4000 LOCAL XOFF XOFF character sent to the other device. If XON/XOFF
was enabled (see the Set XMode function description),
XOFF is transmitted when the input queue is 50%, 75%
and 90% full. If the other device is sensitive to
XON/XOFF protocol, it transmits no further characters
until it receives an XON character. You use this process to
avoid the INPUT LOST error.

Notice the ambiguity in this status information. If an error occurs on the indicated port, the
application program knows that one or more bytes are invalid. The program cannot know from
the status word which byte read since the last call to GetComStat is invalid.

The function returns a negative error code if the port is not open or if COMPort is invalid.

GetInQLen

int len = GetInQLen (int COMPort);

Purpose

Returns the number of characters in the input queue of the specified port. This function does not
change the input queue.

LabWindows/CVI Standard Libraries

5-20 © National Instruments Corporation



Chapter 5 RS-232 Library

Parameter

Input COMPort integer Range 1 through 32.

Return Value

len integer Number of characters in the
input queue.

Parameter Discussion

The function returns an error if the port is not open or if COMPort is invalid.

GetOutQLen

int len = GetOutQLen (int COMPort);

Purpose

Returns the number of characters in the output queue of the specified port.

Parameter

Input COMPort integer Range 1 through 32.

Return Value

len integer Number of characters in the
output queue.

Using This Function

You can use this function to ensure the output queue has emptied before you close the port. This
function has no effect on the output queue.

The function returns an error if the port is not open or if COMPort is invalid.

© National Instruments Corporation 5-21 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

GetRS232ErrorString
char *message = GetRS232ErrorString (int errorNum)
Purpose

Converts the error number returned by an RS-232 Library function into a meaningful error
message.

Parameters
Input errorNum integer Error Code returned by RS-232
function.
Return Value
message string Explanation of error.

InstallComCallback

int status = InstallComCallback (int COMPort, int eventMask, int notifyCount,
int eventCharacter, ComCallbackPtr callbackPtr,
void *callbackData);

Note: This function is available only in the Windows version of LabWindows/CVI.
Purpose

This function allows you to install a callback function for a particular COM port. The callback
function is called whenever any of the events specified in the eventMask parameter occur on the
COM port and you allow the system to process events. The system can process events in the
following situations.

* You have called RunUserInterface and none of your callback functions is currently
executing, or

* Youcall GetUserEvent, or

e Youcall ProcessSystemEvents

Only one callback function can apply for each COM port. Each call to this function for the same
COM port supersedes the previous call.

To disable callbacks for a board or device, pass 0 for the eventMask and/or callbackFunction
parameters.

LabWindows/CVI Standard Libraries 5-22 © National Instruments Corporation



Chapter 5 RS-232 Library

Note: The callback function may receive more than one event at a time. When using this
Junction at higher baud rates, some LWRS_RXCHAR events may be missed. It is
recommended to use LWRS_RECEIVE or LWRS_RXFLAG instead.

Note: Once the LWRS_RECEIVE event occurs, it is not triggered again until the input queue
falls below, and then rises back above, notifyCount bytes.

Example

notifyCount = 50; /* Wait for at least 50 bytes in queue */
eventChar = 13; /* Wait for LF */

eventMask = LWRS_RXFLAG LWRS_TXEMPTY | LWRS_RECEIVE;

InstallComCallback (comport, eventMask, notifyCount,
eventChar, ComCallback, NULL);

/* Callback Function */
void ComCallback (int portNo, int evnetMask, void *data)
{
if (eventMask & LWRS_RXFLAG)
printf ("Received specified character\n");
if (eventMask & LWRS_TXEMPTY)
printf ("Transmit queue now empty\n");
if (eventMask & LWRS_RECEIVE)
printf ("50 or more bytes in input queue\n");

}

Parameters

Input | COMPort integer Range 1 through 32.

eventMask integer The events upon which the callback function
is called. See the Parameter Discussion for a
list of valid events. If you want to disable
callbacks, pass 0.

notifyCount integer The minimum number of bytes the input
queue must contain before sending the
LWRS_RECEIVE event to the callback
function.

Valid Range: 0 to Size of Input Queue.

eventCharacter integer Specifies the character or byte value that
triggers the LWRS_RXFLAG event.
Valid Range: 0 to 255.

callbackPtr ComCallbackPtr The name of the user function that processes
the event callback.

callbackData void * A pointer to a user-defined four-byte value
that is passed to the callback function.

© National Instruments Corporation 5-23 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

Return Value

status integer Refer to error codes in Table 5-6.

Parameter Discussion

The callback function must have the following form.
void CallbackFunctionName (int COMPort, int eventMask, void *callbackData);

The eventMask and callbackData parameters are the same values that were passed to
InstallComCallback.

The events are specified using bits in the eventMask parameter. You can specify multiple event
bits in the eventMask parameter. The valid event bits are listed in the table below.

Bit Hex Value Com Port Event Constant Name

0 0x0001 Any character received. LWRS_RXCHAR

1 0x0002 Received certain character. LWRS_RXFLAG

2 0x0004 Transmit Queue empty. LWRS_TXEMPTY

3 0x0008 CTS changed state. LWRS_CTS

4 0x0010 DSR changed state. LWRS_DSR

5 0x0020 RLSD changed state. LWRS_RLSD

6 0x0040 BREAK received. LWRS_BREAK

7 0x0080 Line status error occurred. LWRS_ERR

8 0x0100 Ring signal detected. LWRS_RING

15 0x8000 notifyCount bytes in inqueue. LWRS_RECEIVE
LabWindows/CVI Standard Libraries 5-24 © National Instruments Corporation




Chapter 5 RS-232 Library

The following table further describes the events.

Event Constant
Name Description

LWRS_RXCHAR Set when any character is received and placed in the
receiving queue.

LWRS_RXFLAG Set when the event character is received and placed in the
receiving queue. The event character is specified in the
eventCharacter parameter of this function.

LWRS_TXEMPTY | Set when the last character in the transmission queue is sent.

LWRS_CTS Set when the CTS (clear-to-send) line changes state.

LWRS_DSR Set when the DSR (data-set-ready) line changes state.

LWRS_RLSD Set when the RLSD (receive-line-signal-detect) line changes
state.

LWRS_BREAK Set when a break is detected on input.

LWRS_ERR Set when a line-status error occurs. Line-status errors are

CE_FRAME, CE_OVERRUN, and CE_RXPARITY.
LWRS_RING Set to indicate that a ring indicator was detected.

LWRS_RECEIVE | Set to detect when at least notifyCount bytes are in the
input queue. Once this event has occurred, it does not
trigger again until the input queue falls below, and then rises
back above, notifyCount bytes.

OpenCom

int result = OpenCom (int COMPort, char deviceName[]);
Purpose

Opens a com port.

Parameter

Input COMPort integer | Range 1 through 32.

deviceName string Name of the COM port.

© National Instruments Corporation 5-25 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

Return Value

result integer | Refer to error codes in Table 5-6.

Parameter Discussion

deviceName is the name of the com port in the ASCII string. For example, COM1 for com port 1
on Microsoft Windows using COMM. DRV, and /dev/ttya for com port 1 on UNIX using the
Zilog 8530 SCC serial comm driver.

If you pass a NULL pointer or an empty string for deviceName, the library uses the following
device names depending on the COM port number you have specified.

Port Number deviceName on Windows | deviceName on UNIX
1 “COM1” “/dev/ttya”
2 “COM2’ “/dev/ttyb”
3 “COM3” “/devi/ttys1”
4 “COM4” “/dev/ttys2”
and so on
Using This Function

OpenCom uses 512 bytes of the buffer for the input queue, 512 bytes for the output. The
function assumes the default baud rate, parity, stop bits, data bits, port address, and handshake
mode established through the com port configuration of the operating system. The time-out for
I/0O operations is 5 seconds. Refer to the functions SetXMode, SetCTSMode, and
SetComTime if you want to change these defaults.

OpenComConfig

int result = OpenComConfig (int COMPort, char deviceName [ ], 1ong baudRate,
int parity, int dataBits, int stopBits,
int inputQueueSize, int outputQueueSize);

Purpose

Opens a com port, and sets port parameters as specified. If inputQueueSize or
outputQueueSize is between 1 and 29, it is forced to 30.

LabWindows/CVI Standard Libraries 5-26 © National Instruments Corporation



Chapter 5

RS-232 Library

Parameters
Input COMPort integer Range 1 through 32.
deviceName string Name of the COM port.
baudRate long Either 110, 150, 300, 600, 1200, 2400, 4800,
9600, 14400, 19200, 28800, 38400, 56000,
57600, 115200, 128000, or 256000.
SPARCsSstations do not support 14400, 28800,
56000, 57600, 115200, 128000, and 256000.
PCs do not support 150. Some PC serial
drivers do not support 115200, 128000,
and 256000.
parity integer | 0—no parity.
1—odd parity.
2—even parity.
3—mark parity.
4—space parity.
dataBits integer Either 5, 6, 7, or 8.
stopBits integer Either 1 or 2.
inputQueueSize integer 0 selects 512. See discussion below.
outputQueueSize | integer 0 selects 512. See discussion below.
Return Value
result integer Refer to error codes in Table 5-6.

Parameter Discussion

deviceName is the name of the com port in the ASCII string. For example, COM1 for com port 1
on Microsoft Windows using COMM. DRV, and /dev/ttya for com port 1 on UNIX using the
Zilog 8530 SCC serial comm driver.

If you pass a NULL pointer or an empty string for deviceName, the library uses the following

device names depending on the COM port number you have specified.

Port Number deviceName on Windows | deviceName on UNIX
1 “COM1” “/devi/ttya”

2 “COM2’ “/dev/ttyb”

3 “COM3” “/devl/ttys1”

4 “COM4” “/devl/ttys2”

and so on

© National Instruments Corporation

LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

Under UNIX, the inputQueueSize and outputQueueSize parameters are ignored. The serial
driver determines the queue size.

Under Windows, if you specify 0 for inputQueueSize or outputQueueSize, 512 is used. If you
specify a value between 0 and 30, 30 is used. On Windows 95 and NT, there is no maximum
limitation on the queue size. On Windows 3.1, the maximum queue size is 65535. However,
some serial drivers have a maximum of 32767 and give undefined behavior when you use a
larger queue size. It is recommended that you use a queue size no greater than 32767.

Under Windows 3.1, the baudRate value may be from 0 to Oxff£f£. Values below Oxf£00 are
interpreted by the comm driver literally. Values from 0x££00 to Oxffff are codes defined by
the particular comm driver to represent rates higher than Oxfeff.

Under Windows 95 and NT, all baudRate values are interpreted literally by the comm driver.
Using This Function

The function disables XON/XOFF mode, and CTS hardware handshaking. The default time-out
for I/0O operations is 5 seconds. Refer to the functions SetXMode, SetCTSMode, and
SetComTime if you want to change these defaults.

If the specified port is already open, OpenComConfig closes the port (see CloseCom) then
opens it again.

ReturnRS232Err
int status = ReturnRS232Err (void);
Purpose
Returns the value of rs232err.
Parameters

None

Return Value

status integer Refer to error codes in
Table 5-6.

LabWindows/CVI Standard Libraries 5-28 © National Instruments Corporation



Chapter 5 RS-232 Library

SetComTime

int result = SetComTime (int COMPort, double timeoutSeconds);
Purpose

Sets time-out limit for input/output operations.

Parameters

Input COMPort integer Range 1 through 32.

timeoutSeconds double-precision Time-out period for all
read/write functions.

Return Value

result integer Refer to error codes in
Table 5-6.

Using This Function

This function sets the time-out parameters for all read and write operations. The default value of
timeoutSeconds is 5.

For an RS-232 read operation, timeoutSeconds specifies the time allowed from the start of the
transfer to the arrival of the first byte. It also specifies the time allowed to elapse between the
arrival of any two consecutive bytes. An RS-232 read operation waits for at least the specified
amount of time for the next incoming byte before it returns a time-out error.

For an RS-232 write operation, timeoutSeconds specifies the time allowed before the first byte
is transferred to the output queue. It also specifies the time allowed between the transfer of any
two consecutive bytes to the output queue. The transfer of bytes to the output queue can become
stalled if the output queue is full and hardware or software handshaking is held off. If the hold-
off is not resolved within the time-out period, the RS-232 write operation returns a time-out
error.

If the timeoutSeconds parameter is zero, it disables time-outs and the read or write functions
wait indefinitely for the operation to complete.

The function returns an error if the port is not open or parameter values are invalid.

© National Instruments Corporation 5-29 LabWindows/CVI Standard Libraries



RS-232 Library

SetCTSMode

int result = SetCTSMode (int COMPort, int mode);

Purpose

Chapter 5

Enables or disables hardware handshaking as described in the Hardware Handshaking section of
the RS-232 Library Function Overview.

Parameters
Input COMPort integer Range 1 through 32.
mode integer 0 to disable hardware
handshaking, non-zero to enable
hardware handshaking. See
discussion below.
Return Value
result integer Refer to error codes in Table 5-6.

Parameter Discussion

The following are the valid values for mode.

0—LWRS_HWHANDSHAKE_OFF—Hardware handshaking is disabled. The CTS line is ignored.
The RTS and DTR lines are raised the entire time the port is open.

I—LWRS_HWHANDSHAKE_CTS_RTS_DTR—Hardware handshaking is enabled. The CTS line
is monitored. Both the RTS and DTR lines are used for handshaking.

2—LWRS_HWHANDSHAKE_CTS_RTS—Hardware handshaking is enabled. The CTS line is
monitored. The RTS is used for handshaking. The DTR line is raised the entire time the port is

open.

Using This Function

By default, hardware handshaking is not used.

The function returns an error if the port is not open or parameter values are invalid.

LabWindows/CVI Standard Libraries

5-30

© National Instruments Corporation



Chapter 5 RS-232 Library

SetXMode
int result = SetXMode (int COMPort, int mode);
Purpose

Enables or disables software handshaking by enabling or disabling XON/XOFF sensitivity on
transmission and reception of data.

Parameters
Input COMPort integer Range 1 through 16.
mode integer 0 to disable, non-zero to enable.
Return Value
result integer Refer to error codes in
Table 5-6.
Using This Function

By default, XON/XOFF sensitivity is disabled. See the Software Handshaking section at the
beginning of this chapter.

The function returns an error if the port is not open or parameter values are invalid.

XModemConfig

int result = XModemConfig (int COMPort, double startDelay,
int maximum#ofRetries, double waitPeriod,
int packetSize);

Purpose

Sets the XModem configuration parameters for the specified com port.

© National Instruments Corporation 5-31 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

Parameters
Input COMPort integer Range 1 through 32.
startDelay double-precision 0.0 selects the default value
10.0 seconds.
maximum#ofRetries integer 0 selects the default value 10.
waitPeriod double-precision 0.0 selects the default value
10.0 seconds.
>5.0 is recommended.
packetSize integer 0 selects the default value 128.

Return Value

result integer Result of the XModem

configuration operation.
(Less than zero) Error code; See Table 5-6.
(Zero) Success.

Parameter Discussion

XModemSend and XModemReceive use the baud rate, and the input/output queue sizes
specified by OpenComConfig. But they ignore the data bits, the parity and the stop bits
settings of OpenComConfig, and always use 8 bits, no parity, and one stop bit. Instead of using
the time-out value defined by the Set ComTime function, XModem functions use a 1 second
time-out between data bytes.

A zero input for any parameter except COMPort sets that parameter to its default value.

startDelay sets the timing for the initial connection between the two communication parties.
When a LabWindows/CVI program assumes the role of receiver, startDelay specifies the
interval (in seconds) during which to send the initial negative acknowledgment character to the
transmitter. That character is sent every startDelay seconds, up to maximum#ofRetries times.
When a LabWindows/CVI program assumes the role of transmitter, startDelay specifies the
interval (in seconds) during which the transmitter waits for the initial negative acknowledgment.
The transmitter waits up to (startDelay*maximum#ofRetries) seconds. The default value of
startDelay is 10.0.

maximum#ofRetries sets the maximum number of times the transmitter retries sending a packet
to the receiver on the occurrence of an error condition. The default value of
maximum#ofRetries is 10.

waitPeriod sets the period of time between the transfers of two packets. When a
LabWindows/CVI program assumes the role of transmitter, it waits for up to waitPeriod seconds

LabWindows/CVI Standard Libraries 5-32 © National Instruments Corporation



Chapter 5 RS-232 Library

for an acknowledgment before it re-sends the current packet. When LabWindows/CVI plays the
role of receiver, it waits for up to waitPeriod seconds for the next packet after it sends out an
acknowledgment for the current packet. If it does not receive the next packet within delayPeriod
seconds, it re-sends the acknowledgment, and waits again, up to maximum#ofRetries times. The
default value of waitPeriod is 10.0.

packetSize sets the packet size in bytes. Its value must be less than or equal to the input and
queue sizes. The standard XModem protocol defines packet sizes to be 128 or 1024. If you are
using any other size, make sure the two communication parties understand each other. The
default value of packetSize is 128.

Using This Function

For transfers with a large packet size and a low baud rate, a large delay period is recommended.

XModemReceive
int result = XModemReceive (int COMPort, char fileName[]);
Purpose

Receives packets of information over the com port specified by COMPort and writes the packets
to the specified file.

Parameters

Input COMPort integer Range 1 through 32.

fileName string Contains the pathname.

Return Value

result integer Result of the XModem receive

operation.

<0 Failure.

0 Success.
Using This Function

This function uses the XModem file transfer protocol. The transmitter must also follow this
protocol for this function to work properly.

The Xmodem protocol requires that the sender and receiver agree on the error checking protocol.
This agreement is negotiated at the beginning of the transfer, and can cause a significant delay.

© National Instruments Corporation 5-33 LabWindows/CVI Standard Libraries



RS-232 Library Chapter 5

XModemReceive tries ((maximum#ofTries + 1) / 2) times to negotiate a CRC error check
transfer. If there is no response, it tries to negotiate a check sum transfer up to
((maximum#ofTries -1) / 2) times.

The file is opened in binary mode, and carriage returns and linefeeds are not treated as ASCII
characters. They are written to the RS-232 line, untouched.

If the size of the file being sent is not an even multiple of the packet size, the file received is
padded with NUL (0) bytes. For example, if the file being sent contains only the string HELLO,
the file written to disk contains the letters HELLO followed by (packet size - 5) bytes of zero. If
the packet size is 128, the file contains the five letters in HELLO and 123 zero bytes.

The standard XModem protocol only supports 128 and 1024 packet sizes. The sender sends an
SOH (0x01) character to indicate that the packet size is 128, or an STX character (0x02) to
indicate that the packet size is 1024. LabWindows/CVI attempts to support any packet size. As a
receiver, when LabWindows/CVI receives an STX character from the sender, it switches to
1024 packet size regardless of what the user specifies. When it receives an SOH character from
the sender, it uses the packet size specified by the user.

For transfers with a large packet size and a low baud rate, a large delay period is recommended.
Example

/* Receive the file c:\test\data from COM1l */

/* NOTE: wuse \\ in path name in C instead of \. */
int n;

OpenComConfig(l, 9600, 1, 8, 1, 256, 256, 0, 0);

n = XModemReceive (1, "c:\\test\\data");

if (n != 0)

FmtOut ("Error %d in receiving file",rs232err);
else

FmtOut ("File successfully received.");
XModemSend

int result = XModemSend (int COMPort, char fileName[]);
Purpose
Reads data from fileName file and sends it in packets over the com port specified by COMPort.

Parameters

Input COMPort integer Range 1 through 32.

fileName string Contains the pathname.

LabWindows/CVI Standard Libraries 5-34 © National Instruments Corporation



Chapter 5 RS-232 Library

Return Value

result integer Result of the XModem send
operation.
<0 Failure.
0 Success.
Using This Function

The file is opened in binary mode. Carriage returns and linefeeds are not treated as ASCII
characters. They are sent to the receiver untouched.

This function uses the XModem file transfer protocol. The receiver must also follow this
protocol for this function to work properly.

If the size of the file being sent is not an even multiple of the packet size, the last packet is
padded with NUL (0) bytes. For example, if the file being sent contains only the string HELLO
and the packet size is 128, the packet of data sent contains the letters HELLO followed by

123 (packet size - 5) zero bytes.

The standard XModem protocol only supports 128 and 1024 packet sizes. The sender sends an
SOH character (0x01) to indicate that the packet size is 128, or an STX character (0x02) to
indicate that the packet size is 1024. LabWindows/CVI attempts to support any packet size. As a
sender, LabWindows/CVI sends an STX character when you specify packet size as 1024. For
any other packet size, it sends an SOH character.

For transfers with a large packet size and a low baud rate, a large delay period is recommended.

© National Instruments Corporation 5-35 LabWindows/CVI Standard Libraries



RS-232 Library

Chapter 5

Error Conditions

If an error condition occurs during a call to any of the functions in the LabWindows/CVI RS-232
Library, the function returns an error code and the global variable rs232err contains that error
code. This code is a non-zero value that specifies the type of error that occurred. The currently
defined error codes and their meanings are given in Table 5-6.

Table 5-6. RS-232 Library Error Codes

Code

Error Message

-104
-114
-124
-151
-152
-257

Unknown system error.

Invalid port number.

Port is not open.

Unknown 1/O error.

Unexpected internal error.

No serial port found.

Cannot open port.

Memory allocation error in creating buffers.
Invalid parameter.

Invalid baud rate.

Invalid parity.

Illegal number of data bits.

Illegal number of stop bits.

Bad file handle.

Error in performing file I/O.

Invalid count (Must be greater than or equal to 0).
Invalid interrupt level.

I/0O operation timed out.

Value must be between 0 and 255.

Requested input queue size must be O or greater.
Requested output queue size must be O or greater.

General 1/0O error.
Buffer parameter is NULL.

Packet was sent but no acknowledgment was received.

(continues)

LabWindows/CVI Standard Libraries 5-36 © National Instruments Corporation



Chapter 5

Table 5-6. RS-232 Library Error Codes (Continued)

RS-232 Library

-258
-259
-260

-261
-262
-263
-264
-265

-269
-300
-301
-302

-303

-304
-305

-402

-503
-504
-505
-506
-507
-508

Packet not sent within retry limit.

Packet not received within retry limit.

End of transmission character encountered when start of

data character expected.

Packet number could not be read.
Packet number inconsistency.
Packet data could not be read.
Checksum could not be read.

Checksum received did not match computed
checksum.

Packet size exceeds input queue size.
Error opening file.
Error reading file.

Did not receive the initial negative acknowledgment
character.

Did not receive acknowledgment after the end of
transmission character was sent.

Error while writing to file.

Did not receive either a start of data or end of
transmission character when expected.

Transfer was canceled because the CAN character was
received.

Invalid start delay.

Invalid maximum number of retries.
Invalid wait period.

Invalid packet size.

Unable to read CRC.

CRC error.

The value of rs232err is zero if the most recently called RS-232 function completed
successfully. Errors above 200 occur only on XModem function calls. Errors 261 through 265
are recorded when the maximum number of retries has been exhausted in trying to receive an

XModem function packet.

© National Instruments Corporation 5-37

LabWindows/CVI Standard Libraries



Chapter 6
DDE Library

This chapter describes the functions in the LabWindows/CVI DDE (Dynamic Data Exchange)
Library. The DDE Library Function Overview section contains general information about the
DDE Library functions and panels. The DDE Library Function Reference section contains an
alphabetical list of function descriptions. This library is available for LabWindows/CVI for

Microsoft Windows only.

DDE Library Function Overview

The DDE Library includes functions specifically for Microsoft Windows DDE support. This
section contains general information about the DDE Library functions and panels.

The DDE Library Function Panels

The DDE Library function tree appears in Table 6-1. The first- and second-level bold headings in
the tree are the names of function classes and subclasses. Function classes and subclasses are
groups of related function panels. The third-level headings in plain text are the names of
individual function panels. Each DDE function panel generates one or more DDE function
calls. The names of functions are in bold italics to the right of the function panel name.

Table 6-1. DDE Library Function Tree

Server Functions
Register DDE Server
Server DDE Write
Advise DDE Data Ready
Broadcast DDE Data Ready
Unregister DDE Server
Client Functions
Client DDE Execute
Client DDE Read
Client DDE Write
Connect To DDE Server
Set Up DDE Hot Link
Set Up DDE Warm Link
Terminate DDE Link
Disconnect From DDE Server
Get Error String

RegisterDDEServer
ServerDDE Write
AdviseDDEDataReady
BroadcastDDEDataReady
UnregisterDDEServer

ClientDDEExecute
ClientDDERead

ClientDDE Write
ConnectToDDEServer
SetUpDDEHotLink
SetUpDDEWarmLink
TerminateDDELink
DisconnectFromDDEServer
GetDDEErrorString

© National Instruments Corporation 6-1

LabWindows/CVI Standard Libraries




DDE Library Chapter 6

DDE Clients and Servers

Interprocess communication with DDE involves a client and a server in each DDE conversation.
A DDE server can execute commands sent from another application, and send and receive
information to and from a client application under Windows. A DDE client can send commands
to a server application to be executed, and request data from a server application.

With the LabWindows/CVI DDE Library, you can write programs to act as a DDE client or
server. A detailed example using Microsoft Excel and LabWindows/CVT follows later in this
chapter to illustrate how to use the DDE Library functions.

To connect to a DDE server from a LabWindows/CVI program, you must know some
information about the application to which you would like to connect. All DDE server
applications have a name and topic that defines the connection. For example, you can connect to
Microsoft Excel as a server in two ways with the Connect ToDDEServer function from a
LabWindows/CVI program. If you want to send commands to be executed by the Excel
application, such as opening worksheets and creating charts, you should specify excel as the
server name and system as the topic name in the call to the Connect ToDDEServer
function. However, if you want to send data to an Excel spreadsheet, you should specify excel
as the server name and the filename of the worksheet that is already loaded in Excel as the topic
name.

If your program acts as a DDE server, where other Windows applications will be sending and
receiving commands and data, you need to call the RegisterDDEServer function in your
program. The RegisterDDEServer function establishes your program as a valid DDE server
so that other applications can connect to it and exchange information. The server callback
function will then be invoked as discussed in the following section.

The DDE Callback Function

Callback functions provide the mechanism for sending and receiving data to and from other
applications through DDE. Similar to the method in which a callback function responds to user
interface events from your User Interface Library object files, a DDE callback function responds
to incoming DDE information.

As shown in Table 6-2, a callback function in a client application can respond to only two types
of DDE messages: DDE_DISCONNECT and DDE_DATAREADY. After you set up a warm link
or hot link (also called an advisory loop) to another application, the callback function defined in
the SetUpDDEHotLink or SetUpDDEWarmLink function will be called whenever the data
values change in the other application, or when the other application is closed.

LabWindows/CVI Standard Libraries 6-2 © National Instruments Corporation



Chapter 6 DDE Library

DDE callback functions used in a program that acts as a DDE server can be triggered in a
number of ways from client applications. Whenever a client application attempts to connect to
your server program or requests information from your program, the callback function in your
program is executed to process the request. The parameter prototypes for the DDE callback
functions in LabWindows/CVI are defined below:

int CallbackFunction (int handle, char *topicName,
char *itemName, int xType, int dataFmt,
int dataSize, void *dataPtr,
void *callbackData);

Parameters
Input handle The conversation handle which uniquely identifies the client
server connection.
topicName The server application triggering the callback.
itemName The data item within the server application that triggers the
callback. Exception: When xType is DDE_EXECUTE,
itemName represents the command string from the client
program.
xtype The transaction type (see Table 6-2).
dataFmt The format of the data being transmitted.
dataSize The number of bytes in the data. May actually be greater
than the number of bytes transmitted. It is recommended
that you encode size information in your data.
dataPtr Points to the transmitted data.
callbackData A user-defined data value.
Note: The value of the dataSize parameter is greater than or equal to the actual size of

the data. It is recommended that you encode size information in your data.
Return Value

The callback function should return 1 to indicate success or O to indicate failure or rejection of
the requested action.

Transaction Types

All of the DDE transaction types (xType) that can trigger a callback function are listed in
Table 6-2.

© National Instruments Corporation 6-3 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

Table 6-2. DDE Transaction Types (xType)

xType Server Client When ?

DDE_CONNECT Y N When a new client requests a
connection.

DDE_DISCONNECT Y Y When conversation partner quits.

DDE_DATAREADY Y Y When conversation partner sends
data.

DDE_REQUESTDATA Y N When client requests data.

DDE_ADVISELOOP Y N When client requests advisory loop.

DDE_ADVISESTOP Y N When client terminates request for
advisory loop.

DDE_EXECUTE Y N When client requests execution of a
command.

Refer to the description for RegisterDDEServer and ConnectToDDEServer for more
information about the DDE callback function.

DDE Links

Whenever a client program needs to be informed of changes to the value of a particular data item
in the server application, a DDE data link is required. You can establish a DDE data link in
LabWindows/CVI by calling the Set UpDDEWarmLink or SetUpDDEHotLink functions.
Whenever the data value changes, the client callback function is triggered, and the data is
available in the dataPtr parameter.

Within one client-server connection, there can be multiple data links, each applying to a different
data item. For example, you can establish a link between your LabWindows/CVI program and a
particular cell in Excel. The data item to which the link applies is specified in the itemName
parameter in the call to SetUpDDEWarmLink or SetUpDDEHotLink functions.

As defined in Windows, warm and hot links differ in that under a warm link the client is merely
alerted when the data value changes, whereas under a hot link the data is actually sent.

LabWindows/CVI makes no distinction between warm links and hot links. In both cases, your
client application receives the data through the client callback function when the data value
changes. (If a warm link is in effect, LabWindows/CVI requests and receives the data from the
server before the callback function is called.) The SetUpDDEWarmLink and

SetUpDDEHot Link functions are provided because some DDE server applications offer only
one type of link.

LabWindows/CVI Standard Libraries 6-4 © National Instruments Corporation



Chapter 6 DDE Library

A DDE Library Example Using Microsoft Excel and LabWindows/CVI

LabWindows/CVI includes a sample program called ddedemo . prj that uses DDE to send data
to Microsoft Excel. The example program can be found in the samples\ddetcp directory.
The following discussion outlines the process required to open an Excel worksheet file, send data
over DDE, and setup a DDE link with one of the cells in the worksheet from a LabWindows/CVI
program. Start Excel and load the worksheet file called LWCVI .XLS. The sample program
performs the following operations.

1.

Connects to the Microsoft Excel worksheet as a client.

The function, Connect ToDDEServer, with excel as the server name and LWCVI.XLS
as the topic name, establishes a connection with the worksheet. The Callback Function
Pointer, ClientCallback, identifies the function which will process the DDE
transactions generated from this particular conversation.

Establishes a DDE warm link with a particular cell in the Excel worksheet.

The function, Set UpDDEWarmLink, with the cell address (R5C2) as the item name,
establishes a DDE link between the cell in the worksheet. Thereafter, whenever the value of
cell B5 (row 5, column 2) changes, Excel sends information to LabWindows/CVI by
triggering the clientCallbackFunction.

Sends data to the Excel worksheet from LabWindows/CVI.

After the data is formatted as a string, it is sent to Excel using the ClientDDEWrite
function with the Excel cell region (R1C2 :R50C2) as the item name, and the character
array, containing 50 elements, as the buffer pointer.

The callback function responds to DDE transactions from the Excel worksheet.

The callback function automatically returns the following information:

handle—The conversation which triggered the callback (multiple DDE conversations can be
processed by the same callback function).

item name—The cell(s) involved.

topic name—The Excel system or file in Excel involved.

transaction type—FEither DDE_ DATAREADY or DDE_DISCONNECT.
data format—CF_TEXT in this case.

data size—Number of bytes in the data.

data pointer—Pointer to the data.

callback data—User defined (NULL in this case).

© National Instruments Corporation 6-5 LabWindows/CVI Standard Libraries



DDE Library

Chapter 6

When the DDE_ DATAREADY transaction is received in the callback function, a numeric
display is updated by passing the data pointer value to a numeric control on the UIR file.
When the DDE event is DDE_ DISCONNECT, the DisconnectFromDDEServer
function ends the DDE conversation and program execution is halted.

DDE Library Function Reference

AdviseDDEDataReady

int status = AdviseDDEDataReady (unsigned int conversationHandle,

char itemName [ ], unsigned int dataFormat,
void *dataPointer, unsigned int dataSize,
unsigned int timeout);

Purpose

Called by a server to write data to a DDE client application. The server should call this only
when the value of a data item changes, and a warm or hot link has been established for the data

item.
Parameters
Input conversationHandle |unsigned integer Uniquely identifies the
conversation.
itemName string Uniquely identifies the output
item; for example, system.
dataFormat unsigned integer Valid data format; for example,
CF_TEXT.
dataPointer void pointer Pointer to buffer holding data.
dataSize unsigned integer Number of bytes in data. Must
be 0 if dataPointer is NULL.
Limited to 64 kbytes under
Windows 3.1 and Windows 95.
timeout unsigned integer Timeout in ms.

Return Value

status integer Refer to error codes in
Table 6-3.
LabWindows/CVI Standard Libraries 6-6 © National Instruments Corporation




Chapter 6 DDE Library

Parameter Discussion

dataFormat must be a valid data format recognized by Microsoft Windows. The following are
the valid data formats supported by Microsoft Windows:

CF_TEXT CF_PALETTE
CF_BITMAP CF_PENDATA
CF_METAFILEPICT CF_RIFF

CF_SYLK CF_WAVE

CF_DIF CF_OWNERDISPLAY
CF_TIFF CF_DSPTEXT
CF_OEMTEXT CF_DSPBITMAP
CF_DIB CF_DSPMETAFILEPICT

The Microsoft Windows 3.x Programmer's Reference contains an in-depth discussion of DDE
programming and meaning of each data format type.

Using This Function

This function allows your program, acting as a DDE server, to send data to a client that has set
up a hot or warm link.

When a hot or warm link is set up, your server callback function receives a DDE_ADVISELOOP
transaction type (xType) for a particular data object (identified by itemName). When the hot or
warm link is terminated, your server callback function receives a DDE_ADVISESTOP
transaction type for the data object.

During the period when the hot or warm link is in effect, your server program is responsible for
notifying the client whenever the value of the data object changes. When the data object's value
changes, you can call this function, AdviseDDEDataReady, or
BroadcastDDEDataReady.

AdviseDDEDataReady differs from BroadcastDDEDataReady in that you specify a
particular conversation with a client. AdviseDDEDataReady sends the data only to the
specified client, even if other clients have hot or warm links to the same item.
AdviseDDEDataReady sends the data without invoking your server callback function.
However, if there are other clients with warm links to the same item, they are all notified that
new data is available. If they request the new data, your server callback function is invoked with
the DDE_REQUESTDATA message. If you do not want to send the data to those other clients,
you must write your server callback function so that it does not call ServerDDEWrite in this
case.

If you pass NULL (0) as the dataPointer and O as the dataSize, no data is sent to the specified
client. Instead, all clients with warm links to the item are notified. If they request the new data,
your server callback function is invoked with the DDE_REQUESTDATA message, and you can
use the ServerDDEWrite function to send the data in response.

© National Instruments Corporation 6-7 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

If successful, this function returns the number of bytes sent. Otherwise, this function returns a
negative error code. See the help for the status control for the error code values.

Note: Your program should not call AdviseDDEDataReady in a tight loop because the
iterations will compete with user interface events for the CPU time. You should use
this function sparingly, and only when the value of the hot- or warm-linked data object
changes. In cases when large data objects are to be returned from the server, your
program should only call AdviseDDEDataReady when the user interface is not
busy.

See Also

RegisterDDEServer, SetUpDDEHotLink, SetUpDDEWarmLink,
BroadcastDDEDataReady

BroadcastDDEDataReady

int status = BroadcastDDEDataReady (char serverName[], char itemName[],
char topicName [ ], unsigned int dataFormat,
void *dataPointer, unsigned int dataSize)

Purpose

Called by a server to send, to send data to all clients that have set up hot or warm links on the
specified topic and item.

Parameters
Input | serverName string Identifies the server from which to send the data.
topicName string Identifies the topic with which the data is
associated.
itemName string Identifies the item with which the data is
associated.
dataFormat unsigned Valid data format; for example, CF_TEXT.
integer
dataPointer void pointer | Pointer to buffer holding data.
dataSize unsigned Number of bytes in data. Limited to 64 KB on
integer Windows 3.1 and Windows 95.
Return Value
status integer Refer to error codes in Table 6-3.

LabWindows/CVI Standard Libraries 6-8 © National Instruments Corporation



Chapter 6 DDE Library

Parameter Discussion

serverName, topicName, and itemName must be strings of length from 1 to 255. They are used
without regard to case.

Using this Function

This function allows your program, acting as a DDE server, to send data to all clients that have
set up hot or warm links on the specified topic and item.

When a hot or warm link is set up, your server callback function receives a DDE_ADVISELOOP
transaction type (xType) for a particular data object (identified by itemName). When the hot or
warm link is terminated, your server callback function receives a DDE_ADVISESTOP
transaction type for the data object.

During the period when the hot or warm link is in effect, your server program is responsible for
notifying the client whenever the value of the data object changes. When the data object's value
changes, your server program should call either of the following functions,
BroadcastDDEDataReady or AdviseDDEDataReady.

BroadcastDDEDataReady differs from AdviseDDEDataReady in that it is not restricted
to a particular client. BroadcastDDEDataReady sends the data automatically to all clients
with hot links to the item. BroadcastDDEDataReady notifies all clients with warm links to
the item. For each warm-linked client that requests the data, your server callback function is
invoked with the DDE_REQUESTDATA message. You must call ServerDDEWrite in the
callback to send the data.

When successful, this function returns the number of bytes sent. Otherwise, this function returns
a negative error code. Consult the table at the end of this chapter to see the error code values.

Note: Your program should not call this function within a tight loop, because it will compete
with user interface events for the CPU time. This function should be used sparingly,
and only when the value of the hot or warm linked data object changes. In cases when
large data objects are to be returned from the server, it should only be called when the
user interface is not busy.

See Also

RegisterDDEServer, SetUpDDEHotLink, SetUpDDEWarmLink,
AdviseDDEDataReady,

ClientDDEExecute

int status = ClientDDEExecute (unsigned int conversationHandle,
char commandString [ ], unsigned int timeout);

© National Instruments Corporation 6-9 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

Purpose

Called by client to send a command to be executed by a DDE server application.

Parameters
Input conversationHandle | unsigned integer Uniquely identifies the
conversation.
commandString string Command to be executed by

the server application.

timeout unsigned integer Timeout in ms.

Return Value

status integer Refer to error codes in
Table 6-3.

Parameter Discussion

The commandString represents a valid command sequence for the server application to execute.
Refer to the command function reference manual for the application to which you are connecting
for more information on the commands supported.

See Also

ConnectToDDEServer, ClientDDERead, ClientDDEWrite

ClientDDERead

int status = ClientDDERead (unsigned int conversationHandle, char itemName][],
unsigned int dataFormat, void *dataBuffer,
unsigned int dataSize, unsigned int timeout);

Purpose

Called by client to read data from a DDE server application.

Parameters
Input conversationHandle | unsigned integer A handle uniquely identifies the
conversation.
itemName string Uniquely identifies the output

item; for example, system.

LabWindows/CVI Standard Libraries 6-10 © National Instruments Corporation



Chapter 6 DDE Library

dataFormat unsigned integer Valid data format; for example,
CF_TEXT.
dataSize unsigned integer Number of bytes to read.

Limited to 64 KB under
Windows 3.1 and Windows 95.

timeout unsigned integer Timeout in ms.

Output dataBuffer void pointer Buffer in which to receive data.

Return Value

status integer Refer to error codes in
Table 6-3.

Parameter Discussion

dataFormat must be a valid data format recognized by Microsoft Windows. The following are
the valid data formats supported by Microsoft Windows:

CEF_TEXT CF_PALETTE
CF_BITMAP CF_PENDATA
CF_METAFILEPICT CF_RIFF

CF_SYLK CF_WAVE

CF_DIF CF_OWNERDISPLAY
CF_TIFF CF_DSPTEXT
CF_OEMTEXT CF_DSPBITMAP
CF_DIB CF_DSPMETAFILEPICT

Refer to Microsoft programmers' documention for Windows 3.x for an in-depth discussion of
DDE programming and meaning of each data format type.

status returns a positive number representing the number of bytes that were successfully read. A
negative number corresponds to the error code.

See Also

ConnectToDDEServer, ClientDDEWrite

ClientDDEWrite

int status = ClientDDEWrite (unsigned int conversationHandle, char itemName][ ],
unsigned int dataFormat, void *dataPointer,
unsigned int dataSize, unsigned int timeout);

© National Instruments Corporation 6-11 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

Purpose

Called by client to write data to a DDE server application.

Parameters
Input conversationHandle | unsigned integer Uniquely identifies the

conversation.

itemName string Uniquely identifies the output
item; for example, system.

dataFormat unsigned integer Valid data format; for example,
CF_TEXT.

dataPointer void pointer Buffer holding data.

dataSize unsigned integer Number of bytes to write.

Limited to 64 KB under
Windows 3.1 and Windows 95.

timeout unsigned integer Timeout in ms.
Return Value
status integer Refer to error codes in
Table 6-3.

Parameter Discussion

dataFormat must be a valid data format recognized by Microsoft Windows. The following are
the valid data formats supported by Microsoft Windows:

CEF_TEXT CF_PALETTE
CF_BITMAP CF_PENDATA
CF_METAFILEPICT CF_RIFF

CF_SYLK CF_WAVE

CF_DIF CF_OWNERDISPLAY
CF_TIFF CF_DSPTEXT
CF_OEMTEXT CF_DSPBITMAP
CF_DIB CF_DSPMETAFILEPICT

Refer to Microsoft programmers' documention for Windows 3.x for an in-depth discussion of
DDE programming and meaning of each data format type.

status returns a positive number representing the number of bytes that were successfully read. A
negative number corresponds to the error code.

LabWindows/CVI Standard Libraries 6-12 © National Instruments Corporation



Chapter 6 DDE Library

See Also

ConnectToDDEServer, ClientDDERead

ConnectToDDEServer

int status = ConnectToDDEServer (unsigned int *conversationHandle,
char serverName [ ], char topicName [ ],
ddeFuncPtr clientCallbackFunction,
void *callbackData);

Purpose

Establishes a connection (conversation) between your program and a named server on a given
topic name.

Parameters
Input serverName string Name of the server application.
topicName string Specifies the type of
conversation with the server.
clientCallbackFunction | DDE function Pointer to the user callback
pointer function.
callbackData void pointer User-defined data.
Output | conversationHandle unsigned integer Uniquely identifies the
conversation.
Return Value
status integer Refer to error codes in
Table 6-3.

Parameter Discussion

The conversationHandle returns an integer value that uniquely represents a conversation
between a server and a client.

serverName and topicName must be strings of length from 1 to 255. They are used without
regard to case.

Each server application defines its own set of valid topic names. Refer to the command function
reference manual for the server application. A client and a server can have multiple connections
as long as they are under different topic names.

© National Instruments Corporation 6-13 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

clientCallbackFunction defines a callback function through which all messages from the server
will be routed.

The callback function must be of the following form:

int (*ddeFuncPtr) (int handle, char *topicName, char *itemName,
int xType, int dataFmt, int dataSize,
void*dataPtr, void *callbackData);

The xType (transaction type) parameter specifies the type of message received from the server.

The clientCallbackFunction can receive only two transaction types: DDE_DISCONNECT and
DDE_DATAREADY.

DDE_DISCONNECT—Received when a server is requesting the termination of a connection, or
when Windows terminates the connection due to an internal error.

DDE_DATAREADY—Received when you have already set up a hot or warm link by calling
SetUpDDEHotLink or SetUpDDEWarmLink, and the server notifies you that new data is
available. (If the server program uses the LabWindows/CVI DDE Library, it notifies you by
calling AdviseDDEDataReady or BroadcastDDEDataReady.) The data is received in
the callback in the dataPtr parameter. The topicName, itemName, dataFmt, dataSize, and
dataPtr parameters contain significant data. The itemName can specify an object to which the
data refers. For example, in Excel, the item name specifies a cell. The dataFmt is one of the
Windows-defined data types, for example, CF_TEXT. The dataSize specifies the number of
bytes in the data pointed to by dataPtr.

Note: The dataSize value is the value LabWindows/CVI receives from Microsoft Windows.
This value can be larger than the actual number of bytes written by the client.

Note: The callback function should return TRUE if the message can be processed
successfully. Otherwise, it should return FALSE. The callback function should be
short and return as soon as possible.

callbackData is a four-byte value that will be passed to the callback function each time it is
called for this client.

You can define the meaning of the callback data. For example, you can use the callback data as a
pointer to a data object that you need to access in the callback function. In this way, you would
not need to declare the data object as a global variable.

If you do not want to use the callback data, you can pass zero.
Note: In the case of DDE_DISCONNECT, the value of callbackData is undefined.

See Also

DisconnectFromDDEServer, RegisterDDEServer

LabWindows/CVI Standard Libraries 6-14 © National Instruments Corporation



Chapter 6 DDE Library

DisconnectFromDDEServer
int status = DisconnectFromDDEServer (unsigned int conversationHandle);
Purpose

Disconnects your client program from a server application.

Parameters
Input conversationHandle |unsigned integer Uniquely identifies the
conversation.
Return Value
status integer Refer to error codes in
Table 6-3.

Note: This function ends a conversation between a client and server corresponding to the
conversationHandle that was passed. Remember that there can be more than one
conversation between a client and a server.

See Also

ConnectToDDEServer, RegisterDDEServer

GetDDEErrorString

char *message = GetDDEErrorString (int errorNum)

Purpose

Converts the error number returned by a DDE Library function into a meaningful error message.

Parameters

Input errorNum integer Status returned by a
DDE function.

© National Instruments Corporation 6-15 LabWindows/CVI Standard Libraries




DDE Library Chapter 6

Return Value

message string Explanation of error.

RegisterDDEServer

int status = RegisterDDEServer (char serverName| ],
ddeFuncPtr serverCallbackFunction,
void *callbackData);

Purpose

Registers your program as a valid DDE server, allowing other Windows applications to connect
to it for interprocess communication.

Parameters
Input serverName string Name of the server application.
serverCallbackFunction | DDE function Pointer to the user callback
pointer function.
callbackData void pointer Pointer to the user data.
Return Value
status integer Refer to error codes in
Table 6-3.

Parameter Discussion
serverName must be a string of length from 1 to 255. It is used without regard to case.

The serverCallbackFunction is the name of the callback function that will be invoked to
process client requests.

The callback function must be of the following form:
int (*ddeFuncPtr) (int handle, char *topicName, char *itemName,

int xType, int dataFmt, int dataSize,
void *dataPtr, void *callbackData);

The xType (transaction type) parameter specifies the type of request received from the client.
The following transaction types are supported:

DDE_CONNECT

LabWindows/CVI Standard Libraries 6-16 © National Instruments Corporation




Chapter 6 DDE Library

DDE_DISCONNECT
DDE_DATAREADY
DDE_REQUEST
DDE_ADVISELOOP
DDE_ADVISESTOP
DDE_EXECUTE

DDE__CONNECT—This transaction type is received when a client is requesting a connection.

The topicName parameter specifies the connection topic. The set of valid topic names is defined
by the server and can be used in different ways. For example, Excel uses the topic name to
specify the file on which the client requests to operate. A client can have multiple connections to
the same server as long as there is a different topic name for each connection.

DDE_DISCONNECT—Received when a client is requesting the termination of a connection, or
when Windows terminates the connection due to an internal error.

DDE_DATAREADY—Received when the client has sent data via DDE to the server. The
topicName, itemName, dataFmt, dataSize, and dataPtr parameters contain significant data.

The itemName can specify an object to which the data refers. For example, in Excel, the item
name specifies a cell. The dataFmt is one of the Windows-defined data types, for example,
CF_TEXT. The dataSize specifies the number of bytes in the data pointed to by dataPtr.

Note: The dataSize value is the value LabWindows/CVI receives from Microsoft Windows.
This value can be larger than the actual number of bytes written by the client.

DDE_REQUEST—Received when the client is requesting that data be sent to it via DDE. The
itemName can specify an object to which the data refers. For example, in Excel, the item name
specifies a cell. The dataFmt is one of the Windows-defined data types, for example,
CF_TEXT.

DDE_ADVISELOOP—Received when the client is requesting a hot or warm link (advisory loop)
on a specific item. When a hot or warm link is in effect, the server is supposed to notify the
client whenever the specified item changes value. The server notifies the client of the change in
value by calling the function AdviseDDEDataReady or BroadcastDDEDataReady. The
itemName and dataFmt parameters contain significant values. The itemName can specify an
object to which the data item refers. For example, in Excel, the item name specifies a cell. The
dataFmt is one of the Windows-defined data types, for example, CF_TEXT.

DDE_ADVISESTOP—Received when the client is requesting the termination of an advisory
loop. The itemName contains the same value that was used to set up the advisory loop.

DDE_EXECUTE—Received when the client requests the execution of a command. The
itemName parameter contains the command string. The set of valid command strings is defined
by the server. For example, Excel uses "[Save()]" to save a file.

Using This Function

© National Instruments Corporation 6-17 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

This function registers your program as a DDE server with the specified name. Clients
attempting to connect to your program must use the specified name. Thereafter, all requests by
the client will be routed through the specified serverCallbackFunction.

You can register your program as a DDE server multiple times as long as you specify different
server names.

Note: The callback function should return TRUE if the request is successful else return
FALSE. The callback function should be short and should return as soon as possible.

callbackData is a four-byte value that will be passed to the callback function each time it is
called for this server.

You can define the meaning of the callback data. The following are examples of how the
callback data can be used:

1. You can register your program as a DDE server multiple times under different names. For
instance, you can use the same callback function for all of the server instances by using the
callback data to differentiate between them.

2. You can use the callback data to point to a data object that you need to access in the callback
function. In this way, you would not need to declare the data object as a global variable.

If you do not want to use the callback data, you can pass zero.
Note: In the case of DDE_DISCONNECT, the value of callbackData is undefined.

See Also

ConnectToDDEServer, UnregisterDDEServer

LabWindows/CVI Standard Libraries 6-18 © National Instruments Corporation



Chapter 6 DDE Library

ServerDDEWrite

int status = ServerDDEWrite (unsigned int conversationHandle, char itemName[],
unsigned int dataFormat, void *dataPointer,
unsigned int dataSize, unsigned int timeout);

Purpose

Writes data to a DDE client application when it requests data.

Parameters
Input conversationHandle | unsigned integer Uniquely identifies the

conversation.

itemName string Uniquely identifies the output
item; for example, system.

dataFormat unsigned integer Valid data format; for example,
CF_TEXT.

dataPointer void pointer Buffer holding data.

dataSize unsigned integer Number of bytes to write.

Limited to 64 KB under
Windows 3.1 and Windows 95.

timeout unsigned integer Timeout in ms.

Return Value

status integer Refer to error codes in
Table 6-3.

Parameter Discussion

dataFormat must be a valid data format recognized by Microsoft Windows. The following are
the valid data formats supported by Microsoft Windows:

CEF_TEXT CF_PALETTE
CF_BITMAP CF_PENDATA
CF_METAFILEPICT CF_RIFF

CF_SYLK CF_WAVE

CF_DIF CF_OWNERDISPLAY
CF_TIFF CF_DSPTEXT
CF_OEMTEXT CF_DSPBITMAP
CF_DIB CF_DSPMETAFILEPICT

© National Instruments Corporation 6-19 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

Refer to Microsoft programmers' documention for Windows 3.x for an in-depth discussion of
DDE programming and meaning of each data format type.

Using This Function

This function allows your program, acting as a DDE server, to send data to a client. You should
call this function only when your serverCallbackFunction receives transaction type (xType) of
DDE_REQUESTDATA.

If you call the function at any other time, the data is stored until the client requests data. If you
call the function multiple times on the same conversation before the client requests the data, each
new data set is appended to the buffer containing the stored data.

If the client has set up a hot or warm link and you need to send data other than in response to a
DDE_REQUESTDATA transaction, use the AdviseDDEDataReady or
BroadcastDDEDataReady function.

If successful, this function returns the number of bytes written. Otherwise, this function returns a
negative error code.

See Also

RegisterDDEServer, AdviseDDEDataReady

SetUpDDEHotLink

int status = SetUpDDEHotLink (unsigned int conversationHandle, itemName/[],
unsigned int dataFormat,
unsigned int timeout);

Purpose

Sets up a hot link (advisory loop) between the client and the server. The function returns zero for
success and a negative error code for failure.

Parameters

Input | conversationHandle |unsigned integer | Uniquely identifies the conversation.

itemName string Uniquely identifies the output item; for
example, system.

dataFormat unsigned integer | Valid data format; for example,
CF_TEXT.

timeout unsigned integer | Timeout in ms.

LabWindows/CVI Standard Libraries 6-20 © National Instruments Corporation



Chapter 6 DDE Library

Return Value

status integer Refer to error codes in Table 6-3.

Parameter Discussion

The itemName represents the information in the server application where the DDE link is
established. For example, the item name could represent an Excel range of cells by using the
range description R1C1:R10C10.

Note: To the client, LabWindows/CVI does not distinguish between a hot link and a warm
link. For both types of links, the clientCallbackFunction is called with a transaction
type of DDE_DATAREADY when the data item is changed at the server site, and the new
data is available in the dataPtr parameter of the callback function. LabWindows/CVI
has two different functions for setting up a warm link or hot link in case some
applications only accept one or the other kind of link.

See Also

RegisterDDEServer, SetUpDDEWarmLink

SetUpDDEWarmLink

int status = SetUpDDEWarmLink (unsigned int conversationHandle,
char itemName[ ], unsigned int dataFormat,
unsigned int timeout);

Purpose

Sets up a warm link (advisory loop) between the client and the server. The function returns zero
for success and a negative error code for failure.

Parameters

Input | conversationHandle | unsigned integer | Uniquely identifies the conversation.

itemName string Uniquely identifies the output item; for
example, system.

dataFormat unsigned integer | Valid data format; for example,
CF_TEXT.

timeout unsigned integer | Timeout in ms.

Return Value

status integer Refer to error codes in Table 6-3.

© National Instruments Corporation 6-21 LabWindows/CVI Standard Libraries



DDE Library Chapter 6

Parameter Discussion

The itemName represents the information in the server application where the DDE link is
established. For example, the item name could represent an Excel range of cells by using the
range description R1C1:R10C10.

Note: To the client, LabWindows/CVI does not distinguish between a hot link and a warm
link. For both types of links, the clientCallbackFunction is called with a transaction
type of DDE_DATAREADY when the data item is changed at the server site, and the new
data is available in the dataPtr parameter of the callback function. LabWindows/CVI
has two different functions for setting up a warm link or hot link in case some
applications only accept one or the other kind of link.

See Also

RegisterDDEServer, SetUpDDEHotLink

TerminateDDELink

int status = TerminateDDELink (unsigned int conversationHandle,
char itemName [ ], unsigned int dataFormat,
unsigned int timeout);

Purpose

Lets your program, acting as a DDE client, terminate an advisory link, previously set up with the
server either through Set UpDDEWarmLink or SetUpDDEHot Link.

This function returns zero for success or a negative error code for failure.

Parameters

Input | conversationHandle |unsigned integer | Uniquely identifies the conversation.

itemName string Uniquely identifies the output item; for
example, system.

dataFormat unsigned integer | Valid data format; for example, CF_ TEXT.

timeout unsigned integer | Timeout in ms.

Return Value

status integer Refer to error codes in Table 6-3.

LabWindows/CVI Standard Libraries 6-22 © National Instruments Corporation



Chapter 6

UnregisterDDEServer

DDE Library

int status = UnregisterDDEServer (char serverName [ ]);

Purpose

Unregisters your application program as a DDE server.

Parameters
Input serverName string Name of the server application.
Return Value
status integer Refer to error codes in
Table 6-3.
See Also

RegisterDDEServer

Error Conditions

If an error condition occurs during a call to any of the functions in the LabWindows/CVI DDE
Library, the status return value contains the error code. This code is a non-zero value that
specifies the type of error that occurred. Error code return values are negative numbers. The
currently defined error codes and their associated meanings are shown in Table 6-3.

© National Instruments Corporation

6-23

LabWindows/CVI Standard Libraries



DDE Library

Table 6-3. DDE Library Error Codes

Error Message

kDDE_NoError
—kDDE_UnableToRegisterService
—kDDE_ExistingServer
—kDDE_FailedToConnect
—kDDE_ServerNotRegistered
—kDDE_TooManyConversations
—-kDDE_ReadFailed
-kDDE_WriteFailed
—-kDDE_ExecutionFailed
—-kDDE_InvalidParameter
—kDDE_OutOfMemory
—kDDE_TimeOutErr
—kDDE_NoConnectionEstablished
—kDDE_FailedToSetUpHotLink
—kDDE_FailedToSetUpWarmLink
—kDDE_GeneralIOErr

—kDDE_AdvAckTimeOut
—kDDE_Busy
—kDDE_DataAckTimeOut
—-kDDE_Dl11NotInitialized
—-kDDE_D11Usage
—kDDE_ExecAckTimeOut
—-kDDE_DataMismatch
—kDDE_TLowMemory
—kDDE_MemoryError
—kDDE_NotProcessed
—kDDE_NoConvEstablished
—kDDE_PokeAckTimeOut
—-kDDE_PostMsgFailed
—kDDE_Reentrancy
—-kDDE_ServerDied
—kDDE_SysError
—kDDE_UnadvAckTimeOut
—kDDE_UnfoundQueueId

Chapter 6

Note: Error codes from -16 to -33 are native DDEML errors which correspond to Windows
DDE error codes starting from 0x4000.

LabWindows/CVI Standard Libraries

6-24 © National Instruments Corporation



Chapter 7
TCP Library

This chapter describes the functions in the LabWindows/CVI TCP (Transmission Control
Protocol) Library. The TCP Library Function Overview section contains general information
about the TCP Library functions and panels. The TCP Library Function Reference section
contains an alphabetical list of function descriptions.

In order to use this library in Microsoft Windows, a version of WINSOCK .DLL has to be present.
The DLL comes with the program that drives the network card.

TCP Library Function Overview

This section contains general information about the TCP Library functions and network
communication using TCP. TCP Library functions provide a platform-independent interface to
the reliable, connection-oriented, byte-stream, network communication protocol.

The TCP Library Function Panels

The first- and second-level bold headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The
third-level headings in plain text are the names of individual function panels. Each TCP Library
function panel generates one TCP Library function call. The names of the corresponding TCP
Library function calls appear in bold italics to the right of the function panel names. The TCP
Library function tree appears in Table 7-1.

Table 7-1. The TCP Library Function Tree

Server Functions
Register TCP Server RegisterTCPServer
Server TCP Read ServerTCPRead
Server TCP Write ServerTCPWrite
Unregister TCP Server UnregisterTCPServer
Disconnect TCP Client DisconnectTCPClient
Client Functions
Connect To TCP Server ConnectToTCPServer
Client TCP Read ClientTCPRead
Client TCP Write ClientTCPWrite
Disconnect From TCP Server DisconnectFromTCPServer
Get Error String GetTCPErrorString

© National Instruments Corporation 7-1

LabWindows/CVI Standard Libraries



TCP Library Chapter 7

TCP Clients and Servers

Network communication using the TCP library involves a client and a server in each connection.
A TCP server can send and receive information to and from a client application through a
network. A TCP client can send and request data to and from a server application. Once
registered, a server waits for clients to request connection to it. A client, however, can only
request connection to a pre-existing server.

With the LabWindows/CVI TCP Library, you can write programs to act as a TCP client or
server. Under Windows, you cannot run both a server and a client on the same computer. The
procedure for writing a program using TCP is similar to the procedure followed for using DDE.
Refer to the sample program discussion in Chapter 6, DDE Library. Two additional sample
programs, TCPSERV.PRJ and TCPCLNT . PRJ, provide some guidelines on structuring your
TCP programs as a server or client. These programs are provided as templates only, and will
require modification for operation on your machine.

To connect to a TCP server from a LabWindows/CVI program, you must have some information
about the application to which you would like to connect. All TCP server applications must run
on a specified host, which either has a known host name (for example, aaa .bbb.ccc) or a
known IP address (for example, 123.456.78. 90) associated with it. In addition, each server
specifies its own unique port number. These two pieces of information identify different servers
either on the same machine or on different machines. Before any client program can connect to a
server, it has to know the host name and server port number.

If your program is to act as a TCP server, you must call the RegisterTCPServer function in
your program. The RegisterTCPServer function establishes your program as the server
associated with a port number on the local host. Client applications can connect to your program
by using either the host name (where the server application is currently running) or the IP
address, and the port number associated with the server application. The callback function is
invoked whenever the conversation partner requests communication. This is discussed in the
following section.

The TCP Callback Function

Callback functions provide the mechanism for receiving notification of connection, connection
termination, and data availability. Similar to the method in which callback function responds to
user interface events from your User Interface Library object files, a TCP callback function
responds to incoming TCP messages and information.

As shown in Table 7-2, a callback function can respond to three types of TCP messages:
TCP_CONNECT, TCP_DISCONNECT, and TCP_DATAREADY.

TCP callback functions, used in a program acting as a TCP server, can be triggered in a number
of ways from client applications. Whenever a client application attempts to connect to your
server program or requests information from your program, the callback function in your

LabWindows/CVI Standard Libraries 7-2 © National Instruments Corporation



Chapter 7 TCP Library

program is invoked to process the request. The parameter prototypes for the TCP callback
functions in LabWindows/CVT are defined below:

int CallbackFunction (int handle, int xType, int errCode,
void *callbackData);

where

handle represents the conversation handle

xType represents the transaction type (see table below)

errCode for TCP_DISCONNECT, is negative if the connection is being terminated due to an
error

callbackData is a user-defined data value.

All of the TCP transaction types (xType) that can trigger a callback function are listed in
Table 7-2.

Table 7-2. TCP Transaction Types (xType)

xType Server Client When ?

TCP_CONNECT Y N When a new client requests for
connection.

TCP_DISCONNECT |Y Y When conversation partner quits.

TCP_DATAREADY Y Y When conversation partner sends
data.

Refer to the descriptions for RegisterTCPServer and Connect ToTCPServer for more
information about the TCP callback function.

TCP Library Function Reference

ClientTCPRead

int status = ClientTCPRead (unsigned int conversationHandle, void *dataBuffer,
unsigned int dataSize, unsigned int timeout);

Purpose

Reads data from a TCP server application when it contains data that is ready for TCP network
transmission.

© National Instruments Corporation 7-3 LabWindows/CVI Standard Libraries



TCP Library Chapter 7

Parameters
Input conversationHandle |unsigned integer Uniquely identifies the
conversation.
dataBuffer void pointer Buffer in which to receive data.
dataSize unsigned integer Maximum number of bytes to
read.
timeout unsigned integer Timeout in ms.
Return Value
status integer Returns the number of bytes

read, or a negative error code if
an error occurs; Refer to error
codes in Table 7-3.

See Also

ConnectToTCPServer, ClientTCPWrite

ClientTCPWrite

int status = ClientTCPWrite (unsigned int conversationHandle, void *dataPointer,
int dataSize, unsigned int timeout);

Purpose

Writes data to a TCP server application.

Parameters
Input conversationHandle | unsigned integer Uniquely identifies the
conversation.
dataPointer void pointer Buffer holding data.
dataSize unsigned integer Number of bytes to write.
timeout unsigned integer Timeout in ms.

LabWindows/CVI Standard Libraries 7-4 © National Instruments Corporation



Chapter 7

Return Value

TCP Library

status integer Returns the number of bytes
written, or a negative error code
if an error occurs; Refer to error
codes in Table 7-3.
See Also

ConnectToTCPServer, ClientTCPRead

ConnectToTCPServer

int status = ConnectToTCPServer (unsigned int *conversationHandle,
unsigned int portNumber,

char serverHostName /[ ],

tcpFuncPtr clientCallbackFunction,

Purpose

void *callbackData, unsigned int timeout);

Establishes a conversation between your program and a pre-existing server. Your program
becomes a client.

Parameters
Input portNumber unsigned integer Uniquely identifies a server on
a single machine.
serverHostName character array Can either be the host name or

IP address string.

For example, aaa.bbb.ccc
orl123.456.78.90.

clientCallbackFunction | TCP function Pointer to the user callback
pointer function.
callbackData void pointer User-defined data.
timeout unsigned integer Timeout in ms.
Output | conversationHandle unsigned integer Uniquely identifies the

conversation.

© National Instruments Corporation

7-5

LabWindows/CVI Standard Libraries




TCP Library Chapter 7

Return Value

status integer Refer to error codes in
Table 7-3.

Parameter Discussion

clientCallbackFunction is the name of the function called to process messages to your program
as a TCP client.

The callback function must be of the following form:
int (*tcpFuncPtr) (int handle, int xType, int errCode, void *callbackData);

The xType (transaction type) parameter specifies the type of message received from the server.
The client callback function can receive the following transaction types.

TCP_DISCONNECT
TCP_DATAREADY

The errCode parameter is used only when the transaction type is TCP_DISCONNECT.

The following describes each transaction type.

TCP_DISCONNECT—Received when a server is requesting the termination of a connection, or
when a connection is being terminated due to an error. If the connection is terminated due to an
error, the errCode parameter contains a negative error code. Refer to Table 7-3 for the list of
error codes.

TCP_DATATREADY—Received when the server has sent data via TCP to the client. Your
program, acting as the client, should call C1ient TCPRead to obtain the data.

The client callback function should return TRUE if the message can be processed successfully.
Otherwise, the function should return FALSE.

Note: The callback function should be short and should return as soon as possible.

callbackData is a four-byte value that will be passed to the callback function each time it is
called for this client.

You should define the meaning of the callback data. One way to use the callbackData is as a
pointer to a data object that you need to access in the callback function. In this way, you would
not need to declare the data object as a global variable.

If you do not want to use the callbackData, you can pass zero.

LabWindows/CVI Standard Libraries 7-6 © National Instruments Corporation



Chapter 7 TCP Library

See Also

RegisterTCPServer,DisconnectFromTCPServer

DisconnectFromTCPServer

int status = DisconnectFromTCPServer (unsigned int conversationHandle);
Purpose

Disconnects your client program from a server application.

Parameters

Input | conversationHandle | unsigned integer | Uniquely identifies the conversation.

Return Value

status integer Refer to error codes in Table 7-3.

Note: This function terminates a connection identified by the conversation handle passed.
There can be more than one conversation between a client and a server.

See Also

ConnectToTCPServer, RegisterTCPServer

DisconnectTCPClient
int status = DisconnectTCPClient (unsigned int conversationHandle);
Purpose

Called by a TCP server to terminate a connection with a client. (Be aware that there can be more
than one conversation between a server and a client.)

Parameters

Input | conversationHandle | unsigned integer | Uniquely identifies the connection.

Return Value

status integer Refer to error codes in Table 7-3.

© National Instruments Corporation 7-7 LabWindows/CVI Standard Libraries



TCP Library Chapter 7

See Also

RegisterTCPServer

GetTCPErrorString

char *message = GetTCPErrorString (int errorNum)

Purpose

Converts the error number returned by a TCP Library function into a meaningful error message.

Parameters

Input errorNum integer Status returned by a TCP function.

Return Value

message string Explanation of error.

RegisterTCPServer

int status = RegisterTCPServer (unsigned int portNumber,
tcpFuncPtr serverCallbackFunction,
void *callbackData);

Purpose

Registers your program as a valid TCP server and allows other applications to connect to it for
network communication.

Parameters
Input portNumber unsigned integer Uniquely identifies a server on
a single machine.
serverCallbackFunction | TCP function Pointer to the user callback
pointer function.
callbackData void pointer Pointer to the user data.

LabWindows/CVI Standard Libraries 7-8 © National Instruments Corporation



Chapter 7 TCP Library

Return Value

status integer Refer to error codes in
Table 7-3.

Parameter Discussion
serverCallbackFunction is the name of the function to be called to process client requests.

The callback function must be of the following form:

int (*tcpFuncPtr) (int handle, int xType, int errCode,
void *callbackData)

The xType parameter specifies the type of message received from the server. The server
callback function can receive the following transaction types.

TCP_CONNECT
TCP_DISCONNECT

TCP_DATAREADY

The errCode parameter is used only when the transaction type is TCP_DISCONNECT.

The following describes each transaction type.

TCP_CONNECT—The transaction type is received when a client is requesting a connection.

TCP_DISCONNECT—Received when a client is requesting the termination of a connection, or
when a connection is being terminated due to an error. If the connection is terminated due to an
error, the errCode parameter contains a negative error code. Refer to Table 7-3 for the list of
error codes.

TCP_DATATREADY—Received when the client has sent data via TCP to the server. Your
program, acting as the server, should call ServerTCPRead to obtain the data.

The server callback function should return TRUE if the request is successful. Otherwise, the
function should return FALSE.

Note: Server callback should be short and should return as soon as possible.

callbackData is a four-byte value that will be passed to the callback function each time it is
called for this server.

© National Instruments Corporation 7-9 LabWindows/CVI Standard Libraries



TCP Library Chapter 7
It is up to you to define the meaning of the callback data. The following are examples of how the
callback data can be used:

* You can register your program as a TCP server multiple times under different port numbers.
You could use the same callback function for all of the server instances by using the callback
data to differentiate between them.

* You can use the callback data to point to a data object that you need to access in the callback
function. In this way, you would not need to declare the data object as a global variable.

If you do not want to use the callback data, you can pass zero.

See Also

ConnectToTCPServer, UnregisterTCPServer

ServerTCPRead

int status = ServerTCPRead (unsigned int conversationHandle, void *dataBuffer,
unsigned int dataSize, unsigned int timeout);

Purpose

Reads data from a TCP client application.

Parameters
Input conversationHandle |unsigned integer Uniquely identifies the
conversation.
dataBuffer void pointer Buffer in which to receive data.
dataSize unsigned integer Number of bytes to read.
timeout unsigned integer Timeout in ms.
Return Value
status integer Returns the number of bytes

written, or a negative error code
if an error occurs; Refer to error
codes in Table 7-3.

See Also

RegisterTCPServer, ServerTCPWrite

LabWindows/CVI Standard Libraries 7-10 © National Instruments Corporation



Chapter 7

ServerTCPWrite

TCP Library

int status = ServerTCPWrite (unsigned int conversationHandle, void *dataPointer,
unsigned int dataSize, unsigned int timeout);

Purpose

Writes data to a TCP client application.

Parameters
Input | conversationHandle | unsigned integer | Uniquely identifies the conversation.
dataPointer void pointer Buffer holding data.
dataSize unsigned integer | Number of bytes to write.
timeout unsigned integer | Timeout in ms.

Return Value

status integer Returns the number of bytes written, or a
negative error code if an error occurs; Refer
to error codes in Table 7-3.
See Also

RegisterTCPServer, ServerTCPRead

UnregisterTCPServer

int status = UnregisterTCPServer (unsigned int portNumber);

Purpose

Unregisters your server application program as a TCP server.

Parameters

Input

portNumber

unsigned integer

Uniquely identifies a server on a single
machine.

© National Instruments Corporation

7-11

LabWindows/CVI Standard Libraries




TCP Library

Return Value

Chapter 7

status integer

Refer to error codes in Table 7-3.

See Also

RegisterTCPServer

Error Conditions

If an error condition occurs during a call to any of the functions in the LabWindows/CVI TCP
Library, the status return value contains the error code. This code is a non-zero value that
specifies the type of error that occurred. Error code return values are negative numbers. The
currently defined error codes and their associated meanings are shown in Table 7-3.

Table 7-3. TCP Library Error Codes

Code Error Message

0 kTCP_NoError

-1 —kTCP_UnableToRegisterService

2 —kTCP_UnableToEstablishConnection
3 —-kTCP_ExistingServer

-4 —-kTCP_FailedToConnect

-5 —kTCP_ServerNotRegistered

-6 —-kTCP_TooManyConnections

-7 —kTCP_ReadFailed

-8 -kTCP_WriteFailed

-9 —kTCP_InvalidParameter

-10 —kTCP_OutOfMemory

-11 —kTCP_TimeOutErr

-12 —kTCP_NoConnectionEstablished
-13 —kTCP_GenerallIOErr

-14 —kTCP_ConnectionClosed

-15 —kTCP_UnableToLoadWinsockDLL

-16 —kTCP_IncorrectWinsockDLLVersion
-17 —kTCP_NetworkSubsystemNotReady
-18 —kTCP_ConnectionsStillOpen

LabWindows/CVI Standard Libraries

7-12

© National Instruments Corporation




Chapter 8
Utility Library

This chapter describes the functions in the LabWindows/CVI Utility Library. The Utility
Library contains functions that do not fit into any of the other LabWindows/CVI libraries. The
Utility Library Function Panels section contains general information about the Utility Library
functions and panels. The Utility Library Function Reference section contains an alphabetical
list of function descriptions.

The Utility Library Function Panels

The Utility Library function panels are grouped in a tree structure according to the type of
operations they perform.

The Utility Library function tree is shown in Table 8-1.

The bold headings in the tree are the names of function classes. Function classes are groups of
related function panels. The headings in plain text are the names of the individual function
panels. The names of the Utility Library functions appear in bold italics beneath the
corresponding function panel names.

Table 8-1. The Utility Library Function Tree

Timer/Wait
Timer Timer
Delay Delay
Synchronized Wait SyncWait
Date/Time
Date in ASCII Format DateStr
Time in ASCII Format TimeStr
Get System Date GetSystemDate
Set System Date SetSystemDate
Get System Time GetSystemTime
Set System Time SetSystemTime
Keyboard
Key Hit? KeyHit
Get a Keystroke GetKey

(continues)

© National Instruments Corporation 8-1 LabWindows/CVI Standard Libraries



Utility Library Chapter 8
Table 8-1. The Utility Library Function Tree (Continued)
File Utilities
Delete File DeleteFile
Rename File RenameFile
Copy File CopyFile
Get File Size GetFileSize
Get File Date GetFileDate
Set File Date SetFileDate
Get File Time GetFileTime
Set File Time SetFileTime
Get File Attributes GetFileAttrs
Set File Attributes SetFileAttrs
Get First File GetFirstFile
Get Next File GetNextFile
Make Pathname MakePathname
Split Path SplitPath
Directory Ultilities
Get Directory GetDir
Get Project Directory GetProjectDir
Get Module Directory GetModuleDir
Get Full Path From Project GetFullPathFromProject
Set Directory SetDir
Make Directory MakeDir
Delete Directory DeleteDir
Get Drive GetDrive
Set Drive SetDrive
External Modules
Load External Module LoadExternalModule
Load External Module Ex LoadExternalModuleEx
Run External Module RunExternalModule
Get External Module Address GetExternalModuleAddr
Unload External Module UnloadExternalModule
Release External Module ReleaseExternalModule
Port 1/0
Input Byte From Port inp
Input Word From Port inpw
Output Byte To Port outp
Output Word To Port outpw
(continues)
LabWindows/CVI Standard Libraries 8-2 © National Instruments Corporation



Chapter 8

Utility Library

Table 8-1. The Utility Library Function Tree (Continued)

Standard Input/Output Window
Clear Screen
Get Stdio Window Options
Set Stdio Window Options
Get Stdio Window Position
Set Stdio Window Position
Get Stdio Window Size
Set Stdio Window Size
Get Stdio Window Visibility
Set Stdio Window Visibility
Get Stdio Port
Set Stdio Port
Run-Time Error Reporting
Set Break On Library Errors
Get Break On Library Errors
Set Break On Protection Errors
Get Break On Protection Errors
Old-Style Functions
Enable Break On Library Errors
Disable Break On Library Errors
Interrupts
Disable Interrupts
Enable Interrupts
Get Interrupt State
Physical Memory Access
Read From Physical Memory
Read From Physical Memory Ex
Write To Physical Memory
Write To Physical Memory Ex
Persistent Variable
Set Persistent Variable
Get Persistent Variable
Task Switching
Disable Task Switching
Enable Task Switching

Cls
GetStdioWindowOptions
SetStdioWindowOptions
GetStdioWindowPosition
SetStdioWindowPosition
GetStdioWindowSize
SetStdioWindowSize
GetStdioWindow Visibility
SetStdioWindow Visibility
GetStdioPort
SetStdioPort

SetBreakOnLibraryErrors
GetBreakOnlLibraryErrors
SetBreakOnProtectionErrors
GetBreakOnProtectionErrors

DisableBreakOnLibraryErrors
EnableBreakOnLibraryErrors

Disablelnterrupts
Enablelnterrupts
GetlnterruptState

ReadFromPhysicalMemory
ReadFromPhysicalMemoryEx
WriteToPhysicalMemory
WriteToPhysicalMemoryEx

SetPersistentVariable
GetPersistentVariable

DisableTaskSwitching
EnableTaskSwitching

© National Instruments Corporation

8-3

(continues)

LabWindows/CVI Standard Libraries



Utility Library

Chapter 8

Table 8-1. The Utility Library Function Tree (Continued)

Launching Executables
Launch Executable
Extended Functions
Launch Executable Extended
Has Executable Terminated?
Terminate Executable
Retire Executable Handle
Miscellaneous
System Help
Get CVI Version
Get Current Platform
In Standalone Executable?
Initialize CVI Run-Time Engine
Close CVI Run-Time Engine
Low-Level Support Driver Loaded
Beep
Breakpoint
Round Real To Nearest Integer
Truncate Real Number

Get Window Display Setting

LaunchExecutable

LaunchExecutableEx
ExecutableHasTerminated
TerminateExecutable
RetireExecutableHandle

SystemHelp

GetCVIVersion
GetCurrentPlatform
InStandaloneExecutable
InitCVIRTE

CloseCVIRTE
CVILowLevelSupportDriverLoaded
Beep

Breakpoint
RoundRealToNearestInteger
TruncateRealNumber
GetWindowDisplaySetting

The classes in the function tree are described here:

* Timer/Wait functions use the system timer, including functions that wait on a timed basis.

* Date/Time functions return the date or time in ASCII or integer formats, and set the date or

time.

* Keyboard functions provide access to user keystrokes.

» File Utilities functions manipulate files.

* Directory Utilities functions manipulate directories and disk drives.

* External Modules functions load, execute, and unload files that contain compiled C object

modules.

* Port I/O functions read and write data from I/O ports (Supported only under Microsoft

Windows).

LabWindows/CVI Standard Libraries

© National Instruments Corporation



Chapter 8 Utility Library

e Standard Input/Output Window functions control various attributes of the Standard
Input/Output Window.

* Run-Time Error Reporting functions enable and disable the feature which breaks execution
when a LabWindows/CVI library function returns an error code.

* Interrupts functions disable and enable the occurrence of interrupts.

* Physical Memory Access functions read and write data from and to physical memory
addresses. (Supported only under Microsoft Windows).

* Persistent Variable functions store and retrieve an integer value across multiple builds and
executions of a project in the LabWindows/CVI development environment.

* Task Switching functions control whether a user can switch to another task under Microsoft
Windows.

* Launching Executables functions start another executable, check whether it is still running,
and terminate it.

* Miscellaneous functions perform a variety of operations that do not fit into any of the other
function classes.

The online help with each panel contains specific information about operating each function
panel.

Utility Library Function Reference
This section describes the functions in the LabWindows/CVI Utility Library. The
LabWindows/CVI Utility Library functions are arranged alphabetically.
Beep
void Beep (void);
Purpose
Sounds the speaker.
Parameters
None
Return Value

None

© National Instruments Corporation 8-5 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Breakpoint
void Breakpoint (void);
Purpose

During execution of a program, a call to Breakpoint suspends program operation. While the
program is suspended, you can inspect or modify variables, and use many other features of the
LabWindows/CVI interactive program.

Calling Breakpoint with the debugging level set to None, or from a compiled module, has no
effect.

Parameters
None
Return Value

None

CloseCVIRTE
void CloseCVIRTE (void)
Purpose

This function releases memory in the LabWindows/CVI Run-Time Engine that was allocated by
InitCVIRTE for a particular DLL.

If you call InitCVIRTE from D11Main, you also should call C1oseCVIRTE from
D11Main. You should call it in response to the DLL,_PROCESS_DETACH message after your
other detach code.

Parameters
None
Return Value

None

LabWindows/CVI Standard Libraries 8-6 © National Instruments Corporation



Chapter 8

Cls

void Cls (void);

Purpose

Utility Library

In the LabWindows/CVI environment, this function clears the Standard I/O window.

Parameters

None

Return Value

None

CopyFile

int result = CopyFile (char sourceFileName [ ], char targetFileName [ ]);

Purpose

Copies the contents of an existing file to another file.

Parameters

Input sourceFileName string File to copy.

targetFileName string Copy of original file.

Return Value

result integer Result of copy operation.
Return Codes

0 Success.

-1 File not found or directory in path not found.

-3 General I/0O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path (for either of the file names).

-6 Access denied.

-7 Specified path is a directory, not a file.

-8 Disk is full.

© National Instruments Corporation

LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Parameter Discussion

sourceFileName and targetFileName may contain wildcard characters ‘?” and “*’. If
sourceFileName has wildcards, all matching files are copied. If targetFileName has wildcards,
it will be matched to sourceFileName. If the target file is a directory, the existing file (or group
of files) will be copied into the directory.

sourceFileName may also be the empty string (" "), in which case the file found by the most
recent call to GetFirstFile or GetNextFile is copied.

CVILowLevelSupportDriverLoaded

int loaded = CVILowLevelSupportDriverLoaded (void);

Note: This function is available only in the Windows 95 and NT version of
LabWindows/CVLI.

Purpose

This function returns an indication of whether the LabWindows/CVI low-level support driver
was loaded at startup. The following Utility Library functions require the LabWindows/CVI low-
level driver to be loaded at startup.

Platforms where low-level

Function support driver is needed
inp Windows NT
inpw Windows NT
outp Windows NT
outpw Windows NT

ReadFromPhysicalMemory Windows 95 and NT
ReadFromPhysicalMemoryEx | Windows 95 and NT

WriteToPhysicalMemory Windows 95 and NT
WriteToPhysicalMemoryEx Windows 95 and NT

DisableInterrupts Windows 95
EnableInterrupts Windows 95
DisableTaskSwitching Windows 95

Most of these functions do not return an error if the low-level support driver is not loaded. To
make sure your calls to these functions can execute correctly, call
CVILowLevelSupportDriverLoaded at the beginning of your program.

LabWindows/CVI Standard Libraries 8-8 © National Instruments Corporation



Chapter 8 Utility Library

Return Value

loaded integer | Indicates whether the LabWindows/CVI low-level
support driver was loaded at startup.

Return Codes

1 | Low-level support driver was loaded at startup.

0 | Low-level support driver was not loaded at startup.

DateStr
char *s = DateStr (void);
Purpose

Returns a 10-character string in the form MM-DD-YYYY, where MM is the month, DD is the day,
and YYYY is the year.

Parameters
None

Return Value

S 10-character string | The date in MM-DD-YYYY
format.

Delay
void Delay (double numberofSeconds);
Purpose

Waits the number of seconds indicated by numberofSeconds. The resolution on Windows is
normally 1 millisecond. However, if the following line appears in the CVI section of your
WIN. INI file, the resolution is 55 milliseconds.

useDefaultTimer = True

The resolution on Sun Solaris is 1 millisecond.

© National Instruments Corporation 8-9 LabWindows/CVI Standard Libraries



Utility Library

Parameter

Chapter 8

Input

numberofSeconds

double-precision

Number of seconds to wait.

Return Value

None

DeleteDir

int result = DeleteDir (char directoryName [ ]);

Purpose

Deletes an existing directory.

Parameters

Input directoryName String.
Return Value

result integer Result of operation.
Return Codes

0 Success.

-1 Directory not found.

-3 General I/0 error occurred.

-4 Insufficient memory to complete operation.

-6 Access denied, or directory not empty.

-7 Path is a file, not a directory.
DeleteFile

int result = DeleteFile (char fileName [ ]);

Purpose

Deletes an existing file from disk.

LabWindows/CVI Standard Libraries

8-10

© National Instruments Corporation



Chapter 8 Utility Library

Parameter

Input fileName string File to delete.

Return Value

result integer Result of delete operation.
Return Codes

0 Success.

-1 File not found or directory in path not found.

-3 General 1/0O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path (for example, c: £ilename in Windows).

-6 Access denied.

-7 Specified path is a directory, not a file.

Parameter Discussion

fileName may contain wildcard characters ‘?” and ‘*’ in which case all matching files are
deleted.

fileName may also be the empty string (" ") in which case the file found by the most recent call
to GetFirstFile or GetNextFile is deleted.

DisableBreakOnLibraryErrors
void DisableBreakOnLibraryErrors (void);
Purpose

If debugging is enabled (if the debugging level in the Run Options dialog box of the Options
menu in the Project window is set to Standard or Extended), this function directs
LabWindows/CVI not to display a run-time error dialog box when a National Instruments library
function reports an error. If debugging is disabled, this function has no effect.

© National Instruments Corporation 8-11 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

You can use this function in conjunction with EnableBreakOnLibraryErrors to
temporarily suppress the Break on Library Errors feature around a segment of code. It does not
affect the state of the Break on Library Errors check box in the Run Options dialog box of the
Options menu in the Project window.

Note: This function has been superseded by SetBreakOnLibraryErrors.

DisableInterrupts
void DisableInterrupts (void);
Purpose

Under Windows 3.1 and Windows 95, this function uses the CLI instruction to turn off all
maskable 80x86 interrupts. On UNIX, this function uses sigblock to block all blockable
signals.

Note: For you to be able to use this function under Windows 95, the LabWindows/CVI low-
level support driver must be loaded.

Note: Under Windows NT, the EnableInterrupts and DisableInterrupts
Junctions have no effect. Interrupts are always enabled while your program is running
at the user (as opposed to the kernel) level.

Parameter
None
Return Value

None

DisableTaskSwitching

void DisableTaskSwitching (void);

Note: This function is available only on the Windows versions of LabWindows/CVI.
Purpose

This function prevents the end-user from using one of the following Windows features to switch
another task.

LabWindows/CVI Standard Libraries 8-12 © National Instruments Corporation



Chapter 8 Utility Library

* The <Alt-Tab>, <Alt-Esc>, or <Ctrl-Esc> key combination under Windows 3.1 or Windows 95.

* The Switch To item in the system menu under Windows 3.1.

This function affects the behavior of these keys only while LabWindows/CVI or a
LabWindows/CVI Standalone Executable is the active application under Microsoft Windows.

This function has no effect in Windows NT. See the Alternatives in Windows NT section for
instructions on how to achieve the desired effect.

Note: To use this function on Windows 95, the LabWindows/CVI low-level support driver
must be loaded.

Disabling the Task List

DisableTaskSwitching does not prevent the user from clicking on the desktop to get the
task list in Windows 3.1, or clicking on the task bar in Windows 95. You can prevent the user
from clicking on the desktop by forcing your window to cover the entire screen.

Forcing Window to Cover Entire Screen

You can force your window to cover the entire screen by making the following calls to functions
in the User Interface Library.

SetPanelAttribute (panel, ATTR_SIZABLE, FALSE);
SetPanelAttribute (panel, ATTR_CAN_MINIMIZE, FALSE);
SetPanelAttribute (panel, ATTR_CAN_MAXIMIZE, FALSE);
SetPanelAttribute (panel, ATTR_SYSTEM MENU_VISIBLE, FALSE);
SetPanelAttribute (panel, ATTR_MOVABLE, FALSE);
SetPanelAttribute (panel, ATTR_WINDOW_ZOOM, VAL_MAXIMIZE);

In these calls, panel is the panel handle for your top-level window. These calls will work in
Windows 3.1, Windows 95, and Windows NT.

Alternatives in Windows 3.1

Under Windows 3.1, you can prevent the end-user accessing the task list by disabling the Task
Manager. Change a line in your system. ini [boot] section from

taskman.exe = taskman.exe

to

taskman.exe

Forcing your window to cover the entire screen or disabling the Task Manager does not prevent
the user from task switching using the <Alt-Tab> and <Alt-Esc> key combinations. You must
also call DisableTaskSwitching to disable the <Alt-Tab> and <Alt-Esc> key
combinations. As an alternative to calling DisableTaskSwitching, you can arrange for

© National Instruments Corporation 8-13 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

your standalone application to be brought up in place of the Program Manager when Windows
boots. You can do this by changing the following line in your system.ini [boot] section.
shell = progman.exe

to

shell

<full-path-of-your—-executable>

Alternatives in Windows 95

Under Windows 95, you can arrange for your standalone application to appear in place of the
desktop when Windows boots.

You can do this by changing the following line in your system.ini [boot] section.

shell = Explorer.exe
to
shell = <full-path-of-your—-executable>

Alternatives in Windows NT

Under Windows NT, you can achieve the same results as DisableTaskSwitching by
arranging for your LabWindows/CVI application to be brought up in place of the Program
Manager and by disabling the Task Manager. You can do this by making following changes to
the registry entry for the key name,

KEY_LOCAL_MACHINE\Software\Microsoft\CurrentVersion\Winlogon
* Change the value for SHELL to the pathname of your application executable.

* Add a value with the name TASKMAN. Set the data to an empty string.

Preventing Interference With Real-Time Processing

Under Windows, many user actions can interfere with real-time processing. The actions in the
following list suspend the processing of events.

* Moving and sizing top-level windows
* Bringing down the System menu

* Pressing the <Alt-Tab> key combination

You can prevent these user actions from interfering with event processing by doing all of the
following.

* Call DisableTaskSwitching (or use the alternative for Windows NT mentioned in this
section).

* Make all of your top-level panels non-movable and non-sizable.

LabWindows/CVI Standard Libraries 8-14 © National Instruments Corporation



Chapter 8 Utility Library

* Do not use the Standard I/O Window in your final application.

e If you use any of the built-in pop-ups in the User Interface Library, make the following calls.

SetSystemPopupsAttribute (ATTR_MOVABLE, O0);
SetSystemPopupsAttribute (ATTR_SYSTEM MENU_VISIBLE, O0);

An alternative approach is available on Windows 95 and NT. You can enable timer control
callbacks while <Alt-Tab> is pressed, while the system menu is pulled down, or (in some cases)
while a window is being moved or sized. You can do this by using the following function call.

SetSystemAttribute (ATTR_ALLOW_UNSAFE_TIMER EVENTS, 1);

This alternative is incomplete and can be unsafe. See the discussion on Unsafe Timer Events in
the Using the System Attributes section of Chapter 3, Programming with the User Interface
Library, of the LabWindows/CVI User Interface Reference Manual.

EnableBreakOnLibraryErrors
void EnableBreakOnLibraryErrors (void);
Purpose

If debugging is enabled (if the debugging level in the Run Options dialog box of the Options
menu in the Project window is set to Standard or Extended), this function directs
LabWindows/CVI to display a run-time error dialog box when a National Instruments library
function reports an error. If debugging is disabled, this function has no effect.

In general, you should check the Break on Library Errors check box in the Run Options dialog
box of the Options menu in the Project window to enable this feature. However, you can use this
function in conjunction with DisableBreakOnLibraryErrors to temporarily suppress the
Break on Library Errors feature around a segment of code. It does not affect the state of the
Break on Library Errors check box.

Note: This function has been superseded by SetBreakOnLibraryErrors.

Enablelnterrupts
void Enablelnterrupts (void);

Under Windows 3.1 and Windows 95, this function uses the STI instruction to turn on all
maskable 80x86 interrupts. On UNIX, this function reverses the effect of the last call to
DisableInterrupts. Itrestores the signal processing state to the condition prior to the
DisableInterrupts call

© National Instruments Corporation 8-15 LabWindows/CVI Standard Libraries



Utility Library Chapter 8
Note: For you to be able to use this function under Windows 95, the LabWindows/CVI low-
level support driver must be loaded.

Note: Under Windows NT, the EnableInterrupts and DisableInterrupts
Junctions have no effect. Interrupts are always enabled while your program is running
at the user (as opposed to the kernel) level.

Parameter
None
Return Value

None

EnableTaskSwitching

void EnableTaskSwitching (void);

Note: This function is available only on the Windows versions of LabWindows/CVI.
Purpose

This function lets the user switch to another task by using the <Alt-Tab>, <Alt-Esc>, and
<Ctrl-Esc> key combinations, as well as the Switch-To item in the Control/System menu. This
function only affects the behavior of these keys while LabWindows/CVI or a LabWindows/CVI
standalone executable is the active application.

ExecutableHasTerminated

int status = ExecutableHasTerminated (int executableHandle);

Purpose

Determines whether an application started with LaunchExecutableEx has terminated.

Parameters

Input | executableHandle integer | The executable handle acquired from
LaunchExecutableEx.

LabWindows/CVI Standard Libraries 8-16 © National Instruments Corporation



Chapter 8

Return Value

Utility Library

status integer | Result of operation.
Return Codes
-1 Handle is invalid.

0 Executable is still running.

1 Executable has been terminated.

Note: If you launch another LabWindows/CVI executable under Windows 3.x, the launched
executable process will terminate itself after launching the new copy of the
CVI Run-time Engine. If you use ExecutableHasTerminated, the return value
will always be 1 because the process identification for the second Run-time Engine
cannot be tracked. See LaunchExecutableEx for more information.

GetBreakOnLibraryErrors

int state = GetBreakOnLibraryErrors (void);

Purpose

This function returns the state of the Break on library errors option. It returns a 1 if the Break
on library errors option is enabled, or a O if it is disabled.

The state of the Break on Library errors option can be changed interactively using the Run
Options command in the Options menu of the Project window. The state of the Break on
Library errors option can also be changed programmatically using
SetBreakOnLibraryErrors, or the EnableBreakOnLibraryErrors and
DisableBreakOnLibraryErrors functions.

If debugging is disabled, this function always returns O.

Return Value

state

integer

The current state of the Break on library errors option.

Return Codes

Break on Library Errors option enabled.

Break on Library Errors option disabled.

© National Instruments Corporation

8-17 LabWindows/CVI Standard Libraries



Utility Library Chapter 8

GetBreakOnProtectionErrors
int state = GetBreakOnProtectionErrors (void);
Purpose

This function returns the state of the break on protection errors feature. It returns a 1 if the
option is enabled, or a 0 if it is disabled. If debugging is disabled, this function always returns 0.

For more information on the feature, see the documentation for
SetBreakOnProtectionErrors.

Return Value

state integer The current state of the break on protection errors option.

Return Codes

1 Break on protection errors option enabled.
0 Break on protection errors option disabled.
GetCVIVersion

int versionNum = GetCVIVersion (void);

Purpose

This function returns the version of LabWindows/CVI you are running. In a standalone
executable, this tells you which version of the LabWindows/CVI run-time libraries you are
using.

The value is in the form Nnn, where the N . nn is the version number that shows in the About
LabWindows/CVI dialog box.

For example, for LabWindows/CVI version 4.0, Get CVIVersion returns 400. For version 4.1,
it would return 410. The values will always increase with each new version of
LabWindows/CVI.

The return value of Get CVIVersion should not be confused with the predefined macro
_CVI_, which specifies the version of LabWindows/CVI in which the source file is compiled.

Return Value

versionNum integer The version number of LabWindows/CVI or the run-
time libraries.

LabWindows/CVI Standard Libraries 8-18 © National Instruments Corporation



Chapter 8 Utility Library

Return Codes

Nnn Where N.nn is the LabWindows/CVI version.

GetCurrentPlatform
int platformCode = GetCurrentPlatform (void);
Purpose

This function returns a code representing the operating system under which a project or
standalone executable is running.

The return value of GetCurrentPlat form should not be confused with the predefined
macros such as _NI_mswin_, NI_unix_, and others, which specify the platform on which
the project is compiled.

This function is useful when you have a program that can run on multiple operating systems but
must take different actions on the different systems. For example, the same standalone
executable can run on both Windows 95 and Windows NT. If the program needs to behave
differently on the two platforms, you can use GetCurrentPlat form to determine the
platform at run-time.

Return Value

platformCode integer Indicates the current operating system.

Return Codes

kPlatformWinlé 1 Windows 3.1
kPlatformWin95 2 Windows 95
kPlatformWinnt 3 Windows NT
kPlatformSunos4 4 Sun Solaris 1
kPlatformSunos5 5 Sun Solaris 2
kPlat formHPUX9 6 HP-UX 9.x
kPlat formHPUX10 7 HP-UX 10.x

© National Instruments Corporation 8-19 LabWindows/CVI Standard Libraries



Utility Library

GetDir

int result = GetDir (char currentDirectory[]);

Purpose

Gets the current working directory on the default drive.

Parameter

Chapter 8

Output

currentDirectory | string

Current directory.

Return Value

result

integer

Result of operation.

Return Codes

0
3
4

Success.
General 1/O error occurred.

Insufficient memory to complete operation.

Parameter Discussion

currentDirectory must be at least MAX_PATHNAME_ LEN bytes long.

GetDrive

int result = GetDrive (int *currentDriveNumber, int *numberofDrives);

Note: This function is available only on the Windows versions of LabWindows/CVLI.

Purpose

Gets the current default drive number and the total number of logical drives in the system.

Parameters
Output | currentDriveNumber | integer Current default drive number.
numberofDrives integer Number of logical drives.
LabWindows/CVI Standard Libraries 8-20 © National Instruments Corporation



Chapter 8

Return Value

Utility Library

result integer Result of operation.
Return Codes

0 Success.

-1 Current directory is on a network drive that is not mapped to a local drive.
(currentDriveNumber is set correctly, but numberOfDrives is set to -1.)

-3 General I/0 error occurred.

-4 Insufficient memory to complete operation.

-6 Access denied.

Parameter Discussion

The mapping between the drive number and the logical drive letter is 0 = A, 1 = B, and so on.

The total number of logical drives includes floppy-disk drives, hard-disk drives, RAM disks, and
networked drives.

GetExternalModuleAddr

void *address = GetExternalModuleAddr (char name [ ], int modulelD, int *status);

Purpose

Obtains the address of an identifier in a module that was loaded using

LoadExternalModule.
Parameters
Input name string Name of identifier.
modulelD integer ID of loaded module.
Output status integer Zero or error code.

Return Value

address

void pointer

Address of the identifier.

© National Instruments Corporation 8-21

LabWindows/CVI Standard Libraries



Utility Library Chapter 8

Return Codes
0 Success.
-1 Out of memory.
-4 Invalid file format.
-3 Undefined references.
-8 Cannot open file.
-9 Invalid module ID.
-10 Identifier not defined globally in module.
=25 DLL initialization failed (e.g. DLL file not found).

Parameter Discussion
modulelD is the value LoadExternalModule returns.

name is the name of the identifier whose address is obtained from the external module. The
identifier must be a variable or function name defined globally in the external module.

status is zero if the function is a success, or a negative error code if it fails.

If GetExternalModuleAddr succeeds, it returns the address of the variable or function in
the module. If the function fails, it returns NULL.

Example

void (*funcPtr) (char buf[], double dval, int *ival);
int module_id;
int status;
char buf[100];
double dval;
int ival;
char *pathname;
char *funcname;
pathname = "EXTMOD.OBJ";
funcname = "my_function";
module_id = LoadExternalModule (pathname);
if (module_id < 0)
FmtOut ("Unable to load %$s\n", pathname);
else
{
funcPtr = GetExternalModuleAddr (module_id, funcname, &status);
if (funcPtr == NULL)
FmtOut ("Could not get address of %$s\n", funcname);
else
(*funcPtr) (buf, dval, &ival);

LabWindows/CVI Standard Libraries 8-22 © National Instruments Corporation



Chapter 8 Utility Library

GetFileAttrs

int result = GetFileAttrs (char fileName [ ], int *read-only, int *system, int *hidden,
int *archive);

Note: Only available on the Windows version of LabWindows/CVL.
Purpose

Gets the following attributes of a file:

* Read-Only
e System

* Hidden

* Archive

The read-only attribute makes it impossible to write to the file or create a file with the same
name.

The system attribute and hidden attribute both prevent the file from appearing in a directory list
and exclude it from normal searches.

The archive attribute is set whenever you modify the file, and cleared by the DOS BACKUP
command.

Parameters
Input fileName string File to get attributes.
Output read-only integer Read only attribute.
system integer System attribute.
hidden integer Hidden attribute.
archive integer Archive attribute.
Return Value
result integer Result of operation.
Return Codes
0 Success