

 SCXI-1200

https://www.apexwaves.com/modular-systems/national-instruments/scxi/SCXI-1200?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/scxi/SCXI-1200?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/scxi/SCXI-1200?aw_referrer=pdf

Getting Results with
ComponentWorks

™

Getting Results with ComponentWorks

April 1998 Edition

Part Number 321170C-01

Internet Support
E-mail: support@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

Bulletin Board Support
BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725 725 11,
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 413091,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200,
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1996, 1998 National Instruments Corporation. All rights reserved.

 Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE
CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS,
OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties,
or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

Trademarks

ComponentWorks™, DAQ-STC™, DataSocket™, LabVIEW™, LabWindows™/CVI, NI-488.2™, NI-DAQ™, NI-VISA™,
NI-VXI™, and SCXI™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the
user or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

© National Instruments Corporation v Getting Results with ComponentWorks

Contents

About This Manual
Organization of This Manual ...xix
Conventions Used in This Manual...xxii
Related Documentation..xxiii
Customer Communication ...xxiii

Chapter 1
Introduction to ComponentWorks

What is ComponentWorks? ...1-1
Installing ComponentWorks ..1-3

System Requirements ..1-3
Installation Instructions ...1-3

Installing the ComponentWorks ActiveX Controls1-4
Installing From Floppy Disks ...1-4
Installing the Instrument Driver Factory...1-5
Installing the Instrument Drivers DLLs ..1-5
Installed Files ..1-6

About the ComponentWorks Controls ..1-7
Properties, Methods, and Events ...1-7
Object Hierarchy ...1-8
Collection Objects ...1-9

Setting the Properties of an ActiveX Control ..1-10
Using Property Pages ..1-10
Changing Properties Programmatically...1-12
Item Method ..1-13
Working with Control Methods...1-13
Developing Event Handler Routines ...1-14
Using the Analysis Library and Instrument Driver DLLs.................................1-15
The Online Reference—Learning the Properties, Methods, and Events...........1-15

Chapter 2
Getting Started with ComponentWorks

Installing and Configuring Driver Software ..2-1
Exploring the ComponentWorks Documentation..2-2

Getting Results with ComponentWorks Manual...2-2
ComponentWorks Online Reference...2-3

Accessing the Online Reference ...2-4
Finding Specific Information ..2-4

Contents

Getting Results with ComponentWorks vi © National Instruments Corporation

Becoming Familiar with the Examples Structure.. 2-4
Developing Your Application ... 2-5
Seeking Information from Additional Sources.. 2-7

Chapter 3
Building ComponentWorks Applications with Visual Basic

Developing Visual Basic Applications.. 3-1
Loading the ComponentWorks Controls into the Toolbox............................... 3-2
Building the User Interface Using ComponentWorks 3-3

Using Property Sheets .. 3-3
Using Your Program to Edit Properties.. 3-4

Working with Control Methods .. 3-5
Developing Control Event Routines ... 3-6
Using the ComponentWorks Instrument Driver DLLs in Visual Basic 3-7
Using the Object Browser to Build Code in Visual Basic 3-8
Pasting Code into Your Program .. 3-10
Adding Code Using Visual Basic Code Completion .. 3-11

Learning to Use Specific ComponentWorks Controls .. 3-12

Chapter 4
Building ComponentWorks Applications with Visual C++

Developing Visual C++ Applications ... 4-1
Creating Your Application.. 4-2
Adding ComponentWorks Controls to the Visual C++ Controls Toolbar 4-4
Building the User Interface Using ComponentWorks Controls 4-4
Programming with the ComponentWorks Controls.. 4-5
Using Properties .. 4-6
Using Methods .. 4-8
Using Events ... 4-9

Learning to Use Specific ComponentWorks Controls .. 4-10

Chapter 5
Building ComponentWorks Applications with Delphi

Running Delphi Examples... 5-1
Upgrading from a Previous Version of ComponentWorks ... 5-2
Developing Delphi Applications ... 5-2

Loading the ComponentWorks Controls into the Component Palette.............. 5-2
Building the User Interface ... 5-4

Placing Controls ... 5-4
Using Property Sheets .. 5-5

Contents

© National Instruments Corporation vii Getting Results with ComponentWorks

Programming with ComponentWorks...5-6
Using Your Program to Edit Properties ..5-6
Using Methods ..5-7
Using Events ...5-8

Learning to Use Specific ComponentWorks Controls ..5-9

Chapter 6
Using the Graphical User Interface Controls

What Are the UI Controls? ..6-2
Object Hierarchy and Common Objects ..6-2
The Knob and Slide Controls...6-3

Knob and Slide Object...6-3
Pointers Collection ..6-4
Pointer Object..6-4
Axis Object..6-4

Ticks Object ..6-5
ValuePairs Collection ...6-5

ValuePair Object...6-6
Statistics Object ...6-6
Events ..6-6

The Numeric Edit Box Control..6-7
Events ..6-7

Tutorial: Knob, Slide, and Numeric Edit Box Controls ..6-8
Designing the Form ...6-9
Developing the Program Code ..6-10
Testing Your Program ...6-11

The Button Control ..6-12
Events ..6-13

The Graph Control ...6-13
Graph Object ...6-14

Plot Methods ...6-15
Chart Methods...6-16

Plots Collection ...6-16
Plot Object...6-17

PlotTemplate Object..6-18
Cursors Collection ...6-18

Cursor Object ..6-19
Axes Collection ...6-20
Axis Object..6-20
Events ..6-21
Panning and Zooming..6-21

Contents

Getting Results with ComponentWorks viii © National Instruments Corporation

Tutorial: Graph and Button Controls... 6-22
Designing the Form... 6-22
Developing the Code... 6-24
Testing Your Program... 6-25

Chapter 7
Using the Data Acquisition Controls

What Are the Data Acquisition Controls?... 7-1
Data Acquisition Configuration .. 7-2
Object Hierarchy and Common Properties.. 7-3

Device, DeviceName, and DeviceType .. 7-3
Channel Strings ... 7-3
SCXI Channel Strings... 7-4
ExceptionOnError and ErrorEventMask... 7-5

AIPoint Control—Single Point Analog Input ... 7-6
AIPoint Object .. 7-6
Channels Collection .. 7-7
Channel Object.. 7-8
ChannelClock Object .. 7-8

AI Control—Waveform Analog Input .. 7-9
AI Object... 7-10
Methods and Events .. 7-10

Asynchronous Acquisition ... 7-10
Synchronous Acquisition.. 7-11
Error Handling .. 7-12

ScanClock and ChannelClock Objects ... 7-12
StartCondition, PauseCondition and StopCondition Objects 7-13

Tutorial: Using the AIPoint and AI DAQ Controls... 7-14
Designing the Form... 7-15
Setting the DAQ Properties... 7-16
Developing the Code... 7-16
Testing Your Program... 7-18

AOPoint Control—Single Point Analog Output ... 7-18
AOPoint Object... 7-19
Methods... 7-19

AO Control—Waveform Analog Output .. 7-20
AO Object ... 7-21
Methods and Events .. 7-21

UpdateClock and IntervalClock Objects .. 7-22
StartCondition Object ... 7-23

Contents

© National Instruments Corporation ix Getting Results with ComponentWorks

Tutorial: Using the AOPoint Control...7-24
Designing the Form ...7-24
Developing the Code ...7-25
Testing Your Program ...7-27

Digital Controls and Hardware ..7-28
DIO Control—Single Point Digital Input and Output.......................................7-29

DIO Object ..7-30
Ports Collection and Port Object...7-31
Lines Collection and Line Object ...7-32
Common Properties and Methods...7-32

DI Control—Buffered Waveform Digital Input..7-34
DI Object...7-35
UpdateClock Object ..7-36
Methods and Events ..7-36

DO Control—Buffered Waveform Digital Output..7-37
DO Object ...7-38
UpdateClock Object ..7-39
Methods and Events ..7-40

Tutorial: Using the DIO Control..7-41
Designing the Form ...7-42
Developing the Code ...7-42
Testing Your Program ...7-44

Counter/Timer Hardware ...7-45
Counter Control—Counting and Measurement Operations7-46

Counter Object ..7-46
Methods and Events..7-48
Buffered Measurements..7-50

Pulse Control—Digital Pulse and Pulsetrain Generation..................................7-51
Pulse Object ..7-51

Methods ..7-53
FSK and ETS Pulse Generation..7-54

Tutorial: Using the Counter and Pulse Controls ..7-55
Designing the Form ...7-55
Developing the Code ...7-56
Testing Your Program ...7-59

DAQTools—Data Acquisition Utility Functions ..7-60
Using DAQ Tools Functions ...7-61

Contents

Getting Results with ComponentWorks x © National Instruments Corporation

Chapter 8
Using the GPIB and Serial Controls

What Are the GPIB and Serial Controls?.. 8-1
Object Hierarchy and Common Features.. 8-2

Common Properties .. 8-2
Parsing .. 8-3
Advanced Parsing Features .. 8-3

CWTask Object .. 8-4
CWPattern Object .. 8-5
CWToken Object.. 8-6

The GPIB Control.. 8-6
CWGPIB Object ... 8-7
Methods and Events .. 8-8

Synchronous I/O ... 8-8
Asynchronous I/O... 8-8
Other GPIB Operations .. 8-9

Tutorial: Using the GPIB Control ... 8-9
Designing the Form... 8-10
Setting the GPIB Control Properties ... 8-10
Developing the Code... 8-11
Testing Your Program... 8-11

The Serial Control ... 8-12
CWSerial Object ... 8-12
Methods and Events .. 8-13

Synchronous I/O ... 8-13
Asynchronous I/O... 8-14

Tutorial: Using the Serial Control ... 8-14
Designing the Form... 8-14
Setting the Serial Control Properties... 8-15
Developing the Code... 8-17
Testing Your Program... 8-17

Chapter 9
Using the VISA Control

Overview of the VISA API ... 9-1
VISA Structure.. 9-1
VISA Advantages ... 9-2

What is the VISA Control?.. 9-2
Object Hierarchy and Common Properties ... 9-2

Common Instrument Control Features ... 9-4
Parsing... 9-5
VISA Object.. 9-5

Contents

© National Instruments Corporation xi Getting Results with ComponentWorks

RdWrt Object...9-7
Serial (ASRL) Object ..9-8
GPIB Object ..9-9
VXI Object ..9-9
Methods and Events ..9-9

Message-Based Communication...9-9
Synchronous I/O ...9-10
Asynchronous I/O...9-10
Register-Based Communication ...9-11

Events ..9-14
Event Types...9-14

Event Handling With The Event Queue..9-15
Checking Events in the Queue ..9-16
Discarding Events From The Queue...9-16
Disabling The Event Queue ..9-16

Tutorial: Using the VISA Control for Message-Based Communication9-17
Designing the Form ...9-17
Setting the VISA Control Properties ...9-18
Developing the Code ...9-19
Testing Your Program ...9-19

Tutorial: Using the VISA Control for Register-Based Communication..........................9-20
Designing the Form ...9-20
Setting the VISA Control Properties ...9-21
Developing the Code ...9-21
Testing Your Program ...9-22

Chapter 10
Using the Analysis Controls and Functions

What Are the Analysis Controls? ..10-1
Analysis Library Versions...10-2

Controls ...10-12
Analysis Function Descriptions ..10-13
Error Messages..10-13

Tutorial: Using Simple Statistics Functions ..10-14
Designing the Form ...10-15
Developing the Program Code ..10-16
Testing Your Program ...10-17

Contents

Getting Results with ComponentWorks xii © National Instruments Corporation

Chapter 11
Using the DataSocket Control and Tools

What is DataSocket?.. 11-1
DataSocket Basics ... 11-2

Locating a Data Source ... 11-3
Reading Data from a Data Source ... 11-3

OnDataUpdated Event .. 11-4
Updating the Data ... 11-5
Automatically Updating Data ... 11-5

OnStatusUpdated Event .. 11-5
Disconnecting from a Data Source ... 11-5

Tutorial: Reading a Waveform.. 11-6
Designing the Form... 11-6
Developing the Program Code.. 11-7
Testing Your Program... 11-8

Writing Data to a Data Target ... 11-9
Updating a Data Target ... 11-10
Automatically Updating a Target.. 11-10

Working with CWData.. 11-11
Working with Attributes ... 11-12
Standalone CWData Objects... 11-12

Setting Up a DataSocket Server .. 11-13
Requirements for Running the DataSocket Server ... 11-14
Checking the Status of the DataSocket Server.. 11-14
Creating Data Items on the Server .. 11-14
Connecting to Data Items and Reading Them .. 11-15

Tutorial: Sharing Data between Applications ... 11-15
Configuring the DataSocket Server .. 11-16

Chapter 12
Building Advanced Applications

Using Advanced ComponentWorks Features ... 12-1
A Virtual Oscilloscope.. 12-1

Data Acquisition Stop Condition Modes.. 12-2
Data Acquisition Pretriggering ... 12-3
User Interface Value Pairs .. 12-3

Virtual Spectrum Meter .. 12-4
DSP Analysis Library ... 12-5
Cursors.. 12-7
Graph Track Mode.. 12-8

Contents

© National Instruments Corporation xiii Getting Results with ComponentWorks

A Virtual Data Logger...12-9
Multiple Graph Axes...12-10
Graph Axes Formats ...12-11
File Input/Output...12-12

Adding Testing and Debugging to Your Application..12-12
Error Checking ..12-12

Exceptions...12-13
Return Codes...12-14
Error and Warning Events...12-15
GetErrorText Function..12-16

Debugging ...12-17
Debug Print ...12-17
Breakpoint ...12-17
Watch Window ...12-18
Single Step, Step Into, and Step Over ...12-18

Appendix A
Using Previous Versions
of Visual Basic, Visual C++, and Delphi with ComponentWorks

Visual Basic 4 ..A-1
Menus and Commands ..A-1
Object Browser..A-2
Code Completion...A-3
Creating a Default ComponentWorks Project...A-3

Visual C++ 4.x...A-4
Creating Your Application ..A-4
Adding ComponentWorks Controls to the Visual C++ Controls ToolbarA-4
Building Your User Interface and Code..A-6

Delphi 2..A-6
Loading the ComponentWorks Controls into the Component PaletteA-6

Appendix B
Background Information about Data Acquisition

Installation ...B-1
Configuration ...B-2

SCXI ..B-2
Device Number..B-2
Channel Wizard ...B-3
Programming ...B-3

Device Number and Channels...B-3
Buffers...B-4

Contents

Getting Results with ComponentWorks xiv © National Instruments Corporation

Clocks ... B-5
SCXI ... B-6

Hardware... B-7
SCXI ... B-7
RTSI.. B-8
PFI .. B-9

Appendix C
Common Questions

Installation and Getting Started ... C-1
Visual Basic... C-3
User Interface Controls.. C-4
Data Acquisition Controls ... C-8
GPIB, Serial, and VISA Controls.. C-12
Analysis Controls .. C-14

Appendix D
Error Codes

Appendix E
Distribution and Redistributable Files

Files ... E-1
Distribution.. E-1

Automatic Installers .. E-2
Manual Installation ... E-2

DataSocket Server ... E-3
Instrument Drivers... E-3
ComponentWorks Evaluation ... E-4
Run-Time Licenses.. E-4
Troubleshooting... E-4

Appendix F
Customer Communication

Glossary

Index

Contents

© National Instruments Corporation xv Getting Results with ComponentWorks

Figures
Figure 1-1. Slide Control Object Hierarchy...1-9
Figure 1-2. Visual Basic Default Property Sheets ...1-11
Figure 1-3. ComponentWorks Custom Property Pages ...1-11

Figure 3-1. Visual Basic Property Pages..3-4
Figure 3-2. ComponentWorks Custom Property Pages ...3-4
Figure 3-3. Selecting Events in the Code Window ..3-7
Figure 3-4. Viewing CWGraph in the Object Browser..3-9
Figure 3-5. Viewing CWKnob in the Object Browser...3-10
Figure 3-6. Visual Basic 5 Code Completion ..3-11

Figure 4-1. New Dialog Box..4-2
Figure 4-2. MFC AppWizard—Step 1 ..4-3
Figure 4-3. CWGraph Control Property Sheets ...4-5
Figure 4-4. MFC ClassWizard—Member Variable Tab..4-6
Figure 4-5. Viewing Property Functions and Methods

in the Workspace Window ..4-7
Figure 4-6. Event Handler for the PointerValueChanged Event of a Knob...............4-10

Figure 5-1. Delphi Import ActiveX Control Dialog Box...5-3
Figure 5-2. ComponentWorks Controls on a Delphi Form..5-5
Figure 5-3. Delphi Object Inspector...5-5
Figure 5-4. ComponentWorks Graph Control Property Page....................................5-6
Figure 5-5. Delphi Object Inspector Events Tab ...5-8

Figure 6-1. Knob/Slide Control Object Hierarchy...6-3
Figure 6-2. SimpleUI Form..6-9
Figure 6-3. Testing SimpleUI ..6-11
Figure 6-4. Button Control Modes ...6-12
Figure 6-5. Graph Control Object Hierarchy ...6-14
Figure 6-6. ButtonGraphExample Form ..6-23

Figure 7-1. AIPoint Control Object Hierarchy (Single Point Analog Input)7-6
Figure 7-2. AI Control Object Hierarchy (Waveform Analog Input)7-9
Figure 7-3. AIExample Form...7-15
Figure 7-4. Testing AIExample..7-18
Figure 7-5. AOPoint Control Object Hierarchy (Single Point Analog Output).........7-19
Figure 7-6. AOPoint Control Object Hierarchy (Waveform Analog Output)7-20
Figure 7-7. AOPoint Form ...7-25
Figure 7-8. Testing AOPoint..7-28
Figure 7-9. DIO Control Object Hierarchy ..7-30
Figure 7-10. DI Control Object Hierarchy...7-34

Contents

Getting Results with ComponentWorks xvi © National Instruments Corporation

Figure 7-11. DO Control Object Hierarchy ... 7-38
Figure 7-12. DIO Form.. 7-42
Figure 7-13. Counter Control Object Hierarchy.. 7-46
Figure 7-14. Pulse Control Object Hierarchy .. 7-51
Figure 7-15. Counters Form .. 7-56
Figure 7-16. Testing Counters ... 7-59

Figure 8-1. GPIB Control Object Hierarchy.. 8-7
Figure 8-2. GPIBExample Form.. 8-10
Figure 8-3. Serial Control Object Hierarchy ... 8-12
Figure 8-4. Weigh Form .. 8-15
Figure 8-5. Serial Property Pages—Parsing Page ... 8-16

Figure 9-1. VISA Structure.. 9-1
Figure 9-2. VISA Control Object Hierarchy ... 9-3
Figure 9-3. VISA Property Pages—General Page .. 9-6
Figure 9-4. VISA Property Pages—RdWrt Page.. 9-7
Figure 9-5. VISA Property Pages—Serial Page ... 9-8
Figure 9-6. VISA Property Pages—VxiMemory Page ... 9-11
Figure 9-7. MbasedExample Form .. 9-18
Figure 9-8. RbasedExample Form... 9-21

Figure 10-1. Stat Form... 10-15
Figure 10-2. Testing Stat ... 10-17

Figure 11-1. DataSocket Connection... 11-2
Figure 11-2. Specifying Data Source Locations.. 11-3
Figure 11-3. SimpleDS Form .. 11-7
Figure 11-4. DataSocket Control ... 11-11
Figure 11-5. DataSocket Server Tray Icon .. 11-14
Figure 11-6. DataSocket Server Status Window ... 11-14
Figure 11-7. DataSocket Server Manager ... 11-17

Figure 12-1. Virtual Oscilloscope.. 12-2
Figure 12-2. Knob Property Pages—Value Pairs Page ... 12-4
Figure 12-3. Virtual Spectrum Meter .. 12-5
Figure 12-4. Graph Property Pages—Cursors Property Page 12-7
Figure 12-5. Virtual Data Logger .. 12-9
Figure 12-6. Visual Basic Error Messages .. 12-13
Figure 12-7. Error Message Box ... 12-16
Figure 12-8. Error Handling Message Box.. 12-17

Contents

© National Instruments Corporation xvii Getting Results with ComponentWorks

Figure A-1. Visual Basic 4 Object Browser ...A-2
Figure A-2. Visual Basic 5 Object Browser ...A-3
Figure A-3. Visual C++ Component Gallery..A-5
Figure A-4. Delphi Import OLE Control Dialog Box...A-7

Tables
Table 2-1. Chapters on Specific Programming Environments2-6

Table 6-1. Graphical User Interface Control Styles ...6-2

Table 7-1. Measurement Types ..7-47
Table 7-2. Pulse Type Operations...7-52

Table 10-1. Analysis Control Function Tree ...10-3

Table D-1. Data Acquisition Control Error Codes ...D-1
Table D-2. VISA Control Error Codes ...D-17
Table D-3. Analysis Error Codes ..D-20
Table D-4. General ComponentWorks Error Codes ...D-24

© National Instruments Corporation xix Getting Results with ComponentWorks

About This Manual

The Getting Results with ComponentWorks manual contains the
information you need to get started with the ComponentWorks software
package. ComponentWorks adds the instrumentation-specific tools for
acquiring, analyzing, and displaying data in Visual Basic, Visual C,++,
Delphi, and other ActiveX control environments.

This manual contains step-by-step instructions for building applications
with ComponentWorks. You can modify these sample applications to suit
your needs. This manual does not show you how to use every control or
solve every possible programming problem. Use the online reference for
further, function-specific information.

To use this manual, you already should be familiar with one of the
supported programming environments and Windows 95 or Windows NT.

Organization of This Manual

The Getting Results with ComponentWorks manual is organized as follows:

• Chapter 1, Introduction to ComponentWorks, contains an overview of
ComponentWorks, lists the ComponentWorks system requirements,
describes how to install the software, and explains the basics of
ActiveX controls.

• Chapter 2, Getting Started with ComponentWorks, describes
approaches to help you get started using ComponentWorks, depending
on your application needs, your experience using ActiveX controls in
your particular programming environment, and your specific goals in
using ComponentWorks.

• Chapter 3, Building ComponentWorks Applications with Visual Basic,
describes how you can use the ComponentWorks controls with Visual
Basic 5; insert the controls into the Visual Basic environment, set their
properties, and use their methods and events; and perform these
operations using ActiveX controls in general. This chapter also
outlines Visual Basic features that simplify working with ActiveX
controls.

• Chapter 4, Building ComponentWorks Applications with Visual C++,

describes how you can use ComponentWorks controls with Visual
C++, explains how to insert the controls into the Visual C++
environment and create the necessary wrapper classes, shows you how

About This Manual

Getting Results with ComponentWorks xx © National Instruments Corporation

to create an application compatible with the ComponentWorks
controls using the Microsoft Foundation Classes Application Wizard
(MFC AppWizard) and how to build your program using the
ClassWizard with the controls, and discusses how to perform these
operations using ActiveX controls in general.

• Chapter 5, Building ComponentWorks Applications with Delphi,
describes how you can use ComponentWorks controls with Delphi;
insert the controls into the Delphi environment, set their properties,
and use their methods and events; and perform these operations using
ActiveX controls. This chapter also outlines Delphi features that
simplify working with ActiveX controls.

• Chapter 6, Using the User Interface Controls, describes how you can
use the ComponentWorks User Interface (UI) controls to customize
your application interface; explains the individual controls and their
most commonly used properties, methods, and events; and includes
tutorial exercises that give step-by-step instructions on using the
controls in simple programs.

• Chapter 7, Using the Data Acquisition Controls, describes how you
can use the ComponentWorks Data Acquisition (DAQ) controls in
your application to perform input and output operations using your
DAQ hardware. It explains the individual controls and their most
commonly used properties, methods, and events and includes tutorials
that give step-by-step instructions on using the controls in simple
programs.

• Chapter 8, Using the GPIB and Serial Controls, describes how you
can use the ComponentWorks Instrument controls in your application
to perform input and output operations using GPIB and serial
hardware; explains the individual controls and their most commonly
used properties, methods, and events; and includes tutorial exercises
that give step-by-step instructions on using the controls in simple
programs.

• Chapter 9, Using the VISA Control, describes the basic structure of the
VISA API; shows you how to use the ComponentWorks VISA control
in your application to perform input and output operations using GPIB,
Serial, and VXI hardware; explains the individual control and its most
commonly used properties, methods, and events; and includes tutorial
exercises that give step-by-step instructions on using the control in
simple programs.

• Chapter 10, Using the Analysis Controls and Functions, describes
how you can use the ComponentWorks Analysis controls to perform
data analysis, manipulation, and simulation. It explains the individual
controls and some of their functions and includes a tutorial that gives

About This Manual

© National Instruments Corporation xxi Getting Results with ComponentWorks

step-by-step instructions on using the Analysis controls in a simple
program.

• Chapter 11, Using the DataSocket Control and Tools, describes how
you can use the ComponentWorks DataSocket control to read, write,
or share data on a single machine or between multiple machines and
includes tutorial exercises that provide step-by-step instructions for
using the DataSocket tools.

• Chapter 12, Building Advanced Applications, discusses how you can
build applications using more advanced features of ComponentWorks,
including advanced data acquisition techniques, the DSP Analysis
Library, and advanced user interface controls and offers techniques for
error tracking, error checking, and debugging.

• Appendix A, Using Previous Versions of Visual Basic, Visual C++,

and Delphi with ComponentWorks, outlines differences between the
current and previous version of the programming environments with
respect to using the ComponentWorks controls. This revision of the
Getting Results with ComponentWorks manual was written with the
most current environments available: Visual Basic 5, Visual C++ 5,
and Delphi 3. In this appendix, the most current versions are compared
with Visual Basic 4, Visual C++ 4.x, and Delphi 2.

• Appendix B, Background Information about Data Acquisition,
provides background information on data acquisition (DAQ) software
and hardware specific to the ComponentWorks DAQ controls and
describes the underlying architecture used by these controls.

• Appendix C, Common Questions, contains a list of answers to
frequently asked questions. It contains general ComponentWorks
questions as well as specific graphical user interface, data acquisition,
instrument control, and analysis library questions.

• Appendix D, Error Codes, lists the error codes returned by the
ComponentWorks DAQ controls, ComponentWorks VISA control,
and Analysis Library functions. It also lists some general
ComponentWorks error codes.

• Appendix E, Distribution and Redistributable Files, contains
information about ComponentWorks 2.0 redistributable files and
distributing applications that use ComponentWorks controls.

• Appendix F, Customer Communication, contains forms you can use to
request help from National Instruments or to comment on our products
and manuals.

About This Manual

Getting Results with ComponentWorks xxii © National Instruments Corporation

• The Glossary contains an alphabetical list and description of terms
used in this manual, including acronyms, abbreviations, metric
prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in this
manual, including the page where you can find each one.

Conventions Used in This Manual

The following conventions are used in this manual:

<> Angle brackets enclose the name of a key on the keyboard—for example,
<shift>.

- A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys—for
example, <Control-Alt-Delete>.

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options»Substitute

Fonts directs you to pull down the File menu, select the Page Setup item,
select Options, and finally select the Substitute Fonts options from the
last dialog box.

This icon to the left of bold italicized text denotes a note, which alerts you
to important information.

bold Bold text denotes the names of menus, menu items, parameters, dialog
boxes, dialog box buttons or options, icons, and windows.

bold italic Bold italic text denotes an activity objective, note, caution, or warning.

<Control> Key names are capitalized.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept.

monospace Text in this font denotes text or characters that you should literally enter
from the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives, paths,
directories, programs, subprograms, subroutines, device names, functions,
operations, properties and methods, filenames and extensions, and for
statements and comments taken from programs.

About This Manual

© National Instruments Corporation xxiii Getting Results with ComponentWorks

paths Paths in this manual are denoted using backslashes (\) to separate drive
names, directories, folders, and files.

Related Documentation

The following documents contain information you might find useful as you
read this manual:

• Getting Results with ComponentWorks

• ComponentWorks online reference (available by selecting
Start»Programs»National Instruments ComponentWorks»

ComponentWorks Reference

Customer Communication

National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make it
easy for you to contact us, this manual contains comment and configuration
forms for you to complete. These forms are in Appendix F, Customer

Communication, at the end of this manual.

© National Instruments Corporation 1-1 Getting Results with ComponentWorks

1
Introduction to
ComponentWorks

This chapter contains an overview of ComponentWorks, lists the
ComponentWorks system requirements, describes how to install the
software, and explains the basics of ActiveX controls.

What is ComponentWorks?

ComponentWorks is a collection of ActiveX controls for acquiring,
analyzing, and presenting data within any compatible ActiveX control
container. ActiveX controls also are known as OLE (Object Linking and
Embedding) controls, and the two terms can be used interchangeably in this
context. Use the online reference for specific information about the
properties, methods, and events of the individual ActiveX controls. You
can access this information by selecting Programs»National Instruments

ComponentWorks»ComponentWorks Reference from the Windows
Start menu.

With ComponentWorks, you can easily develop complex custom user
interfaces to display your data, control your National Instruments Data
Acquisition (DAQ) boards, and analyze data you acquired or received from
some other source. The ComponentWorks package contains the following
components:

• User Interface Controls—32-bit ActiveX controls for presenting your
data in a technical format. These controls include a graph/strip chart
control, sliders, thermometers, tanks, knobs, gauges, meters, LEDs,
and switches.

• DAQ Controls—32-bit ActiveX controls for analog I/O, digital I/O,
and counter/timer I/O operations using National Instruments DAQ
products.

• GPIB, Serial, and VISA Controls—32-bit ActiveX controls for
controlling and retrieving data from instruments or devices connected
to a GPIB, serial, or VXI port in your computer. You must connect
GPIB instruments with a National Instruments GPIB interface card.

Chapter 1 Introduction to ComponentWorks

Getting Results with ComponentWorks 1-2 © National Instruments Corporation

• DataSocket Control and Tools (shipped only with the Standard and
Full Development Systems)—32-bit ActiveX control and tools for
sharing and exchanging data between an application and a number of
different targets, including other applications, files, and FTP and Web
servers.

• Analysis Library Controls—Functions for statistics, advanced signal
processing, windowing, filters, curve-fitting, vector and matrix algebra
routines, probability, and array manipulations. These functions are
packaged in 32-bit ActiveX controls. Each ComponentWorks package
(Base, Standard, and Full Development System) contains different
options for analysis. The Base package includes functions for basic
statistics and array operations; the Standard Development System
includes additional Digital Signal Processing (DSP) functions for
signal processing, windowing, and filtering operations; and the Full
Development System adds advanced statistics and probability
functions.

• Instrument Driver Factory (shipped only with the Full Development
System)—Complete development environment for building,
compiling, debugging, and analyzing instrument drivers, including a
Visual Basic wizard to automate the steps of compiling an instrument
driver.

• Instrument Drivers (shipped only with the Full Development
System)—Source code and 32-bit DLLs for controlling common
GPIB instruments with high-level instrument control routines. You can
load and edit the source code in the Instrument Driver Factory. If you
do not need to make any changes to the driver, you can use the
pre-compiled DLLs.

The ComponentWorks ActiveX controls are designed for use in
Visual Basic, a premier ActiveX control container application. Some
ComponentWorks features and utilities have been incorporated with the
Visual Basic user in mind. However, you can use ActiveX controls in any
application that supports them, including Visual C++, Access, and Delphi.

Chapter 1 Introduction to ComponentWorks

© National Instruments Corporation 1-3 Getting Results with ComponentWorks

Installing ComponentWorks

The ComponentWorks setup program installs ComponentWorks through a
process that lasts approximately five minutes. The ComponentWorks CD
contains separate installers for the Instrument Driver Factory and
Instrument Drivers (Full Development System only) and for various driver
software (NI-DAQ, NI-488, and so on) that you might need.

System Requirements
To use the ComponentWorks ActiveX controls and Analysis Library, you
must have the following:

• Microsoft Windows 95 or Windows NT (Windows NT 4.0 for DAQ
controls) operating system

• Personal computer using at least a 33 MHz 80486 or higher
microprocessor (National Instruments recommends a 66 MHz
80486 or higher microprocessor)

• VGA resolution (or higher) video adapter

• ActiveX control container such as Visual Basic (32-bit version),
Visual C++, or Delphi (32-bit version)

• NI-DAQ 5.0 or later for Windows 95 or Windows NT (if you are using
DAQ controls)

• Minimum of 16 MB of memory

• Minimum of 10 MB of free hard disk space

• Microsoft-compatible mouse

Installation Instructions
This section provides instructions for installing different pieces
of your ComponentWorks software. You can start most of these
installers directly from the startup screen that appears when you
load the ComponentWorks CD.

Chapter 1 Introduction to ComponentWorks

Getting Results with ComponentWorks 1-4 © National Instruments Corporation

Installing the ComponentWorks ActiveX Controls
Complete the following steps to install ComponentWorks.

Note To install ComponentWorks on a Windows NT system, you must be logged in with

Administrator privileges to complete the installation.

1. Make sure that your computer and monitor are turned on and that you
have installed Windows 95 or Windows NT.

2. Insert the ComponentWorks CD in the CD drive of your computer.
From the CD startup screen, click on Install ComponentWorks 2.0.
If the CD startup screen does not appear, use the Windows Explorer or
File Manager to run the SETUP.EXE program in the \Setup directory
on the CD.

3. Follow the instructions on the screen. The installer provides different
options for setting the directory in which ComponentWorks is installed
and choosing examples for different programming environments. Use
the default settings in the installer if you are unsure about them. If
necessary, you can run the installer at a later time to install additional
components.

Installing From Floppy Disks
If your computer does not have a CD drive, follow these instructions for
installing the software.

1. On another computer with a CD drive and disk drive, copy the files in
the individual subdirectories of the \Setup\disks directory on the
CD onto individual 3.5” floppy disks. The floppy disks should not
contain any directories and should be labeled disk1, disk2, and so
on, following the name of the source directories.

2. On the target computer, insert the floppy labeled disk1 and run the
setup.exe program from the floppy.

3. Follow the on-screen instructions to complete the installation.

Chapter 1 Introduction to ComponentWorks

© National Instruments Corporation 1-5 Getting Results with ComponentWorks

Installing the Instrument Driver Factory
If you have purchased the ComponentWorks Full Development System,
you can install the Instrument Driver Factory (IDF) and LabWindows/CVI
development environment. Use the following procedure to install the IDF.

1. Make sure that your computer and monitor are turned on and that you
have installed Windows 95 or Windows NT.

2. Insert the ComponentWorks CD in the CD drive of your computer.
From the CD startup screen, click on Install Instrument Driver

Factory. If the CD startup screen does not appear, use the Windows
Explorer or File Manager to run SETUP.EXE in the \CVI\DISK1
directory and SETUP.EXE in the \Instrument Driver Factory
directory on the CD.

3. Follow the instructions on the screen to install the LabWindows/CVI
environment and the Instrument Driver Factory for compiling
instrument drivers from Visual Basic.

Installing the Instrument Drivers DLLs
If you have purchased the ComponentWorks Full Development System,
you can install any of more than 600 instrument drivers and their source
code. Use the following procedure to install an instrument driver.

1. Make sure that your computer and monitor are turned on and that you
have installed Windows 95 or Windows NT.

2. Insert the ComponentWorks CD in the CD drive of your computer.
From the CD startup screen, click on Install Instrument Drivers. If
the CD startup screen does not appear, use the Windows Explorer or
File Manager to run SETUP.EXE in the \Instrument Drivers
directory on the CD.

3. Following the instructions in the installation program, select the
drivers you want to install. You can install additional drivers later by
running the setup program again.

4. Follow the installer instructions to complete the installation.

Chapter 1 Introduction to ComponentWorks

Getting Results with ComponentWorks 1-6 © National Instruments Corporation

Installed Files
The ComponentWorks setup program installs the following groups of files
on your hard disk.

• ActiveX Controls, Documentation, and other associated files

• Example Programs and Applications

• Tutorial Programs

• DataSocket Server (Standard and Full Development Systems only)

• Miscellaneous Files

If you have purchased the ComponentWorks Full Development System,
you can install the following components.

• LabWindows/CVI Development Environment

• Instrument Driver Factory

• Instrument Driver Files

Note You select the location of the \ComponentWorks\... and \CVI\... directories

during installation.

Directory: \Windows\System\

Files: cwdaq.ocx, cwdaq.dep, cwui.ocx, cwui.dep,
cwanalysis.ocx, cwanalysis.dep,
cwinstr.ocx, cwinstr.dep, cwvisa.ocx,
cwvisa.dep, cwds.ocx, cwds.dep, cwref.hlp,
cwref.cnt

Directory: \ComponentWorks\samples\...

Directory: \ComponentWorks\tutorials\...

Directory: \ComponentWorks\DataSocket Server

Directory: \ComponentWorks\

Directory: \CVI

Directory: \ComponentWorks\Instrument Driver
Factory

Directory: \Instrument Drivers\...

Chapter 1 Introduction to ComponentWorks

© National Instruments Corporation 1-7 Getting Results with ComponentWorks

About the ComponentWorks Controls

Before learning how to use ComponentWorks, you should be familiar with
using ActiveX controls. This section outlines some background
information about ActiveX controls, in particular the ComponentWorks
controls. If you are not already familiar with the concepts outlined in this
section, make sure you understand them before continuing. You also might
want to refer to your programming environment documentation for more
information on using ActiveX (OLE) controls in your particular
environment.

Properties, Methods, and Events
ActiveX controls consist of three different parts—properties, methods, and
events—used to implement and program the controls.

Properties are the attributes of a control. These attributes describe the
current state of the control and affect the display and behavior of the
control. The values of the properties are stored in variables that are part of
the control.

Methods are functions defined as part of the control. Methods are called
with respect to a particular control and usually have some effect on the
control itself. The operation of most methods also is affected by the current
property values of the control.

Events are notifications generated by a control in response to some
particular occurrence. The events are passed to the control container
application to execute a particular subroutine in the program (event
handler).

For example, the ComponentWorks Graph control has a wide variety of
properties that determine how the graph looks and operates. To customize
the graph appearance and behavior, set properties for color, axes, scaling,
tick marks, cursors, and labels.

The Graph control also has a series of high-level methods, or functions, that
you can invoke to set several properties at once and to perform a particular
operation. For example, you can use the PlotY method to pass an array of
data to the Graph control.

Chapter 1 Introduction to ComponentWorks

Getting Results with ComponentWorks 1-8 © National Instruments Corporation

The Graph control generates events when particular operations take place.
For example, when you drag a cursor on the graph, the control passes an
event to your program so you can respond to cursor movements. This might
be useful if you might want to retrieve the X- and Y-coordinate positions of
a cursor as it is being dragged and display the coordinates in text boxes.

Note Use the ComponentWorks online reference for specific information about the

properties, methods, and events of the ActiveX controls. You can access the online

reference by selecting Programs»National Instruments ComponentWorks»

ComponentWorks Reference from the Windows Start menu.

Object Hierarchy
As described in the previous section, each ActiveX control has properties,
methods, and events. These three parts are stored in a software object,
which is the piece of software that makes up the ActiveX control and
contains all its parts. Certain ActiveX controls are very complex,
containing many different parts (properties). For this reason, complex
ActiveX controls are often subdivided into different software objects, the
sum of which make up the ActiveX control. Each individual object in a
control contains some specific parts (properties) and functionality
(methods and events) of the ActiveX control. The relationships between
different objects of a control are maintained in an object hierarchy. At the
top of the hierarchy is the actual control itself.

This top-level object contains its own properties, methods, and events.
Some of the top-level object properties are actually references to other
objects that define specific parts of the control. Objects below the top-level
have their own methods and properties, and their properties can be
references to other objects. The number of objects in this hierarchy is not
limited.

Another advantage of subdividing controls is the re-use of different objects
between different controls. One object might be used at different places in
the same object hierarchy or in several different controls/object hierarchies.

Figure 1-1 shows part of the object hierarchy of the ComponentWorks
Slide control.

Chapter 1 Introduction to ComponentWorks

© National Instruments Corporation 1-9 Getting Results with ComponentWorks

Figure 1-1. Slide Control Object Hierarchy

The Slide object contains some of its own properties, such as Name and
BackColor. It also contains properties such as Axis and Pointers,
which are separate objects from the Slide object. The Axis object contains
all the information about the axis used on the slide and has properties such
as Maximum and Minimum. The Pointers Collection object contains several
Pointer objects of its own, each describing one pointer on the Slide control.
Each Pointer object has properties, such as Value, while the Pointers
Collection object has the property Count. The Pointers Collection object is
a special type of object referred to as a collection, which is described in the
Collection Objects section.

Collection Objects
One object can contain several objects of the same type. For example, a
Graph object contains several Axis objects, each representing one of the
axes on the graph. Additionally, the number of objects in the group of
objects might not be defined and might change while the program is
running (that is, you can add or remove axes as part of your program).
To handle these groups of objects more easily, an object called a
Collection is created.

Slide Control
Name: CWSlide1

BackColor: vbBlue

Axis Object
Minimum: 0

Maximum: 10

Pointers Collection
Count: 2

Pointer Object
Value 2.4

Pointer Object
Value 3.6

Chapter 1 Introduction to ComponentWorks

Getting Results with ComponentWorks 1-10 © National Instruments Corporation

A collection is an object that contains or stores a varying number of objects
of the same type. It also can be regarded as an array of objects. The name
of a collection object is usually the plural of the name of the object type
contained within the collection. For example, a collection of Pointer objects
is referred to as Pointers, a collection of Plot objects as Plots, and a
collection of Axis objects as Axes. In the ComponentWorks software, the
terms object and collection are not used, only the type names Pointer and
Pointers.

Each collection object contains an Item method that you can use to access
any particular object stored in the collection. Refer to Changing Properties

Programmatically later in this chapter for information about the Item
method and how to access particular objects stored in the collection.

Setting the Properties of an ActiveX Control

You can set the properties of an ActiveX control from its property pages or
from within your program.

Using Property Pages
Property pages are common throughout the Windows 95 and Windows NT
interface. When you want to change the appearance or options of a
particular object, right click on the object and select Properties. A property
page or tabbed dialog box appears with a variety of properties that you can
set for that particular object. You customize ActiveX controls in exactly the
same way. Once you place the control on a form in your programming
environment, right click on the control and select Properties… to
customize the appearance and operation of the control.

Use the property pages to set the property values for each ActiveX control
while you are creating your application. The property values you select at
this point represent the state of the control at the beginning of your
application. You can change the property values from within your program,
as shown in the next section, Changing Properties Programmatically.

In some programming environments (such as Visual Basic and Delphi), you
have two different property pages. The property page common to the
programming environment is called the default property sheet; it contains
the most basic properties of a control.

Your programming environment assigns default values for some of the
basic properties, such as the control name and the tab order. You must edit
these properties through the default property sheet.

Chapter 1 Introduction to ComponentWorks

© National Instruments Corporation 1-11 Getting Results with ComponentWorks

The following illustration shows the Visual Basic default property sheet for
the CWGraph control.

Figure 1-2. Visual Basic Default Property Sheets

The second property sheet is called the custom property page. The layout
and functionality of the custom property pages vary for different controls.
The following illustration shows the custom property page for the
CWGraph control.

Figure 1-3. ComponentWorks Custom Property Pages

Chapter 1 Introduction to ComponentWorks

Getting Results with ComponentWorks 1-12 © National Instruments Corporation

Changing Properties Programmatically
You also can set or read the properties of your controls programmatically.
For example, if you want to change the state of an LED control during
program execution, change the Value property from True to False or
from False to True. The exact syntax for reading and writing property
values depends on your programming language, so consult the appropriate
chapter for using your programming environment. In this discussion,
properties are set with Visual Basic syntax, which is similar to most
implementations.

Each control you create in your program has a name (like a variable name)
which you use to reference the control in your program. You can set the
value of a property on a top-level object with the following syntax.

name.property = new_value

For example, you can change the Value property of an LED control to off
using the following line of code, where CWButton1 is the default name of
the LED control. An LED is one style of the CWButton control.

CWButton1.Value = False

To access properties of sub-objects referenced by the top-level object, use
the control name, followed by the name of the sub-object and the property
name. For example, consider the following code for the ComponentWorks
data acquisition analog input (CWAI) control.

CWAI1.ScanClock.Frequency = 10000

In the above code, ScanClock is a property of the CWAI control and refers
to a CWAIClock object. Frequency is one of several CWAIClock
properties. The CWAI control also has a ChannelClock property that refers
to a different CWAIClock object.

You can retrieve the value of control properties from your program in the
same way. For example, you can print the value of the LED control.

Print CWButton1.Value

You can display the frequency used by the CWAI control in a Visual Basic
text box with the following code.

Text1.Text = CWAI1.ScanClock.ActualFrequency

Chapter 1 Introduction to ComponentWorks

© National Instruments Corporation 1-13 Getting Results with ComponentWorks

Item Method
To access an object or its properties in a collection, use the Item method
of the collection object. For example, set the value of the second pointer on
a slide with the following code.

CWSlide1.Pointers.Item(2).Value = 5.0

The term CWSlide1.Pointers.Item(2) refers to the second Pointer
object in the Pointers collection of the Slide object. The parameter of the
Item method is either an integer representing the (one-based) index of the
object in the collection or a string with the name of one of the objects in the
collection.

CWSlide1.Pointers.Item(“TemperaturePointer”)

Because the Item method is the most commonly used method on a
collection, it is referred to as the default method. Therefore, some
programming environments do not require you to specify the .Item
method. For example, in Visual Basic

CWSlide1.Pointers(2).Value = 5.0

is programmatically equivalent to

CWSlide1.Pointers.Item(2).Value = 5.0

Working with Control Methods
ActiveX controls and objects have their own methods, or functions, that
you can call from your program. Methods can have parameters that are
passed to the method and return values that pass information back to your
program.

For example, the PlotY method for the ComponentWorks Graph control
has a required parameter—the array of data to be plotted—that you must
include when you call the method. If you want to plot the data returned
from an Analog Input control, use the following line of code (the array
ScaledData is automatically generated by the CWAI control).

CWGraph1.PlotY ScaledData

Chapter 1 Introduction to ComponentWorks

Getting Results with ComponentWorks 1-14 © National Instruments Corporation

The PlotY method has additional parameters that are optional in some
programming environments. For example, in addition to the first parameter
representing the data to be plotted, you can pass a second parameter to
represent the initial value for the X axis, a third parameter for an
incremental change on the X axis corresponding to each data point, and a
fourth parameter that determines how the graph should handle
two-dimensional data.

CWGraph1.PlotY ScaledData, 0.0, 1.0, True

Depending on your programming environment, the parameters might be
enclosed in parentheses. Visual Basic does not use parentheses to pass
parameters if the function or method is not assigned a return variable. The
AcquireData method in the DAQ Analog Input control has the following
form when used with a return variable lErr.

lErr = CWAI1.AcquireData(ScaledData, BinaryCodes, 1)

Developing Event Handler Routines
After you configure your controls on a form, you can create event handler
routines in your program to respond to events generated by the controls.
For example, the DAQ Analog Input control has an Acquired_Data event
that fires (occurs) when the acquired data is ready to be processed, based
on the acquisition options you have configured in the control property
pages.

You can configure the control to continuously collect 1,000 points of data
from a particular channel at a rate of 1,000 points per second. Once every
second, the data buffer is ready and the Acquired_Data event is fired. In
your Acquired_Data event routine, you can write code to analyze the data
buffer, plot it, or store it to disk.

To develop the event routine code, most programming environments
generate a skeleton function to handle each event. Chapters 3, 4, and 5 of
this manual outline how to generate these function skeletons to build your
event handler routines. For example, the Visual Basic environment
generates the following function skeleton into which you insert the
functions to call when the AcquireData event occurs.

Private Sub CWAI1_AcquiredData(ScaledData As Variant,

BinaryCodes As Variant)

End Sub

Chapter 1 Introduction to ComponentWorks

© National Instruments Corporation 1-15 Getting Results with ComponentWorks

In most cases, the event also returns some data to the event handler, such as
the ScaledData and BinaryCodes arrays in the previous example, that
can be used in your event handler routine.

Using the Analysis Library and Instrument Driver DLLs
The ComponentWorks Analysis Library is packaged as a set of ActiveX
controls, while the instrument drivers are packaged as 32-bit DLLs. You
can add analysis functions to your project in the same way you add user
interface or data acquisition controls. After adding the Analysis controls to
your programming environment, use the analysis functions like any other
method on a control. To use any specific function, place the appropriate
Analysis control on a form. In your program, call the name of the control
followed by the name of the analysis function:

MeanValue = CWStat1.Mean (Data)

Consult Chapter 10, Using the Analysis Controls and Functions, and the
ComponentWorks online reference for more information on the individual
analysis functions and their use.

To use the instrument driver DLLs, you must add a reference to the DLL in
your project. After adding the appropriate reference to your project, you
can use the functions included in the DLLs to control your instruments.

The Online Reference—Learning the Properties, Methods, and Events
The ComponentWorks online reference contains detailed information on
each control and its associated properties, methods, and events. Refer to
ComponentWorks online reference when you are using a control for the
first time. Remember that many of the ComponentWorks controls share
sub-objects and properties, so when you learn how to use one control, you
also learn how to use others. You can open the online reference from within
most programming environments by clicking on the Help button in the
custom property pages, or you can open it from the Windows Start menu
by selecting Programs»National Instruments ComponentWorks»

ComponentWorks Reference.

Some programming environments have built-in mechanisms for detailing
the available properties, methods, and events for a particular control and
sometimes include automatic links to the help file. Refer to the chapter on
your particular programming environment to learn about additional tools.

© National Instruments Corporation 2-1 Getting Results with ComponentWorks

2
Getting Started with
ComponentWorks

This chapter describes approaches to help you get started using
ComponentWorks, depending on your application needs, your experience
using ActiveX controls in your particular programming environment, and
your specific goals in using ComponentWorks.

This chapter elaborates on the following steps for getting started with
ComponentWorks.

1. Install and configure driver software if you plan to use
hardware I/O controls.

2. Explore the ComponentWorks documentation.

3. Become familiar with the examples structure.

4. Develop your application.

5. Seek answers to your questions from additional information sources.

So far you should have installed the ComponentWorks software following
the instructions in Chapter 1, Introduction to ComponentWorks, as well as
the programming environment you plan to use with the controls. Chapter 1
also includes basic information about ActiveX controls. If you are
unfamiliar with ActiveX controls, read Chapter 1 before proceeding.

Installing and Configuring Driver Software

If you need to use any of the hardware I/O controls in ComponentWorks
(data acquisition, GPIB, serial, or VISA), you must install and configure
the corresponding driver software before using these controls.

Driver software performs the low-level calls to your hardware. It is
configured using a separate configuration utility provided with the driver
software. In some cases, the configuration utility also provides parameters
or values you need to use in your controls. For example, with the device
number defined in the data acquisition (DAQ) configuration utility, you can
select a specific piece of hardware in your controls.

Chapter 2 Getting Started with ComponentWorks

Getting Results with ComponentWorks 2-2 © National Instruments Corporation

Install the most current driver available. Sometimes, the ComponentWorks
controls require features provided only in newest versions of the driver. The
ComponentWorks CD includes installers for different drivers compatible
with the ComponentWorks version on the CD. Check the \Drivers
directory on the CD for these installation programs. If necessary, you can
download newer versions of the drivers from the National Instruments Web
or FTP sites.

To run the installation and configuration programs, follow the directions
provided with each driver. Each driver includes a readme file or printed
document that provides the latest information as well as any operating
system details. Appendix B, Background Information

about Data Acquisition, includes some commonly used information about
the DAQ driver.

Exploring the ComponentWorks Documentation

The printed and online manuals contain the information necessary to learn
and use the ComponentWorks controls to their full capabilities. The
manuals are divided into different sections. Each section addresses a
specific step on the learning curve.

Use the Getting Results with ComponentWorks manual to learn how to
develop simple applications with the ComponentWorks controls. The
manual contains information you can use in specific circumstances, such as
debugging particular problems or distributing applications.

After you understand the operation and organization of the controls, use the
ComponentWorks online reference to obtain information about specific
features of each control.

Getting Results with ComponentWorks Manual
The Getting Results with ComponentWorks manual contains four different
sections.

Section 1—Includes Chapter 1, Introduction to ComponentWorks, and
Chapter 2, Getting Started with ComponentWorks. These chapters provide
introductory information about ComponentWorks, including installation
procedures, a basic overview of ActiveX controls, and information about
getting started with the software.

Chapter 2 Getting Started with ComponentWorks

© National Instruments Corporation 2-3 Getting Results with ComponentWorks

Section 2—Includes Chapter 3, Building ComponentWorks Applications

with Visual Basic, Chapter 4, Building ComponentWorks Applications with

Visual C++, and Chapter 5, Building ComponentWorks Applications with

Delphi. These chapters describe how to use ActiveX controls in the most
commonly used programming environments—Visual Basic, Visual C++,
and Borland Delphi.

If you are familiar with using ActiveX controls in these environments, you
should not need to read these chapters. If you are using the controls in
another environment, consult your programming environment
documentation for information about using ActiveX controls. You can
check the ComponentWorks Support Web site for information about
additional environments.

Section 3—Includes chapters 6 through 12. These chapters describe the
basic operation of the different controls in ComponentWorks. Each chapter
contains an overview of a group of controls, describing their most
commonly used properties, methods, and events. The description also
includes short code segments to illustrate programmatic control and a
number of simple tutorials that step you through building an application
with those controls.

Section 4—Includes the appendices of this manual. The appendices
contain additional information about using ComponentWorks, including
information about using ComponentWorks in previous versions of Visual
Basic, Visual C++, and Delphi; DAQ basics; common questions; and error
code descriptions. If you have a particular question when using the
ComponentWorks software, remember to check the appendices as well as
the other documentation for an answer.

ComponentWorks Online Reference
The ComponentWorks online reference includes complete reference
information for all controls—all properties, methods, and events for every
control—as well as the text from Getting Results with ComponentWorks
and the Instrument Driver Factory manual.

To use the online reference efficiently, you should understand the material
presented in the Getting Results with ComponentWorks manual about using
ComponentWorks ActiveX controls.

After going through the Getting Results with ComponentWorks manual and
tutorials, use the online reference as your main source of information. Refer
to it when you need specific information about a particular feature in
ComponentWorks.

Chapter 2 Getting Started with ComponentWorks

Getting Results with ComponentWorks 2-4 © National Instruments Corporation

Accessing the Online Reference
You can open the online reference from the Windows Start
menu (Programs»National Instruments ComponentWorks»

ComponentWorks Reference). The reference opens to the main contents
page. From the contents page, you can browse the contents of the online
reference or search for a particular topic.

Most programming environments support some type of automatic link to
the online reference (help) file from within their environment, often the
<F1> key. Try selecting the control on a form or placing the cursor in code
specific to a control and pressing <F1> to evoke the online reference.

In most environments, the property pages for the ComponentWorks
controls include a Help button that provides information about the property
pages.

Finding Specific Information
To find information about a particular control or feature of a control, select
the Index tab under the Help Topics page. Enter the name of the control,
property, method, or event. Control names always begin with CW (for
example, CWGraph, CWAI, and CWStat). Property, method, and event
names are identical to those used in the code (for example, Axes, Plot,
Channels, and Font).

One group of objects that frequently generates questions are the Collection
objects. Search the online reference for Collections and the Item method
for more information. You also can find information about collection
objects in the Collection Objects section of Chapter 1, Introduction to

ComponentWorks.

Becoming Familiar with the Examples Structure

The examples installed with ComponentWorks show you how to use the
controls in applications. You can use these examples as a reference to
become more familiar with the use of the controls, or you can build your
application by expanding one of the examples.

Chapter 2 Getting Started with ComponentWorks

© National Instruments Corporation 2-5 Getting Results with ComponentWorks

When you install ComponentWorks, you can install examples for selected
programming environments. The examples are located in the
\ComponentWorks\samples directory and organized by programming
environment (\Visual Basic, \Visual C++, and so on) and control
group (\UI, \DAQ, and so on). Within these directories, the examples are
further subdivided by functionality.

The online reference includes a searchable list of all the examples included
with ComponentWorks. Select Examples to see the list of examples.

The examples exist in the oldest commonly used version of a programming
environment, such as Visual Basic 4. If you open an example in a newer
version, you might see a warning message indicating that the example will
be converted to the new version.

Developing Your Application

Depending on your experience with your programming environment,
ActiveX controls, and ComponentWorks, you can get started using
ComponentWorks in some of the following ways.

Are you new to your particular programming environment?

Spend some time using and programming in your development
environment. Check the documentation that accompanies your
programming environment for getting started information or tutorials,
especially tutorials that describe using ActiveX controls in the
environment. If you have specific questions, search the online
documentation of your development environment. After becoming familiar
with the programming environment, continue with the following steps.

Are you new to using ActiveX controls or do you need to learn how to

use ActiveX controls in a specific programming environment?

Make sure you have read and understand the information regarding
ActiveX controls in Chapter 1, Introduction to ComponentWorks, and the
appropriate chapter about your specific programming environment. Refer
to Table 2-1 to find out which chapter you should read for your specific
programming environment.

If you use Borland C++ Builder, most of Chapter 5 pertains to you. If you
use another programming environment, see the ComponentWorks Support
Web site for current information about particular environments.

Chapter 2 Getting Started with ComponentWorks

Getting Results with ComponentWorks 2-6 © National Instruments Corporation

Regardless of the programming environment you use, consult its
documentation for information about using ActiveX controls. After
becoming familiar with using ActiveX controls in your environment,
continue with the following steps.

Are you familiar with ActiveX controls but need to learn

ComponentWorks controls, hierarchies, and features?

If you are familiar with using ActiveX controls, including collection
objects and the Item method, read the chapters pertaining to the controls
you want to use. Chapters 6 through 11 provide basic information about
each ComponentWorks control and describe their most commonly used
properties, methods, and events. The chapters also offer simple tutorials to
help you become more familiar with using the controls. Solutions to each
of the tutorials are installed with your software in the
\ComponentWorks\tutorials directory.

After becoming familiar with the information in these chapters, try building
applications with the ComponentWorks controls. You can find detailed
information about all properties, methods, and events for every control in
the online reference.

Do you want to develop applications quickly or modify existing

examples?

If you are very familiar with using ActiveX controls, including collections
and the Item method, and have some experience using ComponentWorks
or other National Instruments products, you can get started more quickly by
looking at the examples.

Most examples demonstrate how to perform operations with a particular
control or group of controls. Generally, the examples avoid presenting
complex operations on more than one group of controls, such as UI and
DAQ. To become familiar with an individual group of controls, look at the

Table 2-1. Chapters on Specific Programming Environments

Environment Read This Chapter

Microsoft Visual Basic Chapter 3, Building ComponentWorks

Applications with Visual Basic

Microsoft Visual C++ Chapter 4, Building ComponentWorks

Applications with Visual C++

Borland Delphi Chapter 5, Building ComponentWorks

Applications with Delphi

Chapter 2 Getting Started with ComponentWorks

© National Instruments Corporation 2-7 Getting Results with ComponentWorks

example for that particular group. Then, you can combine different
programming concepts from the different groups in your application.

The examples include comments to provide more information about the
steps performed in the example. The examples avoid performing complex
programming tasks specific to one programming environment; instead,
they focus on showing you how to perform operations using the
ComponentWorks controls. When developing applications with ActiveX
controls, you do a considerable amount of programming by setting
properties in the property pages. Check the value of the control properties
in the examples because the values greatly affect the operation of the
example program. In some cases, the actual source code used by an
example might not greatly differ from other examples; however, the values
of the properties change the example significantly.

Seeking Information from Additional Sources

After working with the ComponentWorks controls, you might need to
consult other sources if you have questions. The following sources can
provide you with more specific information.

• Getting Results with ComponentWorks Appendices—The appendices
include information about using previous versions of development
tools, DAQ basics, common questions, and error descriptions.

• ComponentWorks Instrument Driver Manual—If you are using the
Instrument Driver Factory (ComponentWorks Full Development
system only), you have received a separate manual detailing this tool
and its use.

• ComponentWorks Online Reference—The online reference includes
the complete reference documentation, text of the Getting Results with

ComponentWorks manual as well as additional information. If you are
not able to find a particular topic in the index, choose the Find tab in
the Help Topics page and search the complete text of the online
reference.

• ComponentWorks Support Web Site—The ComponentWorks Support
Web site, as part of the National Instruments Support Web site
(www.natinst.com/support), contains support information,
updated continually. You can find application and support notes and
information about using ComponentWorks in additional programming
environments. The Web site also contains the KnowledeBase, a
searchable database containing thousands of entries answering
common questions related to the use of ComponentWorks and other
National Instruments products.

© National Instruments Corporation 3-1 Getting Results with ComponentWorks

3
Building ComponentWorks
Applications with Visual Basic

This chapter describes how you can use the ComponentWorks controls
with Visual Basic 5; insert the controls into the Visual Basic environment,
set their properties, and use their methods and events; and perform these
operations using ActiveX controls in general. This chapter also outlines
Visual Basic features that simplify working with ActiveX controls.

At this point you should be familiar with the general structure of ActiveX
controls described in Chapter 1, Introduction to ComponentWorks. The
individual ComponentWorks controls are described later in this manual.

Note The descriptions and figures in this chapter apply specifically to the Visual Basic 5

environment. Although most of this information applies to Visual Basic 4 as well,

some menu and option names and environment components are different. See

Appendix A, Using Previous Versions of Visual Basic, Visual C++, and Delphi with

ComponentWorks, for a description of key differences between these versions of

Visual Basic as they apply to ComponentWorks.

Developing Visual Basic Applications

The following procedure explains how you can start developing Visual
Basic applications with ComponentWorks.

1. Select the type of application you want to build. Initially select a
Standard EXE for your application type.

2. Design the form. A form is a window or area on the screen on which
you can place controls and indicators to create the user interface for
your program. The toolbox in Visual Basic contains all of the controls
available for developing the form.

Chapter 3 Building ComponentWorks Applications with Visual Basic

Getting Results with ComponentWorks 3-2 © National Instruments Corporation

3. After placing each control on the form, configure the properties of the
control using the default and custom property pages.

Each control on the form has associated code (event handler routines)
in your Visual Basic program that automatically executes when the
user operates that control.

4. To create this code, double click on the control while editing your
application and the Visual Basic code editor opens to a default event
handler routine.

Loading the ComponentWorks Controls into the Toolbox
Before building an application using the ComponentWorks controls and
libraries, you must add them to the Visual Basic toolbox. The
ComponentWorks ActiveX controls are divided into different groups
including user interface controls (CWUI.OCX), data acquisition controls
(CWDAQ.OCX), and analysis library controls (CWANALYSIS.OCX). The
exact list of controls depends on the ComponentWorks package you use.

Use the following procedure to add ComponentWorks controls to the
project toolbox.

1. In a new Visual Basic project, right click on the toolbox and select
Components....

2. Scroll down to the ComponentWorks controls, which you can find in
the Controls list, beginning with National Instruments.

3. Place a checkmark in the box next to the control groups to select the
controls you want to use in your project. If the ComponentWorks
controls are not in the list, select the control files from the
\Windows\System(32) directory by pressing the Browse button.

If you need to use the ComponentWorks controls in several projects, create
a new default project in Visual Basic 5 to include the ComponentWorks
controls and serve as a template.

1. Create a new Standard EXE application in the Visual Basic
environment.

2. Add the ComponentWorks controls to the project toolbox as described
in the preceding procedure.

3. Save the form and project in the \Template\Projects directory
under your Visual Basic directory.

4. Give the form and project a descriptive name, such as CWForm and
CWProject.

Chapter 3 Building ComponentWorks Applications with Visual Basic

© National Instruments Corporation 3-3 Getting Results with ComponentWorks

After creating this default project, you have a new option, CWProject, that
includes the ComponentWorks controls in the New Project dialog by
default. You can create additional project templates with different
combinations of controls.

Building the User Interface Using ComponentWorks
After you add the ComponentWorks controls to the Visual Basic toolbox,
use them to create the front panel of your application. To place the controls
on the form, select the corresponding icon in the toolbox and click and drag
the mouse on the form. This step creates the corresponding control. After
you create controls, move and size them by using the mouse. To move a
control, click and hold the mouse on the control and drag the control to the
desired location. To resize a control, select the control and place the mouse
pointer on one of the hot spots on the border of the control. Drag the border
to the desired size. Notice that the icons for all but the user interface
controls cannot be resized and will not be visible at run time.

Once ActiveX controls are placed on the form, you can edit their properties
using their property sheets. You can also edit the properties from within the
Visual Basic program at run time.

Using Property Sheets
After placing a control on a Visual Basic form, configure the control by
setting its properties in the Visual Basic property pages (see Figure 3-1)
and ComponentWorks custom control property pages (see Figure 3-2).
Visual Basic assigns some default properties, such as the control name and
the tab order. When you create the control, you can edit these stock
properties in the Visual Basic default property sheet. To access this sheet,
select a control and select Properties Window from the View menu, or
press <F4>. To edit a property, highlight the property value on the right
side of the property sheet and type in the new value or select it from a pull
down menu. The most important property in the default property sheet is
Name, which is used to reference the control in the program.

Edit all other properties of an ActiveX control in the custom property
sheets. To open the custom property sheets, right click on the control on the
form and select Properties... or select the controls and press <Shift-F4>.

Chapter 3 Building ComponentWorks Applications with Visual Basic

Getting Results with ComponentWorks 3-4 © National Instruments Corporation

Figure 3-1. Visual Basic Property Pages

Figure 3-2. ComponentWorks Custom Property Pages

Using Your Program to Edit Properties
You can set and read the properties of your controls programmatically in
Visual Basic. Use the name of the control with the name of the property as
you would with any other variable in Visual Basic. The syntax for setting a
property in Visual Basic is name.property = new value.

Chapter 3 Building ComponentWorks Applications with Visual Basic

© National Instruments Corporation 3-5 Getting Results with ComponentWorks

For example, if you want to change the state of an LED control during
program execution, change the Value property from True to False or
False to True.

CWButton1.Value = False

Some properties of a control can be objects that have their own properties.
In this case, specify the name of the control, sub-object, and property
separated by periods. For example, consider the following code for the
DAQ analog input (CWAI) control.

CWAI1.ScanClock.Frequency = 10000

In the above code, ScanClock is a property of the AI control and refers to
a CWAIClock object. Frequency is a property of the CWAIClock object.

You can retrieve the value of control properties from your program in the
same way. For example, you can print the value of an LED control.

Print CWButton1.Value

In Visual Basic most controls have a default property such as Value for the
Knob, Button, and Slide controls. You can access the default property of a
control by using its control name (without the property name attached).

CWSlide1 = 5.0

is programmatically equivalent to

CWSlide1.Value = 5.0

Consult the Setting the Properties of an ActiveX Control section of
Chapter 1, Introduction to ComponentWorks, for information on setting
properties programmatically, specifically with objects and properties in
collections. The Object Browser, a Visual Basic tool that is helpful with
using properties in your code, is described in detail in the Using the Object

Browser to Build Code in Visual Basic section of this chapter.

Working with Control Methods
Calling the methods of an ActiveX control in Visual Basic is similar to
working with the control properties. To call a method, add the name of the
method after the name of the control (and sub-object if applicable). For
example, you can call the Start method on the DAQ analog input control.

CWAI1.Start

Chapter 3 Building ComponentWorks Applications with Visual Basic

Getting Results with ComponentWorks 3-6 © National Instruments Corporation

Methods can have parameters that you pass to the method, and return values
that pass information back to your program. For example, the PlotY
method for the ComponentWorks Graph control has a required
parameter—the array of data to be plotted—that you must include when
you call the method. If you want to plot the data returned from an Analog
Input control, use the following line of code.

CWGraph1.PlotY ScaledData

The PlotY method has some additional parameters that are optional. These
are added after the data parameter, separated by commas, if desired.

In Visual Basic if you call a method without assigning a return variable, any
parameters passed to the method are listed after the method name,
separated by commas without parentheses.

CWAI1.AcquireData Voltages, BinaryCodes, 1.0

If you assign the return value of a method to a return variable, enclose the
parameters in parentheses.

lErr = CWAI1.AcquireData(Voltages, BinaryCodes, 1.0)

You can use the Visual Basic Object Browser to add method calls to your
program.

Developing Control Event Routines
After you configure your controls in the forms editor, write Visual Basic
code to respond to events on the controls. The controls generate these
events in response to user interactions with the controls or in response to
some other occurrence in the control. To develop the event handler routine
code for an ActiveX control in Visual Basic, double click on the control to
open the code editor, which automatically generates a default event handler
routine for the control. The event handler routine skeleton includes the
control name, the default event, and any parameters that are passed
to the event handler routine. The following code is an example of
the event routine generated for the Slide control. This event routine
(PointerValueChanged) is called when the value of the slide is changed
by the user or by some other part of the program.

Private Sub CWSlide1_PointerValueChanged(ByVal

Pointer As Long, Value As Variant)

End Sub

Chapter 3 Building ComponentWorks Applications with Visual Basic

© National Instruments Corporation 3-7 Getting Results with ComponentWorks

To generate an event handler for a different event of the same control,
double click the control to generate the default handler, and select the
desired event from the right pull-down menu in the code window, as shown
in the following illustration.

Figure 3-3. Selecting Events in the Code Window

Use the left pull-down menu in the code window to change to another
control without going back to the form window.

Using the ComponentWorks Instrument Driver DLLs in Visual Basic
The ComponentWorks Full Development System comes with a library of
instrument drivers and the Instrument Driver Factory. An instrument driver
is software that handles the details of control and communications with a
specific instrument.

An instrument driver consists of a set of high-level functions that controls
a specific programmable instrument. Each function corresponds to a
programmatic operation such as initialization, configuration, and
measurement. If you did not purchase the ComponentWorks Full
Development Kit and find that you need instrument drivers, contact
National Instruments for information on ordering drivers.

The ComponentWorks instrument drivers are compiled to 32-bit DLLs in
the Instrument Driver Factory. Before you can use any of the instrument
driver functions in your program, you must add a reference to the
instrument driver DLL to your project.

Chapter 3 Building ComponentWorks Applications with Visual Basic

Getting Results with ComponentWorks 3-8 © National Instruments Corporation

To add an instrument driver DLL to your project, select References... from
the Project menu. In the References dialog window, press the Browse
button and then move to the directory that contains the instrument driver
DLL—the default is ..\ComponentWorks\Instrument Drivers\....
Select the instrument driver DLL you wish to add to your project.

After you have added the reference to the DLL, you can use any of the
functions in the instrument driver without having to do any more
declarations. An example of a typical instrument driver function is the
initialization function for the Fluke 45 multimeter.

lerr = fl45_init(2, 1, 1, InstrID)

All the functions in each instrument driver are listed and described in the
corresponding help file that is installed with each driver. After you add the
appropriate reference to your project for using an instrument driver DLL,
use the object browser to view the functions and parameters available in
each instrument driver. Refer to the Using the Object Browser to Build

Code in Visual Basic section for more information on using the object
browser to help you build your program.

For more information about the instrument drivers and related development
tools, see the Instrument Driver Factory manual.

Using the Object Browser to Build Code in Visual Basic
Visual Basic includes a tool called the Object Browser that you can use to
work with ActiveX controls and instrument driver DLLs while creating
your program. The Object Browser displays a detailed list of the available
properties, methods, and events for a particular control, as well as the
functions of an instrument driver. It presents a three-step hierarchical view
of controls or libraries and their properties, methods, functions, and events.
To open the Object Browser, select Object Browser from the View menu,
or press <F2>.

Chapter 3 Building ComponentWorks Applications with Visual Basic

© National Instruments Corporation 3-9 Getting Results with ComponentWorks

In the Object Browser, use the top left pull-down menu to select a particular
ActiveX control file, library, or instrument driver. You can select any
currently loaded control or driver. The Classes list on the left side of the
object browser displays a list of controls, objects, and function classes
available in the selected control file or driver.

Figure 3-4 shows the ComponentWorks User Interface (UI) control file
selected in the Object Browser. The Classes list shows all the UI controls
and associated object types. Each time you select an item from the Classes
list in the Object Browser, the Members list on the right side displays the
properties, methods, and events for the selected object or class.

Figure 3-4. Viewing CWGraph in the Object Browser

When you select an item in the Members list, the prototype and description
of the selected property, method, or function are displayed at the bottom of
the Object Browser dialog box. In Figure 3-4, the CWGraph control is
selected from the list of available UI objects. For this control, the PlotY
method is selected and the prototype and description of the method appear
in the dialog box. The prototype of a method or function lists all
parameters, required and optional.

Chapter 3 Building ComponentWorks Applications with Visual Basic

Getting Results with ComponentWorks 3-10 © National Instruments Corporation

When you select a property of a control or object in the Members list which
is an object in itself, the description of the property includes a reference to
the object type of the property. For example, Figure 3-5 shows the Knob
control (CWKnob) selected in the Classes list and its Axis property
selected in the Members list.

Figure 3-5. Viewing CWKnob in the Object Browser

The Axis on the Knob control is a separate object, so the description at the
bottom of the dialog window lists the Axis property as CWAxis. CWAxis
is the type name of the Axis object, and you can select CWAxis in the
Classes list to see its properties and methods. Move from one level of the
object hierarchy to the next level using the Object Browser to explore the
structure of different controls.

The question mark (?) button at the top of the Object Browser opens the
help file to a description of the currently selected item. To find more
information about the CWGraph control, select the control in the window
and press the ? button.

Pasting Code into Your Program
If you open the Object Browser from the Visual Basic code editor, you can
copy the name or prototype of a selected property, method, or function to
the clipboard and then paste it into your program. To perform this task,
select the desired Member item in the Object Browser. Press the Copy to

Clipboard button at the top of the Object Browser or highlight the
prototype at the bottom and press <Ctrl-C> to copy it to the clipboard. Paste

Chapter 3 Building ComponentWorks Applications with Visual Basic

© National Instruments Corporation 3-11 Getting Results with ComponentWorks

it into your code window by selecting Paste from the Edit menu or pressing
<Ctrl-V>.

Use this method repeatedly to build a more complex reference to a property
of a lower-level object in the object hierarchy. For example, you can create
a reference to

CWGraph1.Axes.Item(1).ValuePairs.Item(3).Name

by typing in the name of the control (CWGraph1) and then using the Object
Browser to add each section of the property reference. Refer to the Item

Method section of Chapter 1, Introduction to ComponentWorks, for more
information about the Item method and collections.

Adding Code Using Visual Basic Code Completion
Visual Basic 5 supports automatic code completion in the code editor. As
you enter the name of a control, the code editor prompts you with the names
of all appropriate properties and methods. Try placing a control on the form
and then entering its name in the code editor. After typing the name, add a
period as the delimiter to the property or method of the control. As soon as
you type the period, Visual Basic drops down a menu of available
properties and methods, as shown in Figure 3-6.

Figure 3-6. Visual Basic 5 Code Completion

You can select from the list or properties and events by scrolling through
the list and selecting one or by typing in the first few letters of the desired
item. Once you have selected the correct item, type the next logical
character such as a period, space, equal sign, or carriage return to enter the
selected item in your code and continue editing the code.

Chapter 3 Building ComponentWorks Applications with Visual Basic

Getting Results with ComponentWorks 3-12 © National Instruments Corporation

Learning to Use Specific ComponentWorks Controls

Each ComponentWorks control and its use are described in more detail in
later chapters in this manual. However, these chapters do not discuss every
property, method, and feature of every control. The ComponentWorks
online reference contains detailed information about each control and all its
associated properties, events, and methods. Refer to the online reference to
find descriptions of the different features of a particular control. Remember
that many of the ComponentWorks controls share properties. When you
learn how to use one control, you are learning how to use others as well.

© National Instruments Corporation 4-1 Getting Results with ComponentWorks

4
Building ComponentWorks
Applications with Visual C++

This chapter describes how you can use ComponentWorks controls with
Visual C++, explains how to insert the controls into the Visual C++
environment and create the necessary wrapper classes, shows you how to
create an application compatible with the ComponentWorks controls using
the Microsoft Foundation Classes Application Wizard (MFC AppWizard)
and how to build your program using the ClassWizard with the controls,
and discusses how to perform these operations using ActiveX controls in
general.

At this point you should be familiar with the general structure of ActiveX
controls described in Chapter 1, Introduction to ComponentWorks, as well
as C++ programming and the Visual C++ environment. The individual
ComponentWorks controls are described later in this manual.

Note The descriptions and figures in this chapter apply specifically to the Visual C++ 5

environment. Although most of this information applies to Visual C++ 4.x as well,

some menu and option names and other environment components are different.

See Appendix A, Using Previous Versions of Visual Basic, Visual C++, and Delphi

with ComponentWorks, for a description of key differences between these versions

of Visual C++ as they apply to ComponentWorks.

Developing Visual C++ Applications

The following procedure explains how you can start developing Visual
C++ applications with ComponentWorks.

1. Create a new workspace or project in Visual C++.

2. To create a project compatible with the ComponentWorks ActiveX
controls, use the Visual C++ MFC AppWizard to create a skeleton
project and program.

3. After building the skeleton project, add the ActiveX controls you need
to the controls toolbar. From the toolbar, you can add the controls to
the application itself.

Chapter 4 Building ComponentWorks Applications with Visual C++

Getting Results with ComponentWorks 4-2 © National Instruments Corporation

4. After adding a control to your application, configure its properties
using its property pages.

5. While developing your program code, use the control properties and
methods and create event handlers to process different events
generated by the control.

Create the necessary code for these different operations using the
ClassWizard in the Visual C++ environment.

Creating Your Application
When developing new applications, use the MFC AppWizard to create new
project workspace so the project is compatible with ActiveX controls. The
MFC AppWizard creates the project skeleton and adds the necessary code
that enables you to add ActiveX controls to your program.

1. Create a new project by selecting New... from the File menu. The New
dialog box opens (see Figure 4-1).

Figure 4-1. New Dialog Box

2. On the Projects tab, select the MFC AppWizard (exe) and enter the
project name in the Project name field and the directory in the Location
field.

3. Click on OK to setup your project.

Chapter 4 Building ComponentWorks Applications with Visual C++

© National Instruments Corporation 4-3 Getting Results with ComponentWorks

Complete the next series of dialog windows in which the MFC
AppWizard prompts you for different project options. If you are a new
Visual C++ or the MFC AppWizard user, accept the default options
unless otherwise stated in this documentation.

4. In the first step, select the type of application you want to build.
For this example, select a Dialog based application, as shown in
Figure 4-2, to make it easier to become familiar with the
ComponentWorks controls.

Figure 4-2. MFC AppWizard—Step 1

5. Click on the Next> button to continue.

6. Enable ActiveX controls support. If you have selected a Dialog based
application, step two of the MFC AppWizard enables ActiveX

Controls support by default.

7. Continue selecting desired options through the remainder of the MFC
AppWizard. When you finish the MFC AppWizard, it builds a project
and program skeleton according to the options you specified. The
skeleton includes several classes, resources, and files, all of which can
be accessed from the Visual C++ development environment.

8. Use the Workspace window, which you can select from the View
menu, to see the different components in your project.

Chapter 4 Building ComponentWorks Applications with Visual C++

Getting Results with ComponentWorks 4-4 © National Instruments Corporation

Adding ComponentWorks Controls to the Visual C++ Controls Toolbar
Before building an application using the ComponentWorks controls, you
must load the controls into the Controls toolbar in Visual C++ from the
Component Gallery in the Visual C++ environment. When you load the
controls using the Component Gallery, a set of C++ wrapper classes
automatically generate in your project. You must have wrapper classes to
work with the ComponentWorks controls.

The Controls toolbar is visible in the Visual C++ environment only when
the Visual C++ dialog editor is active. Use the following procedure to open
the dialog editor.

1. Open the Workspace window by selecting Workspace from the View
menu.

2. Select the Resource View (second tab along the bottom of the
Workspace window).

3. Expand the resource tree and double click on one of the Dialog entries.

4. If necessary, right click on any existing toolbar and enable the Controls
option.

By adding controls to your project, you create the necessary wrapper
classes for the control in your project and add the control to the toolbox.
Use the following procedure to add new controls to the toolbar.

1. Select Project»Add To Project...»Components and Controls and,
in the following dialog, double click on Registered ActiveX Controls.

2. Select and insert registered ActiveX controls into your project and
control toolbox.

3. Select the controls you need and click the Insert button. All
ComponentWorks controls start with CW.

4. Click on OK in the following dialog windows.

5. When you have inserted all controls, click Close in the Components
and Controls Gallery.

Building the User Interface Using ComponentWorks Controls
After adding the controls to the Controls toolbar, use the controls in the
design of the application user interface. Place the controls on the dialog
form using the dialog editor. You can size and move individual controls in
the form to customize the interface. Use the custom property sheets to
configure control representation on the user interface and control behavior
at run time.

Chapter 4 Building ComponentWorks Applications with Visual C++

© National Instruments Corporation 4-5 Getting Results with ComponentWorks

To add ComponentWorks controls to the form, open the dialog editor by
selecting the dialog form from the Resource View of the Workspace
window. If the Controls toolbar is not displayed in the dialog editor, open it
by right clicking on any existing toolbar and enabling the Controls option.

To place a ComponentWorks control on the dialog form, select the desired
control in the Controls toolbar and click and drag the mouse on the form to
create the control. After placing the controls, move and resize them on the
form as needed.

After you add a ComponentWorks control to a dialog form, configure the
default properties of the control by right clicking the control and selecting
Properties to display its custom property sheets. Figure 4-3 shows the
CWGraph control property sheets.

Figure 4-3. CWGraph Control Property Sheets

So you can see immediately how different properties affect the control, a
separate window displays a sample copy of the control that reflects the
property changes as you make them in the property sheets.

Programming with the ComponentWorks Controls
To program with ComponentWorks controls, use the properties, methods,
and events of the controls as defined by the wrapper classes in Visual C++.

Note Later chapters in this manual provide more information on the most

commonly used properties, methods, and events of the individual controls.

All the properties, methods, and events of the different controls are described

in detail in the ComponentWorks online reference, which you can access from

Programs»National Instruments ComponentWorks»ComponentWorks

Reference from the Windows Start menu.

Chapter 4 Building ComponentWorks Applications with Visual C++

Getting Results with ComponentWorks 4-6 © National Instruments Corporation

Before you can use the properties or methods of a control in your Visual
C++ program, assign a member variable name to the control. This member
variable becomes a variable of the application dialog class in your project.

To create a member variable for a control on the dialog form, right click on
the control and select ClassWizard. In the MFC Class Wizard window,
activate the Member Variables tab, as shown in Figure 4-4.

Figure 4-4. MFC ClassWizard—Member Variable Tab

Select the new control in the Control IDs field and press the Add

Variable... button. In the dialog window that appears, complete the
member variable name and press OK. Most member variable names start
with m_, and you should adhere to this convention. After you create the
member variable, use it to access a control from your source code.
Figure 4-4 shows the MFC Class Wizard after member variables have been
added for a graph and analog input control.

Using Properties
Unlike Visual Basic, you do not read or set the properties of
ComponentWorks controls directly in Visual C++. Instead, the wrapper
class of each control contains functions to read and write the value of each
property. These functions are named starting with either Get or Set

Chapter 4 Building ComponentWorks Applications with Visual C++

© National Instruments Corporation 4-7 Getting Results with ComponentWorks

followed by the name of the property. For example, to set the Value
property of a slide, use the SetValue function of the wrapper class for the
Slide control. In the source code, the function call is preceded by the
member variable name of the control to which it applies.

m_Slide.SetValue(COleVariant(5.0));

All values passed to properties need to be of variant type. Convert the value
passed to the Value property to a variant using COleVariant().

Use the GetValue() function to read the value of a control or to pass a
value of a control to another part of your program. For example, pass the
value of a Slide control to a Meter control.

m_Meter.SetValue(m_Slide.GetValue());

Because the GetValue function returns its value as a variant in the
previous line of code, conversion to a variant type is not necessary.

You can view the names of all the property functions (and other functions)
for a given control in the ClassView of the Workspace window. In the
Workspace window, select ClassView and then the control for which you
want to view property functions and methods. Figure 4-5 shows the
functions for the Slide object as listed in the Workspace. These are created
automatically when you add a control to the Controls toolbar in you project.

Figure 4-5. Viewing Property Functions and Methods in the Workspace Window

Chapter 4 Building ComponentWorks Applications with Visual C++

Getting Results with ComponentWorks 4-8 © National Instruments Corporation

If you need to access a property of a control which is in itself another
object, use the appropriate property function to return the sub-object of the
control. Make a call to access the property of the sub-object. Include the
header file in your program for any new objects. For example, use the
following code to configure the Axis object of a Slide control.

#include cwaxis.h

CCWAxis Axis1;

Axis1 = m_Slide.GetAxis();

Axis1.SetMaximum(COleVariant(5.0));

You can chain this operation into one function call without having to
declare another variable.

#include cwaxis.h

m_Slide.GetAxis().SetMaximum (COleVariant(5.0));

If you need to access an object in a collection property, use the Item
method with the index of the object. Remember to include the header file
for the collection object. For example, to set the maximum of the first
y-axis on a graph, use the following code.

#include cwaxes.h

#include cwaxis.h

m_Graph.GetAxes().Item(COleVariant(2.0)).SetMaximum

(COleVariant(5.0));

Using Methods
Use the control wrapper classes to extract all methods of the control. To call
a method, append the method name to the member variable name and pass
the appropriate parameters. If the method does not require parameters, use
a pair of empty parentheses.

m_CWAI1.Start();

Most methods take some parameters as variants. You must convert any such
parameter to a variant if you have not already done so. You can convert
most scalar values to variants with COleVariant(). For example, the
PlotY method of the graph control requires three scalar values as variants.

m_Graph.PlotY (*Voltages, COleVariant(0.0),

COleVariant(1.0), COleVariant(1.0));

Note Consult Visual C++ documentation for more information about variant data types.

Chapter 4 Building ComponentWorks Applications with Visual C++

© National Instruments Corporation 4-9 Getting Results with ComponentWorks

If you need to call a method on a sub-object of a control, follow the
conventions outlined in the Using Properties section earlier in this chapter.
For example, a single plot on a graph is an object in the Plots collection,
which is an object itself in the graph control. To call PlotY on one
particular plot of your graph, use the following line of code.

m_Graph.GetPlots().Item(COleVariant(2.0)).PlotY

(*Voltages, COleVariant(0.0), COleVariant(1.0));

Using Events
After placing a control on your form, you can start defining event handler
functions for the control in your code. Events generate automatically at run
time when different controls respond to conditions, such as a user clicking
a button on the form or the data acquisition process acquiring a specified
number of points.

Use the following procedure to create an event handler.

1. Right click on a control and select ClassWizard.

2. Select the Message Maps tab and the desired control in the Object IDs
field. The Messages field displays the available events for the selected
control. (See Figure 4-6, Event Handler for the PointerValueChanged

Event of a Knob).

3. Select the event and press the Add Function... button to add the event
handler to your code.

4. To switch directly to the source code for the event handler, click on the
Edit Code button. The cursor appears in the event handler, and you can
add the functions to call when the event occurs. You can use the Edit

Code button at any time by opening the class wizard and selecting the
event for the specific control.

The following figure is an example of an event handler generated for the
PointerValueChanged event of a knob. Insert your own code in the
event handler:

void CTestDlg::OnPointerValueChangedCwknob1(long

Pointer, VARIANT FAR* Value)

{

// TODO: Add your control notification handler code here

}

Chapter 4 Building ComponentWorks Applications with Visual C++

Getting Results with ComponentWorks 4-10 © National Instruments Corporation

Figure 4-6. Event Handler for the PointerValueChanged Event of a Knob

Learning to Use Specific ComponentWorks Controls

Each ComponentWorks control and its use are described in more detail in
later chapters in this manual. However, these chapters do not discuss every
property, method, and feature of every control. The ComponentWorks
online reference contains detailed information about each control and all its
associated properties, events, and methods. Refer to the online reference to
find descriptions of the different features of a particular control. Remember
that many of the ComponentWorks controls share properties and
sub-objects. When you learn how to use one control, you are learning how
to use others.

© National Instruments Corporation 5-1 Getting Results with ComponentWorks

5
Building ComponentWorks
Applications with Delphi

This chapter describes how you can use ComponentWorks controls with
Delphi; insert the controls into the Delphi environment, set their properties,
and use their methods and events; and perform these operations using
ActiveX controls. This chapter also outlines Delphi features that simplify
working with ActiveX controls.

At this point you should be familiar with the general structure of ActiveX
controls described in Chapter 1, Introduction to ComponentWorks. The
individual ComponentWorks controls are described later in this manual.

Note The descriptions and figures in this chapter apply specifically to the Delphi 3

environment. Although most of this information applies to Delphi 2 as well, some

menu and option names and other environment components are different. See

Appendix A, Using Previous Versions of Visual Basic, Visual C++, and Delphi with

ComponentWorks, for a description of key differences between these versions of

Delphi as they apply to ComponentWorks.

If you have the original release of Delphi 3, you might experience significant

problems with ActiveX controls, but Borland offers a newer version of Delphi that

corrects most of these problems. Before using ComponentWorks with Delphi 3,

contact Borland to receive the Delphi 3 patch or a newer version.

Running Delphi Examples

To run the Delphi examples installed with ComponentWorks, you need to
import the appropriate controls into the Delphi environment. See the
section on Loading the ComponentWorks Controls into the Component

Palette for more information about loading the controls.

Chapter 5 Building ComponentWorks Applications with Delphi

Getting Results with ComponentWorks 5-2 © National Instruments Corporation

Upgrading from a Previous Version of ComponentWorks

When you upgrade ComponentWorks, you must remove the current
controls from the Delphi environment and reinsert the controls in the
Delphi environment to update the support files.

1. From the Component menu select Install Packages....

2. In the Design packages list, select Delphi User’s Components.

3. Click on Edit... and Yes in the following dialog boxes to edit the user’s
component package. The package editor lists all the components
currently installed in the user’s components package, including the
ComponentWorks controls.

4. Select each of the ComponentWorks entries and click on Remove.

5. Click on Compile to rebuild the package.

6. Close the package editor.

Developing Delphi Applications

You start developing applications in Delphi using a form. A form is a
window or area on the screen on which you can place controls and
indicators to create the user interface for your programs. The Component
palette in Delphi contains all of the controls available for building
applications. After placing each control on the form, configure the
properties of the control with the default and custom property pages.
Each control you place on a form has associated code (event handler
routines) in the Delphi program that automatically executes when the user
operates the control or the control generates an event.

Loading the ComponentWorks Controls into the Component Palette
Before you can use the ComponentWorks controls in your Delphi
applications, you must add them to the Component palette in the Delphi
environment. You need to add the controls to the palette only once because
the controls remain in the Component palette until you explicitly remove
them. When you add controls to the palette, you create Pascal import units
(header files) that declare the properties, methods, and events of a control.
When you use a control on a form, a reference to the corresponding import
unit is automatically added to the program.

Chapter 5 Building ComponentWorks Applications with Delphi

© National Instruments Corporation 5-3 Getting Results with ComponentWorks

Note Before adding a new control to the Component palette, make sure to save all your

work in Delphi, including files and projects. After loading the controls, Delphi

closes any open projects and files to complete the loading process.

Use the following procedure to add ActiveX controls to the Component
palette.

1. Select Import ActiveX Control... from the Component menu in the
Delphi environment. The Import ActiveX Control window displays a
list of currently registered controls.

Figure 5-1. Delphi Import ActiveX Control Dialog Box

2. Select the control group you want to add to the Component palette.
All ComponentWorks controls start with National Instruments.

3. After selecting the control group, click Install....

Delphi generates a Pascal import unit file for the selected .OCX file,
which is stored in the Delphi \Imports directory. If you have installed
the same .OCX file previously, Delphi prompts you to overwrite the
existing import unit file.

Chapter 5 Building ComponentWorks Applications with Delphi

Getting Results with ComponentWorks 5-4 © National Instruments Corporation

4. In the Install dialog box, click on OK to add the controls to the Delphi
user’s components package.

5. In the following dialog, click on Yes to rebuild the user’s components
package with the added controls. Another dialog box acknowledges
the changes you have made to the user’s components package, and the
package editor displays the components currently installed.

At this point, you can add additional ActiveX controls with the
following procedure.

a. Click on the Add button.

b. Select the Import ActiveX tab.

c. Select the ActiveX control you want to add.

d. Click on OK.

e. After adding the ActiveX controls, compile the user’s components
package.

If your control does not appear in the list of registered controls, click the
Add... button. To register a control with the operating system and add it to
the list of registered controls, browse to and select the OCX file that
contains the control. Most OCX files reside in the \Windows\System(32)
directory.

New controls are added to the ActiveX tab in the Components palette. You
can rearrange the controls or add a new tab to the Components palette by
right clicking on the palette and selecting Properties....

Building the User Interface
After you add the ComponentWorks controls to the Component palette, use
them to create the user interface. Open a new project, and place different
controls on the form. These controls, as part of the program user interface,
add specific functionality to the application. After placing the controls on
the form, configure their default property values through the stock and
custom property sheets.

Placing Controls
To place a control on the form, select the control from the Component
palette and click and drag the mouse on the form. Use the mouse to move
and resize controls to customize the interface, as in the following figure.
After you place the controls, you can change their default property values
by using the default property sheet (Object Inspector) and custom property
sheets.

Chapter 5 Building ComponentWorks Applications with Delphi

© National Instruments Corporation 5-5 Getting Results with ComponentWorks

Figure 5-2. ComponentWorks Controls on a Delphi Form

Using Property Sheets
Set property values such as Name in the Object Inspector of Delphi. To
open the Object Inspector, select Object Inspector from the View menu or
press <F11>. Under the Properties tab of the Object Inspector, you can set
different properties of the selected control.

Figure 5-3. Delphi Object Inspector

To open the custom property pages of a control, double click on the control
or right click on the control and select Properties.... You can edit most

Chapter 5 Building ComponentWorks Applications with Delphi

Getting Results with ComponentWorks 5-6 © National Instruments Corporation

control properties from the custom property pages. The following figure
shows the ComponentWorks Graph control property page.

Figure 5-4. ComponentWorks Graph Control Property Page

For more information about specific control properties, see the
ComponentWorks online reference.

Programming with ComponentWorks
The code for each form in Delphi is listed in the Associated Unit (code)
window. You can toggle between the form and Associated Unit window by
pressing <F12>. After placing controls on the form, use their methods in
your code and create event handler routines to process events generated by
the controls at run time.

Using Your Program to Edit Properties
You can set or read control properties programmatically by referencing the
name of the control with the name of the property, as you would any
variable name in Delphi. The name of the control is set in the Object
Inspector.

If you want to change the state of an LED control during program
execution, change the Value property from True to False or from False
to True. The syntax for setting the Value property in Delphi is
name.property: = new_value.

CWButton1.Value := True;

Chapter 5 Building ComponentWorks Applications with Delphi

© National Instruments Corporation 5-7 Getting Results with ComponentWorks

A property can be an object itself that has its own properties. To set
properties in this case, combine the name of the control, sub-object, and
property. For example, consider the following code for the DAQ CWAI
control. ScanClock is both a property of the DAQ control and an object
itself. Frequency is a property of the ScanClock object. As an object of
the DAQ control, ScanClock itself has several additional properties.

CWAI1.ScanClock.Frequency := 10000;

You can retrieve the value of a control property from your program in the
same way. For example, you can assign the scan rate of a CWAI control to
a text box on the user interface.

Edit1.Text := CWAI1.ScanClock.Frequency;

To use the properties or methods of an object in a collection, use the Item
method to extract the object from the collection. Once you extract the
object, use its properties and methods as you usually would.

CWGraph1.Axes.Item(2).Maximum := 5;

In some cases, an object can be assigned as a property to another object.
The following code assigns a Plot object of a graph to a Cursor object in
order to specify the plot the cursor is tracking.

CWGraph1.Cursors.Item(1).Plot := CWGraph1.Plots.Item(2);

Consult the Setting the Properties of an ActiveX Control section in
Chapter 1, Introduction to ComponentWorks, for more information about
setting properties programmatically.

Using Methods
Each control has defined methods that you can use in your program. To call
a method in your program, use the control name followed by the method
name.

CWAI1.Start;

Some methods require parameters, as does the following method.

CWGraph1.PlotY (data, 0.0, 1.0, True);

In most cases, parameters passed to a method are of type variant. Simple
scalar values can be automatically converted to variants and, therefore,
might be passed to methods. Arrays, however, must be explicitly declared
as variant arrays.

Chapter 5 Building ComponentWorks Applications with Delphi

Getting Results with ComponentWorks 5-8 © National Instruments Corporation

The following example plots data using the graph PlotY method.
Consult your Delphi documentation for more information about the variant
data type.

var

 vData:Variant;

begin

 // Create array in Variant

 vData := VarArrayCreate([0, 99], varDouble);

 for i := 0 to 99 do

 begin

 vData[i] := Random;

 end;

 // Plot Variant Array

 CWGraph1.PlotY (vData, 0.0, 1.0, True);

end;

Using Events
Use event handler routines in your source code to respond to and process
events generated by the different ComponentWorks controls. Events are
generated by user interaction with an object such as a knob or by other
controls (such as the DAQ controls) in response to internal conditions (for
example, completed acquisition or an error). You can create a skeleton for
an event handler routine using the Object Inspector in the Delphi
environment.

To open the Object Inspector, press <F11> or select Object Inspector from
the View menu. In the Object Inspector, select the Events tab. This tab, as
shown in the following figure, lists all the events for the selected control.
To create a skeleton function in your code window, double click on the
empty field next to the event name. Delphi generates the event handler
routine in the code window using the default name for the event handler.

Figure 5-5. Delphi Object Inspector Events Tab

Chapter 5 Building ComponentWorks Applications with Delphi

© National Instruments Corporation 5-9 Getting Results with ComponentWorks

To specify your own event handler name, click in the empty field in the
Object Inspector next to the event, and enter the function name. After the
event handler function is created, insert the code in the event handler.

Learning to Use Specific ComponentWorks Controls

Each ComponentWorks control and its use is described in more detail in
later chapters in this manual. However, these chapters do not discuss every
property, method, and feature of every control. The ComponentWorks
online reference contains detailed information about each control and all its
associated properties, methods, and events. Refer to the online reference to
find descriptions of the different features of a particular control. Remember
that many of the ComponentWorks controls share properties. When you
learn how to use one control, you are learning how to use others.

© National Instruments Corporation 6-1 Getting Results with ComponentWorks

6
Using the User Interface
Controls

This chapter describes how you can use the ComponentWorks User
Interface (UI) controls to customize your application interface; explains the
individual controls and their most commonly used properties, methods, and
events; and includes tutorial exercises that give step-by-step instructions on
using the controls in simple programs.

The UI controls include features commonly used in instrumentation and
data acquisition. You can use them to create the front end for virtually any
type of application, including finance, systems management, and many
others.

In this chapter, all examples are presented in Visual Basic. Consult
the appropriate chapter in this manual for information on using the
ComponentWorks controls in another environment. The software includes
solutions for the tutorials in Visual Basic, Visual C++, and Delphi.
You can find additional information in the online reference, available by
selecting Programs»National Instruments ComponentWorks»

ComponentWorks Reference from the Windows Start menu.

Chapter 6 Using the User Interface Controls

Getting Results with ComponentWorks 6-2 © National Instruments Corporation

What Are the UI Controls?

ComponentWorks includes five separate ActiveX controls with
instrumentation-style interface objects. Each of the ActiveX controls
represents a family of individual control styles. Table 6-1 lists the controls
and their associated styles. You can set the individual control style from
the property pages during design or through properties and methods at
run time.

Object Hierarchy and Common Objects

Most of the ComponentWorks User Interface controls are made up of a
hierarchy of less complex objects. Understanding the relationship among
the objects in a control is the key to properly programming with the control.
Dividing a control into individual objects makes it easier to work with
because each individual component has fewer parts.

Table 6-1. User Interface Control Styles

Control Control Style

CWKnob Knob
Dial
Horizontal and Vertical Meter

CWSlide Horizontal and Vertical Slide
Horizontal and Vertical Fill
ThermometerTank

CWNumEdit Numeric Edit Box

CWButton Slide Switch
Toggle Switch
Push Button
Command Button
Custom Bitmap Button
LED

CWGraph Graph
Strip Chart
Scope Chart

Chapter 6 Using the User Interface Controls

© National Instruments Corporation 6-3 Getting Results with ComponentWorks

The Knob and Slide Controls

The Knob and Slide controls are similar to each other. The Knob control
represents different types of circular displays, such as a knob, gauge, or
different types of meters. The Slide control represents different types of
linear displays, such as thermometers and tank displays. With the Knob and
Slide controls, users can input or output (display) individual or multiple
scalar values. A knob or slide can have multiple pointers on the control,
each pointer representing one scalar value.

Like other controls, the Knob and Slide are made up of a hierarchy of
objects, as shown in Figure 6-1.

Figure 6-1. Knob/Slide Control Object Hierarchy

Knob and Slide Object
The Knob and Slide objects maintain the basic attributes of the control,
such as background color and the caption. However, its most important
property is Value, which contains the value of the currently active pointer.
Although the control might have more than one pointer value (each stored
in an individual Pointer object), the Value property can hold only the value
of the selected pointer. You can select a pointer with the ActivePointer

Knob/Slide Control
Properties such as

Color, Font

Axis Object
Properties such as

AutoScale, Maximum

Pointer Object
Properties such as
Color, PointerStyle

Labels Object
Properties such as

Left, Color

Ticks Object
Properties such as
Inside, Major Ticks

Statistics Object
Properties such as

 Maximum

Value Pairs
Collection

Property: Count

Value Pair Object
Properties:

Name, Value

Pointers
Collection

Property: Count

Chapter 6 Using the User Interface Controls

Getting Results with ComponentWorks 6-4 © National Instruments Corporation

property or with your mouse. You access the Value property with the
following code.

CWKnob1.Value = 5.0

x = CWSlide1.Value

Pointers Collection
The Pointers collection contains the individual Pointer objects of the knob
or slide object. It has one read-only property, Count, which returns the
number of Pointer objects in the collection.

NumPointers = CWSlide1.Pointers.Count

Like all collections, the Pointers collection also has an Item method that
you use to access a specific pointer in the collection. To retrieve a pointer,
call the Item method and specify the (one-based) index of the pointer in
the collection.

CWKnob1.Pointers.Item(2)

Because each pointer also has a name property, you can retrieve an
individual pointer with its name rather than the index.

CWSlide1.Pointers.Item(“BoilerPressure”)

Pointer Object
The Pointer object, which is stored in the Pointers collection, represents a
single value displayed on either a knob or a slide control. The Pointer object
contains properties, such as Style and FillStyle, that affect the
graphical representation of the pointer. Usually, these properties are set
through the property pages during design, and they do not change during
program execution. If the pointer is not currently active, use its Value
property to read or set its value.

MaxLimit = CWKnob1.Pointers.Item(3).Value

CWSlide1.Pointers.Item(“BoilerPressure”).Value =

AcquiredPressure

Axis Object
The Axis object contains information about the axis scale used for a knob
(circular scale) or a slide (straight scale) and properties, such as
AutoScale, Maximum, and Minimum, that you can set and read directly.

CWKnob1.Axis.AutoScale = True

MaxValue = CWKnob1.Axis.Maximum

Chapter 6 Using the User Interface Controls

© National Instruments Corporation 6-5 Getting Results with ComponentWorks

Use the SetMinMax method to specify a new minimum and a new
maximum for the axis in one function call.

CWSlide1.Axis.SetMinMax newMin, newMax

The Axis object contains three objects—Ticks object, Labels object, and
the ValuePairs collection—described in the following sections.

Ticks Object
Use the Ticks object to specify how tick marks appear on a particular axis.
You can set properties to specify the spacing between ticks as well as major
and minor tick selection. The Tick object also controls any grid displayed
for a particular axis on the graph. Usually, Tick properties are set during
design though the property pages. If necessary, you can change them at run
time with simple property calls.

CWSlide1.Axis.Ticks.AutoDivision = False

CWKnob1.Axis.Ticks.MinorUnitsInterval = 2.0

CWGraph1.Axes.Item(1).Ticks.MajorGrid = True

Labels Object
The Labels object determines how axis labels are drawn. Labels are the
numbers displayed next to the ticks. The Label object properties specify
where to draw the labels (right, left, above, or below) and the color of
the labels.

CWSlide1.Axis.Labels.Color = vbBlue

CWKnob1.Axis.Lables.Radial = True

CWGraph1.Axes.Item(1).Labels.Above = True

ValuePairs Collection
Use the ValuePairs collection and ValuePair objects to mark specific points
on any axis with a custom label. The ValuePairs collection contains a
variable number of ValuePair objects on an axis. The Count property,
along with several other properties, define how value pairs appear
on the axis.

NumMarkers = CWSlide1.Axis.ValuePairs.Count

CWKnob1.Axis.ValuePairs.LabelType = cwVPLabelName

The ValuePairs collection has an Item method, which you can use to access
a specific ValuePair in the collection, and several other methods (Add,
Remove, RemoveAll) to dynamically manipulate the collection. The

Chapter 6 Using the User Interface Controls

Getting Results with ComponentWorks 6-6 © National Instruments Corporation

RemoveAll method deletes all objects in the collection, and the Add and
Remove methods add or remove only one value pair at a time. Specify the
index of the value pair to be deleted on the Remove method.

CWSlide1.Axis.ValuePairs.Item(2)

CWKnob1.Axis.ValuePairs.RemoveAll

CWGraph1.Axes.Item(2).ValuePairs.Remove 2

ValuePair Object

A value pair associates a symbolic name with a value and marks a specific
point on an axis. You can specify whether the value pair’s value or the
value pair’s index in the collection determines the position of the value pair
on the axis and whether the graphical representation of the value pair on the
axis is its name or value.

CWSlide1.Axis.ValuePairs.Add

n = CWSlide1.Axis.ValuePairs.Count

CWSlide1.Axis.ValuePairs.Item(n).Name = “Max”

CWSlide1.Axis.ValuePairs.Item(n).Value = 7.0

Statistics Object
The Statistics object provides access to statistical values stored by the Knob
and Slide controls. The three calculated statistics—minimum, maximum,
and mean—are updated each time a pointer value changes graphically or
programmatically. Use the Reset method to reset the minimum,
maximum, and mean values. After a reset, minimum and maximum values
are calculated using only those values collected since the last reset. The
mean is the average of the last ten values.

AverageMeasurement = CWSlide1.Statistics.Mean

CWKnob1.Statistics.Reset

Use the property pages or the Pointer mode property to continuously
display any of the statistics values for a specific pointer.

Events
When the value of a pointer on the control changes from the user interface
or the program, the PointerValueChanged event is fired. Usually, this
event updates values in the application in response to changes on the user
interface. For example, the following event handler uses a numeric edit box
to digitally display the value of a slide.

Chapter 6 Using the User Interface Controls

© National Instruments Corporation 6-7 Getting Results with ComponentWorks

Private Sub CWSlide1_PointerValueChanged(ByVal Pointer

As Long, Value As Variant)

 NumEdit1.Value = CWSlide1.Value

End Sub

The Pointer specifies the index of the pointer that has a changed value.
You also can use the PointerValueCommitted event to process changed
values after the user moves the mouse off the control.

Consult the online reference for more information about individual
properties, methods, or events.

The Numeric Edit Box Control

Use the Numeric Edit Box control to display numbers as you would
display text in a text box. Because the control includes increment and
decrement buttons, you can change the value of the control with a mouse
or touch screen. With range checking, you can preset a valid range for
the control so the application is notified if the value is set outside of the
limits. The Numeric Edit Box control has no other objects in its hierarchy.
All properties and methods are contained in the control itself.

Value, the most commonly used property, reads and sets the value of the
Numeric Edit Box control.

CWNumEdit1.Value = 5.0

x = CWNumEdit1.Value

With the Minimum, Maximum, and RangeChecking properties, you can
configure the range checking process.

CWNumEdit1.Maximum = 5.0

CWNumEdit1.RangeChecking = True

Use the SetMinMax method to set the upper and lower limit of the range.

CWNumEdit1.SetMinMax -10,10

Events
The Numeric Edit Box control has three key events: ValueChanged,
ValueChanging, and IncDecButtonClicked.

ValueChanged is fired every time the value of the control has been
changed from the program or user interface.

Chapter 6 Using the User Interface Controls

Getting Results with ComponentWorks 6-8 © National Instruments Corporation

ValueChanging is fired when the value of the control changes, before the
new value is set in the control. The event returns parameters for the new
value with range checking, the attempted value, and the previous value.
NewValue is passed by reference so the code in the event routine can revise
the value before it is set in the control. You only need to set NewValue if
you want to change the value stored in the control.

Private Sub CWNumEdit1_ValueChanging(NewValue As

Variant,ByVal AttemptedValue As Variant, ByVal

PreviousValue As Variant,ByVal OutOfRange As Boolean)

If NewValue > 100 Then NewValue = NewValue + 10

End Sub

IncDecButtonClicked is fired when a user presses either the increment
or decrement button on the numeric edit box. The event returns a Boolean
parameter indicating which button was pressed.

Consult the online reference for more information about individual
properties, methods, or events.

Tutorial: Knob, Slide, and Numeric Edit Box Controls

This tutorial shows you how to use the Knob, Slide, and Numeric Edit Box
controls in an application. Most often, these control are used to display
information or to input simple data into an application. The tutorial lists the
steps necessary to integrate the controls with the program.

The Knob and Slide controls each have several different display styles. For
example, you can display a knob as a meter or dial, and the slide as a fill,
thermometer, or tank. Although each style changes the display of the
control, the programmatic functionality of the control remains constant.
Continue to use property sheets, event functions, and the properties and
methods the same way.

This tutorial uses Visual Basic syntax, but the discussion is in general terms
so you can follow it in any compatible programming environment.
Remember to adjust any code to your specific programming language.
Refer to the Building ComponentWorks Applications chapters for
information about implementing any step in different programming
environments. You also can refer to the tutorial examples installed with
ComponentWorks for a completed version of this example in several
different programming environments.

Chapter 6 Using the User Interface Controls

© National Instruments Corporation 6-9 Getting Results with ComponentWorks

Designing the Form

1. Open a new project and form. If you are working in Visual C++, select
a dialog-based application and name your project SimpleUI.

2. Load the ComponentWorks user interface controls (specifically, the
Numeric Edit Box, Knob, and Slide) into your programming
environment.

3. From the toolbox or toolbar, place a CWKnob (knob) control on the
form. Keep its default name, CWKnob1.

4. Place a CWSlide (slide) control on the form. Keep its default name,
CWSlide1. Open its property page and select the Vertical Fill
style. You also can change other properties, such as fill color.

5. Place a CWNumEdit (numerical edit box) control near the knob on the
form. Keep its default name, CWNumEdit1. Keep its default property
values.

6. Place another CWNumEdit (numerical edit box) control near the slide
on the form. Change its name from CWNumEdit2 to
CWSlideDisplay. To change the name in Visual Basic, use the
default property sheet (press <F4>). In Visual C++, open the custom
property sheets. In Delphi, use the Object Inspector (press <F11>).
Open its custom property sheet, under the Style tab, select the
Indicator Control Mode, and unselect the Visible property of the
Inc/Dec Button. You also can change other properties, such as the font
used in the display.

Your form should look similar to the one shown below.

Figure 6-2. SimpleUI Form

Chapter 6 Using the User Interface Controls

Getting Results with ComponentWorks 6-10 © National Instruments Corporation

Developing the Program Code
This program uses the numeric edit box next to the slide (without the
increment or decrement arrows) to display the value of the slide control.
The knob is used to change the value of the slide, and the other numeric edit
box is used to change the value of the knob, thereby changing the value of
the slide.

To have your program respond when the slide value changes, add the
PointerValueChanged event for the slide. Use the Value property to
retrieve or set the current value of the controls.

1. Create a skeleton event handler for the PointerValueChanged event
of CWSlide1.

• In Visual Basic, double click on the slide control on the form to
create the CWKnob1_PointerValueChanged subroutine.

• In Visual C++, use the MFC ClassWizard to create the event
handler routine. Right click on the slide control and select
ClassWizard.

• In Delphi, use the Object Inspector to create the event handler
routine. Select the slide control, press <F11> to open the Object
Inspector, select the Events tab, and double click the empty field
next to the PointerValueChanged event.

2. Add the following code inside the event handler routine. If you are
working in Visual C++, first add a member variable for each control to
the application dialog class.

• Visual Basic:
CWSlideDisplay.Value = CWSlide1.Value

• Visual C++:
m_CWSlideDisplay.SetValue(m_CWSlide1.GetValue());

• Delphi:
CWSlideDisplay.Value:= CWSlide1.Value;

3. Repeat step 1 for the knob control.

4. Add the following code to the CWKnob1_PointerValueChanged
event routine, adjusting for your programming language:

CWSlide1.Value = CWKnob1.Value

5. Repeat step 1 for the numeric edit box (CWNumEdit1) control.

Chapter 6 Using the User Interface Controls

© National Instruments Corporation 6-11 Getting Results with ComponentWorks

6. Add the following to the CWNumEdit1_PointerValueChanged
event routine, adjusting for your programming language:

CWKnob1.Value = CWNumEdit1.Value

7. Save the project and associated files as SimpleUI.

Testing Your Program
Run the program. Notice that the slide display and associated numeric edit
box change as you turn the knob. Notice that when you change the value of
the other numeric edit box (with the increment or decrement arrows), both
the knob and slide value change.

Figure 6-3. Testing SimpleUI

The program calls the CWKnob1_PointerValueChanged function and
updates the slide control every time the value of the knob changes
while the mouse button is pressed. Because the slide control has its own
PointerValueChanged routine, the associated numeric edit box is
always updated when the value of the slide control changes. Finally,
when you change the value of the other numeric edit box, its
PointerValueChanged routine updates the value of the knob, calling
the PointerValueChanged routine of the knob, and so on.

To call the event handler routines after releasing the mouse button from the
newly selected value, use the PointerValueCommitted or MouseUp
event, rather than PointerValueChanged.

Chapter 6 Using the User Interface Controls

Getting Results with ComponentWorks 6-12 © National Instruments Corporation

The Button Control

The Button control is a simple control you can use to input or output
Boolean information or to initiate an action in your program. Because this
control is simple, it is made of only one object. Like the Knob and Slide
controls, the Button control has several different styles, including toggle
switches, LEDs, push buttons, slides, on/off buttons and custom bitmap
buttons.

The Mode property allows the button, regardless of its style, to act as a
command button, switching state when you press the button with your
mouse. Use this mode to initiate action in your program without changing
the state of the button permanently.

Figure 6-4. Button Control Modes

The most commonly used property on the button control is Value, which
you can use to set the state of the control, such as for an LED, or to read the
state of the control.

CWAlarmLED.Value = AlarmState

If (CWButton1.Value = True) Then...

Set other properties, such as OnColor, OffColor, OnText and OffText,
in the property pages during development. In the property pages, you can
select your own bitmaps to represent the on and off states of a custom
Boolean control. For example, you can create representations of valves or
heaters to depict industrial processes.

The Button control does not have any methods.

Chapter 6 Using the User Interface Controls

© National Instruments Corporation 6-13 Getting Results with ComponentWorks

Events
The most important event generated by the Button control is
ValueChanged, which notifies the application that the button value has
changed. This event is generated if the button is in switch mode (switch
value when clicked on) or in command mode (switch value until released).

Private Sub CWButton1_ValueChanged(ByVal Value As Boolean)

‘insert code to run when button is pressed

End Sub

The Graph Control

The Graph control is a flexible control used for plotting and charting data.
It can display multiple traces and support multiple cursors and Y axes.
Plotting data refers to the process of taking a large number of points and
updating one or more plots on the graph with new data. The old plot is
replaced with the new plot. Charting data appends new data points to an
existing plot over time. Charting is used with slow processes where only
few data points per second are added to the graph. When more data points
are added than can be displayed on the graph, the graph scrolls so that new
points are added to the right side of the graph while old points disappear to
the left. You can use the same Graph control for both charting and plotting.
Select between the two operations by using different methods for
displaying the data.

The Graph control is made up of a hierarchy of objects, as illustrated in
Figure 6-5, used to interact with the control programmatically. At design
time, you can manipulate properties of the individual objects through the
property pages.

The objects in the Graph control hierarchy represent the different parts
displayed on the physical representation of the graph. The three main parts
are the Axes collection and Axis objects, Plots collection and Plot objects,
and Cursors collection and Cursor objects. Additionally, the PlotTemplate
object serves as a template for new Plot objects created in the Plots
collection.

The Graph object contains the basic properties of the control, such as name,
graph frame color, plot area color, and track mode.

The Axes collection and Axis objects control the different axes on the
graph. The graph contains one X axis and a varying number of Y axes, all
of which are contained in the Axes collection.

Chapter 6 Using the User Interface Controls

Getting Results with ComponentWorks 6-14 © National Instruments Corporation

The Cursors collection and Cursor objects control the cursors on the graph.
Usually, cursors are created at design time with the property pages. You can
use cursors to mark a specific point or region on the graph or highlight
something programmatically.

Figure 6-5. Graph Control Object Hierarchy

Graph Object
The Graph object has several simple properties, such as its name and
colors, that are usually set in the property pages during design time. The
Graph object also contains other properties that affect the behavior of the
graph, generation of events, and some of its parts (such as the cursors),
including TrackMode, ChartStyle, and ChartLength. The TrackMode
property specifically determines how mouse interaction with the graph is
interpreted, and it is used to implement cursors, zooming, and panning.

Graph Control
Properties such as
PlotAreaColor, Font

Plot Template
Object

 Property: LineStyle

Axes Collection
Property: Count

Cursors Collection
Property: Count

Plots Collection
Property: Count

Labels Object
Properties such as

Left, Color

Value Pairs
Collection

Property: Count

Value Pair Object
Properties:

Name, Value

Ticks Object
Properties such as
Inside, MajorTicks

Axis Object
Properties such as

AutoScale, Maximum

Cursor Object
Properties such as
Color, PointStyle

Plot Object
Properties such as

LineColor, PointStyle

Chapter 6 Using the User Interface Controls

© National Instruments Corporation 6-15 Getting Results with ComponentWorks

Several Graph control methods are called directly on the Graph object,
including the Plot and Chart methods. These methods are called on the
Graph object to send data to multiple plots at once and on individual Plot
objects to send new data to one specific plot at a time. Use the Plot
methods to update and replace all data on the plots, and use the Chart
methods to append new data to the plots.

Plot Methods
The following three Plot methods accept data in slightly different formats:

• PlotY (yData, xFirst, xInc, bPlotPerRow) plots Y data evenly
spaced on the X axis relative to the index in the array. Using the
xFirst and xInc parameters, you can specify the X value at the first
data point and the incremental X value between data points. yData can
be a one-dimensional array that updates the first plot on the graph or a
two-dimensional array that updates the first n plots on the graph. If
bPlotPerRow is true, each row of the yData array is equivalent to
one plot; if bPlotPerRow is false, each column of the yData array
is equivalent to one plot.

• PlotXY (xyData, bPlotPerRow) plots a two-dimensional array
of data. If bPlotPerRow is true, the first row in the data array
contains the X data and subsequent rows contain plots of Y data.
If bPlotPerRow is false, the first column in the data array contains
the X data and subsequent columns contain plots of Y data.

• PlotXvsY (xData, yData, bPlotPerRow) plots a one-dimensional
or two-dimensional array of Y data against a one-dimensional array of
X data. If bPlotPerRow is true, each row of the yData array is
equivalent to one plot; if bPlotPerRow is false, each column of the
yData array is equivalent to one plot.

Depending on the programming environment, some of these parameters
might be optional. If not explicitly specified, these parameters use a
default value.

Visual Basic (Some parameters optional):

CWGraph1.PlotY Voltages

Visual C++ (All parameters required):

m_CWGraph1.PlotY (VariantArray, COleVariant(0.0),

COleVariant(1.0), COleVariant(1.0));

Delphi (All parameters required):

CWGraph1.PlotY (Voltages, 0.0, 1.0, True);

Chapter 6 Using the User Interface Controls

Getting Results with ComponentWorks 6-16 © National Instruments Corporation

Chart Methods
The following three Chart methods accept data in slightly different formats:

• ChartY (yData, xInc, bChartPerRow) charts Y data on one or more
plots relative to the index of the data. The xInc parameter determines
the X spacing between points passed to a plot. yData can be a scalar
value adding one point to the first plot, a one-dimensional array adding
n points to the first plot or one point to n plots, or a two-dimensional
array adding multiple points to multiple plots.

If bPlotPerRow is true and the yData array is one-dimensional, all
the values in the yData array are appended to a single plot; if
bPlotPerRow is false and the yData array is one-dimensional, each
value in the yData array is appended to its own plot. If bPlotPerRow
is true and the yData array is two-dimensional, each row of the
yData array is appended to its own plot; if bPlotPerRow is false and
the yData array is two-dimensional, each column of the yData array
is appended to its own plot.

• ChartXY (xyData, bChartPerRow) charts a two-dimensional array
of data. If bPlotPerRow is true, the first row in the data array
contains the X data and subsequent rows contain plots of Y data. If
bPlotPerRow is false, the first column in the data array contains the
X data and subsequent columns contain plots of Y data.

• ChartXvsY (xData, yData, bChartPerRow) charts a one- or
two-dimensional array of Y data against a one-dimensional array of X
data. If bPlotPerRow is true, each row of the yData array is
equivalent to one plot; if bPlotPerRow is false, each column of the
yData array is equivalent to one plot.

Depending on the programming environment, some of these parameters
might be optional. If not explicitly specified, these parameters use a
default value.

CWGraph1.ChartY VariantArray,,False

Plots Collection
The Plots collection is a standard collection containing Plot objects. The
collection contains one property, Count, that returns the number of Plot
objects in the collection.

NumPlots = CWGraph1.Plots.Count

Usually, all plots and their properties are defined during design in the
property pages. You can use the Add, Remove, and RemoveAll methods to
programmatically change the number of plots on the graph. When you add

Chapter 6 Using the User Interface Controls

© National Instruments Corporation 6-17 Getting Results with ComponentWorks

a plot to the collection, the new plot assumes the properties of the
PlotTemplate object (see PlotTemplate Object later in this chapter). The
Remove method requires the index of the plot you are removing.

CWGraph1.Plots.Add

CWGraph1.Plots.Remove 3

Use the Item method of the Plots collection to access a particular Plot
object in the collection.

Dim Plot1 as CWPlot

Set Plot1 = CWGraph1.Plots.Item(1)

Plot Object
The Plot object represents an individual plot on the graph. The object
contains a number of different properties that determine the display of the
plot, including LineColor, LineStyle, PointColor, and FillToBase.
You can set these properties during design in the property pages and change
them programmatically.

CWGraph1.Plots.Item(1).LineColor = vbBlue

CWGraph1.Plots.Item(1).PointStyle = cwPointAsterisk

The following code fills the space between the first and second plot on the
graph red.

CWGraph1.Plots.Item(1).FillToBase = True

Set CWGraph1.Plots.Item(1).BasePlot =

CWGraph1.Plots.Item(2)

CWGraph1.Plots.Item(1).FillColor = vbRed

Each Plot object has a set of Plot and Chart methods similar to those of
the Graph object. Calling these methods directly on the Plot object allows
you to update one individual plot on the graph without affecting the other
plots. For the PlotY, PlotXvsY, ChartY, and ChartXvsY methods, the
data arrays must be one-dimensional.

CWGraph1.Plots.Item(4).PlotY Voltages

CWGraph1.Plots.Item(2).ChartXvsY xData, yData

The protoypes for the PlotXY and ChartXY methods are as follows:

ChartXY (xyData, bXInFirstRow)

PlotXY (xyData, bXInFirstRow)

Chapter 6 Using the User Interface Controls

Getting Results with ComponentWorks 6-18 © National Instruments Corporation

With these methods, use a two-dimensional data array with exactly two
rows or two columns. If bXInFirstRow is true, the first row of the array
contains the X data and the second row of the array contains a plot of Y
data. If bXInFirstRow is false, the first column of the array contains the
X data and the second column of the array contains a plot of Y data.

CWGraph1.Plots.Item(4).PlotXY xyData, True

For detailed descriptions of these methods, see Plot Methods and Chart

Methods earlier in this chapter.

PlotTemplate Object
The PlotTemplate object is a special instance of a Plot object used to
specify the default property values of new plots. The PlotTemplate object
properties are the identical to those of the Plot object and are set through
the property pages or programmatically.

The PlotTemplate property values are used as default property values for
newly created plots when the Add method is called on the Plots collection.
If you call the Chart or Plot method on CWGraph and pass in data for
more plots than are defined in the Plots collection, the CWGraph
automatically creates enough plots for all the data. For example, if you have
defined only two plots and you call the PlotY method with data for five
plots, the previously defined two plots receive data from the first and
second rows of the array (or columns, if bPlotPerRow is false) and the
three automatically created plots receive data from the remaining three
rows of the array (or columns, if bPlotPerRow is false).

CWGraph1.PlotTemplate.LineColor = vbRed

Cursors Collection
The Cursors collection is a standard collection containing Cursor objects.
To move the cursors with your mouse while running an application, the
TrackMode property of the graph must be set to a value that supports this
operation. You can find valid values in the online reference under the
TrackMode topic.

The Cursors collection contains one property, Count, that returns the
number of Cursor objects in the collection.

NumCursors = CWGraph1.Cursors.Count

Chapter 6 Using the User Interface Controls

© National Instruments Corporation 6-19 Getting Results with ComponentWorks

Usually, you define all cursors and their properties during design time in
the property pages. If necessary, you can use the Add, Remove, and
RemoveAll methods to programmatically change the number of cursors on
the graph. The Remove method requires the index of the cursor you are
removing.

CWGraph1.Cursors.Add

CWGraph1.Cursors.Remove 3

Use the Item method of the Cursors collection to access a particular Cursor
object in the collection.

Dim FirstCursor as CWCursor

Set FirstCursor = CWGraph1.Cursors.Item(1)

Cursor Object
The Cursor object controls the position and other attributes of the
individual cursors on the graph. Two frequently used Cursor object
properties are XPosition and YPosition, which return or set the
position of the cursor on the graph.

x = CWGraph1.Cursors.Item(2).XPosition

CWGraph1.Cursors.Item(1).YPosition = YLimit

A cursor can be associated with a specific plot on a graph. Set this
association in the property pages or programmatically using the SnapMode
and Plot properties of the cursor. If a cursor is associated with a specific
plot, you can use the PointIndex property to set the cursor at any specific
index on the plot or to return the position of the cursor on the plot. Set the
SnapMode property with a predefined ComponentWorks constant.

CWGraph1.Cursors.Item(1).SnapMode = cwCSnapPointsOnPlot

Set CWGraph1.Cursors.Item(1).Plot =

CWGraph1.Plots.Item(1)

ptIndex = CWGraph1.Cursors.Item(1).PointIndex

In Visual C++ and Delphi, this constant is defined in a separate header file
that you must include in your program.

Chapter 6 Using the User Interface Controls

Getting Results with ComponentWorks 6-20 © National Instruments Corporation

Axes Collection
The Axes collection is a standard collection containing all the Axis objects
of the graph. A graph has one X axis and a varying number of Y axes. You
can determine the number of Y axes at design time and can change them
programmatically at run time. These different Axis objects are contained in
the Axes collection and can be referenced by index. Usually, the X axis is
at index one, and the Y axes are at subsequent indices.

The Axes collection has the property Count, which returns the number of
Axis objects in the collection.

NumAxes = CWGraph1.Axes.Count

Usually, you define all axes and their properties at design time in the
property pages. If necessary you can use the Add, Remove, and RemoveAll
methods to programmatically change the number of axes on the graph.
The Remove method requires the index of the axis you are removing.

CWGraph1.Axes.Add

CWGraph1.Axes.Remove 3

Use the Item method of the Axes collection to access a particular Axis
object in the collection.

Dim xAxis as CWAxis

Set xAxis = CWGraph1.Axes.Item(1)

Axis Object
The Axis object contains all the properties of the individual axes on the
graph and is identical to the Axis object used on the Knob and Slide
controls. The Axis object and its parts are described in detail in the The

Knob and Slide Controls section earlier in this chapter.

Chapter 6 Using the User Interface Controls

© National Instruments Corporation 6-21 Getting Results with ComponentWorks

Events
The graph generates a number of different events that enable your
application to react to user interaction with the graph. The graph
automatically processes certain mouse actions such as panning and
zooming, for which you do not need to develop any event handler routines.

The TrackMode property, which you can set through the property pages or
programmatically, determines the type of events generated and other
automatic processing. Some common modes on the graph generate events
for mouse interaction with cursors, plots, and the plot area, as well as
moving cursors and panning and zooming the graph.

To move the cursors with the mouse during program execution, set the
TrackMode property to a compatible value using either the property pages
or your program.

CWGraph1.TrackMode = cwGTrackDragCursor

In track mode, the graph generates the CursorChange event when any
cursor moves. This event can initiate a response action in your application.

Private Sub CWGraph1_CursorChange(CursorIndex As Long,

XPos As Variant, YPos As Variant, bTracking As Boolean)

xDisplay = XPos

yDisplay = YPos

End Sub

Panning and Zooming
You can use the TrackMode property to specify panning and zooming
modes on the graph. Panning is useful when the graph displays only a
subset of the data that has been plotted. If you enable panning, the user can
scroll through all data plotted on the graph, essentially shifting the graph’s
display to different portions of the plot. You can enable panning for both or
either of the X and Y axes.

CWGraph1.TrackMode = cwGTrackPanPlotAreaXY

Users can use zooming to enlarge or diminish a portion of the plot
displayed by the graph. For example, if the user zooms on a section of a
plot, the graph displays a smaller portion of the plot in the same amount of
display area, which enlarges the detail of that section.

CWGraph1.TrackMode = cwGTrackZoomRectXY

Chapter 6 Using the User Interface Controls

Getting Results with ComponentWorks 6-22 © National Instruments Corporation

Tutorial: Graph and Button Controls

This tutorial shows you how to integrate the Button and Graph controls in
a simple application.

The button control has several different display styles but maintains a single
set of property sheets, event functions, and style of interaction with the
program. You can use the Button control as an input or output. When using
it as an input, create a push button or a switch to initiate an action or switch
between actions. For an output, create an LED to indicate a Boolean
condition.

The Graph is the most complex of the user interface objects. You can use it
in two basic modes—Plot or Chart. You can select the mode by using
different methods in your program to pass data to the graph.

This tutorial uses Visual Basic syntax, but the discussion is in general terms
so you can follow it in any compatible programming environment.
Remember to adjust any code to your specific programming language.
Refer to the Building ComponentWorks Applications chapters for
information about implementing any step in different programming
environments. You also can refer to the tutorial examples installed with
ComponentWorks for a completed version of this example in several
different programming environments.

Designing the Form

1. Open a new project and form. If you are working in Visual C++, select
a dialog-based application and name your project
ButtonGraphExample.

2. Load the ComponentWorks user interface controls (specifically the
Button and Graph) into your programming environment.

3. Place a ComponentWorks Graph control (shown at left) on the form.
Keep its default name, CWGraph1. Open the Graph control property
page and, in the Axes tab, disable autoscaling and change the X-axis
range to 0 (minimum) and 20 (maximum). Examine other tabs.

For more information about some of the advanced features, refer to
Chapter 12, Building Advanced Applications, and the online reference.

Chapter 6 Using the User Interface Controls

© National Instruments Corporation 6-23 Getting Results with ComponentWorks

4. Place two ComponentWorks buttons (shown at left) on the form.
Change their name property to Chart and Plot in the default property
sheets in Visual Basic and Delphi Object Inspector or the custom
property pages in Visual C++.

In the custom property pages, change each of their styles to Command
Button. In the Button tab of the property sheets, change the On Text
and Off Text to Chart for the first button and Plot for the second
button.

5. Place another ComponentWorks button on the form. Change its name
to ChartSelect. Leave its style as Vertical Toggle.

6. Place two Visual Basic labels next to the toggle button and change their
caption properties so that the up state of the switch is labeled Scope
Chart and the down state Strip Chart.

Your form should look similar to the one shown below.

Figure 6-6. ButtonGraphExample Form

Chapter 6 Using the User Interface Controls

Getting Results with ComponentWorks 6-24 © National Instruments Corporation

Developing the Code
Develop the code so that data is either plotted or charted on the graph in
response to pressing the appropriate buttons.

1. Define an event handler routine for the Plot button to be called when
the button is pressed. In the event handler the program creates an array
of 20 points and plots it on the graph.

Generate the event handler routine for the Click event of the Plot
button. Add the following code to the Plot_Click subroutine. In
Visual C++, remember to generate member variables for any controls
referenced in the program. See the online tutorial programs for
Visual C++ and Delphi code examples.

Private Sub Plot_Click()

Dim data(0 To 20) As Double

CWGraph1.Axes.Item(1).Maximum = 20

CWGraph1.Axes.Item(1).Minimum = 0

For i = 0 To 20

data(i) = Rnd * 10#

Next i

CWGraph1.PlotY data, 0, 1, True

End Sub

This code generates an array of 20 random numbers. The PlotY
method then replaces any data on the plot and plots the new data
starting at zero on the X axis. To ensure that the new data appears on
the graph, the minimum and maximum values of the X axis
(CWGraph1.Axes.Item(1)) are reset to 0 and 20. This routine uses
a one-dimensional array with the PlotY method to generate one trace.
You also can use a two-dimensional array to generate multiple traces.

2. Generate the event handler routine for the Click event of the Chart
button, which charts some random data on the graph when pressed.
Add the following code to the Chart_Click subroutine:

Private Sub Chart_Click()

Dim data As Double

For i = 0 To 59

data = Rnd * 10#

CWGraph1.ChartY data, 1, True

Next i

End Sub

Chapter 6 Using the User Interface Controls

© National Instruments Corporation 6-25 Getting Results with ComponentWorks

The Chart_Click subroutine performs a similar action to
Plot_Click, except that Chart_Click generates random points and
charts them individually. When the ChartY method is called, it
appends the new data to the data already on the graph. If you add only
one point at a time, you can use a scalar value or a one-dimensional
array to pass multiple points to the trace. Use a two-dimensional array
to chart multiple traces.

3. The ChartStyle property on the graph sets the charting style. This
example uses the toggle switch to switch between the two charting
styles. To have your program respond when the user switches styles,
add the ChartSelect_ValueChanged event handler routine for the
switch. Use the Value property of the switch to retrieve or set the
current value of the control.

Generate the event handler routine for the ValueChanged event of the
switch. Add the following code. In Visual C++ and Delphi, include the
appropriate header files to define the constant values.

Private Sub ChartSelect_ValueChanged(ByVal Value

As Variant)

If ChartSelect.Value = True Then

CWGraph1.ChartStyle = cwChartScope

Else

CWGraph1.ChartStyle = cwChartStrip

End If

End Sub

4. Save the project and form as ButtonGraphExample.

Testing Your Program
Run and test the program. Notice the difference between the Plot, Strip
Chart, and Scope Chart options.

PlotY and ChartY are the two most common methods for passing data
to the graph. However, there are two more Plot methods (PlotXY and
PlotXvsY) and two more Chart methods (ChartXY and ChartXvsY) that
affect how data is displayed on the graph. For more information about
these methods, see The Graph Control earlier in this chapter or the online
reference. Refer to Chapter 12, Building Advanced Applications, for
more information about advanced graph features such as cursors and
multiple axes.

© National Instruments Corporation 7-1 Getting Results with ComponentWorks

7
Using the Data Acquisition
Controls

This chapter describes how you can use the ComponentWorks Data
Acquisition (DAQ) controls in your application to perform input and output
operations using your DAQ hardware. It explains the individual controls
and their most commonly used properties, methods, and events and
includes tutorials that give step-by-step instructions on using the controls in
simple programs.

Refer to the Building ComponentWorks Applications chapters for
information about using the ComponentWorks controls in different
programming environments. Use the online reference (available by
selecting Programs»National Instruments ComponentWorks»

ComponentWorks Reference from the Windows Start menu) to find
information about each control and its properties, methods, and events.

What Are the Data Acquisition Controls?

Use the DAQ controls to program your DAQ hardware. ComponentWorks
includes nine ActiveX controls for performing DAQ operations as well as
a utility control that contains other DAQ support functions. Each control is

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-2 © National Instruments Corporation

used for one specific type of operation such as analog input, analog output,
and so on. The following is a list of the DAQ controls:

You can set most properties through property pages as you design your
program. Property pages are the best place to become familiar with the
different properties of a control. In certain cases, you might need to change
the value of one or more properties in your program code. Throughout this
chapter, examples demonstrate how to change property values
programmatically.

Data Acquisition Configuration

Before you can use your National Instruments data acquisition hardware
with the ComponentWorks DAQ controls you must configure your DAQ
device using the NI-DAQ driver configuration utility. Make sure that you
follow the directions in the NI-DAQ driver documentation (online) to
properly configure the hardware. You also can test the hardware and
perform simple input/output operations with the configuration utility. Once
a data acquisition device is configured, it is assigned a device number that
you use to reference the device in your application. Select the device and
device number in the property pages of each control.

DAQ Control Operation

CWAIPoint Single Point Analog Input

CWAI Waveform Analog Input

CWAOPoint Single Point Analog Output

CWAO Waveform Analog Output

CWDIO Single Point Digital Input/Output

CWDI Waveform Digital Input

CWDO Waveform Digital Output

CWCounter Data Acquisition Counter Functions

CWPulse Data Acquisition Pulse Generation Functions

CWDAQTools Data Acquisition Utilities

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-3 Getting Results with ComponentWorks

Object Hierarchy and Common Properties

Some of the ComponentWorks Data Acquisition controls are made up
of a hierarchy of less complex individual objects. Understanding the
relationship among the objects in a control is the key to properly
programming with the control. Dividing a control into individual objects
makes it easier to work with because each individual component has fewer
parts.

The top-level object of each DAQ control shares common properties, as
described in the following sections.

Device, DeviceName, and DeviceType
Each control has a Device property that you use to select the hardware
device used by the control. You can set this property from a pulldown menu
in the property pages of each control, or you can set it programmatically.

CWAI1.Device = 2

DeviceName and DeviceType are read-only properties that return the
name and type number of the selected device. The name of a device is its
descriptive name, such as AT-MIO-64E-3. The type number is a unique
number assigned to each hardware device type in the NI-DAQ driver.
You can use these properties to control the execution of your application.

If CWAI1.DeviceType = 16 Then…

Channel Strings
Most DAQ controls have a channel string property in their object hierarchy.
Use the channel string to specify which channels on a data acquisition
device are used by a particular operation. If you use only one channel, enter
the channel number in the string.

CWAOPoint1.ChannelString = "1"

In many cases, you must specify more than one channel in a channel string.
If you want to specify a series of consecutive channels, specify the first and
last channel in your list separated by a colon.

CWAI1.Channels.Item(1).ChannelString = "1:4"

‘Specifies channel 1, 2, 3, and 4

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-4 © National Instruments Corporation

You also can specify a reverse list of consecutive channels.

CWAI1.Channels.Item(1).ChannelString = "6:3"

‘Specifies channels 6, 5, 4, and 3

Note Certain DAQ devices require that a multiple channel acquisition use a reverse list

of consecutive channels ending with channel 0. These devices include all 500-,

700-, and 1200-series devices, as well as the Lab and LPM series cards.

CWAI1.Channels.Item(1).ChannelString = "3:0"

You can specify non-consecutive channels in a channel string by listing
each channel separated by commas.

CWAIPoint1.Channels.Item(1).ChannelString = "0,1,3,5"

SCXI Channel Strings
By using a different channel string to specify your channels, you can use
the ComponentWorks DAQ controls with SCXI signal conditioning
hardware. To configure channels on an SCXI module, set the Device
property to the number of the DAQ board directly or indirectly connected
to the desired SCXI module. The channel string(s) of your controls include
information about the DAQ device channel, SCXI chassis number, SCXI
module number, and SCXI channel number. The string has the following
format.

oba!scx!mdy!z

In the SCXI channel string, a represents the DAQ device (onboard) channel
used for the acquisition (with analog input channels only), x represents the
chassis number, y the module number, and z the channel number on the
SCXI module. The onboard channel number usually is one less than the
chassis number.

CWAIPoint1.Channels.Item(1).ChannelString =

"ob0!sc1!md1!0"

‘Specifies channel 0 on module 1 in chassis 1

You can specify multiple channels on an SCXI module in a consecutive list.

CWAI1.Channels(1).ChannelString = "ob0!sc1!md3!1:5"

‘Specifies channel 1 through 5 on module 3 in chassis 1

Other combinations are listed in the following table.

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-5 Getting Results with ComponentWorks

Note All lines on a digital SCXI module are grouped into a single port. The SCXI

channel string for digital lines refer to this port 0 only. For example, sc1!md3!0.

ExceptionOnError and ErrorEventMask
DAQ controls handle error checking in a number of different ways. By
default, each DAQ control generates an exception that your programming
environment handles when an error occurs. You can disable the generation
of exceptions by setting the ExceptionOnError property to false. If
exceptions are disabled, each call to a DAQ control method returns an error
code. If the code is equal to zero, the operation completed normally. If the
value is non-zero, either a warning or error occurred and the application
should handle the condition.

Another type of error notification is the generation of error and warning
events in response to error conditions. Each event calls a corresponding
event handler routine that processes the error information. Use the
ErrorEventMask property on each DAQ control to limit the error and
warning event generation to specific operations (contexts) of the DAQ
controls. For example, by default the AI control generates an error
event only during the following contexts: cwaiReadingData,
cwaiReadingDataContinuous, and cwaiReadingDataSWAnalog.

These contexts refer to asynchronous operations, which mean the
AI control is in the process of acquiring data and returning it to the
application. Other contexts, such as cwaiStartingAcquisition or
cwaiConfiguringChannels, do not generate error events by default.
To select which contexts generate error events, add the values of the
CWAIErrorContexts constants and assign the sum to the
ErrorEventMask property.

CWAI1.ErrorEventMask = cwaiReadingData +

cwaiReadingDataContinuous + cwaiReadingDataSWAnalog +

cwaiStartingAcquisition

String Syntax Description

ob0!sc1!md2!5 Channel 5 on module 2 of SCXI chassis 1
read through onboard Channel 0.

ob0!sc1!md2!0:7 Channels 0 through 7 on module 2 read
through onboard Channel 0.

ob1!sc2!md1!20:24 Channels 20 through 24 of module 1 on
chassis 2 read through onboard Channel 1.

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-6 © National Instruments Corporation

Error handling is discussed in more detail in Chapter 12, Building

Advanced Applications.

AIPoint Control—Single Point Analog Input

Use the AIPoint control to acquire one point of data from one or more
analog input channels at a time to monitor slowly changing processes, such
as temperature. After you set the properties of the control, the application
can acquire a single scan of data using a simple method call to the AIPoint
control. A scan is defined as an acquisition of one point from each channel
in the channel list.

Figure 7-1. AIPoint Control Object Hierarchy (Single Point Analog Input)

The object hierarchy of the AIPoint control contains a Channels collection
with Channel objects and a ChannelClock object.

AIPoint Object
In addition to the default properties of each DAQ control, the AIPoint
object has one more property, ReturnDataType, that determines whether
the acquired data is returned to the application as voltage data, binary
values, or both.

AIPoint Control
Properties:

Device, ErrorEventMask

ChannelClock Object
Properties:
Frequency,

TimebaseSource

Channels Collection
Property: Count

Channel Object
Properties:

Channelstring,
UpperLimit

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-7 Getting Results with ComponentWorks

The AIPoint object has two methods, SingleRead and Reset. The
SingleRead method performs a single scan using the values set in the
control properties. The SingleRead method has two variant parameters:
data and an optional parameter, TimeLimit, which specifies the time
limit for the acquisition.

Dim data as Variant

CWAIPoint1.SingleRead data, 1.0

The data variable must be a variant and is assigned the values read. The
data is returned in the format specified by the ReturnDataType property,
either as a scalar or one-dimensional array.

When you call the SingleRead method, the hardware is configured using
the values set in the control’s properties. This configuration is done only
when necessary, such as calling SingleRead the first time or after
changing any of the properties. You also can unconfigure the control
manually using the Reset method. The control then configures the
hardware on the next acquisition.

CWAIPoint1.Reset

Channels Collection
The Channels collection exists on all analog input and analog output DAQ
controls, except the CWAOPoint control. This collection contains the
individual Channel objects that determine which hardware channels are
used by the control. The collection has a read-only property, Count, that
returns the number of Channel objects in the collection.

NumChanObjects = CWAIPoint1.Channels.Count

You can get the value of the read-only property NChannels after a control
has been configured. NChannels returns the total number of channels used
by the control. The value returned from this property is valid only when the
control is configured, which you can do using the Configure or
SingleRead method of the respective control.

NumChannels = CWAIPoint1.Channels.NChannels

Like all collections, the Channels collection has an Item method you use
to access a particular Channel object in the collection. To retrieve a Channel
object, call the Item method and specify the (one-based) index of the
channel in the collection.

CWAIPoint1.Channels.Item(2)

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-8 © National Instruments Corporation

In this way, you can programmatically change properties of individual
Channel objects. The Channels collection contains several methods that
you can use to modify the number of Channel objects in the collection. The
RemoveAll method clears the collection of all Channel objects. Use the
Remove method to delete individual Channel objects. The Add method
adds a new Channel object to the collection.

CWAIPoint1.Channels.RemoveAll

CWAIPoint1.Channels.Remove 1

CWAIPoint1.Channels.Add "1", 10, -10, cwaiDIFF, cwaiDC

Channel Object
Each Channel object contains information about one or more channels used
by a DAQ control. The individual Channel object contains properties such
as ChannelString, InputMode, UpperLimit, and LowerLimit. For
example, the ChannelString property specifies which channels are
affected by the Channel object, while the remaining properties determine
how the channels are used. You can read and set these properties
programmatically.

CWAIPoint1.Channels.Item(1).ChannelString = “0,1”

MaxVolts = CWAIPoint1.Channels.Item(1).UpperLimit

ChannelClock Object
The ChannelClock object determines the timing that the AIPoint control
uses in the actual analog-to-digital conversions within a scan. Use it to
increase the delay between the acquisitions of different channels or to
synchronize conversions with an external signal. The ChannelClock object
directly affects the conversions by allowing you to select either an internal
source and frequency or an external source and exact description of the
signal source, such as an I/O pin or RTSI pin.

By default, ComponentWorks chooses channel clock settings that should
work for most applications. You usually configure the ChannelClock in the
property pages, but you might need to change its settings from your
program. For example, you can switch to frequency mode and change the
frequency setting.

CWAIPoint1.ChannelClock.ClockSourceType =

cwaiInternalCS

CWAIPoint1.ChannelClock.Frequency = 10000

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-9 Getting Results with ComponentWorks

AI Control—Waveform Analog Input

Use the AI control to perform waveform analog input operations including
single shot and continuous acquisitions. With the AI control, you can
acquire data from one or more channels at a time and configure many
different modes, such as start and stop triggers, pause conditions, and
different channel and scan clocks. Use this control for any application that
requires fast acquisition of multiple points per channel, such as frequency
analysis. After the properties of the control are set, the application can
perform acquisitions using a number of simple method calls.

The object hierarchy of the AI control separates the functionality of the
control into individual objects. The Channels collection and Channel
objects specify the channels and channel attributes used for the acquisition.
The condition objects specify when an acquisition starts, pauses, or stops.
The clock objects specify the rate of the acquisition.

Figure 7-2. AI Control Object Hierarchy (Waveform Analog Input)

AI Control
Properties:

Device, ErrorEventMask

ChannelClock Object
Properties: Frequency,

TimebaseSource

Channels Collection
Property:

Count

StartCondition Object
Properties: Mode,
Level, Hysteresis

ScanClock Object
Properties: Frequency,

TimebaseSource

Channel Object
Properties:

Channelstring,
UpperLimit

PauseCondition Object
Properties: Mode,
Level, Hysteresis

StopCondition Object
Properties: Mode,
Level, Hysteresis

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-10 © National Instruments Corporation

AI Object
Along with the default properties of the DAQ controls, the AI object has
other properties. One property is ReturnDataType, which determines
whether the acquired data is returned to the application as voltage data,
binary values, or both. The NScans property (number of scans to acquire)
specifies the number of scans acquired in a single-shot acquisition or the
number of scans returned at a time in a continuous acquisition.

CWAI1.NScans = 5000

If the UseDefaultBufferSize property is set to False, the
NScansPerBuffer property determines the size of the acquisition buffer;
otherwise ComponentWorks automatically selects the buffer size.

The AI control uses the Channels collection and Channel object in the same
manner as the AIPoint control. See the AIPoint section earlier in this
chapter for more information about these objects. Consult the online
reference for more information about the individual properties, methods, or
events of the AI object or any of its underlying objects.

Methods and Events
The AI control has a number of simple methods for running the different
acquisition processes. The normal and recommended acquisition type is an
asynchronous acquisition, which is controlled using four different method
calls and offers the most flexibility and control over the acquisition.
Alternatively, in environments that do not support event handler routines,
you can use an additional method to perform a synchronous acquisition.

Asynchronous Acquisition
The methods to perform an asynchronous acquisition are Configure,
Start, Stop, and Reset. Use these methods to control the acquisition.
These methods do not require any parameters because acquisition
parameters are set through the control properties.

Use the Configure method to configure the DAQ driver and hardware
with the acquisition parameters. Configure must be called before the
Start method. Use the Start method to start the acquisition. Use the
Stop method only during a continuous acquisition to stop such an
acquisition. Use the Reset method to unconfigure the AI control and free
any resources reserved during configuration. You also must call the
Configure method after you change any of the control properties so that
they can take effect and after you call the Reset method so that you can
restart the acquisition.

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-11 Getting Results with ComponentWorks

Private Sub StartAcquisition_Click()

CWAI1.Configure

CWAI1.Start

End Sub

Private Sub StopAcquisition_Click()

CWAI1.Stop

End Sub

Private Sub ResetAcquisition_Click()

CWAI1.Reset

End Sub

The AI control returns data from an asynchronous acquisition by
generating an AcquiredData event. The acquired data is returned as
arrays, ScaledData and/or BinaryCodes, passed to the event handler.
You can process the data inside the event handler by displaying it on a graph
or writing it to a file.

Private Sub CWAI1_AcquiredData(ScaledData As Variant,

BinaryCodes As Variant)

CWGraph1.PlotY ScaledData

End Sub

You also can use the Read method on the AI control to read data from an
ongoing acquisition without events. Specify how many points to read from
the acquisition and supply a variant variable to return the data. You also can
use another variable of type CWAIReadSpec to specify and return
additional information about the acquisition.

Private Sub Start_Click()

CWAI1.Configure

CWAI1.Start

End Sub

Private Sub Read_Click()

Dim ReadSpec As New CWAIReadSpec

Dim data As Variant

CWAI1.Read 100, data, ReadSpec

End Sub

Synchronous Acquisition
Certain programming environments do not support event handler functions
and are therefore not suited for running an asynchronous acquisition. In
such cases, the AI control can perform a synchronous acquisition using the
AcquireData method. The AcquireData method requires you to pass in

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-12 © National Instruments Corporation

two variables for the scaled and binary data, which are used to return the
acquired data at the completion of the acquisition.

You must call the Configure method before calling AcquireData, and
you cannot run a continuous acquisition using this method. Because the
AcquireData method takes control of the program until the acquisition is
completed, you also can specify a timeout parameter in seconds that forces
the method to return in the time limit specified.

Private Sub RunAcquisition_Click()

Dim Voltages As Variant

Dim BinaryCodes As Variant

CWAI1.Configure

CWAI1.AcquireData Voltages, BinaryCodes, 5

'timeout is 5 seconds

CWGraph1.PlotY Voltages

End Sub

Error Handling
The AI control also has DAQError and DAQWarning events that can be
used for error handling.

Private Sub CWAI1_DAQError(ByVal StatusCode As Long,

ByVal ContextID As Long, ByVal ContextDescription As

String)

MsgBox "DAQ Error: " + CStr(StatusCode)

End Sub

ScanClock and ChannelClock Objects
The AI control contains both a ScanClock and ChannelClock object to
specify the scan rate and interchannel delay. These two settings apply if you
acquire multiple points of data from more than one channel. In this type of
operation, the data acquisition device performs repeated scans, in which
one scan is an acquisition of one data point from each channel in the
channel list. The timing within one scan is called the interchannel delay,
and the ChannelClock object automatically selects it. The rate at which
scans are acquired is called the scan rate and is set in the ScanClock object.
The effective acquisition rate per channel (the rate at which points on one
channel are acquired) is also the scan rate.

The ScanClock object is critical to the operation of the AI control and you
must set it for most applications. In common operations, specify an internal
frequency and set the acquisition (scan) rate in the property pages. More
complex operations can include specifying an external source for the

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-13 Getting Results with ComponentWorks

ScanClock to synchronize the acquisition with another process. You can
specify these settings in the property pages or programmatically. After the
control is configured, you can read back the actual frequency or period used
for the acquisition.

CWAI1.ScanClock.Frequency = 200

CWAI1.Configure

ScanPeriod = CWAI1.ScanClock.ActualPeriod

StartCondition, PauseCondition and StopCondition Objects
The StartCondition, PauseCondition, and StopCondition objects control
when an acquisition starts, pauses, and stops. The main property of the
Condition object is Type, which sets the overall operation of the object.
The value of the Type property determines which of the remaining
properties on the Condition object are used.

Certain condition types are supported only by specific hardware. Verify that
your data acquisition device supports the desired operation. For example,
all hardware analog conditions require specific analog trigger circuitry on
the acquisition device.

The StartCondition object controls when an acquisition is started. By
default (Type set to cwaiNoActiveCondition) the acquisition is started
immediately after the corresponding method call.

CWAI1.StartCondition.Type = cwaiNoActiveCondition

You can set the StartCondition to start the acquisition on a digital or analog
trigger. In such cases, the hardware is set to start on the corresponding
software call, but actual conversions do not start until the digital or analog
trigger arrives. You can set trigger conditions either in the property pages
or programmatically.

CWAI1.StartCondition.Type = cwaiHWAnalog

CWAI1.StartCondition.Level = 5

CWAI1.StartCondition.Hysteresis = 0.1

CWAI1.StartCondition.Source = 1

CWAI1.StartCondition.Mode = cwaiRising

The PauseCondition object controls when an ongoing acquisition is paused,
which might be done in response to an external digital or analog signal with
a limited number of data acquisition devices. The Type property can have
the following settings: None, Hardware Digital Gate, and Hardware
Analog Gate. The remaining properties of the PauseCondition specify

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-14 © National Instruments Corporation

specific pause conditions. You can pause the acquisition while above or
below a specific analog level (high and low for digital) or while inside or
outside a specific analog window.

CWAI1.PauseCondition.Type = cwaiHWAnalog

CWAI1.PauseCondition.Mode = cwaiInside

The StopCondition object controls when the acquisition is stopped. The
default mode is to stop after the acquisition buffer, set by the NScans
property on the AI control, has been filled once. You also can select to run
a continuous acquisition so the acquisition stops only on a user command
or when an error occurs. Other advanced options include stopping on a
hardware digital or analog signal or a software analog condition (single
shot or continuous). These last three types also support pretrigger scans,
which means you can specify to acquire a number of points before the stop
condition and the remainder after the stop conditions. The remaining
properties are similar to the StartCondition and PauseCondition objects.

The software analog trigger type on the StopCondition supports analog
triggering on devices that do not have an explicit hardware analog trigger
circuit. In this mode, data is continuously acquired from the data
acquisition device but returned only when it matches the specified
conditions. This mode behaves similarly to a hardware analog start trigger,
and you can run it, either as a one-shot or continuous acquisition. The
continuous software analog trigger makes it easy for you to duplicate the
operation of an oscilloscope in your application.

Tutorial: Using the AIPoint and AI DAQ Controls

This tutorial shows you how to use the AIPoint and AI controls in a simple
program to acquire one scan of data from several channels using the
AIPoint controls, how to perform a simple waveform acquisition using the
AI control, and how to display the data on a graph.

This tutorial uses Visual Basic syntax, but the discussion is in general terms
so you can follow it in any compatible programming environment.
Remember to adjust any code to your specific programming language.
Refer to the Building ComponentWorks Applications chapters for
information about implementing any step in different programming
environments. You also can refer to the tutorial examples installed with
ComponentWorks for a completed version of this example in several
different programming environments.

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-15 Getting Results with ComponentWorks

Designing the Form

1. Open a new project and form. If you are working in Visual C++, select
a dialog-based application and name your project AIExample.

2. Load the ComponentWorks User Interface controls (specifically, the
Graph, Button, and Numeric Edit Box) and the Data Acquisition
controls (specifically, the AIPoint and AI controls) into your
programming environment.

3. Place an AIPoint and AI control on your form. You configure their
properties in the next section.

4. Place a ComponentWorks Graph control on the form. Keep its default
name CWGraph1.

For information about advanced features of the Graph control, refer to
Chapter 12, Building Advanced Applications, and the online reference.

5. Place two ComponentWorks Numeric Edit Boxes on the form. Keep
their default names, CWNumEdit1 and CWNumEdit2.

6. Place two ComponentWorks buttons on the form. Change their Name
property to Acquire and Start in the default property sheets in
Visual Basic and Delphi or the custom property pages in Visual C++.

In the custom property pages, change the style of both buttons to
Command Button. Also, in the Button tab of the property pages,
change the On Text and Off Text to Acquire for the first button and
Start for the second button.

Your form should look similar to the one shown below.

Figure 7-3. AIExample Form

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-16 © National Instruments Corporation

Setting the DAQ Properties
You normally configure the default property values of the different controls
before you develop your program code. When using the DAQ controls,
most or all properties are set during design and do not change during
program execution. Method calls in your program start and stop the
acquisition processes. If necessary, you can set the properties of the DAQ
controls at run time.

1. Open the custom property pages for the AIPoint control on the form by
right clicking on the control and selecting Properties…. In the
Channels tab, select your data acquisition device from the pulldown
menu. Click the New button to add a new Channel object and set it to
channels 0 and 1. Do this by entering "0,1" in the Channels field. The
new channels are displayed in the channel list on the left side. Close
the AIPoint property pages. If necessary, reverse the order of the
channels for your DAQ device. See the Channel Strings section earlier
in this chapter for more information.

2. Open the custom property pages for the AI control on the form. In the
Channels tab, select your data acquisition device from the pulldown
menu. Click the New button to add a new Channel object and set it to
channel 1. Do this by entering "1" in the Channels field. The new
channels are displayed in the channel list on the left side. In the Clocks
tab, change the scan rate (Scans/second) to 1000. Close the AI
property pages.

Developing the Code
Next, you develop the code so that data is acquired and displayed when the
buttons are pushed.

1. For the Acquire button, define an event handler routine to be called
when the Acquire button is pressed. In the event handler, acquire one
scan of data (one point each from Channel 0 and 1) and display the two
points in the numeric edit boxes.

Generate the event handler routine for the Click event of the Acquire
button. In the event handler, declare a variable as a Variant. Pass this
variable to the SingleRead method of the AIPoint control. Then
display the data returned in the first variable in the numeric edit boxes.
Add the following code to the Acquire_Click subroutine. In
Visual C++, remember to generate member variables for any controls
referenced in the program. See the tutorials folder for Visual C++
and Delphi code examples.

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-17 Getting Results with ComponentWorks

The following code acquires a scan from Channels 0 and 1 using the
SingleRead method and returns the data in a one-dimensional array
(Volts). The two values are copied to the numeric edit boxes to be
displayed.

Private Sub Acquire_Click()

Dim Volts As Variant

CWAIPoint1.SingleRead Volts, 1

CWNumEdit1.Value = Volts(0)

CWNumEdit2.Value = Volts(1)

End Sub

2. For the Start button, define an event handler routine to be called when
the Start button is pressed. In the event handler, start an asynchronous
acquisition on the AI control. Because the acquisition is asynchronous,
the program regains control immediately after the acquisition is
started, while the acquisition continues to run in the background.

Generate the event handler routine for the Click event of the Start
button. In the event handler, call the Configure and Start methods
of the AI control. Add the following code to the Start_Click
subroutine. In Visual C++, remember to generate member variables for
any controls referenced in the program. See the Tutorial folder for
Visual C++ and Delphi code examples.

The following code starts the acquisition and then returns control to the
program.

Private Sub Start_Click

CWAI1.Configure

CWAI1.Start

End Sub

3. The AI control fires an AcquiredData event when it is ready to return
the acquired data. You must generate the corresponding event handler
to receive and process the data. In this example, plot the data on a
graph. Use the PlotY method of the Graph control to display the
returned ScaledData array.

Generate the event handler for the AcquiredData event of the AI
control and add the following line of code.

Private Sub CWAI1_AcquiredData(ScaledData As

Variant, BinaryCodes As Variant)

CWGraph1.PlotY ScaledData, 0, 1, 1

CWAI1.Reset

End Sub

4. Save the project and form as AIExample.

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-18 © National Instruments Corporation

Testing Your Program
Run and test the program. Click on the Acquire and Start buttons to
perform the acquisitions. Your application should look similar to the
following figure. The exact data displayed on the graph depends on the
signal connected to your data acquisition board.

Figure 7-4. Testing AIExample

You can enhance the waveform acquisition performed in this example by
defining more properties of the AI control. For example, you can perform
a continuous acquisition by setting the Type property of the AI control
StopCondition object to Continuous on the Conditions tab of the AI
control property pages. In continuous mode, the acquisition continues and
repeatedly returns the specified number of points in the DataAcquired
event. The AI control has a Stop method you can call to stop a continuous
acquisition.

AOPoint Control—Single Point Analog Output

Use the AOPoint control to update one or more analog output channels for
slow process control systems, such as setting a control output (for example,
the power of a heater or throughput of a valve). After you set the properties
of the control, the application can update the configured channels using a
simple method call to the AOPoint control.

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-19 Getting Results with ComponentWorks

Figure 7-5. AOPoint Control Object Hierarchy (Single Point Analog Output)

The AOPoint control contains no other objects. All properties of the control
are part of the top-level object.

AOPoint Object
The AOPoint object has several unique properties that determine the
operation of the control.

The ChannelString property, together with the UpperLimit,
LowerLimit, Reference Source, and ChannelType properties, control
the AOPoint output. You usually configure these properties through the
property pages, but you also can set them programmatically.

CWAOPoint1.ChannelString = "0,1"

CWAOPoint1.UpperLimit = 10.0

Methods
The AOPoint object has two methods: SingleWrite and Reset. The
SingleWrite method performs a single update on channels configured
for the control. The SingleWrite method has two variant parameters,
Values and Scaled.

Use the Values parameter to pass the analog values to the method to be
generated by the analog output channels. Use the optional Scaled
parameter to specify whether the analog values are passed as scaled or
binary data. By default, the information is interpreted as voltage data.

‘Update one channel

CWAOPoint1.ChannelString = "0"

CWAOPoint1.SingleWrite 5.0, True

‘Update two channels

Dim VoltsArrayData(0 to 1)

CWAOPoint2.ChannelString = "0,1"

VoltsArrayData(0) = 3.2

VoltsArrayData(1) = 6.5

CWAOPoint2.SingleWrite VoltsArrayData, True

AOPoint Control
Properties: Device,

ErrorEventMask,
ChannelString

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-20 © National Instruments Corporation

You can send the output data to the SingleWrite method as a scalar value
for updating one channel or as a one-dimensional array of values for
updating more than one channel.

When you call the SingleWrite method, the hardware is configured using
the values set in the control properties. This configuration is done only
when necessary, such as when SingleWrite is called the first time or after
changing any of the properties. You also can unconfigure the control
manually using the Reset method, which causes the control to configure
the hardware on the next SingleWrite method call.

CWAOPoint1.Reset

AO Control—Waveform Analog Output

Use the AO control to perform waveform generation operations from one
or more analog output channels on a data acquisition device. The waveform
generation can be run in a continuous or finite mode. You can configure
properties on the control such as the channels used for the waveform
generation, the frequency (update clock), and the start condition or trigger.
This control is used for applications that require dynamic analog signals,
such as testing of analog devices. After you set the properties of the control,
the application can perform output operations using a number of simple
method calls.

Figure 7-6. AOPoint Control Object Hierarchy (Waveform Analog Output)

The object hierarchy of the AO control separates the functionality of the
control into individual objects. The Channels collection and Channel

AO Control
Properties:

Device, ErrorEventMask

IntervalClock Object
Properties:
Frequency,

TimebaseSource

Channels
Collection

Property: Count

StartCondition
Object

Property: Type

UpdateClock Object
Properties:
Frequency,

TimebaseSource

Channel Object
Properties:

ChannelString,
UpperLimit

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-21 Getting Results with ComponentWorks

objects specify the channels and channel attributes used for the signal
generation. The StartCondition object specifies when a signal generation
starts, and the Clock objects specify the rate of the output.

AO Object
Use the AO object to set default properties for the DAQ controls as well as
other properties. The generated waveform data is stored in a buffer in
memory. The NUpdates property specifies how many updates are stored
in the buffer. The Infinite property is a Boolean that selects whether a
waveform generation runs continuously or stops after a finite number of
buffer outputs. In a finite generation, the NIterations property specifies
how often the data in the buffer is generated.

CWAO1.Infinite = False

CWAO1.NIterations = 10

The data buffer usually is stored in computer memory. With certain data
acquisition devices, you might be able to store the data in memory on the
DAQ device itself to enable faster output of the waveform. You can select
this type of operation using the AllocationMode property.

While a waveform generation is running, the AO control can generate
events to notify you of the progress of the output operation. Use the
ProgressInterval property to specify the frequency at which these
events are generated in number of updates.

The AO control uses the Channels collection and Channel object the same
way as the AIPoint control.

Methods and Events
The AO control has a number of methods for performing waveform
generation operations, including Configure, Write, Start, and Reset.
These methods control the output operations. Only the Write method
requires parameters.

Use the Configure method to configure the DAQ driver and hardware
with the operation parameters. Use the Write method to write an array of
voltage data to the buffer in memory before the data can be generated from
the analog output channels. Set all other parameters through the properties
of the control.

You must call Configure before the Write and Start methods. Use the
Start method to start the waveform generation that proceeds indefinitely

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-22 © National Instruments Corporation

or stops after the specified number of buffer generations. Use the Reset
method to stop a continuous generation, unconfigure the AO control, and
free any resources reserved during configuration.

You must call the Configure method after any of the control properties are
changed before they can take effect and after the Reset method is used
before restarting a waveform generation.

Private Sub Start_Click()

Dim WaveData(0 to 99) As Double

For i = 0 To 99

WaveData(i) = Sin(i / 100 * 6.28)

Next i

CWAO1.Configure

CWAO1.Write WaveData

CWAO1.Start

End Sub

Private Sub Stop_Click()

CWAO1.Reset

End Sub

The AO control fires the Progress event while the output operation is
running. The event notifies your application that a specific number of
updates has been performed on the output. Set the frequency at which the
event is generated in the ProgressInterval property. You can use the
event to update your front panel to check the progress of the waveform
generation.

Private Sub CWAO1_Progress(ByVal ScansGenerated As Long)

Text1.Text = ScansGenerated

End Sub

The AO control also has DAQError and DAQWarning events you can use
for error handling.

Private Sub CWAO1_DAQError(ByVal StatusCode As Long,

ByVal ContextID As Long, ByVal ContextDescription

As String)

MsgBox "DAQ Error: " + CStr(StatusCode)

End Sub

UpdateClock and IntervalClock Objects
The AO control contains both an UpdateClock (commonly used) and
IntervalClock (rarely used) object to specify the update rate and optional
interval delay. The UpdateClock object specifies the rate at which data

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-23 Getting Results with ComponentWorks

points are generated by the boards. Because each output channel has its
own digital-to-analog (DAC) converter, there is no delay between updates
from different channels and all channels are updated simultaneously.

You can set the update clock to use an internal frequency, a signal from
another component on the DAQ device, or an external signal. The choices
of UpdateClock sources depend on the specific DAQ device.

CWAO1.UpdateClock.ClockSourceType = cwaoInternalCS

CWAO1.UpdateClock.Frequency = 10000

The IntervalClock object is used in a limited number of applications and
is supported only on a small number of DAQ devices. When the data is
stored completely in FIFO memory on the DAQ device, the IntervalClock
object is used in a waveform generation to add a time delay in the output
between generations of the waveform data stored in the buffer. With the
IntervalClock object, you can store one cycle of a sine wave in the buffer
and generate repeated cycles of a sine wave with delays between each.
You can examine the properties of the IntervalClock object and their
possible settings in the property page.

StartCondition Object
Use the StartCondition object to specify when the waveform generation is
started. In most cases, the generation starts immediately after the Start
method is called. You can use the StartCondition object on some DAQ
devices to trigger the generation in response to an external signal or a signal
coming from another component on the device. You can use this
functionality to synchronize a waveform generation with an input operation
or other external process.

The Type property selects the overall operation of the object. The value of
the Type property determines which of the remaining properties on the
condition object are used. If the StartCondition object is set to use another
signal as the start trigger, the Source property specifies the source of the
signal. You can use other properties to specify trigger parameters, such as
the slope of the signal to trigger on or the conditions of an analog trigger.

You also can set the values of the different StartCondition properties
programmatically.

CWAO1.StartCondition.Type = cwaoAIStartTrigger

CWAO1.StartCondition.Source = "PFI0"

CWAO1.StartCondition.Level = 5

CWAO1.StartCondition.Mode = cwaoRising

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-24 © National Instruments Corporation

If you use a start trigger, the hardware is set to start the waveform
generation after the Start method is called. The actual output conversions
do not start until the specified trigger signal arrives.

Tutorial: Using the AOPoint Control

This tutorial shows how to develop a program using the AOPoint control.
To complete this tutorial, your DAQ device must have one or more analog
output channels. You can use an analog input channel of your DAQ device
to read the output voltage. If your device does not have analog inputs, you
can use an external voltmeter or oscilloscope.

This tutorial uses Visual Basic syntax, but the discussion is in general terms
so you can follow it in any compatible programming environment.
Remember to adjust any code to your specific programming language.
Refer to the Building ComponentWorks Applications chapters for
information about implementing any step in different programming
environments. You also can refer to the tutorial examples installed with
ComponentWorks for a completed version of this example in several
different programming environments.

Designing the Form

1. Open a new project and form. If you are working in Visual C++, select
a dialog-based application and name your project AOPoint.

2. Load the ComponentWorks User Interface controls (specifically, the
Graph and Slide controls) and the Data Acquisition controls
(specifically, the AOPoint and AI controls) into your programming
environment.

3. Place a ComponentWorks button on the form. In the custom property
page change the button style to On/Off Toggle Button, its On Text
to Stop, and its Off Text to Start. In the default property page,
change the Name property to Start.

4. Place a ComponentWorks Slide control on the form and change its
name to UpdateValue. On the Numeric tab of the custom property
page, change the Min and Max properties to –10 and 10.

5. Place a ComponentWorks graph on the form. On the Axis tab of the
custom property page, set the X axis range from 0 to 30 and the Y axis
range from –10 to 10.

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-25 Getting Results with ComponentWorks

6. If your DAQ device has analog input channels, place a DAQ AI control
on the form. In the property page, select the device and channel you
want to use. Set the Number of scans to acquire to 1, the Scan Clock
to Internal 10 scans/second, and the Stop Condition to
Continuous.

7. Place a DAQ AOPoint control on the form. In the custom property page
of the AOPoint control, select the device and output channel you want
to use.

Your form should look similar to the one shown below.

Figure 7-7. AOPoint Form

Developing the Code
The next step is to add the necessary code to generate the analog output and
acquire the signal using your analog input channel. If you do not have an
analog input channel on your DAQ device, exclude all calls relating to the
analog input (starting with CWAI) and use an external voltmeter to
measure your analog output.

The program updates the selected analog output channel with the value of
the slide when the slide pointer is moved. Use the Start/Stop button to start
and stop a continuous analog input operation that measures the generated
voltage.

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-26 © National Instruments Corporation

1. Use the PointerValueChanged event of the Slide control to
detect any changes and update the analog output value. Use the
SingleWrite method of the AOPoint control to update the output.

Create the event handler routine for the PointerValueChanged
event of the Slide control and add the following code to it. In Visual
C++, you first need to create a member variable for the AOPoint
control using the ClassWizard.

Private Sub UpdateValue_PointerValueChanged(ByVal

Pointer As Long, ByVal Value As Variant)

lerr = AOPoint1.SingleWrite(Value, True)

End Sub

2. To monitor the voltage being generated, run a continuous analog input
operation and chart the acquired voltage on a graph. Start and stop the
acquisition with the Start/Stop button in response to its
ValueChanged event.

Create the event handler routine for the ValueChanged event of the
button and add the following code to it. In Visual C++ you first need to
create a member variable for the AI control using the ClassWizard.
Depending on the state (Value) of the button, the event handler either
starts or stops the acquisition.

Private Sub Start_ValueChanged(ByVal Value As

Boolean)

If Value Then

CWAI1.Configure

CWAI1.Start

Else

CWAI1.Stop

End If

End Sub

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-27 Getting Results with ComponentWorks

3. While running continuously, the acquisition returns data through the
AcquiredData event of the AI control. In this event handler routine,
chart the data on the graph. The ChartY method of the graph acts like
the PlotY method, except that data is appended to the data already
displayed on the graph.

Create the event handler routine for the AcquiredData event of the
AI control and add the following code to it. In Visual C++, you first
need to create a member variable for the graph control using the
ClassWizard.

Private Sub CWAI1_AcquiredData(ScaledData As

Variant, BinaryCodes As Variant)

CWGraph1.ChartY ScaledData, 1, True

End Sub

4. You usually reset hardware operations before quitting the application,
which means stopping any ongoing acquisition and resetting the
analog output to 0 volts.

Add the following code to an event handler routine that you call when
your application is terminated. The exact name of the event varies
depending on your programming environment. In Visual Basic, you
can use the Terminate event of the Form object.

Private Sub Form_Terminate()

CWAOPoint1.SingleWrite 0, True

End Sub

5. Save your project and form as AOPoint.

Testing Your Program

1. Run the program. Remember to physically connect the analog output
to your analog input. When you toggle the Start button, the continuous
input operation starts and displays its measurement on the graph.

2. Change the value of the analog output by moving the slide. When you
move the slide, the analog output is updated and you can see the
change on the graph.

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-28 © National Instruments Corporation

Your completed running program should look similar to the one shown
below.

Figure 7-8. Testing AOPoint

When you end the program, the analog output is automatically reset to
zero volts.

Digital Controls and Hardware

Three ComponentWorks DAQ controls perform digital input and output
operations. Use the DIO control for both input and output single point
operations to update the state of any output lines or read the state of any
input lines. Use the DI control to perform buffered digital waveform input
operations, and use the DO control to perform buffered digital waveform
output (pattern generation) operations.

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-29 Getting Results with ComponentWorks

The digital I/O lines on each data acquisition device are grouped into
logical units called ports. Although they can have as few as two and as
many as 32 lines, most devices have eight lines per port. When referencing
digital lines on different controls, always specify a port number (starting
with zero per device) to select the lines you want to use. On the DIO
control, you can select individual lines of a given port to update or read.

DIO Control—Single Point Digital Input and Output
Use the DIO control to perform single-point updates or reads on the digital
lines of a data acquisition device. Typical applications using the DIO
control include controlling the state of a physical device such as a valve,
relay, or LED or reading the current state of a similar device, such as a
switch or light gate. You also can use the DIO control to generate slow
pulses to activate other parts of your system. After you set the properties of
the DIO control, your program can perform the different operations using
simple method calls to the DIO control.

The DIO control consists of a top-level object and a set of Ports and Lines
collections and objects. The Ports collection contains a number of Port
objects that represent the logical ports on the DAQ device selected in
the DIO object. After you select a device in the DIO object, all ports of
the device are represented by the control. The Lines collections contains
a Line object for each physical digital line on the device. You usually access
the Lines collection through one of the Port objects, but you also can access
it directly from the DIO object.

Depending on the device you are using, you configure all lines in a given
port for input or output operations or you might be able to configure
individual lines of a digital port for input and output operations. Devices
that allow for line configuration include all E-Series devices (except the
extended ports on the MIO-16DE-10), the PC-TIO-10, and DIO-32HS
devices.

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-30 © National Instruments Corporation

Figure 7-9. DIO Control Object Hierarchy

DIO Object
The DIO object contains an SCXIChannelString property. If you use the
DIO control with one of the SCXI-116x digital modules, enter an SCXI
channel string for this property to select the SCXI module. The string must
follow the convention for SCXI channel strings as described in the SCXI

Channel Strings section at the beginning of this chapter. Each SCXI digital
module has only one logical port (port 0) that contains all the digital lines
of the module. Therefore the port number is always zero.

CWDIO1.SCXIChannelString = “sc1!md3!0”

The DIO object also contains the Ports collection, which contains
individual Port objects. Use the Port object to configure the individual ports
on a device, including programmatic configuration of the direction of the
digital lines. Each Port object contains a Lines collection with Line objects
that you can use to access the individual digital lines of the DAQ device.
You also can access the Lines collection directly from the DIO control.
Configure the direction of individual ports and lines using the DIO control
property pages.

DIO Control
Properties:

Device, ErrorEventMask

Ports Collection
Property: Count

Port Object
Properties:

Value, Name

Lines Collection
Property: Count

Line Object
Properties:

Value, Name

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-31 Getting Results with ComponentWorks

The DIO, Port, and Line objects contain a set of common methods to
perform operations using the DIO control.

Ports Collection and Port Object
The Ports collection contains the common properties and methods of a
collection such as Count and Item. Use the Item method to access the
individual Port objects.

CWDIO1.Ports.Item(1)

Use the Port object to configure the individual digital ports on a DAQ
device. Port objects include properties such as Assignment and
LineDirection. Use these two properties to configure the direction of the
port or the lines in the port programmatically. The Assignment property
specifies whether a port is configured for input or output operations or is
line configured. In line configuration, use the LineDirection property to
specify the direction of each individual line in the port. Each bit in the
LineDirection property corresponds to a digital line. For example, bit 0
corresponds to line 0. A bit value of 1 indicates an output line and a 0
indicates an input line.

‘Configure port 2 for output

CWDIO1.Ports.Item(2).Assignment = cwdioPortOutput

‘Configure port 0, lines 0-3 for output, lines 4-7 for

input, binary 00001111 = decimal 15

CWDIO1.Ports.Item(0).Assignment =

cwdioPortLineConfigured

CWDIO1.Ports.Item(0).LineDirection = 15

Note The MIO-16DE-10 is a hybrid DIO board:

• Port 0 is 8 bits wide and line configurable.

• Port 1 does not exist.

• Ports 2, 3, and 4 are each 8 bits wide and port configurable.

Each Port object also contains a reference to a Lines collection containing
individual Line objects. Use these to configure and operate the individual
digital lines of the data acquisition device.

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-32 © National Instruments Corporation

Lines Collection and Line Object
The Lines collection has the same properties as the Ports collection and
with it you can select individual Line objects. The Line object has a Name
property that you can use to identify individual lines by name.

CWDIO1.Ports.Item(0).Lines.Item(0).Name = "Switch1"

The Assignment property of the Line object is read only. Use it to check
the current direction of a particular line.

Line0isOutput =

CWDIO1.Ports.Item(0).Lines.Item(0).Assignment

Common Properties and Methods
The DIO, Port, and Line objects have a set of common methods
(SingleRead, SingleWrite, and Update) to perform input and output
operations. In addition, the Port and Line objects include a Value property
that you use in conjunction with the Update method.

Use either the SingleRead or SingleWrite method to read or write the
current state of the digital I/O lines. SingleRead requires as a parameter
a variant that returns the value or values from the read operation.
Performing SingleRead on the DIO object returns an array of integers
where each array element represents the state of one port. The integer
represents the state of the digital lines in a port by bit, where the lowest bit
in the integer represents the state of line 0 in the port and so on. For example
an integer of value 25 (binary 00011001) indicates that the state of
lines 0, 3, and 4 are high and all the remaining lines are low. Performing
SingleRead on a Port object returns a single integer representing the state
of the port and performing SingleRead on a Line object returns a Boolean
value indicating the state of the line.

Dim vData As Variant

CWDIO1.SingleRead vData

‘Returns an array of integers

CWDIO1.Ports.Item(0).SingleRead vData

‘Returns an integer

CWDIO1.Ports.Item(0).Lines.Item(0).SingleRead vData

‘Returns a Boolean

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-33 Getting Results with ComponentWorks

You also can access the Lines collection directly from the DIO object. If
you have assigned a name to a specific digital line, you can use it as a
reference.

CWDIO1.Lines.Item("Switch1").SingleRead bState

CWDIO1.Lines.Item(14).SingleRead bState

To write to the digital output lines, use the SingleWrite method on the
DIO, Port, or Line object. This method requires you to write a parameter
containing the data to the digital lines. The form of the parameters is the
same as it would be returned from a corresponding SingleRead call.

Dim vData As Variant

‘An array of integers to write to the DIO object

vData = Array(0, 0, 0)

CWDIO1.SingleWrite vData

‘A single integer to write to a port

vData = 0

CWDIO1.Ports.Item(0).SingleWrite vData

‘A Boolean to write to a line

vData = False

CWDIO1.Ports.Item(0).Lines.Item(0).SingleWrite vData

As an alternative to reading and writing using the digital lines, use the
Value property of the Port or Line object and the Update method on the
DIO, Port, or Line object.

In the output direction, use the Value property to specify the value of a port
or line that will be written to the hardware the next time you call the
Update method. On the input side, the Value property represents the state
of the hardware lines the last time the Update method was called.

Note The Value property does not represent the current state of the digital lines.

The Value property represents a cached state of either the last input
operation or the data that will be written on the next output operation. Use
the Update method to synchronize the cached values with the hardware.
This allows you to assign new values to individual output lines and update

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-34 © National Instruments Corporation

all of them at once. You can cache the current state of a set of input lines
once and then read the values from the individual lines.

‘Input Operation

CWDIO1.Update

portVal = CWDIO1.Ports.Item(0).Value

lineVal = CWDIO1.Ports.Item(0).Lines.Item(4).Value

‘Output Operation

CWDIO1.Ports.Item(0).Lines.Item(6).Value = False

CWDIO1.Ports.Item(0).Value = newPortVal

CWDIO1.Update

DI Control—Buffered Waveform Digital Input
Use the DI control to perform buffered waveform digital input operations.
You can acquire data from your digital inputs quickly, at a rate specified by
an external signal or internal frequency. Typical applications using the
DI control include transferring digital data from an external device or
monitoring a quickly changing system. Advanced applications might
include network analyzers. After the properties of the DI control are set,
your program can perform the digital acquisition using simple method calls
to the DI control.

Figure 7-10. DI Control Object Hierarchy

The DI control consists of a top-level object and the UpdateClock object.
Most properties that determine the actions of the DI control are set on the
control itself, while the UpdateClock object determines the source for the
rate of acquisition.

Many DAQ devices do not support buffered digital acquisition, and the DI
control does not work with these devices. Other devices support only single
buffered acquisition. For these devices, you cannot use the continuous
mode. Most of these devices also require an external signal to set the
acquisition rate, and you cannot just specify an internal frequency. Devices
in the DIO-32 series support both continuous acquisitions and internal
frequency sources and can take advantage of the full range of the DI control

DO Control
Properties:

Device, ErrorEventMask

UpdateClock Object
Properties:

ClockSourceType, Frequency

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-35 Getting Results with ComponentWorks

features. Check the hardware manual of your data acquisition device for
detailed information about its capabilities.

DI Object
After setting the default DAQ properties of the DI object (such as Device),
configure the ChannelString property to specify which digital ports are
used by the DI control. You can enter the number of the port to be used or
list the ports separated by commas. Make sure the ports you specify support
the desired operation. Not all ports on a device support buffered digital
input. For example, the DIO-24 devices have three ports, but only ports 0
and 1 can be used with the DI control. Consult your hardware manual for
specific information.

You can run the DI control in either continuous or single buffer mode. In
continuous mode, data is acquired until the operation is explicitly stopped.
The single buffered operation acquires a preset number of points and stops.
Use the Continuous property to select between these two different modes.

CWDI1.Continuous = True

The NPatterns property specifies the size of the acquisition buffer, which
also equals the number of patterns acquired per port in a single buffer
acquisition. A pattern is a value acquired from a digital port that is a
numeric representation of the state of the digital lines in the port.
NPatterns is specified in number of patterns per port in the channel
list. For example, if NPatterns is set to 1000 and there are two ports in
ChannelString, the buffer contains 2000 pattern values. When the
control is ready to return data to the application, it fires the AcquiredData
event and returns the patterns in an array.

While the acquisition is running, you have the option to receive progress
events from the DI control. Set the frequency of the Progress event
in the ProgressInterval property as number of patterns acquired.
ProgressInterval must be less than or equal to NPatterns. A zero
value disables the Progress event generation. You can have the acquired
patterns returned with the event using the ProgressReturnData Boolean
property.

CWDI1.NPatterns = 1000

CWDI1.ProgressInterval = 100

CWDI1.ProgressReturnData = False

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-36 © National Instruments Corporation

UpdateClock Object
Use the UpdateClock object to set the rate used to acquire the digital pattern
into the buffer. Depending on the data acquisition device you are using, you
might need to supply a clock signal to the device, or you might be able to
select an internal rate by frequency or period. Check your hardware manual
to see what clock sources are available for your device.

The ClockSourceType property sets the source for the clock signal,
which might be the I/O connector of the device, the RTSI bus, or an internal
clock. Depending on this value, you can use other properties to further
specify the clock. If you are using an internal clock, set the acquisition rate
with the InternalClockMode and Frequency or Period properties.

CWDI1.UpdateClock.ClockSourceType = cwdioCSInternalClock

CWDI1.UpdateClock.InternalClockMode = cwdioFrequency

CWDI1.UpdateClock.Frequency = 1000

If you use the I/O connector or RTSI bus, you do not need to set any other
properties.

Methods and Events
You normally operate the DI control using its Configure, Start, and
Reset methods. None of these methods require any parameters. After you
set the properties of the control, call the Configure method to program the
driver and hardware with the current property values. Next, call the Start
method to initiate the acquisition.

Use the Reset method during a continuous acquisition to stop the
acquisition and to release any resource assigned in the Configure call.
If the control was not reset since the last acquisition, you can perform
another acquisition without calling Configure again. If any property
values are changed, you need to call Configure to implement those
changes.

Private Sub DigStart_Click()

CWDI1.Configure

CWDI1.Start

End Sub

Private Sub DigStop_Click()

CWDI1.Reset

End Sub

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-37 Getting Results with ComponentWorks

Note If the digital acquisition requires an external signal as a clock, you must

physically connect this signal to the proper line of the I/O connector of your data

acquisition card. Consult your hardware manual to determine where to connect

this signal.

The acquisition can generate two types of events. The AcquiredData
event is generated at the completion of a single buffer acquisition or at
NPatterns/2 intervals of a continuous acquisition. The AcquiredData
event is the main mechanism for returning the acquired data to the
application. Data from a one-port acquisition is returned in a
one-dimensional array; data from a multiport acquisition is returned
in a two-dimensional array.

Private Sub CWDI1_AcquiredData(Waveform As Variant)

CWGraph1.PlotY Waveform, 0, 1, True

End Sub

If the ProgressInterval property has a value other than zero and it
returns data if you set the ProgressReturnData property to True, the
Progress event is generated. Use the Progress event to retrieve data
during an acquisition or to show the progress of an acquisition on the user
interface.

Private Sub CWDI1_Progress(ByVal TotalPatterns As Long,

Waveform As Variant)

‘Show percent complete

CWSlide1.Value = TotalPatterns / CWDI1.NPatterns * 100

Text1.Text = TotalPatterns

End Sub

In programming environments that do not support event handler routines,
you can call the AcquireData method to perform a synchronous
acquisition with single buffered operations.

Private Sub SynchAcq_Click()

Dim waveform As Variant

CWDI1.Configure

CWDI1.AcquireData waveform, 5

CWGraph1.PlotY waveform, 0, 1, True

End Sub

DO Control—Buffered Waveform Digital Output
Use the DO control to perform buffered waveform digital output
operations. With the DO control, you can generate a digital stream from the
digital outputs at a rate specified by an external signal or internal frequency.
Typical applications using the DO control include generating digital test

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-38 © National Instruments Corporation

signals for testing of electronic devices, systems, and networks. You also
can use the DO control to transfer binary data from a computer to another
computer or other device. By building your application after setting the
properties of the DO control, your program can perform the digital
waveform generation using method calls to the DO control.

Figure 7-11. DO Control Object Hierarchy

The DO control consists of a top-level object and UpdateClock object. You
can set most properties that determine the actions of the DO control in the
control itself, while the UpdateClock object determines the source for the
rate of generation.

Many DAQ devices do not support buffered digital generation and the DO
control does not work with these devices. Other devices support only single
buffered generation, and you cannot use the continuous mode in the DO
control. Most of these devices also require an external signal to set the
update rate, and you cannot simply specify an internal frequency. Devices
in the DIO-32 series support both continuous acquisitions and internal
frequency sources and can take advantage of the full range of the DO
control features. Check the hardware manual of your data acquisition
device for detailed information about its capabilities.

DO Object
After setting the default DAQ properties of the DO object, configure the
ChannelString property, which specifies the digital ports used by the
DO control. Enter the number of the port to be used or list the ports
separated by commas. Make sure the ports you specify support the desired
operation. Not all ports on a device support buffered digital input. For
example, the DIO-24 devices have three ports, but only ports 0 and 1 can
be used with the DO control. Port 2 is used to connect the timing signals
required for these operations. Consult your hardware manual for specific
information.

You can run the DO control in either continuous or single buffer mode.
In the continuous mode, data is generated until you explicitly stop the

DO Control
Properties:

Device, ErrorEventMask

UpdateClock Object
Properties:

ClockSourceType, Frequency

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-39 Getting Results with ComponentWorks

operation. The single buffer operation generates a preset number of data
values stored in the control buffer once and stops. Use the Continuous
property to select between these two different modes.

CWDO1.Continuous = True

The NPatterns property specifies the size of the control buffer used to
store the output data. A pattern is a value generated from a digital port
numerically representing the state of the digital lines in the port.
NPatterns is specified in number of patterns per port in the channel list.
For example, if NPatterns is set to 1000 and there are two ports in
ChannelString, the buffer contains 2000 pattern values.

While the generation occurs, the control fires the Progress event to
indicate the status of the operation. By default, the Progress event
is only generated at the completion of a single buffer operation or
at the end of every completed half-buffer in a continuous operation.
You can set the frequency of the Progress event by disabling
the AutoSelectProgressInterval property and specifying the
ProgressInterval property in number of patterns acquired.
ProgressInterval must be less than NPatterns, and a zero value
disables the progress event generation.

CWDO1.NPatterns = 1000

CWDO1.AutoSelectProgressInterval = False

CWDO1.ProgressInterval = 100

UpdateClock Object
Use the UpdateClock object to set the update rate of the digital waveform
generation. Depending on the data acquisition device, you might need to
supply a clock signal to the device or you might be able to select an internal
rate by frequency or period. Check your hardware manual to see what clock
sources are available on your device.

The ClockSourceType property sets the source for the clock signal,
which might be the I/O connector of the device, the RTSI bus, or an
internal clock. Depending on this value, you can use other properties to
further specify the clock. If you are using an internal clock, use the
InternalClockMode and Frequency, Period, or Timebase properties
to set the update rate.

CWDI1.UpdateClock.ClockSourceType = cwdioCSInternalClock

CWDI1.UpdateClock.InternalClockMode = cwdioFrequency

CWDI1.UpdateClock.Frequency = 1000

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-40 © National Instruments Corporation

If you use the I/O connector or RTSI bus, you do not need to set any other
properties.

Methods and Events
You normally operate the DO control using its Configure, Write,
Start, and Reset methods. Only the Write method requires parameters.
After you set the properties of the control, call the Configure method to
program the driver and hardware with the current property values. Next,
call the Write method to send data to the control buffer for output. Data
should be passed as a one-dimensional array of pattern values for a single
port output and a two-dimensional array of patterns for a multiport output.
You then call the Start method to initiate the output operation.

In a single buffer output, the generation stops after it completes the buffer.
In a continuous generation, use the Reset method to stop the output and
release any resource assigned in the Configure call. If the control was not
reset since the last generation, you can perform another output without
calling Configure again. You must call Configure to implement any
changes you make to the property values.

Private Sub DigStart_Click()

Dim data(0 to 1, 0 to 99) ‘2-port output

For i = 0 To 99

data(0, i) = i ‘Port 1 data

data(1, i) = Int(Rnd * 256) ‘Port 2 data

Next i

CWDO1.Configure

CWDO1.Write data

CWDO1.Start

End Sub

Private Sub DigStop_Click()

CWDO1.Reset

End Sub

Note If your digital waveform generation requires an external signal as a clock, you

must physically connect this signal to the proper line of the I/O connector of your

data acquisition card. Consult your hardware manual to determine where to

connect this signal.

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-41 Getting Results with ComponentWorks

You also use the Write method during a continuous output to send new
data to the buffer so that it can be output from the digital lines. This new
data is usually written in half buffer sizes to the control. Use the Progress
event to determine when to write new data to the DO control. In continuous
mode, set the AllowRegeneration property to False to prevent the DO
control from generating the same data in the buffer twice.

During the digital output operation, the DO control generates a Progress
event to notify you of the completion of an output or to allow you to
monitor its progress. In a continuous generation, the Progress event is set
to fire after half the buffer is generated to prompt you to send new data to
the control. Although only half the buffer is updated at a time, data is
written to the control using the Write method.

Private Sub CWDO1_Progress(ByVal TotalPatterns As Long)

Dim data(0 to 1, 0 to 49)

For i = 0 To 49

data(0, i) = i

data(1, i) = Int(Rnd * 256)

Next i

CWDO1.Write data

End Sub

Tutorial: Using the DIO Control

This tutorial shows you how to develop a simple program that uses the DIO
control to perform single point digital inputs and outputs. Your DAQ
device must have one or more digital ports to use this example. You also
need a way to apply signals to the digital lines if you want to perform an
input or a way to display the state of any output lines. If you have two
digital ports, you can connect all the lines from one to the other so that the
input can read the state of the output lines.

This tutorial uses Visual Basic syntax, but the discussion is in general terms
so you can follow it in any compatible programming environment.
Remember to adjust any code to your specific programming language.
Refer to the Building ComponentWorks Applications chapters for
information about implementing any step in different programming
environments. You also can refer to the tutorial examples installed with
ComponentWorks for a completed version of this example in several
different programming environments.

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-42 © National Instruments Corporation

Designing the Form

1. Open a new project and form. If you are working in Visual C++, select
a dialog-based application and name your project DIO.

2. Load the ComponentWorks User Interface controls (specifically, the
Numeric Edit Box) and the Data Acquisition controls (specifically, the
DIO control) into your programming environment.

3. Place two buttons on the form. Change their captions and names
according to the following table.

4. Place two ComponentWorks Numeric Edit Box controls on the form
and change their names to InputNum and OutputNum.

5. Place two DIO controls on the form. Use the first one (CWDIO1) for
your input operations, and the second (CWDIO2) for any output
operations. You configure the DIO controls in the next section of this
tutorial.

Your form should look similar to the one shown below.

Figure 7-12. DIO Form

Developing the Code
Configure the DIO controls and add the necessary code to write an update
to the output lines or read the state of the input lines. If you use only the
input control or only the output control, follow the directions for the
appropriate task. Although there are ports on some boards that can be
configured only as one or the other, most digital ports can be configured for
either input or output.

Button Name Caption

CWButton1 Input Read Port

CWButton2 Output Write Port

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-43 Getting Results with ComponentWorks

1. Configure one DIO control for input and one for output.

Input: In the custom property page of the first DIO control, CWDIO1,
select the appropriate DAQ device. Then select (highlight) one digital
port in the list and set its direction (Port assignment) to Input. Set the
port assignment for all other ports to Unused.

Output: In the custom property page of the second DIO control,
CWDIO2, select the appropriate DAQ device. Then select one digital
port in the list and set its direction (Port assignment) to Output. Set
the port assignment for all other ports to Unused.

Depending on your device, you might be able to select the same port
for both controls. You can write to the port using one control and read
back a value with the other control without making any external
connections.

2. Use the Read Input button to read the state of the digital input port and
display the pattern value in the numeric edit control. You can read the
state of all ports at once or you can read a specific port using the DIO
control. In this example, read only the selected port to make the code
more independent of the hardware you are using.

Create an event handler for the Click event of the Input button and
add the following code. In the Item method, use the number of the
digital port you configured for input. In this example, port 1 is used.
The first port on most boards is port 0.

Private Sub Input_Click()

Dim data As Variant

CWDIO1.Ports.Item(1).SingleRead data

InputNum.Value = data

End Sub

Note If you read all ports at once, the data is returned as an array and you must access

individual array elements for the information, as in the following code. Do not add

this code to your example.

Dim data As Variant

CWDIO1.SingleRead data

InputNum.Value = data(1)

3. Use the Write Output button to set the state of the digital output port
and display the pattern value in the numeric edit control. You can write
the state of all the ports at once or you can write to a specific port using
the DIO control. In this example, write only to the selected port to
make the code more independent of the hardware you are using.

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-44 © National Instruments Corporation

Create an event handler for the Click event of the Output button and
add the following code. In the Item method, use the number of the
digital port you configured for output. In this example, port 0 is used,
which is the first port on most boards.

Private Sub Output_Click()

Dim data As Variant

data = OutputNum.Value

CWDIO2.Ports.Item(0).SingleWrite data

End Sub

Note If you want to write to all ports at once, you must pass in an array of data with a

value for each port on the device, as in the following code. Do not add this code to

your example.

Dim data As Variant

‘For a device with one port

data = OutputNum.Value

‘For a device with three ports

data = Array(OutputNum.Value, 0, 0)

CWDIO2.Ports.Item(0).SingleWrite data

4. Save your project and form as DIO.

Testing Your Program
Before you can run your program, connect a signal source to your input port
and a display or sensor to the output port. You can connect the output lines
to the input lines and use the input to measure the output.

1. Run the program. Write a value to the output port by setting a value in
the corresponding numeric edit box and pressing the Write Output
button. The value in the numeric edit box represents the pattern written
to the port. The pattern is a numeric (integer) representation of the bits
in the digital port. A value of zero means all lines are written low. A
value of 22 (binary 00010110) means lines 1, 2 and 4 are written high.
Most ports have 8 digital lines, and a value of 255 corresponds to all
lines high.

2. Read the value of the input port by pressing the Read Input
button. The pattern value is read from the port and displayed in the
corresponding numeric edit box. If you have connected all lines of the
output port to the input port, you should read the same value you
wrote out. If you read input lines that are not connected to anything
(floating), their values are not necessarily low. An open port might read
any value, not always 0.

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-45 Getting Results with ComponentWorks

3. Quit the program.

Instead of using the SingleRead and SingleWrite methods, you also
can use the Value property and Update method of the DIO control to
implement the functionality of this tutorial. The Update method can be
called on the DIO control as a whole or on the individual port.

Private Sub Input_Click()

Dim data As Variant

CWDIO1.Update

data = CWDIO1.Ports.Item(1).Value

InputNum.Value = data

End Sub

Private Sub Output_Click()

Dim data As Variant

data = OutputNum.Value

CWDIO2.Ports.Item(0).Value data

CWDIO2.Ports.Item(0).Update

End Sub

Counter/Timer Hardware

The hardware component on the DAQ device used by the Counter and
Pulse controls is called a counter/timer. Use this component to count or
measure incoming digital pulses or to generate digital pulses and pulse
trains on its output.

Each counter/timer has two inputs labeled Source and Gate and one output
labeled Out. The Source is also referred to as Clock. The counter counts
the number of digital pulses coming in on the source input. The counting
operation can be gated by a digital signal applied to the gate input.
The output of the counter generates a pulse when the counter reaches its
maximum count or zero, depending on whether it is counting up or down.
Vary parameters, such as the signals applied to the source and gate, and the
initial count of the counter and the mode used in gating to use this simple
component in a variety of different applications.

The ComponentWorks Counter and Pulse controls allow you to select from
a number of standard operations and specify applicable properties. The
properties in the controls are grouped by the I/O point of the counter that
they affect, such as source, gate, and output.

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-46 © National Instruments Corporation

Counter Control—Counting and Measurement Operations
Use the Counter control to perform counting and other measurement
operations using the counter/timer components on a data acquisition
device. Typical operations include counting a number of events, measuring
the period of an unknown pulse, or measuring the frequency of a signal.
After the properties of the control are set, the application can perform the
operation using a simple method call to the Counter control. The operation
of the Counter control is measurement-oriented, and the behavior of the
control depends on the type of measurement selected.

Figure 7-13. Counter Control Object Hierarchy

The Counter control consists of only one object—the Counter
object—which contains all the properties and methods necessary to use the
control.

Counter Object
The Counter object contains all the properties necessary to configure a
counting or measurement operation.

The Counter and MeasurementType properties affect the Counter
control as a whole. The Counter property specifies which counter/timer on
the DAQ device will be used by the control. The available counter numbers
depend on the DAQ device. The MeasurementType property selects the
type of operation the control will perform and affects the interpretation of
the remaining properties. The InitialCount property sets the value of
the counter at the start of an operation.

Counter Control
Properties such as
Device, Counter,

MeasurementType

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-47 Getting Results with ComponentWorks

Table 7-1 describes different measurement types.

Frequency and Single-Shot Pulse Width measurements can be performed
as one point (unbuffered) operations only, but the Semi-Period
measurement must be buffered.

Table 7-1. Measurement Types

Measurement

Type Description Units

One

Point

Buffered

(DAQ-STC

Only)

Event Count Counts the number of pulses on the source input. Count X X

Time Measures time by counting a known clock input. Sec X X

Frequency Measures frequency on source input by counting the number

of pulses in a known period of time.

Hertz X

Pulse Width,

High

AM9513: Measures the length of the high pulse until the next

falling edge. A partial measurement is possible if the pulse is

initially high.

DAQ-STC: Measure first pulse after next falling edge.

Sec X X

Pulse Width,

Low

AM9513: Measures the length of the low pulse until the next

rising edge. A partial measurement is possible if the pulse is

initially low.

DAQ-STC: Measures the first pulse after the next rising edge.

Sec X X

Pulse Width,

High Single-Shot

AM9513: Measures the length of the high pulse until the next

falling edge. A partial measurement is possible if the pulse is

initially high.

DAQ-STC: Measures the first complete pulse and generates an

error if the pulse is in a high state at the start.

Sec X

Pulse Width,

Low Single-Shot

AM9513: Measures the length of the low pulse until the next

rising edge. A partial measurement is possible if the pulse is

initially low.

DAQ-STC: Measures the first complete pulse and generates an

error if the pulse is in a low state at the start.

Sec X

Period, Rising

Edge

Measures the period between two rising edges on gate input by

counting a known clock.

Sec X X

Period, Falling

Edge

Measures the period between two falling edges on gate input by

counting a known clock.

Sec X X

Semi-Periods Measures the length of consecutive high and low pulses. Sec X

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-48 © National Instruments Corporation

The remaining Counter object properties directly affect one of the inputs or
outputs of the control. Properties affecting the source input include
TimebaseSource, TimebaseSignal, SourceEdge and
CountDirection.

• TimebaseSignal—Selects either a specific input pin of your board
or the internal frequency used for the source of the counter, depending
on the TimebaseSource property.

• SourceEdge—Selects whether to count rising or falling edges on the
source.

• CountDirection—Determines whether the counter counts up
or down.

Gate properties are GateMode, GateSource, GateSignal, and
GateWidth.

• GateMode—Selects the type of gating used in an operation such as
No Gating, High Level Gating, and so on.

• GateSource and GateSignal—Select the source of the gate signal.

• GateWidth—Sets the sample width of the measurement in Frequency
measurements.

Output properties are OutputMode and Polarity.

• OutputMode—Determines whether the counter output pulses or
toggles when the counter reaches its limit.

• Polarity—Determines if the output is high (active high) or low
(active low) polarity.

To become familiar with different types of measurements and properties,
browse through the custom property pages and study the different settings.
Some properties are disabled depending on the state of other properties.

Methods and Events

The Counter control has a set of simple methods to control the operation of
the counter. Call the Configure method to configure the data acquisition
driver and hardware with the current properties before starting any
operation. Call the Start method to start the measurement. If needed, you
can call the Stop method to stop the counter and the Reset method to
unconfigure the counter and release its resources for other operations. After
stopping a counter, you can restart it using just the Start method if you

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-49 Getting Results with ComponentWorks

have not called the Reset method. After resetting the counter, you must
call Configure again before restarting.

Private Sub CounterStart_Click()

CWCounter1.Configure

CWCounter1.Start

End Sub

Private Sub CounterStop_Click()

CWCounter1.Stop

CWCounter1.Reset

End Sub

Depending on the measurement, the control might fire an AcquiredData
event to indicate the completion of a measurement and return the data.
The data is returned in the Measurement parameter that is passed to the
AcquiredData event and scaled to the units indicated in the previous
table. Measurements that fire an AcquireData event are Frequency, Pulse
Width, Period, and Semi-Period.

Private Sub CWCounter1_AcquiredData(Measurement As

Variant, ByVal Overflow As Boolean)

txtPulseWidth.Text = Measurement

End

Event Count and Time measurements do not fire an event to return data.
Therefore, use the ReadCounter and ReadMeasurement methods to read
the value of your measurement. ReadCounter returns the actual count
value of the counter and usually is used in event counting operations.
ReadMeasurement returns the value scaled to the appropriate units, such
as time. Both methods require one parameter to return the measurement and
another to indicate an overflow condition in the counter.

Private Sub Timer1_Timer()

Dim lVal As Long

Dim vVal As Variant

Dim bOverflow As Boolean

CWCounter1.ReadCounter lVal, bOverflow

txtCount.Text = lVal

CWCounter1.ReadMeasurement vVal, bOverflow

txtMeas.Text = vVal

End Sub

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-50 © National Instruments Corporation

Buffered Measurements

All measurements acquire and return a single value of the selected type.
On specific data acquisition devices such as the E-Series devices, you can
perform a buffered measurement for most of the measurement types. A
buffered measurement acquires multiple values and stores the individual
values in a buffer for later analysis and processing. After they are started,
measurements are stored in the buffer asynchronously. When all data
points have been acquired, the AcquiredData event is fired and the buffer
is returned to the application. Measurements are stored in the buffer at the
completion of a period or pulse for Period and Pulse measurements or at a
conversion signal on the gate input for Event Count and Time
measurements.

The Counter object has two properties to enable buffered measurements.
UseBuffering is a Boolean property that enables the buffered mode.
NMeasurements specifies the number of measurements. While a buffered
measurement is running, no data can be read from the counter or the buffer,
and all data is returned when the measurement is complete. The same
methods used for a one-point operation also are used to control buffered
measurements. When data is returned in the Measurement parameter of
the AcquiredData event, it is formatted as an array.

Private Sub BufferedStart_Click()

CWCounter1.MeasurementType = cwctrHiPulseWidth

CWCounter1.UseBuffering = True

CWCounter1.NMeasurements = 10

CWCounter1.Configure

CWCounter1.Start

End Sub

Private Sub CWCounter1_AcquiredData(Measurement As

Variant, ByVal Overflow As Boolean)

CWGraph1.PlotY Measurement, 0, 1, True

End Sub

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-51 Getting Results with ComponentWorks

Pulse Control—Digital Pulse and Pulsetrain Generation
Use the Pulse control to generate individual pulses and pulse trains with the
counter/timer component on a data acquisition device. Typical operations
include generating a digital test signal or driving a stepper motor. After you
set the properties of the control, the application can perform operations
using simple method calls to the Pulse control. The operation of the Pulse
control is task-oriented, and the behavior of the control depends on the type
of task selected in the properties.

Figure 7-14. Pulse Control Object Hierarchy

The Pulse control consists of only one object—the Pulse object—which
contains all the properties and methods necessary to use the control.

Pulse Object
The Pulse object contains the properties necessary to configure the pulse
operations.

The Counter and PulseType properties affect the Pulse control as a
whole. The Counter property specifies the counter/timer on the DAQ
device used by the control. The available counter numbers depend on the
type of DAQ device. The PulseType property selects the type of operation
the control performs and affects the interpretation of the remaining
properties.

Pulse Control
Properties such as

Device, Counter, PulseType

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-52 © National Instruments Corporation

Table 7-2 describes the different pulse type operations.

The remaining properties of the Pulse object directly affect the pulse
generation or the gate of the counter. Properties affecting pulse generation
include ClockMode, CountDirection, DutyCycle, Frequency,
Period, Period2, Phase1, Phase2, Frequency2, Count, Phase1Inc,
PulseDelay, PulseWidth, SourceEdge, TimebaseSource, and
TimebaseSignal.

The parameters that are used for the actual pulse generation depend on the
settings of the PulseType and ClockMode properties. The PulseType
settings select the general operation of the Pulse control, such as single
pulse or continuous pulse generation, while the ClockMode settings
determine how the output is characterized. Settings for ClockMode include
Frequency and Period, which means the output is characterized by its
frequency or by the period of the pulse.

Gate properties include GateMode, GateSource, GateSignal.
GateMode selects the type of gating used in an operation such as No
Gating, High Level Gating, and so on. GateSource and GateSignal
select the source of the gate signal.

Table 7-2. Pulse Type Operations

Pulse Type Description

Single Pulse Generates one pulse according to the specifications.

Continuous Pulse Chain Generates a continuous pulse train according to the
specifications.

Finite Pulse Chain Generates a finite set of pulses. This requires two counters.

FSK Pulse Frequency Shift Keying, generates one of two different
pulse trains dependent on a digital input. The selector is
applied to the gate of counter.

Incremental Delay Pulse (ETS) Equivalent Time Sampling pulse. Generates a series of
individual pulses with increasing offset from the digital
trigger. The trigger is applied to the gate of counter.

Retriggerable Pulse, Rising Edge Retriggered single pulse. The trigger is applied to the gate,
triggered off the rising edge.

Retriggerable Pulse, Falling Edge Retriggered single pulse. The trigger is applied to the gate,
triggered off the falling edge.

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-53 Getting Results with ComponentWorks

To become familiar with different types of pulse generation and their
corresponding properties, browse through the custom property pages and
study the different settings. Some properties are disabled depending on the
state of other properties.

Methods

The Pulse control has a set of simple methods to control the operation of
the pulse generation. Use the Configure method to configure the data
acquisition driver and hardware with the current properties before starting
any operation. Use the Start method to start the generation. If needed, you
can call the Stop method to stop the counter and the Reset method to
unconfigure the counter and release its resources for other operations. After
stopping a pulse generation, you can restart it using just the Start method
if you have not called the Reset method. After resetting the counter, you
must call Configure again before restarting.

Private Sub PulseStart_Click()

CWCounter1.Configure

CWCounter1.Start

End Sub

Private Sub PulseStop_Click()

CWCounter1.Stop

CWCounter1.Reset

End Sub

While running a pulse generation operation, you can change some
parameters without stopping the operation. For example, you can change
the frequency of continuous pulse generation in mid-stream by updating the
relevant property of the pulse control and calling the Reconfigure
method.

Reconfigure can be called only when an operation is running because it
updates all properties that have changed since the last call to Configure
or Reconfigure. Use this method with the PointerValueChanged
event of the Slide control to set the pulse frequency to the value of the slide.

Private Sub CWSlide1_PointerValueChanged(ByVal Pointer

As Long, Value As Variant)

CWPulse1.Frequency = Value

If OutputRunning Then CWPulse1.Reconfigure

End Sub

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-54 © National Instruments Corporation

FSK and ETS Pulse Generation

On data acquisition devices that use the DAQ-STC counter/timer, the Pulse
control supports two specialized pulse generation modes, which you can
select in the PulseType property. Use these modes in conjunction with
analog input operations to perform special acquisitions.

Use FSK (frequency shift keying) to generate a continuous pulse with one
of two different frequencies, depending on a separate digital signal. Apply
the digital signal that selects between the two different frequencies to the
gate input of the counter used by the pulse control. Using the Frequency
and Frequency2, Period and Period2, or Phase1 and Phase2
properties, you can select the two different frequencies to generate. You can
combine this type of pulse generation with an analog input to build a
Rate-Change-on-the-Fly acquisition.

To change the acquisition rate dynamically with a digital signal, use the
output of the counter as the scan clock of the acquisition. If you have a
hardware analog trigger on your device, you can enhance this application
by using the analog trigger to convert an analog signal, such as the one
being acquired, into a digital signal, which you then use to control the pulse
generation. This means you can use two different acquisition rates on your
analog signal and the acquisition automatically changes rates above and
below the specified analog voltage value.

ETS (equivalent time sampling) is an acquisition technique that combines
an analog input operation, hardware analog trigger, and pulse generation
on a repetitive signal to achieve an effective acquisition rate that is
significantly higher than the actual acquisition rate of the device.

The analog trigger is used to generate a repeating digital trigger signal from
the repetitive analog signal. This digital signal is routed to the gate of a
counter that generates another digital pulse with an increasing amount of
delay in response to the trigger. This pulse is used as the scan clock of the
acquisition. By triggering off the same point of the analog signal with an
exact and varying delay, you can sample the entire signal waveform using
many cycles. Because the change in the delay is much smaller than the
minimum acquisition period of the device, the effective acquisition rate is
significantly increased.

In the Pulse control, specify the input of the gate to be AITrigger and set
the change in delay using the ETSIncrement property. The ETS increment
is always specified in number of cycles of the clock source and can range
between 0 and 255.

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-55 Getting Results with ComponentWorks

Tutorial: Using the Counter and Pulse Controls

This tutorial shows you how to develop a program that uses the Counter and
Pulse controls. The example generates a continuous pulse of varying
frequency using the Pulse control and counts the number of pulses
generated using the Counter control. To complete this tutorial, your DAQ
device must have two available counters. If you use just one counter with
either the Counter or Pulse control, you need an external mechanism to
display the output from the Pulse control or apply an input to the Counter
control.

This tutorial uses Visual Basic syntax, but the discussion is in general terms
so you can follow it in any compatible programming environment.
Remember to adjust any code to your specific programming language.
Refer to the Building ComponentWorks Applications chapters for
information about implementing any step in different programming
environments. You also can refer to the tutorial examples installed with
ComponentWorks for a completed version of this example in several
different programming environments.

Designing the Form

1. Open a new project and form. If you are working in Visual C++, select
a dialog-based application and name your project Counters.

2. Load the ComponentWorks User Interface controls (specifically the
Slide controls) and the Data Acquisition controls (specifically the
Counter and Pulse controls) into your programming environment.

3. Place five buttons on the form. Change their captions and names to the
ones listed in the following table.

Button Name Caption

CWButton1 ConfigurePulse Configure Pulse

CWButton2 StartPulse Start Pulse

CWButton3 StopPulse Stop Pulse

CWButton4 StartCounter Start Counter

CWButton5 ReadCounter Read Counter

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-56 © National Instruments Corporation

4. Place a ComponentWorks Slide control on the form and change its
name to Frequency. In the Numeric tab of the custom property page,
change the Min and Max properties to 1 and 100 and set the Log scale
option.

5. Place a text box on the form.

6. Place a DAQ Pulse control on the form. In the custom property page of
the Pulse control, select the device and counter you want to use. If you
have an E-Series device, use counter 0. If you have an older MIO
device, use counter 5. Otherwise, use an available counter. You set the
remaining properties in the following section.

7. Place a DAQ Counter control on the form. In the property page, select
the device and counter you want to use. If you have an E-Series or older
MIO device, use counter 1. Otherwise, use an available counter.

8. If your environment has a timer control, place one on the form. In the
property page, set its Enabled property to False and its Interval
property to 100 (ms).

Your form should look similar to the one shown below.

Figure 7-15. Counters Form

Developing the Code
Configure the DAQ controls and add the necessary code to generate the
continuous pulse train and count the pulses. If you are using one counter,
follow the directions for either the Counter or Pulse control. The next
section describes how you can connect your signals in either case.

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-57 Getting Results with ComponentWorks

1. Configure the Pulse control to generate a continuous pulse train. On
the General tab of the property page, set Pulse Mode to Continuous
pulse train. On the Clock tab, set Clock Mode to Use frequency
settings, Frequency to 1.0, and duty cycle to 0.50 (50%). On the
Gate tab, set Gate Mode to Ungated.

2. Three buttons on the form control the operation of the Pulse control.
Generate event handlers for the Click event of each button and add the
following code. You also need to declare a Boolean variable,
Running, which is global to the module containing the code for the
form. This declaration might vary among different programming
languages. In Visual C++, you must create a member variable for the
Pulse control.

Dim Running as Boolean

Private Sub ConfigurePulse_Click()

CWPulse1.Configure

End Sub

Private Sub StartPulse_Click()

CWPulse1.Start

Running = True

End Sub

Private Sub StopPulse_Click()

CWPulse1.Stop

Running = False

End Sub

Use the Stop and Start buttons to halt the pulse generation and restart
it without having to reconfigure the Pulse control.

3. The Slide control changes the frequency of the pulse train. If the pulse
generation is running, the output updates immediately. Create an event
handler for the PointerValueChanged event of the slide, and add
the following code.

Private Sub Frequency_PointerValueChanged(ByVal

Pointer As Long, Value As Variant)

CWPulse1.Frequency = Value

If Running Then

CWPulse1.Reconfigure

Else

CWPulse1.Configure

End If

End Sub

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-58 © National Instruments Corporation

If the pulse generation is running, the Reconfigure method updates
the output immediately. Otherwise, the Configure method
reprograms the hardware for the next start.

4. Configure the Counter control to count events, which are the pulses
generated by the pulse control. On the General tab of the property
page, set Measurement Type to Event count. On the Clock tab, set
Timebase source to Counter’s source. On the Gate tab, set the
Gate Mode to Ungated.

5. Two buttons on the form control the operation of the Pulse control.
Generate event handlers for the Click event of each button and add the
following code. In Visual C++, you must create a member variable for
the Counter control. Add the following code to the two event handlers.

Private Sub StartCounter_Click()

CWCounter1.Configure

CWCounter1.Start

End Sub

Private Sub ReadCounter_Click()

Dim CountValue As Long

Dim Overflow As Boolean

CWCounter1.ReadCounter CountValue, Overflow

Text1.Text = CountValue

End Sub

After the counter starts, you can use the Read button to interactively
read the value of the counter and display it in the textbox.

6. If you have a timer control on your form, you can program it to
automatically read the value of the counter once it has been started.
If you are working in Visual C++, create a member variable for the
timer control.

To activate the timer, add the following line to the end of the code in
the StartCounter_Click subroutine.

Timer1.Enabled = True

Create an event handler for the Timer event of the timer control and
add a call to the ReadCounter_Click() subroutine.

Private Sub Timer1_Timer()

ReadCounter_Click

End Sub

7. Save your project and form as Counters.

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-59 Getting Results with ComponentWorks

Testing Your Program

1. Before you can run your program, you must connect the output of the
counter running the pulse generation to the source input of the counter
counting events, which is an external connection. If you are using only
one counter, you need other external hardware. If you are using the
DAQ Pulse control, you should have a device to measure the output of
the counter, such as an oscilloscope or external counter. If you are
using the DAQ Counter control, you must connect an external pulse
source to the source input of the counter.

2. Run the program. Start the pulse generation by clicking on the
Configure Pulse and Start Pulse buttons. Start the counter. If you
have the timer control enabled, the textbox displays the value of the
event count. Without the timer control, you can use the Read Counter
button to update the textbox.

3. Change the value of the slide to modify the frequency of the pulse
generation. Notice that the count value in the textbox changes faster or
slower accordingly. You also can stop and restart the pulse generation,
which affects the count value.

Your completed running program should look similar to the one shown
below.

Figure 7-16. Testing Counters

4. Quit the program (click on the X button in the window title bar).

Chapter 7 Using the Data Acquisition Controls

Getting Results with ComponentWorks 7-60 © National Instruments Corporation

DAQTools—Data Acquisition Utility Functions

The ComponentWorks DAQ controls include a DAQTools control that
contains a set of utility functions for data acquisition. Although the control
itself has no properties or events, these utility functions are all methods of
the DAQTools control. Use these functions with different data acquisition
devices to implement functionality that is not part of any other DAQ
control. The function groups in the DAQ Tools control include the
following:

• GetErrorText function—Converts a ComponentWorks error
number to a descriptive string. Use this in error handling to convert the
return code from a DAQ method call to an error message.

• Configure functions—Configure specific devices or parts of devices
such as the hardware analog trigger circuit on specific E-Series
devices.

• Conversion functions—Convert measurement units to physical units
for certain transducers, such as thermocouples, thermistors, RTDs, and
strain gauges.

• Get and Set functions—Read and set different properties of data
acquisition and SCXI (signal conditioning) devices.

• Reset functions—Reset DAQ and SCXI devices.

• ICtr functions—Perform operations using the interval counter
(ICounter) on some data acquisition devices. Devices that include this
counter are the 500, 700, 1200, LPM-16, and Lab-PC series devices.
The functions are ResetICtr, StartICtr, and ReadICtr.

• FOUT functions—Generate a simple continuous pulse train from the
FOUT pin of different DAQ devices. The functions are StartFOUT
and ResetFOUT.

• Calibration functions—Perform software calibration on different
data acquisition devices.

Note Because all devices are calibrated before shipping and do not need to be calibrated

before their first use, you probably do not need to calibrate your device. Read all

hardware documentation describing calibration and calibration functions before

attempting to perform any calibration.

Chapter 7 Using the Data Acquisition Controls

© National Instruments Corporation 7-61 Getting Results with ComponentWorks

Using DAQ Tools Functions
You must place the DAQTools control on your form to use the DAQTools
functions. To call a function, use the standard convention for calling any
method of a control; that is, prepend the name of the control to the function
name.

The following example converts an error code number to a text description
and displays it in a message box.

MsgBox "DAQ Error: " +

CWDAQTools1.GetErrorText(ErrorCode)

To configure the hardware analog trigger circuit, you can use the
ConfigureATCOut function.

‘Prototype: ConfigureATCOut(Device:=, Enable:=,

TriggerMode:=, Level:=, Hysteresis:=, strSource:=,

ActualLevel:=, ActualHysteresis:=)

Dim Level as Variant, Hysteresis as Variant

CWDAQTools1.ConfigureATCOut 1, True, 1, 0#, 0.1, "0",

Level, Hysteresis

© National Instruments Corporation 8-1 Getting Results with ComponentWorks

8
Using the GPIB and
Serial Controls

This chapter describes how you can use the ComponentWorks Instrument
controls in your application to perform input and output operations using
GPIB and serial hardware; explains the individual controls and their most
commonly used properties, methods, and events; and includes tutorial
exercises that give step-by-step instructions on using the controls in simple
programs.

Refer to the Building ComponentWorks Applications chapters for
information about using the ComponentWorks controls in different
programming environments. You can find additional information in the
online reference, available by selecting Programs»National Instruments

ComponentWorks»ComponentWorks Reference from the Windows
Start menu.

What Are the GPIB and Serial Controls?

Use the GPIB and Serial controls to perform instrument communication
and control and integrate these operations into your application.
ComponentWorks includes two ActiveX controls for performing GPIB and
Serial (RS-232) operations, CWGPIB and CWSerial.

You can set most properties for these controls through property pages as
you design your program. In certain cases, you might need to change the
value of one or more properties in your program code. Throughout this
chapter, examples demonstrate how to change property values
programmatically.

Chapter 8 Using the GPIB and Serial Controls

Getting Results with ComponentWorks 8-2 © National Instruments Corporation

Object Hierarchy and Common Features
The ComponentWorks Instrument controls are made up of a hierarchy of
objects. Understanding the relationship among the objects in a control is the
key to properly programming with the control. Dividing a control into
individual objects makes it easier to work with because each individual
component has fewer parts.

The Instrument controls share a very similar object hierarchy (compare
Figure 8-1, GPIB Control Object Hierarchy, and Figure 8-3, Serial

Control Object Hierarchy). The hierarchy consists of a simple series of
objects from the top-level control through three sets of collections and
associated objects. A collection is the property of an object that stores
multiple instances of the same type of object. For example, a Tasks
collection object contains multiple Task objects.

Common Properties
The top-level object of each Instrument control share some common
properties.

DataAsString—Use the DataAsString property to specify whether
data is returned in a string or byte array format. If this property is True,
data is returned as a string. If this property is False, data is returned as an
array of bytes. You can set this property from the property pages of each
control or programmatically as in the following example.

CWGPIB1.DataAsString = True

SwapBytes—Some instruments return data in which the least significant
byte appears first. This format is known as Little Endian. Other instruments
return data starting with the most significant byte of the word, or in Big
Endian format. Check your instrument documentation to determine if the
instrument returns data in Big or Little Endian format. If your instrument
returns data in Big Endian format, set SwapBytes to True.

ExceptionOnError—The Instrument controls handle error checking in
two different ways. When an error occurs, each Instrument control
generates an exception that your programming environment handles
(default action). You can disable the generation of exceptions using the
ExceptionOnError property of each Instrument control. If you disable
exceptions on errors, the control fires an OnError event in response to an
error condition and passes the error information to the OnError event
handler. For some error conditions, such as those that occur during
asynchronous operations, the control fires OnError events regardless of
the value of ExceptionOnError.

Chapter 8 Using the GPIB and Serial Controls

© National Instruments Corporation 8-3 Getting Results with ComponentWorks

Parsing
With the Instrument control parsing features, you can parse data into
formats more easily used by your application. Both Instrument controls
support multiple parsing tasks. Use tasks to specify the way in which the
data is parsed, and you can invoke different tasks at different times in your
application.

Each task contains a group of patterns. These patterns are made up of one
or more tokens, which are the basic building blocks of parsing. For
example, a token might be a number, a 4-byte word, or a comma. A pattern
might consist of a number token followed by a comma token. A parsing
task might consist of this particular pattern repeated several times.

Parsed data is returned as an array of tokens. The control returns parsed data
as an array of tokens. You can configure the control to ignore specific types
of tokens and not return them in the array. For example, you might not want
the commas returned in certain patterns. If you specify commas as ignored,
only the numbers are returned in the array. Use the built-in task Number
Parser to automatically extract all numbers from the data and return them
in an array. If only one number is present, it returns the number as a scalar
(simple non-array variable).

Advanced Parsing Features
This section describes advanced parsing features. Refer to Tutorial: Using

the Serial Control later in this chapter to learn how to use simple parsing
features.

You perform a parsing task by calling the task’s Read method. The
ReadAsynch method performs an asynchronous read and returns the
parsed data in the DataReady event. The task number is also passed to the
event handler. The Run method of the Task object performs an automated
asynchronous task, writing the output string specified for the task (either
programmatically or on the Parsing property page) and then performs an
asynchronous read. The Parse method parses an argument passed to the
method rather than performing a read and then parsing the read data.

CWGPIB1.Tasks.Item(1).Read

CWGPIB1.Tasks.Item(1).Run

You can build a parsing task through property pages at design time. By
creating and manipulating CWTask objects programmatically, you also can
build parsing tasks at run time.

Chapter 8 Using the GPIB and Serial Controls

Getting Results with ComponentWorks 8-4 © National Instruments Corporation

CWTask Object

To add a parsing task to a control, call the Add method of the Tasks
collection property of the control, as in the following example.

CWGPIB1.Tasks.Add

The new CWTask object is added to the end of the Tasks collection.
You can reference it by using the Count property of the Tasks collection.
In Visual Basic, use the Set statement to assign an object to a variable.

Dim NewTask as CWTask ‘create a CWTask variable

CWGPIB1.Tasks.Add

Set NewTask = CWGPIB1.Tasks(CWGPIB1.Tasks.Count)

In environments other than Visual Basic, use the Item method on the Tasks
collection to reference a specific Task object in the collection, as in the
following block of code.

Dim NewTask as CWTask ‘create a CWTask variable

CWGPIB1.Tasks.Add

Set NewTask = CWGPIB1.Tasks.Item(CWGPIB1.Tasks.Count)

The CWTask object has two properties previously mentioned. Name is an
identifier used to select a specific task in the Tasks collection. To
programmatically set the Name property of the task added above use the
following syntax.

NewTask.Name = “Waveform”

OutputString contains a string that is written to the instrument when the
Run method is invoked.

NewTask.OutputString = “val1?”

Methods and Events

The CWTask object has four methods, Read, ReadAsynch, Run, and
Parse, which are described earlier in this parsing section. The Task object
also contains a Patterns collection which contains the individual Pattern
object that defines the parsing task.

Chapter 8 Using the GPIB and Serial Controls

© National Instruments Corporation 8-5 Getting Results with ComponentWorks

CWPattern Object

You add and manipulate pattern objects in the same manner that you add
Task objects. The CWPattern object has several properties that define its
parsing description. To access a Pattern object, reference it through the
Task object in which it is contained.

NewTask.Patterns.Add

Name is an identifier used to select the pattern in the Patterns collection.

NewTask.Patterns(NewTask.Patterns.Count).Name = “Header”

RepetitionFactor is the number of times the pattern is to be repeated.
Set this property to –1 if the pattern is to be repeated an undefined number
of times.

If you are programming in environments other than Visual Basic, use the
Item method.

NewTask.Patterns.Item(NewTask.Patterns.Count).Name = “Header”

You also can use the complete syntax to access the Pattern object from the
Instrumentation control.

CWGPIB1.Tasks.Item(CWGPIB1.Tasks.Count).Patterns(CWGPIB1.

Tasks.Item(CWGPIB1.Tasks.Count).Patterns.Count).Name = “Header”

The Type property of the Pattern object is set to one of two values—
cwNumberParser or cwUserDefined—which are constants defined by
ComponentWorks. Set the pattern type to cwNumberParser (only built-in
pattern type) to pull all of the numbers from the input string and return
them. Use the cwUserDefined type to define a pattern using tokens.

Dim NewPattern as CWPattern

Set NewPattern = NewTask.Patterns.Item(NewTask.Patterns.Count)

NewPattern.Type = cwUserDefined

The Pattern object contains a Tokens collection and associated Token
objects that define the individual pattern.

Chapter 8 Using the GPIB and Serial Controls

Getting Results with ComponentWorks 8-6 © National Instruments Corporation

CWToken Object

You add and manipulate Token objects in the same manner that you work
with Task and Pattern objects. The CWToken object has several properties
that define its parsing description.

Value is a string defining the type of token. For example, the value can be
“<number>”, “<stringX>” (where X is the number of bytes that make up
the token), or a literal string to match, such as “FLUKE” or “,”.

RepetitionFactor is the number of times the token is to be repeated. Set
this property to –1 if the token is to be repeated an undefined number of
times. Ignore is a boolean property that determines whether the token
should be ignored or returned with the data. For example, you might set the
Ignore property to True so that commas are not returned to the
application.

NewPattern.Tokens.RemoveAll

NewPattern.Tokens.Add

NewPattern.Tokens.Item(1).InputType = cwString

NewPattern.Tokens.Item(1).Value = “,”

NewPattern.Tokens.Item(1).Ignore = True

The RemoveAll method used in the code segment above is available on all
collections such as Tasks, Patterns, and Tokens. It removes all objects from
the collection. A subsequent call to the Add method adds the first object in
the collection; therefore, you know the exact index of any objects you add.
Calling RemoveAll on the Tasks collection also removes the predefined
number parsing task. You can recreate this task by adding a new task and
new pattern and setting the Type property of the new pattern to
cwNumberParser.

The GPIB Control

Use the GPIB control to control GPIB instruments. After setting the
properties of the control, you can acquire data using method calls to the
GPIB control and perform automated parsing of the returned data. To
configure the properties of the control during design, right click on the
control and select Properties... from the popup menu to open the property
pages for the control.

Chapter 8 Using the GPIB and Serial Controls

© National Instruments Corporation 8-7 Getting Results with ComponentWorks

Figure 8-1. GPIB Control Object Hierarchy

The object hierarchy of the GPIB control contains a Tasks collection and
objects for parsing. See Advanced Parsing Features earlier in this chapter
for more information about accessing Pattern and Token objects.

CWGPIB Object
The GPIB object has GPIB-specific properties, such as BoardNumber,
PrimaryAddress, and SecondaryAddress, that you use to specify the
instrument. You can set these properties through the property pages or in
your program, as in the following code.

CWGPIB1.BoardNumber = 0

CWGPIB1.PrimaryAddress = 2

CWGPIB1.SecondaryAddress = 0

Other properties include Timeout, EOTMode, EOSCharacter,
Compare8Bits, EOSEndsRead, EOIWithEOS, Unaddressing, and
NotifyMask, although not all instruments require you to set these
properties. See the online reference for all properties and their uses.

GPIB Control
Properties such as

BoardNumber, PrimaryAddress

Tasks Collection
Property: Count

Tokens Collection
Property: Count

Patterns Collection
Property: Count

Task Object
Properties such as
Name, OutputString

Pattern Object
Properties such as

Name, RepetitionFactor

Token Object
Properties such as
Value, InputType

Chapter 8 Using the GPIB and Serial Controls

Getting Results with ComponentWorks 8-8 © National Instruments Corporation

Methods and Events
To control a GPIB instrument, use the Configure method. This method
initializes the GPIB instrument and configures it with the settings you
specified for the control. You must call the Configure method in the
following cases:

• Before calling any other control methods

• After changing any properties (for new properties to take effect)

• After calling the Reset method, before performing any GPIB I/O

Private Sub ConfigureDevice_Click()

CWGPIB1.Configure

End Sub

Private Sub ResetDevice_Click()

CWGPIB1.Reset

End Sub

Synchronous I/O
You perform synchronous I/O using the Read and Write methods of the
CWGPIB control. Read accepts an optional parameter that specifies the
buffer size. Unlike the Read method on CWTask, the Read method on
CWGPIB does not perform any parsing of the data.

The following example displays the identification string returned by many
GPIB instruments. The control first writes the command *IDN? to the
instrument and then reads back and displays the response in a text box in
the program.

CWGPIB1.Write “*IDN?”

Text1.Text = CWGPIB1.Read

Asynchronous I/O
You use the ReadAsynch and WriteAsynch methods to perform
asynchronous I/O operations. These methods start a read or write operation,
respectively, and then return immediately. When an asynchronous read is
complete, the control generates a DataReady event and passes the data to
your event handler. When an asynchronous write is complete, the control
generates a WriteComplete event.

Chapter 8 Using the GPIB and Serial Controls

© National Instruments Corporation 8-9 Getting Results with ComponentWorks

CWGPIB1.ReadAsynch

Private Sub CWGPIB1_DataReady(taskNumber as Short,
data As Variant)

Text1.Text = data

End Sub

Unlike the ReadAsynch and WriteAsynch methods on CWTask, the
ReadAsynch and WriteAsynch methods on CWGPIB do not perform any
parsing of the data.

Other GPIB Operations
The GPIB control has methods to perform basic operations such as serial
polling, parallel polling, triggering, and clearing the instrument. You can
perform these methods with the following syntax.

CWGPIB1.SerialPoll

CWGPIB1.ParallelPoll

CWGPIB1.Trigger

CWGPIB1.Clear

Tutorial: Using the GPIB Control

This tutorial shows you an example of using the GPIB control in a simple
program to control a Fluke 45 multimeter. While the Fluke 45 and this
example use a specific command set, you can control most other GPIB
instruments in a similar manner. Substitute commands for your particular
instrument in place of the Fluke 45-specific commands.

This tutorial uses Visual Basic syntax, but the discussion is in general terms
so you can follow it in any compatible programming environment.
Remember to adjust any code to your specific programming language.
Refer to the Building ComponentWorks Applications chapters for
information about implementing any step in different programming
environments. You also can refer to the tutorial examples installed with
ComponentWorks for a completed version of this example in several
different programming environments.

Chapter 8 Using the GPIB and Serial Controls

Getting Results with ComponentWorks 8-10 © National Instruments Corporation

Designing the Form

1. Open a new project and form. If you are working in Visual C++, select
a dialog-based application and name your project GPIBExample.

2. Load the ComponentWorks Instrument controls (specifically, the
GPIB control) into your programming environment.

3. Place a GPIB control on the form. You configure its properties in the
next section.

4. Place a text edit box control on the screen. Leave the Name property for
the text edit box set to Text1.

5. Place a button control on the form. Change the Name and Caption
properties of the button to FREQ.

Your form should look similar to the one show below.

Figure 8-2. GPIBExample Form

Setting the GPIB Control Properties
You normally configure the default property values of the Instrument
controls before you develop your program code. Most or all properties are
set during design and do not change during program execution; however,
you can edit the properties of the Instrument controls at run time, if
necessary.

1. Open the custom property pages for the GPIB control on the form by
right clicking on the control and selecting Properties....

2. In the General tab, select your GPIB instrument from the Device
combobox. If it is not present, make sure that the GPIB driver software
is properly installed and configuration software recognizes the
instrument. Alternatively, you can manually select the GPIB board
number and instrument address.

3. Select other communication parameters in the Advanced tab.

4. Open the Test property page for the GPIB control. To ensure that the
control is properly communicating with the instrument, enter “*IDN?”
in the Send String box and press the Execute button. If your instrument

Chapter 8 Using the GPIB and Serial Controls

© National Instruments Corporation 8-11 Getting Results with ComponentWorks

receives this command a string similar to “FLUKE, 45, 5005161,
1.6 D1.0” appears in the output window. You can send any string to
the instrument from this property page. For example, for the Fluke 45
enter “val1?” in the Send String box and press the Execute button. A
value appears in the output window. The Execute button performs both
send and read operations.

Developing the Code
Develop the code so that data is acquired and displayed in response to a
user pressing the button. In the following steps, you define an event handler
routine to be called when the FREQ button is pressed. In the event handler,
you send a command to the Fluke 45 to read the frequency and display it in
the text box on the user interface.

1. Generate the event handler routine for the Click event of the FREQ
button. The following code configures the GPIB control and sends a
command to the Fluke 45 to switch it into frequency mode, reads the
current value from the multimeter, and finally displays the value in the
text edit box.

Add the following code to the FREQ_Click subroutine. In
Visual C++, remember to generate member variables for any controls
referenced in the program. See the \Tutorial folder for Visual C++
and Delphi code examples.

Private Sub FREQ_Click()

CWGPIB1.Configure

CWGPIB1.Write “FREQ”

CWGPIB1.Write “val1?”

Text1.Text = CWGPIB1.Read

End Sub

2. Save the project as GPIBExample.

Testing Your Program
Run and test the program. Click on the FREQ button. The value displayed
in the text edit box should match the value displayed on the Fluke. By
selecting a different mode of the instrument, you can perform other types
of measurements using the Fluke 45. Change the “FREQ” command sent to
the instrument with a corresponding command.

Chapter 8 Using the GPIB and Serial Controls

Getting Results with ComponentWorks 8-12 © National Instruments Corporation

The Serial Control

Use the Serial control to control serial instruments, such as scales and
calipers, or to communicate with other devices connected to your serial
port, including modems and fieldbus networks, using a serial connection
and other computers. After setting the properties of the control, you can
acquire data or send commands using method calls to the serial control and
perform automated parsing of the returned data. To configure the properties
of the control during design, right click on the control and select
Properties... from the popup menu to open the property pages for the
control.

The object hierarchy of the Serial control contains a Tasks collection and
objects for parsing. Refer to Advanced Parsing Features earlier in this
chapter for more information about accessing Pattern and Token objects.

Figure 8-3. Serial Control Object Hierarchy

CWSerial Object
The Serial object has serial-specific properties—ComPort, Parity,
StopBits, DataBits, BaudRate, and EOSChar—that you use to specify
and configure the communications port.

CWSerial1.ComPort = 2 'Instrument connected to COM port 2

Serial Control
Properties such as

BoardNumber, PrimaryAddress

Tasks Collection
Property: Count

Tokens Collection
Property: Count

Patterns Collection
Property: Count

Task Object
Properties such as
Name, OutputString

Pattern Object
Properties such as

Name, RepetitionFactor

Token Object
Properties such as
Value, InputType

Chapter 8 Using the GPIB and Serial Controls

© National Instruments Corporation 8-13 Getting Results with ComponentWorks

The following settings must match the settings used by your instrument.

CWSerial1.Parity = cwParityEven

CWSerial1.BaudRate = 9600

CWSerial1.StopBits = cwStopBitsTwo

CWSerial1.DataBits = cwDataBitsEight

CWSerial1.EOSChar = "\10"

Other communication properties you can set include FlowControl,
XonChar, and DTR.

Methods and Events
To begin communication with a serial instrument, use the Configure
method. This method initializes a communication process with the serial
instrument and configures it with the settings you specified for the control.
You must call the Configure method in the following cases:

• Before calling any other control methods

• After changing any properties (for new properties to take effect)

• After calling the Reset method, before performing any serial I/O

Private Sub ConfigureDevice_Click()

CWSerial1.Configure

End Sub

Private Sub ResetDevice_Click()

CWSerial1.Reset

End Sub

Synchronous I/O
You perform synchronous I/O using the Read and Write methods of the
CWSerial control. Read accepts an optional parameter that specifies the
buffer size. Unlike the Read method on CWTask, the Read method on
CWSerial does not perform any parsing of the data.

The following example displays a string returned by a serial scale.

CWSerial1.Write “P\13”

Text1.Text = CWSerial1.Read

Many serial instruments require some termination character or characters,
such as the carriage return or line feeds. In Visual Basic you can enter these
unprintable characters using the backslash symbol (\) followed by the
ASCII value of the character you want to send.

Chapter 8 Using the GPIB and Serial Controls

Getting Results with ComponentWorks 8-14 © National Instruments Corporation

Asynchronous I/O
You use the ReadAsynch and WriteAsynch methods to perform
asynchronous I/O operations. These methods start a read or write operation,
respectively, and then return immediately. When an asynchronous read is
complete, the control generates a DataReady event and passes the data to
your event handler. When an asynchronous write is complete, the control
generates a WriteComplete event.

CWSerial1.ReadAsynch

Private Sub CWSerial1_DataReady(taskNumber as Short,

data As Variant)

Text1.Text = data

End Sub

Unlike the ReadAsynch and WriteAsynch methods on CWTask, the
ReadAsynch and WriteAsynch methods on CWSerial do not perform
any parsing of the data.

Tutorial: Using the Serial Control

This tutorial shows you an example of using the Serial control in a simple
program to control a serial scale. Other serial instruments behave
differently and use different commands, but this tutorial provides a good
illustration of how to use the Serial control and its parsing ability.

This tutorial uses Visual Basic syntax, but the discussion is in general terms
so you can follow it in any compatible programming environment.
Remember to adjust any code to your specific programming language.
Refer to the Building ComponentWorks Applications chapters for
information about implementing any step in different programming
environments. You also can refer to the tutorial examples installed with
ComponentWorks for a completed version of this example in several
different programming environments.

Designing the Form

1. Open a new project and form. If you are working in Visual C++, select
a dialog-based application and name your project SerialExample.

2. Load the ComponentWorks instrument controls (specifically, the
Serial control) into your programming environment.

3. Place a Serial control on the form. You configure its properties in the
next section.

Chapter 8 Using the GPIB and Serial Controls

© National Instruments Corporation 8-15 Getting Results with ComponentWorks

4. Place a text edit box control on the screen. Leave the Name property for
the text edit box set to Text1.

5. Place a button control on the form. Change the Name and Caption
properties of the button to Weigh.

Your form should look similar to the one show below.

Figure 8-4. Weigh Form

Setting the Serial Control Properties
You normally configure the default property values of the Instrument
controls before you develop your program code. Most or all properties are
set during design and do not change during program execution; however,
you can edit the properties of the Instrument controls at run time.

1. Open the custom property pages for the Serial control on the form by
right clicking on the control and selecting Properties....

2. In the General tab, select the communications port to which your serial
instrument is connected.

3. On the General and the Flow Control property pages, adjust the
properties of the control to match the setting of your instrument. These
settings vary by instrument. Refer to your instrument documentation
for details on specific instrument settings.

4. Open the Test property page for the Serial control. To ensure that the
control is properly communicating with the instrument, enter “P\13”
or another string compatible with your instrument in the Send String
box and press the Execute button. A value, similar to “1.0040 Lbs
02” appears in the output window. The Execute button performs both
send and read operations. Each instrument has a different command
interface, which should be documented in your instrument manual.

Add a custom parsing task to the control in order to extract the number from
the string.

5. Open the Parsing property page and press the Task button.

6. Click on the string New Task1 and change its name to Weight.

Chapter 8 Using the GPIB and Serial Controls

Getting Results with ComponentWorks 8-16 © National Instruments Corporation

7. Add a pattern to the new parsing task by clicking the Pattern button.

Add the tokens that make up the parsing tasks.

8. Add a token to the pattern by clicking the Token button.

9. Change its value to a number by selecting <number> in the Token
combobox at the top right.

Add a token to grab the rest of the string.

10. Click the Token button.

11. Change the value of the token to <string1>.

12. Select Many from the Token Repeat options and select the Ignore
Token box. This token matches the rest of the string but is not returned
as data.

Your Parsing page should look like the following figure.

Figure 8-5. Serial Property Pages—Parsing Page

13. Click on Apply and OK.

Chapter 8 Using the GPIB and Serial Controls

© National Instruments Corporation 8-17 Getting Results with ComponentWorks

Developing the Code
Develop the code so that data is acquired and displayed in response to the
button. In the following steps, you define an event handler routine to be
called when the Weigh button is pressed. In the event handler, you send a
command to the scale to read the weight and display the parsed and
returned data in the text edit box.

1. Generate the event handler routine for the Click event of the Weigh
button. The following code calls the Configure method of the Serial
control, sends the command “P\13” to prompt the scale to send back
its current reading, and reads back the value from the scale using the
Read method of the defined task. The returned information is
automatically parsed by the corresponding Task object. Finally, it
displays the returned value in the text edit box.

Add the following code to the Weigh_Click subroutine. In
Visual C++, remember to generate member variables for any controls
referenced in the program. See the \tutorials folder for Visual C++
and Delphi code examples.

Private Sub Weigh_Click()

CWSerial1.Configure

CWSerial1.Write “P\13”

Text1.Text = CWSerial1.Tasks.Item(“Weight”).Read

End Sub

Note Because the weight task is the second task in the collection (after the built-in

number parser task at index 1), you can specify the value 2 as an index to the Tasks

collection instead of Weight.

2. Save the project as SerialExample.

Testing Your Program
Run and test the program. Click on the Weigh button. The value displayed
in the text edit box should match the value displayed on the scale. You can
further enhance this example by making the read asynchronous. Change the
Read method call to a ReadAsynch call, and display the value returned in
the CWSerial1_DataReady event handler.

© National Instruments Corporation 9-1 Getting Results with ComponentWorks

9
Using the VISA Control

This chapter describes the basic structure of the VISA API; shows you how
to use the ComponentWorks VISA control in your application to perform
input and output operations using GPIB, Serial, and VXI hardware;
explains the control and its most commonly used properties, methods, and
events; and includes tutorial exercises that give step-by-step instructions on
using the control in simple programs.

Refer to the Building ComponentWorks Applications chapters for
information about using the ComponentWorks controls in different
programming environments. You can find additional information in the
online reference, available by selecting Programs»National Instruments

ComponentWorks»ComponentWorks Online Reference from the
Windows Start menu.

Overview of the VISA API

VISA is a standard I/O API for instrumentation programming. By itself,
VISA does not provide instrumentation programming capability.

VISA Structure
VISA is a high-level driver that calls lower-level drivers. VISA can control
VXI, GPIB, and serial instruments, as the hierarchy in Figure 9-1indicates.

Figure 9-1. VISA Structure

When debugging VISA problems, remember that this hierarchy exists.
Although VISA appears to be causing your problem, you might have a bug
or installation problem with one of the drivers into which VISA is calling.

VISA

GPIB

NI-488.2

VXI

NI-VXI

Serial

OS Calls

Chapter 9 Using the VISA Control

Getting Results with ComponentWorks 9-2 © National Instruments Corporation

VISA Advantages
VISA provides interface independence. Regardless of the interface type,
VISA uses many of the same methods to communicate with instruments.
For example, the VISA command to write an ASCII string to a
message-based instrument is the same for Serial, GPIB, and VXI. This
feature allows you to switch interfaces and use a single language to work
with different interfaces for instruments.

VISA is an object-oriented language that can easily adapt to new
instrumentation interfaces as they are developed in the future, which will
enable programmers to easily move to new interfaces.

As an object-oriented language, VISA and its operations are intuitive.
VISA provides the most frequently used functionality for instrumentation
programming in a very compact command set.

What is the VISA Control?

Use the VISA control to program your instruments and integrate these
operations with the rest of the application. The VISA control, CWVISA, is
an implementation of the VISA API. After setting the properties of the
control, you can acquire data using simple method calls to the VISA control
and perform automated parsing of the returned data. To configure the
properties of a control during design, right click on the control and select
Properties... from the popup menu to open the property pages for the
control. From the property pages, you can intuitively set property values.

You can set most properties through the property pages as you design and
create the program. In certain cases, you might need to change the value of
one or more properties in your program code. Throughout this chapter,
examples demonstrate how to change property values programmatically.

Object Hierarchy and Common Properties
The ComponentWorks VISA control is made up of a hierarchy of simple
objects. Understanding the relationship among the objects in a control is the
key to properly programming with the control. Dividing a control into
individual objects makes it easier to work with because each individual
component has fewer parts.

Chapter 9 Using the VISA Control

© National Instruments Corporation 9-3 Getting Results with ComponentWorks

Figure 9-2 shows the object hierarchy of the CWVISA control.

Figure 9-2. VISA Control Object Hierarchy

The VISA control contains a Tasks collection and underlying objects for
parsing, an ASRL (Serial) object for serial properties, a RdWrt object
for message-based I/O properties, a VXI Memory object for VXI
register-access properties, a GPIB object for GPIB properties, and a VXI
object for VXI specific properties.

VISA Control
Properties such as

BoardNumber, PrimaryAddress

Tasks Collection
Property: Count

Tokens Collection
Property: Count

Patterns Collection
Property: Count

Task Object
Properties such as
Name, OutputString

Pattern Object
Properties such as

Name, RepetitionFactor

Token Object
Properties such as
Value, InputType

RdWrt Object
Property: DataAsString

VXI Memory Object
Property: SrcIncrement

VXI Object
Properties such as

ManufacturerId, Slot

GPIB Object
Property: UnadressEnable

ASRL Object
Property: Parity

Chapter 9 Using the VISA Control

Getting Results with ComponentWorks 9-4 © National Instruments Corporation

A collection is a property of an object, which stores multiple instances of
the same type of object. For example, the VISA control contains a Tasks
collection object that contains multiple Task objects.

Common Instrument Control Features
The VISA control uses the same parsing sub-objects as the GPIB and Serial
controls. The Instrument controls share certain common properties.

SwapBytes—Some instruments return data in which the least significant
byte appears first. This format is known as Little Endian format. Other
instruments return data in which the address points to the most significant
byte of the word, or in Big Endian format. Check your instrument
documentation to determine if the instrument returns data in Big or Little
Endian format. If your instrument returns data in Big Endian format, set the
SwapBytes property of the RdWrt object to True, as in the following
example:

CWVisa1.RdWrt.SwapBytes = True

ExceptionOnError—The Instrument controls handle error checking in
two different ways. When an error occurs, each Instrument control
generates an exception that your programming environment handles
(default action). You can disable the generation of exceptions using the
ExceptionOnError property of each Instrument control. If you disable
exceptions on errors, the control fires an OnError event in response to an
error condition and passes the error information to the OnError event
handler. For some error conditions, such as those that occur during
asynchronous operations, the control fires OnError events regardless of
the value of ExceptionOnError.

DataAsString—Use the DataAsString property to specify if data is
returned as a string or an array of bytes. If you set this property to True, the
data is returned as a string. If you set this property to False, the data is
returned as an array of bytes. You can set this property from the RdWrt page
of the VISA property pages or in your program:

CWVisa1.RdWrt.DataAsString=True

Chapter 9 Using the VISA Control

© National Instruments Corporation 9-5 Getting Results with ComponentWorks

Parsing
As with the GPIB and Serial controls, you can use the VISA control to
parse data into formats more easily used by your application. The VISA
control supports multiple parsing tasks. Use these tasks to specify the way
in which the data is parsed, and you can invoke different tasks at different
times in your application.

Each task contains a group of patterns. These patterns are made up of one
or more tokens, which are the basic building blocks for parsing. For
example, a token might be a number, a 4-byte word, or a comma. A pattern
might consist of a number token followed by a comma token. A parsing
task might consist of this particular pattern repeated several times.

Parsed data is returned as an array of tokens. The control returns parsed data
as an array of tokens. You can configure the control to ignore specific types
of tokens and not return them in the array. For example, you might not want
the commas returned in certain patterns. If you specify commas as ignored,
only the numbers are returned in the array. Use the built-in pattern type
Number Parser to automatically extract all numbers from the data and
return them in an array. If only one number is present, it returns the number
as a scalar (simple non-array variable).

For more detailed information about parsing objects, see Advanced Parsing

Features in Chapter 8, Using the GPIB and Serial Controls. To use the
parsing features in a tutorial, see Tutorial: Using the Serial Control in
Chapter 8, Using the GPIB and Serial Controls.

VISA Object
The VISA object has several properties for performing I/O with any
interface (GPIB, Serial, or VXI). The most important is the resource name
(RsrcName) property, which you can use to select the instrument being
addressed by the VISA control. RsrcName specifies the exact name and
location of a VISA resource, with the following format.

Interface Type[Board Index]::Address::VISA Class

• Interface Type—Specifies the I/O interface to which the device is
connected (GPIB, ASRL (Serial), or VXI).

• Board Index—Specifies the index of the board. Use Board Index
only if the system has more than one interface type. For example, if the
system contains two GPIB plug-in boards, you can refer to one as
GPIB0 and the other as GPIB1.

Chapter 9 Using the VISA Control

Getting Results with ComponentWorks 9-6 © National Instruments Corporation

• Address—For VXI instruments, the Address parameter is the
logical address of the instrument. For GPIB instruments, Address is
the GPIB primary address.

For GPIB communication with secondary addressing, add the
secondary address to the resource name. For example, to communicate
with a GPIB instrument with primary address 4 and secondary
address 2, use the resource name GPIB::4::2::INSTR.

Do not use Address for serial instruments. For example,
ASRL1::INSTR is the descriptor for the COM 1 serial port on a
personal computer.

• VISA Class—Specifies the grouping that encapsulates some or all of
the VISA methods. INSTR is the general class that encompasses all
VISA methods. In the future, other classes might be added to the VISA
specification. Currently, you are not required to include VISA Class,
but you should include it to ensure future compatibility. Most
applications use the INSTR class.

The VISA control can search the system for available resources. From the
General property page, you can view all available resources in the
Resource Name list box, as shown in Figure 9-3.

Figure 9-3. VISA Property Pages—General Page

Chapter 9 Using the VISA Control

© National Instruments Corporation 9-7 Getting Results with ComponentWorks

Other general attributes include Queue Length and the Timeout Value.

• Queue Length—The length of the queue, used only with a
synchronous method of event handling.

• Timeout Value—The value in milliseconds used for Input/Output
(IO) operations.

You also can set these properties programmatically.

CWVisa1.RsrcName = "GPIB::2::INSTR"

CWVisa1.MaxQueueLength = 100

CWVisa1.Timeout = 1000

Other properties include InterfaceInstanceName, InterfaceType,
InterfaceNumber, ResourceImplVersion, ResourceSpecVersion,
and ResourceManufacturerName.

RdWrt Object
The RdWrt object contains properties that apply to general message-based
communication for any type of interface—GPIB, Serial, or VXI.
Figure 9-4 shows the RdWrt object properties.

Figure 9-4. VISA Property Pages—RdWrt Page

Chapter 9 Using the VISA Control

Getting Results with ComponentWorks 9-8 © National Instruments Corporation

• I/O Protocol—Usually left at Normal, but other options are available
depending on the interface.

• END condition—Specifies whether the end condition is sent at the
end of write operations.

• Return Data As—Specifies whether to return data as a string or byte
array. You also can set this property programmatically.

Use the DataAsString property to specify the format of returned
data. If you set this property to True, the data returns as a string. If you
set this property to False, the data returns as an array of bytes. You
can set this property from the RdWrt tab of VISA property page or
programmatically.

CWVisa1.RdWrt.DataAsString = True

• Termination Character—Use the Enable feature to set a termination
character for terminating read operations.

Serial (ASRL) Object
The Serial object contains properties pertaining to VISA communication
with a serial device. Use the settings to configure the serial port for serial
communication, to check the state of serial hardware lines, and to check the
number of bytes available in the serial input buffer. These properties
include BaudRate, DataBits, StopBits, and FlowControl. You can
set most of these properties on the Serial page of the VISA control property
pages, as shown in the following figure.

Figure 9-5. VISA Property Pages—Serial Page

Chapter 9 Using the VISA Control

© National Instruments Corporation 9-9 Getting Results with ComponentWorks

GPIB Object
The GPIB object contains properties pertaining to VISA communication
with a GPIB resource. Two of these properties, PrimaryAddess and
SecondaryAddress, are read only. Use the other two properties,
ReaddressEnable and UnaddressEnable, to enable readressing or
unaddressing after GPIB read and write operations. By default,
ReaddressEnable is enabled and UnaddressEnable is disabled.

VXI Object
The VXI object contains properties pertaining to VISA communication
with a VXI device. All properties, including ManufacturerId, Slot, and
ModelCode, are read only. Use the properties to access information
obtained by the VXI Resource Manager utility when it configures the
VXI system.

Methods and Events
To begin controlling a resource with the VISA control, use the Open
method. This method initializes the resource and configures it with the
settings that you specified for the control. You must call Open before you
can call any other methods of the control. If you call the Close method at
any point in the program, you must call Open again before performing
any I/O.

Private Sub OpenDevice_Click()

CWVisa1.Open

End Sub

Private Sub CloseDevice_Click()

CWVisa1.Close

End Sub

Message-Based Communication
All serial and GPIB devices, and many VXI devices, recognize a variety of
message-based command strings. With the VISA control, the actual
protocol used to send a command string to an instrument is transparent.
You need to specify only whether you want to write a message or read a
message from a message-based device.

Note The same methods are used to write message-based commands to GPIB, serial,

and message-based VXI instrument. VISA automatically knows which functions

to call based on the type of resource being used.

Chapter 9 Using the VISA Control

Getting Results with ComponentWorks 9-10 © National Instruments Corporation

Synchronous I/O

You perform synchronous message-based I/O using the Read and Write
methods of the CWVisa control. Read accepts an optional parameter that
specifies the buffer size. If you omit this parameter, the buffer size is
specified by the DefaultBufferSize property. Unlike the Read method
on CWTask, the Read method on CWVisa does not perform any parsing of
the data.

The following example displays the identification string returned by many
message-based instruments. The control first writes the command *IDN? to
the instrument and then reads back and displays the response in a text box
in the program.

CWVisa1.Write "*IDN?"

Text1.Text = CWVisa1.Read

Asynchronous I/O

You use the ReadAsynch and WriteAsynch methods to perform
asynchronous message-based I/O operations. These methods start a read or
write operation, respectively, and then return immediately. When an
asynchronous read is complete, the control generates a DataReady event
and passes the data to your event handler. When an asynchronous write is
complete, the control generates a WriteComplete event.

Private Sub CWVisa2_DataReady(ByVal taskNumber As

 Integer, ByVal Data As Variant)

Text1.Text = Data

End Sub

Both of these operations also generate the IOCompletion event when they
finish. You can use these events when you want your program to continue
executing other tasks during a long write or read operation.

Unlike the ReadAsynch and WriteAsynch methods on CWTask, the
ReadAsynch and WriteAsynch methods on CWVisa do not perform any
parsing of the data.

Chapter 9 Using the VISA Control

© National Instruments Corporation 9-11 Getting Results with ComponentWorks

Register-Based Communication

Some VXI instruments do not support message-based commands. To
communicate with these instruments, use register accesses. The VISA
control contains a set of register access methods that you can use with VXI
instruments.

Because all VXI instruments have configuration registers in the upper
16 kilobytes of A16 memory space, you can use register access functions
to read from and write to the configuration registers for message-based
devices. To read a value from a register, use the basic VISA In method.
Three different versions of the In operation exist so you can read
8-, 16-, or 32-bit values.

You can set the properties related to VXI register accesses in the VXI

Memory page of the VISA property pages, as shown in the following
figure.

Figure 9-6. VISA Property Pages—VxiMemory Page

The Access Privilege property specifies the VME access privilege. The
Byte Order property specifies the byte order used in performing register
accesses. The Source and Destination attributes apply to the high-level
register access operations. The Address Increment properties apply to
the MoveIn and MoveOut methods only. The Window attributes apply to
lower-level register access methods only.

Chapter 9 Using the VISA Control

Getting Results with ComponentWorks 9-12 © National Instruments Corporation

High-Level Register Accesses with the In and Out Methods

The parameters for the In16 method, space and offset, specify the
address space and the offset. The address space is an enumeration
indicating whether the A16, A24, or A32 space is being accessed. The
following list includes the constants for the different address spaces.

The offset parameter is a long integer specifying the address in the
indicated address space. Remember that VISA keeps track of the base
memory address that a device requests in each address space. The offset
input is relative to this base address. For example, suppose that you have a
device at logical address 1 and want to use the In16 method to read its
ID/Logical Address configuration register. This register is at absolute
address 0xC040 in A16 space and the configuration registers for the device
at logical address 1, range from 0xC040 to 0xC07F. Because VISA also
holds this information, you only need to specify the offset in the region you
want to access. In this case, that offset is zero.

The Out16 method uses the address space and offset parameters in addition
to a third integer parameter, which specifies the value to be written to the
register. Do not use the VISA Out methods on read-only registers.

Moving Blocks of Data with the MoveIn and MoveOut Methods

Use the MoveIn and MoveOut methods to move large blocks of
8-, 16-, or 32-bit data from a VXI address space to local memory or from
local memory to a VXI address space. The Move methods are efficient
operations, and you should use them for block transfers of data. If you do
not select the Address Increment property, the block of data moves to a
single location (FIFO) rather than to a corresponding block.

In addition to the MoveIn and MoveOut methods, you can use the Move and
MoveAsync methods with a special resource of the MEMACC class
(instead of INSTR class). This resource has access to all VXI address
spaces via absolute addresses (instead of relative offsets for a particular
resource). Move and MoveAsync can move data from one VXI memory
range to another as well as to or from local memory.

Constant Name Description

cwVxiA16Space A16

cwVxiA24Space A24

cwVxiA32Space A32

Chapter 9 Using the VISA Control

© National Instruments Corporation 9-13 Getting Results with ComponentWorks

Low-Level Register Accesses with the Peek and Poke Methods

If the high-level In and Out methods cannot sufficiently perform register
accesses, you can use the lower-level methods. Low-level register access
methods use the User Window specified in the controller’s VXI
Configuration utility to access the VXI/VMEbus. The PeekXX method
reads registers, and the PokeXX method writes to registers, where XX
specifies the corresponding size in bits of the access (8, 16, or 32). The
Peek and Poke methods are generally faster than the corresponding In and
Out methods.

Before you can use these methods, map a part of the VXI memory space to
local memory with the MapAddress method. The MapAddress method
takes the following input: address space, base VXI address, size of memory
(in bytes), and a suggested local address to which the memory can be
mapped. MapAddress returns the actual local address to which the
specified base VXI address was mapped. If the MapAddress method
completes without an error, check the WinBaseAddr and WinSize
properties under the VxiMemory object to verify the actual size of the
window that was mapped.

Note Before attempting to use the Peek and Poke methods, verify that the MapAddress

method executed successfully. If the operation did not successfully execute, the

system can crash.

Use the following steps as a guideline for developing a program that
performs low-level register accesses.

1. Set the property pages for the resource that you want to access.

2. Call the Open method.

3. Use the MapAddress method to map a region of a VXI address space
to local memory.

4. Check the mapped window size and window base to make sure you do
not access an area outside this window.

5. Perform Peek and Poke operations.

6. Call the UnMapAddress method to free the window.

7. Call the Close method.

If you want to access another VXI address space using low-level register
access functions, unmap your current window and remap it to the region
that you want to peek or poke.

Chapter 9 Using the VISA Control

Getting Results with ComponentWorks 9-14 © National Instruments Corporation

Events
In VISA, events provide communication between VISA resources and a
VISA application. Events are generated when certain conditions occur in
the system. When the specified conditions occur, the corresponding event
handler routine is called. To respond to an event, place the code that you
want to execute into the event handler routine. Some events return
additional information in the form of a VisaEvent object, but most events
simply indicate that a specific condition occurred.

When should you use events? Consider the following situation. Suppose
that you have a sophisticated message-based VXI device in your chassis
that can perform a variety of different measurement operations, but some
measurements require several minutes for the device to obtain a stable
reading. After writing the command to the device to get the measurement,
you cannot be sure when the measurement is complete. After performing
the write operation, you can continuously attempt to perform VISA reads
from the device until one is successful. Alternatively, you might attempt to
read the result infrequently until it is available or wait a long time before
checking to see if the result is available.

Several problems arise with these solutions. Continuous polling interferes
with concurrent operations, such as controlling other instruments, writing
data to disk, or updating the screen display. Also, these methods do not
provide timely solutions. This scenario illustrates the need for other means
of communication between VISA resources and a VISA application.
Events provide this alternate means of communication.

Event Types
In addition to the events produced by asynchronous I/O operations, the
VISA control generates the following events.

• ServiceRequest—Notifies the application when a device requests
service from its controller. This event returns the status byte that was
obtained by serial polling the device generating the request. This event
is primarily produced by GPIB devices asserting the GPIB SRQ line
and message-based VXI devices.

• Trigger—Notifies the application when a device asserts a trigger line
on the VXI backplane. The returned VisaEvent object contains a
TriggerId property specifying the trigger line with which the event
is associated. When you set the TriggerId property of the VISA
control, the Trigger event is sensitized to a single trigger line each
time. You must set the line before you can start responding to trigger

Chapter 9 Using the VISA Control

© National Instruments Corporation 9-15 Getting Results with ComponentWorks

events on that trigger line. For example, you can receive trigger events
for triggers on TTL Trigger Line 5 with the following code.

CWVisa1.TriggerId = cwTrigTTL5

CWVisa1.EnableEvent CWVisaEventTrigger

To detect triggers on two different trigger lines at the same time, use a
second VISA control.

• VxiSignalProc—Notifies the application when a device asserts an
interrupt on the VXI backplane or produces a VXI signal. When a VXI
interrupt or signal occurs, there is a StatusId value associated with
the event. This value is returned by the VxiSignalProc event. Unlike
triggers, a VXI interrupt on any of the interrupt levels produces a
VxiSignalProc event. The lower 8 bits of this StatusId are set to
the logical address of the device creating the signal or interrupt. VISA
checks this StatusId value and generates an event only if the device
creating the event is the device specified by the resource name
property.

The following code fragment checks the StatusId value associated
with a VxiSignalProc event.

Private Sub CWVisa1_VxiSignalProc(ByVal VisaEvent As

CWVisaLib.CWVisaEvent)

 Text1.Text = VisaEvent.StatusId

End Sub

The VxiSignalProc event does not return the actual interrupt line
that was asserted on the backplane. If you need the actual interrupt line,
use the VxiVmeInterrupt event.

• VxiVmeInterrupt—Notifies the application when a device asserts
an interrupt on the VXI backplane. This event is similar to the
VxiSignalProc event except it is produced only for VXI or VME
interrupts, not signals. It also returns the interrupt line on which the
interrupt occurred and the StatusId.

Event Handling With The Event Queue
The VISA control provides an alternative mechanism for responding to
events. Instead of implementing event handlers in your program code, you
can configure the VISA control to place events in a queue from which you
can later retrieve them. Use the EnableEvent method to specify the VISA
events that the control should place in a queue. Set the VISA event type in
the parameter for this method.

CWVisa1.EnableEvent cwVisaEventVXIVMEInterrupt

Chapter 9 Using the VISA Control

Getting Results with ComponentWorks 9-16 © National Instruments Corporation

After this call, events are placed in the event queue as they occur. The
maximum size of the queue is determined by the Queue Length property.
The default size is 50 entries. If more than 50 entries are received before
any are removed from the queue, the entries are discarded.

Note The VISA control automatically calls the EnableEvent on all event types except

Trigger when a VISA session is opened. If you are concerned with events that

occur at certain points in your program, use commands to empty the queue or

disable the queuing of events. See the following sections, Discarding Events From

The Queue, and Disabling The Event Queue, for more information.

Checking Events in the Queue
In your program code, use the WaitOnEvent method to check the queue
for events. The WaitOnEvent parameters specify the event type for which
to wait, the timeout for waiting, and a return parameter for the event (if one
is received). To determine if any events are currently in the event queue,
specify a timeout of zero.

The following code fragment checks the event queue to determine if a
VXIVMEInterrupt is available in the queue, and if one is available, it
obtains the StatusId value of the interrupt.

Dim ReturnEvent As CWVisaEvent

Dim stat As Boolean

stat = CWVisa1.WaitOnEvent(cwVisaEventVXIVMEInterrupt,

0, ReturnEvent)

If stat Then Text1.text = ReturnEvent.StatusId

If the WaitOnEvent method is successful, it removes the oldest event from
the queue.

Discarding Events From The Queue
To empty the event queue of all of its current events, use the
DiscardEvents method.

CWVisa1.DiscardEvents cwVisaEventVXIVMEInterrupt

Disabling The Event Queue
To stop events from being placed in the queue, use the DisableEvent
method.

CWVisa1.DisableEvent cwVisaEventVXIVMEInterrupt

Chapter 9 Using the VISA Control

© National Instruments Corporation 9-17 Getting Results with ComponentWorks

To continue queuing events, call the EnableEvent method again. If you
call DisableEvent and then call EnableEvent later in the program, all
events present in the queue when you called DisableEvent are still
present in the queue.

Note When the event queue fills up, subsequent events are discarded.

Tutorial: Using the VISA Control for Message-Based
Communication

This tutorial shows you an example of using the VISA control in a simple
program to control a GPIB Fluke 45 multimeter. While the Fluke 45 and
this example use a specific command set, you can control most other
message-based instruments in a similar manner. Substitute commands for
your particular instrument in place of the Fluke 45-specific commands.

This tutorial uses Visual Basic syntax, but the discussion is in general terms
so you can follow it in any compatible programming environment.
Remember to adjust any code to your specific programming language.
Refer to the Building ComponentWorks Applications chapters for
information about implementing any step in different programming
environments. You also can refer to the tutorial examples installed with
ComponentWorks for a completed version of this example in several
different programming environments.

Designing the Form

1. Open a new project and form. If you are working in Visual C++, select
a dialogue-based application and name your project MbasedExample.

2. Load the ComponentWorks VISA control into your programming
environment.

3. Place a VISA control on your form. You configure its properties in the
next section.

4. Place a text edit box on the screen.

5. Set the Name property for the text box to Text1.

6. Place a button control on the form.

7. Change the Name and Caption properties to FREQ.

Chapter 9 Using the VISA Control

Getting Results with ComponentWorks 9-18 © National Instruments Corporation

 Your form should look similar to the one shown below.

Figure 9-7. MbasedExample Form

Setting the VISA Control Properties
You normally configure the default property values of the VISA control
before you develop your program code. When using the VISA control,
most or all properties are set during design and do not change during
program execution. If necessary, you can edit the properties of the VISA
control at run time.

1. Open the custom property pages for the VISA control on the form by
right clicking on the control and selecting Properties....

2. In the General tab, select the resource name for your GPIB instrument
from the Resource Name pull-down menu. If it is not present, make
sure that the GPIB and VISA driver software is installed properly.
Alternately, you can manually enter a resource name. For more
information about manually entering resource names, see the VISA

Object section earlier in this chapter.

3. Open the RdWrt property page for the VISA control. If your
instrument uses a termination character or needs some other property
change, enter the settings.

4. Open the Test property page for the VISA control.

5. To ensure that the control is properly communicating with the
instrument, enter "*IDN?" in the Send String box and press the
Execute button. If your instrument understands this command, a string
similar to "FLUKE, 45, 5005161, 1.6 D1.0" appears in the output
window. You can send any string to the instrument from this property
page. For example, for the Fluke 45, enter "val1?" in the Send String
box and press the Execute button. A value appears in the output
window. The Execute button performs both write and read operations.

Chapter 9 Using the VISA Control

© National Instruments Corporation 9-19 Getting Results with ComponentWorks

Developing the Code
Develop the code so that data is acquired and displayed in response to a
user pressing the button. In the following steps, you define an event handler
routine to be called when the FREQ button is pressed. In the event handler,
you send a command to the Fluke 45 to read the frequency and display it in
the text edit box.

1. Generate the event handler routine for the Click event of the FREQ
button. The following code opens the VISA control and sends a
command to the Fluke 45 to switch it into the frequency mode, reads
the current value from the multimeter, and displays the value in the text
box.

Add the following code to the FREQ_Click subroutine. In Visual C++,
remember to generate member variables for any controls referenced in
the program.

Private Sub FREQ_Click ()

CWVisa1.Open

CWVisa1.Write "FREQ"

CWVisa1.Write "val1?"

Text1.Text = CWVisa1.Read

End Sub

2. Save the project as MbasedExample.

Testing Your Program
Run and test the program. Click on the FREQ button. The value displayed
in the text edit box should match the value displayed on the Fluke. By
selecting different modes, you can perform other types of measurements
using the Fluke 45. Change the "FREQ" command sent to the instrument
with a corresponding command, such as "VDC" for volts.

A very similar project can be used to communicate with a message-based
serial or VXI device. Set the serial port configuration on the Serial property
page to match the necessary settings for the serial instrument.

Chapter 9 Using the VISA Control

Getting Results with ComponentWorks 9-20 © National Instruments Corporation

Tutorial: Using the VISA Control for Register-Based
Communication

This tutorial shows you an example of using the VISA control to read the
value of configuration registers for a VXI device.

This tutorial uses Visual Basic syntax, but the discussion is in general terms
so you can follow it in any compatible programming environment.
Remember to adjust any code to your specific programming language.
Refer to the Building ComponentWorks Applications chapters for
information about implementing any step in different programming
environments. You also can refer to the tutorial examples installed with
ComponentWorks for a completed version of this example in several
different programming environments.

Designing the Form

1. Open a new project and form. If you are working in Visual C++, select
a dialogue-based application and name your project RbasedExample.

2. Load the ComponentWorks VISA control and the ComponentWorks
User Interface controls into your programming environment.

3. Place a VISA control on your form. You configure its properties in the
next section.

4. Place a numeric edit box on the screen. Set the Name property for the
numeric edit box to Offset.

Right click on the Offset object and select Properties....

On the Numeric page, set Maximum range checking to 64, Values to
Discrete, Base to 0, Interval to 2, and the Increment value of the
Inc/Dec button to 2.

5. Place a second numeric edit box on the form. Set the Name property of
the second numeric edit box to Val.

Select the Val object.

On the Style page, set Control mode to Indicator and uncheck the
Visible box of the Inc/Dec button setting.

6. Add labels with the appropriate names for the two numeric edit
controls.

Chapter 9 Using the VISA Control

© National Instruments Corporation 9-21 Getting Results with ComponentWorks

Your form should look similar to the one shown below.

Figure 9-8. RbasedExample Form

Setting the VISA Control Properties
You normally configure the default property values of the VISA control
before you develop your program code. Most or all properties are set during
design and do not change during program execution. If necessary, you can
edit the properties of the VISA control at run time.

1. Open the custom property pages for the VISA control on the form by
right clicking on the control and selecting Properties....

2. In the General tab, select the resource name for your VXI instrument
from the Resource Name pull-down menu. If it is not present, make
sure that the VXI and VISA driver software is installed properly.
Alternately, you can manually enter a resource name. For more
information about entering resource names, see the VISA Object
section earlier in this chapter.

Developing the Code
Develop the code so that a configuration register is read and displayed in
response to a user entering an offset value. For the Offset numeric edit
control, define an event handler routine to be called when the offset value
changes. In the event handler, read and display the configuration register at
the specified offset in the numeric edit box on the user interface.

Chapter 9 Using the VISA Control

Getting Results with ComponentWorks 9-22 © National Instruments Corporation

1. Generate the event handler routine for the ValueChanged event of the
Offset control. In the event handler, open the VISA control, read a
configuration register, and display the value in the numeric edit box in
hexadecimal format.

Add the following code to the Offset_ValueChanged subroutine. In
Visual C++, remember to generate member variables for any controls
referenced in the program.

Private Sub Value_ValueChanged(Value As

Variant,PreviousValue As Variant,ByVal OutOfRange

As Boolean)

 Val.Value = Hex(CWVisa1.In16 (cwVxiA16Space,

Offset.Value))

End Sub

2. Add the following line to the Form_Load subroutine.

Private Sub Form_Load()

 CWVisa1.Open

End Sub

3. Save the project as RbasedExample.

Testing Your Program
Run and test the program. Try reading the value of configuration registers
at various offsets. Keep in mind that all VXI devices are required to
implement at least four basic configuration registers (offsets 0, 2, 4, and 6).

© National Instruments Corporation 10-1 Getting Results with ComponentWorks

10
Using the Analysis Controls
and Functions

This chapter describes how you can use the ComponentWorks Analysis
controls to perform data analysis, manipulation, and simulation. It explains
the individual controls and some of their functions and includes a tutorial
that gives step-by-step instructions on using the Analysis controls in a
simple program.

With the ComponentWorks analysis controls, you can perform operations
such as matrix and array calculations, frequency analysis, statistical
analysis and signal generation. The analysis functions are methods on
different Analysis controls that are organized by functionality.

Refer to the Building ComponentWorks Applications chapters for
information about using the ComponentWorks controls in different
programming environments. You can find a detailed description of each
individual analysis function in the online reference, which is available by
selecting Programs»National Instruments ComponentWorks»

ComponentWorks Reference from the Windows Start menu.

What Are the Analysis Controls?

ComponentWorks includes five ActiveX controls with more than
200 analysis functions. The functions are grouped into controls according
to their functionality.

Control Functionality

CWArray Array manipulation functions

CWComplex Complex scalars and array manipulation functions

CWMatrix Vector and matrix algebra functions

CWStat Statistical functions

CWDSP Digital signal processing and signal generation
functions

Chapter 10 Using the Analysis Controls and Functions

Getting Results with ComponentWorks 10-2 © National Instruments Corporation

Analysis Library Versions
ComponentWorks is distributed with one of three different versions of the
analysis library. Each version contains a different set of functions in the
library. The functions available to you depend on the package of
ComponentWorks you purchased.

• Base Analysis Library, ComponentWorks Base Package—Includes
simple matrix algebra, array and complex number functions, and
simple statistics functions.

• Digital Signal Processing (DSP) Analysis Library, ComponentWorks

Standard Development System—Includes the functions of the Base
Analysis Library plus DSP functions (time and frequency domain
analysis, filters, windows), curve fitting functions, advanced array and
complex number functions, and measurement functions.

• Advanced Analysis Library (AAL), ComponentWorks Full

Development System—Includes the functions of the DSP analysis
library plus advanced statistics and matrix algebra functions.

Although specific analysis functions or controls might not be part of your
analysis library, every function and control is shown in your development
environment, such as the Visual Basic Object Browser or the Visual C++
Component Gallery. When you attempt to use a function that is not
included in your analysis library, an error message appears to notify you
that the function is not supported. See Adding Testing and Debugging to

Your Application section in Chapter 12, Using the Analysis Controls

and Functions, for more information.

Table 10-1, Analysis Control Function Tree, lists all the analysis functions,
grouped by control. The last column specifies the ComponentWorks
version that includes the specific function.

• Base—Base Package (also in Standard and Full Development System)

• Standard—Standard Development System (also in Full Development
System)

• Full—Full Development System

Chapter 10 Using the Analysis Controls and Functions

© National Instruments Corporation 10-3 Getting Results with ComponentWorks

Table 10-1. Analysis Control Function Tree

Control Function Function Name

Development

System

CWArray 1D 2D Operations

1D Maximum & Minimum MaxMin1D Base

1D Array Subset Subset1D Base

1D Array Reverse Reverse1D Standard

1D Array Shift Shift1D Standard

1D Array Sort Sort1D Base

1D Array Interleave Interleave1D Base

2D Array Transpose Transpose2D Base

MultiDimensional Element Operations

Array Addition AddArray Base

Array Subtraction SubArray Base

Array Multiplication MulArray Base

Array Division DivArray Base

Absolute Value AbsArray Base

Negative Value NegArray Base

Linear Evaluation LinEvArray Base

Polynomial Evaluation PolEvArray Standard

Scaling ScaleArray Standard

Quick Scaling QScaleArray Standard

Array Clipping ClipArray Standard

Array Clearing ClearArray Base

Chapter 10 Using the Analysis Controls and Functions

Getting Results with ComponentWorks 10-4 © National Instruments Corporation

CWArray
(continued)

Array Setting SetArray Base

Array Copying CopyArray Base

Array Normalizing NormalizeArray Standard

Variant Conversion VarToDblArray Base

MultiDimensional Array Operations

Array Size ArraySize Base

Sum of Elements SumArray Standard

Product of Elements ProArray Standard

Extract complete dimensions(s)
from array

IndexArray Base

Array Subset SubsetArray Base

Maximum and Minimum of Array MaxMinArray Base

Search Array SearchArray Base

Build/Concatenate Array BuildArray Base

Reshape Array ReshapeArray Base

CWComplex Complex Numbers

Complex Addition CxAdd Base

Complex Subtraction CxSub Base

Complex Multiplication CxMul Base

Complex Division CxDiv Base

Complex Reciprocal CxRecip Base

Table 10-1. Analysis Control Function Tree (Continued)

Control Function Function Name

Development

System

Chapter 10 Using the Analysis Controls and Functions

© National Instruments Corporation 10-5 Getting Results with ComponentWorks

CWComplex
(continued)

Complex Square Root CxSqrt Standard

Complex Logarithm CxLog Standard

Complex Natural Log Cxlon Standard

Complex Power CxPow Standard

Complex Exponential CxExp Standard

Rectangular to Polar ToPolar Base

Polar to Rectangular ToRect Base

MultiDimensional Complex Operations

Complex Addition CxAddArray Base

Complex Subtraction CxSubArray Base

Complex Multiplication CxMulArray Base

Complex Division CxDivArray Base

Complex Linear Evaluation CxLinEvArray Base

Rectangular to Polar ToPolarArray Base

Polar to Rectangular ToRectArray Base

CWMatrix Vector & Matrix Algebra

Dot Product DotProduct Base

Matrix Multiplication MatrixMul Base

Matrix Inversion InvMatrix Base

Transpose Transpose Base

Determinant Determinant Base

Table 10-1. Analysis Control Function Tree (Continued)

Control Function Function Name

Development

System

Chapter 10 Using the Analysis Controls and Functions

Getting Results with ComponentWorks 10-6 © National Instruments Corporation

CWMatrix
(continued)

Unit Vector UnitVector Base

Trace Trace Full

Solution of Linear Equations LinEqs Full

LU Decomposition LU Full

Forward Substitution ForwSub Full

Backward Substitution BackSub Full

CWStat Statistics

Mean Mean Base

Standard Deviation StdDev Base

Variance Variance Full

Mean Squared Error MeanSquaredError Full

RootMean Squared Value RMS Full

Moments about the Mean Moment Full

Median Median Full

Mode Mode Full

Histogram Histogram Base

Probability Distributions

Normal Distribution Function N_Dist Full

TDistribution Function T_Dist Full

FDistricution Function F_Dist Full

χ2 Distribution Function XX_Dist Full

Table 10-1. Analysis Control Function Tree (Continued)

Control Function Function Name

Development

System

Chapter 10 Using the Analysis Controls and Functions

© National Instruments Corporation 10-7 Getting Results with ComponentWorks

CWStat
(continued)

Normal Distribution Inverse
Function

InvN_Dist Full

TDistribution Inverse Function InvF_Dist Full

FDistribution Inverse Function InvF_Dist Full

χ2 Distribution Inverse Function InvXX_Dist Full

Analysis of Variance

One-way Analysis of Variance ANOVA1Way Full

Two-way Analysis of Variance ANOVA2Way Full

Three-way Analysis of Variance ANOVA3Way Full

Nonparametric Statistics

Contingency Table Contingency_Table Full

Curve Fitting

Linear Fit LinFit Standard

Exponential Fit ExpFit Standard

Polynomial Fit PolyFit Standard

General Least Squares Linear Fit GenLSFit Standard

Interpolation

Polynomial Interpolation PolyInterp Full

Rational Interpolation RatInterp Full

Spline Interpolation SpInterp Full

Spline Interpolant Spline Full

Table 10-1. Analysis Control Function Tree (Continued)

Control Function Function Name

Development

System

Chapter 10 Using the Analysis Controls and Functions

Getting Results with ComponentWorks 10-8 © National Instruments Corporation

CWDSP Signal Generation

Impulse Impulse Standard

Pulse Pulse Standard

Ramp Ramp Standard

Triangle Triangle Standard

Sine Pattern SinePattern Standard

Uniform Noise Uniform Standard

White Noise WhiteNoise Standard

Gaussian Noise GaussianNoise Standard

Arbitary Wave ArbitaryWave Standard

Chirp Chirp Standard

Sawtooth Wave SawtoothWave Standard

Sinc Waveform Sinc Standard

Sine Waveform SineWave Standard

Square Wave SquareWave Standard

Triangle Wave TriangleWave Standard

Frequency Domain Signal Processing

FFT FFT Standard

Inverse FFT InvFFT Standard

Real Valued FFT ReFFT Standard

Real Value Inverse FFT ReInvFFT Standard

Table 10-1. Analysis Control Function Tree (Continued)

Control Function Function Name

Development

System

Chapter 10 Using the Analysis Controls and Functions

© National Instruments Corporation 10-9 Getting Results with ComponentWorks

CWDSP
(continued)

Power Spectrum Spectrum Standard

FHT FHT Standard

Inverse FHT InvFHT Standard

Cross Spectrum CrossSpectrum Standard

Time Domain Signal Processing

Convolution Convolve Standard

Correlation Correlate Standard

Integration Integrate Standard

Differentiate Difference Standard

Pulse Parameters PulseParam Standard

Decimate Decimate Standard

Deconvolve Deconvolve Standard

UnWrap Phase UnWrapID Standard

IIR Digital Filters

Lowpass Butterworth Bw_LPF Standard

Highpass Butterworth Bw_HPF Standard

Bandpass Butterworth Bw_BPF Standard

Bandstop Butterworth Bw_BSF Standard

Butterworth Coefficients BwCoef Standard

Lowpass Chebyshev Ch_LPF Standard

Highpass Chebyshev Ch_HPF Standard

Bandpass Chebyshev Ch_BPF Standard

Table 10-1. Analysis Control Function Tree (Continued)

Control Function Function Name

Development

System

Chapter 10 Using the Analysis Controls and Functions

Getting Results with ComponentWorks 10-10 © National Instruments Corporation

CWDSP
(continued)

Bandstop Chebyshev Ch_BSF Standard

Chebyshev Coefficients ChCoef Standard

Lowpass Inverse Chebyshev InvCh_LPF Standard

Highpass Inverse Chebyshev InvCh_HPF Standard

Bandpass Inverse Chebyshev InvCh_BPF Standard

Bandstop Inverse Chebyshev InvCh_BSF Standard

Inverse Chebyshev Coefficients InvChCoef Standard

Lowpass Elliptic Elp_LPF Standard

Highpass Elliptic Elp_HPF Standard

Bandpass Elliptic Elp_BPF Standard

Bandstop Elliptic Elp_BSF Standard

Elliptical Coefficients ElpCoef Standard

IIR Filtering IIRFiltering Standard

FIR Digital Filters

Lowpass Window Wind_LPCoef Standard

Highpass Window Wind_HPCoef Standard

Bandpass Window Wind_BPCoef Standard

Bandstop Window Wind_BSCoef Standard

Lowpass Kaiser Window Ksr_LPCoef Standard

Highpass Kaiser Window Ksr_HPCoef Standard

Bandpass Kaiser Window Ksr_BPCoef Standard

Bandstop Kaiser Window Ksr_BSCoef Standard

Table 10-1. Analysis Control Function Tree (Continued)

Control Function Function Name

Development

System

Chapter 10 Using the Analysis Controls and Functions

© National Instruments Corporation 10-11 Getting Results with ComponentWorks

CWDSP
(continued)

General EquiRipple FIR Equi_Ripple Standard

Lowpass EquiRipple FIR EquiRpl_LPCoef Standard

Highpass EquiRipple FIR EquiRpl_HPCoef Standard

Bandpass EquiRipple FIR EquiRpl_BPCoef Standard

Bandstop EquiRipple FIR EquiRpl_BSCoef Standard

Windows

Triangle Window TriWin Standard

Hanning Window HanWin Standard

Hamming Window HamWin Standard

Blackman Window BkmanWin Standard

Kaiser Window KsrWin Standard

BlackmanHarris Window BlkHarrisWin Standard

Tapered Cosine Window CosTaperedWin Standard

Exact Blackman Window ExBkmanWin Standard

Exponential Window ExpWin Standard

Flat Top Window FlatTopWin Standard

Force Window ForceWin Standard

General Cosine Window GenCosWin Standard

Table 10-1. Analysis Control Function Tree (Continued)

Control Function Function Name

Development

System

Chapter 10 Using the Analysis Controls and Functions

Getting Results with ComponentWorks 10-12 © National Instruments Corporation

Controls
Each analysis function is a method of its corresponding control. Parameters
are passed to analysis functions like any other functions. In many cases, the
calculated value or data is returned as a result from the function, rather than
in an output variable. This allows you to directly assign the result of the
function to another part of the program, such as the user interface, or as the
parameter of another function.

Text1.Text = CWStat1.Mean(Data)

CWDSP
(continued)

Measurement

AC/DC Estimator ACDCEstimator Standard

Amplitude/Phase Spectrum AmpPhaseSpectrum Standard

Auto Power Spectrum AutoPowerSpectrum Standard

Cross Power Spectrum CrossPowerSpectrum Standard

Impulse Response ImpulseResponse Standard

Network Functions NetworkFunctions Standard

Peak Detector PeakDetector Standard

Power Frequency Estimate PowerFrequency
Estimate

Standard

Scaled Window ScaledWindow Standard

Spectrum Unit Conversion SpectrumUnit
Conversion

Standard

Threshold Peak Detector ThresholdPeak
Detector

Standard

Transfer Function TransferFunction Standard

Table 10-1. Analysis Control Function Tree (Continued)

Control Function Function Name

Development

System

Chapter 10 Using the Analysis Controls and Functions

© National Instruments Corporation 10-13 Getting Results with ComponentWorks

Because each function is a method of a control, you must place the
corresponding control in your application to use the function. You must
include the name of the control in each call to an analysis function. For
example, a call to the AddArray function, which is part of the CWArray
control, might look like this:

SumArray = CWArray1.AddArray(Array1, Array2)

Do not assign a return variable for functions from which the information is
not returned. For example, the AutoPowerSpectrum method returns
results in the Spectrum and deltaF parameters.

CWDSP1.AutoPowerSpectrum Data, 0.001, Spectrum, deltaF

Many parameters passed to the analysis functions are of variant data type.
When passing these parameters for output or return, you only need to
declare them as a variant.

Dim Data as Variant

Data = CWDSP1.SinePattern(1024, 5, 0, 4.5)

Analysis Function Descriptions
Because there are many functions in the analysis libraries, individual
functions are not described in this manual. Each function, with its purpose
and parameters, is described in detail in the ComponentWorks online
reference. The online reference also includes code examples for each
function. You can access the online reference directly from most
programming environments. See the chapter in this manual specific to your
programming environment for more information.

Error Messages
If any analysis function encounters an error, it sends an exception back to
the application, which displays a dialog box with the error number and
description. The analysis functions do not return the error code from the
function. Consult the Appendix D, Error Codes, for more information
about individual error messages and how to resolve them. Error handling
and debugging is described in more detail in Chapter 12, Building

Advanced Applications.

Chapter 10 Using the Analysis Controls and Functions

Getting Results with ComponentWorks 10-14 © National Instruments Corporation

Tutorial: Using Simple Statistics Functions

This tutorial shows you how to use some of the CWStat control statistical
functions. The functions in this tutorial are part of the Base Analysis
Library, which is supported by all versions of ComponentWorks.

By placing the Analysis control containing the functions you are using in
your application, you can use the functions by adding them to your code
manually or with the tools provided by your development environment. The
Analysis controls do not have any properties that need to be edited. The
only property you use with an Analysis control is the Name property, which
you use when calling any function. For example, the default name of the
CWStat controls is CWStat1 and a call to the Mean function is
CWStat1.Mean.

Although this tutorial uses the Graph control to display data arrays, you can
still complete this tutorial if you do not have the user interface tools.
Disregard references to the Graph control, and use your own method for
displaying data arrays.

This tutorial uses Visual Basic syntax, but the discussion is in general terms
so you can follow it in any compatible programming environment.
Remember to adjust any code to your specific programming language.
Refer to the Building ComponentWorks Applications chapters for
information about implementing any step in different programming
environments. You also can refer to the tutorial examples installed with
ComponentWorks for a completed version of this example in several
different programming environments.

Chapter 10 Using the Analysis Controls and Functions

© National Instruments Corporation 10-15 Getting Results with ComponentWorks

Designing the Form

1. Open a new project and form. If you are working in Visual C++, select
a dialog-based application and name your project Stat.

2. Load the ComponentWorks User Interface control, CWGraph, and the
CWStat Analysis controls into your programming environment.

3. From the toolbox or toolbar, place a CWStat control on the form. Keep
its default name, CWStat1.

4. From the toolbox or toolbar, place a CWArray control on the form.
Name the control CWArray1.

5. Place a CWGraph control on the form. Keep its default name,
CWGraph1. You can open its property page to change any of its
properties.

6. Place a button on the form. Change its name and caption property
to Go.

7. Create six text boxes on the form and name them Max, MaxIndex, Min,
MinIndex, Mean, and StdDev.

8. Add a label to each text box with the following descriptions: Maximum,
Max Index, Minimum, Min Index, Mean, and Standard
Deviation.

Your form should look similar to the one shown below.

Figure 10-1. Stat Form

Chapter 10 Using the Analysis Controls and Functions

Getting Results with ComponentWorks 10-16 © National Instruments Corporation

Developing the Program Code
When you press the Go button, the program generates an array of random
numbers. It displays the data on the graph and also calculates and displays
the following statistics of the data set: maximum, array index at maximum,
minimum, array index at minimum, mean, and standard deviation.

1. Create a skeleton event handler for the Click event of the Go button.

• In Visual Basic, double click on the button on the form to create
the Go_Click subroutine.

• In Visual C++, use the MFC ClassWizard to create the event
handler routine. Right click on the button and select
ClassWizard.

• In Delphi, use the Object Inspector to create the event handler
routine. Select the Go button, then press <F11> to open the Object
Inspector. Select the Events tab. Double click the empty field next
to the Click event.

2. Add code inside the event handler routine to generate an array, fill it
with random data and display it on the graph. If you are working in
Visual C++, you first need to add a member variable for the graph
control using the MFC Class Wizard.

Dim data(0 To 99)

For i = 0 To 99

data(i) = Rnd

Next i

CWGraph1.PlotY data

3. Add the function to calculate the statistics of the data set. Use the
StdDev function of the CWStat control to calculate the standard
deviation and mean of the dataset, and the MaxMin1D function of the
CWArray control for the remaining values. You also need to declare a
number of variables to store the different calculated values. Add the
following code to the program, placing the variable declarations at the
top of the event handler routine and the analysis functions after the call
to the PlotY method from the Step 2.

Dim MeanVal as Variant, StdDevVal as Variant

Dim MaxVal as Variant, MaxIndexVal as Variant

Dim MinVal as Variant, MinIndexVal as Variant

CWStat1.StdDev data, MeanVal, StdDevVal

CWArray1.MaxMin1D data, MaxVal, MaxIndexVal,

MinVal, MinIndexVal

Chapter 10 Using the Analysis Controls and Functions

© National Instruments Corporation 10-17 Getting Results with ComponentWorks

4. Add the necessary code after the analysis functions to display the
calculated values in the textboxes on the user interface.

Mean.Text = MeanVal

StdDev.Text = StdDevVal

Max.Text = MaxVal

Min.Text = MinVal

MaxIndex.Text = MaxIndexVal

MinIndex.Text = MinIndexVal

5. Save the project and associated files as Stat.

Testing Your Program
Run the program. Click on the Go button to generate a data set and
calculate the statistical values. The result should be similar to the following
illustration.

Figure 10-2. Testing Stat

When the statistical values are displayed in the text boxes, all digits of
precision are displayed by default. You can edit the code that displays these
values to limit the number of digits displayed. Consult your programming
reference manual for information about limiting the degree of precision.

You also can use the Numeric Edit Box control to display the values and
use its format string to limit the number of digits displayed.

© National Instruments Corporation 11-1 Getting Results with ComponentWorks

11
Using the DataSocket Control
and Tools

This chapter describes how you can use the ComponentWorks DataSocket
control to read, write, or share data on a single machine or between multiple
machines and includes tutorial exercises that provide step-by-step
instructions for using the DataSocket tools.

Refer to the Building ComponentWorks Applications chapters for
information about using the ComponentWorks controls in different
programming environments. The software includes solutions for the
tutorials in Visual Basic, Visual C++, and Delphi.

Note The DataSocket control is part of the ComponentWorks Standard and Full

Development Systems.

What is DataSocket?

DataSocket, both a technology and a group of tools, facilitates the
exchange of data and information between an application and a number of
different data sources and targets. These sources and targets include files
and HTTP/FTP servers. Often, these sources and targets are located on a
different computer. You can specify DataSocket sources and targets
(connections) using URLs (uniform resource locators) that adhere to the
familiar URL model.

DataSocket uses an enhanced data format for exchanging instrumentation
style data, including data attributes and the actual data. Data attributes
might include information such as an acquisition rate, test operator name,
time stamp, quality of data, and so on.

Chapter 11 Using the DataSocket Control and Tools

Getting Results with ComponentWorks 11-2 © National Instruments Corporation

Although you can use general purpose file I/O functions, TCP/IP functions,
and FTP/HTTP requests to transfer data between different applications,
applications and files, and different computers, you must write a significant
amount of program code to do so. DataSocket greatly simplifies this task
by providing a unified API for these low-level communication protocols.
Transferring data across computers with DataSocket is as simple as using a
browser to read Web pages on the Internet.

DataSocket Basics

To bring data into your application, connect the DataSocket control to the
data source with the Connect method. The Connect method uses a URL
to identify the source to which you want to connect.

Although it is not visible at run time, the DataSocket can be thought of as
a connector on an application, as depicted by the following figure. When
you connect to a data source, it is like plugging in a wire from the source.
Because the DataSocket control parses the raw data and passes the value to
your application, you can connect to different sources without having to
support different data formats and protocols. If the DataSocket is connected
to a dynamic source, new values are passed to the application when the
value at the source changes.

When the DataSocket control has a new value loaded from the source, it
stores the value in a local CWData object, which holds the data value and
attributes associated with the data. For example, you can use DataSocket to
convert a wave file automatically into an array of numbers that can be
plotted or processed.

Figure 11-1. DataSocket Connection

Chapter 11 Using the DataSocket Control and Tools

© National Instruments Corporation 11-3 Getting Results with ComponentWorks

Locating a Data Source
Specify a URL to point the DataSocket to the data source location. Like
URLs you use in a Web browser, the data source locator can point to many
different types of sources depending on the prefix. The prefix is called the
URL scheme. DataSocket supports several existing schemes, including
http: (hypertext transfer protocol), ftp: (file transfer protocol), and
file: (local files). The DataSocket also supports a new scheme, dstp:
(DataSocket transfer protocol), for connecting to DataSocket Servers.
After the URL scheme, enter the data-source-path. The format of the path
depends on the scheme you use.

Figure 11-2. Specifying Data Source Locations

Reading Data from a Data Source

To read, load, or download data using the DataSocket control, call the
ConnectTo method and pass in the URL and access mode. The access
mode specifies whether the connection is reading or writing data. To read
from a source, use the access mode cwdsRead.

'Connect to a new data source to read from.

CWDataSocket1.ConnectTo "http://host/path" cwdsRead

When you use the ConnectTo method, the URL and access mode values
are saved in the URL and AccessMode properties of the DataSocket
control. If you have already set these properties, you can use the Connect
method instead.

<dstp://weather.natinst.com/dailytemps>
Open and monitor the temperature
in Austin, Texas.

<file:c:\mydata\chirp.wav>
Open and read a local file.

<ftp://ftp.natinst.com/cworks/cwds/chirp.wav>
Connect to an FTP server and download a file.

<http://www.natinst.com/cworks/cwds/chirp.wav>
Connect to a Web server and download a file.

Chapter 11 Using the DataSocket Control and Tools

Getting Results with ComponentWorks 11-4 © National Instruments Corporation

' Connect using the current URL and

' Access mode property settings.

CWDataSocket1.Connect

As it connects and loads data, the DataSocket control can generate two
events to notify your application of progress: OnDataUpdated and
OnStatusUpdated.

OnDataUpdated Event
The DataSocket control generates an OnDataUpdated event when it
receives a data value. The event passes a reference to the DataSocket
CWData object.

Sub CWDataSocket1_OnDataUpdated(ByVal Data As CWData)

 CWGraph1.PlotY Data.Value

End Sub

You can use the DataSocket control Data property to access the currently
stored value. The Data property returns a reference to the same
CWData object that is passed to the event. From the CWData object, you
can get the value or attributes associated with the current data. The data
value is returned as a variant (the specific type of variant depends on the
source to which the DataSocket is connected).

x = CWDataSocket1.Data.Value

Instead of waiting for an event, you might find it more convenient to check
for new data. To determine if the DataSocket data has been updated since it
was last read, query the value of the DataUpdated property. When a new
value is loaded, DataUpdated becomes true. When the data value or any
attribute is checked, DataUpdated reverts to false.

Use the DataUpdated property to check for updates in conjunction with
another periodic operation, such as an operation initiated by a timer event.

Sub Timer1_OnTimer

 ' DataUpdated is true only if the data

 ' has been reloaded.

 If DataSocket1.DataUpdated then

 ' Reading the data property resets the

 ' DataUpdated property.

 MySub DataSocket1.Data

 End If

 ' Other timer event code.

End sub

Chapter 11 Using the DataSocket Control and Tools

© National Instruments Corporation 11-5 Getting Results with ComponentWorks

Updating the Data
To reload data from the source, call the Update method. When the new
data is loaded, the DataUpdated property is set to true and the
OnDataUpdated event is fired.

' Update the data that DataSocket is holding.

CWDataSocket1.Update

If you read the Data property before the event occurs, you get the
previous data.

Automatically Updating Data
Some data sources, such as the DataServer, support automatic notification
of value changes. For example, the DataSocket Server can automatically
download updates when another client changes the data item to which it is
connected. When the DataSocket control receives an update, it generates an
OnDataUpdated event and sets the DataUpdated property to true. To
receive updates automatically, connect using the cwdsReadAutoUpdate
access mode.

CWDataSocket1.ConnectTo sourceURL, cwdsReadAutoUpdate

OnStatusUpdated Event
The OnStatusUpdated event occurs every time you try to connect to the
data source specified by the URL. The event returns parameters for the
status, a system error code, and a string describing the most recent progress
or error. You can use these parameters to identify the cause of a problem or
to report the progress. The OnStatusUpdated event can occur a number
of times, depending on the data source to which you are trying to connect.

Private Sub CWDataSocket1_OnStatusUpdated(ByVal Status

As Long, ByVal Error As Long, Message As String)

' Display the current status in the form

Text1.Text = Message

End Sub

Disconnecting from a Data Source
When you finish retrieving data from the data source, call the Disconnect
method to release system resources that are used by the data source to
which you connected. If you call the Connect method while connected to

Chapter 11 Using the DataSocket Control and Tools

Getting Results with ComponentWorks 11-6 © National Instruments Corporation

another source; delete the control; or unload the form it is on, the
DataSocket control automatically calls Disconnect.

CWDataSocket1.Disconnect

Once disconnected, the DataSocket retains the last data loaded so you can
continue to use it after the connection terminates. The Update method does
not work after you disconnect.

Tutorial: Reading a Waveform

This tutorial shows you how to use the DataSocket to load a wave
from several different data sources, some of which are installed with
ComponentWorks and others are on the National Instruments’s Web and
FTP sites. To use the Internet sources, your computer must be connected
to the Internet.

This tutorial uses Visual Basic syntax, but the discussion is in general
terms so you can follow it in any compatible programming environment.
Remember to adjust any code to your specific programming language.
Refer to the Building ComponentWorks Applications chapters for
information about implementing any step in different programming
environments. You also can refer to the tutorial examples installed with
ComponentWorks for a completed version of this example in several
different programming environments.

Designing the Form

1. Open a new project and form. If you are working in Visual C++, select
a dialog-based application and name your project SimpleDSRead.

2. Load the ComponentWorks DataSocket and ComponentWorks UI
controls (specifically the graph) into your programming environment.

3. Place a CWDataSocket control on the form. Keep its default name,
CWDataSocket1.

4. Place a CWGraph control on the form. Keep its default name,
CWGraph1.

Chapter 11 Using the DataSocket Control and Tools

© National Instruments Corporation 11-7 Getting Results with ComponentWorks

5. Place a CommandButton control on the form. Keep its default name,
Command1.

6. Change the CommandButton caption to Connect.

7. Place a TextBox control on the form. Keep its default name Text1.

8. Place another TextBox control on the form. Keep its default name,
Text2.

Your form should look similar to the one shown below.

Figure 11-3. SimpleDS Form

Developing the Program Code
After completing the following steps, you can press the Connect button to
connect the DataSocket to the data source. The DataSocket loads the data,
and the graph displays the data.

You can specify the data source by typing the URL in the text box. Each
time the DataSocket connects to a new source, it disconnects from the
previous source.

Chapter 11 Using the DataSocket Control and Tools

Getting Results with ComponentWorks 11-8 © National Instruments Corporation

1. Create a skeleton event handler for the OnDataUpdated event of
CWDataSocket1.

• In Visual Basic, double click on the DataSocket control that you
placed on the form.

• In Visual C++, use the MFC ClassWizard to create the event
handler routine. Right click on the DataSocket control and select
ClassWizard.

• In Delphi, use the Object Inspector to create the event handler
routine. Select the Slide control, press <F11> to open the object
inspector, select the Events tab, and double click on the empty
field next to the OnDataUpdated event.

2. Add the following code inside the event handler routine. If you are
working in Visual C++, first add a member variable for each control to
the application dialog class.

• Visual Basic:
CWGraph1.PlotY Data.Value

• Visual C++:
m_CWGraph1.PlotY(Data.GetValue(), COleVariant(0.0),

COleVariant(1.0), COleVariant(1.0));

• Delphi:
CWGraph1.PlotY(Data.GetValue(), 0, 1, TRUE);

3. Add the following code to the CWDataSocket1_OnStatusUpdated
event. Remember to adjust the syntax for your programming language.

Text2.Text = message

4. Add the following code to the Command1_Click event routine.
Remember to adjust the syntax for your programming language.

CWDataSocket1.ConnectTo Text1.Text, cwdsReadAutoUpdate

5. Save the project and associated files as SimpleDSRead.

Testing Your Program
Run the program. Initially, the graph does not display any data because the
DataSocket is not connected to a source. To connect to a data source, enter
a URL in the text box and press Connect.

Chapter 11 Using the DataSocket Control and Tools

© National Instruments Corporation 11-9 Getting Results with ComponentWorks

Note You must establish a network connection before you can connect to an Internet

data source. If you normally dial into an Internet service provider over a phone

line, do so before attempting to connect to a data source on the Internet.

You do not need an Internet connection to read data from local files or connect to

DataSocket Servers on the same computer.

The following list contains URLs you can use to test the program.

• To connect to and load data from a local file, enter a file URL.
ComponentWorks includes sample files in the ComponentWorks
installation directory.

file:c:\Program Files\National Instruments

\ComponentWorks\tutorials\Visual Basic\chirp.wav

• The following list specifies URLs to which you can connect with the
DataSocket. If the URLs do not work, use your Web browser to locate
new URLs at www.natinst.com/cworks/datasocket.

– To connect to and load data from an http (Web) server, enter
http://www.natinst.com/cworks/datasocket/chirp.dsd

– To connect to and load data from an ftp server, enter
ftp://ftp.natinst.com/support/compworks/datasocket

/chirp.dsd

– To connect to and load data from a DataSocket, enter
dstp://weather.natinst.com/weather/windspeed

This site has live weather information from our corporate
headquarters in Austin, Texas.

Writing Data to a Data Target

When you connect to a URL with one of the read modes, the URL identifies
a data source. When you connect to a URL with a write mode, the URL
identifies a data target. That is, you read data from a data source and write
data to a data target.

To connect to a data target, use the Connect method with the cwdsWrite
access mode. Once connected, the DataSocket writes the data it is
currently holding.

CWDataSocket1.Data.Value = x

CWDataSocket1.ConnectTo targetURL, cwdsWrite

Chapter 11 Using the DataSocket Control and Tools

Getting Results with ComponentWorks 11-10 © National Instruments Corporation

When the connection is complete and the data is written to the target, the
DataSocket fires the OnDataUpdated event and sets the DataUpdated
property to true. DataUpdated reverts to false once the Data value or
attributes are modified or checked.

Note Some data sources, such as DataSocket Servers and local files, can be either a data

source or a data target, determined by the access mode used to connect to it. Other

data sources, especially http: and ftp: sources, are read only and cannot be

used as a data target.

Updating a Data Target
The DataSocket rewrites data to the data target with the Update method.
When the new data has been written, the OnDataUpdated event is fired
and the DataUpdated property is set to true.

'Update the data target with a new value.

CWDataSocket1.Data.Value = x

CWDataSocket1.Update

Use the Update method to write new data to a DataSocket Server or a local
file each time you run an experiment or acquire data. When a data target is
updated, the existing value is replaced completely with the new value and
attributes. The DataSocket control completely replaces the existing value
with the new value and attributes.

Automatically Updating a Target
When you connect to the data target using the cwdsWriteAutoUpdate
access mode, the DataSocket updates the target every time the data value
or attributes are set.

CWDataSocket1.ConnectTo targetURL, cwdsWriteAutoUpdate

If you want to set the value and attributes in one operation, use a second
CWData object to prepare the data, and then use the CopyFrom method to
copy the value and attributes.

' Set the value and attributes in a

' second CWData object.

Dim cwd as New CWData

cwd.Value = x

cwd.SetAttribute "SampleRate", 10000

' Copy the data from the second object.

' into the CWData owned by the DataSocket.

' After the copy is done the target will be updated.

CWDataSocket1.Data.CopyFrom cwd

Chapter 11 Using the DataSocket Control and Tools

© National Instruments Corporation 11-11 Getting Results with ComponentWorks

Working with CWData

The DataSocket control consists of two objects. The first is the
CWDataSocket object. The top-level object manages the process of
connecting to data sources or targets, transferring and parsing data, and
firing events. The second object, CWData, holds the data that has been read
or that will be written.

Figure 11-4. DataSocket Control

Because the CWData object is part of the CWDataSocket control,
operations that read or modify the data value or attributes notify the
DataSocket. Therefore, the DataSocket knows when data loaded from a
source has been read or when a data target needs to be updated. When the
DataSocket control is connected to a Read source, it prohibits
modifications to the CWData objects it owns.

As shown in the proceeding figure, the Data property on the DataSocket
returns a reference to a CWData object, which holds the value and
attributes. CWData contains a property for the primary value of the data
and methods to access attributes of the data. If the DataSocket is connected
to a data source, the CWData object it owns is read only. For example, if
cwd is a reference to a CWData object owned by a CWDataSocket that is
connected to a data target with the cwdsWriteAutoUpdate mode, setting
its value; calling CopyFrom; or setting its attributes causes the DataSocket
to write the new value to the data target.

x = CWDataSocket1.Data.Value

CWDataSocket

Properties include
Data

Methods include
Connect URL, mode

Update

Disconnect

CWData

Properties include
Value

Methods include
HasAttribute name

GetAttribute name

SetAttribute name, dv

Chapter 11 Using the DataSocket Control and Tools

Getting Results with ComponentWorks 11-12 © National Instruments Corporation

Working with Attributes
You can use attributes to provide information such as the time the value
was calculated or acquired, the units in which the value is expressed, the
equipment used to generate the value, or any other properties that you
want to define.

Use the SetAttribute method to change an existing attribute value or, if
the attribute is not present in the data, add the attribute.

CWDataSocket1.Data.SetAttribute "Units", "volts"

To determine if existing data has a specific attribute, use the
HasAttribute method.

x = CWDataSocket1.Data.HasAttribute ("Units")

' x is true if the attribute has a "Units" attribute,

' false otherwise.

To get the value of an attribute, use the GetAttribute method.
GetAttribute accepts an optional parameter, Default. If the attribute
you are trying to get is not present in the data, Default is returned.

x = CWDataSocket1.Data.GetAttribute ("Units", "volts")

' x is the value for the "Units" attribute or "volts"

' if the attribute is not present.

x = CWDataSocket1.Data.GetAttribute ("Units", "")

' x is the value for the "Units" attribute or an empty

' string if the attribute is not present.

x = CWDataSocket1.Data.GetAttribute ("Units", Empty)

' x is the value for the "Units" attribute or an empty

' variant if the attribute is not present.

' “Empty” is a predefined value in VB that

' has the value of an empty variant.

To delete an attribute, use the DeleteAttribute method.

CWDataSocket1.DeleteAttribute "Units"

Standalone CWData Objects
You can create a CWData object and use it independently of the
DataSocket control. To preserve the data value and attributes, use
standalone CWData objects to hold copies of the data loaded by a
DataSocket control.

Chapter 11 Using the DataSocket Control and Tools

© National Instruments Corporation 11-13 Getting Results with ComponentWorks

' Store a copy of the CWData value in a variant.

' Attributes are not copied.

Dim v as Variant

v = CWDataSocket1.Data.Value

' Store a copy of the value and all attributes in a

' CWData object.

Dim cwd as new CWData

cwd.CopyFrom CWDataSocket1.Data

You can use CWData on its own as a variable that can hold both a regular
value and attributes.

Dim cwd as new CWData

cwd.Value = 50.0

cwd.SetAttribute "Units", "volts"

Use the CopyFrom method to copy the value and attributes from one
CWData object to another.

cwd1 = cwd2 ' Only copies the value.

cwd1.CopyFrom cwd2 ' Copies the value and attributes.

Note Each CWData object knows if it is owned by a CWDataSocket control or if it is

created as a standalone object. If it is owned, the control is notified of changes

made to the data or attributes. For example, if cwd is a reference to a CWData

object owned by a CWDataSocket that is connected to a data target with the

cwdsWriteAutoUpdate mode, setting its value, calling CopyFrom, or setting its

attributes causes the DataSocket to write the new value to the data target.

Setting Up a DataSocket Server

The DataSocket Server is a separate executable used to communicate and
exchange data between two applications using DSTP (DataSocket transfer
protocol). When you run it on your computer, you make data easily
accessible to other DataSocket applications on the same computer or other
computers connected though a TCP network, such as the Internet.

To launch the DataSocket Server, run DataSocket Server from
the National Instruments ComponentWorks group in the Windows
Start menu. Alternatively, you can run DataSocketServer.exe located
in the \ComponentWorks\DataSocketServer directory. To make the
DataSocket Server run every time you launch your computer, place a link
to DataSocketServer.exe in your Startup folder.

Chapter 11 Using the DataSocket Control and Tools

Getting Results with ComponentWorks 11-14 © National Instruments Corporation

Requirements for Running the DataSocket Server
The DataSocket Server requires support for TCP/IP networking on your
machine. To check your configuration, launch the DataSocket Server. If
you have a working Web browser on your computer, the TCP/IP driver
should be installed.

Checking the Status of the DataSocket Server
When the server is running, you see a tray icon indicating that the server is
up and running. To check on its status, double click on the icon or right
click and choose Show DataSocket Server from the popup menu.

Figure 11-5. DataSocket Server Tray Icon

Figure 11-6. DataSocket Server Status Window

Creating Data Items on the Server
The default configuration of the server allows the local machine to create
new data items and to change the data in these data items. Remote machines
can connect to the server and read items. To create an item, run a client that
uses a DataSocket control to write items to the server on your machine.
When a DataSocket writes data to a data server using a new DataItem
path, the server automatically creates a new entry and stores the value in
that new entry. Your line of code should look similar to the following.

'A DataSocket client that writes to a DataSocket Server.

CWDataSocket1.ConnectTo "dstp://localhost/DataItem",

cwdsWrite

Tray Icon

Chapter 11 Using the DataSocket Control and Tools

© National Instruments Corporation 11-15 Getting Results with ComponentWorks

Connecting to Data Items and Reading Them
You can connect to data items and read them just as you create data items
or write to them. However, use the read access mode instead of the write
access mode.

'A DataSocket client that reads from a DataSocket Server.

CWDataSocket1.ConnectTo "dstp://localhost/DataItem",

cwdsReadAutoUpdate

If the reading client connects using cwdsRead, it gets updates
only after calling the Update method on the DataSocket. If it uses
cwdsReadAutoUpdate, it gets updates automatically when another client
changes the value. If a reading client attempts to connect to a data item
that does not exist, the connection completes, but no data is returned.
Furthermore, the OnDataUpdated event does not fire until a writing client
connects to the same data item and actually writes a value to it. You can
start reading clients before launching the writing clients. When a writing
client is launched, data is sent to the waiting reading clients.

Tutorial: Sharing Data between Applications

This tutorial shows you how to use the DataSocket Server to share data
between different applications. The application is included in the
ComponentWorks directory.

Note The host name localhost in this tutorial tells the DataSocket to connect to a

server on the same machine. Use localhost when you do not want to hard code

the local host name into applications.

1. Launch the application \ComponentWorks\tutorials\Visual
Basic\ch11DSSReader.exe.

2. Enter the URL dstp://localhost/wave.

3. Press the Connect button. The DataSocket connects to the server.
Because the item is not yet created, no data is returned.

4. Launch the application tutorials\Visual Basic\
ch11DSSWriter.exe.

5. Move the slide pointers to change the wave displayed in the graph.
Because ch11DSSWriter has not connected to the server,
ch11DSSReader is not affected.

6. Enter the URL dstp://localhost/wave in ch11DSSWriter and
press Connect. ch11DSSReader gets the wave data item value each
time it is set by the other client.

Chapter 11 Using the DataSocket Control and Tools

Getting Results with ComponentWorks 11-16 © National Instruments Corporation

7. Launch another copy of ch11DSSReader, enter the same URL, and
press Connect. This application immediately gets a copy of the data
because the server already has a value for the item.

8. Move the slide pointer on the ch11DSSWriter application again.
Notice that both applications show the same wave.

If you have another machine with ComponentWorks installed, you can run
the Ch11DSSReader application on them. On other machines, you need to
enter the actual host name of the server, not localhost. To determine the
host name of the server, display the status window on the DataSocket
Server.

Configuring the DataSocket Server
The default configuration of the DataSocket Server works for many
intranet applications. By default, only programs running on the same
computer as the server can create items or write to items, whereas
applications on the same computer or other computers can read items.
Items exist only as long as there is at least one DataSocket client connected
to read or write the item’s value. When no connections to the item remain,
the DataSocket Server releases the item and its value.

Use the DataSocket Server Manager to change the default settings. You can
specify which machines can create items, write items, and read items. You
can specify items that should be automatically created and given an initial
value when the server is started. The DataSocket Server never releases
predefined items, so their values exist even when no DataSocket client is
connected to them. Predefined items can have special read and write access
groups so different machines can have different access to different items.
Changes that you make to the server take affect the next time that you
launch the DataSocket Server.

Items created dynamically can be read by hosts in the Default Readers
group and modified by hosts in the Default Writers group.

Chapter 11 Using the DataSocket Control and Tools

© National Instruments Corporation 11-17 Getting Results with ComponentWorks

Figure 11-7. DataSocket Server Manager

© National Instruments Corporation 12-1 Getting Results with ComponentWorks

12
Building Advanced Applications

This chapter discusses how you can build applications using more
advanced features of ComponentWorks, including advanced data
acquisition techniques, the DSP Analysis Library, and advanced user
interface controls and offers techniques for error tracking, error checking,
and debugging.

Using Advanced ComponentWorks Features

This section illustrates advanced data acquisition techniques, such as
pretriggering and using start, stop, and pause conditions through real
application examples. The examples demonstrate how to incorporate the
DSP Analysis Library and use the spectrum functions. Finally, advanced
user interface control features, such as graph cursors and multiple axes and
pointers, are presented.

This chapter concentrates on the key features of sample applications
located in the \ComponentWorks\tutorials directory. You can
customize these examples to implement the advanced features in your own
applications.

A Virtual Oscilloscope
The Virtual Oscilloscope application uses the ComponentWorks User
Interface and Data Acquisition analog input controls and a DAQ board to
build a simple one-channel oscilloscope. Load the sample program from
\ComponentWorks\tutorials into your development environment to
follow the discussion.

Chapter 12 Building Advanced Applications

Getting Results with ComponentWorks 12-2 © National Instruments Corporation

Figure 12-1. Virtual Oscilloscope

Depending on the state of the trigger mode button, the application acquires
data in a single-shot, continuous, or analog trigger continuous operation.
When the data is returned to the AcquiredData event, it is plotted on the
graph. The vertical controls on the scope adjust the Y axis of the graph,
while the horizontal and trigger settings affect the AI control. Any AI
control property that the user does not control at run time, such as the
device and channel number, is set directly in the AI property pages. By
default, channel 1 on device 1 is used for the acquisition. Wire your signal
accordingly or change these values in the property pages.

Data Acquisition Stop Condition Modes
The scope can run in one of three acquisition modes—single, continuous
trigger, and analog continuous software trigger—which you select by using
the Single/Cont/Analog button in the Trigger section of the form. The first
two modes work well with any input signal, while the analog trigger mode
works best with a periodic dynamic input signal.

The three trigger modes correspond to three types of stop conditions on the
data acquisition analog input control. For example, the event handler for the
Analog button programmatically sets a new value for the property
CWAI1.StopCondition.Type according to the state of the button, as
shown in the following code for the analog trigger mode.

CWAI1.StopCondition.Type = cwaiSWAnalog

Chapter 12 Building Advanced Applications

© National Instruments Corporation 12-3 Getting Results with ComponentWorks

The DAQ control or header file defines the constant cwaiSWAnalog.
You can retrieve any StopCondition.Type constant value by using the
Object Browser in Visual Basic, consulting the online documentation, or
looking in the header file for your environment. After changing the
property value, the event handler of the Trigger button also reconfigures
and restarts the acquisition. It is important to set the analog trigger level to
a value within the range of the input signal.

Data Acquisition Pretriggering
When the scope is in analog trigger mode, you can move the trigger point
along the horizontal axis of the graph by using the Trigger Offset knob. In
the code, the event handler for the knob changes the PretriggerScans
property of the AI control.

CWAI1.StopCondition.PreTriggerScans = TOffset.Value

Without pretriggering, the application acquires all scans after the stop
condition trigger (analog trigger). When the number of pretrigger scans is
greater than zero, the application acquires the number of scans specified
before the trigger occurs. After the trigger occurs, the array of data returned
to the CWAI1_AcquiredData event handler contains data acquired both
before and after the trigger. You can set the PretriggerScans property
and all the stop trigger properties through the property pages of the DAQ
AI control. Pretriggering works the same way with the analog software, the
analog hardware, and digital hardware stop triggers.

User Interface Value Pairs
Value pairs are User Interface control features for assigning names to
specific values on a scale or axis in the graph, slide and knob controls. All
the value pairs for a given axis are stored in the ValuePairs collection object
of that axis. Each value pair object consists of a name and a value
corresponding to a scale or axis of the particular control. Although you
usually set value pairs through the property page of the control, you can
add, edit, or delete them programmatically.

After you assign value pairs, such as the settings for the Vertical Scale
knob, you can limit the allowed values for a control to the predefined value
pairs. To do this, set the control to Value Pairs Only on the Style page of
the property sheet. In the Virtual Scope application, the vertical and
horizontal scale knobs are Value Pairs Only controls. This way, the control
is limited to preset settings and the program can retrieve the name, value,
or index of the currently selected value pair. The application uses the value
of the value pair to update the appropriate property on the graph or DAQ AI

Chapter 12 Building Advanced Applications

Getting Results with ComponentWorks 12-4 © National Instruments Corporation

control and uses the name of the value pair to update the appropriate text
display.

Figure 12-2. Knob Property Pages—Value Pairs Page

The following code shows how to retrieve the value, name, and index from
the currently selected value pair of a knob control.

CWKnob1.Value

CWKnob1.Axis.ValuePairs(CWKnob1.ValuePairIndex).Name

CWKnob1.ValuePairIndex

You can specify multiple axes on a graph and associate value pairs with
each individual axis.

Virtual Spectrum Meter
The Virtual Spectrum Meter application, which you can find in
\ComponentWorks\tutorials, uses the DSP analysis functions to build
a simple spectrum analyzer. The data can either be acquired with a DAQ
board or simulated. If you do not have a DAQ board, select Simulation
with the Data Source switch and characterize your signal in the Data
Simulation section. The UI controls are used to display the information as

Chapter 12 Building Advanced Applications

© National Instruments Corporation 12-5 Getting Results with ComponentWorks

well as control the operations of the program. The following screen shows
the application.

Figure 12-3. Virtual Spectrum Meter

Once the Spectrum Meter is started, you can select either a Single Trigger
or a Continuous Trigger acquisition. The single trigger takes a snapshot
of the incoming signal so you can study the spectrum of the acquired signal.
Use the continuous trigger to monitor changes in a signal as they occur. You
can set some DAQ parameters, such as the channel, using the DAQ settings
section of the user interface. The input limit specifies the maximum
expected absolute voltage on the input signal and determines the optimal
gain to use on the acquisition process. You also can use an analog trigger
with your data acquisition. Set other DAQ parameters, such as the device
number, in the AI control property pages.

Use the cursors on the graphs to measure the amplitude of the incoming
waveform and the frequency of any specific point in the spectrum. When
you move one of the cursors, the corresponding display at the bottom of the
user interface is automatically updated.

DSP Analysis Library
The digital signal processing (DSP) analysis functions are part of the
ComponentWorks Standard and Full Development Systems. DSP
functions include Fourier and Hartley transforms, spectrum analysis,

Chapter 12 Building Advanced Applications

Getting Results with ComponentWorks 12-6 © National Instruments Corporation

convolution and correlation of data sets, and digital windowing and
filtering of data. If you have installed the ComponentWorks Base Package,
you cannot run these functions from your development environment.
However, you can examine the Spectrum Meter project and code and run
the precompiled executable in the \ComponentWorks\tutorials
folder. To use the DSP functions, you must load the Analysis controls into
your environment, and then place the CWDSP control on your form.

The Virtual Spectrum Meter application contains all the analysis functions
in the AnalyzeAndGraph subroutine, which is shown below. The
application passes the data (acquired or simulated) to this routine for
analysis and display.

Private Sub AnalyzeAndGraph(WaveformData() As Variant,

SampleInterval As Double)

Dim WindowedData As Variant

Dim FreqInterval As Variant

Dim SpectrumData As Variant

Dim HalfSpectrumData As Variant

WaveformGraph.PlotY WaveformData

WindowedData = CWDSP1.HamWin(WaveformData)

CWDSP1.AutoPowerSpectrum WindowedData,

SampleInterval, SpectrumData, FreqInterval,

SpectrumData, freqinterval

HalfSpectrumData = CWArray1.Subset1D(SpectrumData,

2, 510)

SpectrumGraph.PlotY HalfSpectrumData, FreqInterval,

FreqInterval * 2

End Sub

The analysis procedure consists of the Hamming window (HamWin) and the
auto power spectrum function (AutoPowerSpectrum). The Hamming
window reduces the effect of spectral noise leakage in the spectrum
because of the finite length sample of a continuous signal. The auto power
spectrum function is a single-sided, scaled spectrum that you can graph
directly. The AutoPowerSpectrum function also calculates the frequency
resolution of the spectrum (FreqInterval) using the SampleInterval
value passed to AnalyzeAndGraph. The frequency resolution is used in
the PlotY method of the graph for scaling the X axis of the spectrum graph.

The DSP Analysis Library also includes the SpectrumUnitConversion
function for scaling the calculated spectrum between different formats,
including linear, dB, and dBm, combined with Vrms, Vrms2, Vpk, and
Vpk2, as well as amplitude and power spectral densities.

Chapter 12 Building Advanced Applications

© National Instruments Corporation 12-7 Getting Results with ComponentWorks

The DSP functions include FFT and inverse FFT algorithms for low-level
spectrum calculations. Time domain functions, such as Convolution,
Correlation, Differentiate, and Integrate, are included along with a number
of different windowing, IIR (infinite impulse response), and FIR (finite
impulse response) digital filtering functions.

Cursors
The Virtual Spectrum Meter application form has cursors on the graph for
marking sections of the plots. Use the two cursors on the waveform graph
to mark the minimum and maximum values of the acquisition waveform
and measure the waveform amplitude. The cursor on the spectrum graph
marks a particular point in the spectrum and displays the associated
frequency.

To use a cursor on a graph, create and configure one or more cursors in the
property pages of the graph. To create additional cursors, press the Add
button in the Cursors tab and configure each cursor. The Snap Mode
specifies whether the cursor jumps (snaps) to a point on the nearest plot or
can be placed freely on the graph. When you select Point on selected
plot for Snap Mode, you also can connect the cursor to a particular plot.

The following screen shows the property pages for the cursors on the
waveform graph of the Virtual Spectrum Meter application.

Figure 12-4. Graph Property Pages—Cursors Property Page

Chapter 12 Building Advanced Applications

Getting Results with ComponentWorks 12-8 © National Instruments Corporation

Individual cursors are represented in the object hierarchy by Cursor objects
contained in the Cursors collection of the Graph control. You can
manipulate individual cursors programmatically by following the standard
conventions of working with collections and their objects. For example,
reference the cursors with the name of the graph, cursor index, and cursor
property.

Max = WaveformGraph.Cursors.Item(2).YPosition

Use event handler subroutines associated with the graph to process any user
interactions with the cursors. There are four events on the graph relating to
the cursors, of which the CursorChange and CursorMouseUp routines
are the most commonly used. Generate the event handler skeleton for the
CursorChange event, which is similar to the following.

Private Sub Graph_CursorChange(CursorIndex As Long, XPos

As Variant, YPos As Variant, bTracking As Boolean)

End Sub

The event handler provides the index of the cursor (which you use to
determine the cursor that generated the event), as well as the X and Y
coordinates of the cursor. For the waveform graph cursors, the Virtual
Spectrum Meter application reads the Y position of the two cursors to
calculate the amplitude of the waveform data, as shown below.

Private Sub WaveformGraph_CursorChange(CursorIndex As

Long, XPos As Variant, YPos As Variant, bTracking As

Boolean)

Dim Amplitude As Double

Amplitude =

Abs(WaveformGraph.Cursors.Item(1).YPosition -

WaveformGraph.Cursors.Item(2).YPosition)

CursorAmplitude = CStr(Round(Amplitude, 2)) + " V"

End Sub

Graph Track Mode
The TrackMode property of the graph determines how the graph reacts to
mouse actions and which events the graph generates at these times. By
default, the TrackMode property is set to cwGTrackDragCursor, which
allows the mouse to move the cursors on the graph. Moving a cursor
generates the CursorChange event.

The TrackMode property generates events when the mouse interacts with
the plot area as a whole or with individual plots on the graph. With these

Chapter 12 Building Advanced Applications

© National Instruments Corporation 12-9 Getting Results with ComponentWorks

settings, you can use the mouse to select a specific plot or detect when the
user moves the mouse over the plot area.

You also can use TrackMode to select panning and zooming. When
TrackMode is set to Pan, any click-and-drag action on the graph shifts the
contents of the graph following the mouse movement. When TrackMode
is set to ZoomRect, any click-and-drag action on the graph draws a
rectangular outline on the graph. When the mouse button is released, the
graph zooms to the dimensions of the outline. For these two operations, you
can select X axis, Y axis, and XY axis modes, limiting the motion to the
specified axes.

A Virtual Data Logger
The Virtual Data Logger application records real time phenomena on
multiple channels at slow rates over an extended period of time. It can
either simulate the data being acquired or acquire data with a data
acquisition card. The acquired data is logged to a serial ASCII file.
Although it makes the file larger in size than binary format, ASCII format
allows you to read the file in many other applications.

Figure 12-5. Virtual Data Logger

Chapter 12 Building Advanced Applications

Getting Results with ComponentWorks 12-10 © National Instruments Corporation

By default, the Data Source is set to simulated data, but you can acquire
data from a DAQ board. If you use a DAQ board to acquire the data,
remember to set the properties for the DAQ AI control accordingly.

The Start/Stop button is an on/off style for starting and stopping the
acquisition/logging process. The View Log File button opens the recorded
file using the Windows Notepad application. By default, the application
does not clear the log file when you start the logging process. Rather, it
appends the data to any existing data in the file.

Multiple Graph Axes
You can configure multiple Y axes for a graph using its property pages. On
the Axes page, use the Add and Del buttons to add and delete axes. For
each axis, select the range and style you want to use. After configuring the
axes, switch to the Ticks page. Select each axis in the pulldown ring and
configure the labels and ticks for each axis.

You can predefine the properties of multiple plots on the Plots page. By
default, each plot is assigned to the same Y axis on the graph, but you can
assign plots to different Y axes of a graph. When an application plots or
charts data on the graph, the Y axis specified for a particular plot
determines the scaling of that plot. If you generate more plots on a graph
than there are predefined plots, the template plot style and the first Y axis
are used for each undefined plot.

You can set plot or axes properties in your program code. Plots and axes are
individual objects (of type Plot and Axis) that are stored in corresponding
collection objects (Plots and Axes, respectively). To change a property of
an individual axis or plot, you must select the collection and then the
individual object in the collection, followed by the property to read or write.

For example, you can reference individual Plot objects by using the Item
method on the collection. The methods of the Plots collection—such as
Add, Item, and Remove—make changes to the collection as a whole, while
the properties of the Plot object—such as Name, AutoScale, and
LineColor—are individual settings for one plot.

Chapter 12 Building Advanced Applications

© National Instruments Corporation 12-11 Getting Results with ComponentWorks

Objects in a collection are referenced by their one-based index using
the Item method, as in the following examples.

’ Refers to the first axis on the graph (X axis)

CWGraph1.Axes.Item(1)

’ The second plot on the graph (default name Plot-2)

CWGraph1.Plots.Item(2)

’ Retrieves/sets the name of the second (first Y) axis

CWGraph1.Axes.Item(2).Name

To assign simple properties—properties that contain Boolean, double,
integer, variant, or string values—to a plot or axis, use the property name
as you would any other variable in your program. The following example
changes the name of a plot on a graph.

CWGraph1.Plots(2).Name = “Temperature”

You can assign an object as a property of another object. Because each plot
on a graph is assigned a specific Y axis that is used for data scaling, you can
assign a new axis (an object) as a property to a plot. In most programming
environments, assign the object as you would any other variable. In Visual
Basic, you must use the Set keyword, which differentiates the assignment
of data from the assignment of objects. The following Visual Basic code
assigns the third axis as an object to the YAxis property of the first plot.

Set CWGraph1.Plots.Item(1).YAxis =

CWGraph1.Axes.Item(3)

Graph Axes Formats
The axes on the graph, as well as the slide and knob, support special
formatting modes you can use to edit the labels on the tick marks. In
addition to simple formatting, such as using exponential or engineering
notation, you can add alphanumeric characters such as units (for example,
Hz or V) and convert to currency, percentage, or time formats. The time
format includes options for time and date.

Two more advanced formatting modes are scaling and symbolic
engineering. Use the scaling format mode to automatically perform simple
mathematical functions (addition, subtraction, multiplication, and division)
on your data before displaying it on your graph. For example, if you are
using an IC temperature sensor whose output in volts corresponds to the
temperature divided by 100, you can specify your axis to automatically
scale the data by *100. The data displayed on this axis is automatically
multiplied by 100 without any changes in the program code.

Chapter 12 Building Advanced Applications

Getting Results with ComponentWorks 12-12 © National Instruments Corporation

You can use a symbolic engineering format when displaying units with
your tick labels. The symbolic engineering format adds prefixes such as
k for kilo and m for milli before the units. This format is useful for
logarithmic scaling.

File Input/Output
The file I/O functions in the Virtual Data Logger application demonstrate
how to perform simple file I/O in a program. Because file I/O is not part of
the ComponentWorks functionality, the functions vary between different
programming environments. Consult the data logger example in your
programming environment for an example of how to perform file I/O.

All the file I/O functions are in the LogData subroutine, which you can use
as a template for other input/output routines. The application uses a
sequential ASCII file to store the data and appends new data to any existing
data already in the file.

Adding Testing and Debugging to Your Application

Although they vary depending on the programming environment,
debugging tools normally include features such as breakpoints, step-run
modes, and watch windows.

Error Checking
ComponentWorks controls can report error information to you and to the
application in a number of different ways:

• Return an error code from a function or method call

• Generate an error or warning event

• Throw an exception handled by your programming environment

The type of error reporting depends on the type of application and the
preference of the programmer.

Chapter 12 Building Advanced Applications

© National Instruments Corporation 12-13 Getting Results with ComponentWorks

By default, all ComponentWorks controls generate exceptions when errors
occur, rather than returning error codes from the methods. However, the
DAQ and Instrumentation controls have a property, ExceptionOnError,
that you can set to False if you want methods to return error codes instead
of generating exceptions. Error events are generated by these controls if an
error occurs during specific contexts of an operation. The contexts for
which error events are generated are set in the ErrorEventMask property
of the controls.

Exceptions
Exceptions are error messages returned directly to your programming
environment. Usually, exceptions are processed by displaying a default
error message. The error message allows you to end your application or to
enter debug mode and perform certain debugging functions. Part of the
exception returned is an error number and error description, displayed as
part of the error message. For example the AI control might return the
following exception to Visual Basic.

Figure 12-6. Visual Basic Error Messages

Depending on your programming environment, you might be able to insert
code that can catch exceptions being sent to your application and handle
them in another manner. In Visual Basic, you can do this by using the On
Error statement.

Chapter 12 Building Advanced Applications

Getting Results with ComponentWorks 12-14 © National Instruments Corporation

• On Error Resume Next disables automatically generated error
messages. The program continues running at the next line. To handle
an error in this mode, you should check and process the information in
the Err object in your code.

Private Sub Acquire_Click()

On Error Resume Next

CWAI1.Configure

If Err.Number <> 0 Then MsgBox "Configure: " +

CStr(Err.Number)

CWAI1.Start

If Err.Number <> 0 Then MsgBox "Start: " +

CStr(Err.Number)

End Sub

• On Error GoTo disables automatically generated error messages and
causes program execution to continue at a specified location in the
subroutine. You can define one error handler in your subroutine.

Private Sub Acquire_Click()

On Error GoTo ErrorHandler

CWAI1.Configure

CWAI1.Start

Exit Sub

ErrorHandler:

MsgBox "DAQ Error: " + CStr(Err.Number)

Resume Next

End Sub

Return Codes
If the ExceptionOnError property is set to False, the DAQ and
Instrumentation control methods return a status code to indicate whether an
operation completed successfully. If the return value is something other
than zero, it indicates a warning or error. A positive return value indicates
a warning, signifying that a problem occurred in the operation, but that you
should be able to continue with your application. A negative value indicates
an error—a critical problem that has occurred in the operation—and that all
other functions or methods dependent on the failed operation also will fail.

You can use the specific value of the return code for more detailed
information about the error or warning. The ComponentWorks DAQ
controls can convert the error code into a more descriptive text message, as
described in the GetErrorText Function section of this chapter.

Chapter 12 Building Advanced Applications

© National Instruments Corporation 12-15 Getting Results with ComponentWorks

To retrieve the return code from a method call, assign the value of the
function or method to a long integer variable and check the value of the
variable after calling the function or method. For example, the following
code checks the return code of the CWAI control Start method.

lerr = CWAI1.Start

If lerr <> 0 Then MsgBox "Error at DAQ Start: " +

CStr(lerr)

In Visual Basic, you can use the MsgBox popup window to display error
information. Normally, you can write one error handler for your application
instead of duplicating it for every call to a function or method. For example,
the following code creates a LogError subroutine to use with the Start
method and later functions or methods.

Private Sub LogError(code As Long)

If code <> 0 Then

MsgBox "DAQ Error: " + CStr(code)

End If

End Sub

To use the LogError subroutine, call LogError before every function or
method call. The return code is passed to LogError and processed.

LogError CWAI1.Start

Error and Warning Events
The DAQ and Instrumentation controls also include their own error and
warning events—DAQError and DAQWarning. Although you normally
use return codes for error checking of method calls, you cannot use return
codes for error checking in asynchronous operations, such as a continuous
analog input or asynchronous instrument control.

In this case, the controls generate their own error events if an error or
warning occurs during an on-going process. You can develop an event
handler to process these error and warning events. The following code
shows the skeleton event functions for the CWAI control.

CWAI1_DAQError(ByVal StatusCode As Long, ByVal ContextID

As Long, ByVal ContextDescription As String)

CWAI1_DAQWarning(ByVal StatusCode As Long, ByVal

ContextID As Long, ByVal ContextDescription As String)

Chapter 12 Building Advanced Applications

Getting Results with ComponentWorks 12-16 © National Instruments Corporation

The StatusCode variable that is passed to the event handler contains the
value of the error or warning condition. The ContextID contains a value
describing the operation where the error or warning occurred, and the
ContextDescription contains a string describing the operation where
the error or warning occurred.

The following code, which produces the following error message box,
shows an example of how you can use the AI_DAQError event in a Visual
Basic application.

Private Sub CWAI1_DAQError(ByVal StatusCode As Long,

ByVal ContextID As Long, ByVal ContextDescription As

String)

MsgBox ContextDescription + ”: CStr(StatusCode)

End Sub

Figure 12-7. Error Message Box

By default, only asynchronous operations call error and warning events.
You can set the ErrorEventMask property to specify the operations for
which the error and warning events are generated.

GetErrorText Function
If you use return error codes to perform error checking, you might want to
convert the error code values into more descriptive error texts. The
ComponentWorks DAQ controls include a utility control that includes a
method to convert error codes into descriptive error strings. To use this
method, create a DAQTools control in your program and use the
GetErrorText method as shown in the following example.

DAQError = CWAI1.Start

If DAQError <> 0 Then MsgBox

CWDAQTools.GetErrorText(DAQError)

The following screen shows a message box generated by using the
GetErrorText function in the previous example.

Chapter 12 Building Advanced Applications

© National Instruments Corporation 12-17 Getting Results with ComponentWorks

Figure 12-8. Error Handling Message Box

Debugging
This section outlines a number of general debugging methods that you
might use in your application development. If you experience some
unexpected behavior in your program, use these methods to locate and
correct the problem in your application.

Debug Print
One of the most common debugging methods is to print out or display
important variables throughout the program execution. You can monitor
critical values and determine when your program varies from the expected
progress. Some programming environments have dedicated debugging
windows that are used to display such information without disturbing the
rest of the user interface. For example, you can use the Debug.Print
command in Visual Basic to print information directly to the debug
window.

Debug.Print CWAI1.Channels.Item(1).ChannelString

Breakpoint
Most development environments include breakpoint options so you can
suspend program execution at a specific point in your code. Breakpoints are
placed on a specific line of executable code in the program to pause
program execution.

Stopping at a breakpoint confirms that your application ran to the line of
code containing the breakpoint. If you are unsure whether a specific section
of code is being called, place a breakpoint in the routine to find out. Once
you have stopped at a specific section of your code, you can use other tools,
such as a watch window or debug window, to analyze or even edit variables.

Chapter 12 Building Advanced Applications

Getting Results with ComponentWorks 12-18 © National Instruments Corporation

In some environments, breakpoints might also include conditions so
program execution halts if certain conditions are met. These conditions
usually check program variables for specific values. Once you have
completed the work at the breakpoint, you can continue running
your program, either in the normal run mode or in some type of
single-step mode.

Watch Window
Use a watch window to display the value of a variable during program
execution. You can use it to edit the value of a variable while the program
is paused. In some cases, you can display expressions, which are values
calculated dynamically from one or more program variables.

Single Step, Step Into, and Step Over
Use single stepping to execute a program one line at a time. This way, you
can check variables and the output from your program during execution.
Single stepping is commonly used after a breakpoint to slowly step though
a questionable section of code.

If you use step into, the program executes any code available for
subroutines or function calls and steps through it one line at a time. Use this
mode if you want to check the code for each function called. The step over
mode assumes that you do not want to go into the code for functions being
called and runs them as one step.

In some cases, you might want to test a limited number of iterations of a
loop but then run the rest of the iterations without stopping again. For this
type of debugging, several environments include the step to cursor or run

to cursor options. Under this option, you can place your cursor at a specific
point in the code, such as the first line after a loop and run the program to
that point.

© National Instruments Corporation A-1 Getting Results with ComponentWorks

A
Using Previous Versions
of Visual Basic, Visual C++, and
Delphi with ComponentWorks

This appendix outlines differences between the current and previous
version of the programming environments with respect to using the
ComponentWorks controls. This revision of the Getting Results with

ComponentWorks manual was written with the most current environments
available: Visual Basic 5, Visual C++ 5, and Delphi 3. In this appendix, the
most current versions are compared with Visual Basic 4, Visual C++ 4.x,
and Delphi 2.

Visual Basic 4

Differences between Visual Basic versions 4 and 5 include the design of the
object browser, code completion in the code editor, and slightly different
menu names. In addition to these environment differences, creating a
default project to include ComponentWorks controls in version 5 is
significantly different from creating one in version 4.

Menus and Commands
The Visual Basic 4 environment uses slightly different menus and
command names for different options. Use the following commands for
common operations with ComponentWorks.

• To open the controls toolbox, select Toolbox from the View menu.

• To add controls to the project toolbox, right click on the toolbox and
select Custom Controls....

• To add a DLL instrument driver to a project, select References... from
the Tools menu.

• To open the object browser, select Object Browser... from the View
menu or press <F2>.

Appendix A Using Previous Versions of Visual Basic, Visual C++, and Delphi with ComponentWorks

Getting Results with ComponentWorks A-2 © National Instruments Corporation

• To open the Visual Basic properties page, select Properties from the
View menu or press <F4>.

• To open custom property page for a control, right click on the control
and select Properties.

Object Browser
Although its functionality is nearly the same, the Object Browser design is
different between the two versions of Visual Basic. Compare Figure A-1,
Visual Basic 4 Object Browser, and Figure A-2, Visual Basic 5 Object

Browser, which both have the ComponentWorks Graph control selected.

Figure A-1. Visual Basic 4 Object Browser

Notice that the Visual Basic 4 Object Browser does not list control events.
The Paste button copies a selected item directly into the code editor;
however, the button is enabled only when you open the Object Browser
from the code editor.

Appendix A Using Previous Versions of Visual Basic, Visual C++, and Delphi with ComponentWorks

© National Instruments Corporation A-3 Getting Results with ComponentWorks

Figure A-2. Visual Basic 5 Object Browser

Code Completion
The Visual Basic 4 code editor does not have code completion. When
entering your program code you must completely enter the syntax or use
the Object Browser to paste selected properties and methods into your
code.

Creating a Default ComponentWorks Project
Visual Basic 4 supports only one default project. The name of that project
is AUTO32LD.VBP, and you can find it in the Visual Basic directory.

Use the following procedure to add the ComponentWorks controls to the
default project or change the default controls.

1. Load the project AUTO32LD.VBP from the Visual Basic directory.

2. Add the ComponentWorks controls to the toolbox and make any other
necessary changes.

3. Save the project in the same location.

When you create a new project, the ComponentWorks controls appear in
the toolbox.

Appendix A Using Previous Versions of Visual Basic, Visual C++, and Delphi with ComponentWorks

Getting Results with ComponentWorks A-4 © National Instruments Corporation

Visual C++ 4.x

Visual C++ 4.x and Visual C++ 5.0 require different methods to install the
ActiveX control in the controls toolbar for use in the dialog editor. For other
operations, such as creating a new workspace and building your user
interface and code, follow the directions in Chapter 4, Building

ComponentWorks Applications with Visual C++. Although some of the
dialog windows in Visual C++ 4.x are slightly different from the manual,
the descriptions still apply.

Creating Your Application
To create a new application in Visual C++ 4.x, use the MFC AppWizard as
described in Chapter 4, Building ComponentWorks Applications with

Visual C++. Initially, you see one extra dialog box, in which you should
create a new Project Workspace. The next dialog allows you to select the
MFC AppWizard.

In the second step of the MFC APPWizard, you must enable OLE controls
support to use the ComponentWorks controls. This option is not
automatically selected in Visual C++ 4.x. Complete the MFC AppWizard.

Adding ComponentWorks Controls to the Visual C++ Controls Toolbar
This section explains how you can add the ComponentWorks controls to
the toolbar in Visual C++ 4.x.

Before you can use the ComponentWorks controls in your application, you
must load the controls into the Controls toolbar in Visual C++, which is
done from the Component Gallery in the Visual C++ environment. When
you load the controls with the Component Gallery, you automatically
generate a set of C++ wrapper classes in your project, which you need to
work with the ComponentWorks controls.

The Controls toolbar is visible in the Visual C++ environment only if the
Visual C++ dialog editor is currently active. To open the dialog editor, open
the Project Workspace window (select Project Workspace from the View
menu), select ResourceView, and double click on one of the Dialog
entries.

1. To add a new control, select the Component... option from the Insert
menu. This opens the Component Gallery in Visual C++, as shown in
the following illustration.

Appendix A Using Previous Versions of Visual Basic, Visual C++, and Delphi with ComponentWorks

© National Instruments Corporation A-5 Getting Results with ComponentWorks

Figure A-3. Visual C++ Component Gallery

2. Select the OLE Controls tab in the gallery and look for the
ComponentWorks controls. All ComponentWorks control names start
with CW.

3. If the ComponentWorks controls are not shown in the OLE controls
tab of the Component Gallery, push the Customize... button and
the Import button in the following dialog. Select the OCX file on
your hard drive that contains the controls you want to load.
The ComponentWorks OCX files are located in the \Windows\
System(32) directory and have names of the form CW*.OCX. Repeat
the import process for any additional OCX files you want to add to the
Component Gallery.

4. From the Component Gallery, select a control you want to add to the
Controls toolbar and push the Insert button. The dialog window that
appears lists the classes generated for the ActiveX control and the file
names used.

5. Click OK to continue.

With this procedure, you have added the new classes to your project and the
new control to the Controls toolbar. Repeat this process for additional
controls you want to add.

When you have completed adding controls, click on Close in the
Component Gallery. The new controls should be visible in the Visual C++
environment Controls toolbar.

Appendix A Using Previous Versions of Visual Basic, Visual C++, and Delphi with ComponentWorks

Getting Results with ComponentWorks A-6 © National Instruments Corporation

Building Your User Interface and Code
Follow the directions in Chapter 4, Building ComponentWorks

Applications with Visual C++, to build your user interface and use different
VC++ tools, including the MFC Class Wizard, to build your code.

Delphi 2

Delphi 2 and Delphi 3 require different methods for loading ActiveX
controls into the Component palette of the environment. For all other
operations, such as creating the user interface and code, refer to Chapter 5,
Building ComponentWorks Applications with Delphi.

Note Remember that you must load the ComponentWorks controls into the Delphi

environment before you can load and run any programs that use the

ComponentWorks controls, including the examples installed with

ComponentWorks.

Loading the ComponentWorks Controls into the Component Palette
This section explains how you can add the ComponentWorks controls to
the Component palette in Delphi 2.

Before you can use the ComponentWorks controls in your Delphi
applications, you must add them to the Component palette in the Delphi
environment. The controls need to be added only once to the palette
because they will be available until they are explicitly removed from the
Component palette. Adding the controls to the palette also creates a Pascal
import unit (header file) that declares all the properties, methods, and
events of a control. When you use a control on a form, a reference to the
import unit is automatically added to the program.

Note Before adding a new control to the Component palette, make sure to save all your

work in Delphi, including files and projects. After loading the controls, Delphi

closes any open projects and files to complete the loading process.

1. To add ActiveX controls to the Component palette, select Install from
the Component menu in the Delphi environment.

2. In the Install Components window, press the OCX button.

3. In the Import OLE Control window, select the desired registered
control that appears on the Registered Controls field. The
ComponentWorks controls all start with National Instruments.

Appendix A Using Previous Versions of Visual Basic, Visual C++, and Delphi with ComponentWorks

© National Instruments Corporation A-7 Getting Results with ComponentWorks

Figure A-4. Delphi Import OLE Control Dialog Box

4. After you have selected the proper control, click on OK to close the
window. When you click the OK button, Delphi generates a Pascal
import unit file for the selected OCX file, which is stored in the \Lib
directory of Delphi. If you had previously installed the same .OCX file,
it prompts you to overwrite the existing import unit file.

If your control does not appear in the Import OLE Control window it is not
registered with the operating system. In this case, click on the Register...
button to open the Register OLE Control window, find the OCX file that
contains the control, and select it. This process registers the control with the
operating system. Most OCX files are located in the \System(32)
directory under Windows.

To load additional controls, return to the Import OLE Controls window and
select more controls.

When you have finished selecting controls, click on OK in the Install
Components window to load the new controls and add them to the OCX tab
of the Component palette. Because this step closes any open projects in the
Delphi environment, you need to reopen any projects you had open.

You can rearrange controls on the Component palette in Delphi by right
clicking on the palette and selecting Properties.

© National Instruments Corporation B-1 Getting Results with ComponentWorks

B
Background Information
about Data Acquisition

This appendix provides background information on data acquisition (DAQ)
software and hardware specific to the ComponentWorks DAQ controls and
describes the underlying architecture used by these controls.

Chapter 7, Using the Data Acquisition Controls, and the online reference
provide information on the ComponentWorks DAQ controls. You can
access the online reference from the Windows Start menu by selecting
Programs»National Instruments ComponentWorks»

ComponentWorks Reference.

Installation

Before you can use data acquisition hardware and software, you must
completely install both the DAQ software and hardware and run the
software configuration. To complete the installation, follow the instructions
provided with your hardware and software. Usually, you first install the
hardware. Verify that your computer is turned off and unplugged before
opening it, and follow all other safety precautions. After installing the
NI-DAQ software driver, restart your system. With most plug-in cards (AT
and PCI cards), the operating system automatically detects that you have a
new card installed.

If you plan to use ISA Plug-and-Play DAQ devices on Windows NT 4.0,
you must install the Windows NT 4.0 ISA Plug-and-Play driver before
configuring your device with the NI-DAQ Configuration Utility.

The Windows NT 4.0 ISA Plug-and-Play driver is not installed by default.
Use the following steps to install the driver.

1. Insert your Windows NT 4.0 CD.

2. Access the \Drvlib\Pnpisa\X86 directory.

3. Right click on the Pnpisa.inf file, select the Install option, and
follow the on-screen instructions.

Appendix B Background Information about Data Acquisition

Getting Results with ComponentWorks B-2 © National Instruments Corporation

4. After you have installed the Pnpisa.inf file, shut down your
computer.

5. If you have not already done so, install NI-DAQ and then shut down
your computer.

6. Install your ISA Plug-and-Play DAQ device.

7. Turn on your computer. When Windows NT 4.0 detects your ISA
Plug-and-Play DAQ device, it specifies the necessary driver files.
Because this results in a configuration change, you need to restart your
computer.

8. After you have restarted your computer, run the NI-DAQ
Configuration Utility to configure your device.

Configuration

With the NI-DAQ Configuration Utility, you specify default settings for
certain hardware options, such as input mode, input range, accessories,
SCXI devices, and so on. Follow the directions provided with the NI-DAQ
driver to configure your hardware.

Most data acquisition boards are automatically detected by the Windows
operating system. If you have a board that Windows does not automatically
detect, use the Add New Hardware option in the Windows Control Panel
to manually inform Windows of the hardware.

You can use the DAQ Configuration Utility to test the operation of the
device with its assigned resources (that is, the Input/Output range, Interrupt
Request, and DMA channels). To run these tests, select a device in the
NI-DAQ Devices list and click Configure. On the System property page,
click the Test Resources. You also can perform simple input and output
operations with your hardware by clicking Run Test Panels....

SCXI
Configure any SCXI hardware on the SCXI Devices tab of the NI-DAQ
Configuration Utility. Select add new SCXI chassis and modules and
configure them according to your settings. Specify in the module
configuration which module is connected to your DAQ. Save your changes.

Device Number
When configuring your hardware using the DAQ Configuration Utility,
select a device number for each DAQ device. When you use the
ComponentWorks AI, AIPoint, AO, and AOPoint controls, you specify the

Appendix B Background Information about Data Acquisition

© National Instruments Corporation B-3 Getting Results with ComponentWorks

device number as well as the channel number to use for the input and output
operation. You can specify a Named Channel that you previously defined
with the DAQ Channel Wizard rather than specifying the device number
and channel number. Refer to the Channel Wizard section for more
information about Named Channels.

Channel Wizard
You can use the DAQ Channel Wizard to create Named Channels. A
Named Channel is a channel configuration that specifies a DAQ device; a
hardware-specific channel string; channel attributes such as input limits,
input mode, and actuator type; and a scaling formula for making a
measurement or generating a signal in terms of your actual physical
quantity. When you create a Named Channel, the DAQ Channel Wizard
determines whether your DAQ device is capable of making the
measurement.

You can start the Channel Wizard from the NI-DAQ Configuration Utility
by selecting File»Run Channel Wizard or from the NI-DAQ program
group in the Windows Start menu. Refer to the DAQ Channel Wizard help
for instructions on creating Named Channels.

Programming
After completing the NI-DAQ configuration, you can use the
ComponentWorks DAQ controls. To become familiar with the DAQ
controls, read Chapter 7, Using the Data Acquisition Controls, and
complete the tutorials. Use the ComponentWorks online reference to obtain
complete information about the DAQ controls.

The following sections describe several concepts that you might encounter
when working with the ComponentWorks DAQ controls and DAQ
hardware.

Device Number and Channels
When you select and configure a DAQ control, first specify the device
number and channel(s) you want to use with the control, or you might use
named channels. See the Channel Wizard section for information about
naming channels.

Appendix B Background Information about Data Acquisition

Getting Results with ComponentWorks B-4 © National Instruments Corporation

Use the Channels property of each control—Ports on the digital controls
and Counter on the Counter and Pulse controls—to specify the particular
channels you want to use with a specific control. A channel or port is a
physical I/O location on a DAQ device. Most of the DAQ controls have a
Channels or Ports collection to allow you to individually select and
configure multiple channels or ports. These collections contain individual
Channel and Port objects. For each Channel object, you can select one or
more channels and configure additional properties to specify the operation
of the hardware. For each Port object, you can select the direction (input or
output) of the port.

Buffers
Buffers are memory locations used to store data, either acquired on a
buffered input operation or generated on a buffered output operation. The
individual control (AI, AO, DI, and DO) allocates the buffers according to
the number of points it acquired. Normally, the buffer size is set equal to the
number of points acquired or generated. In continuous or double buffered
input operations, the buffer size is automatically set to a multiple of the
number of points selected in the control. In continuous output operations,
you explicitly select the buffer size.

When the buffer cannot store all the data as quickly as you can process it,
you encounter an overflow condition. In such scenarios, you can increase
the buffer size. The AI control allows you to disable the default buffer size
and select your own value.

In single buffer operations, the buffer is written to or read from once. When
the buffer is used up, the operation is completed. In continuous or double
buffered operations, the same buffer is used multiple times. After using the
buffer once, the operation returns to the beginning of the buffer and
continues writing data to the buffer or reading data form the buffer. As the
data acquisition operation writes data to the buffer or reads data from it, the
application must retrieve data from the buffer or supply new data to the
buffer. The application must complete this process quickly enough so
unread input data is not overwritten or data is not generated twice on an
output operation. On an output operation, you can allow regeneration
of data.

Use the AcquiredData and Progress events with the buffers to indicate
when a given number of points has been acquired or generated, which
allows the application and developer to manage the data in the buffer more
efficiently.

Appendix B Background Information about Data Acquisition

© National Instruments Corporation B-5 Getting Results with ComponentWorks

Clocks
Clocks are counter/timers on data acquisition devices that control the
timing of operations such as a data acquisition or waveform generation.
Some operations require multiple clocks.

The data acquisition driver programs the counter/timers that are used for
clocks. Generally, the counter/timers cannot be controlled by the developer
for other purposes. Configure the clocks for a particular DAQ process using
the Clock objects in the ComponentWorks DAQ controls.

Typical Clock objects are the ScanClock and ChannelClock on the CWAI
control. You can set properties such as a timebase source and frequency to
determine the exact operation of the clocks. With this information, you can
exactly configure the timing of a process to be controlled by the board with
a preset frequency or to be synchronized with another onboard or external
process. See the sections on PFI and RTSI for more information about
routing timing signals.

Channel and Scan Clocks

You can acquire signals on multiple channels simultaneously. A
multi-channel acquisition sometimes is referred to as a scan. Most data
acquisition boards (for example, MIO E Series) have only one
analog-to-digital converter with a multiplexor that connects only one of the
analog input channels to the analog-to-digital converter at any given point
in time. On these boards, the hardware cannot sample the channels in a
multi-channel acquisition simultaneously. Rather, the hardware samples
the channels in quick succession to approximate simultaneous sampling.
The channel clock controls the interchannel daley between samplings of the
channels in a multi-channel acquisition. By default, the CWAI control
specifies that NI-DAQ automatically chooses the best possible interchannel
delay, but you also can explicitly specify the interchannel delay using the
ChannelClock property on the CWAI control.

The scan clock controls the timing between individual scans or between
individual measurements in a one-channel acquisition. The scan rate is the
actual acquisition rate per channel. You set the frequency of the scan clock
in Hertz using the ScanClock object of the CWAI control. To synchronize
the acquisition with another process, you can configure the ScanClock to
take its input from another source.

Appendix B Background Information about Data Acquisition

Getting Results with ComponentWorks B-6 © National Instruments Corporation

SCXI
SCXI is a set of signal conditioning hardware used with plug-in data
acquisition cards. Refer to the Hardware SCXI section for more
information.

SCXI Channel String

When using SCXI modules with your ComponentWorks DAQ control, set
a special SCXI channel string to indicate which modules and channels are
used with a specific process. The device number set in the DAQ control
corresponds to the DAQ device connected to and controlling the SCXI
chassis, which could be an SCXI-1200 module in the chassis. The SCXI
channel string specifies which chassis, modules, and channels are used by
your DAQ process. For analog input operations, you can specify an
onboard DAQ channel to acquire all analog signals from the SCXI chassis.

The SCXI channel string is of the format "obA!scX!mdY!Z" (for example,
"ob0!sc1!md1!0"). A, X, Y, and Z represent specific values that do vary.

• A is the onboard analog DAQ channel used to acquire analog input
signals, and "obA!" is used only in analog input operations. The
onboard channel A is usually one less than the chassis number x.

• X represents the chassis number starting with 1 and allows you to
specify additional chassis in multi-chassis configurations. If you use
more than one SCXI chassis, all chassis are controlled from the same
DAQ board by routing a DAQ cable from the first chassis to the second
and so on. Optionally, you can use additional DAQ boards to control
an individual chassis.

• Y indicates which SCXI module (actually module slot) in a chassis to
use. Module slots are numbered starting with 1 for the left most slot.

• Z indicates which channels on an SCXI module to use.

For analog input operations, you can specify multiple channels on a module
with the colon (:), but you can select only one continuous range of channels
per module. For example, "3:11" specifies channels 3 through 11. For
digital modules, all digital lines in a module are grouped in port 0 and you
specify only "0" for your channel number.

For analog input operations, you can specify channels from multiple
modules and chassis by using multiple Channel objects on your AI DAQ
control.

Appendix B Background Information about Data Acquisition

© National Instruments Corporation B-7 Getting Results with ComponentWorks

Examples

Hardware

SCXI
SCXI is a set of signal conditioning hardware used with plug-in data
acquisition cards. Signal conditioning prepares certain analog and digital
signals for a plug-in DAQ card and provides functionality such as
amplification, isolation, current supplies to sensors, multiplexing for higher
channel counts, current to voltage conversion, and more.

An SCXI setup consists of an SCXI chassis and one or more SCXI modules
selected for specific purposes and inserted in the SCXI chassis. Only one
SCXI module per chassis is connected to the data acquisition board in your
computer using a ribbon or shielded cable. This cable controls the chassis
and all inserted modules from the DAQ board and passes signals from the
chassis back to the computer. The modules in the chassis communicate with
each other and route signals using the SCXI bus in the back of the chassis.
All signal connections are made to the front of the individual chassis, which
processes the signals and then passes them to the DAQ board using the
SCXI bus and connected cable.

With analog input signals, the SCXI modules usually perform the signal
conditioning and pass the conditioned signals to the DAQ card for
analog-to-digital conversion. All analog input signals are multiplexed at the
SCXI chassis on to one channel when transferred to the DAQ board.
Analog output and digital I/O signals are directly processed on specific
SCXI modules. Alternatively, you can use an SCXI-1200 module in the
SCXI chassis to act as a DAQ device and perform the analog-to-digital
conversion in the chassis. This module communicates with the computer
using a digital connection such as a parallel cable.

ob0!sc1!md3!0:4 Analog Channels 0 through 4 on module 3 of
chassis 1.

ob1!sc2!md1!5 Analog Channel 5 on module 1 of chassis 2.

sc1!md3!0 Digital port 0 on module 3 of chassis1.

ob0!sc1!md2!4:11

ob0!sc1!md3!8:15

Analog Channel 4 through 11 on module 2
and Channels 8 through 15 on module 3 of
chassis1.

Appendix B Background Information about Data Acquisition

Getting Results with ComponentWorks B-8 © National Instruments Corporation

Consult your SCXI hardware manual for more information about system
configuration and settings. Remember that all SCXI hardware must be
configured in the NI-DAQ configuration tool.

RTSI
The Real Time System Integration (RTSI) bus is an optional cable
connection between multiple DAQ devices that allows you to share and
exchange timing and trigger signals between devices. Use it to synchronize
data acquisition processes running on multiple devices. For ISA (AT) and
PCI bus cards, the RTSI connector is located along the top edge of the card
and multiple cards can be connected to each other using an optional RTSI
ribbon cable. PXI bus cards have the RTSI bus located on the PXI bus, and
no additional cables are required.

The RTSI bus itself consists of seven signal lines (numbered 0 through 6)
that can be freely defined using the DAQ software. Each DAQ device
supporting RTSI contains a multiplexer that allows the card to route any
available onboard signal, such as a timing or trigger signal, onto any of the
seven available RTSI lines. Any board receiving a signal from the RTSI bus
can route any of the seven signal lines back into one of its onboard signals.
Although only one board at a time can supply a signal onto one of the RSTI
lines, multiple boards can receive this signal into their onboard circuitry.

Programming

When using RTSI to share signals between devices, such as synchronizing
two analog input operations, always call two operations to specify both the
sender and receiver of the RTSI signal. To supply a signal to a RTSI line,
use the RouteSignal (all E-series cards) or RouteRTSI (other cards)
method of the CWDAQTools control. On these methods, specify both the
onboard signal and RTSI line. To receive a signal from a RTSI line and use
it in a DAQ process, specify the RTSI line in your regular DAQ control. The
different Clock and Condition objects that control the timing and triggering
of the different processes include options to select a RTSI line as the signal
source. For E-series cards to use a RTSI line as the scan clock of an analog
input acquisition, set the ClockSourceType to one of the RTSI options
(low-to-high or high-to-low) and set the RTSI line number in the
ClockSourceSignal.

Appendix B Background Information about Data Acquisition

© National Instruments Corporation B-9 Getting Results with ComponentWorks

PFI
Programmable Function Inputs (PFI) are variable input lines on the I/O
connectors of specific DAQ devices (E-series cards) that route input signals
to a variety of onboard signals. They also can be used to route output
signals to any of the PFI lines on the I/O connector. PFI lines are used to
output onboard timing and trigger signals for external purposes, including
synchronization between multiple devices when the RTSI bus is not
available. Most devices have 10 PFI lines, numbered 0 through 9. When
used as an input, each PFI line is mapped to a specific onboard signal and
can be used only for that purpose. On the output direction, you can freely
assign onboard signals to a specific PFI line.

Use the RouteSignal method of the CWDAQTools control to route a
specific onboard signal to a PFI line. To use a signal connected to a PFI line
as an input signal, specify the PFI line in the corresponding Clock or
Condition object of the DAQ control.

Consult the online reference for the RouteSignal method and Clock and
Condition objects for more information about using the PFI and RTSI lines.

© National Instruments Corporation C-1 Getting Results with ComponentWorks

C
Common Questions

This appendix contains a list of answers to frequently asked questions. It
contains general ComponentWorks questions as well as specific graphical
user interface, data acquisition, instrument control, and analysis library
questions.

Installation and Getting Started

How do I run the installer? What do I do if the AutoRun screen does

not appear?

The ComponentWorks CD contains a different installer for each
development system. The Full Development System includes the
Instrument Driver Factory and Instrument Drivers installers. You can
start all installers from the ComponentWorks CD AutoRun screen.

The AutoRun screen appears automatically when you load the
ComponentWorks CD in your computer. You also can open the AutoRun
screen by running the SETUP program in the root directory of the CD.
To manually start an individual installer, run the SETUP program in the
corresponding subdirectory of the CD.

Note You must run the SETUP program if you copied the installer to floppy disks for

installation on a system without a CD-ROM drive.

Appendix C Common Questions

Getting Results with ComponentWorks C-2 © National Instruments Corporation

What does it mean when I place a ComponentWorks control on my

form and get an error saying that I am not licensed to use this control?

This error indicates that ComponentWorks was not installed properly.
Make sure to install ComponentWorks on your computer using your
installation disks or CD. Copying the OCX files from another machine or
sharing them over a network does not work.

Make sure to close all other applications before running the
ComponentWorks installer and restart your machine after completing the
installation. If you had previously installed a demo or evaluation version of
ComponentWorks, uninstall this version first and restart your computer
before installing the licensed version of ComponentWorks.

How do I distribute an application using ComponentWorks?

To distribute an application using ComponentWorks or any ActiveX
controls, you need to distribute all OCX files, DLL files, and supporting
OCXs and DLLs referenced in the application. You also need to distribute
any support DLLs required by your specific programming environment.

Any OCXs and OLE Automation DLLs (OLE Automation Servers)
distributed with an application need to be registered in the operating system
on the target computer. Usually, you can do this with an installer, which
you build with the Setup Wizard/Tool provided by your programming
environment. If your setup tool does not provide this functionality or if your
environment does not include a setup tool, you need to manually install all
necessary files and register the OCX files using the REGSVR32.EXE utility
provided by Microsoft.

To install and manually register an OCX file, copy the file to the \System
(for Windows 95) or \System32 (for Windows NT) subdirectory of the
Windows directory on the target computer. Run the following:

regsvr32 c:\windows\system(32)\<ocxname>.ocx

To unregister a control, use the following:

regsvr32 /u c:\windows\system(32)\<ocxname>.ocx

If you distribute the ComponentWorks OCXs, you also need to make sure
that all the necessary support DLLs are installed on the target machine.
All the necessary support DLLs for the ComponentWorks controls are
located in the \ComponentWorks\Setup\redist directory on the
ComponentWorks CD.

Remember to include any files required by your programming
environment, such as run-time DLLs. Check the documentation of your
development environment for a list of required DLLs.

Appendix C Common Questions

© National Instruments Corporation C-3 Getting Results with ComponentWorks

Visual Basic

I do not see any new controls in my Visual Basic toolbox. How do I load

the ComponentWorks controls into Visual Basic?

To load the ComponentWorks controls in Visual Basic, right click on the
toolbox and select Components... (Custom Controls... in Visual Basic 4)
from the popup menu. Select the controls you want to use from the list of
registered controls. If necessary, click on the Browse button to select a new
unregistered control file. The ComponentWorks controls are located in the
\Windows\System directory and start with CW. Select each of the controls
and then click OK to return to Visual Basic. The new controls are placed in
the toolbox.

How can I have the ComponentWorks controls and libraries

automatically loaded when I start Visual Basic?

In Visual Basic 5, you can have the ComponentWorks controls and libraries
loaded by adding them to a template project. To do this, create a new
project, load the controls, and save the project with a descriptive name in
the (VB)\Template\Projects directory. When creating new projects,
you have the option of including the ComponentWorks controls.

In Visual Basic 4, load the AUTO32LD project located in the Visual Basic
directory, add the ComponentWorks controls and save the project.

What is the difference in Visual Basic between using Base 0 or Base 1

to declare arrays?

Visual Basic can use either zero-based or one-based arrays. The default is
Base 0. To change to the Base 1 option, use the following statement at the
top of your code:

Option Base 1

You also can specify the exact range when declaring an array.

Dim voltBuffer(0 To 9) As Double

Dim voltBuffer(1 To 10) As Double

Dim voltBuffer(10 To 19) As Double

What manuals and additional information are available for

ComponentWorks?

Refer to Chapter 2, Getting Started with ComponentWorks, for information
sources, including the online reference and Web site.

Appendix C Common Questions

Getting Results with ComponentWorks C-4 © National Instruments Corporation

User Interface Controls

How do I set the default value for a control such as the Knob or Slider?

To set the default value for a Knob, Slider, or Switch, open the default
property page (<F4> in Visual Basic, <F11> in Delphi) and set the Value
property.

In Visual C++, open the custom property pages and set the value. If the
control is a ValuePairs Only control, set the ValuePairIndex property to
the one-based index of the desired value pair.

How do I plot my data on the graph?

The easiest way to plot data is to use the PlotY method, which displays a
simple plot of your values.

' dataArray can be an array or a variant containing an

array

CWGraph1.PlotY dataArray, 0, 1, True

Additional methods you can use to plot or chart data include PlotXY,
PlotXvsY, ChartY, ChartXY, and ChartXvsY. The Plot methods plot a
whole data set at once, deleting any previous information on the same plot.
You can define multiple plots on a graph in the property pages and use the
Plot methods to update individual plots.

The Chart methods append data to existing plots and create scrolling
charts. Refer to the online reference for more information about these
methods.

How do I display a value on a Slide, Knob, or NumEdit control and

read values back from them? How do I read or set a button?

To pass a value to or read a value from one of these controls in Visual Basic
and Borland Delphi, use their Value property. The Value property acts as
a variable in your program, except that the value of this variable is the value
of the control on the form.

' set the value of a slide to 5

CWSlide1.Value = 5

' read back the value from a knob

Dim ReadValue As Double

ReadValue = CWKnob1.Value

Appendix C Common Questions

© National Instruments Corporation C-5 Getting Results with ComponentWorks

Buttons work in the same way, except that their values are Booleans.

' set a button

CWButton1.Value = True

' read a button

If CWButton1.Value = True then

' insert code here

End If

In Visual C++, control properties are not read or set directly (like
variables). Instead, the wrapper class created for each control provide
functions to read and write the value of that property. These functions are
named with either Get or Set followed by the name of the property.

For example, to set the Value property of a slide, use the SetValue
function. In the C code, the function call is preceded by the member
variable name of the control to which it applies.

m_Slide.SetValue(5);

To read the value of a control, use the GetValue function. You can use the
GetValue function to pass a value to another part of your program. For
example, to pass the value of a slide to a meter use the following line of
code.

m_Meter.SetValue(m_Slide.GetValue());

You can view the names of all the property functions in the ClassView of
the Project Workspace in Visual C++. In the Project Workspace, select the
ClassView and then the control/object to view its property functions (as
well as its methods).

How can I change the style of my UI controls programmatically?

The Button, Knob, and Slide controls each have a number of default styles,
which you can choose in the property pages of the control. In some
applications, you might want to switch the style of a control while the
program is running.

Use the SetBuiltinStyle method to change the style at run time to one
of the predefined styles. The different styles are defined as constants in the
UI controls.

CWSlide1.SetBuiltinStyle cwSlideStyleTank

CWKnob1.SetBuiltinStyle cwKnobStyleDial

CWButton1.SetBuiltinStyle cwButtonStyleRoundLED

Appendix C Common Questions

Getting Results with ComponentWorks C-6 © National Instruments Corporation

You can use the ExportStyle and ImportStyle methods on all UI
controls to save and load custom-defined styles. To save a predefined style,
configure a control and click the Export Style (floppy disk icon) button in
the property pages of the control (or right click on the control and select
Export Style). Assign a file name for the new style. Using ImportStyle,
you can interactively or programmatically load the settings from this file.

How do I access or change a particular axis, plot, cursor, or value pair

on one of the UI controls?

Each of these objects, with the exception of the axis on the knob and slide,
is contained within a collection object on the control. A collection object is
a special object on a control that is used to store multiple objects of the
same type. For example a graph can have many different axes. Rather than
linking each Axis object directly to the graph, one Axes collection is linked
to the graph and it contains all the axes.

Other objects are contained in collections—the Plot, Cursor, ValuePair, and
Channel objects on the Data Acquisition controls. The name of the
collection object is the name of the contained object in plural form. For
example, the collection of Axis objects is Axes, Plot is Plots, Cursor is
Cursors, and so on.

The ValuePair object is contained in the ValuePairs collection, which itself
is part of the Axis object contained in the Knob or Slide control or in the
Axes collection of the graph.

To access one of the objects in a collection, use the Item method of the
collection object. The Item method extracts a particular object in the
collection using a parameter, which is the one-based index of the object in
the collection. For example, to access the first plot on a graph, use the
following code.

CWGraph1.Plots.Item(1)

This code segment refers to the first plot on a graph as an object. You can
then access the properties of the plot object by appending the name of the
property. For example to read the X position of the second cursor on a
graph, use the following code.

x = CWGraph1.Cursors.Item(2).XPosition

Appendix C Common Questions

© National Instruments Corporation C-7 Getting Results with ComponentWorks

The properties of individual objects are described in the online reference.
Search for the corresponding object name, such as CWAxis, CWPlot,
CWCursor, and so on, to find the description. Each of the collection objects
also has a number of properties and methods, described in the online
reference under the collection name, such as CWAxes, CWPlots, and so on.

Use the Count property to determine the number of objects in a collection.

NumAxes = CWGraph1.Axes.Count

Use the Add, Remove, and RemoveAll methods to programmatically
change the number of objects in a collection (for example, you can add and
delete axes, cursors, value pairs, and so on in your program). The Remove
method requires the index of the object you want to remove.

CWGraph1.Axes.Add

CWSlide1.Axis.ValuePairs.Remove 3

CWGraph1.Cursors.RemoveAll

Remember that ValuePair objects are contained in the ValuePairs
collection, which itself is part of an Axis object. The following code shows
you how to access value pairs.

CWKnob1.Axis.ValuePairs.Item(1).Name = "Maximum"

CWGraph1.Axes.Item(3).ValuePairs.Item(2).Value = 7.5

How do I add labels to the ComponentWorks graph axes?

Set the Caption property of the corresponding axis interactively on the
Ticks tab of the Graph property pages.

How do I show gridlines on my graph without displaying the scales

(similar to an oscilloscope screen)?

In the Ticks section of the Graph property pages, enable the grid lines for
the selected axis and disable all the ticks and labels for the same axis. Make
sure to keep the Visible property of the axis enabled.

Appendix C Common Questions

Getting Results with ComponentWorks C-8 © National Instruments Corporation

Data Acquisition Controls

What methods and events do I need to use for the DAQ analog input

control?

The DAQ AI control has four main methods—Configure, Start, Stop,
Reset. The methods are listed and described in the ComponentWorks
online reference.

After you set the properties of the AI control in the property pages, call the
Configure method to pass the property values to the driver and hardware.
Then call Start to start the actual acquisition. Use the Stop method to
stop a continuous acquisition, and the Reset method to stop any
acquisition and reset the driver and hardware. You need to call Configure
anytime you change a property value programmatically, after you call the
Reset method, or after the acquisition stops because of an error.

The AI control AcquiredData event, which is called when a set number
of points is acquired, returns the data to the program. Two additional events,
DAQError and DAQWarning, are generated in response to any errors or
warnings that occur in the DAQ process. The ErrorEventMask property
determines for which operations (contexts) of the AI control these events
are called.

How do I assign new channels dynamically or retrieve channel

information from the DAQ AI control in my program?

Use the Channels collection object of the AI control to retrieve information
from individual Channel objects. Use the CWAI.Channels.Item(n)
syntax to access individual Channel objects.

Dim ChannelInfo As String

ChannelInfo = CWAI1.Channels.Item(1).ChannelString

Use CWAI.Channels.RemoveAll and CWAI.Channels.Add with the
appropriate information in the parameter list to delete all the Channel
objects in the channel list (Channels collection) and to add new Channel
objects to the collection.

CWAI.Channels.RemoveAll

CWAI.Channels.Add 1

Refer to the properties on CWAI.Channels in the online reference manual
for more information.

Appendix C Common Questions

© National Instruments Corporation C-9 Getting Results with ComponentWorks

Why does my EISA-A2000, AT-A2150, or AT-DSP2200 data

acquisition card not work with ComponentWorks?

These three boards are not compatible with the ComponentWorks data
acquisition controls.

How do I pass an array to CWAI.AcquireData? I keep getting type

mismatches on my declared arrays. What is a Variant data type?

The two data buffers (ScaledData and BinaryCodes) of the
AcquireData method are defined as variant data types. Do not declare
them as arrays. Select two variable names, declare them as Variant, and
pass them to AcquireData. The AcquireData method re-declares these
variables to the correct array data type and array size.

Variant data types are used when the resultant data type is not known ahead
of time. This allows a function or method to re-declare the variant variable
to the appropriate type.

Dim Volts As Variant

Dim BinaryBuffer As Variant

Dim Timeout As Single

Timeout = 5

CWAI1.AcquireData (Volts, BinaryBuffer, Timeout)

When performing a single channel acquisition, data buffers are declared as
one-dimensional arrays; a multi-channel acquisition are declared with
two-dimensional arrays.

What is a named channel? What is a hardware-specific channel string?

A named channel is a symbolic name that represents a specific channel on
a data acquisition device. For analog input channels, a named channel also
includes information about the input range of the signal that your are
measuring, the input mode of the channel, the coupling of the channel, and
the scaling formula that the data acquisition driver (NI-DAQ) uses to
convert the acquired voltages into engineering units. For analog output
channels, a named channel also includes information specifying the
actuator to use and a scaling formula that NI-DAQ uses to convert data
specified in engineering units into the units of the actuator (for example,
volts or milliAmps). You create named channels using the Channel Wizard
feature of the NI-DAQ Configuration Utility.

Hardware-specific channel strings identify a channel on a DAQ device and
contain no information about the device, scaling, or other attributes.

Appendix C Common Questions

Getting Results with ComponentWorks C-10 © National Instruments Corporation

Examples of hardware-specific channel string refers are "1", "2:0", and
"ob0!sc1!md2!0:3".

What is the Channel Wizard?

The Channel Wizard is a tool that you use to define named channels. You
launch the Channel Wizard from the NI-DAQ Configuration Utility, which
is launched from a shortcut in the NI-DAQ program group (usually
Start»Programs»NI-DAQ for Windows»NI-DAQ

Configuration Utility).

Can I mix named channels with hardware-specific channel strings?

No. You can specify either named channels or hardware-specific channel
strings within one Channels collection or channel string of your DAQ
control, but not both.

Can I mix named channels that refer to different I/O types in the same

channel string, such as analog and digital input?

No. Each ComponentWorks DAQ controls can work with only named
channels that refer to the I/O type corresponding to the control.

I start my acquisition, but I get no data back and no errors. What is

happening?

First, make sure that you set the ExceptionOnError property of the DAQ
controls to True. If this property is set to False, you must check for
non-zero return values from the methods that you call on the DAQ controls.

Second, make sure that you implement the DAQError and DAQWarning
event handlers.

Third, if you are using an external clock or external triggers on the
acquisition, make sure that you have wired valid signals to the data
acquisition hardware.

Finally, if you are using all of the above mechanisms and you still do not
receive any AcquiredData events and no errors, it is possible that the
acquisition has stopped because of an overflow error or even an unexpected
computer error. During an ongoing acquisition, the NI-DAQ driver only
posts messages to the DAQ controls when the specified number of points
has been acquired. If the acquisition has stopped because of an error,

Appendix C Common Questions

© National Instruments Corporation C-11 Getting Results with ComponentWorks

NI-DAQ does not post a message and, as such, the DAQ control cannot fire
any events notifying you of the error.

You can implement a watchdog timer using a Timer control that you reset
on each AcquiredData event. If the acquisition unexpectedly stops
sending events, the watchdog timer will fire an event, indicating that an
error occurred.

Computer errors that can stop the acquisition include an electromagnetic
pulse or power glitch that resets the data acquisition hardware without
resetting the computer.

My mouse stops responding and the computer locks up after starting

my acquisition?

Your acquisition rate is too fast. The NI-DAQ driver is posting messages at
a rate too fast for your system. You can increase the number of scans
between events, slow the acquisition rate, or turn off events and use a
synchronous method for obtaining the data such as the AcquireData or
Read method.

If you have a very fast acquisition and you want to read the most recent data
acquired, turn off the AcquiredData and Progress event. Call the
Start method and then call the Read method, passing in a ReadSpec
variable with the ReadMode property set to cwaiEndOfData.

How do I program the counter/timer on my Lab-PC+, DAQCard-1200,

or DAQCard-700 (or other 1200, 700, 500 series DAQ device)?

To program the counter/timer on these DAQ devices, use the ICtr functions
in the DAQTools control. Consult the online reference for the descriptions
of the StartICtr, ReadICtr, and ResetICtr functions. Do not use the
CWCounter and CWPulse controls to program the counters on these
devices.

Appendix C Common Questions

Getting Results with ComponentWorks C-12 © National Instruments Corporation

GPIB, Serial, and VISA Controls

Why doesn't my device show up in the Detected Devices list?

First, check to make sure that the cables are secure. It is possible that a
properly connected device might not show up as a listener if there are errors
on the bus. Try changing the address of the device or resetting the device.
With GPIB, check the results of the detection by using GPIB/NI-Spy, which
comes with the National Instruments GPIB board.

Why can't I communicate with my device or instrument?

For GPIB, check the NI-488 global variables, ibsta and iberr, in the
Test property page to see what the status is after the function. If an error is
being reported, such as ENOL (Error No Listener), your device might not be
at the correct GPIB address. Also, verify that the cables are secure. The
NI-488 documentation discusses other troubleshooting methods for other
errors.

If no error conditions exist but you still cannot communicate as you expect,
you might not have sent the right command in the sequence that the device
requires or you might not have sent the correct terminating characters.
Terminating characters are typically semicolon, carriage return, line feed,
or combinations of characters. The GPIB driver software never appends
these to your data automatically. You must include these characters, if
needed by your device, in the character string passed to the control method
function. Check your device programming manual for the exact protocols
required.

For serial, check the error status in the Test property page to see what the
status is after the call that does not seem to be operating correctly. If an error
is being reported such as Bad Comm Port, your device might not be at the
correct serial port. Also, verify that the cables are secure.

If no error condition exists but you still cannot communicate as you expect,
you might not have sent the right command in the sequence that the device
requires or you may not have sent the correct terminating (EOS) characters.
Terminating characters are typically semicolon, carriage return, line feed,
or combinations of characters. The Serial control never appends these to
your data automatically. You must include these characters, if needed by
your device, in the character string passed to the device. You might need to
adjust other settings on the Serial control also, such as flow control, parity,

Appendix C Common Questions

© National Instruments Corporation C-13 Getting Results with ComponentWorks

baud rate, and so on. These settings must match those of the device.
Check your device programming manual for the exact protocols required.

For VISA, follow the same method as described above, corresponding to
your hard interface. Make sure you have the newest version of the NI-VISA
driver, version 1.2 or newer, installed.

Why does the Test property page work with my device but my program

does not?

The Test Property page in the Instrument controls lets users interactively
type commands to be sent to the device and is an excellent place to start
your development. It lets you test your commands before writing code.
However, since the Test Property Page is interactive, you are naturally
introducing very long delays between commands sent to your device. When
you put the same commands in a program, the delays are gone. To solve the
problem, put delays in your code where the program is failing. If this does
not work, make sure you are checking for errors in the OnError event. This
information can reveal details that will help troubleshoot your problem.

What does the Number Parser do and how do I use it?

The Number Parser is a parsing pattern that takes all of the numbers in a
string and returns them as an array of doubles, ignoring all other
information in the string.

Where can I learn more about how to use the parsing tools included in

the Serial, GPIB, and VISA controls?

There are several parsing examples provided in the \ComponentWorks\
samples\<programming language>\Instrument Drivers

directory, in addition to the online reference.

Appendix C Common Questions

Getting Results with ComponentWorks C-14 © National Instruments Corporation

Analysis Controls

How do I call an analysis function?

All ComponentWorks analysis functions are methods of the different
Analysis controls. To use a specific function, place the corresponding
control in your program. Then call the function as a method of the control
in your program, passing any necessary parameters and assigning the return
value to a variable if appropriate. For example, calling the Mean function
on the CWStat control has the following syntax in Visual Basic.

MeanVal = CWStat1.Mean(data)

Consult the online reference manual for complete documentation of each
analysis function.

My analysis functions seem to have no effect. What does the return

code –30008 mean?

The analysis functions are licensed in three different levels of the analysis
library corresponding to the three different levels of ComponentWorks
packages. If you attempt to call a function that is not in your level of the
analysis library, you get an error –30008.

See Chapter 10, Using the Analysis Controls and Functions, for a list of the
analysis functions and their corresponding license level.

© National Instruments Corporation D-1 Getting Results with ComponentWorks

D
Error Codes

This appendix lists the error codes returned by the ComponentWorks DAQ controls,
ComponentWorks VISA control, and Analysis Library functions. It also lists some general
ComponentWorks error codes.

Table D-1 lists the negative error codes returned by the DAQ controls. Each DAQ control
returns an error code that indicates whether it executed successfully. When a control returns
a code that is negative, the control did not execute.

Table D-1. Data Acquisition Control Error Codes

Error Code Description

–10001 An error was detected in the input string; the arrangement or ordering of
the characters in the string is not consistent with the expected ordering.

–10002 An error was detected in the input string; the syntax of the string is
correct, but certain values specified in the string are inconsistent with
other values specified in the string.

–10003 The value of a numeric parameter is invalid.

–10004 The value of a numeric parameter is inconsistent with another one, and
therefore the combination is invalid.

–10005 The device is invalid.

–10006 The line is invalid.

–10007 A channel, port, or counter is out of range for the device type or device
configuration; or the combination of channels is not allowed; or the scan
order must be reversed (0 last).

–10008 The group is invalid.

–10009 The counter is invalid.

–10010 The count is too small or too large for the specified counter, or the given
I/O transfer count is not appropriate for the current buffer or channel
configuration.

Appendix D Error Codes

Getting Results with ComponentWorks D-2 © National Instruments Corporation

–10011 The analog input scan rate is too fast for the number of channels and the
channel clock rate; or the given clock rate is not supported by the
associated counter channel or I/O channel.

–10012 The analog input or analog output voltage range is invalid for the
specified channel, or you are writing an invalid voltage to the analog
output.

–10013 The driver returned an unrecognized or unlisted error code.

–10014 The group size is too large for the board.

–10015 The time limit is invalid.

–10016 The read count is invalid.

–10017 The read mode is invalid.

–10018 The offset is unreachable.

–10019 The frequency is invalid.

–10020 The timebase is invalid.

–10021 The limits are beyond the range of the board.

–10022 Your data array contains an incomplete update, or you are trying to write
past the end of the internal buffer, or your output operation is continuous
and the length of your array is not a multiple of one half of the internal
buffer size.

–10023 The write mode is out of range or is disallowed.

–10024 Adding the write offset to the write mark places the write mark outside
the internal buffer.

–10025 The requested input limits exceed the board's capability or
configuration. Alternative limits were selected.

–10026 The requested number of buffers or the buffer size is not allowed. For
example, the buffer limit for Lab and 1200 devices is 64K samples, or
the board does not support multiple buffers.

–10027 For DAQEvents 0 and 1 general value A must be greater than 0 and less
than the internal buffer size. If DMA is used for DAQEvent 1, general
value A must divide the internal buffer size evenly, with no remainder.
If the TIO-10 is used for DAQEvent 4, general value A must be 1 or 2.

Table D-1. Data Acquisition Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

© National Instruments Corporation D-3 Getting Results with ComponentWorks

–10028 The cutoff frequency specified is not valid for this device.

–10029 The function you are calling is no longer supported in this version of the
driver.

–10030 The specified baud rate for communicating with the serial port is not
valid on this platform.

–10031 The specified SCXI chassis does not correspond to a configured SCXI
chassis.

–10032 The SCXI module slot that was specified is invalid or corresponds to an
empty slot.

–10033 The window handle passed to the function is invalid.

–10034 No configured message matches the one you tried to delete.

–10035 The specified attribute is not relevant.

–10036 The specified year is invalid.

–10037 The specified month is invalid.

–10038 The specified day is invalid.

–10039 The specified input string is too long. For instance, DAQScope 5102
devices can only store a string up to 32 bytes in length on the calibration
EEPROM. In that case, please shorten the string.

–10080 The gain is invalid.

–10081 The pretrigger sample count is invalid.

–10082 The posttrigger sample count is invalid.

–10083 The trigger mode is invalid.

–10084 The trigger count is invalid.

–10085 The trigger range or trigger hysteresis window is invalid.

–10086 The external reference is invalid.

–10087 The trigger type is invalid.

–10088 The trigger level is invalid.

Table D-1. Data Acquisition Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

Getting Results with ComponentWorks D-4 © National Instruments Corporation

–10089 The total count is inconsistent with the buffer size and pretrigger scan
count or with the board type.

–10090 The individual range, polarity, and gain settings are valid but the
combination is not allowed.

–10091 You have attempted to use an invalid setting for the iterations parameter.
The iterations value must be 0 or greater. Your device might be limited
to only two values, 0 and 1.

–10092 Some devices require a time gap between the last sample in a scan and
the start of the next scan. The scan interval you have specified does not
provide a large enough gap for the board. See your documentation for an
explanation.

–10093 FIFO mode waveform generation cannot be used because at least one
condition is not satisfied.

–10094 The calDAC constant passed to the function is invalid.

–10095 The calibration stimulus passed to the function is invalid.

–10100 The requested digital port width is not a multiple of the hardware port
width or is not attainable by the DAQ hardware.

–10120 Invalid application used.

–10121 Invalid counterNumber used.

–10122 Invalid paramValue used.

–10123 Invalid paramID used.

–10124 Invalid entityID used.

–10125 Invalid action used.

–10200 Unable to read data from EEPROM.

–10201 Unable to write data to EEPROM.

–10202 You cannot write into this location or area of your EEPROM because it
is write-protected. You may be trying to store calibration constants into
a write-protected area; if this is the case, you should select user area of
the EEPROM instead.

–10240 The driver interface could not locate or open the driver.

Table D-1. Data Acquisition Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

© National Instruments Corporation D-5 Getting Results with ComponentWorks

–10241 One of the driver files or the configuration utility is out of date, or a
particular feature of the Channel Wizard is not supported in this version
of the driver.

–10242 The specified function is not located in the driver.

–10243 The driver could not locate or open the configuration file, or the format
of the configuration file is not compatible with the currently installed
driver.

–10244 The driver encountered a hardware-initialization error while attempting
to configure the specified device.

–10245 The driver encountered an operating system error while attempting to
perform an operation, or the operating system does not support an
operation performed by the driver.

–10246 The driver is unable to communicate with the specified external device.

–10247 The CMOS configuration-memory for the device is empty or invalid, or
the configuration specified does not agree with the current configuration
of the device, or the EISA system configuration is invalid.

–10248 The base addresses for two or more devices are the same; consequently,
the driver is unable to access the specified device.

–10249 The interrupt configuration is incorrect given the capabilities of the
computer or device.

–10250 The interrupt levels for two or more devices are the same.

–10251 The DMA configuration is incorrect given the capabilities of the
computer/DMA controller or device.

–10252 The DMA channels for two or more devices are the same.

–10253 Unable to find one or more jumperless boards you have configured using
the NI-DAQ Configuration Utility.

–10254 Cannot configure the DAQCard because 1) the correct version of the
card and socket services software is not installed; 2) the card in the
PCMCIA socket is not a DAQCard; or 3) the base address and/or
interrupt level requested are not available according to the card and
socket services resource manager. Try different settings or use
AutoAssign in the NI-DAQ Configuration Utility.

Table D-1. Data Acquisition Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

Getting Results with ComponentWorks D-6 © National Instruments Corporation

–10255 There was an error in initializing the driver for Remote SCXI.

–10256 There was an error in opening the specified COM port.

–10257 Bad base address specified in the configuration utility.

–10258 Bad DMA channel 1 specified in the configuration utility or by the
operating system.

–10259 Bad DMA channel 2 specified in the configuration utility or by the
operating system.

–10260 Bad DMA channel 3 specified in the configuration utility or by the
operating system.

–10261 The user mode code failed when calling the kernel mode code.

–10340 No RTSI signal/line is connected, or the specified signal and the
specified line are not connected.

–10341 The RTSI signal/line cannot be connected as specified.

–10342 The specified RTSI signal is already being driven by a RTSI line, or the
specified RTSI line is already being driven by a RTSI signal.

–10343 The specified SCXI configuration parameters are invalid, or the function
cannot be executed with the current SCXI configuration.

–10344 The Remote SCXI unit is not synchronized with the host. Reset the
chassis again to resynchronize it with the host.

–10345 The required amount of memory cannot be allocated on the Remote
SCXI unit for the specified operation.

–10346 The packet received by the Remote SCXI unit is invalid. Check your
serial port cable connections.

–10347 There was an error in sending a packet to the remote chassis. Check your
serial port cable connections.

–10348 The Remote SCXI unit is in reprogramming mode and is waiting for
reprogramming commands from the host (NI-DAQ Configuration
Utility).

–10349 The module ID read from the SCXI module conflicts with the
configured module type.

Table D-1. Data Acquisition Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

© National Instruments Corporation D-7 Getting Results with ComponentWorks

–10360 The DSP driver was unable to load the kernel for its operating system.

–10370 The scan list is invalid; for example, you are mixing AMUX-64T
channels and onboard channels, scanning SCXI channels out of order, or
have specified a different starting channel for the same SCXI module.
Also, the driver attempts to achieve complicated gain distributions over
SCXI channels on the same module by manipulating the scan list and
returns this error if it fails.

–10400 The specified resource is owned by the user and cannot be accessed or
modified by the driver.

–10401 The specified device is not a National Instruments product, the driver
does not support the device (for example, the driver was released before
the device was supported), or the device has not been configured using
the NI-DAQ Configuration Utility.

–10402 No device is located in the specified slot or at the specified address.

–10403 The specified device does not support the requested action (the driver
recognizes the device, but the action is inappropriate for the device).

–10404 No line is available.

–10405 No channel is available.

–10406 No group is available.

–10407 The specified line is in use.

–10408 The specified channel is in use.

–10409 The specified group is in use.

–10410 A related line, channel, or group is in use; if the driver configures the
specified line, channel, or group, the configuration, data, or handshaking
lines for the related line, channel, or group will be disturbed.

–10411 The specified counter is in use.

–10412 No group is assigned, or the specified line or channel cannot be assigned
to a group.

–10413 A group is already assigned, or the specified line or channel is already
assigned to a group.

Table D-1. Data Acquisition Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

Getting Results with ComponentWorks D-8 © National Instruments Corporation

–10414 The selected signal requires a pin that is reserved and configured only
by NI-DAQ. You cannot configure this pin yourself.

–10415 This function does not support your DAQ device when an external
multiplexer (such as an AMUX-64T or SCXI) is connected to it.

–10440 The specified resource is owned by the driver and cannot be accessed or
modified by the user.

–10441 No memory is configured to support the current data transfer mode, or
the configured memory does not support the current data transfer mode.
(If block transfers are in use, the memory must be capable of performing
block transfers.)

–10442 The specified memory is disabled or is unavailable given the current
addressing mode.

–10443 The transfer buffer is not aligned properly for the current data transfer
mode. For example, the buffer is at an odd address, is not aligned to a
32-bit boundary, is not aligned to a 512-bit boundary, and so on.
Alternatively, the driver is unable to align the buffer because the buffer
is too small.

–10444 No more system memory is available on the heap, or no more memory
is available on the device, or insufficient disk space is available.

–10445 The transfer buffer cannot be locked into physical memory. On PC AT
machines, portions of the DMA data acquisition buffer may be in an
invalid DMA region, for example, above 16 megabytes.

–10446 The transfer buffer contains a page break; system resources may require
reprogramming when the page break is encountered.

–10447 The operating environment is unable to grant a page lock.

–10448 The driver is unable to continue parsing a string input due to stack
limitations.

–10449 A cache-related error occurred, or caching is not supported in the
current mode.

–10450 A hardware error occurred in physical memory, or no memory is located
at the specified address.

Table D-1. Data Acquisition Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

© National Instruments Corporation D-9 Getting Results with ComponentWorks

–10451 The driver is unable to make the transfer buffer contiguous in virtual
memory and therefore cannot lock it into physical memory; thus, the
buffer cannot be used for DMA transfers.

–10452 No interrupt level is available for use.

–10453 The specified interrupt level is already in use by another device.

–10454 No DMA controller is available in the system.

–10455 No DMA channel is available for use.

–10456 The specified DMA channel is already in use by another device.

–10457 DMA cannot be configured for the specified group because it is too
small, too large, or misaligned. Consult the device user manual to
determine group ramifications with respect to DMA.

–10458 The storage disk you specified is full.

–10459 The NI-DAQ DLL could not be called due to an interface error.

–10460 You have mixed VIs from the DAQ library and the _DAQ compatibility
library (LabVIEW 2.2 style VIs). You may switch between the two
libraries only by running the DAQ VI Device Reset before calling _DAQ
compatibility VIs or by running the compatibility VI Board Reset before
calling DAQ VIs.

–10461 The specified resource is unavailable because it has already been
reserved by another entity.

–10462 The specified resource has not been reserved, so the action is not
allowed.

–10480 The scan list is too large to fit into the mux-gain memory of the board.

–10481 You must provide a single buffer of interleaved data, and the channels
must be in ascending order. You cannot use DMA to transfer data from
two buffers; however, you may be able to use interrupts.

–10540 At least one of the SCXI modules specified is not supported for the
operation.

–10541 CTRB1 will drive COUTB1, however CTRB1 will also drive TRIG1.
This may cause unpredictable results when scanning the chassis.

–10560 The DSP handle input is not valid.

Table D-1. Data Acquisition Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

Getting Results with ComponentWorks D-10 © National Instruments Corporation

–10561 Either DAQ or WFM can use a PC memory buffer, but not both at the
same time.

–10600 No setup operation has been performed for the specified resources. Or,
some resources require a specific ordering of calls for proper setup.

–10601 The specified resources have already been configured by a setup
operation.

–10602 No output data has been written into the transfer buffer.

–10603 The output data associated with a group must be for a single channel or
must be for consecutive channels.

–10604 Once data generation has started, only the transfer buffers originally
written to may be updated. If DMA is active and a single transfer buffer
contains interleaved channel data, new data must be provided for all
output channels currently using the DMA channel.

–10605 No data was written to the transfer buffer because the final data block
has already been loaded.

–10606 The specified resource is not armed.

–10607 The specified resource is already armed.

–10608 No transfer is in progress for the specified resource.

–10609 A transfer is already in progress for the specified resource, or the
operation is not allowed because the device is in the process of
performing transfers, possibly with different resources.

–10610 A single output channel in a group may not be paused if the output data
for the group is interleaved.

–10611 Some of the lines in the specified channel are not configured for the
transfer direction specified. For a write transfer, some lines are
configured for input. For a read transfer, some lines are configured for
output.

–10612 The specified line does not support the specified transfer direction.

–10613 The specified channel does not support the specified transfer direction.

–10614 The specified group does not support the specified transfer direction.

–10615 The clock configuration for the clock master is invalid.

Table D-1. Data Acquisition Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

© National Instruments Corporation D-11 Getting Results with ComponentWorks

–10616 The clock configuration for the clock slave is invalid.

–10617 No source signal has been assigned to the clock resource.

–10618 The specified source signal cannot be assigned to the clock resource.

–10619 A source signal has already been assigned to the clock resource.

–10620 No trigger signal has been assigned to the trigger resource.

–10621 The specified trigger signal cannot be assigned to the trigger resource.

–10622 The pretrigger mode is not supported or is not available in the current
configuration, or no pretrigger source has been assigned.

–10623 No posttrigger source has been assigned.

–10624 The delayed trigger mode is not supported or is not available in the
current configuration, or no delay source has been assigned.

–10625 The trigger configuration for the trigger master is invalid.

–10626 The trigger configuration for the trigger slave is invalid.

–10627 No signal has been assigned to the trigger resource.

–10628 A signal has already been assigned to the trigger resource.

–10629 The specified operating mode is invalid, or the resources have not been
configured for the specified operating mode.

–10630 The parameters specified to read data were invalid in the context of the
acquisition. For example, an attempt was made to read 0 bytes from the
transfer buffer, or an attempt was made to read past the end of the
transfer buffer.

–10631 Continuous input or output transfers are not allowed in the current
operating mode, or continuous operation is not allowed for this type of
device.

–10632 Certain inputs were ignored because they are not relevant in the current
operating mode.

–10633 The specified analog output regeneration mode is not allowed for this
board.

–10634 No continuous (double buffered) transfer is in progress for the specified
resource.

Table D-1. Data Acquisition Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

Getting Results with ComponentWorks D-12 © National Instruments Corporation

–10635 Either the SCXI operating mode specified in a configuration call is
invalid, or a module is in the wrong operating mode to execute the
function call.

–10636 You cannot start a continuous (double-buffered) operation with a
synchronous function call.

–10637 Attempted to configure a buffer after the buffer had already been
configured. You can configure a buffer only once.

–10680 All channels of this board must have the same gain.

–10681 All channels of this board must have the same range.

–10682 All channels of this board must be the same polarity.

–10683 All channels of this board must have the same coupling.

–10684 All channels of this board must have the same input mode.

–10685 The clock rate exceeds the board's recommended maximum rate.

–10686 A configuration change has invalidated the scan list.

–10687 A configuration change has invalidated the acquisition buffer, or an
acquisition buffer has not been configured.

–10688 The number of total scans and pretrigger scans implies that a triggered
start is intended, but triggering is not enabled.

–10689 Digital trigger B is illegal for the number of total scans and pretrigger
scans specified.

–10690 This board does not allow digital triggers A and B to be enabled at the
same time.

–10691 This board does not allow an external sample clock with an external scan
clock, start trigger, or stop trigger.

–10692 The acquisition cannot be started because the channel clock is disabled.

–10693 You cannot use an external scan clock when doing a single scan of a
single channel.

–10694 The sample frequency exceeds the safe maximum rate for the hardware,
gains, and filters used.

Table D-1. Data Acquisition Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

© National Instruments Corporation D-13 Getting Results with ComponentWorks

–10695 You have set up an operation that requires the use of interrupts. DMA is
not allowed. For example, some DAQ events, such as messaging and
LabVIEW occurrences, require interrupts.

–10696 Multi-rate scanning cannot be used with the AMUX-64, SCXI, or
pretriggered acquisitions.

–10697 Unable to convert your timebase/interval pair to match the actual
hardware capabilities of this board.

–10698 You cannot use this combination of scan and sample clock timebases for
this board.

–10699 You cannot use this combination of scan and sample clock source
polarities for this operation and board.

–10700 You cannot use this combination of scan and convert clock signal
sources for this operation and board.

–10701 The call had no effect because the specified channel had not been set for
later internal update.

–10702 Pretriggering and posttriggering cannot be used simultaneously on the
Lab and 1200 series devices.

–10710 The specified port has not been configured for handshaking.

–10720 The specified counter is not configured for event-counting operation.

–10740 A signal has already been assigned to the SCXI track-and-hold trigger
line, or a control call was inappropriate because the specified module is
not configured for one-channel operation.

–10780 When you have an SC2040 attached to your device, all analog input
channels must be configured for differential input mode.

–10781 The polarity of the output channel cannot be bipolar when outputting
currents.

–10782 The specified operation cannot be performed with the SC-2040
configured in hold mode.

–10783 Calibration constants in the load area have a different polarity from the
current configuration. Therefore, you should load constants from
factory.

–10800 The operation could not complete within the time limit.

Table D-1. Data Acquisition Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

Getting Results with ComponentWorks D-14 © National Instruments Corporation

–10801 An error occurred during the calibration process. Possible reasons for
this error include incorrect connection of the stimulus signal, incorrect
value of the stimulus signal, or malfunction of your DAQ device.

–10802 The requested amount of data has not yet been acquired.

–10803 The ongoing transfer has been stopped. This is to prevent regeneration
for output operations, or to reallocate resources for input operations.

–10804 The transfer stopped prior to reaching the end of the transfer buffer.

–10805 The clock rate is faster than the hardware can support. An attempt to
input or output a new data point was made before the hardware could
finish processing the previous data point. This condition may also occur
when glitches are present on an external clock signal.

–10806 No trigger value was found in the input transfer buffer.

–10807 The trigger occurred before sufficient pretrigger data was acquired.

–10808 An error occurred in the parallel port communication with the DAQ
device.

–10809 Attempted to start a pulse width measurement with the pulse in the phase
to be measured (e.g., high phase for high-level gating).

–10810 An unexpected error occurred inside the driver when performing this
given operation.

–10840 The contents or the location of the driver file was changed between
accesses to the driver.

–10841 The firmware does not support the specified operation, or the firmware
operation could not complete due to a data integrity problem.

–10842 The hardware is not responding to the specified operation, or the
response from the hardware is not consistent with the functionality of
the hardware.

–10843 Because of system limitations, the driver could not write data to the
device fast enough to keep up with the device throughput. This error may
be returned erroneously when an overRunErr has occurred.

–10844 New data was not written to the output transfer buffer before the driver
attempted to transfer the data to the device.

Table D-1. Data Acquisition Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

© National Instruments Corporation D-15 Getting Results with ComponentWorks

–10845 Because of system limitations, the driver could not read data from the
device fast enough to keep up with the device throughput; the onboard
device memory reported an overflow error.

–10846 The driver wrote new data into the input transfer buffer before the
previously acquired data was read.

–10847 New buffer information was not available at the time of the DMA
chaining interrupt; DMA transfers will terminate at the end of the
currently active transfer buffer.

–10848 The driver could not obtain a valid reading from the transfer-count
register in the DMA controller.

–10849 The configuration file or DSP kernel file could not be opened.

–10850 Unable to close a file.

–10851 Unable to seek within a file.

–10852 Unable to read from a file.

–10853 Unable to write to a file.

–10854 An error occurred accessing a file.

–10855 NI-DAQ does not support the current operation on this particular version
of the operating system.

–10856 An unexpected error occurred from the operating system while
performing the given operation.

–10857 An unexpected error occurred inside the kernel of the device while
performing this operation.

–10858 The system has reconfigured the device and has invalidated the existing
configuration. The device requires reinitialization to be used again.

–10880 A change to the update rate is not possible at this time because 1) when
waveform generation is in progress, you cannot change the interval
timebase or 2) when you make several changes in a row, you must give
each change enough time to take effect before requesting further
changes.

–10881 You cannot do another transfer after a successful partial transfer.

Table D-1. Data Acquisition Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

Getting Results with ComponentWorks D-16 © National Instruments Corporation

Table D-2 lists the error codes returned from the VISA control.

–10882 The data collected on the Remote SCXI unit was overwritten before it
could be transferred to the buffer in the host. Try using a slower data
acquisition rate if possible.

–10883 New data could not be transferred to the waveform buffer of the Remote
SCXI unit to keep up with the waveform update rate. Try using a slower
waveform update rate if possible.

–10884 Could not rearrange data after a pretrigger acquisition completed.

–10920 One or more data points may have been lost during buffered GPCTR
operations due to speed limitations of your system.

–10940 No response was received from the Remote SCXI unit within the
specified time limit.

–10941 Reprogramming the Remote SCXI unit was unsuccessful. Please try
again.

–10942 An invalid reset signature was sent from the host to the Remote
SCXI unit.

–10943 The interrupt service routine on the remote SCXI unit is taking longer
than necessary. You do not need to reset your remote SCXI unit,
however, clear and restart your data acquisition.

Table D-2. VISA Control Error Codes

Error Code Description

–30500 Unknown system error (miscellaneous error).

–30514 The given session or object reference is invalid.

–30515 Specified type of lock cannot be obtained, or specified operation cannot
be performed, because the resource is locked.

–30516 Invalid expression specified for search.

–30517 Insufficient location information or the device or resource is not present
in the system.

–30518 Invalid resource reference specified. Parsing error.

–30519 Invalid access mode.

Table D-1. Data Acquisition Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

© National Instruments Corporation D-17 Getting Results with ComponentWorks

–30521 Timeout expired before operation completed.

–30522 Unable to deallocate the previously allocated data structures
corresponding to this session or object reference.

–30527 Specified degree is invalid.

–30528 Specified job identifier is invalid.

–30529 The specified attribute is not defined or supported by the referenced
resource.

–30530 The specified state of the attribute is not valid, or is not supported as
defined by the resource.

–30531 The specified attribute is read only.

–30532 The specified type of lock is not supported by this resource.

–30533 The access key to the specified resource is invalid.

–30538 Specified event type is not supported by the resource.

–30539 Invalid mechanism specified.

–30540 A handler was not installed.

–30541 The given handler reference is either invalid or was not installed.

–30542 Specified event context is invalid.

–30548 User abort occurred during transfer.

–30552 Violation of raw write protocol occurred during transfer.

–30553 Violation of raw read protocol occurred during transfer.

–30554 Device reported an output protocol error during transfer.

–30555 Device reported an input protocol error during transfer.

–30556 Bus error occurred during transfer.

–30558 Unable to start operation because setup is invalid (due to attributes being
set to an inconsistent state).

–30559 Unable to queue the asynchronous operation.

–30560 Insufficient system resources to perform necessary memory allocation.

Table D-2. VISA Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

Getting Results with ComponentWorks D-18 © National Instruments Corporation

–30561 Invalid buffer mask specified.

–30562 Could not perform operation because of I/O error.

–30563 A format specifier in the format string is invalid.

–30565 A format specifier in the format string is not supported.

–30566 The specified trigger line is currently in use.

–30574 Service request has not been received for the session.

–30578 Invalid address space specified.

–30581 Invalid offset specified.

–30584 Specified offset is not accessible from this hardware.

–30587 The specified session is not currently mapped.

–30595 No listeners condition is detected (both NRFD and NDAC are
de-asserted).

–30596 The interface associated with this session is not currently the controller
in charge.

–30603 The given session or object reference does not support this operation.

–30606 A parity error occurred during transfer.

–30607 A framing error occurred during transfer.

–30608 An overrun error occurred during transfer. A character was not read from
the hardware before the next character arrived.

–30618 Specified width is not supported by this hardware.

–30620 The value of some parameter (which parameter is not known) is invalid.

–30621 The protocol specified is invalid.

–30623 Invalid size of window specified.

–30628 The specified session currently contains a mapped window.

–30629 The given operation is not implemented.

–30631 Invalid length specified.

–30656 The current session did not have a lock on the resource.

Table D-2. VISA Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

© National Instruments Corporation D-19 Getting Results with ComponentWorks

If an error occurs during a call to any of the functions in the ComponentWorks Analysis
controls, the exception contains the error code. This code is a value that specifies the type of
error that occurred. You can find the currently defined error codes and their associated
meanings in Table D-3.

–30582 Invalid access width specified.

–30585 Cannot support source and destination widths that are different.

–30612 The specified offset is not properly aligned for the access width of the
operation.

–30613 A specified user buffer is not valid or cannot be accessed for the
required size.

–30614 The resource is valid, but VISA cannot currently access it.

–30547 You must be enabled for events of the specified type in order to
receive them.

–30658 A code library required by VISA could not be located or loaded.

–30589 A previous response is still pending, causing a multiple query error.

–30597 The interface associated with this session is not the system controller.

–30645 Invalid mode specified.

Table D-3. Analysis Error Codes

Error Code Description

–20001 There is not enough memory to perform the specified routine.

–20002 The input sequences must be the same size.

–20003 The number of samples must be >0.

–20004 The number of samples must be >= 0.

–20006 The number of samples must be >= 2.

–20007 The number of samples must be >= 3.

–20008 The input arrays do not contain the correct number of data values for this
function.

–20009 The size of the input array must be a power of two: size = 2^m, 0<m<23.

Table D-2. VISA Control Error Codes (Continued)

Error Code Description

Appendix D Error Codes

Getting Results with ComponentWorks D-20 © National Instruments Corporation

–20010 The maximum allowable transform size has been exceeded.

–20011 The duty cycle must be equal to or fall between 0 and 100:
0 <= duty cycle <= 100.

–20012 The number of cycles must be > 0 and <= the number of samples.

–20013 The width must meet: 0 < width < samples.

–20014 The following conditions must be met: 0 <= (delay + width) < samples.

–20015 dt must be >= 0.

–20016 dt must be > 0.

–20017 The following condition must be met: 0 <= index < samples.

–20018 The following condition must be met: 0 <= (index + length) < samples.

–20019 The upper value must be >= the lower value.

–20020 The cut-off frequency, fc, must meet: 0 <= fc <= fs/2.

–20021 The order must be > 0.

–20022 The decimating factor must meet: 0 < decimating factor <= samples.

–20023 The following conditions must be met: 0 < f_low <= f_high <= fs/2.

–20024 The ripple amplitude must be > 0.

–20025 The attenuation must be > 0.

–20026 The width must be > 0.

–20027 The final value must be > 0.

–20028 The attenuation value must be greater than the ripple amplitude.

–20029 The step-size, u, must meet: 0 <= u <= 0.1.

–20030 The leakage coefficient, leak, and step-size parameter, u, must meet:
0 <= leak <= u.

–20031 The filter cannot be designed with the specified input values.

–20032 The rank of the filter must meet: 1 <= (2*rank + 1) <= size.

–20033 The number of coefficients must be odd for this filter.

Table D-3. Analysis Error Codes (Continued)

Error Code Description

Appendix D Error Codes

© National Instruments Corporation D-21 Getting Results with ComponentWorks

–20034 The number of coefficients must be even for this filter.

–20035 The standard deviation must be greater than zero for normalization.

–20036 The elements of the Y Values array must be nonzero and either all
positive or all negative.

–20037 The number of data points in the Y Values array must be greater than the
order.

–20038 The number of intervals must be > 0.

–20039 The number of columns in the first matrix is not equal to the number of
rows in the second matrix or vector.

–20040 The input matrix must be a square matrix.

–20041 The system of equations cannot be solved because the input matrix is
singular.

–20042 The number of levels is out of range.

–20043 The level of factors is outside the allowable range of some data.

–20044 Zero observations were made at some level of a factor.

–20045 The total number of data points must be equal to the product of
levels/each factor * observations/cell.

–20046 There is an overflow in the calculated F-value for the ANOVA Fit
function.

–20047 The data is unbalanced. All cells must contain the same number of
observations.

–20048 The Random Effect model was requested when the Fixed Effect model
is required.

–20049 The x-values must be distinct.

–20050 The interpolating function has a pole at the requested value.

–20051 All values in the first column of X matrix must be one.

–20052 The degrees of freedom must be one or more.

–20053 The probability must be between zero and one.

–20054 The probability must be greater than or equal to zero and less than one.

Table D-3. Analysis Error Codes (Continued)

Error Code Description

Appendix D Error Codes

Getting Results with ComponentWorks D-22 © National Instruments Corporation

–20055 The number of categories or samples must be greater than one.

–20056 The contingency table has a negative number.

–20057 The parameter to the beta function should be 0 < p < 1.

–20058 Invalid number of dimensions or dependent variables.

–20059 Negative number error.

–20060 Divide by zero error.

–20061 The selection is invalid.

–20062 The maximum number of iterations was exceeded.

–20063 The coefficients of the polynomial are invalid.

–20064 The internal memory state of this function was not initialized correctly.

–20065 The elements in the vector can not be all zero.

–20066 The information in IIR filter structure is not correct.

–20080 Time increment must be greater than the (window length)/16.

–20081 dN must be greater than zero.

–20082 Time increment must not be greater than dM.

–20083 Window length must be > 4 and a power of 2.

–20084 Time increment must not be greater than (window length)/4.

–20085 The size of the input array and its Hilbert transform must be equal.

–20086 Window length must be > 2 and a power of 2.

–20101 Parameter must meet the condition: Top>Base.

–20102 The shifts must meet: |shifts| < samples.

–20103 The order must be positive.

–20999 Serious algorithm failure. Call National Instruments support.

Table D-3. Analysis Error Codes (Continued)

Error Code Description

Appendix D Error Codes

© National Instruments Corporation D-23 Getting Results with ComponentWorks

Table D-4 lists the negative error codes that can be returned by any ComponentWorks
operation.

Table D-4. General ComponentWorks Error Codes

Error Code Description

–30000 An unexpected error has occurred.

–30001 Too many controls are configured for this DAQ device. Reset one of the
other controls configured for this device before configuring any more
controls for this device.

–30002 You have passed an invalid value for one of the parameters to the
function, method or property.

–30003 You have passed an invalid type into a parameter of a VARIANT type.

–30004 A divide by zero error has occurred.

–30005 The result of a calculation is an imaginary number.

–30006 An overflow error has occurred.

–30007 Out of memory.

–30008 You have called a function or method requiring a ComponentWorks
product that you do not have a license for. For example, you may be
using a method that is not supported in the base, (or standard) Analysis
package. To upgrade your product, contact National Instruments.

–30009 Cannot reconfigure when PulseType has changed.

–30010 DAQ operation cannot be started because it is not configured or is
currently active.

–30011 The type of counter/timer on the device cannot perform the requested
operation.

–30013 Newer version of NI-DAQ required.

–30014 Invalid ReturnDataType property. Scaled data will be returned.

–30015 CWAI.ProgressInterval must divide evenly into CWAI.NScans.

–30016 CWAI.NScans must divide evenly into CWAI.NScansPerBuffer.

–30017 ProgressInterval must divide evenly into NPatterns.

–30018 Invalid trigger source.

–30019 Current PulseType cannot be reconfigured.

Appendix D Error Codes

Getting Results with ComponentWorks D-24 © National Instruments Corporation

–30020 DAQ operation not active.

–30021 DAQ operation not configured.

–30100 The data type is not correct.

–30101 Array cannot be locked.

–30102 Array cannot be unlocked.

–30103 The argument is not an array.

–30104 The input parameters must all contain the same data type.

–30301 Operation Timed out.

–30302 No more data.

–30303 Could not parse character.

–30304 IO Operation in Progress.

–30305 Cannot Add Token to non User-Defined Pattern.

–30307 Cannot load GPIB DLL.

–30308 Cannot load VISA DLL.

–30312 Invalid COM Port.

–30315 Access denied: Specified resource is already in use.

–30316 Specified Device is Not Configured.

–30317 Specified Device is Not Opened.

–30322 File Not Found.

–30324 Cannot open file: Too Many Open Files.

–30325 Cannot Open File: Access Denied.

–30330 Invalid GPIB Board Number.

–30331 The GPIB Board is not the Controller In Charge (CIC).

–30332 No Listeners on the GPIB are addressed.

–30333 GPIB Board is not properly addressing itself.

–30334 Invalid Parameter.

Table D-4. General ComponentWorks Error Codes (Continued)

Error Code Description

Appendix D Error Codes

© National Instruments Corporation D-25 Getting Results with ComponentWorks

–30335 The GPIB Board is not the System Controller.

–30336 I/O operation timed out.

–30337 Invalid GPIB IO Address.

–30338 GPIB DMA Error.

–30340 I/O In Progress.

–30341 GPIB Board or device does not have the ability to perform the requested
operation.

–30342 File System Error.

–30344 Error on the GPIB Bus.

–30345 Serial Poll Overflow: Too many status bytes received.

–30346 The SRQ line is stuck asserting.

–30350 Problem with GPIB Listening Table.

–30400 The value or attribute cannot be set because the CWData object is
read only.

–30401 The data read is corrupt or in an unrecognized format.

–30402 You are initializing too many cluster elements.

–30403 You are trying to create an array with too many dimensions.

–30404 You are using an element index that is out of range.

–30405 You cannot index the current value because it is not a vector or cluster.

–30420 The URL prefix (http:, ftp:, file:, and so on) is not recognized.

–30421 The URL syntax could not be recognized.

Table D-4. General ComponentWorks Error Codes (Continued)

Error Code Description

© National Instruments Corporation E-1 Getting Results with ComponentWorks

E
Distribution and
Redistributable Files

This chapter contains information about ComponentWorks 2.0
redistributable files and distributing applications that use
ComponentWorks controls.

Files

The files in the \Setup\redist directory of the ComponentWorks CD
are necessary for distributing applications and programs that use
ComponentWorks controls. You need to distribute only those files needed
by the controls you are using in your application.

Distribution

When installing an application using ComponentWorks controls on
another computer, you also must install the necessary control files and
supporting libraries on the target machine. In addition to installing all
necessary OCX files on a target computer, you must register each of these
files with the operating system. This allows your application to find the
correct OCX file and create the controls.

If your application performs any I/O operations requiring separate driver
software, such as data acquisition or GPIB, you must install and configure
the driver software and corresponding hardware on the target computer. For
more information, consult the hardware documentation for the specific
driver used.

When distributing applications with the ComponentWorks controls, do not
violate the license agreement (section 5) provided with the software. If you
have any questions about the licensing conditions, contact National
Instruments.

Appendix E Distribution and Redistributable Files

Getting Results with ComponentWorks E-2 © National Instruments Corporation

Automatic Installers
Many programming environments include some form of a setup or
distribution kit tool. This tool automatically creates an installer for your
application so that you can easily install it on another computer. To
function successfully, this tool must recognize which control files and
supporting libraries are required by your application and include these in
the installer it creates. The resulting installer also must register the controls
on the target machine.

Some of these tools, such as the Visual Basic 5 Setup Wizard, use
dependency files to determine which libraries are required by an OCX file.
Each of the ComponentWorks OCX files includes a corresponding
dependency file located in the \Windows\System directory
(\Windows\System32 for WindowsNT) after you install the
ComponentWorks software.

Some setup tools might not automatically recognize which files are
required by an application but provide an option to add additional files to
the installer. In this case, verify that all necessary OCX files (corresponding
to the controls used in your application) as well as all the DLL and TLB
files from the \redist directory are included. You also should verify that
the resulting installer does not copy older versions of a file over a newer
version on the target machine.

If your programming environment does not provide a tool or wizard for
building an installer, you may use third-party tools, such as InstallShield.
Some programming environments provide simplified or trial versions of
third-party installer creation tools on their installation CDs.

Manual Installation
If your programming environment does not include a setup or distribution
kit tool, you must build your own installer and perform the installation task
manually. To install your application on another computer, follow these
steps:

1. Copy the application executable to the target machine.

2. Copy all required ComponentWorks OCX files (corresponding to the
controls used in your application) to the System directory
(\Windows\System for Windows 95 or \Windows\System32 for
WindowsNT) on the target machine.

Appendix E Distribution and Redistributable Files

© National Instruments Corporation E-3 Getting Results with ComponentWorks

3. Copy all DLL and TLB files in the \redist directory to the System
directory on the target machine.

4. Copy any other DLLs and support files required by your application to
the System directory on the target machine.

Some of these files might already be installed on the target machine. If the
file on the target machine has an earlier version number than the file in the
\redist directory, copy the newer file to the target machine.

After copying the files to the target machine, you must register all OCX
files with the operating system. To register an OCX file, you need a utility
such as REGSVR32.EXE. You must copy this utility to the target machine to
register the OCX files, but you can delete it after completing the
installation. Use this utility to register each OCX file with the operating
system, as in the following example.

regsvr32 c:\windows\system\cwui.ocx

DataSocket Server

If your application uses the DataSocket Server, you also might need to
distribute the server with your application. The server executable can be
easily copied to the target machine and does not need to be registered. It
requires the same support libraries as the ComponentWorks controls. With
the DataSocket server, you also should distribute the server configuration
file (CWDSSINI.DSS) to start the server on the target in the same state as
configured on your development machine. You can distribute multiple
configuration files to switch between different setups of the server.

In rare cases, you might want to distribute the DataSocket Server Manager
utility with your application. In general, this should not be necessary.
Contact National Instruments technical support for information about
distributing the DataSocket Server Manager.

Instrument Drivers

If you are using any instrument drivers in your applications, you must
distribute the instrument driver DLL file with your application. Copy the
instrument driver DLL and necessary support DLL (INSTRSUP.DLL) to the
target machine. Make sure to install and configure any required driver
software, such as NI-488.2, on the target machine.

Appendix E Distribution and Redistributable Files

Getting Results with ComponentWorks E-4 © National Instruments Corporation

ComponentWorks Evaluation

Once the ComponentWorks OCX files are installed and registered on a
target computer, your application can create the controls as necessary.
You or your customer also can use the same OCX files in any compatible
development environment as an evaluation version of the controls.
If desired, you may distribute the ComponentWorks reference files
(from the \redist directory) with your application, which provide
complete documentation of the ComponentWorks controls when used
in evaluation mode.

If you would like to use the ComponentWorks controls as a development
tool on this target machine, you must purchase another ComponentWorks
development system. Contact National Instruments to purchase additional
copies of the ComponentWorks software.

Run-Time Licenses

For each copy of your ComponentWorks-based application that you
distribute, you must have a valid run-time license. A limited number of
run-time licenses are provided with the ComponentWorks development
systems. National Instruments driver software also provides you with
ComponentWorks run-time licenses. You can purchase additional
ComponentWorks run-time licenses from National Instruments. Consult
the license agreement (section 5) provided with the software for more
detailed information. If you have any questions about the licensing
conditions, contact National Instruments.

Troubleshooting

Try the following suggestions if you encounter problems after installing
your application on another computer.

The application is not able to find an OCX file or is not able to create

a control.

• The control file or one of its supporting libraries is not copied on the
computer. Verify that the correct OCX files and all their supporting
libraries are copied on the machine. If one control was built using
another, you might need multiple OCX files for one control.

• The control is not properly registered on the computer. Make sure you
run the registration utility and that it registers the control.

Appendix E Distribution and Redistributable Files

© National Instruments Corporation E-5 Getting Results with ComponentWorks

Controls in the application run in evaluation (demo) mode.

• The application does not contain the correct run-time license. When
developing your application, verify that the controls are running in a
fully licensed mode. Although most programming environments
include a run-time license for the controls in the executable, some
do not.

If you are developing an application in Visual C++ using SDI (single
document interface) or MDI (multiple document interface), you must
include the run-time license in the program code for each control you
create. Consult the ComponentWorks documentation, National
Instruments Knowledgebase (www.natinst.com/support) or
technical support if you are not familiar with this operation.

© National Instruments Corporation F-1 Getting Results with ComponentWorks

F
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form and
the configuration form, if your manual contains one, about your system configuration to answer your
questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to quickly
provide the information you need. Our electronic services include a bulletin board service, an FTP site,
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first try the
electronic support systems. If the information available on these systems does not answer your
questions, we offer fax and telephone support through our technical support centers, which are staffed
by applications engineers.

Electronic Services

Bulletin Board Support
National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files
and documents to answer most common customer questions. From these sites, you can also download
the latest instrument drivers, updates, and example programs. For recorded instructions on how to use
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. You can
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support
To access our FTP site, log on to our Internet host, ftp.natinst.com, as anonymous and use
your Internet address, such as joesmith@anywhere.com, as your password. The support files and
documents are located in the /support directories.

Getting Results with ComponentWorks F-2 © National Instruments Corporation

Fax-on-Demand Support
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access Fax-on-Demand from a touch-tone telephone at
512 418 1111.

E-Mail Support (Currently USA Only)
You can submit technical support questions to the applications engineering team through e-mail at the
Internet address listed below. Remember to include your name, address, and phone number so we can
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact
the source from which you purchased your software to obtain support.

Country Telephone Fax

Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 725 725 11 09 725 725 55
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
United Kingdom 01635 523545 01635 523154
United States 512 795 8248 512 794 5678

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and use
the completed copy of this form as a reference for your current configuration. Completing this form
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___) ________________Phone (___) __

Computer brand____________ Model ___________________Processor _____________________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter __________________________

Mouse ___yes ___no Other adapters installed _______________________________________

Hard disk capacity _____MB Brand___

Instruments used ___

National Instruments hardware product model _____________ Revision ____________________

Configuration ___

National Instruments software product ___________________ Version _____________________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem: ___

ComponentWorks Hardware and Software
Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each item.
Complete a new copy of this form each time you revise your software or hardware configuration, and
use this form as a reference for your current configuration. Completing this form accurately before
contacting National Instruments for technical support helps our applications engineers answer your
questions more efficiently.

National Instruments Products

DAQ hardware __

Interrupt level of hardware ___

DMA channels of hardware __

Base I/O address of hardware ___

Programming choice ___

ComponentWorks and NI-DAQ version __

Other boards in system __

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards __

Other Products

Computer make and model __

Microprocessor __

Clock frequency or speed __

Type of video board installed ___

Operating system version __

Operating system mode ___

Programming language ___

Programming language version ___

Other boards in system __

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards __

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: Getting Results with ComponentWorks™

Edition Date: April 1998

Part Number: 321170C-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

E-Mail Address __

Phone (___) __________________________ Fax (___) _______________________________

Mail to: Technical Publications Fax to: Technical Publications

National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678
Austin, Texas 78730-5039

© National Instruments Corporation G-1 Getting Results with ComponentWorks

Glossary

Prefix Meanings Value

p- pico 10–12

n- nano- 10–9

µ- micro- 10– 6

m- milli- 10–3

k- kilo- 103

M- mega- 106

G- giga- 109

t- tera- 1012

Numbers/Symbols

12-bit Resolution of a data acquisition device. A 12-bit device converts an analog
voltage into a 12-bit binary integer. The binary value is scaled to a voltage
representation in software.

16-bit Resolution of a data acquisition device. A 16-bit device converts an analog
voltage into a 16-bit binary integer. The binary value is scaled to a voltage
representation in software.

1D One-dimensional.

2D Two-dimensional.

9513 Counter See AM9513 Counter.

A

A Amperes.

A/D Analog-to-Digital.

AC Alternating Current.

Glossary

Getting Results with ComponentWorks G-2 © National Instruments Corporation

AC signal Signal with significant frequency components.

ActiveX Set of Microsoft technologies for reusable software components. Formerly
called OLE.

ActiveX control Standard software tool that adds additional functionality to any compatible
ActiveX container. The DAQ, UI, and analysis tools in ComponentWorks
are all ActiveX controls. An ActiveX control has properties, methods,
objects, and events.

ADC Analog-to-Digital Converter. An electronic device, often an integrated
circuit, that converts an analog voltage to a digital number.

ADC resolution Resolution of the ADC, which is measured in bits. An ADC with 16 bits
has a higher resolution than a 12-bit ADC.

AI Analog Input.

AIGND Analog Input GrouND pin on a DAQ device.

AIPoint Analog Input Single Point control.

AM 9513 Counter Counter/Timer chip used on legacy MIO and other data acquisition devices,
replaced by the DAQ-STC chip on newer devices, including the E-series
DAQ boards. The AM9513 Counter does not support some of the advanced
features of the DAQ-STC.

amplification Type of signal conditioning that improves accuracy in the resulting
digitized signal and reduces noise.

AMUX devices See analog multiplexer.

analog multiplexer Device that increase the number of measurement channels while still using
a single instrumentation amplifier. Also called AMUX devices.

analog trigger Trigger that occurs at a user-selected point on an incoming analog signal.
Triggering can be set to occur at a specified level either on an increasing or
a decreasing signal (positive or negative slope). Analog triggering can be
implemented either in software or in hardware. When implemented in
software, all data is collected, transferred into system memory, and
analyzed for the trigger condition. When analog triggering is implemented
in hardware, no data is transferred to system memory until the trigger
condition has occurred.

ANOVA ANalysis Of VAriance.

Glossary

© National Instruments Corporation G-3 Getting Results with ComponentWorks

AO Analog Output.

AOPoint Analog Output single Point control.

array Ordered, indexed set of data elements of the same type.

asynchronous Property of a function or operation that begins an operation and returns
control to the program prior to the completion or termination of the
operation.

ATC Analog Trigger Circuit; an analog trigger contained on some E-series DAQ
devices, required for any analog triggering (including ETS operations).

B

BCD Binary-Coded Decimal.

bipolar Signal range that includes both positive and negative values
(for example, –5 to 5 V).

buffer Temporary storage for acquired or generated data.

C

callback (function) User-defined function called in response to an event from an object. Also
called an event handler.

cascading Process of extending the counting range of a counter chip by connecting to
the next higher counter.

channel Pin or wire lead to which you apply or from which you read the analog or
digital signal. Analog signals can be single-ended or differential. For digital
signals, group channels to form ports. Ports usually consist of either four or
eight digital channels.

channel clock Clock controlling the time interval between individual channel sampling
within a scan. Boards with simultaneous sampling do not have this clock.

channel list Collection of channel objects that specify the channels used by a control.

Channel Wizard Utility that guides you through naming and configuring your DAQ analog
and digital channels.

Glossary

Getting Results with ComponentWorks G-4 © National Instruments Corporation

Chart History CWGraph property for charting that determines how many points the graph
stores before deleting old data.

Chart Style CWGraph property that specifies how a chart method updates the display
as new data is plotted.

clock Hardware component that controls timing for reading from or writing to
groups; an input pin on a counter/timer.

cm Centimeters.

code width Smallest detectable change in an input voltage of a DAQ device.

Collection Control property and object that contains a number of objects of the same
type, such as pointers, axes, and plots. The type name of the collection is
the plural of the type name of the object in the collection. For example, a
collection of CWAxis objects is called CWAxes. To reference an object in
the collection, you must specify the object as part of the collection, usually
by index. For example, CWGraph.Axes.Item(2) is the second axis in the
CWAxes collection of a graph.

column-major order Systematic way to organize the data in a 2D array by columns.

common-mode voltage Any voltage present at the instrumentation amplifier inputs with respect to
amplifier ground.

condition object Object used to specify the Start, Pause, or Stop condition on a data
acquisition process.

Control Refresh CWGraph property that determines when changes to the graph are
displayed. The property name is ImmediateUpdates.

conversion device Device that transforms a signal from one form to another. For example,
analog-to-digital converters (ADCs) for analog input, digital-to-analog
converters (DACs) for analog output, digital input or output ports, and
counter/timers are conversion devices.

counter/timer group Collection of counter/timer channels. You can use this type of group for
simultaneous operation of multiple counter/timers.

coupling Manner in which a signal is connected from one location to another.

Glossary

© National Instruments Corporation G-5 Getting Results with ComponentWorks

D

D/A Digital-to-Analog.

DAC Digital-to-Analog Converter. An electronic device, often an integrated
circuit, that converts a digital number into a corresponding analog voltage
or current.

DAQ Data acquisition.

DAQ-STC DAQ System Timing Controller. An ASIC developed by National
Instruments for enhanced timing control on data acquisition devices.
DAQ-STC is used on E-Series and other National Instruments DAQ devices
and is required for certain counter/timer operations, including buffered
counter measurements and frequency shift keying.

data acquisition Process of acquiring data, typically from A/D or digital input plug-in
boards.

DataSocket Technology that simplifies data exchange between an application and other
applications, files, FTP servers, and Web servers. It provides one common
API to a number of different communication protocols.

DataSocket control ActiveX control that implements the DataSocket client functionality.
Enables applications to exchange data with other data sources and targets.

DataSocket Server Executable that enables data exchange between multiple applications,
each of which uses a DataSocket client. The server accepts and stores
information from data sources and relays it to other data targets.

DataSocket Server
Manager

Executable to configure the default settings of the DataSocket Server,
including access permission, number of connections, and predefined data
items stored in the server.

DC Direct Current.

DC signal Signal solely comprised of a non-dynamic component, steady or very
slowly changing voltage.

Delphi Borland Delphi programming environment.

device Plug-in data acquisition board that can contain multiple channels and
conversion devices.

Glossary

Getting Results with ComponentWorks G-6 © National Instruments Corporation

device number Slot number or board ID number assigned to the board when configured.

DFT Discrete Fourier Transform.

DI Digital Input.

DIFF Differential. A differential input is an analog input consisting of two
terminals, both of which are isolated from computer ground and whose
difference you measure.

differential measurement Method to configure your device to read signals so you do not need to
connect either input to a fixed reference, such as the earth or a building
ground.

digital trigger TTL level signal having two discrete levels—a high and a low level used to
trigger (start or stop) another process.

DIO Digital Input/Output.

dithering Addition of Gaussian noise to an analog input signal.

DLL Dynamic Link Library.

DMA Direct Memory Access. A method by which you can transfer data to
computer memory from a device or memory on the bus (or from computer
memory to a device) while the processor does something else. DMA is the
fastest method of transferring data to or from computer memory.

DO Digital Output.

down counter Performing frequency division on an internal signal.

driver Software that controls a specific hardware device, such as a data acquisition
board.

DSP Digital Signal Processing.

DSTP DataSocket Transfer Protocol. Protocol based on TCP/IP to exchange data
directly between two applications using DataSocket clients. Data is passed
through a DataSocket Server between the applications.

Glossary

© National Instruments Corporation G-7 Getting Results with ComponentWorks

E

E-Series Device Series of enhanced data acquisition devices that include technologies such
as DAQ-STC ASIC, Plug and Play compatibility, and the NI-PGIA. Some
functionality in the ComponentWorks DAQ controls can be used only by
E-Series devices.

EEPROM Electrically Erased Programmable Read-only Memory. Read-only memory
that you can erase with an electrical signal and reprogram.

EISA Extended Industry Standard Architecture.

Equivalent Time
Sampling (ETS)

Analog input data acquisition method in which points are acquired with
increasing delay from a fixed point on a repetitive waveform.

event Object-generated response to some action or change in state, such as a
mouse click or x number of points being acquired. The event calls an event
handler (callback function), which processes the event. Events are defined
as part of an OLE control object.

event handler See callback (function) and event.

exception Error message generated by a control and sent directly to the application or
programming environment containing the control.

external trigger Voltage pulse from an external source that triggers an event such as A/D
conversion.

F

FFT Fast Fourier Transform. A method used to compute the Fourier transform
of an image.

FHT Fast Hartley Transform.

FIFO First-In, First-Out memory buffer. In a FIFO structure, the first data stored
is the first data sent to the acceptor.

File I/O Saving and loading data to and from files in an application.

filtering Type of signal conditioning that allows you to filter unwanted signals from
the signal you are trying to measure.

Glossary

Getting Results with ComponentWorks G-8 © National Instruments Corporation

FIR Finite Impulse Response.

fires Occurs. An event fires in response to predefined conditions, such as the
completion of a specified interval of time with a timer control, the
acquisition of a specified number of data points with a CWAI control, or a
mouse-click on a CWButton.

floating signal sources Signal sources with voltage signals that are not connected to an absolute
reference or system ground. Also called nonreferenced signal sources.
Common example of floating signal sources include batteries,
transformers, and thermocouples.

form Window or area on the screen on which you place controls and indicators
to create the user interface for your program.

Format Flexible specification that defines how a number is displayed on an axis or
on some other display. The specification is a format string for formatting all
values on a specific display. You specify the format string in the property
sheet of a control.

FSR Frequency Shift Keying. An advanced pulse generation mode in which the
output frequency is switched by another digital signal.

FTP File Transfer Protocol. Protocol based on TCP/IP to exchange files between
computers.

FTP Server Application running on a computer that enables the storing and retrieving
of files by different clients via FTP. Most FTP servers allow anonymous
connections so that any networked user can exchange files.

function tree Hierarchical structure in which the functions in a library or an instrument
driver are grouped. The function tree simplifies access to a library or
instrument driver by presenting functions organized according to the
operation they perform, as opposed to a single linear listing of all available
functions.

G

gain Factor by which a signal is amplified, sometimes expressed in decibels.

GATE input pin Counter input pin that controls when counting in your application occurs.

Glossary

© National Instruments Corporation G-9 Getting Results with ComponentWorks

GPIB General Purpose Interface bus. The standard bus used for controlling
electronic instruments with a computer. Also called IEEE 488 bus because
it is defined by ANSI/IEEE Standards 488-1978, 488.1-1987, and
488.2-1987.

grounded measurement
system

See referenced single-ended measurement system.

grounded signal sources Signal sources with voltage signals that are referenced to a system ground,
such as the earth or a building ground. Also called referenced signal

sources.

GUI Graphical User Interface.

H

handshaked digital I/O Type of digital acquisition/generation where a device or module accepts or
transfers data after a digital pulse has been received. Also called latched

digital I/O.

hardware triggering Form of triggering where you set the start time of an acquisition and gather
data at a known position in time relative to a trigger signal.

hex Hexadecimal.

HTML HyperText Markup Language. Language (syntax) used to build Web pages.
HTML files are downloaded from an HTTP server and viewed in a Web
browser.

HTTP HyperText Transfer Protocol. Protocol based on TCP/IP, which is used to
download Web pages from an HTTP server to a Web browser.

HTTP Server Application running on a computer that serves Web pages and other
information to client computers using HTTP. Clients display Web pages in
Web browsers but can retrieve information using other tools, like a
DataSocket client.

Hz Hertz. The number of scans read or updates written per second.

Glossary

Getting Results with ComponentWorks G-10 © National Instruments Corporation

I

I/O Input/Output. The transfer of data to or from a computer system involving
communications channels, operator interface devices, and/or data
acquisition and control interfaces.

I/O Connector Connector on a data acquisition device used to connect the device to
external signals or devices.

ICtr(82C53) Simple counter/timer chip used on 1200-, 700-, 500-, Lab-, and
LPM- series data acquisition devices. ICtr(82C53) supports limited counter
pulse capabilities and can be controlled using the ICtr functions in the
ComponentWorks DAQTools control.

IDFT Inverse Discrete Fourier Transform.

IEEE Institute of Electrical and Electronic Engineers.

IEEE 488 Shortened notation for ANSI/IEEE Standards 488-1978, 488.1-1987, and
488.2-1987. See also GPIB.

IFFT Inverse Fast Fourier Transform.

IFHT Inverse Fast Hartley Transform.

IIR Infinite Impulse Response.

immediate digital I/O Type of digital acquisition/generation where LabVIEW updates the digital
lines or port states immediately or returns the digital value of an input line.
Also called nonlatched digital I/O.

in. Inches.

input limits The upper and lower voltage inputs for a channel. You must use a pair of
numbers to express the input limits.

instrument driver Library of functions to control and use one specific physical instrument.
Also a set of functions that adds specific functionality to an application.

interrupt Signal indicating that the central processing unit should suspend its current
task to service a designated activity.

interval clock Clock used in a DAQ device in an analog input operation to control the
delay between samples acquired from consecutive channels in a scan.

Glossary

© National Instruments Corporation G-11 Getting Results with ComponentWorks

interval delay Delay between samples acquired from consecutive channels in a scan
during an analog input operation.

interval scanning Scanning method where there is a longer interval between scans than there
is between individual channels comprising a scan.

ISA Industry Standard Architecture.

isolation Type of signal conditioning in which you isolate the transducer signals
from the computer for safety purposes. This protects you and your
computer from large voltage spikes and makes sure the measurements from
the DAQ device are not affected by differences in ground potentials.

K

ksamples 1,000 samples.

Kwords 1,024 words of memory.

L

latched digital I/O Type of digital acquisition/generation where a device or module accepts or
transfers data after a digital pulse has been received. Also called
handshaked digital I/O.

LED Light-Emitting Diode.

limit settings Maximum and minimum voltages of the analog signals you are measuring
or generating.

linearization Type of signal conditioning that linearizes the voltage levels from
transducers, so the voltages can be scaled to measure physical phenomena.

LSB Least Significant Bit.

M

MB Megabytes of memory.

memory buffer See buffer.

Glossary

Getting Results with ComponentWorks G-12 © National Instruments Corporation

method Function that performs a specific action on or with an object. The operation
of the method often depends on the values of the object properties.

mse Mean squared error.

multibuffered I/O Input operation for which you allocate more than one memory buffer so you
can read and process data from one buffer while the acquisition fills
another.

multiplexed mode SCXI operating mode in which analog input channels are multiplexed into
one module output so that your cabled DAQ device has access to the
module’s multiplexed output as well as the outputs on all other multiplexed
modules in the chassis through the SCXI bus. Also called serial mode.

multiplexer Set of semiconductor or electromechanical switches with a common output
that can select one of a number of input signals and that you commonly use
to increase the number of signals measured by one ADC.

N

Named Channel Channel configuration that specifies a DAQ device; a hardware-specific
channel string; channel attributes such as input limits, input mode, and
actuator type; and a scaling formula for making a measurement or
generating a signal in terms of your actual physical quantity

NI-488 Driver-level software to control and communicate with GPIB cards and
devices.

NI-DAQ Driver-level software to control and communicate with GPIB cards and
devices.

nonlatched digital I/O Type of digital acquisition/generation where the DIO control updates the
digital lines or port states immediately or returns the digital value of an
input line. Also called immediate digital I/O.

nonreferenced signal Signal sources with voltage signals that are not connected to an absolute
reference or system ground. Also called floating signal sources. Common
example of non-referenced signal sources include batteries, transformers,
and thermocouples.

Glossary

© National Instruments Corporation G-13 Getting Results with ComponentWorks

nonreferenced
single-ended

Measurement where the voltage can vary with respect to the measurement
system ground. All measurements are made with respect to a common
reference.

NRSE Nonreferenced Single-Ended.

O

object Software tool for accomplishing tasks in different programming
environments. An object can have properties, methods, and events.
You change an object’s state by changing the values of its properties.
An object’s behavior consists of the operations (methods) that can be
performed on it and the accompanying state changes.

See property, method, event.

object browser Dialog window that displays the available properties and methods for
the controls that are loaded. The object browser shows the hierarchy
within a group of objects. To activate the object browser in Visual Basic,
press <F2>.

OCX OLE Control eXtension. Another name for ActiveX controls, reflected by
the .OCX file extension of ActiveX control files.

OLE Object Linking and Embedding. See ActiveX.

OLE control See ActiveX control.

onboard channels Channels on the plug-in data acquisition board.

OUT output pin Counter output pin where the counter can generate various TTL pulse
waveforms.

output limits Upper and lower voltage or current outputs for an analog output channel.
The output limits determine the polarity and voltage reference settings for
a board.

Glossary

Getting Results with ComponentWorks G-14 © National Instruments Corporation

P

parallel mode Type of SCXI operating mode in which the module sends each of its input
channels directly to a separate input channel of the device to the module.

pattern One update (input or output) on a digital port. The number of updates on a
buffered digital operation is measured in number of patterns.

pattern generation Type of handshaked (latched) digital I/O in which internal counters
generate the handshaked signal, which in turn initiates a digital transfer.
Because counters output digital pulses at a constant rate, you can generate
and retrieve patterns at a constant rate because the handshaked signal is
produced at a constant rate.

pause condition Condition on a data acquisition process that determines when the
acquisition is paused. The condition can be a digital hardware signal or the
state of an analog hardware signal relative to set limits.

PFI Programmable Function Input. Input and output lines on the I/O controller
of E-series data acquisition devices.

PGIA Programmable Gain Instrumentation Amplifier.

Plot CWGraph group of methods that displays a new set of data while deleting
any previous data on the graph. A plot also refers to one of the traces (data
lines) on a graph representing the data in one row or column of an array.
Each plot on the graph has its own properties, such as color, style, and
so on.

Plug and Play devices Devices that do not require dip switches or jumpers to configure resources
on the devices. Also called switchless devices.

PnP See Plug and Play devices.

Pointer Indicator on a CWSlide or CWKnob object. You can use a collection of
pointers to display different values on the same object. In the collection,
each pointer is referenced by an index in the collection and each individual
pointer has its own properties such as color, style, mode, and so on.

postriggering Technique used on data acquisition boards to acquire a programmed
number of samples after trigger conditions are met.

Glossary

© National Instruments Corporation G-15 Getting Results with ComponentWorks

pretriggering Technique used on data acquisition boards to keep a continuous buffer
filled with data. When the trigger conditions are met, the sample includes
the data leading up to the trigger condition.

property Attribute that controls the appearance or behavior of an object. The
property can be a specific value or another object with its own properties
and methods. For example, a value property is the color (property) of a plot
(object), while an object property is a specific Y axis (property) on a graph
(object). The Y axis itself is another object with properties, such as
minimum and maximum values.

pulse Physical signal generated by the Pulse control. Pulse uses TTL levels on
most data acquisition devices.

pulse delay Amount of time from the start of a pulse generation until the active phase
of the pulse, measured in seconds. In a positive polarity pulse, the output
from the counter is low for the duration of the pulse delay before going high.

pulse period Period of a continuous or finite pulse train. The period is defined as the
amount of time between two consecutive rising or falling edges of the
signal. The period is the inverse of the frequency of the pulse train.

pulse trains Multiple pulses.

pulse width Width of a pulse generated by a counter on a data acquisition device;
measured in seconds.

pulsed output Form of counter signal generation by which a pulse is output when a
counter reaches a certain value.

R

reference Link to an external code source in Visual Basic. References are anything
that add additional code to your program, such as OLE controls, DLLs,
objects, and type libraries. You can add references by selecting the
Tools»References… menu.

referenced single-ended Measurement made with respect to a common reference (RSE) or a ground.
Also called a grounded measurement system.

RMS Root Mean Square.

row-major order Systematic way to organize the data in a 2D array by rows.

Glossary

Getting Results with ComponentWorks G-16 © National Instruments Corporation

RS-232 Standard serial bus on a computer used to communicate with instruments.
Commonly referred to as serial communication.

RSE Referenced Single-Ended.

RTD Resistance Temperature Detector. A temperature-sensing device in which
resistance increases with increases in temperature.

RTSI Real-Time System Integration bus. The National Instruments timing bus
that interconnects data acquisition boards directly, by means of connectors
on top of the boards, for precise synchronization of functions.

S

sample Single (one and only one) analog or digital input or output data point.

sample counter Clock that counts the output of the channel clock (the number of samples
taken). On boards with simultaneous sampling, this counter counts the
output of the scan clock and hence the number of scans.

scan One or more analog or digital input samples. Typically, the number of input
samples in a scan is equal to the number of channels in the input group. For
example, one pulse from the scan clock produces one scan that acquires one
new sample from every analog input channel in the group.

scan clock Clock controlling the time interval between scans. On boards with interval
scanning support (for example, the AT-MIO-16F-5), this clock gates the
channel clock on and off. On boards with simultaneous sampling, this clock
clocks the track-and-hold circuitry.

scan rate Number of scans per second. For example, at a scan rate of 10Hz, each
channel is sampled 10 times per second.

scan width Number of channels in the channel list or number of ports in the port list
you use to configure an analog or digital input group.

SCXI Signal Conditioning eXtensions for Instrumentation. The National
Instruments product line for conditioning low-level signals within an
external chassis near sensors, so only high-level signals in a noisy
environment are sent to data acquisition boards.

sec Seconds.

Glossary

© National Instruments Corporation G-17 Getting Results with ComponentWorks

serial Standard serial bus on a computer used to communicate with instruments.
Also known as RS-232.

settling time Amount of time required for a voltage to reach its final value within
specified limits.

signal conditioning Manipulation of analog signals to prepare them for digitizing.

signal divider Performing frequency division on an external signal.

single-ended inputs Analog inputs that you measure with respect to a common ground.

Snap Mode Mode that controls the available coordinates for cursors to line up on a plot.

software analog
triggering

Method of triggering in which you simulate an analog trigger using
software.

SOURCE input pin Counter input pin where the counter counts the signal transitions.

start condition Condition on a data acquisition process that determines when the actual
acquisition starts. The condition can be a software trigger, an analog
hardware trigger, or a digital hardware trigger.

STC System Timing Controller. See DAQ-STC.

stop condition Condition on a data acquisition process that determines when the
acquisition stops. The condition can be none (the acquisition stops when all
points have been acquired), continuous (the acquisition runs continuously),
software analog trigger, hardware analog trigger, or hardware digital
trigger.

strain gauge Thin conductor attached to a material that detects stress or vibrations in that
material.

Style Display style of a GUI object. An object can have different display styles
while maintaining the same functionality. For example, the button can be
an LED, toggle switch, vertical or horizontal slide, push button, command
button, and more.

switchless device Devices that do not require dip switches or jumpers to configure resources
on the devices. Also called Plug and Play devices.

Glossary

Getting Results with ComponentWorks G-18 © National Instruments Corporation

synchronous Property or operation that begins an operation and returns control to the
program only when the operation is complete.

syntax Set of rules to which statements must conform in a particular programming
language.

T

TC Terminal Count. The highest value of a counter.

thermocouple Template-sensing device that measures temperature by the changing
electrical potential between two different metals.

toggled output Form of counter signal generation by which the output changes the state of
the output signal from high to low or from low to high when the counter
reaches a certain value.

trace Data line on a graph. Traces are generated using the Plot or Chart methods
of the graph. Also called a plot.

track-and-hold Circuit that tracks an analog voltage and holds the value on command.

Track Mode Property of a graph that specifies how the mouse interacts with the graph.
Use the Track Mode to turn on zooming and panning for the graph.

transducer excitation Type of signal conditioning that uses external voltages and currents to
excite the circuitry of a signal conditioning system into measuring physical
phenomena.

trigger Condition for starting or stopping clocks.

TTL Transistor-Transistor Logic. Specifications for digital signals.

U

UI User Interface.

unipolar Signal range that is always positive, for example, 0 to 10 V.

update One or more analog or digital output samples. Typically, the number of
output samples in an update is equal to the number of channels in the output
group. For example, one pulse from the update clock produces one update
that sends one new sample to every analog output channel in the group.

Glossary

© National Instruments Corporation G-19 Getting Results with ComponentWorks

update clock Clock that sets the update rate for the AO, DI, and DO controls.

update rate Number of output updates per second.

update width Number of channels in the channel list or number of ports in the port list
you use to configure an analog or digital output group.

URL Uniform Resource Locator. A standard that uses a descriptive string to
identify the source or connection for a data transfer used with DataSocket,
FTP, HTTP, and file I/O. The URL includes the communication protocol
(scheme), name or identifier of the computer being accessed, and
scheme-specific information identifying a file, Web page, or, when using
DSTP, the data item.

V

V Volts.

Value Pairs Pair that consists of a name and a value that you can use for custom ticks,
labels, and grid lines on the axis of a knob, slide, or graph.

Value Pairs Only control Control whose only valid values are its value pairs.

VB Microsoft Visual Basic.

VC++ Microsoft Visual C++.

VDC Volts, Direct Current.

VISA Driver software architecture developed by National Instruments to unify
instrumentation software—VXI, GPIB, and serial port. It has been
accepted as a standard for VXI by the VXIplug&play Systems Alliance.

VISA Resource String identifying a specific instrument connected to the computer and
controlled using the VISA control and driver.

Vref Voltage reference.

VXI VME eXtension for Instrumentation. Instrumentation architecture and bus
based on the VME standard. Used in high-end test applications.

Glossary

Getting Results with ComponentWorks G-20 © National Instruments Corporation

W

waveform Multiple voltage readings taken at a specific sampling rate.

Web Server See HTTP server.

© National Instruments Corporation I-1 Getting Results with ComponentWorks

Index

Numbers
1D and 2D operations (table), 10-3

A
AcquireData method, 7-11 to 7-12

ActiveX controls. See also events; methods;
properties.

getting started with using, 2-5 to 2-6

installing, 1-4

setting properties, 1-10 to 1-15

Advanced Analysis Library, 10-2

advanced application development. See
application development.

AI control, 7-9 to 7-14

AI object, 7-10

asynchronous acquisition, 7-10 to 7-11

ChannelClock object, 7-12 to 7-13

error handling, 7-12

methods and events, 7-10 to 7-12

object hierarchy (figure), 7-9

PauseCondition object, 7-13 to 7-14

ScanClock object, 7-12 to 7-13

StartCondition object, 7-13 to 7-14

StopCondition object, 7-13 to 7-14

synchronous acquisition, 7-11 to 7-12

tutorial, 7-14 to 7-18

developing code, 7-16 to 7-17

form design, 7-15

setting DAQ properties, 7-16

testing the program, 7-18

AI object, 7-10

AIPoint control, 7-6 to 7-8

AIPoint object, 7-6 to 7-7

Channel object, 7-8

ChannelClock object, 7-8

Channels collection, 7-7 to 7-8

object hierarchy (figure), 7-6

tutorial, 7-14 to 7-18

developing code, 7-16 to 7-17

form design, 7-15

setting DAQ properties, 7-16

testing the program, 7-18

AIPoint object, 7-6 to 7-7

analog input, single point. See AIPoint control.

analog output, single point. See AOPoint control.

Analysis Library controls

controls, 10-12 to 10-13

descriptions in online reference
manual, 10-13

error codes (table), D-20 to D-23

error messages, 10-13

function tree (table)

CWArray control, 10-3 to 10-4

CWComplex control, 10-4 to 10-5

CWDSP control, 10-8 to 10-12

CWMatrix control, 10-5 to 10-6

CWStat control, 10-6 to 10-7

list of controls (table), 10-1

overview, 1-2

purpose and use, 1-15

questions and answers, C-14

statistics function tutorial, 10-14 to 10-17

developing code, 10-16 to 10-17

form design, 10-15

testing the program, 10-17

versions of the library, 10-2

analysis of variance functions (table), 10-7

AO control, 7-20 to 7-24

AO object, 7-21

IntervalClock object, 7-22 to 7-23

methods and events, 7-21 to 7-22

object hierarchy (figure), 7-20

Index

Getting Results with ComponentWorks I-2 © National Instruments Corporation

StartCondition object, 7-23 to 7-24

UpdateClock object, 7-22 to 7-23

AO object, 7-21

AOPoint control, 7-18 to 7-20

AOPoint object, 7-19

methods, 7-19 to 7-20

object hierarchy (figure), 7-19

tutorial, 7-24 to 7-28

developing code, 7-25 to 7-27

form design, 7-24 to 7-25

testing the program, 7-27 to 7-28

AOPoint object, 7-19

application development

ActiveX controls, 2-5 to 2-6

advanced features of ComponentWorks,
12-1 to 12-12

Virtual Data Logger application,
12-9 to 12-12

Virtual Oscilloscope application,
12-1 to 12-4

Virtual Spectrum Meter application,
12-4 to 12-9

Delphi applications, 5-1 to 5-9

distributing applications using
ComponentWorks, C-2

examples included with
ComponentWorks, 2-4 to 2-5

installing for specific programming
environment, 2-5

learning to use controls, 2-4

using as basis for applications,
2-6 to 2-7

getting started, 2-5 to 2-7

testing and debugging, 12-12 to 12-18

breakpoints, 12-17 to 12-18

Debug.Print command, 12-17

error and warning events,
12-15 to 12-16

error checking, 12-12 to 12-14

exceptions, 12-13 to 12-14

GetErrorText function, 12-16 to 12-17

return codes, 12-14 to 12-15

single stepping, 12-18

Step Into mode, 12-18

Step Over mode, 12-18

watch window, 12-18

Visual Basic applications, 3-1 to 3-12

Visual C++ applications, 4-1 to 4-10

array operation functions (table)

1D and 2D operations, 10-3

multidimensional array operations, 10-4

multidimensional element operations,
10-3 to 10-4

ASRL (Serial) object, 9-8

asynchronous acquisition methods and events,
7-10 to 7-11

asynchronous I/O

GPIB control, 8-8 to 8-9

message-based communication, 9-10

Serial control, 8-14

AT-A2150 data acquisition card, C-9

AT-DSP2200 data acquisition card, C-9

attributes, CWData object, 11-12

axes, Virtual Data Logger application

formats, 12-11 to 12-12

multiple, 12-10 to 12-11

Axes collection, 6-20

Axis object, 6-4 to 6-5, 6-20

B
Base Analysis Library, 10-2

Borland Delphi. See Delphi applications.

breakpoints, 12-17 to 12-18

buffered measurements, Counter control, 7-50

buffered waveform digital input. See
DI control.

buffers, data acquisition programming
considerations, B-4

bulletin board support, F-1

Index

© National Instruments Corporation I-3 Getting Results with ComponentWorks

Button control

events, 6-13

Graph and Button control tutorial,
6-22 to 6-25

developing program code,
6-24 to 6-25

form design, 6-22 to 6-23

testing the program, 6-25

purpose and use, 6-12

C
calibration functions, 7-60

channel clocks, B-4

Channel object, 7-8

channel strings

devices requiring reverse list of channels
(note), 7-4

purpose and use, 7-3 to 7-4

SCXI channel strings

data acquisition controls, 7-4 to 7-5

data acquisition programming
considerations, B-6 to B-7

Channel Wizard, B-3

ChannelClock object

AI control, 7-12 to 7-13

AIPoint control, 7-8

channels

data acquisition programming
considerations, B-3 to B-4

questions and answers, C-9 to C-10

Channels collection, 7-7 to 7-8

charting data, 6-13. See also Graph control.

ChartXvsY method, 6-16

ChartXY method, 6-16

ChartY method, 6-16, 6-25

clearing instruments, with GPIB control, 8-9

Clock objects

ChannelClock

AI control, 7-12 to 7-13

AIPoint control, 7-8

IntervalClock, 7-22 to 7-23

ScanClock, 7-12 to 7-13

UpdateClock

AO control, 7-22 to 7-23

DI control, 7-36

DO control, 7-39 to 7-40

Clock (Source) input, 7-45

clocks

channel clocks, B-4

data acquisition programming
considerations, B-4

scan clocks, B-5

collection objects, 1-9 to 1-10

collections

Axes, 6-20

Channels, 7-7 to 7-8

Cursors, 6-18 to 6-19

definition, 1-9

Lines, 7-32

Plots, 6-16 to 6-18

Pointers, 6-4

Ports, 7-31

ValuePairs collection, 6-5 to 6-6

common questions. See questions about
ComponentWorks.

complex number functions (table),
10-4 to 10-5

complex operation functions,
multidimensional (table), 10-5

ComponentWorks

application development overview,
2-5 to 2-7

components, 1-1 to 1-2

examples installed with, 2-4 to 2-5

general error codes, D-24 to D-26

information sources

additional sources, 2-7

documentation, 2-2 to 2-3

online reference information,
2-3 to 2-4

Index

Getting Results with ComponentWorks I-4 © National Instruments Corporation

installing and configuring driver software,
2-1 to 2-2

overview, 1-1 to 1-2

questions about, C-1 to C-14

system requirements, 1-3

configuration, for data acquisition, B-2 to B-3

DAQ Channel Wizard, B-3

device number, B-2 to B-3

overview, 7-2

SCXI hardware, B-2

Configuration method, Pulse control, 7-53

Configure functions, 7-60

Configure method

AO control, 7-21 to 7-22

asynchronous acquisition, AI control,
7-10 to 7-11

Counter control, 7-48

DO control, 7-40

Connect method, DataSocket control,
11-2, 11-9

ConnectTo method, DataSocket control, 11-3

control methods. See methods.

Conversion functions, 7-60

CopyFrom method, 11-10

Counter control, 7-46 to 7-50

buffered measurements, 7-50

methods and events, 7-48 to 7-49

object hierarchy (figure), 7-46

tutorial, 7-55 to 7-59

code development, 7-56 to 7-58

form design, 7-55 to 7-56

testing the program, 7-59

Counter object, 7-46 to 7-48

buffered measurements, 7-50

measurement types (table), 7-47

counter/timer hardware

Counter control, 7-46 to 7-50

Pulse control, 7-51 to 7-54

questions and answers, C-11

tutorial, 7-55 to 7-59

Cursor object, 6-19

cursors, Virtual Spectrum Meter application,
12-7 to 12-8

Cursors collection, 6-18 to 6-19

curve fitting functions (table), 10-7

custom property page

CWGraph control example (figure), 1-11

definition, 1-11

customer communication, xxiii, F-1 to F-2

CWArray control function tree, 10-3 to 10-4

1D and 2D operations, 10-3

multidimensional array operations, 10-4

multidimensional element operations,
10-3 to 10-4

CWButton control (table), 6-2

CWComplex control function tree,
10-4 to 10-5

complex numbers, 10-4 to 10-5

multidimensional complex
operations, 10-5

CWData object, 11-11 to 11-13

standalone CWData objects,
11-12 to 11-13

working with attributes, 11-12

CWDSP control function tree, 10-8 to 10-12

FIR digital filters, 10-10 to 10-11

frequency domain signal processing,
10-8 to 10-9

IIR digital filters, 10-9 to 10-10

measurement, 10-11

signal generation, 10-8

time domain signal processing, 10-9

windows, 10-11

CWGPIB object, 8-7

CWGraph control

associated styles (table), 6-2

custom property page (figure), 1-11

CWKnob control (table), 6-2

CWMatrix control function tree, 10-5 to 10-6

CWNumEdit control (table), 6-2

CWPattern object, 8-5

Index

© National Instruments Corporation I-5 Getting Results with ComponentWorks

CWSerial object, 8-12 to 8-13

CWSlide control (table), 6-2

CWStat control function tree, 10-6 to 10-7

analysis of variance, 10-7

curve fitting, 10-7

interpolation, 10-7

nonparametric statistics, 10-7

probability distributions, 10-6 to 10-7

statistics, 10-6

CWTask object, 8-4

CWToken object, 8-6

D
DAQ Channel Wizard, B-3

DAQ controls. See data acquisition controls.

DAQCard-700, C-11

DAQCard-1200, C-11

DAQTools, 7-60 to 7-61

function groups, 7-60

using DAQTools functions, 7-61

data acquisition

configuration, B-2 to B-3

DAQ Channel Wizard, B-3

device number, B-2 to B-3

overview, 7-2

SCXI hardware, B-2

hardware, B-7 to B-9

PFI, B-9

RTSI, B-8

SCXI, B-7 to B-8

installing hardware and software,
B-1 to B-2

programming considerations, B-3 to B-9

buffers, B-4

channel clocks, B-5

clocks, B-5

device numbers and channels,
B-3 to B-4

scan clocks, B-5

SCXI channel string, B-6 to B-7

Data Acquisition controls, 7-1 to 7-61

AI control, 7-9 to 7-14

AI object, 7-10

asynchronous acquisition,
7-10 to 7-11

ChannelClock object, 7-12 to 7-13

error handling, 7-12

methods and events, 7-10 to 7-12

PauseCondition object, 7-13 to 7-14

ScanClock object, 7-12 to 7-13

StartCondition object, 7-13 to 7-14

StopCondition object, 7-13 to 7-14

synchronous acquisition,
7-11 to 7-12

AIPoint and AI DAQ control tutorial,
7-14 to 7-18

developing code, 7-16 to 7-17

form design, 7-15

setting DAQ properties, 7-16

testing the program, 7-18

AIPoint control, 7-6 to 7-8

AIPoint object, 7-6 to 7-7

Channel object, 7-8

ChannelClock object, 7-8

Channels collection, 7-7 to 7-8

AO control, 7-20 to 7-24

AO object, 7-21

IntervalClock object, 7-22 to 7-23

methods and events, 7-21 to 7-22

object hierarchy (figure), 7-20

StartCondition object, 7-23 to 7-24

UpdateClock object, 7-22 to 7-23

AOPoint control, 7-18 to 7-20

AOPoint object, 7-19

methods, 7-19 to 7-20

AOPoint control tutorial, 7-24 to 7-28

developing code, 7-25 to 7-27

form design, 7-24 to 7-25

testing the program, 7-27 to 7-28

Index

Getting Results with ComponentWorks I-6 © National Instruments Corporation

Counter and Pulse control tutorial,
7-55 to 7-59

code development, 7-56 to 7-58

form design, 7-55 to 7-56

testing the program, 7-59

Counter control, 7-46 to 7-50

buffered measurements, 7-50

Counter object, 7-46 to 7-48

measurement types (table), 7-47

methods and events, 7-48 to 7-49

counter/timer hardware, 7-45 to 7-54

DAQTools, 7-60 to 7-61

function groups, 7-60

using DAQTools functions, 7-61

data acquisition configuration, 7-2

DI control, 7-34 to 7-37

DI object, 7-35

methods and events, 7-36 to 7-37

UpdateClock object, 7-36

digital controls and hardware,
7-28 to 7-41

DIO control, 7-29 to 7-34

common properties and methods,
7-32 to 7-34

DIO object, 7-30 to 7-31

Ports collection and Port object, 7-31

DIO control tutorial, 7-41 to 7-45

developing code, 7-42 to 7-44

form design, 7-42

testing the program, 7-44 to 7-45

DO control, 7-37 to 7-41

DO object, 7-38 to 7-39

methods and events, 7-40 to 7-41

UpdateClock object, 7-39 to 7-40

error codes (table), D-1 to D-16

Lines collection and Line object, 7-32

common properties and methods,
7-32 to 7-34

list of DAQ controls, 7-2

object hierarchy and common properties,
7-2 to 7-6

channel strings, 7-3 to 7-4

Device, DeviceName, and
DeviceType, 7-3

ExceptionOnError and
ErrorEventMask, 7-5 to 7-6

SCXI channel strings, 7-4 to 7-5

overview, 1-1, 7-1 to 7-2

Pulse control, 7-51 to 7-54

FSK and ETS pulse generation, 7-54

methods, 7-53

Pulse object, 7-51 to 7-53

questions and answers, C-8 to C-11

data acquisition utility functions (DAQTools),
7-60 to 7-61

Data Logger application. See
Virtual Data Logger application.

data source, for DataSocket control. See
DataSocket control.

DataAsString property

GPIB control and Serial control, 8-2

VISA control, 9-4

DataSocket control, 11-1 to 11-17

basic principles, 11-2 to 11-3

CWData object, 11-11 to 11-13

standalone CWData objects,
11-12 to 11-13

working with attributes, 11-12

disconnecting from data source,
11-5 to 11-6

locating data source, 11-3

OnDataUpdated event, 11-4 to 11-5

OnStatusUpdated event, 11-5 to 11-6

overview, 1-2, 11-1 to 11-2

reading data from data source,
11-3 to 11-6

setting up DataSocket Server,
11-13 to 11-15

Index

© National Instruments Corporation I-7 Getting Results with ComponentWorks

tutorial for reading waveform,
11-6 to 11-9

code development, 11-7 to 11-8

form design, 11-6 to 11-7

testing the program, 11-8 to 11-9

updating data, 11-5

automatically, 11-5

writing data to data target, 11-9 to 11-10

automatically updating data
target, 11-10

updating data target, 11-10

DataSocket Server, 11-13 to 11-15

connecting to and reading data
items, 11-15

creating data items, 11-14

distributing applications, E-3

requirements for running, 11-14

status checking, 11-14

tutorial for sharing data between
applications, 11-15 to 11-17

configuring DataSocket Server,
11-16 to 11-17

procedural steps, 11-15 to 11-16

debugging and testing applications,
12-12 to 12-18

breakpoints, 12-17 to 12-18

Debug.Print command, 12-17

error and warning events, 12-15 to 12-16

error checking, 12-12 to 12-14

exceptions, 12-13 to 12-14

GetErrorText function, 12-16 to 12-17

return codes, 12-14 to 12-15

single stepping, 12-18

Step Into mode, 12-18

Step Over mode, 12-18

watch window, 12-18

default property sheet

definition, 1-10

Visual Basic example (figure), 1-11

DeleteAttribute method, 11-12

Delphi 2, A-6 to A-7

Delphi applications, 5-1 to 5-9

building user interface, 5-4 to 5-6

editing properties programmatically,
5-6 to 5-7

events, 5-8 to 5-9

loading ComponentWorks controls,
5-2 to 5-4

methods, 5-7 to 5-8

online help for learning controls, 5-9

placing controls, 5-4 to 5-5

programming with ComponentWorks
controls, 5-6 to 5-9

property sheets, 5-5 to 5-6

using Delphi 2, A-6 to A-7

developing applications. See
application development.

device numbers

configuration, B-2 to B-3

programming considerations, B-3 to B-4

Device property, 7-3

DeviceName property, 7-3

DeviceType property, 7-3

DI control, 7-34 to 7-37

methods and events, 7-36 to 7-37

object hierarchy (figure), 7-34

UpdateClock object, 7-36

DI object, 7-35

digital controls and hardware, 7-28 to 7-41

common properties and methods,
7-32 to 7-34

DI control—buffered waveform digital
input, 7-34 to 7-37

DI object, 7-35

DIO control—single point digital input
and output, 7-29 to 7-34

DIO object, 7-30 to 7-31

DO control—buffered waveform digital
output, 7-37 to 7-41

DO object, 7-38 to 7-39

Index

Getting Results with ComponentWorks I-8 © National Instruments Corporation

Lines collection and Line object, 7-32

methods and events

DI control, 7-36 to 7-37

DO control, 7-40 to 7-41

Ports collection and Port object, 7-31

UpdateClock object

DI control, 7-36

DO control, 7-39 to 7-40

Digital Signal Processing Analysis
Library, 10-2

digital signal processing and
signal generation functions

FIR digital filters (table), 10-10 to 10-11

frequency domain signal processing
(table), 10-8 to 10-9

IIR digital filters (table), 10-9 to 10-10

measurement functions (table), 10-11

signal generation functions (table), 10-8

time domain signal processing functions
(table), 10-9

Virtual Spectrum Meter application,
12-5 to 12-7

windows functions (table), 10-11

DIO control

common properties and methods,
7-32 to 7-34

Lines collection and Line object, 7-32

object hierarchy (figure), 7-30

Ports collection and Port object, 7-31

single point digital input and output,
7-29 to 7-34

tutorial, 7-41 to 7-45

developing code, 7-42 to 7-44

form design, 7-42

testing the program, 7-44 to 7-45

DIO object

common properties and methods,
7-32 to 7-34

purpose and use, 7-30 to 7-31

DisableEvent method, 9-16

DiscardEvent method, 9-16

disconnecting from data source, 11-5 to 11-6

distributing applications, E-1 to E-5

automatic installers, E-2

ComponentWorks evaluation mode, E-4

DataSocket Server, E-3

general considerations, E-1

instrument drivers, E-3

manual installation, E-2 to E-3

questions and answers, C-2

required files, E-1

run-time licenses, E-4

troubleshooting, E-4 to E-5

DO control, 7-37 to 7-41

methods and events, 7-40 to 7-41

object hierarchy (figure), 7-38

UpdateClock object, 7-39 to 7-40

DO object, 7-38 to 7-39

documentation

conventions used in manual, xxii-xxiii

organization of manual, xix-xxii,
2-2 to 2-3

related documentation, xxiii

driver software for hardware I/O controls,
installing, 2-1 to 2-2

DSP functions. See digital signal processing
and signal generation functions.

dstp: (DataSocket transfer protocol)
scheme, 11-3

E
EISA-A2000 data acquisition card, C-9

electronic support services, F-1 to F-2

e-mail support, F-2

EnableEvent method, 9-17

equivalent time sampling (ETS) pulse
generation, 7-54

error and warning events, 12-15 to 12-16

error checking/handling

AI control, 7-12

DAQ controls, 7-5 to 7-6

Index

© National Instruments Corporation I-9 Getting Results with ComponentWorks

GetErrorText function, 7-60,
12-16 to 12-17

testing applications, 12-12 to 12-14

error codes

Analysis controls (table), D-20 to D-23

data acquisition controls (table),
D-1 to D-16

general ComponentWorks codes,
D-24 to D-26

VISA controls (table), D-17 to D-19

error messages

Analysis Library controls, 10-13

exceptions, 12-13 to 12-14

ErrorEventMask property, 7-5 to 7-6

ETS (equivalent time sampling) pulse
generation, 7-54

event handler routines

developing, 1-14 to 1-15

Visual Basic applications, 3-6 to 3-7

event handling with event queue,
VISA control, 9-15 to 9-17

checking events, 9-16

disabling events, 9-16 to 9-17

discarding events, 9-16

event types, VISA control, 9-14 to 9-15

events

AO control, 7-21 to 7-22

asynchronous acquisition, 7-10 to 7-11

Button control, 6-13

Counter control, 7-48 to 7-49

CWTask object, 8-4

definition, 1-7

DI control, 7-36 to 7-37

DO control, 7-40 to 7-41

error and warning events, 12-15 to 12-16

GPIB control, 8-8 to 8-9

Graph control, 6-21

Knob and Slide controls, 6-6 to 6-7

Numeric Edit Box control, 6-7 to 6-8

OnDataUpdated, 11-4 to 11-5

OnStatusUpdated, 11-5 to 11-6

Serial control, 8-13 to 8-14

synchronous acquisition, 7-11 to 7-12

using in applications

Delphi applications, 5-8 to 5-9

Visual C++ applications, 4-9 to 4-10

VISA control, 9-14 to 9-17

examples included with ComponentWorks,
2-4 to 2-5

installing for specific programming
environment, 2-5

learning about controls, 2-4

using for application development,
2-6 to 2-7

ExceptionOnError property

GPIB control and Serial control, 8-2

purpose and use, 7-5 to 7-6

VISA control, 9-4

exceptions, in application testing,
12-13 to 12-14

F
fax and telephone support numbers, F-2

Fax-on-Demand support, F-2

file: (local files) scheme, 11-3

file input/output functions, Virtual Data
Logger application, 12-12

files

installed files, 1-6

required files for distributing applications,
E-4 to E-5

FIR digital filters (table), 10-10 to 10-11

forms. See also tutorials.

Delphi applications, 5-2

Visual Basic applications, 3-1 to 3-2

FOUT functions, 7-60

frequency domain signal processing (table),
10-8 to 10-9

FSK (frequency shift keying) pulse
generation, 7-54

Index

Getting Results with ComponentWorks I-10 © National Instruments Corporation

ftp: (file transfer protocol) scheme, 11-3

FTP support, F-1

G
Gate input, 7-45

Get functions, 7-60

GetAttribute method, 11-12

GetErrorText function, 7-60, 12-16 to 12-17

GPIB control, 8-6 to 8-9

common properties, 8-2

CWGPIB object, 8-7

methods and events, 8-8 to 8-9

asynchronous I/O, 8-8 to 8-9

other GPIB operations, 8-9

synchronous I/O, 8-8

object hierarchy, 8-2

object hierarchy (figure), 8-7

overview, 1-1

parsing, 8-2 to 8-6

advanced features, 8-2 to 8-6

CWPattern object, 8-5

CWTask object, 8-4

CWToken object, 8-6

purpose and use, 8-1

questions and answers, C-12 to C-13

tutorial, 8-9 to 8-11

code development, 8-11

form design, 8-10

setting properties, 8-10 to 8-11

testing the program, 8-11

GPIB object, 9-9

Graph and Button control tutorial,
6-22 to 6-25

developing program code, 6-24 to 6-25

form design, 6-22 to 6-23

testing the program, 6-25

graph axes, Virtual Data Logger application

formats, 12-11 to 12-12

multiple, 12-10 to 12-11

Graph control, 6-13 to 6-21

Axes collection, 6-20

Axis object, 6-20

chart methods, 6-16

Cursor object, 6-19

Cursors collection, 6-18 to 6-19

events, 6-21

Graph object, 6-14 to 6-16

hierarchy of (figure), 6-14

overview, 1-7 to 1-8

panning and zooming, 6-21

plot methods, 6-15

Plot object, 6-17 to 6-18

Plots collection, 6-16 to 6-18

PlotTemplate object, 6-18

purpose and use, 6-13 to 6-14

tutorial, 6-22 to 6-25

Graph object, 6-14 to 6-16

graph track mode, Virtual Spectrum Meter
application, 12-8 to 12-9

Graphical User Interface (GUI) controls. See
User Interface controls.

H
HasAttribute method, 11-12

Help button, 1-15

help files, online. See online reference.

http: (hypertext transfer protocol)
scheme, 11-3

I
ICtr functions, 7-60

IIR digital filters (table), 10-9 to 10-10

In method, 9-11, 9-12

installation, 1-3 to 1-6

ActiveX controls, 1-4

from CD-ROM, 1-3

Index

© National Instruments Corporation I-11 Getting Results with ComponentWorks

distributed applications, E-2 to E-3

automatic installers, E-2

manual installation, E-2 to E-3

driver software for hardware I/O controls,
2-1 to 2-2

from floppy disks, 1-4

hardware and software for data
acquisition, B-1 to B-2

installed files, 1-6

instrument driver DLLs, 1-5

Instrument Driver Factory, 1-5

questions about ComponentWorks,
C-1 to C-2

system requirements, 1-3

Instrument controls. See GPIB control;
Serial control; VISA control.

instrument driver DLLs

installing, 1-5

using in applications, 1-15

Visual Basic applications, 3-7 to 3-8

Instrument Driver Factory

installing, 1-5

overview, 1-2

instrument drivers

definition, 3-7

overview, 1-2

interchannel delay, 7-12

interpolation functions (table), 10-7

IntervalClock object, 7-22 to 7-23

Item method, 1-13

K
Knob and Slide controls, 6-3 to 6-7

Axis object, 6-4 to 6-5

events, 6-6 to 6-7

hierarchy of (figure), 6-3

Knob and Slide object, 6-3 to 6-4

Labels object, 6-5

Pointer object, 6-4

Pointers collection, 6-4

Statistics object, 6-6

Ticks object, 6-5

tutorial, 6-8 to 6-11

developing program code,
6-10 to 6-11

form design, 6-9

testing the program, 6-11

ValuePair object, 6-6

L
Labels object, 6-5

Lab-PC+ card, C-11

Line object, 7-32

Lines collection, 7-32

M
MapAddress method, 9-13

matrix algebra functions (table), 10-5 to 10-6

measurement functions (table), 10-11

measurement types, Counter object
(table), 7-47

message-based communication, 9-9 to 9-13

asynchronous I/O, 9-10

synchronous I/O, 9-10

tutorial, 9-17 to 9-19

code development, 9-19

form design, 9-17 to 9-18

setting properties, 9-18 to 9-19

testing the program, 9-19
methods. See also specific methods.

AI object, 7-10 to 7-12

asynchronous acquisition,
7-10 to 7-11

synchronous acquisition,
7-11 to 7-12

AO control, 7-21 to 7-22

AOPoint object, 7-19 to 7-20

asynchronous acquisition, 7-10 to 7-11

Counter control, 7-48 to 7-49

Index

Getting Results with ComponentWorks I-12 © National Instruments Corporation

CWTask object, 8-4

definition, 1-7

DI control, 7-36 to 7-37

DIO control, 7-32 to 7-34

DO control, 7-40 to 7-41

functions as methods of corresponding
control, 10-12

GPIB control, 8-8 to 8-9

Lines collection and Line object,
7-32 to 7-34

parameters, 3-6

Pulse control, 7-53

Serial control, 8-13 to 8-14

synchronous acquisition, 7-11 to 7-12

using in applications

Delphi applications, 5-7 to 5-8

Visual Basic applications, 3-5 to 3-6

Visual C++ applications, 4-8 to 4-9

VISA control, 9-9 to 9-13

working with control methods,
1-13 to 1-14

MoveIn method, 9-12

MoveOut method, 9-12

multidimensional array operations
(table), 10-4

multidimensional complex operations
(table), 10-5

multidimensional element operations (table),
10-3 to 10-4

multiple graph axes, Virtual Data Logger
application, 12-10 to 12-11

N
NI-DAQ driver configuration utility, 7-2

nonparametric statistics functions (table), 10-7

Numeric Edit Box control, 6-7 to 6-8

events, 6-7 to 6-8

purpose and use, 6-7

tutorial, 6-8 to 6-11

developing program code,
6-10 to 6-11

form design, 6-9

testing the program, 6-11

O
Object Browser

Visual Basic 4, A-2 to A-3

Visual Basic 5, 3-8 to 3-10

object hierarchy

AI control (figure), 7-9

AIPoint control (figure), 7-6

AO control (figure), 7-20

AOPoint control (figure), 7-19

Counter control (figure), 7-46

DAQ controls, 7-3 to 7-6

DI control (figure), 7-34

DIO control (figure), 7-30

DO control (figure), 7-38

GPIB and Serial controls, 8-2

GPIB control (figure), 8-7

Graph control (figure), 6-14

Knob and Slide controls (figure), 6-3

Pulse control (figure), 7-51

purpose and use, 1-8 to 1-9

Serial control (figure), 8-12

similarity in different controls, 6-2

Slide object example, 1-9

VISA control, 9-2 to 9-3

OnDataUpdated event, 11-4 to 11-5

one dimensional operations (table), 10-3
online reference, 2-3 to 2-4

accessing, 2-4

descriptions of analysis functions, 10-13

finding specific information, 2-4

Index

© National Instruments Corporation I-13 Getting Results with ComponentWorks

learning about ComponentWorks
controls, 1-15

Delphi applications, 5-9

Visual Basic applications, 3-12

Visual C++ applications, 4-10

Web Site support, 2-7

OnStatusUpdated event, 11-5 to 11-6

Oscilloscope application. See
Virtual Oscilloscope application.

Out method, 9-12

Out output, 7-45

P
panning and zooming graphs, 6-21

parallel polling, with GPIB control, 8-9

parameters for methods, 3-6

Parse method, 8-3

parsing

GPIB control, 8-2 to 8-6

advanced features, 8-2 to 8-6

CWPattern object, 8-5

CWTask object, 8-4

CWToken object, 8-6

questions and answers, C-13

VISA control, 9-5

PauseCondition object, 7-13 to 7-14

PeekXX method, 9-13

PFIs (Programmable Function Inputs), B-9

Plot object, 6-17 to 6-18

Plots collection, 6-16 to 6-18

PlotTemplate object, 6-18

plotting data, 6-13. See also Graph control.

PlotXvsY method, 6-15

PlotXY method, 6-15

PlotY method

changing properties programmatically
(example), 1-13 to 1-14

format for accepting data, 6-15

Graph and Button control tutorial, 6-25

Pointer object, 6-4

Pointers collection, 6-4

PokeXX method, 9-13

polling, with GPIB control, 8-9

Port object, 7-31

ports, definition, 7-29

Ports collection, 7-31

pretriggering modes, Virtual Oscilloscope
application, 12-3

probability distribution functions (table),
10-6 to 10-7

Programmable Function Inputs (PFI), B-9

programming considerations,
for data acquisition, B-3 to B-9. See also
application development.

buffers, B-4

channel clocks, B-5

clocks, B-5

device numbers and channels, B-3 to B-4

scan clocks, B-5

SCXI channel string, B-6 to B-7

properties. See also specific property names.

channel strings, 7-3 to 7-4

definition, 1-7

Device, DeviceName, and
DeviceType, 7-3

DIO control, 7-32 to 7-34

editing programmatically

Delphi applications, 5-6 to 5-7

Visual Basic applications, 3-4 to 3-5

ExceptionOnError and ErrorEventMask,
7-5 to 7-6

GPIB control, 8-2

Instrument controls, 8-2

Lines collection and Line object,
7-32 to 7-34

Port object, 7-32 to 7-34

SCXI channel strings, 7-4 to 7-5

Serial control, 8-2

Index

Getting Results with ComponentWorks I-14 © National Instruments Corporation

setting, 1-10 to 1-15. See also tutorials.

Analysis Library and instrument
driver DLLs, 1-15

changing properties
programmatically, 1-12

developing event handler routines,
1-14 to 1-15

help file, 1-15

Item method, 1-13

property sheets, 1-10 to 1-11

working with control methods,
1-13 to 1-14

VISA object, 9-5 to 9-7

Visual C++ applications, 4-6 to 4-8

property pages, 1-10 to 1-11

custom property page, 1-11

default property sheet, 1-10

Delphi applications, 5-5 to 5-6

setting default values, 1-10 to 1-11

Visual Basic applications, 3-3 to 3-4

Pulse control, 7-51 to 7-54

FSK and ETS pulse generation, 7-54

methods, 7-53

object hierarchy (figure), 7-51

tutorial, 7-55 to 7-59

code development, 7-56 to 7-58

form design, 7-55 to 7-56

testing the program, 7-59

Pulse object, 7-51 to 7-53

pulse type operations (table), 7-52

Q
questions about ComponentWorks,

C-1 to C-14

analysis controls, C-14

data acquisition controls, C-8 to C-11

GPIB, Serial, and VISA controls,
C-12 to C-13

installation and getting started, C-1 to C-2

user interface controls, C-4 to C-7

R
RdWrt object, 9-7 to 9-8

Read method

parsing, 8-3

synchronous I/O, message-based
communication, 9-10

ReadAsynch method

asynchronous I/O, message-based
communication, 9-10

parsing, 8-3

ReadCounter method, 7-48

ReadMeasurement method, 7-48

Reconfigure method, 7-53

register-based communication, 9-11 to 9-13

high-level register accesses, 9-12

low-level register accesses, 9-13

moving blocks of data, 9-12

tutorial, 9-20 to 9-22

code development, 9-21 to 9-22

form design, 9-20 to 9-21

setting properties, 9-21

testing the program, 9-22

RemoveAll method, 8-6

Reset functions, 7-60

Reset method

AIPoint object, 7-7

AO control, 7-22

AOPoint object, 7-19, 7-20

asynchronous acquisition, 7-10

Counter control, 7-48

DO control, 7-40

Pulse control, 7-53

return codes, testing applications,
12-14 to 12-15

RTSI bus

data acquisition considerations, B-8

programming, B-8

run-time licenses, E-4

Index

© National Instruments Corporation I-15 Getting Results with ComponentWorks

S
scan clocks, data acquisition

programming considerations, B-4

scan rate, 7-12

ScanClock object, 7-12 to 7-13

SCXI channel strings

data acquisition controls, 7-4 to 7-5

data acquisition programming
considerations, B-6 to B-7

SCXI hardware

configuring, B-2

data acquisition considerations,
B-7 to B-8

Serial (ASRL) object, 9-8

Serial control, 8-12 to 8-14

common properties, 8-2

CWSerial object, 8-12 to 8-13

methods and events, 8-13 to 8-14

asynchronous I/O, 8-14

synchronous I/O, 8-13

object hierarchy, 8-2

object hierarchy (figure), 8-12

overview, 1-1

parsing, 8-2 to 8-6

advanced features, 8-2 to 8-6

CWPattern object, 8-5

CWTask object, 8-4

CWToken object, 8-6

purpose and use, 8-1

questions and answers, C-12 to C-13

tutorial, 8-14 to 8-17

code development, 8-17

form design, 8-14 to 8-15

setting properties, 8-15 to 8-16

testing the program, 8-17

serial polling, with GPIB control, 8-9

ServiceRequest event, VISA control, 9-14

Set functions, 7-60

SetAttribute method, 11-12

setting properties. See properties, setting.

signal processing functions. See digital signal
processing and signal generation functions.

single point analog input. See AIPoint control.

single point analog output. See
AOPoint control.

single stepping, 12-18

SingleRead method

AIPoint object, 7-7

DIO, Port, and Line objects, 7-32 to 7-33

SingleWrite method

AOPoint object, 7-19 to 7-20

DIO, Port, and Line objects, 7-33

Slide control. See Knob and Slide controls.

software objects, 1-8

Source input, 7-45

Spectrum Meter application. See
Virtual Spectrum Meter application.

Start method

AO control, 7-21

asynchronous acquisition,
AI control, 7-10

Counter control, 7-48

DO control, 7-40

Pulse control, 7-53

StartCondition object

AI control, 7-13 to 7-14

AO control, 7-23 to 7-24

statistics functions

analysis of variance functions
(table), 10-7

curve fitting functions (table), 10-7

interpolation functions (table), 10-7

nonparametric statistics functions
(table), 10-7

probability distribution functions (table),
10-6 to 10-7

simple statistics (table), 10-6

tutorial, 10-13 to 10-17

developing code, 10-16 to 10-17

form design, 10-15

testing the program, 10-17

Index

Getting Results with ComponentWorks I-16 © National Instruments Corporation

Statistics object, 6-6

step into mode, 12-18

step over mode, 12-18

stop condition modes, Virtual Oscilloscope
application, 12-2 to 12-3

Stop method

asynchronous acquisition, 7-10

Counter control, 7-48

Pulse control, 7-53

StopCondition object, 7-13 to 7-14

SwapBytes property

GPIB control and Serial control, 8-2

VISA control, 9-4

synchronous acquisition methods and events,
7-11 to 7-12

synchronous I/O

GPIB control, 8-8

message-based communication, 9-10

Serial control, 8-13

system requirements, 1-3

T
technical support, F-1 to F-2

telephone and fax support numbers, F-2

testing applications. See debugging and testing
applications.

Ticks object, 6-5

time domain signal processing functions
(table), 10-9

TrackMode property

Graph object, 6-14

panning and zooming, 6-21

Virtual Spectrum Meter application,
12-8 to 12-9

Trigger event, VISA control, 9-14 to 9-15

triggering instruments, with GPIB control, 8-9

tutorials

AI control, 7-14 to 7-18

AIPoint control, 7-14 to 7-18

AOPoint control, 7-24 to 7-28

Counter control, 7-55 to 7-59

DataSocket control, 11-6 to 11-9

DataSocket Server, 11-15 to 11-17

DIO control, 7-41 to 7-45

GPIB control, 8-9 to 8-11

Graph and Button control tutorial,
6-22 to 6-25

Knob and Slide controls, 6-8 to 6-11

message-based communication,
9-17 to 9-19

Numeric Edit Box control, 6-8 to 6-11

Pulse control, 7-55 to 7-59

register-based communication,
9-20 to 9-22

Serial control, 8-14 to 8-17

statistics functions, 10-13 to 10-17

two dimensional operations (table), 10-3

U
UI Controls. See User Interface controls.

Update method, 7-33 to 7-34

UpdateClock object

AO control, 7-22 to 7-23

DI control, 7-36

DO control, 7-39 to 7-40

updating

data, 11-5

data target, 11-10

URL scheme, 11-3

URLs, for locating data source, 11-3

user interface, building. See also
Graphical User Interface controls.

Delphi applications, 5-4 to 5-6

Visual Basic applications, 3-3 to 3-5

Visual C++ applications, 4-4 to 4-5

User Interface controls.

Button control, 6-12 to 6-13

events, 6-13

controls and associated styles (table), 6-2

Index

© National Instruments Corporation I-17 Getting Results with ComponentWorks

Graph and Button control tutorial,
6-22 to 6-25

developing program code,
6-24 to 6-25

form design, 6-22 to 6-23

testing the program, 6-25

Graph control, 6-13 to 6-21

Axes collection, 6-20

Axis object, 6-20

chart methods, 6-16

Cursor object, 6-19

Cursors collection, 6-18 to 6-19

events, 6-21

Graph object, 6-14 to 6-16

hierarchy of (figure), 6-14

panning and zooming, 6-21

plot methods, 6-15

Plot object, 6-17 to 6-18

Plots collection, 6-16 to 6-18

PlotTemplate object, 6-18

tutorial, 6-22 to 6-25

Knob, Slide, and Numeric Edit Box
control tutorial, 6-8 to 6-11

developing program code,
6-10 to 6-11

form design, 6-9

testing the program, 6-11

Knob and Slide controls, 6-3 to 6-7

Axis object, 6-4 to 6-5

events, 6-6 to 6-7

hierarchy of (figure), 6-3

Knob and Slide object, 6-3 to 6-4

Labels object, 6-5

Pointer object, 6-4

Pointers collection, 6-4

Statistics object, 6-6

Ticks object, 6-5

tutorial, 6-8 to 6-11

ValuePair object, 6-6

ValuePairs collection, 6-5 to 6-6

numeric edit box control, 6-7 to 6-8

events, 6-7 to 6-8

object hierarchy and common objects, 6-2

overview, 1-1

questions and answers, C-4 to C-7

V
value pairs, Virtual Oscilloscope application,

12-3 to 12-4

ValuePair object, 6-6

ValuePairs collection, 6-5 to 6-6

vector and matrix algebra functions (table),
10-5 to 10-6

Virtual Data Logger application, 12-9 to 12-12

file input/output, 12-12

graph axes formats, 12-11 to 12-12

multiple graph axes, 12-10 to 12-11

Virtual Oscilloscope application

data acquisition pretriggering, 12-3

data acquisition stop condition modes,
12-2 to 12-3

user interface value pairs, 12-3 to 12-4

Virtual Spectrum Meter application,
12-4 to 12-9

cursors, 12-7 to 12-8

DSP Analysis Library functions,
12-5 to 12-7

graph track mode, 12-8 to 12-9

VISA API, 9-1 to 9-2

advantages, 9-2

structure (figure), 9-1

VISA control, 9-1 to 9-22

common instrument control features, 9-4

error codes (table), D-17 to D-19

event handling with event queue,
9-15 to 9-17

checking events, 9-16

disabling events, 9-16 to 9-17

discarding events, 9-16

event types, 9-14 to 9-16

Index

Getting Results with ComponentWorks I-18 © National Instruments Corporation

events, 9-14

GPIB object, 9-9

message-based communication,
9-9 to 9-13

asynchronous I/O, 9-10

synchronous I/O, 9-10

methods, 9-9 to 9-13

object hierarchy, 9-2 to 9-3

overview, 1-1

parsing, 9-5

purpose and use, 9-2

questions and answers, C-12 to C-13

RdWrt object, 9-7 to 9-8

register-based communication,
9-11 to 9-13

high-level register accesses, 9-12

low-level register accesses, 9-13

moving blocks of data, 9-12

Serial (ASRL) object, 9-8

tutorial

message-based communication,
9-17 to 9-19

register-based communication,
9-20 to 9-22

VISA object, 9-5 to 9-7

VXI object, 9-9

VISA object, 9-5 to 9-7

VISA Property Pages

General Page (figure), 9-6

RdWrt Page (figure), 9-7

Serial Page (figure), 9-8

VxiMemory Page (figure), 9-11

Visual Basic 4, A-1 to A-3

code completing lacking, A-3

creating default ComponentWorks
project, A-3

menus and commands, A-1 to A-2

Object Browser, A-2 to A-3

Visual Basic applications, 3-1 to 3-12.
See also Visual Basic 4.

automatic code completion feature, 3-11

building user interface, 3-3 to 3-5

default property sheet (figure), 1-11

developing event handler routines,
3-6 to 3-7

development procedure, 3-1 to 3-2

editing properties programmatically,
3-4 to 3-5

instrument driver DLLs, 3-7 to 3-8

loading ComponentWorks controls into
toolbox, 3-2 to 3-3

Object Browser for building code,
3-8 to 3-10

online help for learning controls, 3-12

pasting code into programs, 3-10 to 3-11

property sheets, 3-3 to 3-4

questions about ComponentWorks, C-3

working with control methods, 3-5 to 3-6

Visual C++ 4.x, A-4 to A-6

adding ComponentWorks
controls to toolbar, A-4 to A-5

building user interface and code, A-6

creating the application, A-4

Visual C++ applications, 4-1 to 4-10. See also
Visual C++ 4.x.

adding ComponentWorks
controls to toolbar, 4-4

building user interface, 4-4 to 4-5

creating applications, 4-1 to 4-3

events, 4-9 to 4-10

methods, 4-8 to 4-9

online help for learning controls, 4-10

programming with ComponentWorks
controls, 4-5 to 4-6

properties, 4-6 to 4-8

VXI object, 9-9

VxiSignalProc event, VISA control, 9-15

VxiVmeInterrupt event, VISA control, 9-15

Index

© National Instruments Corporation I-19 Getting Results with ComponentWorks

W
WaitOnEvent method, 9-16

warning events, 12-15 to 12-16

watch window, 12-18

waveform analog input. See AI control.

waveform analog output. See AO control.

waveform digital input, buffered. See
DI control.

waveform tutorial, DataSocket control,
11-6 to 11-9

Web site support for ComponentWorks, 2-7

windows functions (table), 10-11

Write method

AO control, 7-21

synchronous I/O, message-based
communication, 9-10

UpdateClock object, 7-40, 7-41

WriteAsynch method, 9-10

writing data to data target, DataSocket control,
11-9 to 11-10

Z
zooming graphs, 6-21

	Getting Results with ComponentWorks
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction to ComponentWorks
	What is ComponentWorks?
	Installing ComponentWorks
	System Requirements
	Installation Instructions
	Installing the ComponentWorks ActiveX Controls
	Installing From Floppy Disks
	Installing the Instrument Driver Factory
	Installing the Instrument Drivers DLLs
	Installed Files

	About the ComponentWorks Controls
	Properties, Methods, and Events
	Object Hierarchy
	Collection Objects

	Setting the Properties of an ActiveX Control
	Using Property Pages
	Changing Properties Programmatically
	Item Method
	Working with Control Methods
	Developing Event Handler Routines
	Using the Analysis Library and Instrument Driver DLLs
	The Online Reference—Learning the Properties, Methods, and Events

	Chapter 2 Getting Started with ComponentWorks
	Installing and Configuring Driver Software
	Exploring the ComponentWorks Documentation
	Getting Results with ComponentWorks Manual
	ComponentWorks Online Reference
	Accessing the Online Reference
	Finding Specific Information

	Becoming Familiar with the Examples Structure
	Developing Your Application
	Seeking Information from Additional Sources

	Chapter 3 Building ComponentWorks Applications with Visual Basic
	Developing Visual Basic Applications
	Loading the ComponentWorks Controls into the Toolbox
	Building the User Interface Using ComponentWorks
	Using Property Sheets
	Using Your Program to Edit Properties

	Working with Control Methods
	Developing Control Event Routines
	Using the ComponentWorks Instrument Driver DLLs in Visual Basic
	Using the Object Browser to Build Code in Visual Basic
	Pasting Code into Your Program
	Adding Code Using Visual Basic Code Completion

	Learning to Use Specific ComponentWorks Controls

	Chapter 4 Building ComponentWorks Applications with Visual C++
	Developing Visual C++ Applications
	Creating Your Application
	Adding ComponentWorks Controls to the Visual C++ Controls Toolbar
	Building the User Interface Using ComponentWorks Controls
	Programming with the ComponentWorks Controls
	Using Properties
	Using Methods
	Using Events

	Learning to Use Specific ComponentWorks Controls

	Chapter 5 Building ComponentWorks Applications with Delphi
	Running Delphi Examples
	Upgrading from a Previous Version of ComponentWorks
	Developing Delphi Applications
	Loading the ComponentWorks Controls into the Component Palette
	Building the User Interface
	Placing Controls
	Using Property Sheets

	Programming with ComponentWorks
	Using Your Program to Edit Properties
	Using Methods
	Using Events

	Learning to Use Specific ComponentWorks Controls

	Chapter 6 Using the User Interface Controls
	What Are the UI Controls?
	Object Hierarchy and Common Objects
	The Knob and Slide Controls
	Knob and Slide Object
	Pointers Collection
	Pointer Object
	Axis Object
	Ticks Object
	Labels Object
	ValuePairs Collection

	Statistics Object
	Events

	The Numeric Edit Box Control
	Events

	Tutorial: Knob, Slide, and Numeric Edit Box Controls
	Designing the Form
	Developing the Program Code
	Testing Your Program

	The Button Control
	Events

	The Graph Control
	Graph Object
	Plot Methods
	Chart Methods

	Plots Collection
	Plot Object

	PlotTemplate Object
	Cursors Collection
	Cursor Object

	Axes Collection
	Axis Object
	Events
	Panning and Zooming

	Tutorial: Graph and Button Controls
	Designing the Form
	Developing the Code
	Testing Your Program

	Chapter 7 Using the Data Acquisition Controls
	What Are the Data Acquisition Controls?
	Data Acquisition Configuration
	Object Hierarchy and Common Properties
	Device, DeviceName, and DeviceType
	Channel Strings
	SCXI Channel Strings
	ExceptionOnError and ErrorEventMask

	AIPoint Control—Single Point Analog Input
	AIPoint Object
	Channels Collection
	Channel Object
	ChannelClock Object

	AI Control—Waveform Analog Input
	AI Object
	Methods and Events
	Asynchronous Acquisition
	Synchronous Acquisition
	Error Handling

	ScanClock and ChannelClock Objects
	StartCondition, PauseCondition and StopCondition Objects

	Tutorial: Using the AIPoint and AI DAQ Controls
	Designing the Form
	Setting the DAQ Properties
	Developing the Code
	Testing Your Program

	AOPoint Control—Single Point Analog Output
	AOPoint Object
	Methods

	AO Control—Waveform Analog Output
	AO Object
	Methods and Events
	UpdateClock and IntervalClock Objects
	StartCondition Object

	Tutorial: Using the AOPoint Control
	Designing the Form
	Developing the Code
	Testing Your Program

	Digital Controls and Hardware
	DIO Control—Single Point Digital Input and Output
	DIO Object
	Ports Collection and Port Object
	Lines Collection and Line Object
	Common Properties and Methods

	DI Control—Buffered Waveform Digital Input
	DI Object
	UpdateClock Object
	Methods and Events

	DO Control—Buffered Waveform Digital Output
	DO Object
	UpdateClock Object
	Methods and Events

	Tutorial: Using the DIO Control
	Designing the Form
	Developing the Code
	Testing Your Program

	Counter/Timer Hardware
	Counter Control—Counting and Measurement Operations
	Counter Object

	Pulse Control—Digital Pulse and Pulsetrain Generation
	Pulse Object

	Tutorial: Using the Counter and Pulse Controls
	Designing the Form
	Developing the Code
	Testing Your Program

	DAQTools—Data Acquisition Utility Functions
	Using DAQ Tools Functions

	Chapter 8 Using the GPIB and Serial Controls
	What Are the GPIB and Serial Controls?
	Object Hierarchy and Common Features
	Common Properties
	Parsing
	Advanced Parsing Features

	The GPIB Control
	CWGPIB Object
	Methods and Events
	Synchronous I/O
	Asynchronous I/O
	Other GPIB Operations

	Tutorial: Using the GPIB Control
	Designing the Form
	Setting the GPIB Control Properties
	Developing the Code
	Testing Your Program

	The Serial Control
	CWSerial Object
	Methods and Events
	Synchronous I/O
	Asynchronous I/O

	Tutorial: Using the Serial Control
	Designing the Form
	Setting the Serial Control Properties
	Developing the Code
	Testing Your Program

	Chapter 9 Using the VISA Control
	Overview of the VISA API
	VISA Structure
	VISA Advantages

	What is the VISA Control?
	Object Hierarchy and Common Properties
	Common Instrument Control Features

	Parsing
	VISA Object
	RdWrt Object
	Serial (ASRL) Object
	GPIB Object
	VXI Object
	Methods and Events
	Message-Based Communication

	Events
	Event Types

	Event Handling With The Event Queue
	Checking Events in the Queue
	Discarding Events From The Queue
	Disabling The Event Queue

	Tutorial: Using the VISA Control for Message-Based Communication
	Designing the Form
	Setting the VISA Control Properties
	Developing the Code
	Testing Your Program

	Tutorial: Using the VISA Control for Register-Based Communication
	Designing the Form
	Setting the VISA Control Properties
	Developing the Code
	Testing Your Program

	Chapter 10 Using the Analysis Controls and Functions
	What Are the Analysis Controls?
	Analysis Library Versions
	Controls
	Analysis Function Descriptions
	Error Messages

	Tutorial: Using Simple Statistics Functions
	Designing the Form
	Developing the Program Code
	Testing Your Program

	Chapter 11 Using the DataSocket Control and Tools
	What is DataSocket?
	DataSocket Basics
	Locating a Data Source

	Reading Data from a Data Source
	OnDataUpdated Event
	Updating the Data
	Automatically Updating Data

	OnStatusUpdated Event
	Disconnecting from a Data Source

	Tutorial: Reading a Waveform
	Designing the Form
	Developing the Program Code
	Testing Your Program

	Writing Data to a Data Target
	Updating a Data Target
	Automatically Updating a Target

	Working with CWData
	Working with Attributes
	Standalone CWData Objects

	Setting Up a DataSocket Server
	Requirements for Running the DataSocket Server
	Checking the Status of the DataSocket Server
	Creating Data Items on the Server
	Connecting to Data Items and Reading Them

	Tutorial: Sharing Data between Applications
	Configuring the DataSocket Server

	Chapter 12 Building Advanced Applications
	Using Advanced ComponentWorks Features
	A Virtual Oscilloscope
	Data Acquisition Stop Condition Modes
	Data Acquisition Pretriggering
	User Interface Value Pairs

	Virtual Spectrum Meter
	DSP Analysis Library
	Cursors
	Graph Track Mode

	A Virtual Data Logger
	Multiple Graph Axes
	Graph Axes Formats
	File Input/Output

	Adding Testing and Debugging to Your Application
	Error Checking
	Exceptions
	Return Codes
	Error and Warning Events
	GetErrorText Function

	Debugging
	Debug Print
	Breakpoint
	Watch Window
	Single Step, Step Into, and Step Over

	Appendix A Using Previous Versions of Visual Basic, Visual C++, and Delphi with ComponentWorks
	Visual Basic 4
	Menus and Commands
	Object Browser
	Code Completion
	Creating a Default ComponentWorks Project

	Visual C++ 4.x
	Creating Your Application
	Adding ComponentWorks Controls to the Visual C++ Controls Toolbar
	Building Your User Interface and Code

	Delphi 2
	Loading the ComponentWorks Controls into the Component Palette

	Appendix B Background Information about Data Acquisition
	Installation
	Configuration
	SCXI
	Device Number
	Channel Wizard
	Programming
	Hardware

	Appendix C Common Questions
	Installation and Getting Started
	Visual Basic
	User Interface Controls
	Data Acquisition Controls
	GPIB, Serial, and VISA Controls
	Analysis Controls

	Appendix D Error Codes
	Appendix E Distribution and Redistributable Files
	Files
	Distribution
	Automatic Installers
	Manual Installation

	DataSocket Server
	Instrument Drivers
	ComponentWorks Evaluation
	Run-Time Licenses
	Troubleshooting

	Appendix F Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	ComponentWorks Hardware and Software Configuration�Form
	National Instruments Products
	Other Products

	Documentation Comment Form

	Glossary
	Numbers/Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Index
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Figures
	Figure 1-1. Slide Control Object Hierarchy
	Figure 1-2. Visual Basic Default Property Sheets
	Figure 1-3. ComponentWorks Custom Property Pages
	Figure 3-1. Visual Basic Property Pages
	Figure 3-2. ComponentWorks Custom Property Pages
	Figure 3-3. Selecting Events in the Code Window
	Figure 3-4. Viewing CWGraph in the Object Browser
	Figure 3-5. Viewing CWKnob in the Object Browser
	Figure 3-6. Visual Basic 5 Code Completion
	Figure 4-1. New Dialog Box
	Figure 4-2. MFC AppWizard— Step 1
	Figure 4-3. CWGraph Control Property Sheets
	Figure 4-4. MFC ClassWizard—Member Variable Tab
	Figure 4-5. Viewing Property Functions and Methods in the Workspace Window
	Figure 4-6. Event Handler for the PointerValueChanged Event of a Knob
	Figure 5-1. Delphi Import ActiveX Control Dialog Box
	Figure 5-2. ComponentWorks Controls on a Delphi Form
	Figure 5-3. Delphi Object Inspector
	Figure 5-4. ComponentWorks Graph Control Property Page
	Figure 5-5. Delphi Object Inspector Events Tab
	Figure 6-1. Knob/Slide Control Object Hierarchy
	Figure 6-2. SimpleUI Form
	Figure 6-3. Testing SimpleUI
	Figure 6-4. Button Control Modes
	Figure 6-5. Graph Control Object Hierarchy
	Figure 6-6. ButtonGraphExample Form
	Figure 7-1. AIPoint Control Object Hierarchy (Single Point Analog Input)
	Figure 7-2. AI Control Object Hierarchy (Waveform Analog Input)
	Figure 7-3. AIExample Form
	Figure 7-4. Testing AIExample
	Figure 7-5. AOPoint Control Object Hierarchy (Single Point Analog Output)
	Figure 7-6. AOPoint Control Object Hierarchy (Waveform Analog Output)
	Figure 7-7. AOPoint Form
	Figure 7-8. Testing AOPoint
	Figure 7-9. DIO Control Object Hierarchy
	Figure 7-10. DI Control Object Hierarchy
	Figure 7-11. DO Control Object Hierarchy
	Figure 7-12. DIO Form
	Figure 7-13. Counter Control Object Hierarchy
	Figure 7-14. Pulse Control Object Hierarchy
	Figure 7-15. Counters Form
	Figure 7-16. Testing Counters
	Figure 8-1. GPIB Control Object Hierarchy
	Figure 8-2. GPIBExample Form
	Figure 8-3. Serial Control Object Hierarchy
	Figure 8-4. Weigh Form
	Figure 8-5. Serial Property Pages—Parsing Page
	Figure 9-1. VISA Structure
	Figure 9-2. VISA Control Object Hierarchy
	Figure 9-3. VISA Property Pages—General Page
	Figure 9-4. VISA Property Pages—RdWrt Page
	Figure 9-5. VISA Property Pages—Serial Page
	Figure 9-6. VISA Property Pages—VxiMemory Page
	Figure 9-7. MbasedExample Form
	Figure 9-8. RbasedExample Form
	Figure 10-1. Stat Form
	Figure 10-2. Testing Stat
	Figure 11-1. DataSocket Connection
	Figure 11-2. Specifying Data Source Locations
	Figure 11-3. SimpleDS Form
	Figure 11-4. DataSocket Control
	Figure 11-5. DataSocket Server Tray Icon
	Figure 11-6. DataSocket Server Status Window
	Figure 11-7. DataSocket Server Manager
	Figure 12-1. Virtual Oscilloscope
	Figure 12-2. Knob Property Pages—Value Pairs Page
	Figure 12-3. Virtual Spectrum Meter
	Figure 12-4. Graph Property Pages—Cursors Property Page
	Figure 12-5. Virtual Data Logger
	Figure 12-6. Visual Basic Error Messages
	Figure 12-7. Error Message Box
	Figure 12-8. Error Handling Message Box
	Figure A-1. Visual Basic 4 Object Browser
	Figure A-2. Visual Basic 5 Object Browser
	Figure A-3. Visual C++ Component Gallery
	Figure A-4. Delphi Import OLE Control Dialog Box

	Tables
	Table 2-1. Chapters on Specific Programming Environments
	Table 6-1. User Interface Control Styles
	Table 7-1. Measurement Types
	Table 7-2. Pulse Type Operations
	Table 10-1. Analysis Control Function Tree
	Table D-1. Data Acquisition Control Error Codes
	Table D-2. VISA Control Error Codes
	Table D-3. Analysis Error Codes
	Table D-4. General ComponentWorks Error Codes

