COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs.

Sell For Cash Get Credit Receive a Trade-In Deal

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

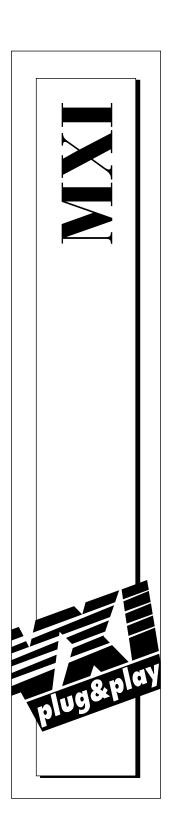
We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

Bridging the gap between the manufacturer and your legacy test system.

0

1-800-915-6216

www.apexwaves.com


sales@apexwaves.com

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote

VXI-MXI-2-B

VXI-MXI-2 User Manual

August 1996 Edition Part Number 371692A-01

Internet Support

GPIB: gpib.support@natinst.com
DAQ: daq.support@natinst.com
VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
HiQ: hiq.support@natinst.com

VISA: visa.support@natinst.com
E-mail: info@natinst.com

E-mail: info@natinst.com FTP Site: ftp.natinst.com Web Address: www.natinst.com

Bulletin Board Support

BBS United States: (512) 794-5422 or (800) 327-3077

BBS United Kingdom: 01635 551422

BBS France: 01 48 65 15 59

FaxBack Support

(512) 418-1111

Telephone Support (U.S.)

Tel: (512) 795-8248 Fax: (512) 794-5678

International Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 90 527 2321, France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 5734815, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico 95 800 010 0793, Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Important Information

Warranty

The VXI-MXI-2 and VXI-MXI-2/B are warranted against defects in materials and workmanship for a period of one year from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period. This warranty includes parts and labor.

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER'S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner's failure to follow the National Instruments installation, operation, or maintenance instructions; owner's modification of the product; owner's abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National Instruments Corporation.

Trademarks

NI-VXITM is a trademark of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the user or application designer. Any use or application of National Instruments products for or involving medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always continue to be used when National Instruments products are being used. National Instruments products are NOT intended to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health and safety in medical or clinical treatment.

FCC/DOC Radio Frequency Interference Class A Compliance

This equipment generates and uses radio frequency energy and, if not installed and used in strict accordance with the instructions in this manual, may cause interference to radio and television reception. Classification requirements are the same for the Federal Communications Commission (FCC) and the Canadian Department of Communications (DOC). This equipment has been tested and found to comply with the following two regulatory agencies:

Federal Communications Commission

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Notices to User: Changes or modifications not expressly approved by National Instruments could void the user's authority to operate the equipment under the FCC Rules.

This device complies with the FCC rules only if used with shielded interface cables of suitable quality and construction. National Instruments used such cables to test this device and provides them for sale to the user. The use of inferior or nonshielded interface cables could void the user's authority to operate the equipment under the FCC rules.

If necessary, consult National Instruments or an experienced radio/television technician for additional suggestions. The following booklet prepared by the FCC may also be helpful: *Interference to Home Electronic Entertainment Equipment Handbook*. This booklet is available from the U.S. Government Printing Office, Washington, DC 20402.

Canadian Department of Communications

This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

Table of Contents

About Th	is Manual
Org	anization of This Manualxiii
	ventions Used in This Manualxv
	v to Use This Manualxvi
Rela	ated Documentationxvi
Cus	tomer Communicationxvi
Chapter 1	ſ
Introduct	ion
VX	I-MXI-2 Overview1-1
Wha	at You Need to Get Started1-1
MX	I-2 Description1-2
VX	I-MXI-2 Description1-2
	Front Panel Features1-5
Opt	ional Equipment1-5
Ohantar (
Chapter 2	
Function	al Overview
VX	I-MXI-2 Functional Description2-1
Chapter 3	
-	
	2 Configuration and Installation
Con	figure the VXI-MXI-23-1
	Removing the Metal Enclosure3-3
	VXIbus Logical Address3-3
	VXIbus Slot 0/Non-Slot 03-5
	VXIbus Local Bus
	VXIbus CLK10 Routing3-7
	Trigger Input Termination3-12
	MXIbus Termination

	Configuration EEPROM	3-15
	Onboard DRAM	3-17
	Install the VXI-MXI-2	3-19
	Connect the MXIbus Cable	3-20
Char	oter 4	
-	MXI-2/B Configuration and Installation	
V / I - I	_	4.1
	Configure the VXI-MXI-2/B	
	VXIbus Slot 0/Non-Slot 0	
	VXIbus Local Bus	
	VXIbus CLK10 Routing	
	Trigger Input Termination	
	MXIbus Termination	
	Configuration EEPROM	
	Onboard DRAM	
	Install the VXI-MXI-2/B	
	Connect the MXIbus Cable	
Char	oter 5	
_		
Keyi	ster Descriptions	
	Hard and Soft Reset	
	Register Description Format	
	VXIbus Configuration Registers	
	VXIbus ID Register (VIDR)	
	VXIbus Device Type Register (VDTR)	
	VXIbus Status Register (VSR)	
	VXIbus Control Register (VCR)	
	VXIbus Offset Register (VOR)	
	VXIbus MODID Register (VMIDR) Extender Logical Address Window Register (VWR0)	
	Extender A16 Window Register (VWR1)	
	Extender A16 Window Register (VWR1)	
	Extender A24 Window Register (VWR2) Extender A32 Window Register (VWR3)	
	VXIbus Interrupt Configuration Register (VICR)	
	VXIbus TTL Trigger Configuration Register (VTCR)	
	VXIbus Utility Configuration Register (VUCR)	
	VXIbus Subclass Register (VSCR)	
	VXI-MXI-2 Status Register (VMSR)	
	VXI-MXI-2 Status Register (VMSR)	
	VXI WXI 2 Control Register (VIXER)	
	VXIbus Logical Address Register (VLAR)	
	VXIbus Trigger Drive Register (VTDR)	

	VXIbus Trigger Mode Select Register (VTMSR)	5-36
,	VXIbus Interrupt Status Register (VISTR)	5-37
•	VXIbus Interrupt Control Register (VICTR)	5-39
,	VXIbus Status ID Register (VSIDR)	5-41
,	VXI-MXI-2 Trigger Control Register (VMTCR)	5-42
,	VXIbus Interrupt Acknowledge Register 1 (VIAR1)	5-43
,	VXIbus Interrupt Acknowledge Register 2 (VIAR2)	5-44
,	VXIbus Interrupt Acknowledge Register 3 (VIAR3)	5-45
,	VXIbus Interrupt Acknowledge Register 4 (VIAR4)	5-46
,	VXIbus Interrupt Acknowledge Register 5 (VIAR5)	5-47
,	VXIbus Interrupt Acknowledge Register 6 (VIAR6)	5-48
,	VXIbus Interrupt Acknowledge Register 7 (VIAR7)	5-49
VXIbus A	A24/A32 Registers	5-50
	DMA Interrupt Configuration Register (DMAICR)	5-52
	DMA Interrupt Enable Register (DMAIER)	5-55
	DMA Interrupt Status/ID Register (DMAISIDR)	5-57
,	VXI-MXI-2 Status/Control Register 2 (VMSR2/VMCR2)	5-59
	Shared MXIbus Status/Control Register (SMSR/SMCR)	5-61
	DMA Channel Operation Register (CHORx)	5-65
	DMA Channel Control Register (CHCRx)	5-68
:	DMA Transfer Count Register (TCRx)	5-70
:	DMA Source Configuration Register (SCRx)	5-72
:	DMA Source Address Register (SARx)	5-75
:	DMA Destination Configuration Register (DCRx)	5-77
:	DMA Destination Address Register (DARx)	5-80
	DMA Channel Status Register (CHSRx)	5-82
-	DMA FIFO Count Register (FCRx)	5-85
Chapter 6		
System Confi	guration	
Planning	a VXIbus/MXIbus System Logical Address Map	6-2
	Base/Size Configuration Format	6-3
	High/Low Configuration Format	
	Steps to Follow When Planning a System Logical Address Map	6-6
Workshe	ets for Planning Your VXIbus/MXIbus Logical Address Map	6-15
Alternati	ve Worksheets for Planning Your VXIbus/MXIbus Logical	
Address 1	Map	6-20
	a VXIbus/MXIbus System A16 Address Map	
	ets for Planning Your VXIbus/MXIbus A16 Address Map	
	ne RM Operation	
	Configuring the Logical Address Window	
	Configuring the Logical Address Window Example	
	Configuring the A24 and A32 Addressing Windows	
	System Administration and Initiation	

Chapter 7	7
-----------	---

VXI <i>plug&play</i> for the VXI-MXI-2	
VXI-MXI-2 VXI <i>plug&play</i> Soft Front Panel	
Installing the Soft Front Panel	
Using the Soft Front Panel	
Board Settings	
Logical Address Select and Logical Address	
Address Space and Requested Memory	
A16 Write Post and A24/A32 Write Post	7-4
Interlocked	
VXI Bus Settings	7-7
System Controller	7-7
Bus Timeout	7-8
Arbiter Type	7-8
Arbiter Timeout	7-9
Fair Requester	7-9
Request Level	7-9
Transfer Limit	7-9
Auto Retry	7-10
MXI Bus Settings	7-10
System Controller	7-11
Bus Timeout	7-11
Transfer Limit	7-11
Auto Retry	7-12
Parity Checking	7-12
Fair Requester	7-12
CLK10	
VXI-MXI-2 VXIplug&play Knowledge Base File	7-13
Appendix A Specifications	
Appendix B Programmable Configurations	
Configuring the EEPROM	B-1
VXI-MXI-2 Requested Memory Space	
VMEbus Timer Limit	
VMEbus Arbiter	
Arbiter Type	
	B 6

	VMEbus Requester	B-7
	Request Level	B-7
	Fair Request	
	MXIbus Timer Limit	
	MXIbus Fair Requester and MXIbus Parity Checking	
	Interlocked Arbitration Mode	
Appendix C		
	Front Panel Configuration	
	anel	C-1
	anel Connectors	
1101111	MXI-2 Connector	
	External Clock Connector	
	Trigger Output Connector	
	Trigger Input Connector	
Annondiy D		
Appendix D		
Differences	and Incompatibilities between the VXI-MXI	
and the VXI	-MXI-2	
	s Connector	D 1
	uration Switches and Jumpers	
	s Model Code	
	ed Memory Space	
	Inhibit	
	XI-2 Status/Control Register (VMSR/VMCR)	
	nterrupt Conditions	
	s Trigger Functionality	
	eset	
	set	
Annondiy E		
Appendix E		
Configuring	a Two-Frame System	
Configu	uring Two VXI-MXI-2 Modules for a Two-Frame System	E-1
C	VXIbus Logical Address	
	VXIbus CLK10 Routing for a Two-Frame System	
	VXIbus Slot 0	
	MXIbus System Controller	
	VMFhus RTO Unit	

Par Example 1:	ning Examples f Programming Examples rameter Descriptions DMA Operation without Interrupt. DMA Operation with Interrupt.	F-2 F-2
Appendix G Mnemonics Ke	у	
Appendix H Customer Com	munication	
Glossary		
Index		
Figures Figure 2-1.	VXI-MXI-2 Block Diagram	2-2
Figure 3-1. Figure 3-2. Figure 3-3. Figure 3-4. Figure 3-5. Figure 3-6. Figure 3-7. Figure 3-8. Figure 3-9. Figure 3-10. Figure 3-11. Figure 3-12.	VXI-MXI-2 Right-Side Cover Logical Address Selection VXIbus Slot Configuration	3-4 3-5 3-7 3-8 3-10 3-11 3-12 3-14
Figure 4-1. Figure 4-2. Figure 4-3. Figure 4-4. Figure 4-5. Figure 4-6.	VXI-MXI-2/B Parts Locator Diagram Logical Address Selection VXIbus Slot Configuration VXIbus Local Bus Configuration VXIbus CLK10 Routing SMB CLK10 Settings	4-2 4-4 4-5 4-7 4-8

Figure 4-7.

Receiving or Driving MXIbus CLK10.....4-11

Figure 4-8.	SMB Trigger Input Termination	4-12
Figure 4-9.	MXIbus Termination	4-13
Figure 4-10.	EEPROM Operation	4-15
Figure 4-11.	SIMM Size Configuration	4-16
Figure 4-12.	MXI-2 Cable Configuration Using an External Device and	
	a VXI-MXI-2/B	4-19
Figure 6-1.	VXIbus/MXIbus System with Multiframe RM on a PC	6-2
Figure 6-2.	VXIbus/MXIbus System with Multiframe RM in a VXIbus	
	Mainframe	
Figure 6-3.	Base and Size Combinations	6-4
Figure 6-4.	Address Range Allocation for Different Size Values	6-5
Figure 6-5.	Example VXIbus/MXIbus System	6-7
Figure 6-6.	Logical Address Map Diagram for Example VXIbus/MXIbus	
	System	6-10
Figure 6-7.	Worksheet 1: Summary of Example VXIbus/MXIbus System	6-12
Figure 6-8.	Worksheet 2 for MXIbus #1 of Example VXIbus/MXIbus System	6-13
Figure 6-9.	Worksheet 3 for MXIbus #2 of Example VXIbus/MXIbus System	6-14
Figure 6-10.	Worksheet 4 for MXIbus #3 of Example VXIbus/MXIbus System	6-14
Figure 6-11.	Logical Address Map Diagram for Your VXIbus/MXIbus System	6-15
Figure 6-12.	Worksheet 1: Summary of Your VXIbus/MXIbus System	6-16
Figure 6-13.	Worksheet 2 for MXIbus #1 of Your VXIbus/MXIbus System	
Figure 6-14.	Worksheet 3 for MXIbus #2 of Your VXIbus/MXIbus System	
Figure 6-15.	Worksheet 4 for MXIbus #3 of Your VXIbus/MXIbus System	6-19
Figure 6-16.	Alternative Worksheet: Logical Address Map for Example	
	VXIbus/MXIbus System	6-21
Figure 6-17.	Alternative Worksheet: Logical Address Map for Your	
	VXIbus/MXIbus System	
Figure 6-18.	A16 Space Allocations for all Size Values	
Figure 6-19.	Example VXIbus/MXIbus System Diagram	
Figure 6-20.	Example A16 Space Address Map Diagram	
Figure 6-21.	Worksheet 1: Summary of A16 Address Map Example	
Figure 6-22.	Worksheet 2 for MXIbus #1 of A16 Address Map Example	
Figure 6-23.	Worksheet 3 for MXIbus #3 of A16 Address Map Example	6-32
Figure 6-24.	A16 Space Address Map Diagram for Your VXIbus/MXIbus	
	System	
Figure 6-25.	Worksheet 1: Summary of Your A16 Address Map	
Figure 6-26.	Worksheet 2 for MXIbus #1 A16 Address Map	
Figure 6-27.	Worksheet 3 for MXIbus #2 A16 Address Map	
Figure 6-28.	Worksheet 4 for MXIbus #3 A16 Address Map	
Figure 6-29.	Worksheet 5 for MXIbus #4 A16 Address Map	6-38
Figure 7-1.	VXI-MXI-2 VXIplug&play Soft Front Panel Board Settings	
Figure 7-2.	VXI-MXI-2 VXIplug&play Soft Front Panel VXIbus Settings	
Figure 7-3.	VXI-MXI-2 VXIplug&play Soft Front Panel MXIbus Settings	7-10

Figure C-1.	C-Size VXI-MXI-2 Front Panel Layout	C-2
Figure C-2	VXI-MXI-2/B Front Panel Layout	C-3
Figure C-3.	MXI-2 Connector	C-4
Figure C-4.	EXT CLK Connector	C-6
Figure C-5.	TRG OUT Connector	C-7
Figure C-6.	TRG IN Connector	C-8
Figure E-1.	A Two-Frame VXI System	
Figure E-2.	Hardware Switches You Need to Reconfigure on C-Size VXI-MX	
	Modules for a Two-Frame System	E-3
Figure E-3.	Hardware Switches You Need to Reconfigure on VXI-MXI-2/B	
	Modules for a Two-Frame System	
Figure E-4.	Logical Address Selection on a C-Size VXI-MXI-2	
Figure E-5.	Logical Address Selection on a VXI-MXI-2/B	
Figure E-6.	Receiving or Driving MXIbus CLK10 on a C-Size VXI-MXI-2	E-7
Figure E-7.	Receiving or Driving MXIbus CLK10 on a VXI-MXI-2/B	E-7
Figure E-8.	CLK10 Generated from MXIbus on a C-Size VXI-MXI-2	E-8
Figure E-9.	CLK10 Generated from MXIbus on a VXI-MXI-2/B	E-8
Tables		
Table 3-1.	VXI-MXI-2 DRAM Configurations	3-18
Table 4-1.	VXI-MXI-2/B DRAM Configurations	4-17
Table 5-1.	VXI-MXI-2 VXIbus Configuration Register Map	5-2
Table 5-2.	VXI-MXI-2 VXIbus A24/A32 Register Map	
Table 6-1.	Base and Size Combinations	6-4
Table 6-2.	Example VXIbus/MXIbus System Required Logical Addresses	6-7
Table 6-3.	Amount of A16 Space Allocated for all Size Values	6-23
Table 6-4.	Example VXIbus/MXIbus System Required A16 Space	6-27
Table 6-5.	Logical Address Assignments for Example VXIbus/MXIbus	
	System	6-41
Table C-1.	MXI-2 Connector Signal Assignments	
Table C-2.	MXIbus Signal Characteristics	
Table C-3.	EXT CLK Signal Characteristics	C-7
Table C-4.	TRG OUT Signal Characteristics	C-7
Table C-5.	TRG IN Signal Characteristics	C-8
Table F-1.	Address Modifer Codes	F-12

About This Manual

The *VXI-MXI-2 User Manual* describes the functional, physical, and electrical aspects of the VXI-MXI-2 and VXI-MXI-2/B and contains information concerning its operation and programming.

This manual uses the term *VXI-MXI-2* to describe both the C-size VXI-MXI-2 and the B-size VXI-MXI-2/B except where it is necessary to specify between the two models.

Organization of This Manual

The VXI-MXI-2 User Manual is organized as follows:

- Chapter 1, *Introduction*, describes the VXI-MXI-2 and VXI-MXI-2/B, lists what you need to get started, lists optional equipment, and introduces the concepts of MXI-2.
- Chapter 2, *Functional Overview*, contains functional descriptions of each major logic block on the VXI-MXI-2.
- Chapter 3, VXI-MXI-2 Configuration and Installation, contains the instructions to configure and install the C-size VXI-MXI-2 module.
- Chapter 4, *VXI-MXI-2/B Configuration and Installation*, contains the instructions to configure and install the VXI-MXI-2/B module.
- Chapter 5, *Register Descriptions*, contains detailed information on some of the VXI-MXI-2 registers, which you can use to configure and control the module's operation.
- Chapter 6, *System Configuration*, explains important considerations for programming and configuring a VXIbus/MXIbus system using VXI-MXI-2 mainframe extenders.

- Chapter 7, VXIplug&play for the VXI-MXI-2, describes the
 contents of the VXIplug&play disk that came with your
 VXI-MXI-2 kit. The disk contains a VXIplug&play soft front
 panel and a VXIplug&play knowledge base file.
- Appendix A, Specifications, lists various module specifications of the VXI-MXI-2, such as physical dimensions and power requirements.
- Appendix B, Programmable Configurations, describes some features of the VXI-MXI-2 that are configured by programming an onboard EEPROM through software rather than by onboard switches or jumpers.
- Appendix C, VXI-MXI-2 Front Panel Configuration, describes the front panel and connectors on the VXI-MXI-2 interface module. This material contains the information relevant to VXIplug&play Specification VPP-8, VXI Module/Mainframe to Receiver Interconnection.
- Appendix D, Differences and Incompatibilities between the VXI-MXI and the VXI-MXI-2, lists the differences and incompatibilities between the first-generation MXIbus-to-VXIbus interface, the VXI-MXI, and the VXI-MXI-2. This information may be helpful for users of the VXI-MXI who are moving to the VXI-MXI-2.
- Appendix E, Configuring a Two-Frame System, describes how to configure a system containing two mainframes linked by VXI-MXI-2 mainframe extenders.
- Appendix F, DMA Programming Examples, contains two example
 programs for using the DMA controllers on the VXI-MXI-2. If you
 are using a version of the National Instruments NI-VXI software
 that has remote DMA controller functionality, this information is
 not necessary because you can make use of the VXI-MXI-2
 module's DMA controllers from the NI-VXI high-level function
 calls.
- Appendix G, *Mnemonics Key*, contains an alphabetical listing of all mnemonics used in this manual to describe signals and terminology specific to MXIbus, VMEbus, VXIbus, and register bits. Refer also to the *Glossary*.

- Appendix H, Customer Communication, contains forms you can
 use to request help from National Instruments or to comment on
 our products and manuals.
- The Glossary contains an alphabetical list and description of terms used in this manual, including abbreviations, acronyms, metric prefixes, and symbols.
- The *Index* contains an alphabetical list of key terms and topics in this manual, including the page where you can find each one.

Conventions Used in This Manual

The following conventions are used in this manual:

italic Italic text denotes emphasis, a cross reference, or an introduction to a

key concept.

bold italic Bold italic text denotes a note, caution, or warning.

monospace Lowercase text in this font denotes text or characters that are to be

literally input from the keyboard, sections of code, programming examples, and syntax examples. This font is also used for the proper names of disk drives, paths, directories, programs, subprograms, subroutines, device names, functions, variables, filenames, and

extensions, and for statements and comments taken from program code.

bold monospace

Bold text in this font denotes the messages and responses that the computer automatically prints to the screen.

Angle brackets enclose the name of a key on the keyboard—for

example, <PageDown>.

A hyphen between two or more key names enclosed in angle brackets

denotes that you should simultaneously press the named keys—for

example, <Control-Alt-Delete>.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and

terms are listed in the Glossary.

How to Use This Manual

If you will be installing your VXI-MXI-2 into a system with a VXIbus Multiframe Resource Manager, you only need to read Chapters 1, 2, and 3 of this manual (or Chapters 1, 2, and 4 if you have a VXI-MXI-2/B). If you have more than two VXI-MXI-2 modules extending your system, you will find useful system configuration information in Chapter 6. Appendix E is a quick reference for users who have a system containing two mainframes linked by VXI-MXI-2 modules. If you are writing your own VXIbus Multiframe Resource Manager routines, you can find programming information and descriptions of the VXI-MXI-2 hardware in Chapters 5 and 6.

Related Documentation

The following documents contain information that you may find helpful as you read this manual:

- ANSI/IEEE Standard 1014-1987, IEEE Standard for a Versatile Backplane Bus: VMEbus
- ANSI/IEEE Standard 1155-1993, IEEE VMEbus Extensions for Instrumentation: VXIbus
- ANSI/VITA 1-1994, VME64
- Multisystem Extension Interface Bus Specification, Version 2.0 (available from National Instruments Corporation)
- VXI-6, VXIbus Mainframe Extender Specification, Rev. 1.0, VXIbus Consortium

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We are interested in the applications you develop with our products, and we want to help if you have problems with them. To make it easy for you to contact us, this manual contains comment and configuration forms for you to complete. These forms are in Appendix H, *Customer Communication*, at the end of this manual.

Chapter 1

Introduction

This chapter describes the VXI-MXI-2 and VXI-MXI-2/B, lists what you need to get started, lists optional equipment, and introduces the concepts of MXI-2.

Unless otherwise noted, the term *VXI-MXI-2* refers to both the C-size VXI-MXI-2 and the B-size VXI-MXI-2/B.

VXI-MXI-2 Overview

The VXI-MXI-2 interface is a C-size extended class mainframe extender for the VXIbus (VMEbus Extensions for Instrumentation). The VXI-MXI-2/B is a B-size extended class mainframe extender for the VXIbus. The VXI-MXI-2 modules extend the VXIbus architecture outside a VXIbus mainframe via MXI-2, the second-generation MXIbus (Multisystem Extension Interface bus). A VXIbus mainframe equipped with a VXI-MXI-2 can be connected to other MXIbus devices such as other VXIbus mainframes, MXIbus instruments, or MXIbus-equipped personal computers. The VXI-MXI-2 interface modules use address mapping to transparently translate bus cycles on the VXIbus system bus (VMEbus) to the MXIbus and vice versa.

C-size VXI-MXI-2 only —The VXI-MXI-2 is housed in a metal enclosure to improve EMI performance and to provide easy handling. Because the enclosure includes cut-outs to facilitate changes to switch and jumper settings, it should not be necessary to remove it under most circumstances.

What You Need to Get Started

VXIbus mainframe
VXI-MXI-2 interface module

MXI-2 cable
VXIplug&play diskette

MXI-2 Description

MXI-2 is the second generation of the National Instruments MXIbus product line. The MXIbus is a general-purpose, 32-bit, multimaster system bus on a cable. MXI-2 expands the number of signals on a standard MXI cable by including all VXIbus interrupts, VXIbus triggers, VXIbus CLK10, and all of the VMEbus utility bus signals (SYSFAIL*, SYSRESET*, and ACFAIL*).

Because MXI-2 incorporates all of these new signals into a single connector, the standard VXI-MXI-2 can extend the triggers, interrupts, and utility signals not only to other mainframes, but also to any computers and devices equipped with MXI-2.

In addition, MXI-2 surpasses the data throughput of previous-generation MXIbus products by defining new high-performance protocols. MXI-2 is a superset of MXI. All accesses initiated by MXIbus devices will work with MXI-2 devices. However, MXI-2 defines synchronous MXI block data transfers that surpass previous block data throughput benchmarks. The new synchronous MXI block protocol increases MXI-2 throughput to a maximum of 33 MB/s between two MXI-2 devices. All National Instruments MXI-2 boards can initiate and respond to synchronous MXI block cycles.

Note:

In the remainder of this manual, the term MXIbus refers to MXI-2.

VXI-MXI-2 Description

The VXI-MXI-2 is an extended-class register-based VXIbus device with optional Slot 0 capability so that it can reside in any slot in a C-size or D-size VXIbus chassis. The VXI-MXI-2/B can reside in any B-size VXIbus slot.

Note:

D-size VXI mainframes have connections for a P3 connector. The VXI-MXI-2, however, does not have this connector and, if configured as a Slot 0 controller, cannot provide the necessary control for VXI devices that need P3 support.

The VXI-MXI-2 converts A32, A24, A16, D64, D32, D16, and D08(EO) VXIbus bus cycles into MXIbus bus cycles and vice versa. The VXI-MXI-2 has four address windows that map into and out of the VXIbus mainframe. These four windows represent the three VMEbus address spaces (A32, A24, and A16) plus a dedicated window for mapping the VXIbus configuration space (the upper 16 KB of A16 space).

The MXIbus is a multidrop system bus that connects multiple devices at the hardware bus level in a software-transparent manner. You can connect multiple VXIbus mainframes using VXI-MXI-2 interfaces to form a single multiframe VXIbus system. You can also connect an external PC with a MXIbus interface to a VXIbus mainframe with a VXI-MXI-2. This configuration makes the PC function as though it were an embedded VXIbus controller that is plugged into the VXIbus mainframe.

Multiple MXIbus devices are tightly coupled by mapping together portions of each device's address space and locking the internal hardware bus cycles to the MXIbus. The window address circuitry on each MXIbus device monitors internal local bus cycles to detect bus cycles that map across the MXIbus. Similarly, external MXIbus cycles are monitored to detect MXIbus cycles that map into the VXIbus system. MXIbus devices can operate in parallel at full speed over their local system bus and need to synchronize operation with another device only when addressing or being addressed by a resource located on another MXIbus device. The MXIbus device originating the transaction must gain ownership of both the MXIbus and the local bus in the target MXIbus device. All hardware bus cycles are then coupled across the MXIbus and local buses before the transfer completes.

The VXI-MXI-2 has the following features:

- Interfaces the VXIbus to the MXIbus (32-bit Multisystem eXtension Interface bus)
- Extends VXIbus to multiple mainframes, external MXIbusequipped instruments, and external MXIbus-equipped PCs
- Allows multiple VXIbus mainframes to operate as a single VXIbus system
- Supports the VME *RETRY** signal to resolve deadlock conditions
- Supports D64, block, and synchronous MXI cycles for highperformance data transfer
- Two independent DMA controllers for data transfer

- Can extend VMEbus interrupt levels, utility signals, VXIbus TTL triggers, and CLK10 to MXIbus
- Can source or sense VXIbus TTL and P2 ECL trigger lines
- Supports dynamic configuration of VXIbus devices
- Can operate in either one of two modes: parallel or interlocked
- Allows for optional or user-installable onboard DRAM up to 64 MB, which can be shared with the VXIbus and MXIbus
- Conforms to VXI-6, the VXIbus Mainframe Extender Specification
- Conforms to the MXI-2 specification
- Supports automatic Slot 0 detection
- Supports automatic MXIbus System Controller detection
- Supports automatic MXIbus termination
- Has no restrictions on Commander/Servant hierarchy or physical location of devices

The VXI-MXI-2 generates all the support signals required by the VXIbus:

- VMEbus System Controller functions:
 - 16 MHz system clock driver
 - Data transfer bus arbiter (PRI or RR ARBITER)
 - Interrupt acknowledge daisy-chain driver
- VMEbus miscellaneous services:
 - VMEbus timeout (BTO)
 - Pushbutton system reset switch
- VMEbus master capabilities:
 - Access to A16, A24, and A32 address space
 - D08(EO), D16, D32, and D64 accesses
 - Release-on-Request bus requester (programmable bus request level)
 - Optional FAIR VXIbus requester
- VMEbus slave capabilities:
 - A16, A24, and A32 address space
 - D08(EO), D16, D32, and D64 accesses
- VMEbus Interrupter
 - ROAK or RORA (programmable)

- Responds to D16 or D32 IACK cycles
- VXIbus Slot 0 functions:
 - 10 MHz clock
 - MODID register

The VXI-MXI-2 does not have support for the serial clock driver or power monitor VMEbus modules.

All integrated circuit drivers and receivers used on the VXI-MXI-2 meet the requirements of both the VXIbus specification and the MXIbus specification.

Front Panel Features

The VXI-MXI-2 has the following front panel features:

- Three front panel LEDs
 - SYSFAIL LED indicates that the VMEbus SYSFAIL line is asserted.
 - MXI LED indicates when the VXI-MXI-2 is accessed from the MXIbus.
 - VXI LED indicates when the VXI-MXI-2 is accessed from the VXIbus.
- MXIbus connector
- Three SMB connectors
 - External clock input or output (configurable)
 - Trigger output
 - Trigger input
- System reset pushbutton

Optional Equipment

- Type M1 MXI-2 Cables—
 Straight-point connector to straight-point connector; available in lengths of 1, 2, 4, 8, or 20 m
- Type M2 MXI-2 Cables—
 Straight-point connector to right-angle daisy-chain connector;
 available in lengths of 1, 2, 4, 8, or 20 m

- Type M3 MXI-2 Cables—
 Right-angle point connector to right-angle daisy-chain connector;
 available in lengths of 1, 2, 4, 8, or 20 m
- Type M4 MXI-2 Cables—
 Straight-point connector to reverse right-angle daisy-chain connector; available in lengths of 1, 2, 4, 8, or 20 m
- Onboard DRAM options of 4, 8, 16, 32, or 64 MB

Chapter 2

Functional Overview

This chapter contains functional descriptions of each major logic block on the VXI-MXI-2.

VXI-MXI-2 Functional Description

In the simplest terms, you can think of the VXI-MXI-2 as a bus translator that converts VXIbus signals into appropriate MXIbus signals. From the perspective of the MXIbus, the VXI-MXI-2 implements a MXIbus interface to communicate with other MXIbus devices. From the perspective of the VXIbus, the VXI-MXI-2 is an interface to the outside world.

Figure 2-1 is a functional block diagram of the VXI-MXI-2. Following the diagram is a description of each logic block shown.

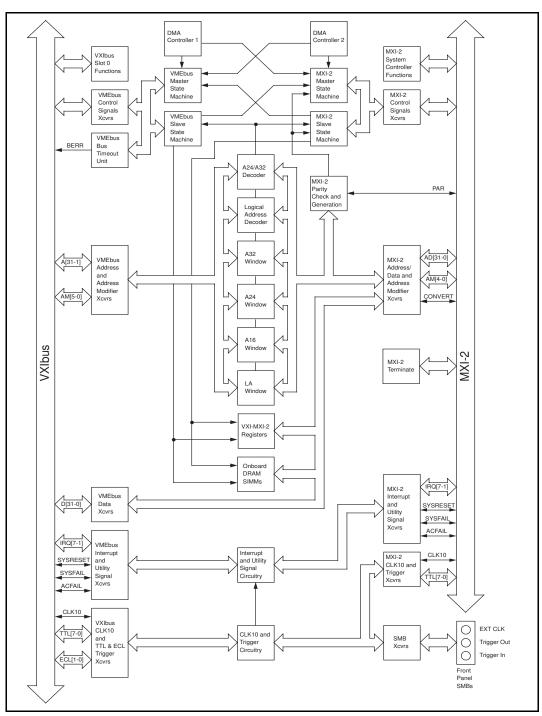


Figure 2-1. VXI-MXI-2 Block Diagram

• VXIbus Slot 0 Functions

When the VXI-MXI-2 is installed in slot 0 of a VXIbus mainframe it assumes the Slot 0 responsibilities defined in the VXIbus specification. These are the VMEbus 16 MHz system clock driver, VMEbus arbiter, VMEbus IACK daisy-chain driver, VXIbus CLK10 driver, and VXIbus MODID register. All of these functions are disabled when the VXI-MXI-2 is not acting as the VXIbus Slot 0 device. The VXI-MXI-2 has the ability to automatically detect if it is installed in slot 0 of a VXIbus. The VXI-MXI-2 does not provide a power monitor or serial clock driver.

• DMA Controllers 1 and 2

The VXI-MXI-2 has two DMA controllers, which operate independently of each other. Each DMA controller can be programmed to move data from any source to any destination. The source and destination can be located on the VXIbus, MXIbus, or the VXI-MXI-2 module's onboard DRAM. The DMA controllers will direct the MXIbus and VXIbus master state machines to initiate data transfer cycles on their respective bus and can access the onboard DRAM directly. The DMA controllers allow different cycle types and even different data widths between the source and destination during the DMA transfer.

MXI-2 System Controller Functions

The VXI-MXI-2 has the ability to act as the MXI-2 system controller. When acting as the system controller, the VXI-MXI-2 provides the MXIbus arbiter, priority-selection daisy-chain driver, and bus timeout unit. The VXI-MXI-2 can automatically detect from the MXI-2 cable if it is the system controller.

VMEbus Control Signals Transceivers

These transceivers ensure that the VXI-MXI-2 meets the loading, driving, and timing requirements of the VMEbus specification for the various control signals.

• VMEbus Master State Machine

This state machine generates VMEbus master data transfer cycles when directed to do so by the MXI-2 slave state machine, thus allowing MXIbus cycles to map to the VXIbus. This state machine will also generate VMEbus master data transfer cycles when instructed to do so by one of the DMA controllers. The VXI-MXI-2 can generate D64, D32, D16, and D08(EO) single, block, and RMW cycles on the VXIbus in A32 and A24 space. All data transfers can also be generated in A16 space with the exception of D64 and block transfers. Two consecutive MXIbus slave cycles are required to generate a single D64 data transfer cycle. The VXI-MXI-2 will not generate unaligned VMEbus data transfers.

• MXI-2 Master State Machine

This state machine generates MXIbus master data transfer cycles when directed to do so by the VMEbus slave state machine, thus allowing VMEbus cycles to map to the MXIbus. This state machine will also generate MXIbus master data transfer cycles when instructed to do so by one of the DMA controllers. The VXI-MXI-2 can generate D64, D32, D16, and D08(EO) single, block, RMW, and synchronous burst cycles on the MXIbus in A32 and A24 space. All data transfers can also be generated in A16 space with the exception of D64, block, and synchronous burst transfers. A single VMEbus D64 data transfer is converted to two consecutive MXIbus data transfers. Synchronous burst MXIbus cycles can be generated only by the DMA controllers, not the VMEbus slave state machine. The MXI-2 master state machine also checks MXIbus parity on read data received and either returns a BERR* to the VMEbus cycle or stores an error status when a parity error is detected.

• MXI-2 Control Signals Transceivers These transceivers ensure that the VXI-MXI-2 meets the loading, driving, and timing requirements of the MXI-2 specification for the various control signals.

• VMEbus Slave State Machine This state machine monitors the output of the address decoders and extender window decoders and responds to VMEbus cycles that are intended for the VXI-MXI-2. Cycles that map to the Logical Address decoder access the VXI-MXI-2 registers, while cycles that map to the A24/A32 decoder access either the VXI-MXI-2 registers or the onboard DRAM SIMMs. Cycles that map through an extender window decoder are directed to the MXI-2 master state machine, effectively mapping the VMEbus cycle to the MXIbus. The VXI-MXI-2 can accept D32, D16, and D08(EO) single and RMW VMEbus cycles in A32, A24, and A16 space. The VXI-MXI-2 can also accept D64 and block VME cycles in A32 and A24 space. Unaligned VMEbus data transfers are treated as D32 data transfers.

• MXI-2 Slave State Machine

This state machine monitors the output of the address decoders and extender window decoders and responds to MXIbus cycles that are intended for the VXI-MXI-2. Cycles that map to the Logical Address decoder access the VXI-MXI-2 registers, while cycles that map to the A24/A32 decoder access either the VXI-MXI-2 registers or the onboard DRAM SIMMs. Cycles that map through an extender window decoder are directed to the VMEbus master state machine, effectively mapping the MXIbus cycle to the VMEbus. The VXI-MXI-2 can accept D32, D16, and D08(EO) single and RMW MXIbus cycles in A32, A24, and A16 space. The VXI-MXI-2 can also accept synchronous, D64, and block MXIbus cycles in A32 and A24 space. The MXI-2 slave state machine can also convert MXIbus synchronous and block cycles into single VMEbus cycles for cases where the destination VMEbus slave device does not support VMEbus block cycles. The MXI-2 slave state machine checks for MXIbus parity errors. If a parity error is detected during the address phase of a cycle, the VXI-MXI-2 ignores the cycle. If a parity error is detected during the data phase of a write cycle, the MXI-2 slave state machine responds with a BERR* on the MXIbus.

• VMEbus Bus Timeout Unit

The VXI-MXI-2 has a VMEbus Bus Timeout Unit (BTO), which terminates (with BERR*) any VMEbus cycle in which DTACK* or BERR* are not asserted in a prescribed amount of time after DS* is asserted. The duration of the timeout is programmably selectable in the range of 15 μs to 256 ms. Notice that the VXI-MXI-2 must be the sole bus timer of its VXIbus chassis even when not installed in Slot 0. This is because the bus timer should not terminate VMEbus cycles that map to the MXIbus. The MXI-2 bus timer is responsible for timing these cycles. Therefore, be sure to disable the BTO on all other modules in each mainframe that has a VXI-MXI-2.

• A24/A32 Decoder

This address decoder monitors the VXIbus and MXIbus for access to the VXI-MXI-2 A24/A32 memory space. All resources located on the VXI-MXI-2 are accessible in this region. The lowest 4 KB are directed to the VXI-MXI-2 registers while the remainder maps to the onboard DRAM SIMMs.

Logical Address Decoder

This address decoder monitors the VXIbus and MXIbus for A16 accesses to the VXI-MXI-2 VXIbus configuration space registers based on its logical address. A subset of the VXI-MXI-2 registers are accessible in this region, which conforms to VXI-6, the *VXIbus Mainframe Extender Specification*.

• MXI-2 Parity Check and Generation

The MXI-2 parity check/generation circuitry checks for even parity at any time that the VXI-MXI-2 is receiving the AD[31-0] signals. If parity is not even, the appropriate MXI-2 state machine is signaled. The MXI-2 master state machine is signaled for a parity error during the data phase of a MXIbus master read cycle while the MXI-2 slave state machine is signaled for a parity error during the address phase of any MXIbus slave cycle and the data phase of a MXIbus slave write cycle. Even parity is also generated and sent to the MXIbus with master address and write data as well as slave read data.

· VMEbus Address Transceivers

These transceivers ensure that the VXI-MXI-2 meets the loading, and Address Modifier driving, and timing requirements of the VMEbus specification for the A[31–1] and AM[5–0] signals.

 MXI-2 Address/Data **Transceivers**

These transceivers ensure that the VXI-MXI-2 meets the loading, and Address Modifier driving, and timing requirements of the MXI-2 specification for the AD[31–0], AM[4–0], and CONVERT* signals.

A32 Window

This address decoder monitors the VXIbus and MXIbus for A32 accesses that map to the opposite bus, and alerts the appropriate state machines when one occurs. This window behaves as defined in VXI-6, the VXIbus Mainframe Extender Specification.

A24 Window

This address decoder monitors the VXIbus and MXIbus for A24 accesses that map to the opposite bus, and alerts the appropriate state machines when one occurs. This window behaves as defined in VXI-6, the VXIbus Mainframe Extender Specification.

· A16 Window

This address decoder monitors the VXIbus and MXIbus for A16 accesses that map to the opposite bus, and alerts the appropriate state machines when one occurs. This window accepts cycles only within the lower 48 KB of A16 space. The upper 16 KB (VXIbus configuration space) cannot be mapped through the A16 window. This window behaves as defined in VXI-6, the VXIbus Mainframe Extender Specification.

· LA Window

This address decoder monitors the VXIbus and MXIbus for VXIbus configuration accesses (the upper 16 KB of A16 space) that map to the opposite bus and alerts the appropriate state machines when one occurs. This window behaves as defined in VXI-6, the VXIbus Mainframe Extender Specification.

• MXI-2 Terminate

The VXI-MXI-2 has onboard MXI-2 termination circuitry that automatically detects if it is at either cable end to terminate the MXIbus signals. The MXI-2 cable is designed to allow this. If the VXI-MXI-2 is a middle device on the MXIbus, the termination is disabled.

• VXI-MXI-2 Registers This logic block represents all registers on the VXI-MXI-2. The registers are accessible from either the VXIbus or the MXIbus. All registers are available in the first 4 KB of the VXI-MXI-2 A24/A32 memory space, while a subset is accessible in the VXI-MXI-2 VXIbus A16 configuration area.

• Onboard DRAM SIMMs

This logic block represents the two DRAM SIMM sockets on the VXI-MXI-2. If DRAM is installed, it will be accessible in the VXI-MXI-2 A24/A32 memory space that is not mapped to registers (above 4 KB).

• VMEbus Data Transceivers These transceivers ensure that the VXI-MXI-2 meets the loading, driving, and timing requirements of the VMEbus specification for the D[31–0] signals.

 VMEbus Interrupt and Utility Signal Transceivers These transceivers ensure that the VXI-MXI-2 meets the loading, driving, and timing requirements of the VMEbus specification for the IRQ*[7–1], SYSRESET*, SYSFAIL*, and ACFAIL* signals.

• Interrupt and Utility Signal Circuitry This circuitry handles mapping of the interrupt and utility signals between the VXIbus and MXIbus. The utility signals include SYSRESET*, SYSFAIL*, and ACFAIL*. This circuitry also generates interrupts from other conditions on the VXI-MXI-2 and allows generation of the utility signals.

• MXI-2 Interrupt and Utility Signal Transceivers

These transceivers ensure that the VXI-MXI-2 meets the loading, driving, and timing requirements of the MXI-2 specification for the IRQ*[7–1], SYSRESET*, SYSFAIL*, and ACFAIL* signals.

 VXIbus CLK10 and TTL & ECL Trigger Transceivers These transceivers ensure that the VXI-MXI-2 meets the loading, driving, and timing requirements of the VXIbus specification for the CLK10±, TTLTRIG[7–0], and ECLTRIG[1–0] signals.

• CLK10 and Trigger Circuitry This circuitry handles mapping of the CLK10 and TTL trigger lines between the VXIbus and MXIbus. CLK10 and TTL triggers, in addition to ECL triggers, can also be mapped to or from the front panel SMB connectors. This circuitry also allows the VXI-MXI-2 to source the TTL and ECL trigger lines and to generate an interrupt on various trigger conditions.

• MXI-2 CLK10 AND Trigger Transceivers These transceivers ensure that the VXI-MXI-2 meets the loading, driving, and timing requirements of the MXI-2 specification for the CLK10± and TRIGGER±[7–0] signals.

• SMB Transceivers

These transceivers are used for the front panel SMB signals EXT CLK, Trigger Out, and Trigger In. The VXI-MXI-2 can also terminate the Trigger In and EXT CLK (when receiving) signals with 50 Ω .

VXI-MXI-2 Configuration and Installation

This chapter contains the instructions to configure and install the C-size VXI-MXI-2 module. If you have a VXI-MXI-2/B, see Chapter 4, *VXI-MXI-2/B Configuration and Installation*.

Some features of the VXI-MXI-2 are not configurable with onboard switches or jumpers but are instead programmable. Refer to Chapter 7, *VXIplug&play for the VXI-MXI-2*, or Appendix B, *Programmable Configurations*, for a description of the programmable features.

Warning:

Electrostatic discharge can damage several components on your VXI-MXI-2 module. To avoid such damage in handling the module, touch the antistatic plastic package to a metal part of your VXI chassis before removing the VXI-MXI-2 from the package.

Configure the VXI-MXI-2

This section describes how to configure the following options on the VXI-MXI-2.

- VXIbus logical address
- VXIbus Slot 0/Non-Slot 0
- VXIbus local bus
- VXIbus CLK10 routing
- Trigger input termination
- MXIbus termination
- Configuration EEPROM
- Onboard DRAM

Figure 3-1 shows the VXI-MXI-2 as it would appear when facing the right side cover. The drawing shows the location and factory-default settings of most of the configuration switches and jumpers.

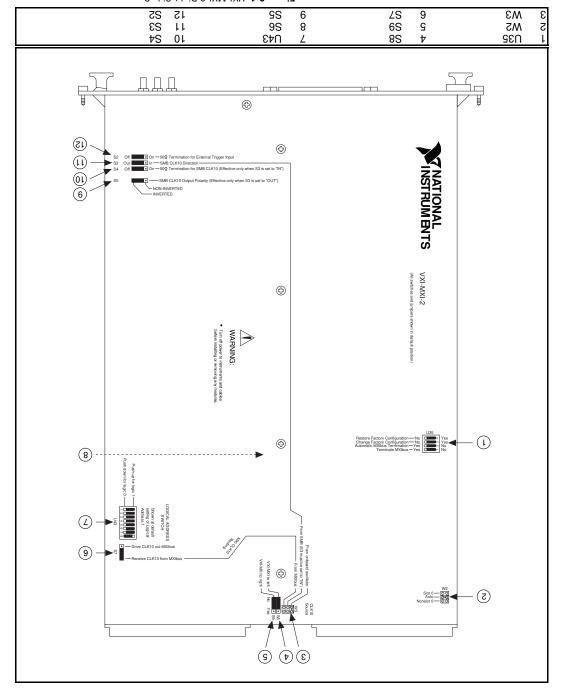


Figure 3-1. VXI-MXI-2 Right-Side Cover

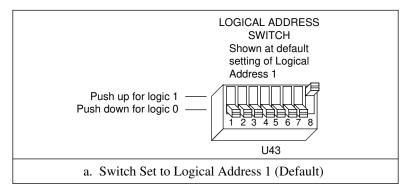
Removing the Metal Enclosure

The VXI-MXI-2 is housed in a metal enclosure to improve EMC performance and to provide easy handling. Because the enclosure includes cutouts to facilitate changes to the switch and jumper settings, it should not be necessary to remove it under normal circumstances.

However, it is necessary to remove the enclosure if you want to change the amount of DRAM installed on the VXI-MXI-2. Switch S6, which is directly related to the amount of DRAM you want to install, is also accessible only by removing the enclosure. If you will be making this change, remove the four screws on the top, the four screws on the bottom, and the five screws on the right side cover of the enclosure. Refer to the *Onboard DRAM* section later in this chapter for details about changing DRAM.

VXIbus Logical Address

Each device in a VXIbus/MXIbus system is assigned a unique number between 0 and 254. This 8-bit number, called the *logical address*, defines the base address for the VXI configuration registers located on the device. With unique logical addresses, each VXIbus device in the system is assigned 64 bytes of configuration space in the upper 16 KB of A16 space.


Logical address 0 is reserved for the Resource Manager in the VXIbus system. Because the VXI-MXI-2 cannot act as a Resource Manager, do not configure the VXI-MXI-2 with a logical address of 0.

Some VXIbus devices have *dynamically configurable* logical addresses. These devices have an initial logical address of hex FF or 255, which indicates that they can be dynamically configured. While the VXI-MXI-2 does support dynamic configuration of VXI devices within its mainframe, it is itself a *statically configured* device and is preset at the factory with a VXI logical address of 1.

Ensure that no other statically configurable VXIbus devices have a logical address of 1. If they do, change the logical address setting of either the VXI-MXI-2 or the other device so that every device in the system has a unique associated logical address.

You can change the logical address of the VXI-MXI-2 by changing the setting of the 8-bit DIP switch labeled *LOGICAL ADDRESS SWITCH* (location designator U43) on the panel. The down position of the DIP switch corresponds to a logic value of 0 and the up position corresponds to a logic value of 1. Verify that the VXI-MXI-2 does not have the same logical address as any other statically configured VXIbus device in your system. Remember that logical addresses hex 0 and FF are not allowed for the VXI-MXI-2. Also, when setting logical addresses, keep in mind the grouping requirements set by the system hierarchy. See Chapter 6, *System Configuration*, or VXI-6, *VXIbus Mainframe Extender Specification*, for more information on setting logical addresses on a multimainframe hierarchy.

Figure 3-2 shows switch settings for logical address hex 1 and C0.

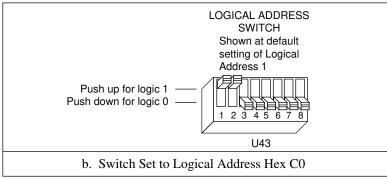
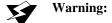



Figure 3-2. Logical Address Selection

VXIbus Slot O/Non-Slot O

The VXI-MXI-2 is configured at the factory to automatically detect if it is installed in Slot 0 of a VXIbus mainframe. With automatic Slot 0 detection, you can install the VXI-MXI-2 into any VXIbus slot.

You can manually configure the VXI-MXI-2 for either Slot 0 or Non-Slot 0 operation by defeating the automatic-detection circuitry. Use the three-position jumper W2 to select automatic Slot 0 detection, Slot 0, or Non-Slot 0 operation. Figure 3-3 shows these three settings.

Do not install a device configured for Slot 0 into another slot without first reconfiguring it to either Non-Slot 0 or automatic configuration. Neglecting to do this could result in damage to the device, the VXIbus backplane, or both.

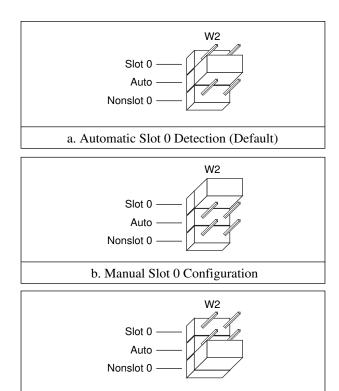
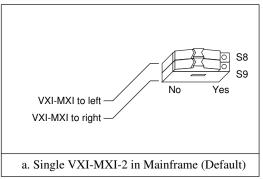
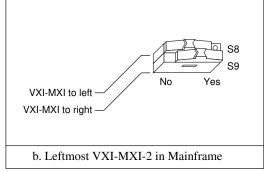


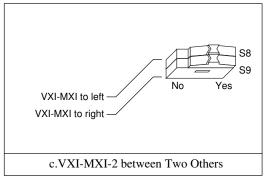
Figure 3-3. VXIbus Slot Configuration

c. Manual Nonslot 0 Configuration

When the VXI-MXI-2 is installed in Slot 0, it becomes the VMEbus System Controller. In this role, it has VMEbus Data Transfer Bus Arbiter circuitry that accepts bus requests on all four VMEbus request levels, prioritizes the requests, and grants the bus to the highest priority requester. As VMEbus System Controller, the VXI-MXI-2 also drives the 16 MHz VMEbus system clock by an onboard 16 MHz oscillator.

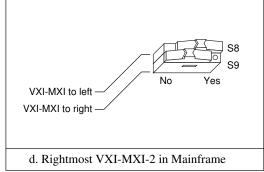

As required by the VXIbus specification, the VXI-MXI-2 drives the 10 MHz signal CLK10 on a differential ECL output when installed in Slot 0. When not installed in Slot 0, the VXI-MXI-2 only receives the CLK10 signal.

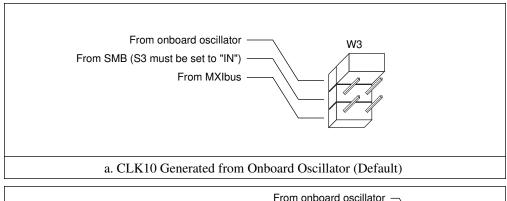

VXIbus Local Bus

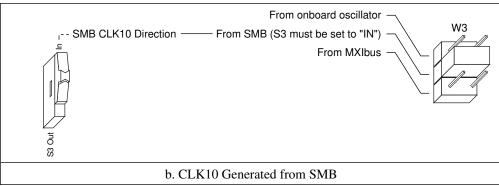

If you will be installing more than one VXI-MXI-2 in a single VXIbus mainframe, you must configure the boards to use the local bus. The VXI-MXI-2 uses the local bus to pass a signal to the other VXI-MXI-2 modules in the mainframe to disable the VMEbus bus timeout unit (BTO) during cycles that map to the MXIbus. Because the local bus is used, you need to install all VXI-MXI-2 modules for a single mainframe in adjacent slots.

You will use two switches on the VXI-MXI-2 to select its position in relation to any other VXI-MXI-2 module in the mainframe. Use switch S9 when there is a VXI-MXI-2 to the right (higher numbered slot). Use S8 when there is a VXI-MXI-2 to the left (lower numbered slot).

Figure 3-4 shows four configuration settings for a VXI-MXI-2. Figure 3-4a illustrates the default setting, which is for a single VXI-MXI-2 in a mainframe. Use the setting in Figure 3-4b for the VXI-MXI-2 located to the left of all others. Figure 3-4c shows the setting to use if the VXI-MXI-2 is between two others. Use the setting of Figure 3-4d for the VXI-MXI-2 located to the right of all others.




Figure 3-4. VXIbus Local Bus Configuration


Chapter 3

VXIbus CLK10 Routing

When the VXI-MXI-2 is installed in Slot 0 of your mainframe, it supplies the VXIbus CLK10 signal. The VXI-MXI-2 can use three different sources to generate this signal: an onboard oscillator, the external CLK SMB connector, and the MXIbus CLK10 signal. Use the three-position jumper W3 to select these options, as shown in Figure 3-5.

Notice that Figures 3-5b and 3-5c also show switches S3 and S7, respectively. You must configure these switches as shown when using the corresponding CLK10 source setting of W3.

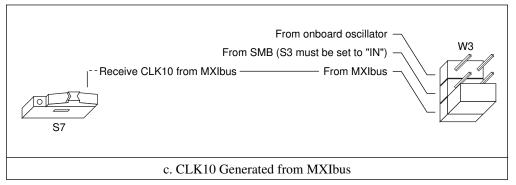


Figure 3-5. VXIbus CLK10 Routing

The VXI-MXI-2 can also be configured to drive the external CLK SMB signal from the VXIbus CLK10 signal. Switch S3 controls whether the VXI-MXI-2 drives or receives the external CLK SMB signal. If you change the S3 setting to drive CLK10 out the external CLK10 SMB connector, do not set the W3 jumper to receive the SMB CLK10 signal; instead use the settings shown in either Figure 3-5a or Figure 3-5c as appropriate.

When switch S3 is set so that the VXI-MXI-2 receives the SMB CLK10 signal, you have the option to add a 50 Ω termination to the signal by setting switch S4. S4 is unused—its setting does not matter—when S3 is configured to drive the external CLK SMB signal.

You can use an additional switch, S5, to control the polarity of the external CLK SMB signal when S3 is configured to drive it. S5 is unused—its setting does not matter—when S3 is configured to receive the external CLK SMB signal.

Figure 3-6 shows four configuration settings for the VXI-MXI-2. Figure 3-6a shows the default configuration, which is for driving the inverted external CLK SMB. Use the settings of Figure 3-6b to drive the noninverted external CLK SMB signal. Figure 3-6c illustrates the setting for receiving the external CLK SMB signal. Finally, you can configure the switches as shown in Figure 3-6d to receive the external CLK SMB signal with a 50 Ω termination.

Note: The settings of any switches shown with this pattern (\square) have no bearing on the configuration described in any of the following figures.

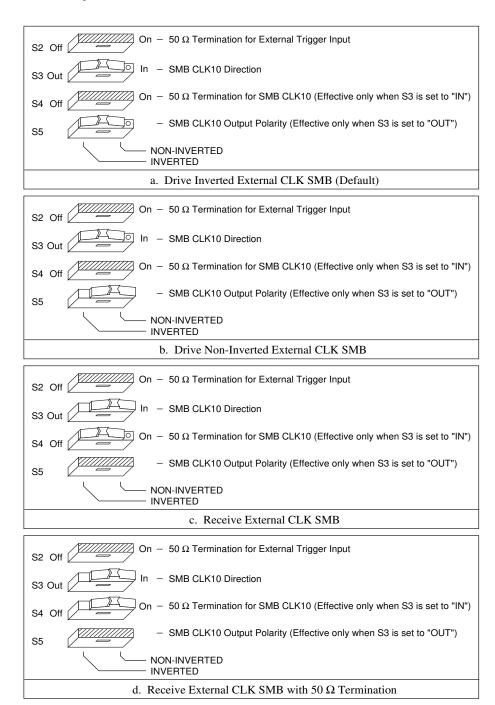
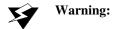



Figure 3-6. SMB CLK10 Settings

The VXI-MXI-2 can also drive or receive the MXIbus CLK10 signal. Switch S7 controls whether the VXI-MXI-2 drives MXIbus CLK10 from the VXIbus CLK10 or receives MXIbus CLK10. As shown earlier in Figure 3-5c, if W3 is configured to use the MXIbus CLK10 to generate the VXIbus CLK10 signal, switch S7 must be configured to receive MXIbus CLK10. This is shown again in Figure 3-7a below. If you change the S7 setting to drive CLK10 out the MXIbus, do not set the W3 jumper setting to receive the MXIbus CLK10; instead use the settings shown in Figure 3-5a or 3-5b as appropriate.

Do not configure more than one MXIbus device to drive the MXIbus CLK10. Having a second device driving MXIbus CLK10 could result in damage to the device.

Figure 3-7 shows the configuration settings for receiving and driving MXIbus CLK10, respectively.

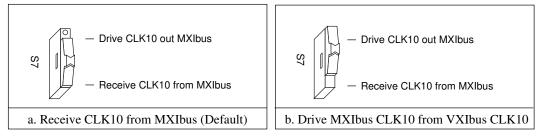
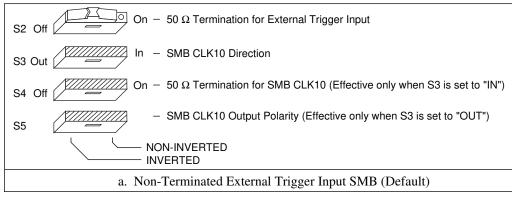



Figure 3-7. Receiving or Driving MXIbus CLK10

Trigger Input Termination

You can use switch S2 to terminate the external trigger input SMB with $50~\Omega$. Figure 3-8a shows the default setting for a nonterminated trigger input SMB. Use the setting of Figure 3-8b to terminate the trigger input SMB. Switch S2 is located above switches S3, S4, and S5, which have no effect on this configuration.

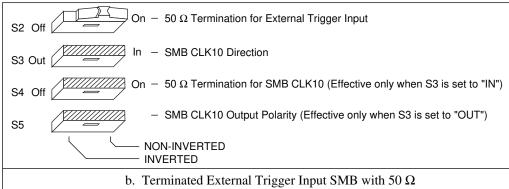


Figure 3-8. SMB Trigger Input Termination

The first and last MXIbus devices connected to the MXIbus—whether it is a single MXI-2 cable or daisy-chained MXI-2 cables—must terminate the MXIbus. Any MXIbus devices in the middle of a MXIbus daisy chain must *not* terminate the MXIbus.

Chapter 3

The VXI-MXI-2 automatically senses whether it is at either end of the MXIbus cable to terminate the MXIbus. You can manually control MXIbus termination by defeating the automatic circuitry. Use switches 1 and 2 of the four-position switch at location U35 to control whether MXIbus termination is automatic (Figure 3-9a), on (Figure 3-9b), or off (Figure 3-9c). The settings of switches 3 and 4 have no effect on MXIbus termination.

Use switch 2 of U35 to select whether you want the VXI-MXI-2 to automatically control termination of the MXIbus. Switch 1 of U35 lets you manually control whether to terminate the MXIbus when automatic termination is turned off. Switch 1 has no effect when switch 2 is set for automatic MXIbus termination; you must turn off automatic termination if you want to manually control termination.

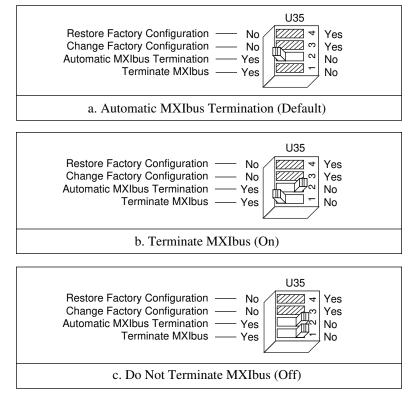


Figure 3-9. MXIbus Termination


Configuration EEPROM

The VXI-MXI-2 has an onboard EEPROM, which stores default register values that are loaded at power-on. The EEPROM is divided into two halves—a factory-configuration half, and a user-configuration half. Both halves were factory configured with the same configuration values so you can modify the user-configurable half, while the factory-configured half stores a back-up of the factory settings.

Use switches 3 and 4 of the four-position switch at location U35 to control the operation of the EEPROM. The Restore Factory Configuration switch (switch 4) causes the VXI-MXI-2 to boot off the factory-configured half instead of the user-modified settings. This is useful in the event that the user-configured half of the EEPROM becomes corrupted in such a way that the VXI-MXI-2 boots to an unusable state.

The Change Factory Configuration switch (switch 3 of U35) lets you change the factory-default configuration settings by permitting writes to the factory settings section of the EEPROM. This switch serves as a safety measure and should not be needed under normal circumstances. When this switch is off (its default setting) the factory configuration of the EEPROM is protected, so any writes to the factory area will be ignored. The factory area is protected regardless of the setting of switch 4 of U35.

Figure 3-10 shows the configuration settings for EEPROM operation. The settings of switches 1 and 2 have no effect on EEPROM configuration.

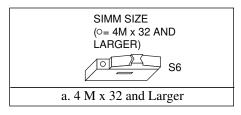

Terminate MXIbus -Yes No d. Boot from Factory Configuration (Factory Configuration Unprotected)

Figure 3-10. EEPROM Operation

The VXI-MXI-2 can accommodate up to two 1.35 in. DRAM SIMMs. Table 3-1 lists the SIMMS you can use. You can use 32-bit or 36-bit SIMMS since DRAM parity is not required. Because the VXI-MXI-2 supports only one organization at a time, all SIMMs installed must be of the same type. Use Bank 0 first when installing the SIMMs. This allows you to install up to 64 MB. The VXI-MXI-2 supports DRAM speeds of 80 ns or faster.

Chapter 3

Switch S6 is used to select the size of each SIMM. The SIMM sockets and S6 are accessible only by removing the right side cover. To access these components, remove the four screws on the top, the four screws on the bottom, and the five screws on the right-side cover of the metal enclosure. If the SIMMs are 4 M x 32 or larger, S6 should be in the OFF setting as shown in Figure 3-11a. For SIMMs *smaller* than 4 M x 32, use the ON setting as shown in Figure 3-11b.

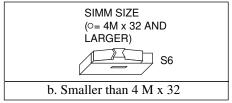


Figure 3-11. SIMM Size Configuration

Refer to Table 3-1 for how to adjust the switch (ON or OFF) for all supported DRAM configurations. Many of the DRAM options are available from National Instruments.

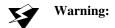
After installing DRAM on the VXI-MXI-2, you need to change the EEPROM settings to make the DRAM accessible. For information on how to do this, refer to either Chapter 7, VXIplug&play for the VXI-MXI-2, or Appendix B, Programmable Configurations.

Table 3-1. VXI-MXI-2 DRAM Configurations

Bank 0	Bank 1	Total DRAM	National Instruments Option	Switch Setting of S6
_	_	0		_
256 K x 32 or 256 K x 36	_	1 MB	1	ON
256 K x 32 or 256 K x 36	256 K x 32 or 256 K x 36	2 MB	_	ON
512 K x 32 or 512 K x 36	_	2 MB	_	ON
512 K x 32 or 512 K x 36	512 K x 32 or 512 K x 36	4 MB	_	ON
1 M x 32 or 1 M x 36	_	4 MB	YES	ON
1 M x 32 or 1 M x 36	1 M x 32 or 1 M x 36	8 MB	_	ON
2 M x 32 or 2 M x 36	_	8 MB	YES	ON
2 M x 32 or 2 M x 36	2 M x 32 or 2 M x 36	16 MB	_	ON
4 M x 32 or 4 M x 36	_	16 MB	YES	OFF
4 M x 32 or 4 M x 36	4 M x 32 or 4 M x 36	32 MB	_	OFF
8 M x 32 or 8 M x 36	_	32 MB	YES	OFF
8 M x 32 or 8 M x 36	8 M x 32 or 8 M x 36	64 MB	YES	OFF

Install the VXI-MXI-2

This section contains general installation instructions for the VXI-MXI-2. Consult the user manual or technical reference manual of your VXIbus mainframe for specific instructions and warnings.


1. Plug in your mainframe before installing the VXI-MXI-2. The power cord grounds the mainframe and protects it from electrical damage while you are installing the module.

Warning:

To protect both yourself and the mainframe from electrical hazards, the mainframe should remain off until you are finished installing the VXI-MXI-2 module.

- Remove or open any doors or covers blocking access to the mainframe slots.
- If you are installing the VXI-MXI-2 into a D-size mainframe, install a support designed for installing C-size boards in D-size mainframes. The VXI-MXI-2 has no P3 connector and cannot provide P3 Slot 0 control to VXI devices requiring this capability.

If the VXI-MXI-2 is not configured for automatic Slot 0 detection, be certain that the slot you select in your VXIbus mainframe matches the VXI-MXI-2 configuration as either a Slot 0 device or a Non-Slot 0 device. If you install your VXI-MXI-2 into a slot that does not correspond with the jumper setting, you risk damage to the VXI-MXI-2, the VXIbus backplane, or both.

- 4. Insert the VXI-MXI-2 in the slot you have selected by aligning the top and bottom of the board with the card-edge guides inside the mainframe. Slowly push the VXI-MXI-2 straight into the slot until its plug connectors are resting on the backplane receptacle connectors. Using slow, evenly distributed pressure, press the VXI-MXI-2 straight in until it seats in the expansion slot. The front panel of the VXI-MXI-2 should be even with the front panel of the mainframe.
- 5. Tighten the retaining screws on the top and bottom edges of the front panel.
- 6. Check the installation.
- 7. Connect the cables as described in the following section before restoring power.
- 8. Replace or close any doors or covers to the mainframe.

Connect the MXIbus Cable

There are two basic types of MXI-2 cables. MXI-2 cables can have either a single connector on each end or a single connector on one end and a double connector on the other end.

Connect the labeled end of the cable to the MXI-2 device that will be the MXIbus System Controller. Connect the other end of the cable to the other device. Be sure to tighten the screw locks to ensure proper pin connection.

Figure 3-12 shows a VXI system containing a VXI-MXI-2 module residing in Slot 0 of a VXIbus mainframe cabled to a device acting as the MXIbus System Controller. Notice that you can expand your system to include other devices by using an additional MXI-2 cable. However, in such a case the first cable needs to have a double connector on one end. You can use a cable with a single connector on each end to connect the last device on the MXIbus.

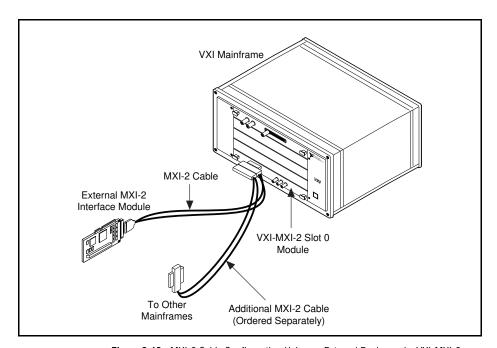
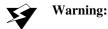


Figure 3-12. MXI-2 Cable Configuration Using an External Device and a VXI-MXI-2


When you have properly connected the MXI-2 cable, power on the VXIbus mainframe.

VXI-MXI-2/B Configuration and Installation

This chapter contains the instructions to configure and install the VXI-MXI-2/B module. If you have a C-size VXI-MXI-2, see Chapter 3, VXI-MXI-2 Configuration and Installation.

Some features of the VXI-MXI-2/B are not configurable with onboard switches or jumpers but are instead programmable. Refer to Chapter 7, *VXIplug&play for the VXI-MXI-2*, or Appendix B, *Programmable Configurations*, for a description of the programmable features.

Electrostatic discharge can damage several components on your VXI-MXI-2/B module. To avoid such damage in handling the module, touch the antistatic plastic package to a metal part of your VXI chassis before removing the VXI-MXI-2/B from the package.

Configure the VXI-MXI-2/B

This section describes how to configure the following options on the VXI-MXI-2/B.

- VXIbus logical address
- VXIbus Slot 0/Non-Slot 0
- VXIbus local bus
- VXIbus CLK10 routing
- Trigger input termination
- MXIbus termination
- Configuration EEPROM
- Onboard DRAM

Figure 4-1 shows the location and factory-default settings of most of the configuration switches and jumpers on the VXI-MXI-2/B.

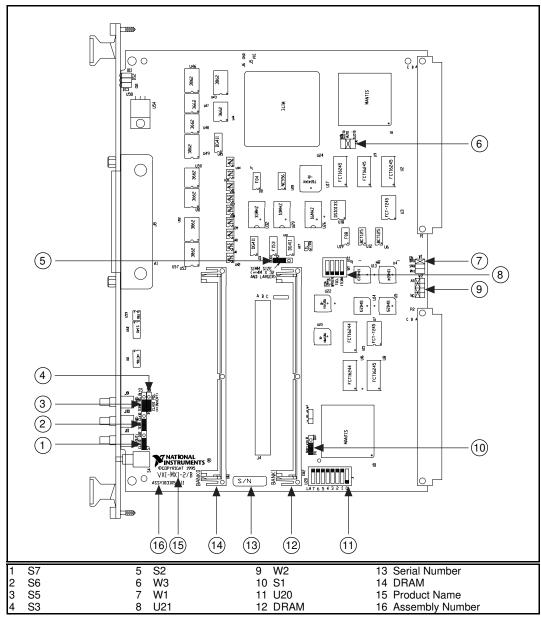


Figure 4-1. VXI-MXI-2/B Parts Locator Diagram

VXIbus Logical Address

Each device in a VXIbus/MXIbus system is assigned a unique number between 0 and 254. This 8-bit number, called the *logical address*, defines the base address for the VXI configuration registers located on the device. With unique logical addresses, each VXIbus device in the system is assigned 64 bytes of configuration space in the upper 16 KB of A16 space.

Chapter 4

Logical address 0 is reserved for the Resource Manager in the VXIbus system. Because the VXI-MXI-2/B cannot act as a Resource Manager, do not configure the VXI-MXI-2/B with a logical address of 0.

Some VXIbus devices have *dynamically configurable* logical addresses. These devices have an initial logical address of hex FF or 255, which indicates that they can be dynamically configured. While the VXI-MXI-2/B does support dynamic configuration of VXI devices within its mainframe, it is itself a *statically configured* device and is preset at the factory with a VXI logical address of 1.

Ensure that no other statically configurable VXIbus devices have a logical address of 1. If they do, change the logical address setting of either the VXI-MXI-2/B or the other device so that every device in the system has a unique associated logical address.

You can change the logical address of the VXI-MXI-2/B by changing the setting of the 8-bit DIP switch at location designator U20 (See Figure 4-1). The ON position of the DIP switch corresponds to a logic value of 0 and the OFF position corresponds to a logic value of 1. Verify that the VXI-MXI-2/B does not have the same logical address as any other statically configured VXIbus device in your system. Remember that logical addresses hex 0 and FF are not allowed for the VXI-MXI-2/B. Also, when setting logical addresses, keep in mind the grouping requirements set by the system hierarchy. See Chapter 6, *System Configuration*, or VXI-6, *VXIbus Mainframe Extender Specification*, for more information on setting logical addresses on a multimainframe hierarchy.

Figure 4-2 shows switch settings for logical address hex 1 and C0.

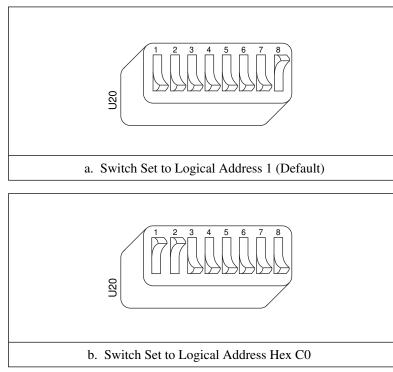
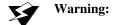



Figure 4-2. Logical Address Selection

VXIbus Slot O/Non-Slot O

The VXI-MXI-2/B is configured at the factory to automatically detect if it is installed in Slot 0 of a VXIbus mainframe. With automatic Slot 0 detection, you can install the VXI-MXI-2/B into any VXIbus slot.

You can manually configure the VXI-MXI-2/B for either Slot 0 or Non-Slot 0 operation by defeating the automatic-detection circuitry. Use the three-position jumper W3 to select automatic Slot 0 detection, Slot 0, or Non-Slot 0 operation. Figure 4-3 shows these three settings.

Do not install a device configured for Slot 0 into another slot without first reconfiguring it to either Non-Slot 0 or automatic configuration. Neglecting to do this could result in damage to the device, the VXIbus backplane, or both.

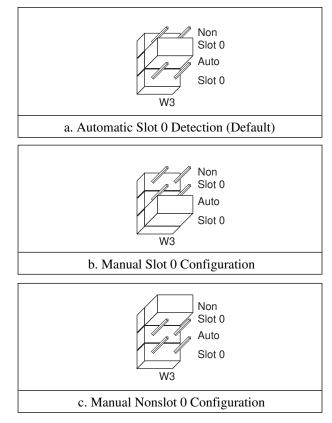


Figure 4-3. VXIbus Slot Configuration

When the VXI-MXI-2/B is installed in Slot 0, it becomes the VMEbus System Controller. In this role, it has VMEbus Data Transfer Bus Arbiter circuitry that accepts bus requests on all four VMEbus request levels, prioritizes the requests, and grants the bus to the highest priority requester. As VMEbus System Controller, the VXI-MXI-2/B also drives the 16 MHz VMEbus system clock by an onboard 16 MHz oscillator.

As required by the VXIbus specification, the VXI-MXI-2/B drives the 10 MHz signal CLK10 on a differential ECL output when installed in Slot 0. When not installed in Slot 0, the VXI-MXI-2/B only receives the CLK10 signal.

VXIbus Local Bus

If you will be installing more than one VXI-MXI-2 in a single VXIbus mainframe, you must configure the boards to use the local bus. The VXI-MXI-2/B uses the local bus to pass a signal to the other VXI-MXI-2 modules in the mainframe to disable the VMEbus bus timeout unit (BTO) during cycles that map to the MXIbus. Because the local bus is used, you need to install all VXI-MXI-2 modules for a single mainframe in adjacent slots.

You will use the jumper block at W2 to select its position in relation to any other VXI-MXI-2 module in the mainframe.

Figure 4-4 shows four configuration settings for a VXI-MXI-2/B. Figure 4-4a illustrates the default setting, which is for a single VXI-MXI-2/B in a mainframe. Use the setting in Figure 4-4b for the VXI-MXI-2/B located to the left of all others (lowest-numbered slot). Figure 4-4c shows the setting to use if the VXI-MXI-2/B is between two others. Use the setting of Figure 4-4d for the VXI-MXI-2/B located to the right of all others (highest-numbered slot).

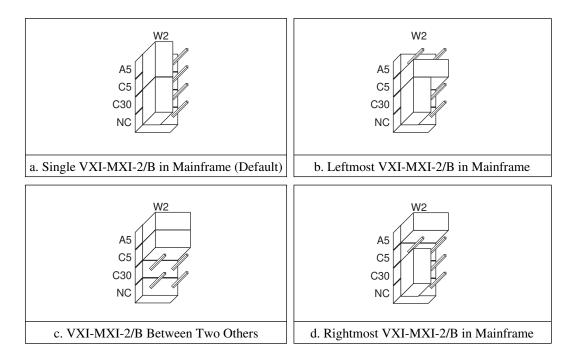


Figure 4-4. VXIbus Local Bus Configuration

VXIbus CLK10 Routing

When the VXI-MXI-2/B is installed in Slot 0 of your mainframe, it supplies the VXIbus CLK10 signal. The VXI-MXI-2/B can use three different sources to generate this signal: an onboard oscillator, the external CLK SMB connector, and the MXIbus CLK10 signal. Use the three-position jumper W1 to select these options, as shown in Figure 4-5.

Notice that Figures 4-5b and 4-5c also show switches S7 and S1, respectively. You must configure these switches as shown when using the corresponding CLK10 source setting of W1.

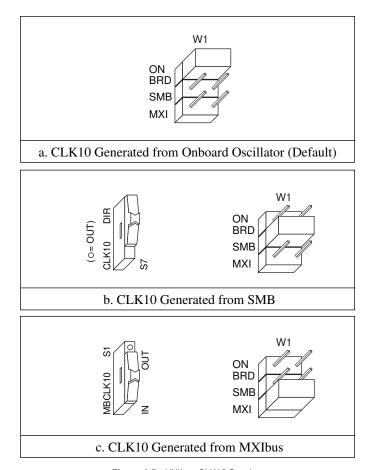
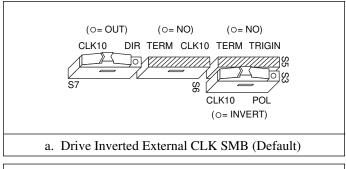
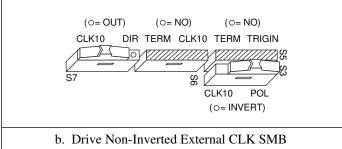


Figure 4-5. VXIbus CLK10 Routing


The VXI-MXI-2/B can also be configured to drive the external CLK SMB signal from the VXIbus CLK10 signal. Switch S7 controls whether the VXI-MXI-2/B drives or receives the external CLK SMB signal. If you change the S7 setting to drive CLK10 out the external CLK10 SMB connector, do not set the W1 jumper to receive the SMB CLK10 signal; instead use the settings shown in either Figure 4-5a or Figure 4-5c as appropriate.


When switch S7 is set so that the VXI-MXI-2/B receives the SMB CLK10 signal, you have the option to add a 50 Ω termination to the signal by setting switch S6. S6 is unused—its setting does not matter—when S7 is configured to drive the external CLK SMB signal.

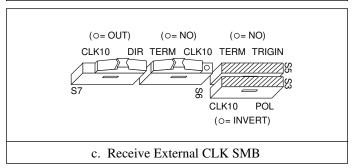

You can use an additional switch, S3, to control the polarity of the external CLK SMB signal when S7 is configured to drive it. S3 is unused—its setting does not matter—when S7 is configured to receive the external CLK SMB signal.

Figure 4-6 shows four configuration settings for the VXI-MXI-2/B. Figure 4-6a shows the default configuration, which is for driving the inverted external CLK SMB. Use the settings of Figure 4-6b to drive the noninverted external CLK SMB signal. Figure 4-6c illustrates the setting for receiving the external CLK SMB signal. Finally, you can configure the switches as shown in Figure 4-6d to receive the external CLK SMB signal with a 50 Ω termination.

Note: The settings of any switches shown with this pattern (\square) have no bearing on the configuration described in any of the following figures.

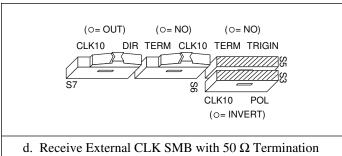
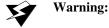



Figure 4-6. SMB CLK10 Settings

The VXI-MXI-2/B can also drive or receive the MXIbus CLK10 signal. Switch S1 controls whether the VXI-MXI-2/B drives MXIbus CLK10 from the VXIbus CLK10 or receives MXIbus CLK10. As shown earlier in Figure 4-5c, if W1 is configured to use the MXIbus CLK10 to generate the VXIbus CLK10 signal, switch S1 must be configured to receive MXIbus CLK10. This is shown again in Figure 4-7a below.

If you change the S1 setting to drive CLK10 out the MXIbus, do not set the W1 jumper setting to receive the MXIbus CLK10; instead use the settings shown in Figure 4-5a or 4-5b as appropriate.

Do not configure more than one MXIbus device to drive the MXIbus CLK10. Having a second device driving MXIbus CLK10 could result in damage to the device.

Figure 4-7 shows the configuration settings for receiving and driving MXIbus CLK10, respectively.

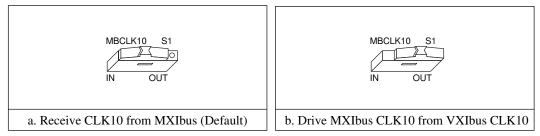


Figure 4-7. Receiving or Driving MXIbus CLK10

Trigger Input Termination

You can use switch S5 to terminate the external trigger input SMB with 50 Ω . Figure 4-8a shows the default setting for a nonterminated trigger input SMB. Use the setting of Figure 4-8b to terminate the trigger input SMB.

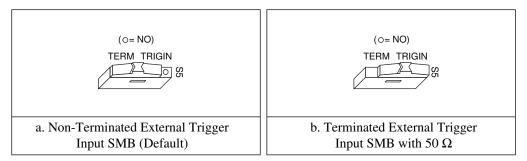


Figure 4-8. SMB Trigger Input Termination

MXIbus Termination

The first and last MXIbus devices connected to the MXIbus—whether it is a single MXI-2 cable or daisy-chained MXI-2 cables—must terminate the MXIbus. Any MXIbus devices in the middle of a MXIbus daisy chain must *not* terminate the MXIbus.

The VXI-MXI-2/B automatically senses whether it is at either end of the MXIbus cable to terminate the MXIbus. You can manually control MXIbus termination by defeating the automatic circuitry. Use switches 3 and 4 of the four-position switch at location U21 to control whether MXIbus termination is automatic (Figure 4-9a), on (Figure 4-9b), or off (Figure 4-9c). The settings of switches 1 and 2 have no effect on MXIbus termination.

Use switch 3 to select whether you want the VXI-MXI-2/B to automatically control termination of the MXIbus. Switch 4 lets you manually control whether to terminate the MXIbus when automatic termination is turned off. Switch 4 has no effect when switch 3 is set for automatic MXIbus termination; you must turn off automatic termination if you want to manually control termination.

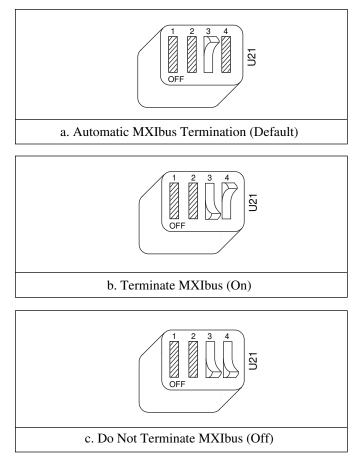
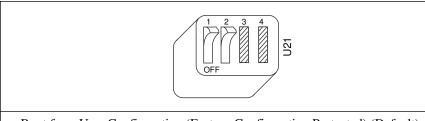
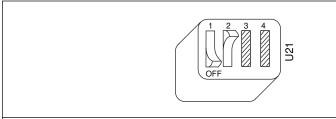


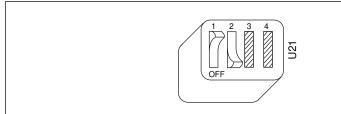
Figure 4-9. MXIbus Termination

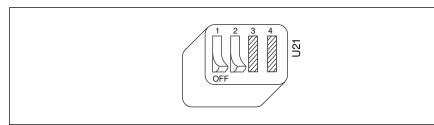

Configuration EEPROM

The VXI-MXI-2/B has an onboard EEPROM, which stores default register values that are loaded at power-on. The EEPROM is divided into two halves—a factory-configuration half, and a user-configuration half. Both halves were factory configured with the same configuration values so you can modify the user-configurable half, while the factory-configured half stores a back-up of the factory settings.


Use switches 1 and 2 of the four-position switch at location U21 to control the operation of the EEPROM. The Restore Factory Configuration switch (switch 1) causes the VXI-MXI-2/B to boot off the factory-configured half instead of the user-modified settings. This is useful in the event that the user-configured half of the EEPROM becomes corrupted in such a way that the VXI-MXI-2/B boots to an unusable state.

The Change Factory Configuration switch (switch 2) lets you change the factory-default configuration settings by permitting writes to the factory settings section of the EEPROM. This switch serves as a safety measure and should not be needed under normal circumstances. When this switch is off (its default setting) the factory configuration of the EEPROM is protected, so any writes to the factory area will be ignored. The factory area is protected regardless of the setting of switch 1.


Figure 4-10 shows the configuration settings for EEPROM operation. The settings of switches 3 and 4 have no effect on EEPROM configuration.


a. Boot from User Configuration (Factory Configuration Protected) (Default)

b. Boot from Factory Configuration (Factory Configuration Protected)

c. Boot from User Configuration (Factory Configuration Unprotected)

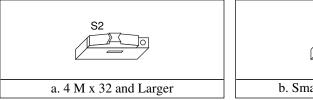

d. Boot from Factory Configuration (Factory Configuration Unprotected)

Figure 4-10. EEPROM Operation

Onboard DRAM

The VXI-MXI-2/B can accommodate up to two 1.35 in. DRAM SIMMs. Table 4-1 lists the SIMMS you can use. You can use 32-bit or 36-bit SIMMS since DRAM parity is not required. Because the VXI-MXI-2/B supports only one organization at a time, all SIMMs installed must be of the same type. Use Bank 0 first when installing the SIMMs. This allows you to install up to 64 MB. The VXI-MXI-2/B supports DRAM speeds of 80 ns or faster.

Switch S2 is used to select the size of each SIMM. If the SIMMs are 4 M x 32 or larger, S2 should be in the OFF setting as shown in Figure 4-11a. For SIMMs *smaller* than 4 M x 32, use the ON setting as shown in Figure 4-11b.

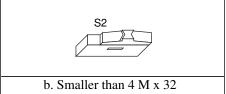


Figure 4-11. SIMM Size Configuration

Refer to Table 4-1 for how to adjust the switch (ON or OFF) for all supported DRAM configurations. Many of the DRAM options are available from National Instruments.

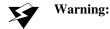
After installing DRAM on the VXI-MXI-2/B, you need to change the EEPROM settings to make the DRAM accessible. For information on how to do this, refer to either Chapter 7, VXIplug&play for the VXI-MXI-2, or Appendix B, Programmable Configurations.

Table 4-1. VXI-MXI-2/B DRAM Configurations

Bank 0	Bank 1	Total DRAM	National Instruments Option	Switch Setting of S2
_	_	0	_	_
256 K x 32 or 256 K x 36	_	1 MB	_	ON
256 K x 32 or 256 K x 36	256 K x 32 or 256 K x 36	2 MB	_	ON
512 K x 32 or 512 K x 36	_	2 MB	_	ON
512 K x 32 or 512 K x 36	512 K x 32 or 512 K x 36	4 MB	_	ON
1 M x 32 or 1 M x 36	_	4 MB	YES	ON
1 M x 32 or 1 M x 36	1 M x 32 or 1 M x 36	8 MB	_	ON
2 M x 32 or 2 M x 36	_	8 MB	YES	ON
2 M x 32 or 2 M x 36	2 M x 32 or 2 M x 36	16 MB	_	ON
4 M x 32 or 4 M x 36	_	16 MB	YES	OFF
4 M x 32 or 4 M x 36	4 M x 32 or 4 M x 36	32 MB	_	OFF
8 M x 32 or 8 M x 36	_	32 MB	YES	OFF
8 M x 32 or 8 M x 36	8 M x 32 or 8 M x 36	64 MB	YES	OFF

Install the VXI-MXI-2/B

This section contains general installation instructions for the VXI-MXI-2/B. Consult the user manual or technical reference manual of your VXIbus mainframe for specific instructions and warnings.


1. Plug in your mainframe before installing the VXI-MXI-2/B. The power cord grounds the mainframe and protects it from electrical damage while you are installing the module.

Warning:

To protect both yourself and the mainframe from electrical hazards, the mainframe should remain off until you are finished installing the VXI-MXI-2/B module.

Remove or open any doors or covers blocking access to the mainframe slots.

If the VXI-MXI-2/B is not configured for automatic Slot 0 detection, be certain that the slot you select in your VXIbus mainframe matches the VXI-MXI-2/B configuration as either a Slot 0 device or a Non-Slot 0 device. If you install your VXI-MXI-2/B into a slot that does not correspond with the jumper setting, you risk damage to the VXI-MXI-2/B, the VXIbus backplane, or both.

- 3. Insert the VXI-MXI-2/B in the slot you have selected by aligning the top and bottom of the board with the card-edge guides inside the mainframe. Slowly push the VXI-MXI-2/B straight into the slot until its plug connectors are resting on the backplane receptacle connectors. Using slow, evenly distributed pressure, press the VXI-MXI-2/B straight in until it seats in the expansion slot. The front panel of the VXI-MXI-2/B should be even with the front panel of the mainframe.
- 4. Tighten the retaining screws on the top and bottom edges of the front panel.
- 5. Check the installation.
- 6. Connect the cables as described in the following section before restoring power.
- 7. Replace or close any doors or covers to the mainframe.

Connect the MXIbus Cable

There are two basic types of MXI-2 cables. MXI-2 cables can have either a single connector on each end or a single connector on one end and a double connector on the other end.

Connect the labeled end of the cable to the MXI-2 device that will be the MXIbus System Controller. Connect the other end of the cable to the other device. Be sure to tighten the screw locks to ensure proper pin connection.

Figure 4-12 shows a VXI system containing a VXI-MXI-2/B module residing in Slot 0 of a VXIbus mainframe cabled to a device acting as the MXIbus System Controller. Notice that you can expand your system to include other devices by using an additional MXI-2 cable. However, in such a case the first cable needs to have a double connector on one end. You can use a cable with a single connector on each end to connect the last device on the MXIbus.

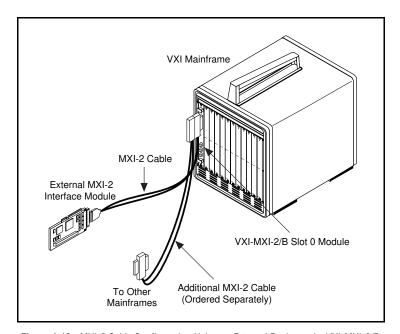


Figure 4-12. MXI-2 Cable Configuration Using an External Device and a VXI-MXI-2/B

When you have properly connected the MXI-2 cable, power on the VXIbus mainframe.

Chapter 5

Register Descriptions

This chapter contains detailed information on some of the VXI-MXI-2 registers, which you can use to configure and control the module's operation. Some of these registers are a subset of the VXI-MXI-2 register set, which is accessible in VXIbus configuration (A16) space, while others are accessible only in the lower 4 KB of the VXI-MXI-2 module's A24/A32 memory space. All registers are accessible from either the MXIbus or VXIbus.

If you are using a multiframe VXIbus Resource Manager application, you may not need the information provided in this chapter.

Hard and Soft Reset

Each register description in this chapter indicates which bits are affected by a hard and/or soft reset. A *hard* reset occurs when the mainframe is powered on and when the VMEbus SYSRESET* signal is asserted. A *soft* reset occurs when the RESET bit in the VXIbus Control Register (VCR) is written with a 1 while the VXI-MXI-2 is not in the PASSED state. The VXI-MXI-2 enters the PASSED state shortly after a hard reset and cannot be put into the soft reset state afterwards. The PASSED bit in the VXIbus Status Register (VSR) indicates when the VXI-MXI-2 is in the PASSED state.

Register Description Format

A detailed description of each register follows. Each register description shows a diagram of the register with the most significant bit (bit 31 for 32-bit registers, or bit 15 for 16-bit registers) shown on the upper left, and the least significant bit (bit 0) at the lower right.

The upper 16 bits of a 32-bit register are accessed during a 16-bit cycle to the offset of the register, while the lower 16 bits are accessed during a 16-bit cycle to the offset of the register plus 2. During 8-bit cycles to a 32-bit register, the upper eight bits are accessible at the offset of the register, and the lower eight bits are accessible at the offset of the register plus 3, with the two middle bytes accessible at the offset of the register plus 1 and 2, respectively. The upper eight bits of a 16-bit register are accessed during an 8-bit cycle

to the offset of the register, while the lower eight bits are accessed during an 8-bit cycle to the offset of the register plus 1.

A square is used to represent each bit. Each bit is labeled with a name inside its square. An asterisk (*) after a bit name indicates that the bit is active low.

VXIbus Configuration Registers

Table 5-1 is a register map of the VXI-MXI-2 register subset, which is accessible in VXIbus configuration space. The table gives the mnemonic, offset from the base address, access type (read only, write only, or read/write), access size, and register name.

To access a register in A16 space, the offset given must be added to a base address which can be derived from the following equation:

$$base\ address = C000\ hex + (40\ hex * LA)$$

where LA is the logical address of the VXI-MXI-2 being accessed.

For example, to access the VDTR (VXIbus Device Type Register) on a VXI-MXI-2 configured to be Logical Address 1, the base address would be C040 hex and the VDTR would be located at C042 hex, since the VDTR is at offset 2.

Use only the access sizes given in Table 5-1 when accessing each register. For convenience, the access size is repeated in each register description. Because the table is organized with 16 bits per row, accessing any register with a 32-bit access will actually access two of the registers (except in the case of the VIARx registers). Check the **Access Size** column in Table 5-1 to see which registers allow 32-bit accesses.

Mnemonic	Offset (Hex)	Access Type	Access Size	Register Name
VIDR	0	Read Only	32/16/8 bit	VXIbus ID
VDTR	2	Read Only	16/8 bit	VXIbus Device Type
VSR/ VCR	4	Read Only/ Write Only	32/16/8 bit	VXIbus Status/ VXIbus Control
VOR	6	Read/Write	16/8 bit	VXIbus Offset
VMIDR	8	Read/Write	16/8 bit	VXIbus MODID
VWR0	A	Read/Write	16/8 bit	Extender LA Window

Table 5-1. VXI-MXI-2 VXIbus Configuration Register Map

 Table 5-1.
 VXI-MXI-2 VXIbus Configuration Register Map (Continued)

Mnemonic	Offset (Hex)	Access Type	Access Size	Register Name
VWR1	С	Read/Write	32/16/8 bit	Extender A16 Window
VWR2	Е	Read/Write	16/8 bit	Extender A24 Window
VWR3	10	Read/Write	16/8 bit	Extender A32 Window
VICR	12	Read/Write	16/8 bit	VXIbus Interrupt Configuration
VTCR	14	Read/Write	16/8 bit	VXIbus TTL Trigger Configuration
	16			Reserved
VUCR	18	Read/Write	16/8 bit	VXIbus Utility Configuration
	1A			Reserved
	1C			Reserved
VSCR	1E	Read Only	16/8 bit	VXIbus Subclass
VMSR/ VMCR	20	Read Only/ Write Only	16/8 bit	VXI-MXI-2 Status/ VXI-MXI-2 Control
VLR	22	Read/Write	16/8 bit	VXIbus Lock
	24			Reserved
VLAR/ VTDR	26	Read Only/ Write Only	16/8 bit	VXIbus Logical Address/ VXIbus Trigger Drive
VTMSR	28	Read Only	16/8 bit	VXIbus Trigger Mode Select
VISTR/ VICTR	2A	Read Only/ Write Only	16/8 bit	VXIbus Interrupt Status/ VXIbus Interrupt Control
VSIDR	2C	Read/Write	16/8 bit	VXIbus Status ID Register
VMTCR	2E	Read/Write	16/8 bit	VXI-MXI-2 Trigger Control
	30			Reserved
VIAR1	32	Read Only	16/8 bit	VXIbus IACK 1
VIAR2	34	Read Only	32/16/8 bit	VXIbus IACK 2
VIAR3	36	Read Only	16/8 bit	VXIbus IACK 3
VIAR4	38	Read Only	32/16/8 bit	VXIbus IACK 4
VIAR5	3A	Read Only	16/8 bit	VXIbus IACK 5
VIAR6	3C	Read Only	32/16/8 bit	VXIbus IACK 6
VIAR7	3E	Read Only	16/8 bit	VXIbus IACK 7

VXIbus ID Register (VIDR)

VXIbus Configuration Offset: 0 (hex)

Attributes: Read Only 32, 16, 8-bit accessible

_	15	14	13	12	11	10	9	8
	DEVCLASS[1]	DEVCLASS[0]	ADSPC[1]	ADSPC[0]	MANID[11]	MANID[10]	MANID[9]	MANID[8]
	7	6	5	4	3	2	1	0
	MANID[7]	MANID[6]	MANID[5]	MANID[4]	MANID[3]	MANID[2]	MANID[1]	MANID[0]

This register contains information about the VXI-MXI-2. You can determine the device class, the address spaces in which the VXI-MXI-2 has operational registers, and the manufacturer ID of the VXI-MXI-2. This register conforms to the VXIbus specification. When accessed with a 32-bit cycle, the bits of this register appear on bits 31 to 16 along with the VXIbus Device Type Register (VDTR) on bits 15 to 0. Hard and soft resets have no effect on this register.

Bit	Mnemonic	Description
15-14	DEVCLASS[1:0]	Device Class
		These bits return 01 (binary) to indicate that the VXI-MXI-2 is an Extended Class device.
13-12	ADSPC[1:0]	Address Space
		These bits indicate the address spaces in which the VXI-MXI-2 has operational registers. These bits return 00 (binary) when the VXI-MXI-2 is configured for A16/A24 space or 01 (binary) when configured for A16/A32 space. Refer to Chapter 7, VXIplug&play for the VXI-MXI-2, or Appendix B, Programmable Configurations, for information on configuring the address space of the VXI-MXI-2.
11-0	MANID[11:0]	Manufacturer ID
		These bits return FF6 (hex) to indicate that the manufacturer of the VXI-MXI-2 is National Instruments.

VXIbus Device Type Register (VDTR)

VXIbus Configuration Offset: 2 (hex)

Attributes: Read Only 16, 8-bit accessible

15	14	13	12	11	10	9	8
REQMEM[3]	REQMEM[2]	REQMEM[1]	REQMEM[0]	MODEL[11]	MODEL[10]	MODEL[9]	MODEL[8]
7	6	5	4	3	2	1	0
MODEL[7]	MODEL[6]	MODEL[5]	MODEL[4]	MODEL[3]	MODEL[2]	MODEL[1]	MODEL[0]

This register contains information about the VXI-MXI-2 that indicates the amount of required address space and identifies the model code of the VXI-MXI-2. This register conforms to the VXIbus specification. Hard and soft resets have no effect on this register.

Bit	Mnemonic	Description
15-12	REQMEM[3:0]	Required Memory
		These bits determine the amount of memory space that will be requested by the VXI-MXI-2 in either A24 or A32 address space as determined by the Address Space bits (ADSPC[1:0]) in the VXIbus ID Register (VIDR). The amount of space requested will be 256 ^{ADSPC[1:0]} * 2 ^(23 - REQMEM[3:0]) bytes. Refer to Chapter 7, VXIplug&play for the VXI-MXI-2, or Appendix B, Programmable Configurations, for information on configuring the required memory of the VXI-MXI-2.
11-0	MODEL[11:0]	Model Code
		These bits return a unique code assigned to the VXI-MXI-2 by National Instruments. To meet the VXIbus specification requirement that a Slot 0 device's model code be in the range 0 to FF (hex), these bits return 0EA (hex)—or 0E8 (hex) for the VXI-MXI-2/B—when in slot 0, and FEA (hex)—or FE8 (hex) for the VXI-MXI-2/B—when not in slot 0.

VXIbus Status Register (VSR)

VXIbus Configuration Offset: 4 (hex)

Attributes: Read Only 32, 16, 8-bit accessible

15	14	13	12	11	10	9	8
A24/A32 ACTIVE	MODID*	EDTYPE[3]	EDTYPE[2]	EDTYPE[1]	EDTYPE[0]	X	ACCDIR
7	6	5	4	3	2	1	0
VERSION[3]	VERSION[2]	VERSION[1]	VERSION[0]	READY	PASSED	SFINH	RESET

This register contains status information about the VXI-MXI-2. This register conforms to the VXIbus specification. When accessed with a 32-bit cycle, the bits of this register appear on bits 31 to 16 along with the VXIbus Offset Register (VOR) on bits 15 to 0.

Bit	Mnemonic	Description
15	A24/A32 ACTIVE	A24/A32 Active
		This bit reflects the state of the A24/A32 ENABLE bit in the VXIbus Control Register (VCR). A 1 indicates that the local A24/A32 registers and memory can be accessed.
14	MODID*	MODID Line Status
		This bit returns the status of the VXI-MXI-2 MODID line. A 0 indicates the VXI-MXI-2 is being selected (the MODID line is active).
13-10	EDTYPE[3:0]	Extended Device Type Class
		These bits provide information about the additional capabilities of the VXI-MXI-2 as determined by optional configurations or daughter boards. These bits return E (hex) on the standard VXI-MXI-2 and are not affected by hard or soft resets.
9	X	Reserved
		This is a reserved bit. The value it returns is meaningless.

This bit returns a 1 when it is read from the MXIbus. When this bit is read from the VXIbus

it returns a 0.

7-4 VERSION[3:0] Version Number

These bits indicate the revision of the VXI-MXI-2 as shown below. These bits are not affected by hard or soft resets.

VERSION (3:0) Value (Hex)	VXI-MXI-2 Revision
F	A
Е	В
D	С
С	D
В	Е
A	F

3 READY	Ready
---------	-------

This bit becomes 1 shortly after a hard reset to indicate that the VXI-MXI-2 is ready to execute all of its functionality. This bit is not affected by a soft reset.

PASSED Passed

This bit becomes 1 shortly after a hard reset to indicate that the VXI-MXI-2 has completed its power-on initialization sequence. The VXI-MXI-2 asserts the SYSFAIL* line on the VXIbus after a hard reset until this bit becomes 1. This bit is not affected by a soft reset.

1 SFINH Sysfail Inhibit

This bit reflects the state of the SFINH bit in the

VXIbus Control Register (VCR).

0 RESET Soft Reset

This bit reflects the state of the RESET bit in the

VXIbus Control Register (VCR).

2

Bit

VXIbus Control Register (VCR)

VXIbus Configuration Offset: 4 (hex)

Mnemonic

Attributes: Write Only 32, 16, 8-bit accessible

15	14	13	12	11	10	9	8
A24/A32 ENABLE	X	X	X	X	X	X	Х
7	6	5	4	3	2	1	0
X	X	X	X	X	X	SFINH	RESET

This register provides various control bits for the VXI-MXI-2. This register conforms to the VXIbus specification. When accessed with a 32-bit cycle, the bits of this register appear on bits 31 to 16 along with the VXIbus Offset Register (VOR) on bits 15 to 0.

Description

Dit	MINEHIOLIC	Description
15	A24/A32 ENABLE	A24/A32 Enable
		Writing a 1 to this bit enables the A24/A32 address decoding on the VXI-MXI-2. When this bit is 0 the VXI-MXI-2 does not respond to accesses to its onboard A24/A32 resources. This bit is cleared on a hard reset and is not affected by a soft reset.
14-2	X	Reserved
		These bits are reserved. Write each of these bits with 1 when writing to the VCR.
1	SFINH	Sysfail Inhibit
		Writing a 1 to this bit disables the VXI-MXI-2 from asserting the SYSFAIL* line due to its PASSED bit in the VXIbus Status Register (VSR) being clear. The VXI-MXI-2 is still able to assert SYSFAIL* if the DSYSFAIL bit in the VXI-MXI-2 Control Register (VMCR) is set or if SYFAIL* is mapped from the MXIbus to the VXIbus regardless of the state of this bit. This bit is cleared on a hard reset and is not affected by a soft reset.

Reset

Writing a 1 to this bit while the PASSED bit in the VXIbus Status Register (VSR) is clear forces the VXI-MXI-2 into the Soft Reset state. The VXI-MXI-2 cannot be put in the Soft Reset state once the PASSED bit becomes 1. When this bit is 0, the VXI-MXI-2 is in the normal operation state. This bit is cleared on a hard reset.

Chapter 5

VXIbus Offset Register (VOR)

VXIbus Configuration Offset: 6 (hex)

Attributes: Read/Write 16, 8-bit accessible

15	14	13	12	11	10	9	8
OFFSET[15]	OFFSET[14]	OFFSET[13]	OFFSET[12]	OFFSET[11]	OFFSET[10]	OFFSET[9]	OFFSET[8]
7	6	5	4	3	2	1	0
OFFSET[7]	OFFSET[6]	OFFSET[5]	OFFSET[4]	OFFSET[3]	OFFSET[2]	OFFSET[1]	OFFSET[0]

This register determines the base address on the VXIbus and the MXIbus at which to locate the VXI-MXI-2 module's A24/A32 resources. This register conforms to the VXIbus specification.

Bit	Mnemonic	Description
15-0	OFFSET[15:0]	VXIbus Offset

These bits define the A24 or A32 base address at which the VXI-MXI-2 will locate its registers and memory. These bits correspond to VXIbus address lines 23 through 8 when the VXI-MXI-2 is configured for A24, and address lines 31 through 16 when configured for A32. The REQMEM[3:0] bits in the VXIbus Device Type Register (VDTR) determine the size of the VXI-MXI-2 module's VXIbus memory space by controlling how many bits of OFFSET[15:0] are used. The VXI-MXI-2 module's A24/A32 Decoder compares the REQMEM[3:0] + 1 most significant bits of OFFSET[15:0] to their corresponding address lines and responds to cycles that match. The remainder of the OFFSET[15:0] bits are ignored. These bits are cleared by a hard reset and are not affected by a soft reset.

VXIbus MODID Register (VMIDR)

VXIbus Configuration Offset: 8 (hex)

Attributes: Read/Write 16, 8-bit accessible

15	14	13	12	11	10	9	8
1	1	OUTEN	MODID[12]	MODID[11]	MODID[10]	MODID[9]	MODID[8]
7	6	5	4	3	2	1	0
MODID[7]	MODID[6]	MODID[5]	MODID[4]	MODID[3]	MODID[2]	MODID[1]	MODID[0]

This register provides the status of the VXIbus MODID signals when the VXI-MXI-2 is installed in slot 0. It also controls the assertion of the MODID signals. This register conforms to the VXIbus Mainframe Extender specification.

Bit	Mnemonic	Description
15-14	1	Reserved
		These bits are reserved. They return 11 (binary) when the VMIDR is read. Any value can be written to these bits when writing the VMIDR.
13	OUTEN	MODID Output Enable
		Writing a 1 to this bit enables the VXI-MXI-2 module's MODID drivers. When this bit is cleared, the VXI-MXI-2 does not drive the MODID lines. You should set this bit only when the VXI-MXI-2 is installed in slot 0. This bit is cleared by a hard reset and is not affected by a soft reset.
12-0	MODID[12:0]	MODID Lines
		These bits return the status of the 13 VXIbus MODID lines when read. When OUTEN is set, setting one of these bits drives the corresponding MODID line high, while clearing one of these bits drives the corresponding MODID line low. These bits are not affected by hard and soft resets.

Extender Logical Address Window Register (VWR0)

VXIbus Configuration Offset: A (hex)

Attributes: Read/Write 16, 8-bit accessible

15	14	13	12	11	10	9	8
0	LAEN	LADIR	1	1	LASIZE[2]	LASIZE[1]	LASIZE[0]
7	6	5	4	3	2	1	0
LABASE[7]	LABASE[6]	LABASE[5]	LABASE[4]	LABASE[3]	LABASE[2]	LABASE[1]	LABASE[0]

You can use this register to control the mapping of VXIbus configuration space between the VXIbus and the MXIbus. When programming this register, you do not need to consider the VXIbus configuration space that the VXI-MXI-2 itself requires. This is because the Logical Address Decoder has a higher priority than VWR0 and the VXI-MXI-2 will respond to its configuration accesses from both the VXIbus and the MXIbus. This register conforms to the VXIbus Mainframe Extender specification.

This register takes on a different form when the CMODE bit in the VXI-MXI-2 Control Register (VMCR) is set. This different form does not comply with the VXIbus Mainframe Extender specification and the CMODE bit should not be set when using a VXIbus multiframe Resource Manager. For more information on the CMODE bit, refer to the VMCR register description.

To accommodate 8-bit masters that write to this register, the window is not enabled until the lower byte of the register is written. Therefore, 8-bit masters should write the upper byte first, followed by the lower byte.

Bit	Mnemonic	Description
15	0	Reserved
		This bit is reserved and returns 0 when read. This bit can be written with any value.
14	LAEN	Extender Logical Address Window Enable
		Writing a 1 to this bit enables mapping of VXIbus configuration space through the Extender Logical Address Window. When this bit is cleared, no VXIbus configuration accesses are mapped between the VXIbus and the MXIbus. This bit is cleared by a hard reset and is not affected by a soft reset.

13	LADIR	Extender Logical Address Window Direction
		When this bit is set, the address range defined by LASIZE[2:0] and LABASE[7:0] applies to MXIbus cycles that are mapped in to VXIbus cycles (inward cycles). When this bit is cleared, the range applies to VXIbus cycles that are mapped out to MXIbus cycles (outward cycles). The complement of the defined range is mapped in the opposite direction. This bit is cleared by a hard reset and is not affected by a soft reset.
12-11	1	Reserved
		These bits are reserved. They return 11 (binary) when the VWR0 is read. These bits can be written with any value.
10-8	LASIZE[2:0]	Extender Logical Address Window Size
		These bits define the size of the range of logical addresses that map through the Extender Logical Address Window. They specify the number of address lines that are compared to the LABASE[7:0] bits when determining if a VXIbus configuration access is in the mapped range. The LASIZE[2:0] most significant bits of LABASE[7:0] are compared, while the remaining bits are ignored. Thus, the number of logical addresses in the range mapped is $2^{8\text{-LASIZE}[2:0]}$. These bits are cleared by a hard reset and are not affected by a soft reset.
7-0	LABASE[7:0]	Extender Logical Address Window Base
		These bits define the base address of the range of logical addresses that map through the Extender Logical Address Window. They correspond to address lines 13 through 6, which effectively

affected by a soft reset.

makes them the logical address lines. These bits can be thought of as the *base logical address* of the range that maps through the VXI-MXI-2. These bits are cleared by a hard reset and are not

Extender A16 Window Register (VWR1)

VXIbus Configuration Offset: C (hex)

Attributes: Read/Write 32, 16, 8-bit accessible

_	15	14	13	12	11	10	9	8
	0	A16EN	A16DIR	1	1	A16SIZE[2]	A16SIZE[1]	A16SIZE[0]
	7	6	5	4	3	2	1	0
	A16BASE[7]	A16BASE[6]	A16BASE[5]	A16BASE[4]	A16BASE[3]	A16BASE[2]	A16BASE[1]	A16BASE[0]

You can use this register to control the mapping of VMEbus A16 space between the VXIbus and the MXIbus. Only the lower three quarters of A16 space can be mapped using this register, because the upper one quarter is VXIbus configuration space, which must be mapped through VWR0. This register conforms to the VXIbus Mainframe Extender specification.

This register takes on a different form when the CMODE bit in the VXI-MXI-2 Control Register (VMCR) is set. This different form does not comply with the VXIbus Mainframe Extender specification, and the CMODE bit should not be set when using a VXIbus multiframe Resource Manager. For more information on the CMODE bit, refer to the VMCR register description.

When accessed with a 32-bit cycle, the bits of this register appear on bits 31 to 16 along with the Extender A24 Window Register (VWR2) on bits 15 to 0. To accommodate 8-bit masters that write to this register, the window is not enabled until the lower byte of the register is written. Therefore, 8-bit masters should write the upper byte first, followed by the lower byte.

Bit	Mnemonic	Description
15	0	Reserved
		This bit is reserved and returns 0 when read. This bit can be written with any value.
14	A16EN	Extender A16 Window Enable
		Writing a 1 to this bit enables mapping of VMEbus A16 space through the Extender A16 Window. When this bit is cleared, no VMEbus A16 accesses are mapped between the VXIbus and the MXIbus. This bit is cleared by a hard reset and is not affected by a soft reset.

13	A16DIR

Extender A16 Window Direction

When this bit is set, the address range defined by A16SIZE[2:0] and A16BASE[7:0] applies to MXIbus cycles that are mapped in to VXIbus cycles (inward cycles). When this bit is cleared, the range applies to VXIbus cycles that are mapped out to MXIbus cycles (outward cycles). The complement of the defined range is mapped in the opposite direction. This bit is cleared by a hard reset and is not affected by a soft reset.

12-11 1

Reserved

These bits are reserved. They return 11 (binary) when the VWR1 is read. These bits can be written with any value.

10-8 A16SIZE[2:0]

Extender A16 Window Size

These bits define the size of the range of A16 addresses that map through the Extender A16 Window. They specify the number of address lines that are compared to the A16BASE[7:0] bits when determining if a VMEbus A16 access is in the mapped range. The A16SIZE[2:0] most significant bits of A16BASE[7:0] are compared, while the remaining bits are ignored. Thus, the number of A16 addresses in the range mapped is 256 * 2^{8-A16SIZE[2:0]}. These bits are cleared by a hard reset and are not affected by a soft reset.

7-0 A16BASE[7:0]

Extender A16 Window Base

These bits define the base address of the range of A16 addresses that map through the Extender A16 Window. They correspond to address lines 15 through 8 (the eight most significant address lines used in VMEbus A16 space). No part of the upper one quarter of A16 space will be mapped through the Extender A16 Window regardless of the size and base programmed. These bits are cleared by a hard reset and are not affected by a soft reset.

Extender A24 Window Register (VWR2)

VXIbus Configuration Offset: E (hex)

Attributes: Read/Write 16, 8-bit accessible

_	15	14	13	12	11	10	9	8
	0	A24EN	A24DIR	1	1	A24SIZE[2]	A24SIZE[1]	A24SIZE[0]
	7	6	5	4	3	2	1	0
	A24BASE[7]	A24BASE[6]	A24BASE[5]	A24BASE[4]	A24BASE[3]	A24BASE[2]	A24BASE[1]	A24BASE[0]

You can use this register to control the mapping of VMEbus A24 space between the VXIbus and the MXIbus. When programming this register, you do not have to consider any VMEbus A24 space that the VXI-MXI-2 itself requires. This is because the A24/A32 Decoder has a higher priority than VWR2, and the VXI-MXI-2 will respond to its A24 accesses from both the VXIbus and the MXIbus. This register conforms to the VXIbus Mainframe Extender specification.

This register takes on a different form when the CMODE bit in the VXI-MXI-2 Control Register (VMCR) is set. This different form does not comply with the VXIbus Mainframe Extender specification, and the CMODE bit should not be set when using a VXIbus multiframe Resource Manager. For more information on the CMODE bit, refer to the VMCR register description.

To accommodate 8-bit masters that write to this register, the window is not enabled until the lower byte of the register is written. Therefore, 8-bit masters should write the upper byte first, followed by the lower byte.

Bit	Mnemonic	Description
15	0	Reserved
		This bit is reserved and returns 0 when read. This bit can be written with any value.
14	A24EN	Extender A24 Window Enable
		Writing a 1 to this bit enables mapping of VMEbus A24 space through the Extender A24 Window. When this bit is cleared, no VMEbus A24 accesses are mapped between the VXIbus and the MXIbus. This bit is cleared by a hard reset and is not affected by a soft reset.

13	A24DIR	Extender A24 Window Direction
		When this bit is set, the address range defined by A24SIZE[2:0] and A24BASE[7:0] applies to MXIbus cycles that are mapped in to VXIbus cycles (inward cycles). When this bit is cleared, the range applies to VXIbus cycles that are mapped out to MXIbus cycles (outward cycles). The complement of the defined range is mapped in the opposite direction. This bit is cleared by a hard reset and is not affected by a soft reset.
12-11	1	Reserved
		These bits are reserved. They return 11 (binary) when the VWR2 is read. These bits can be written with any value.
10-8	A24SIZE[2:0]	Extender A24 Window Size
		These bits define the size of the range of A24 addresses that map through the Extender A24 Window. They specify the number of address lines that are compared to the A24BASE[7:0] bits when determining if a VMEbus A24 access is in the mapped range. The A24SIZE[2:0] most significant bits of A24BASE[7:0] are compared, while the remaining bits are ignored. Thus, the number of A24 addresses in the range mapped is 65536 * 2 ^{8-A24SIZE[2:0]} . These bits are cleared by a hard reset and are not affected by a soft reset.
7-0	A24BASE[7:0]	Extender A24 Window Base
		These bits define the base address of the range of A24 addresses that map through the Extender A24 Window. They correspond to address lines 23 through 16 (the eight most significant address

soft reset.

lines used in VMEbus A24 space). These bits are cleared by a hard reset and are not affected by a

Extender A32 Window Register (VWR3)

VXIbus Configuration Offset: 10 (hex)

Attributes: Read/Write 16, 8-bit accessible

_	15	14	13	12	11	10	9	8
	0	A32EN	A32DIR	1	1	A32SIZE[2]	A32SIZE[1]	A32SIZE[0]
	7	6	5	4	3	2	1	0
	A32BASE[7]	A32BASE[6]	A32BASE[5]	A32BASE[4]	A32BASE[3]	A32BASE[2]	A32BASE[1]	A32BASE[0]

You can use this register to control the mapping of VMEbus A32 space between the VXIbus and the MXIbus. When programming this register, you do not need to consider any VMEbus A32 space that the VXI-MXI-2 itself requires. This is because the A24/A32 Decoder has a higher priority than VWR3, and the VXI-MXI-2 will respond to its A32 accesses from both the VXIbus and the MXIbus. This register conforms to the VXIbus Mainframe Extender specification.

This register takes on a different form when the CMODE bit in the VXI-MXI-2 Control Register (VMCR) is set. This different form does not comply with the VXIbus Mainframe Extender specification, and the CMODE bit should not be set when using a VXIbus multiframe Resource Manager. For more information on the CMODE bit, refer to the VMCR register description.

To accommodate 8-bit masters that write to this register, the window is not enabled until the lower byte of the register is written. Therefore, 8-bit masters should write the upper byte first, followed by the lower byte.

Bit	Mnemonic	Description
15	0	Reserved
		This bit is reserved and returns 0 when read. This bit can be written with any value.
14	A32EN	Extender A32 Window Enable
		Writing a 1 to this bit enables mapping of VMEbus A32 space through the Extender A32 Window. When this bit is cleared, no VMEbus A32 accesses are mapped between the VXIbus and the MXIbus. This bit is cleared by a hard reset and is not affected by a soft reset.

13	A32DIR	Extender A32 Window Direction
		When this bit is set, the address range defined by A32SIZE[2:0] and A32BASE[7:0] applies to MXIbus cycles that are mapped in to VXIbus cycles (inward cycles). When this bit is cleared, the range applies to VXIbus cycles that are mapped out to MXIbus cycles (outward cycles). The complement of the defined range is mapped in the opposite direction. This bit is cleared by a hard reset and is not affected by a soft reset.
12-11	1	Reserved
		These bits are reserved. They return 11 (binary) when the VWR3 is read. These bits can be written with any value.
10-8	A32SIZE[2:0]	Extender A32 Window Size
		These bits define the size of the range of A32 addresses that map through the Extender A32 Window. They specify the number of address lines that are compared to the A32BASE[7:0] bits when determining if a VMEbus A32 access is in the mapped range. The A32SIZE[2:0] most significant bits of A32BASE[7:0] are compared, while the remaining bits are ignored. Thus, the number of A32 addresses in the range mapped is 16777216 * 2 ^{8-A32SIZE[2:0]} . These bits are cleared by a hard reset and are not affected by a soft reset.
7-0	A32BASE[7:0]	Extender A32 Window Base
		These bits define the base address of the range of A32 addresses that map through the Extender A32 Window. They correspond to address lines 31 through 24 (the eight most significant address

soft reset.

lines in VMEbus A32 space). These bits are cleared by a hard reset and are not affected by a

VXIbus Interrupt Configuration Register (VICR)

VXIbus Configuration Offset: 12 (hex)

Attributes: Read/Write 16, 8-bit accessible

15	14	13	12	11	10	9	8
0	INTEN[7]	INTEN[6]	INTEN[5]	INTEN[4]	INTEN[3]	INTEN[2]	INTEN[1]
7	6	5	4	3	2	1	0
0	INTDIR[7]	INTDIR[6]	INTDIR[5]	INTDIR[4]	INTDIR[3]	INTDIR[2]	INTDIR[1]

You can use this register to control the routing of the seven VMEbus interrupt lines between the VXIbus and the MXIbus. Any interrupts that the VXI-MXI-2 itself generates will be driven on the VXIbus and must be routed to the MXIbus through this register if the handler for the interrupt is located on the MXIbus. Interrupt Acknowledge cycles are mapped in the opposite direction of the corresponding interrupt, which allows the handler to transparently reach the interrupter when acknowledging an interrupt. More than one VXI-MXI-2 can route the same interrupt level to the same bus (the VXIbus or MXIbus). This register conforms to the VXIbus Mainframe Extender specification.

Bit	Mnemonic	Description
15	0	Reserved
		This bit is reserved. It returns 0 when read. This bit can be written with any value.
14-8	INTEN[7:1]	Interrupt Enable
		Setting these bits individually enables routing of the seven VMEbus interrupt lines between the VXIbus and the MXIbus. Any interrupt line whose corresponding INTEN[7:1] bit is clear is not routed. These bits are cleared by a hard reset and are not affected by a soft reset.
7	0	Reserved
		This bit is reserved. It returns 0 when read. This bit can be written with any value.

6-0 INTDIR[7:1]

Interrupt Direction

When the corresponding INTEN[7:1] bit is clear, these bits are ignored. When the corresponding INTEN[7:1] bit is set, these bits control the direction that the interrupt is routed. The interrupt is routed from the VXIbus to the MXIbus when its INTDIR[7:1] bit is 0 (outward), and from the MXIbus to the VXIbus when its INTDIR[7:1] bit is 1 (inward). These bits are cleared by a hard reset and are not affected by a soft reset.

VXIbus TTL Trigger Configuration Register (VTCR)

VXIbus Configuration Offset: 14 (hex)

Attributes: Read/Write 16, 8-bit accessible

15	14	13	12	11	10	9	8
TTLTRGEN[7]	TTLTRGEN[6]	TTLTRGEN[5]	TTLTRGEN[4]	TTLTRGEN[3]	TTLTRGEN[2]	TTLTRGEN[1]	TTLTRGEN[0]
7	6	5	4	3	2	1	0
TTLTRGDIR[7]	TTLTRGDIR[6]	TTLTRGDIR[5]	TTLTRGDIR[4]	TTLTRGDIR[3]	TTLTRGDIR[2]	TTLTRGDIR[1]	TTLTRGDIR[0]

You can use this register to control the routing of the eight VXIbus TTL trigger lines between the VXIbus and the MXIbus. Any triggers that the VXI-MXI-2 itself generates are driven on the VXIbus and must be routed to the MXIbus through this register if the destination for the trigger is located on the MXIbus. Likewise, the VXI-MXI-2 can sense triggers only from the VXIbus, so any triggers originating on the MXIbus that the VXI-MXI-2 must sense should be routed through this register to the VXIbus. More than one VXI-MXI-2 cannot route the same trigger line to the same MXIbus. Configure only one VXI-MXI-2 to route a trigger to a particular MXIbus at any one time. This register conforms to the VXIbus Mainframe Extender specification.

Bit	Mnemonic	Description
15-8	TTLTRGEN[7:0]	TTL Trigger Enable
		Setting these bits individually enables routing of the eight VXIbus TTL trigger lines between the VXIbus and the MXIbus. Any trigger line whose corresponding TTLTRGEN[7:0] bit is clear is not routed. These bits are cleared by a hard reset and are not affected by a soft reset.
7-0	TTLTRGDIR[7:0]	TTL Trigger Direction
		When the corresponding TTLTRGEN[7:0] bit is clear, these bits are ignored. When the corresponding TTLTRGEN[7:0] bit is set, these bits control the direction in which the trigger is routed. The trigger is routed from the VXIbus to the MXIbus when its TTLTRGDIR[7:0] bit is 0 (outward), and from the MXIbus to the VXIbus when its TTLTRGDIR[7:0] bit is 1 (inward). These bits are cleared by a hard reset and are not affected by a soft reset.

VXIbus Utility Configuration Register (VUCR)

VXIbus Configuration Offset: 18 (hex)

Attributes: Read/Write 16, 8-bit accessible

15	14	13	12	11	10	9	8
TTL*	ECL3*	ECL2*	UTIL*	1	1	1	1
7	6	5	4	3	2	1	0
1	1	ACFIN	ACFOUT	SFIN	SFOUT	SRIN	SROUT

This register indicates that the VXI-MXI-2 supports TTL trigger routing and VMEbus utility signal routing and does not support any ECL trigger routing. You can also use this register to control the routing of the VMEbus utility signals between the VXIbus and the MXIbus. The VMEbus utility signals are ACFAIL*, SYSFAIL*, and SYSRESET*. Any utility signals that the VXI-MXI-2 itself generates are driven on the VXIbus and must be routed to the MXIbus through this register if the destination for the signal is located on the MXIbus. Likewise, the VXI-MXI-2 can sense the three utility signals only from the VXIbus, so any signal originating on the MXIbus that the VXI-MXI-2 must sense should be routed through this register to the VXIbus. There are no restrictions on either the number of VXI-MXI-2 modules routing the utility signals or the directions in which they are routed. Also, the VXI-MXI-2 can route any utility signal in both directions simultaneously. This register conforms to the VXIbus Mainframe Extender specification.

Bit	Mnemonic	Description
15	TTL*	TTL Trigger Support
		This read-only bit returns a 0 to indicate that the VXI-MXI-2 supports routing of the eight VXIbus TTL trigger lines. The value written to this bit is irrelevant.
14	ECL3*	P3 ECL Trigger Support
		This read-only bit returns a 1 to indicate that the VXI-MXI-2 does not support routing of the P3 ECL trigger lines. The value written to this bit is irrelevant.
13	ECL2*	P2 ECL Trigger Support
		This read-only bit returns a 1 to indicate that the VXI-MXI-2 does not support routing of the P2 ECL trigger lines. The value written to this bit is irrelevant.

12	UTIL*	Utility Signal Support
		This read-only bit returns a 0 to indicate that the VXI-MXI-2 supports routing of the VMEbus utility signals ACFAIL*, SYSFAIL*, and SYSRESET*. The value written to this bit is irrelevant.
11-6	1	Reserved
		These bits are reserved. They return 111111 (binary) when read. Write each of these bits with 1 when writing to the VUCR.
5	ACFIN	ACFAIL* In
		Setting this bit causes the VXI-MXI-2 to route the ACFAIL* signal from the MXIbus to the VXIbus. When this bit is clear, ACFAIL* is ignored on the MXIbus. This bit is cleared by a hard reset and is not affected by a soft reset.
4	ACFOUT	ACFAIL* Out
		Setting this bit causes the VXI-MXI-2 to route the ACFAIL* signal from the VXIbus to the MXIbus. When this bit is clear, ACFAIL* is ignored on the VXIbus. You can route ACFAIL* in both directions simultaneously. This bit is cleared by a hard reset and is not affected by a soft reset.
3	SFIN	SYSFAIL* In
		Setting this bit causes the VXI-MXI-2 to route the SYSFAIL* signal from the MXIbus to the VXIbus. When this bit is clear, SYSFAIL* is ignored on the MXIbus. This bit is cleared by a hard reset and is not affected by a soft reset.
2	SFOUT	SYSFAIL* Out
		Setting this bit causes the VXI-MXI-2 to route the SYSFAIL* signal from the VXIbus to the MXIbus. When this bit is clear, SYSFAIL* is ignored on the VXIbus. You can route SYSFAIL* in both directions simultaneously. This bit is cleared by a hard reset and is not affected by a soft reset.

1 SRIN SYSRESET* In

Setting this bit causes the VXI-MXI-2 to route the SYSRESET* signal from the MXIbus to the VXIbus. When this bit is clear, SYSRESET* is ignored on the MXIbus. This bit is cleared by a hard reset and is not affected by a soft reset.

0 SROUT SYSRESET* Out

Setting this bit causes the VXI-MXI-2 to route the SYSRESET* signal from the VXIbus to the MXIbus. When this bit is clear, SYSRESET* is ignored on the VXIbus. You can route SYSRESET* in both directions simultaneously. This bit is cleared by a hard reset and is not

affected by a soft reset.

VXIbus Subclass Register (VSCR)

VXIbus Configuration Offset: 1E (hex)

Attributes: Read Only 16, 8-bit accessible

15	14	13	12	11	10	9	8
SC[15]	SC[14]	SC[13]	SC[12]	SC[11]	SC[10]	SC[9]	SC[8]
7	6	5	4	3	2	1	0
SC[7]	SC[6]	SC[5]	SC[4]	SC[3]	SC[2]	SC[1]	SC[0]

The Subclass Register (VSCR) is used to specify the precise class of a device when it indicates with the DEVCLASS[1:0] bits in the VXIbus ID Register (VIDR) that it is an Extended Class device. The VXI-MXI-2 is a VXIbus Mainframe Extender, which is one of the VXIbus-defined Extended classes. This register contains the VXIbus Mainframe Extender subclass code. This register conforms to the VXIbus Mainframe Extender specification.

Bit	Mnemonic	Description
15-0	SC[15:0]	Subclass

These read-only bits return FFFC (hex).

VXI-MXI-2 Status Register (VMSR)

VXIbus Configuration Offset: 20 (hex)

Attributes: Read Only 16, 8-bit accessible

15	14	13	12	11	10	9	8
0	CMODE	1	POSTERR	MXSCTO	INTLCK	DSYSFAIL	FAIR
7	6	5	4	3	2	1	0
MXISC	0	0	0	SCFG	MBERR	0	PARERR

This VXI-MXI-2-specific register provides status bits for various operations.

Bit	Mnemonic	Description
15	0	Reserved
		This bit is reserved and returns 0 when read.
14	CMODE	Comparison Mode Status
		This bit reflects the state of the CMODE bit in the VXI-MXI-2 Control register (VMCR).
13	1	Reserved
		This bit is reserved and returns 1 when read.
12	POSTERR	Write Post Error Status
		This bit returns 1 when a write-posted cycle results in an error. This is actually two bits; one can be read from the MXIbus and the other can be read from the VXIbus. When a VXIbus master reads this bit as a 1, a VXIbus data cycle that mapped to the MXIbus and was posted results in an error. When a MXIbus master reads this bit as a 1, a MXIbus data cycle that mapped to the VXIbus and was posted results in an error. Each bit clears when read and on hard and soft resets. Write posting can be enabled using the VXIplug&play soft front panel for the VXI-MXI-2. Refer to Chapter 7, VXIplug&play

for the VXI-MXI-2, for more information.

11	MXSCTO	MXIbus System Controller Timeout Status
		If the VXI-MXI-2 is the MXIbus System
		Controller, this bit is set when the VXI-MXI-2 terminates a MXIbus cycle with a BERR due to a
		bus timeout. This bit is cleared by hard and soft
		resets and when read.
10	INTLCK	Interlocked Status
		This bit reflects the state of the INTLCK bit in the VXI-MXI-2 Control Register (VMCR).
9	DSYSFAIL	Drive SYSFAIL* Status
		This bit reflects the state of the DSYSFAIL bit in the VXI-MXI-2 Control Register (VMCR).
8	FAIR	MXIbus Fair Status
		This bit indicates if the VXI-MXI-2 is a fair MXIbus requester. The VXI-MXI-2 is fair if this
		bit returns a 1, and not fair if it returns a 0. Refer to Chapter 7, VXIplug&play for the VXI-MXI-2,
		or Appendix B, <i>Programmable Configurations</i> , for information on configuring the VXI-MXI-2 as a fair MXIbus requester.
7	MXISC	MXIbus System Controller Status
		This bit returns a 1 if the VXI-MXI-2 is the
		MXIbus System Controller, or a 0 when the
		VXI-MXI-2 is not the MXIbus System Controller.
6-4	0	Reserved
		These bits are reserved and return 000 (binary)
		when read.
3	SCFG	Self-Configuration Status
		After a hard reset, the VXI-MXI-2 executes an initialization sequence called <i>self-configuration</i> . When this bit returns a 1, self-configuration is in
		process and the VXI-MXI-2 may not be fully initialized. When this bit returns a 0, self-
		configuration is complete and the VXI-MXI-2 is initialized. The PASSED bit in the VXIbus
		Status Register (VSR) also does not become set until self-configuration is complete; this prevents
		a Resource Manager from attempting to program the VXI-MXI-2 before initialization is complete.
		1

2	MBERR	MXIbus Bus Error Status
		If this bit is set, the VXI-MXI-2 terminated the previous MXIbus transfer by driving the MXIbus BERR* line. This indicates that the cycle was terminated because of a bus error or a retry condition. This bit is cleared by hard and soft resets and on successful MXIbus accesses.
1	0	Reserved
		This bit is reserved and returns 0 when read.
0	PARERR	Parity Error Status
		If this bit is set, a MXIbus parity error occurred on either the address or the data portion of the last MXIbus transfer. This bit is cleared by hard and soft resets and on MXIbus transfers without a parity error.

VXI-MXI-2 Control Register (VMCR)

VXIbus Configuration Offset: 20 (hex)

Attributes: Write Only 16, 8-bit accessible

15	14	13	12	11	10	9	8
0	CMODE	ECLEN[1]	ECLDIR[1]	ECLEN[0]	ECLDIR[0]	DSYSFAIL	DSYSRST
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	INTLCK

This VXI-MXI-2 specific register provides control bits for various operations.

Bit	Mnemonic	Description
15	0	Reserved
		This bit is reserved. Write a 0 when writing to this bit.
14	CMODE	Comparison Mode
		This bit selects the range comparison mode for

the Extender Logical Address (VWR0), A16 (VWR1), A24 (VWR2), and A32 (VWR3) Window Registers. If CMODE is cleared, a Base/Size range comparison is used to determine the range of addresses in the windows, as described in the VWRx register descriptions. If CMODE is set, an upper and lower bound is used to determine the range of addresses in the windows. The upper eight bits of each VWRx register form the upper bound (HIGH[7:0]), while the lower eight bits form the lower bound (LOW[7:0]). The LOW[7:0] bits define the lower limit of the range of MXIbus addresses that map into the VXIbus, while the HIGH[7:0] bits define the upper limit. As with the normal comparison mode, any address that is not in the range will map in the opposite direction. When $HIGH[7:0] > [range] \ge LOW[7:0]$, a MXIbus cycle within the range maps to the VXIbus, while a VXIbus cycle out of that range maps to the MXIbus. When LOW[7:0] > [range] \geq HIGH[7:0], a VXIbus cycle within the range

maps to the MXIbus, while a MXIbus cycle out of that range maps to the VXIbus. When HIGH[7:0] = LOW[7:0] = 0, the window is disabled. When FF (hex) \geq (HIGH[7:0] = LOW[7:0]) \geq 80 (hex), all VXIbus addresses are mapped out to the MXIbus. When 7F (hex) \geq (HIGH[7:0] = LOW[7:0]) > 0, all MXIbus addresses are mapped in to the VXIbus. To accommodate 8-bit devices that write to the VWRx registers, the window is not enabled until the lower byte is written. Therefore, 8-bit masters should write the upper byte first, then the lower byte. This bit is cleared by hard and soft resets.

13 ECLEN[1]

ECL Trigger [1] Enable

Setting this bit enables routing of the VXIbus P2 ECL trigger [1] line between the VXIbus and the front-panel SMB connectors. If this bit is clear, no routing is enabled between the SMB connectors and the P2 ECL trigger [1] line. This bit is cleared by a hard reset and is not affected by a soft reset.

12 ECLDIR[1]

ECL Trigger [1] Direction

When the ECLEN[1] bit is clear, this bit is ignored. When the ECLEN[1] bit is set, this bit controls the direction in which the trigger is routed. The trigger is routed from the VXIbus to the TRG OUT SMB connector when ECLDIR[1] is 0 (outward), and from the TRG IN SMB connector to the VXIbus when ECLDIR[1] is 1 (inward). This bit is cleared by a hard reset and is not affected by a soft reset.

11 ECLEN[0]

ECL Trigger [0] Enable

Setting this bit enables routing of the VXIbus P2 ECL trigger [0] line between the VXIbus and the front-panel SMB connectors. If this bit is clear, no routing is enabled between the SMB connectors and the P2 ECL trigger [0] line. This bit is cleared by a hard reset and is not affected by a soft reset.

10	ECLDIR[0]	ECL Trigger [0] Direction
		When the ECLEN[0] bit is clear, this bit is ignored. When the ECLEN[0] bit is set, this bit controls the direction in which the trigger is routed. The trigger is routed from the VXIbus to the TRG OUT SMB connector when ECLDIR[0] is 0 (outward), and from the TRG IN SMB connector to the VXIbus when ECLDIR[0] is 1 (inward). This bit is cleared by a hard reset and is not affected by a soft reset.
9	DSYSFAIL	Drive SYSFAIL*
		Writing a 1 to this bit causes the VXI-MXI-2 to assert the VMEbus SYSFAIL* line. This bit is cleared by hard and soft resets.
8	DSYSRST	Drive SYSRESET*
		Writing a 1 to this bit causes the VXI-MXI-2 to assert the VMEbus SYSRESET* line for a minimum of 200 ms. This bit is automatically cleared after the assertion of SYSRESET*.
7-1	0	Reserved
		These bits are reserved. Write each of these bits with 0 when writing to the VMCR.
0	INTLCK	Interlocked Mode
		Writing a 1 to this bit causes the VXI-MXI-2 to interlock arbitration between the VXIbus and the MXIbus. When arbitration is interlocked, the VXI-MXI-2 will always own either the VXIbus or the MXIbus. When the VXI-MXI-2 must release the bus that it owns, it does not do so until it obtains ownership of the other bus (VXIbus or the MXIbus). If the VXI-MXI-2 does not own either bus when this bit is written with a 1, it will arbitrate for the VXIbus. This bit is cleared by a hard reset and is not affected by a soft reset. Refer to Chapter 7, VXIplug&play for
		is cleared by a hard reset and is not

interlocked mode.

the VXI-MXI-2, for more detailed information on

VXIbus Lock Register (VLR)

Bit

VXIbus Configuration Offset: 22 (hex)

Mnemonic

Attributes: Read/Write 16, 8-bit accessible

15	14	13	12	11	10	9	8
1	1	1	1	1	1	1	1
7	6	5	4	3	2	1	0
1	1	1	1	1	1	1	LOCKED

This register is used to lock the VXIbus or the MXIbus. This register performs differently depending on whether the register is accessed from the VXIbus or the MXIbus.

Description

Dit	Militarionic	Description
15-1	1	Reserved
		These bits are reserved and each returns 1 when read. Write a 0 to each of these bits when writing to the VLR.
0	LOCKED	VXIbus or MXIbus Locked
		When this bit is set by a VXIbus access, the VXI-MXI-2 arbitrates for the MXIbus. Once the VXI-MXI-2 wins arbitration, it does not give up ownership of the MXIbus until either this bit is cleared or a reset occurs. This prevents any other MXIbus masters from using the bus so that the VXI-MXI-2 can complete indivisible operations. When this bit is set by a MXIbus access, the VXIbus is locked by that device so that indivisible operations to local VXIbus resources can be performed from the MXIbus. Similarly, when a VXIbus device reads this bit as a 1, it indicates that the MXIbus is locked. When a MXIbus device reads this bit as a 1, it indicates that the VXIbus is locked. This bit does not read as a 1 until the VXI-MXI-2 has successfully arbitrated for and won the indicated bus. Writing a 0 to this bit unlocks the appropriate bus. This bit is cleared by hard and soft resets.

VXIbus Logical Address Register (VLAR)

VXIbus Configuration Offset: 26 (hex)

Attributes: Read Only 16, 8-bit accessible

15	14	13	12	11	10	9	8
TRIG[7]	TRIG[6]	TRIG[5]	TRIG[4]	TRIG[3]	TRIG[2]	TRIG[1]	TRIG[0]
7	6	5	4	3	2	1	0
LA[7]	LA[6]	LA[5]	LA[4]	LA[3]	LA[2]	LA[1]	LA[0]

This register provides the logical address of the VXI-MXI-2. It also allows monitoring of the VXIbus TTL trigger [7:0] lines.

Bit	Mnemonic	Description
15-8	TRIG[7:0]	VXIbus TTL Trigger Line [7:0] Status
		These bits return the current state of the eight VXIbus TTL trigger lines on the mainframe. If a bit returns a 1, the corresponding TTL trigger is asserted.
7-0	LA[7:0]	Logical Address Status
		These bits return the logical address of the VXI-MXI-2.

VXIbus Trigger Drive Register (VTDR)

VXIbus Configuration Offset: 26 (hex)

Attributes: Write Only 16, 8-bit accessible

15	14	13	12	11	10	9	8
DTTRIG[7]	DTTRIG[6]	DTTRIG[5]	DTTRIG[4]	DTTRIG[3]	DTTRIG[2]	DTTRIG[1]	DTTRIG[0]
7	6	5	4	3	2	1	0
0	0	0	0	0	0	DETRIG[1]	DETRIG[0]

This register allows the VXI-MXI-2 to assert the VXIbus TTL and ECL trigger lines.

Bit	Mnemonic	Description
15-8	DTTRIG[7:0]	Drive VXIbus TTL Trigger Line [7:0]
		Writing a 1 to one of these bits causes the VXI-MXI-2 to assert the corresponding VXIbus TTL trigger line. These bits are cleared by a hard reset and are not affected by a soft reset. The state of the VXIbus TTL trigger lines can be monitored in the VXIbus Logical Address Register (VLAR).
7-2	0	Reserved
		These bits are reserved. Write a 0 to each of these bits when writing the VTDR.
1-0	DETRIG[1:0]	Drive VXIbus P2 ECL Trigger Line [1:0]
		Writing a 1 to one of these bits causes the VXI-MXI-2 to assert the corresponding VXIbus P2 ECL trigger line. These bits are cleared by a hard reset and are not affected by a soft reset. The state of the VXIbus P2 ECL trigger lines can be monitored in the VXIbus Trigger Mode Select Register (VTMSR).

VXIbus Trigger Mode Select Register (VTMSR)

VXIbus Configuration Offset: 28 (hex)

Attributes: Read Only 16, 8-bit accessible

15	14	13	12	11	10	9	8
1	1	1	1	1	1	1	1
7	6	5	4	3	2	1	0
ETRIG[1]	ETRIG[0]	1	1	TRGIN	TRGOUT	1	1

You can use this register to monitor the VXIbus P2 ECL trigger [1:0] lines as well as the front-panel SMB connector triggers.

Bit	Mnemonic	Description
15-8	1	Reserved
		These bits are reserved and each returns 1 when read.
7-6	ETRIG[1:0]	VXIbus P2 ECL Trigger Line [1:0] Status
		These bits return the current state of the two VXIbus P2 ECL trigger lines on the mainframe. If a bit returns a 1, the corresponding ECL trigger is asserted.
5-4	1	Reserved
		These bits are reserved and each returns 1 when read.
3	TRGIN	Trigger In SMB Status
		This bit returns the current state of the front- panel TRG IN SMB connector. A 1 indicates that the input signal is high, while a 0 indicates the signal is low.
2	TRGOUT	Trigger Out SMB Status
		This bit returns the current state of the front- panel TRG OUT SMB connector. A 1 indicates that the output signal is high, while a 0 indicates the signal is low.
1-0	1	Reserved
		These bits are reserved and each returns 1 when read.

VXIbus Interrupt Status Register (VISTR)

VXIbus Configuration Offset: 2A (hex)

Attributes: Read Only 16, 8-bit accessible

15	14	13	12	11	10	9	8
LINT[3]	LINT[2]	LINT[1]	AFINT	BKOFF	0	SYSFAIL	ACFAIL
7	6	5	4	3	2	1	0
SFINT	IRQ[7]	IRQ[6]	IRQ[5]	IRQ[4]	IRQ[3]	IRQ[2]	IRQ[1]

You can use this register to monitor the VMEbus IRQ[7:1] lines and the status of local VXI-MXI-2 interrupt conditions. Bits 15 through 8 of this register, along with the logical address of the VXI-MXI-2 on bits 7 through 0, are returned during an interrupt acknowledge cycle for the local interrupt condition.

Bit	Mnemonic	Description
15-13	LINT[3:1]	Local Interrupt Level
		These bits reflect the state of the LINT[3:1] bits in the VXIbus Interrupt Control Register (VICTR).
12	AFINT	VMEbus ACFAIL* Interrupt Status
		This bit returns 1 when the VXI-MXI-2 is driving the VMEbus IRQ[7:1] selected by LINT[3:1] because the ACFAIL* line is asserted. This bit clears after the VXI-MXI-2 responds to an interrupt acknowledge cycle for the local interrupt. The ACFAIL* interrupt is enabled with the AFIE bit in the VXIbus Interrupt Control Register (VICTR).
11	BKOFF	Back Off Status
		This bit is set when the VXI-MXI-2 encounters a deadlock condition between the VXIbus and the MXIbus. If the BKOFFIE bit in the VXIbus Interrupt Control Register (VICTR) is set, an interrupt is also generated. This bit stores the deadlock status even when the interrupt is not enabled. This bit clears when read either directly or through an interrupt acknowledge cycle.

10	0	Reserved
		This bit is reserved and returns 0 when read.
9	SYSFAIL	SYSFAIL* Status
		This bit returns the current state of the VMEbus SYSFAIL* signal. A 1 indicates that SYSFAIL* is asserted (low), while a 0 indicates it is not asserted (high). If the SFIE bit in the VXIbus Interrupt Control Register (VICTR) is set, an interrupt is also generated when SYSFAIL* asserts.
8	ACFAIL	ACFAIL* Status
		This bit returns the current state of the VMEbus ACFAIL* signal. A 1 indicates that ACFAIL* is asserted (low), while a 0 indicates it is not asserted (high). If the AFIE bit in the VXIbus Interrupt Control Register (VICTR) is set, an interrupt is also generated when ACFAIL* asserts.
7	SFINT	VMEbus SYSFAIL* Interrupt Status
		This bit returns 1 when the VXI-MXI-2 is driving the VMEbus IRQ[7:1] selected by LINT[3:1] because the SYSFAIL* line is asserted. This bit clears after the VXI-MXI-2 responds to an interrupt acknowledge cycle for the local interrupt. The SYSFAIL* interrupt is enabled with the SFIE bit in the VXIbus Interrupt Control Register (VICTR).
6-0	IRQ[7:1]	VMEbus Interrupt Request [7:1] Status
		These bits return the current state of the seven VMEbus interrupt request lines on the mainframe. If a bit returns a 1, the corresponding IRQ is asserted.

VXIbus Interrupt Control Register (VICTR)

VXIbus Configuration Offset: 2A (hex)

Write Only Attributes: 16, 8-bit accessible

_	15	14	13	12	11	10	9	8
	LINT[3]	LINT[2]	LINT[1]	0	BKOFFIE	0	SFIE	AFIE
_	7	6	5	4	3	2	1	0
	0	DIRQ[7]	DIRQ[6]	DIRQ[5]	DIRQ[4]	DIRQ[3]	DIRQ[2]	DIRQ[1]

This register allows the VXI-MXI-2 to assert the VMEbus IRQ[7:1] lines and provides enable bits for the various VXI-MXI-2 local interrupts.

Bit	Mnemonic	Description
15-13	LINT[3:1]	Local Interrupt Level
		These bits determine which VMEbus interrupt level the local interrupt conditions will assert. The local interrupt conditions are the BKOFF, SFINT, and AFINT bits of the VXIbus Interrupt Status Register (VISTR). Each condition can be individually enabled in this register. Write a number in the range 1 through 7 to these bits to select the desired interrupt level. Writing a 0 to these bits globally disables the local interrupt. These bits are cleared by a hard reset and are not affected by a soft reset.
12	0	Reserved
		This bit is reserved. Write a 0 when writing to this bit.
11	BKOFFIE	Back Off Interrupt Enable
		Writing a 1 to this bit enables the BKOFF interrupt condition in the VXIbus Interrupt Status Register (VISTR) to assert the VMEbus IRQ[7:1] selected by LINT[3:1]. This bit is cleared by a hard reset and is not affected by a soft reset.
10	0	Reserved
		This bit is reserved. Write a 0 when writing to this bit.

9	SFIE	SYSFAIL* Interrupt Enable
		Writing a 1 to this bit enables the SFINT interrupt condition in the VXIbus Interrupt Status Register (VISTR) to assert the VMEbus IRQ[7:1] selected by LINT[3:1]. This bit is cleared by a hard reset and is not affected by a soft reset.
8	AFIE	ACFAIL* Interrupt Enable
		Writing a 1 to this bit enables the AFINT interrupt condition in the VXIbus Interrupt Status Register (VISTR) to assert the VMEbus IRQ[7:1] selected by LINT[3:1]. This bit is cleared by a hard reset and is not affected by a soft reset.
7	0	Reserved
		This bit is reserved. Write a 0 when writing to this bit.
6-0	DIRQ[7:1]	Drive VMEbus Interrupt Request [7:1]
		Writing a 1 to one of these bits causes the VXI-MXI-2 to assert the corresponding VMEbus interrupt request. When the interrupt driven from these bits is acknowledged, the value in the VXIbus Status ID Register (VSIDR) is returned and the DIRQ[7:1] bit clears, releasing the

interrupt. These bits are cleared by a hard reset and are not affected by a soft reset. The state of the VMEbus interrupt request lines can be monitored in the VXIbus Interrupt Status

Register (VISTR).

VXIbus Status ID Register (VSIDR)

VXIbus Configuration Offset: 2C (hex)

Attributes: Read/Write 16, 8-bit accessible

15	14	13	12	11	10	9	8
S[15]	S[14]	S[13]	S[12]	S[11]	S[10]	S[9]	S[8]
7	6	5	4	3	2	1	0
S[7]	S[6]	S[5]	S[4]	S[3]	S[2]	S[1]	S[0]

This register contains the Status ID value, which is returned during an interrupt acknowledge cycle for an IRQ[7:1] line that is being driven with the DIRQ[7:1] bits in the VXIbus Interrupt Control Register (VICTR).

Bit	Mnemonic	Description
15-0	S[15:0]	Status ID
		These bits are cleared by a hard reset and are not affected by a soft reset.

VXI-MXI-2 Trigger Control Register (VMTCR)

VXIbus Configuration Offset: 2E (hex)

Attributes: Read/Write 16, 8-bit accessible

15	14	13	12	11	10	9	8
TRIGEN[7]	TRIGEN[6]	TRIGEN[5]	TRIGEN[4]	TRIGEN[3]	TRIGEN[2]	TRIGEN[1]	TRIGEN[0]
7	6	5	4	3	2	1	0
TRIGDIR[7]	TRIGDIR[6]	TRIGDIR[5]	TRIGDIR[4]	TRIGDIR[3]	TRIGDIR[2]	TRIGDIR[1]	TRIGDIR[0]

You can use this register to control the routing of the eight VXIbus TTL trigger lines between the VXIbus and the two front-panel trigger SMB connectors. Any triggers that the VXI-MXI-2 itself generates are driven on the VXIbus and must be routed to the TRG OUT SMB through this register if the destination for the trigger is located on the TRG OUT SMB. Likewise, the VXI-MXI-2 can sense triggers only from the VXIbus, so any triggers originating on the TRG IN SMB that the VXI-MXI-2 must sense should be routed through this register to the VXIbus.

Bit	Mnemonic	Description
15-8	TRIGEN[7:0]	Trigger Enable
		Setting these bits individually enables routing of the eight VXIbus TTL trigger lines between the VXIbus and the front-panel SMB connectors. Any trigger line whose corresponding TRIGEN[7:0] bit is clear is not routed. These bits are cleared by a hard reset and are not affected by a soft reset.
7-0	TRIGDIR[7:0]	Trigger Direction
		When the corresponding TRIGEN[7:0] bit is clear, these bits are ignored. When the corresponding TRIGEN[7:0] bit is set, these bits control the direction that the trigger is routed. The trigger is routed from the VXIbus to the TRG OUT SMB connector when its TRIGDIR[7:0] bit is 0 (outward), and from the TRG IN SMB connector to the VXIbus when its TRIGDIR[7:0] bit is 1 (inward). These bits are cleared by a hard reset and are not affected by a soft reset.

VXIbus Interrupt Acknowledge Register 1 (VIAR1)

VXIbus Configuration Offset: 32 (hex)

Attributes: Read Only 16, 8-bit accessible

15	14	13	12	11	10	9	8
I1[15}	I1[14]	I1[13]	I1[12]	I1[11]	I1[10]	I1[9]	I1[8]
7	6	5	4	3	2	1	0
I1[7]	I1[6]	I1[5]	I1[4]	I1[3]	I1[2]	I1[1]	I1[0]

This register generates a VXIbus Interrupt Acknowledge (IACK) cycle for interrupt level 1 when read from the MXIbus and returns the Status ID received from the interrupter. It can generate 16-bit or 8-bit IACK cycles. Generating an 8-bit IACK cycle requires reading offset 33 (hex). When read from the VXIbus, this register does not generate an IACK cycle and returns FFFF (hex).

Bit	Mnemonic	Description
15-0	I1[15:0]	Level 1 Interrupter Status ID
		These bits return the Status ID received during the IACK cycle.

VXIbus Interrupt Acknowledge Register 2 (VIAR2)

VXIbus Configuration Offset: 34 (hex)

Attributes: Read Only 32, 16, 8-bit accessible

31	30	29	28	27	26	25	24
I2[31]	I2[30]	I2[29]	I2[28]	I2[27]	I2[26]	I2[25]	I2[24]
23	22	21	20	19	18	17	16
12[23]	I2[22]	I2[21]	I2[20]	I2[19]	I2[18]	I2[17]	I2[16]
15	14	13	12	11	10	9	8
I2[15]	I2[14]	I2[13]	I2[12]	I2[11]	I2[10]	I2[9]	I2[8]
7	6	5	4	3	2	1	0
I2[7]	I2[6]	I2[5]	I2[4]	I2[3]	I2[2]	I2[1]	I2[0]

This register generates a VXIbus Interrupt Acknowledge (IACK) cycle for interrupt level 2 when read from the MXIbus and returns the Status ID received from the interrupter. It can generate 32-bit, 16-bit, or 8-bit IACK cycles. Generating an 8-bit IACK cycle requires reading offset 35 (hex). When read from the VXIbus, this register does not generate an IACK cycle and returns FFFFFFFF (hex).

Bit	Mnemonic	Description
31-0	I2[31:0]	Level 2 Interrupter Status ID
		These bits return the Status ID received during the IACK cycle.

VXIbus Interrupt Acknowledge Register 3 (VIAR3)

VXIbus Configuration Offset: 36 (hex)

Attributes: Read Only 16, 8-bit accessible

15	14	13	12	11	10	9	8
I3[15]	I3[14]	I3[13]	I3[12]	I3[11]	I3[10]	I3[9]	I3[8]
7	6	5	4	3	2	1	0
13[7]	I3[6]	13[5]	I3[4]	I3[3]	I3[2]	I3[1]	I3[0]

This register generates a VXIbus Interrupt Acknowledge (IACK) cycle for interrupt level 3 when read from the MXIbus and returns the Status ID received from the interrupter. It can generate 16-bit or 8-bit IACK cycles. Generating an 8-bit IACK cycle requires reading offset 37 (hex). When read from the VXIbus, this register does not generate an IACK cycle and returns FFFF (hex).

Bit	Mnemonic	Description
15-0	I3[15:0]	Level 3 Interrupter Status ID
		These bits return the Status ID received during the IACK cycle.

VXIbus Interrupt Acknowledge Register 4 (VIAR4)

VXIbus Configuration Offset: 38 (hex)

Attributes: Read Only 32, 16, 8-bit accessible

31	30	29	28	27	26	25	24
I4[31]	I4[30]	I4[29]	I4[28]	I4[27]	I4[26]	I4[25]	I4[24]
23	22	21	20	19	18	17	16
I4[23]	I4[22]	I4[21]	I4[20]	I4[19]	I4[18]	I4[17]	I4[16]
15	14	13	12	11	10	9	8
I4[15]	I4[14]	I4[13]	I4[12]	I4[11]	I4[10]	I4[9]	I4[8]
7	6	5	4	3	2	1	0
I4[7]	I4[6]	I4[5]	I4[4]	I4[3]	I4[2]	I4[1]	I4[0]

This register generates a VXIbus Interrupt Acknowledge (IACK) cycle for interrupt level 4 when read from the MXIbus and returns the Status ID received from the interrupter. It can generate 32-bit, 16-bit, or 8-bit IACK cycles. Generating an 8-bit IACK cycle requires reading offset 39 (hex). When read from the VXIbus, this register does not generate an IACK cycle and returns FFFFFFFF (hex).

Bit	Mnemonic	Description
31-0	I4[31:0]	Level 4 Interrupter Status ID
		These bits return the Status ID received during the IACK cycle.

VXIbus Interrupt Acknowledge Register 5 (VIAR5)

VXIbus Configuration Offset: 3A (hex)

Attributes: Read Only 16, 8-bit accessible

15	14	13	12	11	10	9	8
I5[15]	I5[14]	I5[13]	I5[12]	I5[11]	I5[10]	I5[9]	I5[8]
7	6	5	4	3	2	1	0
I5[7]	I5[6]	I5[5]	I5[4]	I5[3]	I5[2]	I5[1]	I5[0]

This register generates a VXIbus Interrupt Acknowledge (IACK) cycle for interrupt level 5 when read from the MXIbus and returns the Status ID received from the interrupter. It can generate 16-bit or 8-bit IACK cycles. Generating an 8-bit IACK cycle requires reading offset 3B (hex). When read from the VXIbus, this register does not generate an IACK cycle and returns FFFF (hex).

Bit	Mnemonic	Description
15-0	I5[15:0]	Level 5 Interrupter Status ID
		These bits return the Status ID received during
		the IACK cycle.

VXIbus Interrupt Acknowledge Register 6 (VIAR6)

VXIbus Configuration Offset: 3C (hex)

Attributes: Read Only 32, 16, 8-bit accessible

31	30	29	28	27	26	25	24
I6[31]	I6[30]	I6[29]	I6[28]	I6[27]	I6[26]	I6[25]	I6[24]
23	22	21	20	19	18	17	16
I6[23]	I6[22]	I6[21]	I6[20]	I6[19]	I6[18]	I6[17]	I6[16]
15	14	13	12	11	10	9	8
I6[15]	I6[14]	I6[13]	I6[12]	I6[11]	I6[10]	I6[9]	I6[8]
7	6	5	4	3	2	1	0
I6[7]	I6[6]	I6[5]	I6[4]	I6[3]	I6[2]	I6[1]	I6[0]

This register generates a VXIbus Interrupt Acknowledge (IACK) cycle for interrupt level 6 when read from the MXIbus and returns the Status ID received from the interrupter. It can generate 32-bit, 16-bit, or 8-bit IACK cycles. Generating an 8-bit IACK cycle requires reading offset 3D (hex). When read from the VXIbus, this register does not generate an IACK cycle and returns FFFFFFFF (hex).

Bit	Mnemonic	Description
31-0	I6[31:0]	Level 6 Interrupter Status ID
		These bits return the Status ID received during the IACK cycle.

VXIbus Interrupt Acknowledge Register 7 (VIAR7)

VXIbus Configuration Offset: 3E (hex)

Attributes: Read Only 16, 8-bit accessible

15	14	13	12	11	10	9	8
17[15]	I7[14]	17[13]	I7[12]	I7[11]	I7[10]	I7[9]	I7[8]
7	6	5	4	3	2	1	0
I7[7]	I7[6]	17[5]	I7[4]	17[3]	I7[2]	I7[1]	I7[0]

This register generates a VXIbus Interrupt Acknowledge (IACK) cycle for interrupt level 7 when read from the MXIbus and returns the Status ID received from the interrupter. It can generate 16-bit or 8-bit IACK cycles. Generating an 8-bit IACK cycle requires reading offset 3F (hex). When read from the VXIbus, this register does not generate an IACK cycle and returns FFFF (hex).

Bit	Mnemonic	Description
15-0	I7[15:0]	Level 7 Interrupter Status ID
		These bits return the Status ID received during the IACK cycle.

VXIbus A24/A32 Registers

Some of the registers on the VXI-MXI-2 are accessible only within the A24 or A32 space that the Resource Manager allocates to the VXI-MXI-2. The following are register descriptions of some of these registers. See Table 5-2 for a register map of these registers. The table gives the mnemonic, offset from the base address, access type (read only, write only, or read/write), access size, and register name.

These registers occupy the first 4 KB of address space allocated to the VXI-MXI-2. Any access to the VXI-MXI-2 A24/A32 space beyond the first 4 KB (address offsets above FFF hex) will map to the onboard DRAM SIMM sockets. The address offset shown in each register description is the offset from the base A24/A32 address of the VXI-MXI-2 as defined by the VIDR and VOR registers.

Most of these registers are used to configure the two onboard DMA controllers. The two DMA controllers are identical to each other but are independent; they can be used simultaneously without affecting the operation of each other. Because the registers for the two DMA controllers are identical, this section describes only one set of registers, but the descriptions apply to both DMA controllers. The registers for DMA Controller 1 begin at offset D00 from the VXI-MXI-2 module base A24/A32 address, while the registers for DMA Controller 2 begin at offset E00 as shown in Table 5-2. For an example of how to use the DMA controllers, refer to Appendix F, *DMA Programming Examples*.

Table 5-2. VXI-MXI-2 VXIbus A24/A32 Register Map

Mnemonic	Offset (Hex)	Access Type	Access Size	Register Name
DMAICR	8	Read/Write	16/8 bit	DMA Interrupt Configuration
DMAIER	12	Read/Write	16/8 bit	DMA Interrupt Enable
DMAISIDR	20	Read/Write	16/8 bit	DMA Interrupt Status/ID
VMSR2/ VMCR2	758	Read/Write	32/16/8 bit	VXI-MXI-2 Status/Control Register 2
SMSR/ SMCR	C40	Read/Write	32/16/8 bit	Shared MXIbus Status/Control Register
CHOR1	D00	Read/Write	32/16/8 bit	DMA Channel 1 Operation
CHCR1	D04	Read/Write	32/16/8 bit	DMA Channel 1 Control
TCR1	D08	Read/Write	32/16/8 bit	DMA Channel 1 Transfer Count
SCR1	D0C	Read/Write	32/16/8 bit	DMA Channel 1 Source Configuration
SAR1	D10	Read/Write	32/16/8 bit	DMA Channel 1 Source Address
DCR1	D14	Read/Write	32/16/8 bit	DMA Channel 1 Destination Configuration
DAR1	D18	Read/Write	32/16/8 bit	DMA Channel 1 Destination Address
CHSR1	D3C	Read Only	32/16/8 bit	DMA Channel 1 Status
FCR1	D40	Read Only	32/16/8 bit	DMA Channel 1 FIFO Count
CHOR2	E00	Read/Write	32/16/8 bit	DMA Channel 2 Operation
CHCR2	E04	Read/Write	32/16/8 bit	DMA Channel 2 Control
TCR2	E08	Read/Write	32/16/8 bit	DMA Channel 2 Transfer Count
SCR2	E0C	Read/Write	32/16/8 bit	DMA Channel 2 Source Configuration
SAR2	E10	Read/Write	32/16/8 bit	DMA Channel 2 Source Address
DCR2	E14	Read/Write	32/16/8 bit	DMA Channel 2 Destination Configuration
DAR2	E18	Read/Write	32/16/8 bit	DMA Channel 2 Destination Address
CHSR2	E3C	Read Only	32/16/8 bit	DMA Channel 2 Status
FCR2	E40	Read Only	32/16/8 bit	DMA Channel 2 FIFO Count

DMA Interrupt Configuration Register (DMAICR)

VXIbus A24 or A32 Offset: 8 (hex)

Attributes: Read/Write 16, 8-bit accessible

15	14	13	12	11	10	9	8
SID8	SIDLA	1	0	1	0	0	0
7	6	5	4	3	2	1	0
ISTAT	0	0	0	0	ILVL[2]	ILVL[1]	ILVL[0]

This register controls aspects of the DMA interrupt that are configurable. Although the two DMA controllers are independent, they share a common interrupt condition.

Bit	Mnemonic	Description
15	SID8	8-bit Status/ID

This bit selects between an 8-bit or 16-bit Status/ID when the DMA interrupt is acknowledged. When this bit is set, the VXI-MXI-2 responds to IACK cycles of any size and supplies 8 bits of Status/ID information. The information supplied for the 8-bit Status/ID is selected using the SIDLA bit. When this bit is clear, the VXI-MXI-2 responds to 16-bit or 32-bit IACK cycles and supplies 16 bits of Status/ID information. The 16 bits of Status/ID are composed of the contents of the DMA Interrupt Status/ID Register (DMAISIDR) and the logical address of the VXI-MXI-2. The DMAISIDR appears on the upper 8 bits and the logical address appears on the lower 8 bits during the IACK cycle. When this bit is clear, the VXI-MXI-2 does not respond to 8-bit IACK cycles. This bit is cleared on a hard reset and is not affected by a soft reset.

14	SIDLA	Logical Address Status/ID
		When the SID8 bit is set, this bit selects what information is provided during IACK cycles for the DMA interrupt. This bit should not be set when SID8 is clear. When this bit is set, the logical address of the VXI-MXI-2 is used as the Status/ID information. When this bit is clear, the contents of the DMAISIDR are used. This bit is cleared on a hard reset and is not affected by a soft reset.
13	1	Reserved
		This bit is reserved. It must be initialized to 1 for the DMA interrupt to operate properly. This bit is cleared on a hard reset and is not affected by a soft reset.
12	0	Reserved
		This bit is reserved. Write this bit with 0 when writing the DMAICR. The value this bit returns when read is meaningless.
11	1	Reserved
		This bit is reserved. It must be initialized to 1 for the DMA interrupt to operate properly. This bit is cleared on a hard reset and is not affected by a soft reset.
10-8	0	Reserved
		These bits are reserved. Write each of these bits with 0 when writing the DMAICR. The value these bits return when read is meaningless.
7	ISTAT	DMA Interrupt Status bit
		This read-only bit indicates the status of the DMA interrupt. When this bit returns 1, it means that the interrupt condition is present. Once the condition is present, it will remain until re-armed. Notice that even though the VXI-MXI-2 releases the IRQ* line on the VXIbus during the IACK cycle, the IACK cycle does not clear this status bit. See Appendix F, DMA Programming Examples, for more information on re-arming the DMA interrupt.

6-3 0 Reserved

These bits are reserved. Write each of these bits with 0 when writing the DMAICR. The value these bits return when read is meaningless.

2-0 ILVL[2:0] DMA Interrupt Level

These bits select the VXIbus interrupt level that the DMA interrupt condition will assert. Write a 7 to these bits for IRQ7*, write a 6 for IRQ6*, and so on. These bits must be initialized to a value between 7 and 1 for the DMA interrupt to operate properly. These bits are cleared on a hard reset and are not affected by a soft reset.

DMA Interrupt Enable Register (DMAIER)

VXIbus A24 or A32 Offset: 12 (hex)

Attributes: Read/Write 16, 8-bit accessible

15	14	13	12	11	10	9	8
0	0	0	0	DMAIEN	0	0	ENABLE
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0

This register enables mapping of the DMA interrupt to the VXIbus. The interrupt can be asserted only on the VXIbus and must be routed through the VXIbus Interrupt Configuration Register (VICR) if the interrupt handler is located across the MXIbus. This register is also used to re-arm the DMA interrupt after one has occurred by first disabling the interrupt using this register, next clearing the DMA interrupt condition using either the CLRDONE bit in the DMA Channel Operation Register (CHORx) or the CLRDMAIE or CLRDONEIE bit in the DMA Channel Control Register (CHCRx), and then re-enabling the interrupt using this register.

Bit	Mnemonic	Description
15-12	0	Reserved
		These bits are reserved. Write each of these bits with 0 when writing the DMAIER. The value these bits return when read is meaningless.
11	DMAIEN	DMA Interrupt Enable
		This bit is used in combination with the ENABLE bit to enable the DMA interrupt to be mapped to the VXIbus. To enable the interrupt write a 1 to both bits. To disable the interrupt write a 1 to this bit and a 0 to the ENABLE bit. This bit returns a 1 when read if the interrupt is enabled and a 0 if the interrupt is disabled. The interrupt is disabled on a hard reset and is not affected by a soft reset.
10-9	0	Reserved
		These bits are reserved. Write each of these bits with 0 when writing the DMAIER. The value these bits return when read is meaningless.

8	ENABLE	Enable Interrupt
		This bit controls whether the interrupt is enabled or disabled when writing to the DMAIER. Write this bit with a 1 to enable the interrupt or a 0 to disable the interrupt. The DMAIEN bit should always be written with a 1. This bit always returns a 0 when read.
7-0	0	Reserved
		These bits are reserved. Write each of these bits with 0 when writing the DMAIER. The value these bits return when read is meaningless.

DMA Interrupt Status/ID Register (DMAISIDR)

VXIbus A24 or A32 Offset: 20 (hex)

Attributes: Read/Write 16, 8-bit accessible

_	15	14	13	12	11	10	9	8
	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
	DMASID[7]	DMASID[6]	DMASID[5]	DMASID[4]	DMASID[3]	0	1	1

This register provides the Status/ID information during IACK cycles for the DMA interrupt. If SID8 and SIDLA are both set in the DMA Interrupt Configuration Register (DMAICR), only the VXI-MXI-2 module's logical address is provided and this register is not used. If SID8 is clear in the DMAICR (16-bit Status/ID) this register provides the upper 8 bits of the Status/ID and the VXI-MXI-2 module's logical address is placed on the lower 8 bits.

Bit	Mnemonic	Description
15-8	0	Reserved
		These bits are reserved. Write each of these bits with 0 when writing the DMAISIDR. The value these bits return when read is meaningless.
7-3	DMASID[7:3]	DMA Status/ID 7 through 3
		These bits can be written with any value to uniquely identify the DMA interrupt during an IACK cycle. When SID8 is clear in the DMAICR (16-bit Status/ID), these bits provide bits 15 through 11 of the Status/ID. When SID8 is set (8-bit Status/ID) and SIDLA is clear in the DMAICR, these bits provide bits 7 through 3 of the Status/ID. These bits are cleared on a hard reset and are not affected by a soft reset.

2-0 '011'

DMA Status/ID 2 through 0

When SID8 is clear in the DMAICR (16-bit Status/ID), these bits provide bits 10 through 8 of the Status/ID. When SID8 is set (8-bit Status/ID) and SIDLA is clear in the DMAICR, these bits provide bits 2 through 0 of the Status/ID. These bits return 011 (binary) during IACK cycles and 000 (binary) when read directly.

VXI-MXI-2 Status/Control Register 2 (VMSR2/VMCR2)

VXIbus A24 or A32 Offset: 758 (hex)

Read/Write Attributes: 32, 16, 8-bit accessible

31	30	29	28	27	26	25	24
0	0	0	0	0	0	0	0
23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
IOCONFIG	0	0	0	0	0	0	1

This register enables access to the VXI-MXI-2 onboard EEPROM. For more information on changing configuration settings in the EEPROM, refer to Appendix B, Programmable Configurations.

Bit	Mnemonic	Description
31-8	0	Reserved
		These bits are reserved. Write these bits with 0 when writing the VMCR2.
7	IOCONFIG	I/O Configuration Space Enable
		This bit controls accesses to I/O configuration space (the onboard EEPROM). A device requesting access to the I/O configuration space must set this bit. When this bit is set, any accesses through the A24/A32 inward window that would normally map to the onboard DRAM (address offsets above FFF hex) instead map to the configuration space, accessing the EEPROM. On completion of configuration activity, the master should then clear this bit. Notice that this bit cannot be locked. The master must ensure that it is the only device accessing VXI-MXI-2 address offsets above FFF (hex) while this bit is set. This bit is cleared on a hard reset and is not affected by a soft reset.

Chapter	5 Register Desci	riptions	
	6-1	0	Reserved
			These bits are reserved. Write these bits with 0 when writing to the VMCR2.
	0	1	Reserved

This bit is reserved. Write this bit with 1 when writing to the VMCR2.

Shared MXIbus Status/Control Register (SMSR/SMCR)

VXIbus A24 or A32 Offset: C40 (hex)

Attributes: Read/Write 32, 16, 8-bit accessible

31	30	29	28	27	26	25	24
0	0	DMA2MBS	DMA1MBS	DMAMB S/N*	0	0	0
23	22	21	20	19	18	17	16
1	1	FAIR	0	0	PAREN	0	1
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	1
7	6	5	4	3	2	1	0
0	0	0	0	MBTO[3]	MBTO[2]	MBTO[1]	MBTO[0]

This register provides control bits for the configurable features of the MXIbus interface on the VXI-MXI-2.

Bit	Mnemonic	Description
31-30	0	Reserved
		These bits are reserved. Write these bits with 0 when writing to the SMCR.
29	DMA2MBS	DMA Controller 2 MXIbus Block Select
		This bit, combined with the DMAMB S/N* bit, controls whether block cycles to the MXIbus from DMA Controller 2 are performed as normal MXIbus block cycles or synchronous MXIbus burst cycles. Non-block cycles to the MXIbus are unaffected by this bit. Write a 1 to both DMA2MBS and DMAMB S/N* to cause DMA Controller 2 block cycles to the MXIbus to be synchronous burst cycles. Write a 1 to DMA2MBS and a 0 to DMAMB S/N* to cause DMA Controller 2 block cycles to the MXIbus to be normal block cycles. When DMA2MBS is written with a 0 the bit is unaffected (it remains in whatever state it was in before the write). This bit returns 1 when read if synchronous burst cycles are enabled and 0 when normal block cycles are enabled.

Notice that synchronous MXIbus burst cycles cannot be used for the source or destination of a DMA operation when both are located on the MXIbus. In such a case, you must either program this bit to use normal MXIbus block cycles, or program the DMA Source Configuration Register 2 (SCR2) and the DMA Destination Configuration Register 2 (DCR2) to both use single (non-block) cycles by clearing the BLOCKEN bit. A hard reset causes block cycles to the MXIbus from DMA Controller 2 to be normal block cycles. This bit is not affected by soft resets. DMA Controller 1 MXIbus Block Select This bit performs the same function as

28 DMA1MBS

DMA2MBS but for DMA Controller 1.

DMAMB S/N* 27

DMA MXIbus Block Synchronous/Normal*

When this bit is written with a 1, any DMAxMBS bit that is also being written with a 1 is set (synchronous MXIbus burst cycles). When this bit is written with a 0, any DMAxMBS bit that is being written with a 1 is cleared (normal MXIbus block cycles). The value this bit returns when read is meaningless.

26-24 0 Reserved

These bits are reserved. Write these bits with 0 when writing to the SMCR.

23-22 1 Reserved

These bits are reserved. Write these bits with 1 when writing to the SMCR.

21 **FAIR**

MXIbus Fair Requester

Setting this bit enables the MXIbus fair requester protocol. When this bit is clear, the VXI-MXI-2 is an unfair requester on the MXIbus. Refer to Chapter 7, VXIplug&play for the VXI-MXI-2, or Appendix B, Programmable Configurations, for more information on the Fair MXIbus Requester protocol. On a hard reset, this bit is initialized to the value stored in the onboard EEPROM for this bit.

20-19	0	Reserved
		These bits are reserved. Write these bits with 0 when writing to the SMCR.
18	PAREN	MXIbus Parity Enable
		Setting this bit enables the checking of MXIbus parity. When this bit is clear, the VXI-MXI-2 does not check MXIbus parity. Refer to Chapter 7, VXIplug&play for the VXI-MXI-2, or Appendix B, Programmable Configurations, for more information on MXIbus parity checking. On a hard reset, this bit is initialized to the value stored in the onboard EEPROM for this bit.
17	0	Reserved
		This bit is reserved. Write this bit with 0 when writing to the SMCR.
16	1	Reserved
		This bit is reserved. Write this bit with 1 when writing to the SMCR.
15-9	0	Reserved
		These bits are reserved. Write these bits with 0 when writing to the SMCR.
8	1	Reserved
		This bit is reserved. Write this bit with 1 when writing to the SMCR.
7-4	0	Reserved
		These bits are reserved. Write these bits with 0 when writing to the SMCR.
3-0	MBTO[3:0]	MXIbus Timeout Value
		The MBTO[3:0] bits determine the amount of time the VXI-MXI-2 will wait before terminating a MXIbus cycle by asserting BERR* when acting as the MXIbus System Controller.

The following table lists the values to write to these bits for all possible times. Refer to Chapter 7, *VXIplug&play for the VXI-MXI-2*, or Appendix B, *Programmable Configurations*, for more information on the MXIbus timer. On a hard reset, these bits are initialized to the value stored in the onboard EEPROM for these bits.

Time Limit	Value (hex)
Timer Disabled	0
8 µs	1
15 μs	2
30 µs	3
60 μs	4
125 µs	5
250 μs	6
500 μs	7
1 ms	8 (default)
2 ms	9
4 ms	A
8 ms	В
16 ms	С
32 ms	D
64 ms	Е
128 ms	F

DMA Channel Operation Register (CHORx)

CHOR1 VXIbus A24 or A32 Offset: D00 (hex)

CHOR2 VXIbus A24 or A32 Offset: E00 (hex)

Attributes: Read/Write 32, 16, 8-bit accessible

31	30	29	28	27	26	25	24
0	0	0	0	0	0	0	0
23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
CLRDONE	0	0	FRESET	ABORT	STOP	0	START

This register is used to control overall operation of the DMA controller, such as starting a transfer after all the other DMA registers have been programmed.

Bit	Mnemonic	Description
31-8	0	Reserved
		These bits are reserved. Write each of these bits with 0 when writing the CHORx. The value these bits return when read is meaningless.
7	CLRDONE	Clear DONE
		This bit can be written with a 1 to clear the DONE bit in the DMA Channel Status Register (CHSRx). The DONE bit also clears automatically when a new DMA operation is started. It is not necessary to clear the CLRDONE bit after writing a 1 to it.
6-5	0	Reserved
		These bits are reserved. Write each of these bits with 0 when writing the CHORx. The value these bits return when read is meaningless.

4 FRESET DMA FIFO Reset

This bit can be written with a 1 to reset the DMA FIFO. It is necessary to reset the FIFO after an ABORT operation or if a DMA transfer ends due to an error condition. It is not necessary to clear the FRESET bit after writing a 1 to it. The FIFO is reset by a hard reset and is not affected by a soft reset.

3 ABORT

Abort DMA Operation

This bit can be written with a 1 to abort the current DMA operation. When a DMA operation is aborted, it is possible that some data will have been read from the source that does not get written to the destination. The ABORT bit automatically clears when a new DMA operation is started. It is not necessary to clear the ABORT bit after writing a 1 to it.

2 STOP

Stop DMA Operation

This bit can be written with a 1 to stop the current DMA operation. After the STOP bit is set, the DMA controller immediately stops reading data from the source and stops writing data to the destination as soon as the FIFO is emptied (unlike an ABORT operation, any data already read from the source is written to the destination before the DMA controller stops). After stopping a DMA operation, the same operation can be allowed to finish by writing the START bit with a 1, or a new operation can be started by reprogramming the DMA registers. After setting the STOP bit, the DMA registers should not be reprogrammed until the DONE bit in the DMA Channel Status Register (CHSRx) becomes 1. The STOP bit will automatically clear when the START bit is set. It is not necessary to clear the STOP bit after writing a 1 to it.

1 0

Reserved

This bit is reserved. Write this bit with 0 when writing the CHORx. The value this bit returns when read is meaningless.

Start DMA Operation

This bit should be written with a 1 to start a new DMA operation after the other DMA registers are initialized. This bit can also be set after a DMA operation has been stopped with the STOP bit to allow the operation to complete. When restarting a stopped DMA operation, the START bit should not be set until the DONE bit becomes 1 after setting the STOP bit. After setting the START bit, the DONE bit becomes clear and the DMA controller begins performing the operation.

DMA Channel Control Register (CHCRx)

CHCR1 VXIbus A24 or A32 Offset: D04 (hex)

CHCR2 VXIbus A24 or A32 Offset: E04 (hex)

Attributes: Read/Write 32, 16, 8-bit accessible

31	30	29	28	27	26	25	24
SET DMAIE	CLR DMAIE	0	0	0	0	SET DONEIE	CLR DONEIE
23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
0	1	0	0	0	0	0	0
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0

This register is used to individually enable the two DMA controllers to assert the DMA interrupt. Because the DMA interrupt is shared between the two DMA controllers, this register allows either DMA controller (or both) to use the interrupt.

Bit	Mnemonic	Description
31	SET DMAIE	Set DMA Interrupt Enable
		Writing a 1 to this bit enables the corresponding DMA controller to assert the DMA interrupt. Writing a 0 to this bit has no effect. This bit returns a 1 when read if the corresponding DMA controller is enabled to assert the interrupt and a 0 if it is disabled. The interrupt is disabled by a hard reset and is not affected by a soft reset.
30	CLR DMAIE	Clear DMA Interrupt Enable
		Writing a 1 to this bit disables the corresponding DMA controller from asserting the DMA interrupt. Writing a 0 to this bit has no effect. This bit returns a 0 when read if the corresponding DMA controller is enabled to assert the interrupt and a 1 if it is disabled. The interrupt is disabled by a hard reset and is not affected by a soft reset.

29-26	0	Reserved
		These bits are reserved. Write each of these bits with 0 when writing the CHCRx. The value these bits return when read is meaningless.
25	SET DONEIE	Set DONE Interrupt Enable
		Writing a 1 to this bit enables the corresponding DMA controller to interrupt on the DONE condition in the DMA Channel Status Register (CHSRx). Writing a 0 to this bit has no effect. This bit returns a 1 when read if the corresponding DMA controller is enabled to interrupt on the DONE condition and a 0 if it is disabled. The interrupt is disabled by a hard reset and is not affected by a soft reset.
24	CLR DONEIE	Clear DONE Interrupt Enable
		Writing a 1 to this bit disables the corresponding DMA controller from interrupting on the DONE condition in the DMA Channel Status Register (CHSRx). Writing a 0 to this bit has no effect. This bit returns a 0 when read if the corresponding DMA controller is enabled to interrupt on the DONE condition and a 1 if it is disabled. The interrupt is disabled by a hard reset and is not affected by a soft reset.
23-15	0	Reserved
		These bits are reserved. Write each of these bits with 0 when writing the CHCRx. The value these bits return when read is meaningless.
14	1	Reserved
		This bit is reserved. It must be initialized to 1 for the DMA controller to operate properly. This bit is cleared on a hard reset and is not affected by a soft reset.
13-0	0	Reserved
		These bits are reserved. Write each of these bits with 0 when writing the CHCRx. The value these bits return when read is meaningless.

DMA Transfer Count Register (TCRx)

TCR1 VXIbus A24 or A32 Offset: D08 (hex)

TCR2 VXIbus A24 or A32 Offset: E08 (hex)

Attributes: Read/Write 32, 16, 8-bit accessible

31	30	29	28	27	26	25	24
TC[31]	TC[30]	TC[29]	TC[28]	TC[27]	TC[26]	TC[25]	TC[24]
23	22	21	20	19	18	17	16
TC[23]	TC[22]	TC[21]	TC[20]	TC[19]	TC[18]	TC[17]	TC[16]
15	14	13	12	11	10	9	8
TC[15]	TC[14]	TC[13]	TC[12]	TC[11]	TC[10]	TC[9]	TC[8]
7	6	5	4	3	2	1	0
TC[7]	TC[6]	TC[5]	TC[4]	TC[3]	TC[2]	TC[1]	TC[0]

This register stores the number of bytes to be transferred.

Bit	Mnemonic	Description
31-0	TC[31:0]	Transfer Count

The transfer count is the number of bytes to be transferred from the source to the destination regardless of the width of the data transfers. The transfer count should be programmed before the DMA operation is started. When either the source or destination is using 64-bit data transfers, the transfer count programmed must be divisible by 8. The transfer count is decremented by 1, 2, 4, or 8—depending on the source data transfer width—as data is read from the source. Reading the transfer count will return the number of bytes remaining to be read from the source.

The transfer count has a limit when the *source* of the DMA operation will use synchronous MXIbus burst transfers. This limit does *not* apply when the *destination* uses synchronous MXIbus burst transfers. The limit differs depending on the setting of the MXIbus **Transfer Limit** control in the VXI*plug&play* soft front panel,

which is described in Chapter 7, VXIplug&play for the VXI-MXI-2. By default, the Transfer **Limit** is set to **Unlimited**; with this setting, the transfer count must not exceed 32 KB (8000 hex) if the source of the DMA operation will use synchronous MXIbus burst transfers. If you changed the setting of the MXIbus Transfer **Limit** control in the soft front panel to something other than Unlimited, you must program the transfer count to a multiple of the setting of the Transfer Limit control. The only exception is that you can also program the transfer count to be smaller than the Transfer Limit control setting. For example, assume the Transfer Limit control in the soft front panel is set to 256. In this case the transfer count must be programmed in the range of 1 to 256 or set to one of 512, 768, 1024, and so on.

DMA Source Configuration Register (SCRx)

SCR1 VXIbus A24 or A32 Offset: D0C (hex)

SCR2 VXIbus A24 or A32 Offset: E0C (hex)

Attributes: Read/Write 32, 16, 8-bit accessible

31	30	29	28	27	26	25	24
0	0	0	0	0	0	0	0
23	22	21	20	19	18	17	16
1	1	1	0	0	0	0	0
15	14	13	12	11	10	9	8
0	BLOCKEN	0	0	0	ASCEND	TSIZE[1]	TSIZE[0]
7	6	5	4	3	2	1	0
PORT[1]	PORT[0]	AM[5]	AM[4]	AM[3]	AM[2]	AM[1]	AM[0]

This register is used to configure how the DMA controller will access the source of the data.

Bit	Mnemonic	Description
31-24	0	Reserved
		These bits are reserved. Write each of these bits with 0 when writing the SCRx. The value these bits return when read is meaningless.
23-21	1	Reserved
		These bits are reserved. They must be initialized to 111 (binary) for the DMA controller to operate properly. These bits are cleared on a hard reset and are not affected by a soft reset.
20-15	0	Reserved
		These bits are reserved. Write each of these bits with 0 when writing the SCRx. The value these bits return when read is meaningless.

14 BLOCKEN

Block Mode DMA

Write a 1 to this bit to cause the DMA controller to perform block-mode transfers to the source. During block mode, the DMA controller keeps the AS* signal asserted throughout a series of read cycles to the source. The DMA controller automatically deasserts and reasserts the AS* signal when it reaches the appropriate transfer size limit for the bus on which the source is located (for example 256 bytes on the VXIbus). In addition, if the corresponding DMAxMBS bit is set in the Shared MXIbus Control Register (SMCR), any block-mode cycles from the DMA controller to the MXIbus are performed as a synchronous burst cycle. When this bit is clear, the DMA controller performs a series of standard single read cycles to the source deasserting the AS* signal after each cycle. This bit is cleared by a hard reset and is not affected by a soft reset.

13-11 0

Reserved

These bits are reserved. Write each of these bits with 0 when writing the SCRx. The value these bits return when read is meaningless.

10 ASCEND

Ascending Addresses

Write a 1 to this bit to cause the DMA controller to increment the source address between each data transfer of the DMA operation. The source address is incremented by 1, 2, 4, or 8—depending on the width of the source data transfers—resulting in the DMA controller accessing locations on the source in ascending order. When this bit is clear, the DMA controller does not increment the source address throughout the DMA operation, resulting in all the data coming from the same location on the source. This bit is cleared by a hard reset and is not affected by a soft reset.

9-8 TSIZE[1:0] Transfer Size

These bits control the transfer size to be used to access the source. Write these bits with 01 (binary) to perform 8-bit transfers, 10 (binary) to perform 16-bit transfers, and 11 (binary) to perform 32-bit or 64-bit transfers. The DMA controller can distinguish between 32-bit and 64-bit transfers using the AM[5:0] bits. These bits are cleared by a hard reset and are not affected by a soft reset.

7-6 PORT[1:0] Port

These bits control the bus on which the source is located. Write these bits with 01 (binary) if the source is DRAM onboard the VXI-MXI-2, 10 (binary) if the source is on the VXIbus, and 11 (binary) if the source is on the MXIbus. These bits are cleared by a hard reset and are not affected by a soft reset.

5-0 AM[5:0] Address Modifiers

These bits provide the address modifier code used to access the source. Even when the source is on the MXIbus, the VXIbus equivalent address modifier code should be written to these bits (the MXIbus address modifier code should not be written to these bits, because the DMA controller converts VXIbus address modifier codes when the source is on the MXIbus). Table F-1, Address Modifier Codes, in Appendix F, DMA Programming Examples, describes the address modifier codes that can be written to these bits. When the source is DRAM onboard the VXI-MXI-2, these bits must be written with 0. These bits are cleared by a hard reset and are not affected by a soft reset.

VXI-MXI-2 User Manual

DMA Source Address Register (SARx)

SAR1 VXIbus A24 or A32 Offset: D10 (hex)

SAR2 VXIbus A24 or A32 Offset: E10 (hex)

Attributes: Read/Write 32, 16, 8-bit accessible

31	30	29	28	27	26	25	24
SA[31]	SA[30]	SA[29]	SA[28]	SA[27]	SA[26]	SA[25]	SA[24]
23	22	21	20	19	18	17	16
SA[23]	SA[22]	SA[21]	SA[20]	SA[19]	SA[18]	SA[17]	SA[16]
15	14	13	12	11	10	9	8
SA[15]	SA[14]	SA[13]	SA[12]	SA[11]	SA[10]	SA[9]	SA[8]
7	6	5	4	3	2	1	0
SA[7]	SA[6]	SA[5]	SA[4]	SA[3]	SA[2]	SA[1]	SA[0]

This register stores the base address to be used for the source.

Bit	Mnemonic	Description
31-0	SA[31:0]	Source Address

These bits store the address used to access the source. The value of these bits is modified after each successful data transfer to the source during the DMA operation, according to the ASCEND bit in the DMA Source Configuration Register (SCRx). If the initial value of these bits is not aligned to the transfer size indicated by the TSIZE[1:0] bits in the SCRx, the DMA controller performs smaller transfers until address alignment occurs. However, if 64-bit data transfers are used for the source, this register must be programmed with an address divisible by 8. In the case that the DMA controller terminates due to an error with the source transfers, these bits would indicate the address that caused the error. When the source is DRAM onboard the VXI-MXI-2, these bits must be programmed with the offset of the source location within the VXI-MXI-2 module's address space, not the VXIbus address of the

source. To compute this value from the VXIbus address of the source, just subtract the VXI-MXI-2 module's A24 or A32 base address.

DMA Destination Configuration Register (DCRx)

DCR1 VXIbus A24 or A32 Offset: D14 (hex)

DCR2 VXIbus A24 or A32 Offset: E14 (hex)

Attributes: Read/Write 32, 16, 8-bit accessible

31	30	29	28	27	26	25	24
0	0	0	0	0	0	0	0
23	22	21	20	19	18	17	16
1	1	1	0	0	0	0	0
15	14	13	12	11	10	9	8
0	BLOCKEN	0	0	0	ASCEND	TSIZE[1]	TSIZE[0]
7	6	5	4	3	2	1	0
PORT[1]	PORT[0]	AM[5]	AM[4]	AM[3]	AM[2]	AM[1]	AM[0]

This register is used to configure how the DMA controller accesses the destination of the data.

Bit	Mnemonic	Description
31-24	0	Reserved
		These bits are reserved. Write each of these bits with 0 when writing the DCRx. The value these bits return when read is meaningless.
23-21	1	Reserved
		These bits are reserved. They must be initialized to 111 (binary) for the DMA controller to operate properly. These bits are cleared on a hard reset and are not affected by a soft reset.
20-15	0	Reserved
		These bits are reserved. Write each of these bits with 0 when writing the DCRx. The value these bits return when read is meaningless.

14 BLOCKEN

Block Mode DMA

Write a 1 to this bit to cause the DMA controller to perform block-mode transfers to the destination. During block mode, the DMA controller keeps the AS* signal asserted throughout a series of write cycles to the destination. The DMA controller automatically deasserts and reasserts the AS* signal when it reaches the appropriate transfer size limit for the bus on which the destination is located (for example 256 bytes on the VXIbus). In addition, if the corresponding DMAxMBS bit is set in the Shared MXIbus Control Register (SMCR), any block-mode cycles from the DMA controller to the MXIbus are performed as a synchronous burst cycle. When this bit is clear, the DMA controller performs a series of standard single write cycles to the destination deasserting the AS* signal after each cycle. This bit is cleared by a hard reset and is not affected by a soft reset.

13-11 0

Reserved

These bits are reserved. Write each of these bits with 0 when writing the DCRx. The value these bits return when read is meaningless.

10 ASCEND

Ascending Addresses

Write a 1 to this bit to cause the DMA controller to increment the destination address between each data transfer of the DMA operation. The destination address is incremented by 1, 2, 4, or 8—depending on the width of the destination data transfers—resulting in the DMA controller accessing locations on the destination in ascending order. When this bit is clear, the DMA controller does not increment the destination address throughout the DMA operation, resulting in all the data going to the same location on the destination. This bit is cleared by a hard reset and is not affected by a soft reset.

9-8 TSIZE[1:0]

Transfer Size

These bits control the transfer size to be used to access the destination. Write these bits with 01 (binary) to perform 8-bit transfers, 10 (binary) to perform 16-bit transfers, and 11 (binary) to perform 32-bit or 64-bit transfers. The DMA controller can distinguish between 32-bit and 64-bit transfers using the AM[5:0] bits. These bits are cleared by a hard reset and are not affected by a soft reset.

7-6 PORT[1:0]

Port

These bits control the bus on which the destination is located. Write these bits with 01 (binary) if the destination is DRAM onboard the VXI-MXI-2, 10 (binary) if the destination is on the VXIbus, and 11 (binary) if the destination is on the MXIbus. These bits are cleared by a hard reset and are not affected by a soft reset.

5-0 AM[5:0]

Address Modifiers

These bits provide the address modifier code used to access the destination. Even when the destination is on the MXIbus, the equivalent VXIbus address modifier code should be written to these bits (the MXIbus address modifier code should not be written to these bits because the DMA controller converts VXIbus address modifier codes when the destination is on the MXIbus). Table F-1, *Address Modifier Codes*, in Appendix F, *DMA Programming Examples*, describes the address modifier codes that can be written to these bits. When the destination is DRAM onboard the VXI-MXI-2, these bits must be written with 0. These bits are cleared by a hard reset and are not affected by a soft reset.

DMA Destination Address Register (DARx)

DAR1 VXIbus A24 or A32 Offset: D18 (hex)

DAR2 VXIbus A24 or A32 Offset: E18 (hex)

Attributes: Read/Write 32, 16, 8-bit accessible

31	30	29	28	27	26	25	24
DA[31]	DA[30]	DA[29]	DA[28]	DA[27]	DA[26]	DA[25]	DA[24]
23	22	21	20	19	18	17	16
DA[23]	DA[22]	DA[21]	DA[20]	DA[19]	DA[18]	DA[17]	DA[16]
15	14	13	12	11	10	9	8
DA[15]	DA[14]	DA[13]	DA[12]	DA[11]	DA[10]	DA[9]	DA[8]
7	6	5	4	3	2	1	0
DA[7]	DA[6]	DA[5]	DA[4]	DA[3]	DA[2]	DA[1]	DA[0]

This register stores the base address to be used for the destination.

Bit	Mnemonic	Description
31-0	DA[31:0]	Destination Address

These bits store the address used to access the destination. The value of these bits is modified after each successful data transfer to the destination during the DMA operation, according to the ASCEND bit in the DMA Destination Configuration Register (DCRx). If the initial value of these bits is not aligned to the transfer size indicated by the TSIZE[1:0] bits in the DCRx, the DMA controller performs smaller transfers until address alignment occurs. However, if 64-bit data transfers are used for the destination, this register must be programmed with an address divisible by 8. In the case that the DMA controller terminates due to an error with the destination transfers, these bits would indicate the address that caused the error. When the destination is DRAM onboard the VXI-MXI-2, these bits must be programmed with the offset of the destination location within the VXI-MXI-2 module's address space, not the

VXIbus address of the destination. To compute this value from the VXIbus address of the destination, just subtract the VXI-MXI-2 module's A24 or A32 base address.

DMA Channel Status Register (CHSRx)

CHSR1 VXIbus A24 or A32 Offset: D3C (hex)

CHSR2 VXIbus A24 or A32 Offset: E3C (hex)

Attributes: Read Only 32, 16, 8-bit accessible

31	30	29	28	27	26	25	24
INT	0	0	0	0	0	DONE	0
23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
ERROR	SABORT	0	STOPS	0	0	XFERR	0
7	6	5	4	3	2	1	0
0	0	0	0	SERR[1]	SERR[0]	DERR[1]	DERR[0]

This register provides status bits for DMA controller operations and error conditions.

Bit	Mnemonic	Description
31	INT	DMA Interrupt
		When this bit returns a 1, it indicates that the corresponding DMA controller is asserting the DMA interrupt.
30-26	0	Reserved
		These bits are reserved. The value these bits return when read is meaningless.
25	DONE	DMA Done bit
		This status bit is cleared when a DMA operation is started and set when the operation is terminated either successfully or by a stop or error condition. This bit can be either polled or used to generate an interrupt to signal when the operation is complete. See the register descriptions for the DMAICR, DMAIER, DMAISIDR, and CHCRx for more information about generating an interrupt on the DONE bit. Once it is determined that the DMA operation is done, the error condition bits in this register

		(ERROR, SABORT, STOPS, XFERR, SERR[1:0], and DERR[1:0]) should be checked before assuming the transfer completed successfully.
24-16	0	Reserved
		These bits are reserved. The value these bits return when read is meaningless.
15	ERROR	DMA Error bit
		When this bit returns a 1 it indicates that the corresponding DMA controller terminated an operation due to an error condition. The other bits in this register can be used to determine the type of error.
14	SABORT	DMA Software Abort bit
		When this bit returns a 1, it indicates that the corresponding DMA controller terminated an operation because the ABORT bit in the DMA Channel Operation Register (CHORx) was written with a 1.
13	0	Reserved
		This bit is reserved. The value this bit returns when read is meaningless.
12	STOPS	DMA Stopped Status bit
		When this bit returns a 1, it indicates that the STOP bit in the DMA Channel Operation Register (CHORx) was written with a 1. This does not indicate that the DMA controller has actually stopped. The DONE bit indicates when the DMA controller has actually stopped the operation.
11-10	0	Reserved
		These bits are reserved. The value these bits return when read is meaningless.
9	XFERR	Transfer Error
		When this bit returns a 1, it indicates that the DMA operation has terminated because either the source or destination encountered an error condition. Refer to the SERR[1:0] and DERR[1:0] bit descriptions to determine the type of error.

8-4 0 Reserved

These bits are reserved. The value these bits return when read is meaningless.

3-2 SERR[1:0] Source Error Status

These bits indicate the type of error that occurred when accessing the source. When 00 (binary) is returned, no error occurred. When 01 (binary) is returned, a data transfer to the source got a bus error. When 10 (binary) is returned, it indicates that the retry limit was exceeded trying to access the source. The DMA controller retries up to 64 times any data transfer that receives a RETRY* acknowledge. If the data transfer receives a RETRY* acknowledge for the 65th time, the DMA controller terminates the operation and sets the retry limit exceeded status in the SERR[1:0] bits. When 11 (binary) is returned, it indicates that a data cycle to the source got a MXIbus parity error.

1-0 DERR[1:0] Destination Error Status

These bits indicate the type of error that occurred when accessing the destination. When 00 (binary) is returned, no error occurred. When 01 (binary) is returned, a data transfer to the destination got a bus error. When 10 (binary) is returned, it indicates that the retry limit was exceeded trying to access the destination. The DMA controller will retry up to 64 times any data transfer that receives a RETRY* acknowledge. If the data transfer receives a RETRY* acknowledge for the 65th time, the DMA controller terminates the operation and sets the retry limit exceeded status in the DERR[1:0] bits.

DMA FIFO Count Register (FCRx)

FCR1 VXIbus A24 or A32 Offset: D40 (hex)

FCR2 VXIbus A24 or A32 Offset: E40 (hex)

Attributes: Read Only 32, 16, 8-bit accessible

31	30	29	28	27	26	25	24
0	0	0	0	0	0	0	0
23	22	21	20	19	18	17	16
ECR[7]	ECR[6]	ECR[5]	ECR[4]	ECR[3]	ECR[2]	ECR[1]	ECR[0]
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
FCR[7]	FCR[6]	FCR[5]	FCR[4]	FCR[3]	FCR[2]	FCR[1]	FCR[0]

This register indicates the state of the DMA controller's FIFO buffer.

Bit	Mnemonic	Description
31-24	0	Reserved
		These bits are reserved. The value these bits return when read is meaningless.
23-16	ECR[7:0]	Empty Count Register
		These bits indicate the number of empty locations (in bytes) currently in the FIFO.
15-8	0	Reserved
		These bits are reserved. The value these bits return when read is meaningless.
7-0	FCR[7:0]	Full Count Register
		These bits indicate the number of bytes of data remaining in the FIFO.

Chapter 6

System Configuration

This chapter explains important considerations for programming and configuring a VXIbus/MXIbus system using VXI-MXI-2 mainframe extenders.

Note:

Detailed descriptions of all register bits can be found in Chapter 5, Register Descriptions.

In a MXIbus system, MXIbus address space is partitioned between MXIbus devices. A MXIbus device is any device having a MXIbus interface. MXIbus devices can be VXIbus mainframes, PCs, or stand-alone instruments. The MXIbus memory map is the same for all devices in the VXIbus/MXIbus system. Multiple VXIbus subsystems share one VXIbus/MXIbus Resource Manager (RM). This multiframe RM performs all the VXIbus RM functions and configures all VXI-MXI-2 mainframe extenders in the system to partition the MXIbus address space.

You can connect a VXIbus/MXIbus system together to form any arbitrary tree topology. A tree topology has no circular paths. Figures 6-1 and 6-2 show examples of tree topologies. The system in Figure 6-1 would not be a tree structure if a cable were added from the last MXIbus device on Level 1 to the Root PC. Figure 6-2 would also be an illegal and circular system if a cable were added to connect the two MXIbus devices on Level 1. At the root of the tree is the multiframe RM. The root can be a VXIbus mainframe or a stand-alone device, such as a PC with a MXIbus interface, that can operate as the system RM.

All MXIbus devices have address windows that connect them to the MXIbus system address map. MXIbus devices can be assigned space in any of four address spaces: A32, A24, A16, and logical address space. Upon initialization, all windows are turned off, isolating all MXIbus devices from each other. The multiframe RM scans the MXIbus links and VXIbus mainframes for devices and configures the window registers on each MXIbus device in order to partition the MXIbus address space among all devices.

Planning a VXIbus/MXIbus System Logical Address Map

The VXIbus/MXIbus system integrator is the person who configures all the VXIbus and MXIbus devices and connects the system together. This chapter assumes that you are the system integrator.

Before you begin setting the logical addresses of the devices in your VXIbus/MXIbus system, you must determine the tree configuration of your system. The two basic configurations are the MXIbus multiframe RM as an external PC with a MXIbus interface, as shown in Figure 6-1, or the MXIbus multiframe RM in a VXIbus mainframe, as shown in Figure 6-2. The location of the multiframe RM constitutes the root of the system tree. MXIbus links connected to the root of the tree form levels of the tree. Notice that only one MXIbus link can be connected on the first level below a root PC multiframe RM, while multiple MXIbus links can be connected on the first level below a root VXIbus mainframe.

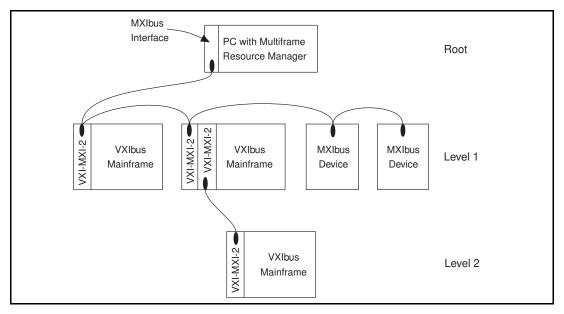


Figure 6-1. VXIbus/MXIbus System with Multiframe RM on a PC

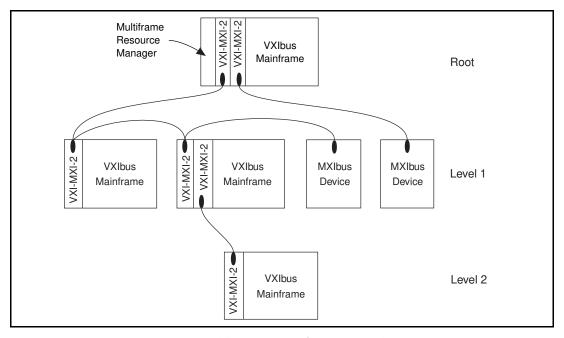


Figure 6-2. VXIbus/MXIbus System with Multiframe RM in a VXIbus Mainframe

The recommended way to set up your system is to fill up Level 1 MXIbus links before adding additional levels. System performance decreases as you increase the number of levels to the system because each level requires additional signal conversion. Also keep in mind these basic rules for VXI-MXI-2 installation as you decide where to install your VXI-MXI-2 interfaces:

- The VMEbus bus timeout unit must be on a VXI-MXI-2.
- Multiple VXI-MXI-2 interfaces in a mainframe must be in adjacent slots.

The address mapping windows on the VXI-MXI-2 can be configured to have a *Base/Size* format or a *High/Low* format. The CMODE bit in the VXI-MXI-2 Control Register (VMCR) selects which format the mapping windows use.

Base/Size Configuration Format

Each address mapping window on a VXI-MXI-2 interface has Base and Size parameters associated with it when the CMODE bit in the VXI-MXI-2 Control Register (VMCR) is cleared. The Base bits define the base address for the window, and the Size bits indicate the number of Base bits that are significant. Replacing the insignificant bits with

zeros gives the actual base address of the window. In other words, the Base and Size define a range of addresses that are in the window. A Direction bit is also included to indicate whether the defined range of addresses are mapped into or out of the VXIbus mainframe.

Table 6-1 shows which bits are compared for each Size setting and the resulting address range in hex if Base is set to 0 and hex 55. Figure 6-3 further illustrates the number of bits of the Base that are compared for each Size value. Notice that if Size = 0, no bits are compared.

Figure 6-4 shows the address range allocation for different Size values.

Size	Base7	Base6	Base5	Base4	Base3	Base2	Base1	Base0	Range for 0	Range for 55
7	*	*	*	*	*	*	*		0 to 1	54 to 55
6	*	*	*	*	*	*			0 to 3	54 to 57
5	*	*	*	*	*				0 to 7	50 to 57
4	*	*	*	*					0 to F	50 to 5F
3	*	*	*						0 to 1F	40 to 5F
2	*	*							0 to 3F	40 to 7F
1	*								0 to 7F	00 to 7F
0									0 to FF	00 to FF

Table 6-1. Base and Size Combinations

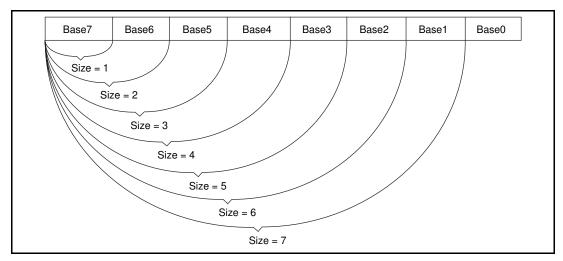


Figure 6-3. Base and Size Combinations

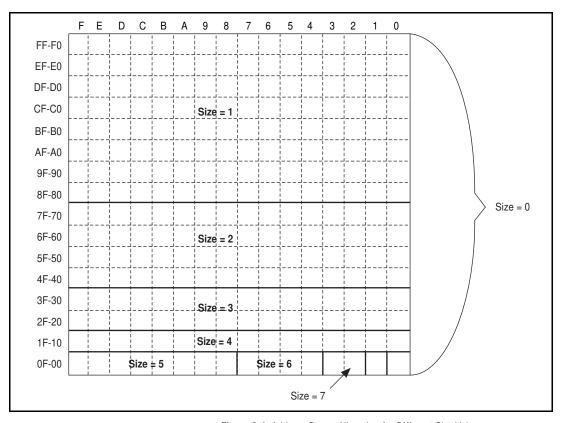
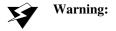



Figure 6-4. Address Range Allocation for Different Size Values

High/Low Configuration Format

Each address mapping window on a VXI-MXI-2 interface has High and Low address parameters associated with it when the CMODE bit in the VXI-MXI-2 Control Register (VMCR) is set. The High and Low values define the range of MXIbus addresses that map into the VXIbus. The High bits define the upper bound address of the window, and the Low bits indicate the lower bound address of the window. To map a range of addresses from the VXIbus to the MXIbus (out of the mainframe), the RM places the upper bound of the window in the Low field, and the lower bound of the window in the High field. The window is disabled if the upper and lower bound are both equal to 0.

The High/Low configuration format is not defined in VXI-6, VXIbus Mainframe Extender Specification. This format is a device-specific feature of the VXI-MXI-2. Do not design a system architecture based on this format when using a standard VXIbus Resource Manager.

Steps to Follow When Planning a System Logical Address Map

As system integrator, when installing devices in the VXIbus/MXIbus system, you must assign a range of logical addresses for each VXIbus mainframe and MXIbus link. The multiframe RM configures the logical address windows of each device to include the static logical addresses it finds in the mainframe, and returns an error if the static logical address assignments prevent assignment of an entire system logical address map. Devices with dynamically configurable logical addresses are assigned logical addresses within the range of addresses defined by the static devices in the mainframe.

The example system in Figure 6-5 has two levels. The VXIbus RM is in VXIbus Mainframe #1. Use the following steps to develop a logical address map. The example worksheets show numbers for using Base/Size window formats. For High/Low format systems, you do not need to round the range of addresses for each mainframe up to the next power of two. Following the example system are worksheets you can use for analyzing your own system.

 Lay out your system configuration and determine the number of logical addresses required by each VXIbus mainframe and MXIbus device. See Figure 6-5 and Table 6-2 for examples. Identify the multiframe RM and label its host device as the root of the system. Also identify the levels of the system and the MXIbus links on each level. MXIbus links cannot span across levels.

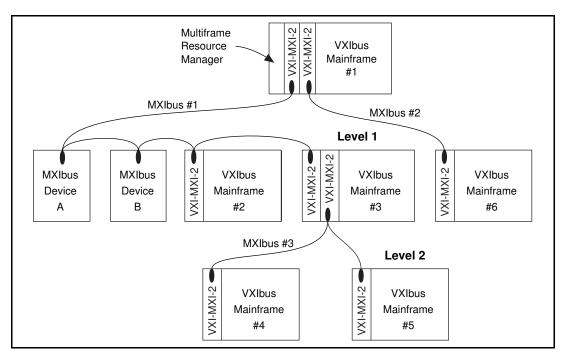


Figure 6-5. Example VXIbus/MXIbus System

Table 6-2. Example VXIbus/MXIbus System Required Logical Addresses

Device	Number of Logical Addresses Required
VXIbus Mainframe #1	12
MXIbus Device A	3
MXIbus Device B	1
VXIbus Mainframe #2	23
VXIbus Mainframe #3	6
VXIbus Mainframe #4	13
VXIbus Mainframe #5	9
VXIbus Mainframe #6	7

2. Determine the number of logical addresses required by the root device. If the RM is a PC with a MXIbus interface, the total number of logical addresses required is 1. If the RM is in a VXIbus mainframe, determine the number of logical addresses required by all devices in that mainframe. Fill in that number in the appropriate space in the RM block as shown in Figure 6-7. If you are using the Base/Size format of the windows, round that number to the next highest power of two and place that number in the appropriate space.

Note:

If your RM is a PC with a MXIbus interface and you have more than one VXIbus mainframe on Level 1, you must change the logical addresses of both VXI-MXI-2 interfaces so that they are not at the default of 1. Select a logical address that is greater than or equal to the number of logical addresses required by the mainframe.

In the example system, the multiframe RM is installed in VXIbus Mainframe #1 and that frame requires 12 logical addresses. We rounded the value 12 to the next highest power of two and entered the number 16 into the table.

- 3. Next, fill in the blanks for the number of logical addresses required by the first-level MXIbus devices. Using a separate worksheet for each MXIbus link on Level 1, fill in the blanks for the number of logical addresses required by the devices on each MXIbus link. Remember, you do not need to round numbers to the next power of two if you are using the High/Low format for the windows.
 - The example system has two MXIbus links on the first level: MXIbus #1 and MXIbus #2. Figure 6-8 is the worksheet for MXIbus #1 and Figure 6-9 is the worksheet for MXIbus #2. We listed the devices on the MXIbus link and entered the number of logical addresses required by each device into the appropriate spaces. We then rounded the number of logical addresses up to the next power of two and entered this number into the table.
- 4. Fill out a separate worksheet for second-level MXIbus links and put the results in the appropriate places on the worksheet for the first-level device to which they are connected. Determine the total number of logical addresses required for the first-level device by adding the numbers with "+" next to them. If you are using Base/Size window formats, round this number to the next highest power of two and place it in the appropriate space on the worksheet.

- For the example system, MXIbus #3 is a second-level MXIbus link and it is connected to VXIbus Mainframe #3. We filled out the worksheet in Figure 6-10 for MXIbus #3 and entered the results into the worksheet for MXIbus #1 (Figure 6-8) under the device VXIbus Mainframe #3. MXIbus #3 needs 32 logical addresses and the devices in VXIbus Mainframe #3 need eight logical addresses. The sum of these numbers is 40, which rounds up to 64.
- 5. Determine the total number of logical addresses required by each MXIbus link by adding the numbers adjacent to the "*" symbols and entering that number in the appropriate space at the bottom of the worksheet. If you are using the Base/Size window format, round the number to the highest power of two and enter it into the appropriate space on the worksheet. Place these numbers in the appropriate spaces on the worksheet for the next highest-level device to which the MXIbus link is connected.
 - In the example system, MXIbus #1 requires 101 logical addresses (found at the bottom of Figure 6-8) and MXIbus #2 requires eight logical addresses (found at the bottom of Figure 6-9). We placed these numbers in the corresponding spaces in Figure 6-7.
- 6. Add up the total number of logical addresses required for the system (at the bottom of Figure 6-7). Round this number up to the highest power of two if you are using Base/Size formats. The result should be equal to or less than 256. If the number is greater than 256, you must reorganize your devices and reconfigure the system. In the example system, this number equals 256, therefore the configuration is acceptable.
- 7. If you are using Base/Size parameters, determine the Size field of the range for each device and MXIbus link and insert that value in the corresponding locations of the worksheets. When you round up the number of logical addresses required to 2^{x} , Size = 8 X.
- 8. Determine the range of addresses that will be occupied by the root device and each first-level device and MXIbus link. For Base/Size systems, use the Logical Address Map Diagram shown in Figure 6-6 to visualize the logical address map for the system. Each square in this diagram represents one logical address. The maximum number of logical addresses in a system is 256 and address ranges are assigned in blocks divisible by a power of two. Refer to Table 6-1 and Figure 6-4 for example logical address allocations for different Size values.

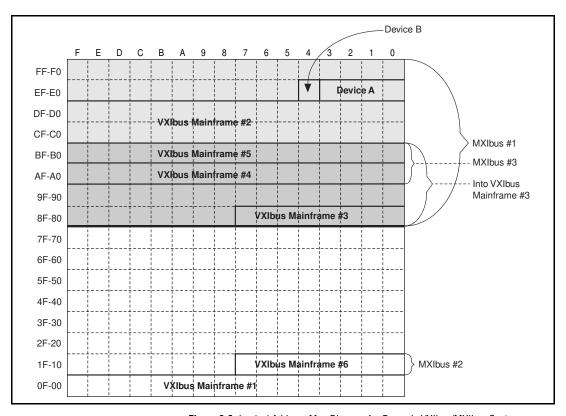


Figure 6-6. Logical Address Map Diagram for Example VXIbus/MXIbus System

The multiframe RM by definition is located at logical address 0; therefore, the host device of the multiframe RM must be assigned a range of logical addresses that includes logical address 0. Starting with the MXIbus link on Level 1, which requires the most logical addresses, assign the lowest available address range of the logical address map and continue with the next largest MXIbus link.

For the example system, VXIbus Mainframe #1, the host to the multiframe RM, requires 16 logical addresses and must have a range that includes logical address 0. It is assigned address range 0 to F hex. The largest first-level MXIbus link is MXIbus #1. It requires 128 logical addresses, which is one-half of the total logical address space. The lowest available address range of 128 divisible by a power of two is 80 to FF hex, which is the upper half of the logical address space. The other first-level MXIbus link, MXIbus #2, needs only eight logical addresses. It is assigned the lowest available range of size 8: 10 to 17 hex.

- 9. Determine the range of addresses that will be occupied by each device in the first-level MXIbus links. Remember that the range of addresses occupied by these devices must be within the range of addresses assigned to MXIbus link to which it is a member. Start with the largest device in the MXIbus link.
 - In the example system, MXIbus #1 has four devices. The largest one is VXIbus Mainframe #3, which requires 64 logical addresses. This device has a second-level MXIbus link that needs 32 logical addresses, and the mainframe needs eight logical addresses for its own devices. First, assign the devices in the mainframe to the lowest available range within the allotted address range of MXIbus #1: 80 to 87 hex. Then assign MXIbus #3 the lowest available range of size 32: A0 to BF hex. The next largest device, VXIbus Mainframe #2, needs 32 logical addresses and is assigned the next lowest available range of 32: C0 to DF hex. MXIbus Device A needs four logical addresses and MXIbus Device B needs one address. They are assigned E0 to E3, and E4, respectively.
- 10. Determine the range of addresses that will be occupied by each second-level device and MXIbus link. Remember that the range of addresses occupied by second-level devices must be within the range of addresses assigned to the device one level above it. Once the first-level MXIbus links have been allocated, assign the MXIbus devices and second-level MXIbus links within the corresponding first-level devices, starting with the largest device.

In the example system, we assigned MXIbus #3 address range A0 to BF hex. MXIbus #3 has two devices: VXIbus Mainframe #4 and VXIbus Mainframe #5. Each requires 16 logical addresses; therefore, we assigned them address ranges A0 to AF hex, and B0 to BF hex, respectively.

Chapter 6 System Configuration

Resource Manager Mainframe: <u>VXIbus Mainframe #1</u>				
Total number of logical addresses required by this device:		12	Range =	0-F
Round total number up to the next power of two:	*	<u>16 (2⁴)</u>	Size =	<u>8-4 = 4</u>
First-Level MXIbus Link: MXIbus #1				
(Fill in after completing charts on the following pages)				
Total number of logical addresses required by MXIbus Link:		101	Range =	<u>80 – FF</u>
Round total number up to next power of two:	*	<u>128 (2⁷)</u>	Size =	<u>8-7 = 1</u>
First-Level MXIbus Link: MXIbus #2				
(Fill in after completing charts on the following pages)				
Total number of logical addresses required by MXIbus Link:		8	Range =	<u> 10 – 17</u>
Round total number up to next power of two:	*	<u>8 (2³)</u>	Size =	<u>8-3 = 5</u>
First-Level MXIbus Link:				
(Fill in after completing charts on the following pages)				
Total number of logical addresses required by MXIbus Link:			Range =	
Round total number up to next power of two:	*		Size =	
Total Number of Logical Addresses Required:		152	•	
(Add numbers after the "*")			Range =	0 – FF
Round Total Number up to Next Power of Two:		256	Size =	<i>8-8 = 0</i>
(If this number is greater than 256, you need to reorg	aniz	e devices and tr	y again.)	

Figure 6-7. Worksheet 1: Summary of Example VXIbus/MXIbus System

MXIbus Link: MXIbus #1				
Device: <u>MXIbus Device A</u>				
Number of logical addresses required by device:		3	Range =	<u>E0 – E3</u>
Round total number up to the next power of two:		(2^2)	Size =	<u>8-2 = 6</u>
List other MXIbus links to this mainframe:				
Number of logical addresses required by additional MXIbus links:	+	0		
Total number of logical addresses required by this device:	=	3	Range =	E0 - E3
Round total number up to the next power of two:	*	(2^2)	Size =	<i>8-2 = 6</i>
Device: MXIbus Device B				
Number of logical addresses required by device:		1	Range =	E4
Round total number up to the next power of two:		<u>1 (2°)</u>	Size =	<u>8-0 = 8</u>
List other MXIbus links to this mainframe:				
Number of logical addresses required by additional MXIbus links:	+	0		
Total number of logical addresses required by this device:	=	1	Range =	E4
Round total number up to the next power of two:	*	<u> 1 (2°)</u>	Size =	<u>8-0 = 8</u>
Device: VXIbus Mainframe #2				
Number of logical addresses required by device:		23	Range =	_C0 - DF
Round total number up to the next power of two:		<u>32 (2⁵)</u>	Size =	<u>8-5 = 3</u>
List other MXIbus links to this mainframe:				
Number of logical addresses required by additional MXIbus links:		0		
Total number of logical addresses required by this device:	+	<u>0</u> 	Range =	C0 – DF
Round total number up to the next power of two:	=	$\frac{25}{32}$	Size =	8-5=3
Device: VXIbus Mainframe #3	*	<u> </u>	0126 =	0-0 = 0
Number of logical addresses required by device:		6	Range =	80 – 87
Round total number up to the next power of two:		8 (2 ³)	Size =	<i>8-3 = 5</i>
·	XIbus			
Number of logical addresses required by additional MXIbus links:		32		
Total number of logical addresses required by this device:		40	Range =	A0 – BF
Round total number up to the next power of two:		64 (2 ⁶)	Size =	8-6 = 2
Device:	-			
Number of logical addresses required by device:			Range =	
Round total number up to the next power of two:			Size =	
List other MXIbus links to this mainframe:				
Number of logical addresses required by additional MXIbus links:	+			
Total number of logical addresses required by this device:	=		Range =	
Round total number up to the next power of two:	*		Size =	
Total Number of Logical Addresses Required:		101		
(Add numbers after the " $_{\star}$ ")			Range =	<u>80 – FF</u>
Round Total Number up to Next Power of Two:		<u>128 (2⁷)</u>	Size =	<u>8-7 = 1</u>

Figure 6-8. Worksheet 2 for MXIbus #1 of Example VXIbus/MXIbus System

Chapter 6 System Configuration

MXIbus Link: MXIbus #2			
Device: <u>VXIbus Mainframe #6</u>			
Number of logical addresses required by device:		Range =	<u> 10 – 17</u>
Round total number up to the next power of two:	<u>8 (2³</u>	3) Size =	<u>8-3 = 5</u>
List other MXIbus links to this mainframe:			
Number of logical addresses required by additional MXIbus links:	+0		
Total number of logical addresses required by this device:	=7	Range =	<u> 10 – 17</u>
Round total number up to the next power of two:	* <u>8 (2</u> 5	<u>3)</u> Size =	<u>8-3 = 5</u>
Device:			
Number of logical addresses required by device:		Range =	
Round total number up to the next power of two:		Size =	
List other MXIbus links to this mainframe:		<u>_</u>	
Number of logical addresses required by additional MXIbus links:	+		
Total number of logical addresses required by this device:	=	Range =	
Round total number up to the next power of two:	*	Size =	
Total Number of Logical Addresses Required:	8		
(Add numbers after the "*")		Range =	<u> 10 – 17</u>
Round Total Number up to Next Power of Two:	<u>8 (2³</u>	3) Size =	<u>8-3 = 5</u>

Figure 6-9. Worksheet 3 for MXIbus #2 of Example VXIbus/MXIbus System

MXIbus Link: MXIbus #3				
Device: VXIbus Mainframe #4				
Number of logical addresses required by device:	_	13	Range =	A0-AF
Round total number up to the next power of two:	_	16 (2 ⁴)	Size =	<i>8-4 = 4</i>
List other MXIbus links to this mainframe:				
Number of logical addresses required by additional MXIbus links:	+ _	0		
Total number of logical addresses required by this device	: = _	13	Range =	
Round total number up to the next power of two:	*	16 (2 ⁴)	Size =	<u>8-4 = 4</u>
Device: VXIbus Mainframe #5				
Number of logical addresses required by device:	_	9	Range =	B0 - BF
Round total number up to the next power of two:	_	16 (2 ⁴)	Size =	8-4 = 4
List other MXIbus links to this mainframe:				
Number of logical addresses required by additional MXIbus links:	+ _	0		
Total number of logical addresses required by this device	: = _	9	Range =	B0 − BF
Round total number up to the next power of two:	*	16 (2 ⁴)	Size =	8-4 = 4
Total Number of Logical Addresses Required:	_	32		
(Add numbers after the "*")			Range =	<u> 10 – 17</u>
Round Total Number up to Next Power of Two:		<i>32 (2⁵)</i>	Size =	<u>8-5 = 3</u>

Figure 6-10. Worksheet 4 for MXIbus #3 of Example VXIbus/MXIbus System

Worksheets for Planning Your VXIbus/MXIbus Logical Address Map

Use the worksheets on the following pages for analyzing your own VXIbus/MXIbus system. Follow the procedures used to fill out the worksheets for the example VXIbus/MXIbus system.

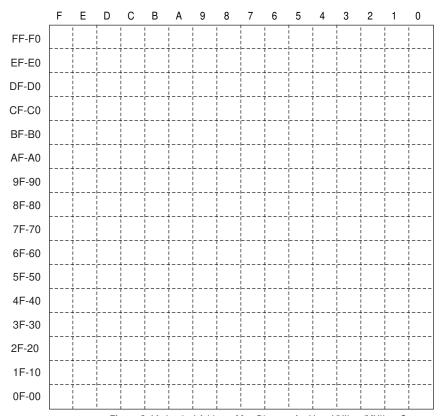


Figure 6-11. Logical Address Map Diagram for Your VXIbus/MXIbus System

Chapter 6 System Configuration

Resource Manager Mainframe:		
Total number of logical addresses required by this device:		Range =
Round total number up to the next power of two:	*	Size =
First-Level MXIbus Link:		
(Fill in after completing charts on the following pages)		
Total number of logical addresses required by MXIbus Link:		Range =
Round total number up to next power of two:	*	Size =
First-Level MXIbus Link:		
(Fill in after completing charts on the following pages)		
Total number of logical addresses required by MXIbus Link:		Range =
Round total number up to next power of two:	*	Size =
First-Level MXIbus Link:		
(Fill in after completing charts on the following pages)		
Total number of logical addresses required by MXIbus Link:		Range =
Round total number up to next power of two:	*	Size =
First-Level MXIbus Link:		
(Fill in after completing charts on the following pages)		
Total number of logical addresses required by MXIbus Link:		Range =
Round total number up to next power of two:	*	Size =
Total Number of Logical Addresses Required:		
(Add numbers after the " $_{\star}$ ")		Range =
Round Total Number up to Next Power of Two:		Size =
(If this number is greater than 256, you need to reorga	anize devices and tr	y again.)

Figure 6-12. Worksheet 1: Summary of Your VXIbus/MXIbus System

Use Figures 6-13 through 6-15 to show the first three MXIbus links of your VXIbus/MXIbus system.

Figure 6-13. Worksheet 2 for MXIbus #1 of Your VXIbus/MXIbus System

MXIbus Link: MXIbus #2		
Device:		
Number of logical addresses required by device:		Range =
Round total number up to the next power of two:	-	Size =
List other MXIbus links to this mainframe:		
Number of logical addresses required by additional MXIbus links:	+	
Total number of logical addresses required by this device:	=	Range =
Round total number up to the next power of two:	*	Size =
Device:		
Number of logical addresses required by device:		Range =
Round total number up to the next power of two:		Size =
List other MXIbus links to this mainframe:		
Number of logical addresses required by additional MXIbus links:	+	
Total number of logical addresses required by this device:	=	Range =
Round total number up to the next power of two:	*	Size =
Device:		
Number of logical addresses required by device:		Range =
Round total number up to the next power of two:		Size =
List other MXIbus links to this mainframe:	_	
Number of logical addresses required by		
additional MXIbus links:	+	
Total number of logical addresses required by this device:	=	Range =
Round total number up to the next power of two:	*	Size =
Device:		
Number of logical addresses required by device:		Range =
Round total number up to the next power of two:		Size =
List other MXIbus links to this mainframe:		
Number of logical addresses required by additional MXIbus links:	+	
Total number of logical addresses required by this device:	=	Range =
Round total number up to the next power of two:	*	Size =
Device:		
Number of logical addresses required by device:		Range =
Round total number up to the next power of two:		Size =
List other MXIbus links to this mainframe:		
Number of logical addresses required by additional MXIbus links:	+	
Total number of logical addresses required by this device:	=	Range =
Round total number up to the next power of two:	*	Size =
Total Number of Logical Addresses Required:		
(Add numbers after the "*")		Range =
Round Total Number up to Next Power of Two:		Size =

Figure 6-14. Worksheet 3 for MXIbus #2 of Your VXIbus/MXIbus System

Figure 6-15. Worksheet 4 for MXIbus #3 of Your VXIbus/MXIbus System

Alternative Worksheets for Planning Your VXIbus/MXIbus Logical Address Map

For most VXIbus/MXIbus systems, you may find the following worksheet helpful when setting up a system using the High/Low format for window configuration. The entire system can be described on one worksheet. Remember that the High/Low format cannot be used with a standard VXIbus Resource Manager.

The dotted lines can be used to add additional MXIbus links to Level 1 of the system, or to connect a Level 2 MXIbus link to one of the devices on Level 1.

Figure 6-16 presents one of these worksheets filled out for the example VXIbus/MXIbus system shown in Figure 6-5. Notice that the system does not take up as much of the logical address space as the Base/Size method of configuration because address requirements do not have to occupy blocks in powers of two. With High/Low configuration, you can configure each VXI-MXI-2 window for exactly the amount of address space the mainframe needs.

Figure 6-17 is an alternative logical address map worksheet for you to fill out for your VXIbus/MXIbus system.

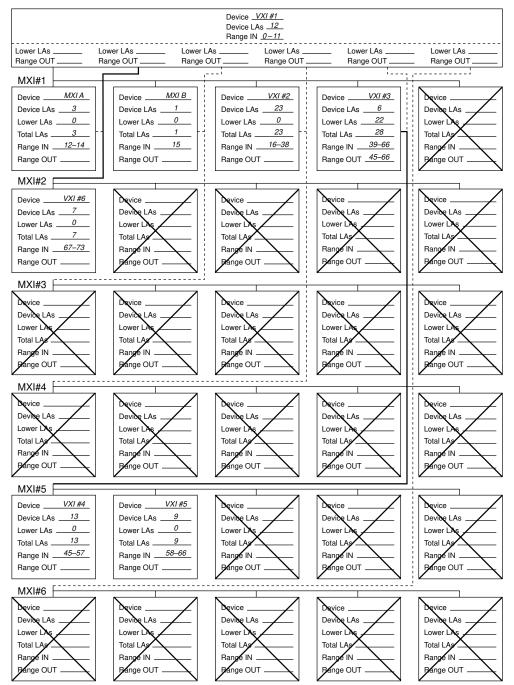


Figure 6-16. Alternative Worksheet: Logical Address Map for Example VXIbus/MXIbus System

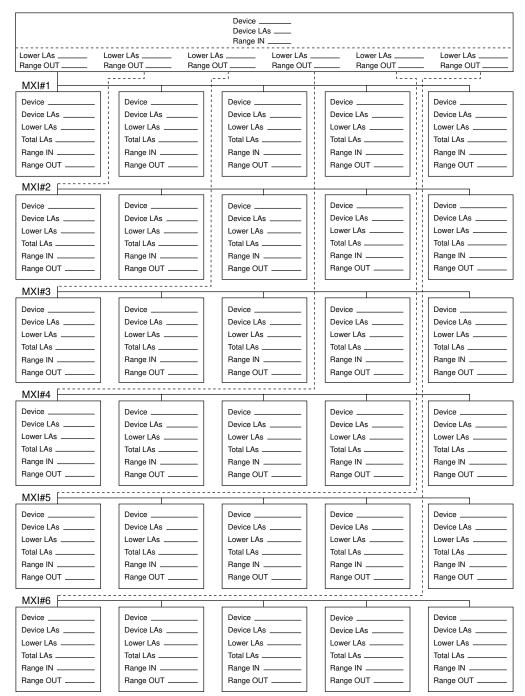


Figure 6-17. Alternative Worksheet: Logical Address Map for Your VXIbus/MXIbus System

Planning a VXIbus/MXIbus System A16 Address Map

The VXIbus specification does not define a method for dynamically determining the amount of A16 space each device requires. The specification defines the upper 16 KB of A16 space for VXIbus device configuration registers. In most cases, the lower 48 KB of A16 space are used for VMEbus devices installed in the VXIbus system. In a VXIbus/MXIbus system, A16 space is defined as that lower 48 KB of the A16 address space. As system integrator, you must determine the A16 address requirements for your VXIbus/MXIbus system and define the A16 space ranges needed as foreign devices to the system RM.

You should configure the A16 resources for your VMEbus boards in the lower 48 KB (0000 through BFFF hex) of A16 space, so that you do not interfere with VXIbus configuration space. The logical address mapping window is then used for mapping configuration space for VXIbus devices, and the A16 mapping window is used for mapping configuration space for VMEbus devices.

When using Base/Size windowing formats, the minimum size of an A16 window is 512 B and the maximum size is 48 KB (window size = 0). Setting an A16 window address range in the upper 16 KB of A16 space (A15 = 1, A14 = 1) is not allowed, because it would conflict with the logical address space. Table 6-3 shows the A16 allocation sizes used for Base/Size systems.

Size	Amount of A16 Space Allocated (in Bytes)
7	512 B
6	1 KB
5	2 KB
4	4 KB
3	8 KB
2	16 KB
1	32 KB
0	48 KB (All A16 space)

Table 6-3. Amount of A16 Space Allocated for all Size Values

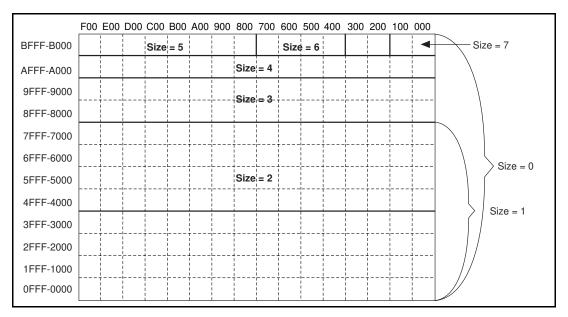


Figure 6-18. A16 Space Allocations for all Size Values

To plan the A16 address map, you will follow procedures similar to those for planning the logical address space address map. Determine the amount of A16 space required by each device; if you are using Base/Size windowing formats, round that amount up to the next address break listed in Table 6-3. Next, assign the A16 space, starting with the root device and working down the VXIbus/MXIbus system tree. To assist you in configuring the A16 window map on the VXI-MXI-2 interfaces in your system, the following pages include worksheets, an address map diagram, and an example.

The following steps are used in the example:

- 1. Identify the RM Mainframe and the MXIbus levels of your system. Determine the amount of A16 space required by each MXIbus device. See Figure 6-18 and Table 6-4.
- 2. Fill out the RM Mainframe information in Figure 6-21. In this example, the RM Mainframe needs 16 KB of A16 space.
- 3. Next, analyze the first-level MXIbus links and complete a worksheet for each link. Figure 6-22 is the worksheet for MXIbus #1, which includes MXIbus Device A, MXIbus Device B, VXIbus Mainframe #2, and VXIbus Mainframe #3. MXIbus Device A needs 512 B of A16 space. We fill in the worksheet accordingly. MXIbus Device B and VXIbus Mainframe #2 do not need any A16 space, so we put zeros in the worksheet for these

- devices. VXIbus Mainframe #3 needs 4 KB of A16, in addition to the amount of A16 required by MXIbus link #3 connected to it on Level 2.
- 4. Figure 6-23 is the worksheet for MXIbus #3, which includes VXIbus Mainframes #4 and #5. Mainframe #4 needs 2 KB and Mainframe #5 needs 1 KB of A16 space. We fill in the appropriate spaces on the worksheet.
- 5. Now we return to Figure 6-22 and fill in the MXIbus #3 information in the space for a second-level MXIbus link connected to VXIbus Mainframe #3. MXIbus #3 needs 2 KB for Mainframe #4 and 1 KB for Mainframe #5. The sum is 3 KB, which rounds up to the next address break of 4 KB. The amount of A16 space required for the window into VXIbus Mainframe #3 is 4 KB plus the 3 KB required by MXIbus #3, which rounds up to the next address break of 8 KB. We enter all of these numbers into the worksheet.
- 6. We now fill in Figure 6-21 for MXIbus #1. MXIbus #1 requires 512 bytes for MXIbus Device A and 8 KB for VXIbus Mainframe #3. The sum of these values rounds up to the nearest address break of 16 KB. We record this information on the worksheet.
- 7. Figure 6-21 is now completed for MXIbus #2. The only device on MXIbus #2 is VXIbus Mainframe #6, which needs 2 KB of A16 space. We enter this value into the worksheet.
- 8. The total amount of A16 space required by the system is now computed and found to be 34 KB, which rounds up to the next address break of 48 KB. This number does not exceed the maximum of 48 KB, so this configuration of A16 space is acceptable.
- 9. The next step is to determine the range of addresses, or base address, size, and direction of the A16 window for each VXI-MXI-2 in the system. We first assign A16 space to the VXIbus RM Mainframe. From Figure 6-21, we see it needs 16 KB of A16 space, so we assign it the bottom 16 KB of A16 space, addresses 0 through 3FFF hex. See Figure 6-20 for a pictorial representation of this assignment.

- 10. Each first-level MXIbus link is connected to the RM through a VXI-MXI-2. The A16 window for MXIbus link #1 is 16 KB in size. We assign the next lowest available 16 KB portion of A16 space to MXIbus link #1, which is address range 4000 to 7FFF hex. (See Figure 6-20.) The base address of this window is 4000, which we enter into Figure 6-21. The Size field for the window is *i* where the size of the window = 256 * 2⁸⁻ⁱ. 16 KB = 256 * 2⁸⁻², so Size = 2. The direction of the window is in relation to the mainframe; therefore, Direction = *Out*.
- 11. The other first-level MXIbus link is MXIbus #2, which needs 2 KB of A16 space. The next lowest available 2 KB portion of A16 space is 8000 through 87FF hex. We set the base address of the window to 8000. To determine the Size value, 2 KB = 256 * 2⁸⁻⁵, so Size = 5. The direction of the window is in relation to the mainframe; therefore, Direction = *Out*. We enter all of these values into the worksheet in Figure 6-21.
- 12. The VXI-MXI-2 in VXIbus Mainframe #2 will be configured so that all A16 space is mapped outward, because the mainframe does not require any A16 space. To do this, we set Base = 0, Size = 0, and Direction = *Out*.
- 13. The VXI-MXI-2 in VXIbus Mainframe #3 should be assigned the lowest available 8 KB of space assigned to MXIbus #1. Therefore, the base should be 4000 hex, and because 8 KB = 256 * 2⁸⁻³, Size = 3. The direction of the window is in relation to the mainframe; therefore, it is *In*. The VXI-MXI-2 connected to MXIbus #3 must be assigned a window within the range of addresses assigned to Mainframe #3. Devices in Mainframe #3 need 4 KB of the 8 KB assigned to the mainframe. The other 4 KB can be assigned to MXIbus #3. Therefore, we assign addresses 4000 to 4FFF hex to devices in Mainframe #3, and addresses 5000 through 5FFF to MXIbus #3. For the VXI-MXI-2 connected to MXIbus #3, we set Base = 5000, Size = 4 because 4 KB = 256 * 2⁸⁻⁴, and the direction toward MXIbus #3, or *Out*.
- 14. The 4 KB assigned to MXIbus #3 is further divided between VXIbus Mainframes #4 and #5. We assigned the bottom portion, 5000 to 57FF, to VXIbus Mainframe #4, and the next portion, 5800 to 5BFF, to VXIbus Mainframe #5. Therefore, for VXIbus Mainframe #4, we assign Base = 5000, Size = 5 because 2 KB = 256 * 2⁸⁻⁵, and Direction = *In*. For VXIbus Mainframe #5, Base = 5800, Size = 6 because 1 KB = 256 * 2⁸⁻⁶, and Direction = *In*.

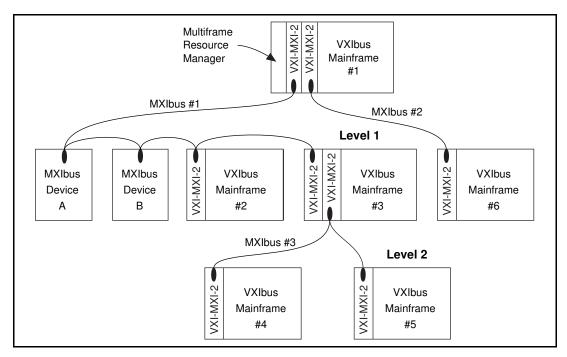


Figure 6-19. Example VXIbus/MXIbus System Diagram

Table 6-4. Example VXIbus/MXIbus System Required A16 Space

Device	Amount of A16 Space Required
VXIbus Mainframe #1	16 KB
MXIbus Device A	512 B
MXIbus Device B	0 B
VXIbus Mainframe #2	0 B
VXIbus Mainframe #3	4 KB
VXIbus Mainframe #4	2 KB
VXIbus Mainframe #5	1 KB
VXIbus Mainframe #6	2 KB

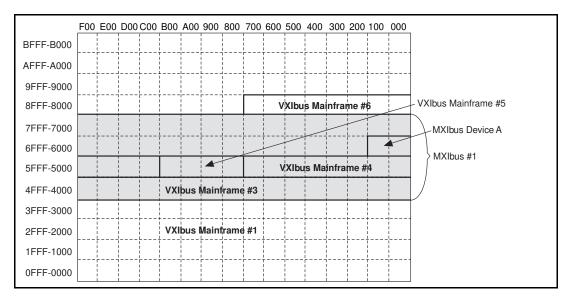


Figure 6-20. Example A16 Space Address Map Diagram

Resource Manag	jer Mainfra	ame: VXI	bus Mainfrai	me #1			
Amount of A	16 space r	equired for th	is mainfram	e:			16 KB
Round up to	next addre	ess break:					* <u>16 KB</u>
First-Level MXIb	us Link:		MXIbus #	1			
Amount of A	16 space r	equired for de	evices conne	ected to t	his VXI-MXI-2:		8 <u>KB + 512</u>
Round up to	next addre	ess break:					* <u>16 KB</u>
A16 Window:	Base _	4000	Size:	2	Direction:	Out	_
First-Level MXIb	us Link:		MXIbus #2	2 -	,		
Amount of A	16 space r	equired for de	evices conne	ected to t	his VXI-MXI-2:		2 KB
Round up to	next addre	ess break:					* <u>2 KB</u>
A16 Window:	Base _	8000	Size:	_5	_ Direction:	<u>Out</u>	-
First-Level MXIb	us Link:						
Amount of A	16 space r	equired for de	evices conne	ected to t	his VXI-MXI-2:		
Round up to	next addre	ess break:					*
A16 Window:	Base _		Size:	-	_ Direction:		-
First-Level MXIb	us Link:						
Amount of A	16 space r	equired for de	evices conne	ected to t	his VXI-MXI-2:		
Round up to	next addre	ess break:					*
A16 Window:	Base _		Size:	_	Direction:		_
Total Amount of (Add number	-		y System:				_34 KB
Round up to Nex (If thi			n 48 KB, rec	organize o	devices and try again.)		<u>48 KB</u>

Figure 6-21. Worksheet 1: Summary of A16 Address Map Example

MXIbus Link:	MXIbus #1				
Device:	MXIbus Device A	_			
Amount of A16 space re	equired by this device:				512
A16 space requirement	for each second-level I	MXIbus link connected	I to this device:		
		#1	+ #2	=	0
Round up to next addre	ss break:				
Total amount of A16 sp	ace required for this wir	ndow:		=	512
Round up total amount	to the next address size	e break:		*	512
First-Level VXI-MXI-2:					
A16 Window:	Base:	Size:	Direction:	_	
Second-Level VXI-MXI-2 #1	:				
A16 Window:	Base:	Size:	Direction:	_	
Second-Level VXI-MXI-2 #2):				
A16 Window:	Base:	Size:	Direction:	-	
Device:	MXIbus Device B	_			
Amount of A16 space re	equired by this device:				0
A16 space requirement	for each second-level I	MXIbus link connected	I to this device:		
		#1	+ #2	=	0
Round up to next addre	ss break:				
Total amount of A16 space required for this window:					
Round up total amount to the next address size break:					
First-Level VXI-MXI-2:					
A16 Window:	Base:	Size:	Direction:	-	
Second-Level VXI-MXI-2 #1	:				
A16 Window:	Base:	Size:	Direction:	-	
Second-Level VXI-MXI-2 #2	l:				
A16 Window:	Base:	Size:	Direction:		
Device:	XIbus Mainframe #2	_			
Amount of A16 space re					
A16 space requirement	for each second-level I	MXIbus link connected			
		#1	+ #2	=	
Round up to next addre					
Total amount of A16 space required for this window:					
Round up total amount	to the next address size	e break:		*	
First-Level VXI-MXI-2:					
A16 Window:	Base:0000		Direction: Out	-	
Second-Level VXI-MXI-2 #1	:				
A16 Window:	Base:	Size:	Direction:	-	
Second-Level VXI-MXI-2 #2	l:				
A16 Window:	Base:	Size:	Direction:	-	

Figure 6-22. Worksheet 2 for MXIbus #1 of A16 Address Map Example (Continues)

MXIbus Link:	MXIbus #1 (Continued	d)			
Device:	VXIbus Mainframe #3				
Amount of A16	space required by this device	e:		4 KB	
A16 space requ	irement for each second-leve	el MXIbus link connect	ed to this device:		
		#1 <u>2 KB + 1</u>	<i>KB</i> + #2	= <u>3 k</u>	(B
Round up to ne	xt address break:	4 KB			
Total amount of	f A16 space required for this	window:		= 7 KB	
Round up total	amount to the next address s	size break:		* <u>8 KB</u>	
First-Level VXI-MXI	-2:				
A16 Window:	Base: <u>4000</u>	Size:3	Direction: <u>In</u>		
Second-Level VXI-N	MXI-2 #1:	Ibus #3			
A16 Window:	Base: <u>5000</u>	Size:4	Direction: Out		
Second-Level VXI-N	MXI-2 #2:				
A16 Window:	Base:	Size:	Direction:		

Figure 6-22. Worksheet 2 for MXIbus #1 of A16 Address Map Example (Continued)

MXIbus Link:	MXIbus #3				
Device: V	XIbus Mainframe #4	_			
Amount of A16 space re	equired by this device:				2 KB
A16 space requirement	for each second-level N	MXIbus link connected	I to this device:		
		#1	+ #2	=	0
Round up to next addres	ss break:				
Total amount of A16 spa	ace required for this wir	ndow:		=	2 KB
Round up total amount t	o the next address size	e break:		*	2 KB
First-Level VXI-MXI-2:					
A16 Window:	Base:	Size: <u>5</u>	Direction:In	_	
Second-Level VXI-MXI-2 #1	:				
A16 Window:	Base:	Size:	Direction:	_	
Second-Level VXI-MXI-2 #2	:				
A16 Window:	Base:	Size:	Direction:	_	
Device: V	XIbus Mainframe #5	_			
Amount of A16 space re	equired by this device:				1 KB
A16 space requirement	for each second-level N	MXIbus link connected	I to this device:		
		#1	+ #2	=	0
Round up to next addres	ss break:				
Total amount of A16 spa	ace required for this wir	ndow:		=	1 KB
Round up total amount t	o the next address size	e break:		*	1 KB
First-Level VXI-MXI-2:					
A16 Window:	Base: <u>5800</u>	Size: <u>6</u>	Direction:In	_	
Second-Level VXI-MXI-2 #1	:				
A16 Window:	Base:	Size:	Direction:	_	
Second-Level VXI-MXI-2 #2	:				
A16 Window:	Base:	Size:	Direction:	_	
Device:					
Amount of A16 space re	quired by this device:				
A16 space requirement	for each second-level N	MXIbus link connected	I to this device:		
		#1	+ #2	=	
Round up to next address	ss break:				
Total amount of A16 spa	ace required for this wir	ndow:		=	
Round up total amount t	o the next address size	e break:		*	
First-Level VXI-MXI-2:					
A16 Window:	Base:	Size:	Direction:	_	
Second-Level VXI-MXI-2 #1	:				
A16 Window:	Base:	Size:	Direction:	_	
Second-Level VXI-MXI-2 #2	:				
A16 Window:	Base:	Size:	Direction:	_	

Figure 6-23. Worksheet 3 for MXIbus #3 of A16 Address Map Example

Worksheets for Planning Your VXIbus/MXIbus A16 Address Map

Use the worksheets on the following pages for planning an A16 address map for your VXIbus/ MXIbus system. Follow the procedures used to fill out the worksheets for the sample VXIbus/ MXIbus system.

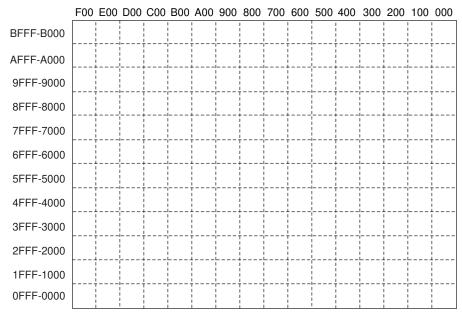


Figure 6-24. A16 Space Address Map Diagram for Your VXIbus/MXIbus System

Resource Manager Mainframe:			
Amount of A16 space required for	this mainframe:		
Round up to next address break:			*
First-Level MXIbus Link:	_		
Amount of A16 space required for	devices connected	d to this VXI-MXI-2:	
Round up to next address break:			*
A16 Window: Base	Size:	Direction:	-
First-Level MXIbus Link:			
Amount of A16 space required for	devices connected	d to this VXI-MXI-2:	
Round up to next address break:			*
A16 Window: Base	Size:	Direction:	=
First-Level MXIbus Link:			
Amount of A16 space required for	devices connected	d to this VXI-MXI-2:	
Round up to next address break:			*
A16 Window: Base	Size:	Direction:	•
First-Level MXIbus Link:			
Amount of A16 space required for	devices connected	d to this VXI-MXI-2:	
Round up to next address break:			*
A16 Window: Base	_ Size:	Direction:	-
Total Amount of A16 Space Required (Add numbers after the "*")	d by System:		
Round up to Next Address Break: (If this number is greater the	nan 48 KB, reorgai	nize devices and try again.)	

Figure 6-25. Worksheet 1: Summary of Your A16 Address Map

MXIbus Link:	MXIbus #1				
Device:		_			
Amount of A16 space re	equired by this device:				
A16 space requirement	for each second-level N	MXIbus link connected	to this device:		
		#1	+ #2	=	
Round up to next addres	ss break:				
Total amount of A16 spa	ace required for this wir	ndow:		=	
Round up total amount t	o the next address size	e break:		*	
First-Level VXI-MXI-2:					
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #1	:				
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #2	:				
A16 Window:	Base:	Size:	Direction:		
Device:					
Amount of A16 space re	quired by this device:	_			
A16 space requirement	for each second-level N	MXIbus link connected	to this device:		
		#1	+ #2	=	
Round up to next addres	ss break:				
Total amount of A16 spa	ace required for this wir	ndow:		=	
Round up total amount t	o the next address size	e break:		*	
First-Level VXI-MXI-2:					
A16 Window:	Base:	Size:	Direction:	-	
Second-Level VXI-MXI-2 #1	:				
A16 Window:	Base:	Size:	Direction:	-	
Second-Level VXI-MXI-2 #2	:				
A16 Window:	Base:	Size:	Direction:	-	
Device:					
Amount of A16 space re	quired by this device:	_			
A16 space requirement	for each second-level N	MXIbus link connected	to this device:		
		#1	+ #2	=	
Round up to next addres	ss break:				
Total amount of A16 space required for this window:					
Round up total amount to the next address size break:					
First-Level VXI-MXI-2:					
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #1	i	_			
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #2	i	_			
A16 Window:	Base:	Size:	Direction:		

Figure 6-26. Worksheet 2 for MXIbus #1 A16 Address Map

MXIbus Link:	MXIbus #2				
Device:		_			
Amount of A16 space re	equired by this device:				
A16 space requirement	for each second-level N	MXIbus link connected	I to this device:		
		#1	+ #2	=	
Round up to next addres	ss break:				
Total amount of A16 spa	ace required for this wir	ndow:		=	
Round up total amount t	to the next address size	e break:		*	
First-Level VXI-MXI-2:					
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #1	:				
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #2	:				
A16 Window:	Base:	Size:	Direction:		
Device:					
Amount of A16 space re	equired by this device:				
A16 space requirement	for each second-level N	MXIbus link connected	I to this device:		
		#1	+ #2	=	
Round up to next addres	ss break:				
Total amount of A16 spa	ace required for this wir	ndow:		=	
Round up total amount t	to the next address size	e break:		*	
First-Level VXI-MXI-2:					
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #1	:				
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #2	:				
A16 Window:	Base:	Size:	Direction:		
Device:		_			
Amount of A16 space re	equired by this device:				
A16 space requirement	for each second-level N	MXIbus link connected	I to this device:		
		#1	+ #2	=	
Round up to next addres	ss break:				
Total amount of A16 spa	ace required for this wir	ndow:		=	
Round up total amount t	to the next address size	e break:		*	
First-Level VXI-MXI-2:					
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #1	:				
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #2	:				
A16 Window:	Base:	Size:	Direction:		

Figure 6-27. Worksheet 3 for MXIbus #2 A16 Address Map

MXIbus Link:	MXIbus #3				
Device:					
Amount of A16 space re	quired by this device:			_	
A16 space requirement	for each second-level ${ m extsf{N}}$	MXIbus link connected	to this device:		
		#1	+ #2	= _	
Round up to next address	ss break:				
Total amount of A16 spa	ace required for this win	ndow:		= _	
Round up total amount t	o the next address size	break:		* _	
First-Level VXI-MXI-2:					
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #1:	:				
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #2	:				
A16 Window:	Base:	Size:	Direction:		
Device:					
Amount of A16 space re	quired by this device:			_	
A16 space requirement	for each second-level N	MXIbus link connected	to this device:		
		#1	+ #2	= _	
Round up to next address	ss break:				
Total amount of A16 spa	ace required for this win	ndow:		= _	
Round up total amount t	o the next address size	break:		* _	
First-Level VXI-MXI-2:					
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #1:	:				
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #2	:				
A16 Window:	Base:	Size:	Direction:		
Device:		_			
Amount of A16 space re	quired by this device:			_	
A16 space requirement	for each second-level N	MXIbus link connected	to this device:		
		#1	+ #2	= _	
Round up to next address	ss break:				
Total amount of A16 spa	ace required for this win	ndow:		= _	
Round up total amount t	o the next address size	e break:		* _	
First-Level VXI-MXI-2:					
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #1:	:				
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #2	:				
A16 Window:	Base:	Size:	Direction:		

Figure 6-28. Worksheet 4 for MXIbus #3 A16 Address Map

MXIbus Link:	MXIbus #4				
Device:		_			
Amount of A16 space re					
A16 space requirement	for each second-level I	MXIbus link connected	to this device:		
		#1	+ #2	=	
Round up to next addre	ss break:				
Total amount of A16 spa	ace required for this wir	ndow:		=	
Round up total amount	to the next address size	e break:		*	
First-Level VXI-MXI-2:					
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #1	:				
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #2	:				
A16 Window:	Base:	Size:	Direction:		
Device:					
Amount of A16 space re	equired by this device:				
A16 space requirement	for each second-level I	MXIbus link connected	d to this device:		
		#1	+ #2	=	
Round up to next addre	ss break:				
Total amount of A16 spa	ace required for this wir	ndow:		=	
Round up total amount	to the next address size	e break:		*	
First-Level VXI-MXI-2:					
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #1	:				
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #2	:				
A16 Window:	Base:	Size:	Direction:		
Device:					
Amount of A16 space re	equired by this device:	_			
A16 space requirement	for each second-level I	MXIbus link connected	to this device:		
		#1	+ #2	=	
Round up to next addre	ss break:				
Total amount of A16 spa	ace required for this wir	ndow:		=	
Round up total amount	to the next address size	e break:		*	
First-Level VXI-MXI-2:					
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #1	:				
A16 Window:	Base:	Size:	Direction:		
Second-Level VXI-MXI-2 #2	:				
A16 Window:	Base:	Size:	Direction:		

Figure 6-29. Worksheet 5 for MXIbus #4 A16 Address Map

Multiframe RM Operation

On power-up, all MXIbus devices are isolated from each other because all address mapping windows are disabled. The multiframe RM performs the following:

- Identifies all devices in the system
- Manages system self-tests
- Configures and enables the address map windows for logical addresses, A16, A24, and A32
- Establishes initial Commander/Servant system hierarchy
- Initiates normal system operation

Configuring the Logical Address Window

To identify all devices in the VXIbus/MXIbus system, the RM performs the following steps, starting where the RM is located.

- 1. If the multiframe RM resides in a PC, it scans all logical addresses from 1 to FE (the RM is at address 0) to find all devices. For each logical address, it reads the VXIbus ID Register (located at offset 0 within the device's configuration space). If the read is successful (that is, no BERR), a device is present at that logical address. If the read returns a BERR, no device is present at that logical address. The RM records all logical addresses found. For each VXI-MXI-2 found, it performs Step 2.
 - If the multiframe RM is in a VXIbus mainframe, it performs Step 2 for the mainframe in which the RM is installed.
- 2. For the current mainframe, the RM does the following:
 - A. Scans all logical addresses (0 to FF) in the mainframe to find all static configuration (SC) and dynamic configuration (DC) devices, skipping over logical addresses occupied by previously encountered devices. Finds the Slot 0 device and uses it to move all DC devices in the mainframe to the lowest unused logical addresses. Records all logical addresses found and allocated.

Notice that it is not possible to detect duplicate logical addresses because devices are found by reading the VXIbus ID Register. If two devices share a logical address, they will both respond to an address access without any indication of an error.

- B. For each VXI-MXI-2 found in the mainframe, starting with the lowest addressed VXI-MXI-2, the RM:
 - Sets the VXI-MXI-2 logical address window to map all of the logical address space outward and enables the window.
 - Scans all logical addresses (0 to FF) in the window, skipping logical addresses occupied by previously encountered devices.
 - iii. For each VXI-MXI-2 found in Step ii, starting with the lowest addressed VXI-MXI-2, the RM:
 - a. Sets the VXI-MXI-2 logical address mapping window to map all of the logical address space inward and enables the window.
 - b. Repeats Step 2 recursively.
 - c. Sets the VXI-MXI-2 inward logical address mapping window to cover the range up to (but not including) the VXI-MXI-2 with the next highest logical address that was found in the logical address space.
 - Sets the VXI-MXI-2 outward logical address mapping window to cover the range of the devices connected to that extender.

Configuring the Logical Address Window Example

This example illustrates how the multiframe RM identifies devices in a VXIbus/MXIbus system and configures the logical address windows. The system used is the example VXIbus/MXIbus system shown in Figure 6-5. Table 6-5 shows the logical addresses we assigned to the devices in that system before bringing up the system. MXIbus devices can only be statically configured for the RM to find all devices connected on a MXIbus link. Therefore, each device must have a logical address that was configured before system power-up.

Table 6-5. Logical Address Assignments for Example VXIbus/MXIbus System

Device	Logical Address Assignments
VXIbus Mainframe #1 Multiframe RM VXI-MXI-2 on MXIbus #1 VXI-MXI-2 on MXIbus #2	0 2 4
MXIbus Device A	E0
MXIbus Device B	E4
VXIbus Mainframe #2 VXI-MXI-2	C0
VXIbus Mainframe #3 VXI-MXI-2 on MXIbus #1 VXI-MXI-2 on MXIbus #3	80 82
VXIbus Mainframe #4 VXI-MXI-2	A0
VXIbus Mainframe #5 VXI-MXI-2	В0
VXIbus Mainframe #6 VXI-MXI-2	10

The RM performs the following steps:

- 1. Scans logical addresses (0 to FF) and identifies all devices in VXIbus Mainframe #1. Finds the VXI-MXI-2 interfaces at logical addresses 2 and 4 and moves DC devices to the lowest unused logical addresses (for example, 1, 3, 5, 6).
- Enables the logical address window of the VXI-MXI-2 found at logical address 2 for the entire outward mapping range of 0 to FF. Scans all logical addresses, skipping all previously encountered devices, and finds the VXI-MXI-2 in VXIbus Mainframe #3, the VXI-MXI-2 in VXIbus Mainframe #2, MXIbus Device A, and MXIbus Device B.
- 3. Enables the logical address window of the VXI-MXI-2 in VXIbus Mainframe #3 for the entire inward mapping range of 0 to FF. Scans all logical addresses, skipping all previously encountered devices, and finds the VXI-MXI-2 at logical address 82. Finds the Slot 0 device and uses it to move all DC devices in VXIbus Mainframe #3 to the lowest unused logical addresses (for example, 81, 83, 84, 85).

- 4. Enables the logical address window of the VXI-MXI-2 found at logical address 82 for the entire outward mapping range of 0 to FF. Scans all logical addresses, skipping all previously encountered devices, and finds the VXI-MXI-2 in VXIbus Mainframe #4 and the VXI-MXI-2 in VXIbus Mainframe #5.
- 5. Enables the logical address window of the VXI-MXI-2 in VXIbus Mainframe #4 for the entire inward mapping range of 0 to FF. Scans all logical addresses, skipping all previously encountered devices. Finds the Slot 0 device and uses it to move all DC devices in VXIbus Mainframe #4 to the lowest unused logical addresses. No more VXI-MXI-2 interfaces are found. The RM enables the logical address window for the VXI-MXI-2 in VXIbus Mainframe #4 with an inward range of A0 to AF hex by writing the value 64A0 hex to the Logical Address Window Register (Base/Size format).
- 6. Enables the logical address window of the VXI-MXI-2 in VXIbus Mainframe #5 for the entire inward mapping range of 0 to FF. Scans all logical addresses, skipping all previously encountered devices and previously defined address ranges. Finds the Slot 0 device and uses it to move all DC devices in VXIbus Mainframe #5 to the lowest unused logical addresses. No more VXI-MXI-2 interfaces are found. The RM enables the logical address window for the VXI-MXI-2 in VXIbus Mainframe #5 with an inward range of B0 to BF hex by writing the value 64B0 hex to the Logical Address Window Register (Base/Size format).
- 7. Sets the logical address window of the VXI-MXI-2 found at logical address 82 to cover the ranges of the VXI-MXI-2 in VXIbus Mainframe #4 (A0 to AF) and the VXI-MXI-2 in VXIbus Mainframe #5 (B0 to BF). Enables the logical address window of the VXI-MXI-2 at logical address 82 with an outward range of A0 to BF by writing the value 43A0 hex to the Logical Address Window Register (Base/Size format).
- 8. Sets the logical address window of the VXI-MXI-2 found in VXIbus Mainframe #3 at logical address 80 to cover the devices in that mainframe (80 to 8F) and the ranges required of its Level 2 devices: the VXI-MXI-2 in VXIbus Mainframe #4 (A0 to AF) and the VXI-MXI-2 in VXIbus Mainframe #5 (B0 to BF). Enables the logical address window of the VXI-MXI-2 at logical address 80 with an inward range of 80 to BF by writing the value 6280 hex to the Logical Address Window Register (Base/Size format).

- 9. Enables the logical address window of the VXI-MXI-2 in VXIbus Mainframe #2 for the entire inward mapping range of 0 to FF. Scans all logical addresses, skipping all previously encountered devices and defined ranges. Finds the Slot 0 device and uses it to move all DC devices in VXIbus Mainframe #2 to the lowest unused logical addresses. No more VXI-MXI-2 interfaces are found. The RM enables the logical address window for the VXI-MXI-2 in VXIbus Mainframe #2 with an inward range of C0 to DF hex by writing the value 63C0 hex to the Logical Address Window Register (Base/Size format).
- 10. Sets the logical address window of the VXI-MXI-2 found in VXIbus Mainframe #1 at logical address 2 to cover the devices connected to that extender: the VXI-MXI-2 in VXIbus Mainframe #3 (80 to BF), the VXI-MXI-2 in VXIbus Mainframe #2 (C0 to DF), MXIbus Device A (E0 to E3), and MXIbus Device B (E4). Enables the logical address window of the VXI-MXI-2 at logical address 2 with an outward range of 80 to FF by writing the value 4180 hex to the Logical Address Window Register (Base/Size format).
- 11. Enables the logical address window of the VXI-MXI-2 found at logical address 4 for the entire outward mapping range of 0 to FF. Scans all logical addresses, skipping all previously encountered devices, and finds the VXI-MXI-2 in VXIbus Mainframe #6.
- 12. Enables the logical address window of the VXI-MXI-2 in VXIbus Mainframe #6 for the entire inward mapping range of 0 to FF. Scans all logical addresses, skipping all previously encountered devices and defined ranges, and finds the VXI-MXI-2 at logical address 10. Finds the Slot 0 device and uses it to move all DC devices in VXIbus Mainframe #6 to the lowest unused logical addresses. No more VXI-MXI-2 interfaces are found. The RM enables the logical address window for the VXI-MXI-2 in VXIbus Mainframe #6 with an inward range of 10 to 17 hex by writing the value 6510 hex to the Logical Address Window Register (Base/Size format).
- 13. Sets the logical address window of the VXI-MXI-2 found in VXIbus Mainframe #1 at logical address 4 to cover the devices connected to that extender: the VXI-MXI-2 in VXIbus Mainframe #6 (10 to 17). Enables the logical address window of the VXI-MXI-2 at logical address 4 with an outward range of 10 to 17 by writing the value 4510 hex to the Logical Address Window Register (Base/Size format).

Configuring the A24 and A32 Addressing Windows

After the logical address space is configured for the system, the multiframe RM configures the A16, A24, and A32 address space. The logical address configuration forms a tree topology. Starting at the bottom of the tree and working up, add up the amount of memory needed by each mainframe and the devices on levels below it. That amount is then rounded up to the next power of two if the Base/Size format is used.

Starting at the root mainframe and working down each branch of the tree, assign memory starting with the largest memory window requirements at the top of the memory space, descending in order of window size and address location.

Each mainframe's A16, A24, and A32 address ranges define the address space occupied by the devices in that mainframe and on levels below that mainframe. These address ranges cannot overlap the defined range of any other mainframe unless that mainframe is on a level below the mainframe.

System Administration and Initiation

System self-test administration, hierarchy configuration, and initiation of normal operation are handled as defined in the VXIbus specification. A general-purpose multiframe RM must wait five seconds before testing the Passed condition of each device, because no prescribed global mechanism is defined for monitoring all of the SYSFAIL signals in the system.

VXI*plug&play* for the VXI-MXI-2

This chapter describes the contents of the VXI*plug&play* disk that came with your VXI-MXI-2 kit. The disk contains a VXI*plug&play* soft front panel and a VXI*plug&play* knowledge base file.

VXI-MXI-2 VXI plug&play Soft Front Panel

The VXI*plug&play* soft front panel that comes with your VXI-MXI-2 kit complies with VXI*plug&play* document VPP-7, *Soft Front Panel Specification*. This section describes the options you can configure using the soft front panel.

Use the soft front panel to configure programmable features on the VXI-MXI-2. Because this same soft front panel also works with the VME-MXI-2, you can easily configure a *hybrid* VXI/VME system. The settings that you change using the soft front panel are stored in the user-configurable half of the EEPROM on the VXI-MXI-2. As a result, the changes remain intact through power cycles.

Installing the Soft Front Panel

To run the soft front panel, the host computer must be running the Windows operating system and have the VTL/VISA I/O driver language installed. If you are not using Windows and VTL/VISA, you must follow the instructions in Appendix B, *Programmable Configurations*, to access and modify the programmable features because you will not be able to use the soft front panel.

To install the soft front panel on your system, go to the Windows Program Manager's **File** menu and click on the **Run** option. Type the following command at the prompt

x: setup

where *x* is the letter of the floppy drive into which you inserted the VXI*plug&play* disk.

Using the Soft Front Panel

After successfully running the soft front panel, you will see the panel as shown in Figure 7-1. By default, the opening panel displays the board settings view.

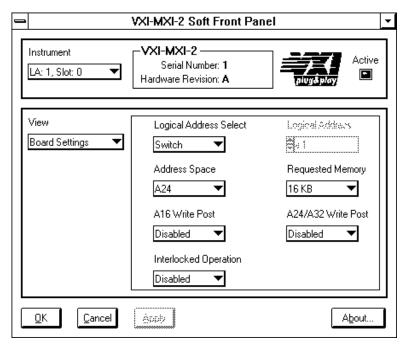


Figure 7-1. VXI-MXI-2 VXI plug&play Soft Front Panel Board Settings

If you have more than one VXI/VME-MXI-2 in your system, use the **Instrument** control in the upper-left corner to select which one you want to configure. The soft front panel selects the first VXI/VME-MXI-2 it finds upon execution. The top-center area of the panel indicates whether the currently selected instrument is a VXI-MXI-2, a VXI-MXI-2/B, or a VME-MXI-2. Notice that this area of the panel also displays the serial number and hardware revision of the currently selected instrument.

The configurable features on the soft front panel are grouped into three categories: board settings, VXIbus settings, and MXIbus settings. Use the **View** control to select which group to display. These groups are described later in this section.

Click on the **OK** button to exit the soft front panel and save to the instrument's onboard EEPROM any changes you have made. Alternatively, you can use the **Apply** button to save your changes to the EEPROM without exiting the soft front panel, or the **Cancel** button will exit the panel without saving any changes. Changes to an instrument's settings are also saved to its EEPROM when you switch to a different instrument using the **Instrument** select control in the upper-left corner of the soft front panel.

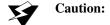
The **About** button brings up an information display that shows the revision of the soft front panel.

Board Settings

The Board settings group contains controls that affect the VXI-MXI-2 as a whole. Access this group by setting the **View** control to **Board Settings** as shown in Figure 7-1.

Logical Address Select and Logical Address

You can set or modify the logical address of the VXI-MXI-2 either within the VXI-MXI-2 soft front panel itself or with the onboard 8-position DIP switch. To select the configuration method you prefer, use the **Logical Address Select** control.


The default selection is the **Switch** option. Notice that the **Logical Address** control is inaccessible, since it would have no effect. In this option you need to change the hardware switch setting on the VXI-MXI-2 module if you want to change the logical address.

If you select **Software** for this option, you can then use the **Logical Address** control to select a logical address within the range of 1 to 254. If you use this option, the hardware switch setting has no effect and you must use the VXI-MXI-2 soft front panel to change the logical address.

Address Space and Requested Memory

The VXI-MXI-2 requires at least 16 KB of address space in A24 space or at least 64 KB in A32 space. Use the **Address Space** control to select whether you want to use A24 space or A32 space. Use the **Requested Memory** control to set the amount of memory space that the VXI-MXI-2 will require. You can select up to 8 MB in A24 space and up to 2 GB in A32 space.

These controls are necessary if you change the amount of DRAM installed on the VXI-MXI-2. The amount of memory you set with the **Requested Memory** control should match the amount of DRAM installed on the VXI-MXI-2. If no DRAM is installed, you should set it to 16 KB. Notice that the smallest valid amount in A32 space is 64 KB.

If you install DRAM into the VXI-MXI-2, do not attempt to use the first 4 KB of memory space. This 4 KB space maps to the registers on the VXI-MXI-2 and does not access onboard DRAM. Accessing this region will cause your VXI-MXI-2 to behave incorrectly.

If you do not want to lose 4 KB of DRAM you can get around this limitation by setting the **Requested Memory** control to double the amount that is installed on the VXI-MXI-2, since the DRAM is aliased throughout the remainder of the requested memory space. The DRAM should then be accessed in the upper half of the requested memory space.

A16 Write Post and A24/A32 Write Post

The VXI-MXI-2 can increase performance with its capability to post write cycles from both the MXIbus and the VXIbus. Write cycles should be posted only to devices that cannot return a *BERR* signal, because the *BERR* will not be reported to the originating master. Use the control appropriate for either A16 write posting or A24/A32 write posting. For either control, the options are **Enabled** and **Disabled**. By default, both options are disabled.

The **A16** Write Post control affects only write cycles that map through the Extender A16 window from the VXIbus to the MXIbus and viceversa. A16 write cycles in VXI configuration space are never posted regardless of the setting of this control.

The A24/A32 Write Post control affects write cycles that map through the Extender A24 window and Extender A32 window from the VXIbus to the MXIbus and vice-versa. This control also affects write cycles to the VXI-MXI-2 module via its requested memory space from both the VXIbus and the MXIbus. For more information on the A16, A24, and A32 windows, refer to Chapter 5, *Register Descriptions*.

Interlocked

Interlocked arbitration mode is an optional mode of operation in which at any given moment the system can perform as if it were one large VXIbus mainframe with only one master of the entire system—VXIbus and MXIbus. This mode of operation prevents deadlocks by interlocking all arbitration in the VXIbus/MXIbus system.

The options for this control are **Enabled** and **Disabled**. By default, this option is disabled, which puts the VXI-MXI-2 in normal operating mode.

In normal operating mode (non-interlocked), multiple masters can operate simultaneously in the VXIbus/MXIbus system. A deadlock occurs when a MXIbus master requests use of a VXIbus resource in another VXIbus mainframe while a VXIbus master in that mainframe is in the process of requesting a resource across the MXIbus. When this situation occurs, the VXIbus master must give up its bus ownership to resolve the conflict. The *RETRY* signal is used to terminate the transfer on the VXIbus; however, devices in the VXIbus mainframe must be able to detect a *RETRY* caused by a deadlock condition so that they can retry the operation. Any master device that cannot detect the RETRY protocol will interpret the response as a *BERR* signal instead.

The VXI-MXI-2 is shipped from the factory configured for normal operating mode. If MXIbus transfers will be occurring both into and out of the mainframe, and the VXIbus modules in your system do not have the capability for handling RETRY conditions, you may want to configure the VXI-MXI-2 for interlocked arbitration mode. In this mode, no software provisions for deadlock conditions are required. However, parallel processing in separate VXIbus mainframes is no longer possible, and system performance may be lower than in normal operating mode.

In a VXIbus/MXIbus system, you can configure some VXI-MXI-2 modules for normal operating mode and others for interlocked arbitration mode. The VXIbus mainframes configured in interlocked arbitration mode will be interlocked with each other and the mainframes configured for normal operating mode can perform transfers in parallel.

This type of system configuration is recommended if you have one of the following situations:

- A VXIbus mainframe with only slave devices and no masters.
 Without bus masters, there is no chance for deadlock. You can configure the VXI-MXI-2 devices in this mainframe for normal operating mode.
- A VXIbus mainframe with both masters and slaves, but the
 masters communicate only with the slaves in their mainframe. The
 masters never attempt transfers across the MXIbus, so there is no
 chance for deadlock when a MXIbus master attempts a transfer
 into the VXIbus mainframe. You can configure the VXI-MXI-2
 devices in this mainframe for normal operating mode.
- A VXIbus mainframe in which all masters that perform cycles across the MXIbus support the VME64 RETRY protocol. You can configure the VXI-MXI-2 devices in this mainframe for normal operating mode because all masters that could cause a deadlock will automatically retry the operation.

In Chapter 5, *Register Descriptions*, the INTLCK bit is described in the *VXI-MXI-2 Control Register (VMCR)* section. You can use this bit to enable the interlocked mode of arbitration. However, you may prefer to have the VXI-MXI-2 automatically enable interlocked mode during its self-configuration, so that you do not need to access the INTLCK bit at each power-on. Interlocked mode is disabled in the default configuration of the VXI-MXI-2.

VXI Bus Settings

Use the options in this group to control features of the VXIbus interface on the VXI-MXI-2. Access these controls by setting the **View** control to **VXIbus** as shown in Figure 7-2.

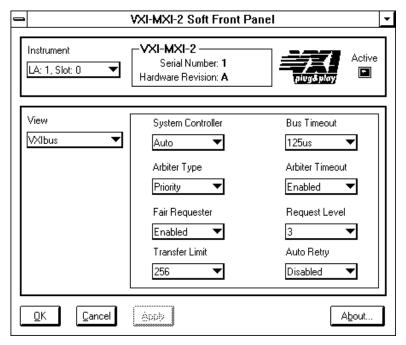
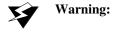



Figure 7-2. VXI-MXI-2 VXI plug&play Soft Front Panel VXI bus Settings

System Controller

You can use the **System Controller** control to override the jumper setting on the VXI-MXI-2. When the **Auto** setting (the default setting) is active, the onboard jumper setting determines if the VXI-MXI-2 is the VXI Slot 0 device. Refer to the *VXIbus Slot 0/Non-Slot 0* section in either Chapter 3 or Chapter 4 for more information.

Otherwise, choose either the **Yes** or **No** option. Notice that selecting either of these options overrides the onboard jumper setting on the VXI-MXI-2, so it will not matter how the jumper is set. You would need to run the VXI-MXI-2 soft front panel again if you decide to change the VMEbus System Controller (VXI Slot 0) setting at a later time.

Do not install a VXI-MXI-2 configured for VMEbus System Controller (VXI Slot 0) into another slot without first reconfiguring it to either Non-Slot 0 or automatic configuration. Neglecting to do this could result in damage to the VXI-MXI-2, the VXIbus backplane, or both.

This means that you should use either the No option to configure it not to be the System Controller or the Auto option for automatic configuration whenever you install the VXI-MXI-2 into a slot other than Slot 0. You also have the option of changing the hardware jumper setting.

Bus Timeout

The VXIbus Bus Timeout (BTO) is a watchdog timer for transfers on the VMEbus Data Transfer bus. After the specified amount of time has elapsed, the BTO circuitry terminates a VMEbus cycle if no slave has responded. The VXI-MXI-2 must provide the VXIbus BTO for proper operation because when a MXIbus cycle is involved, the VXIbus timeout must be disabled and the MXIbus BTO enabled. You should disable the BTO of any other BTO module residing in the mainframe. If this is not possible, set it to its maximum setting to give the MXIbus cycles as much time as possible to complete.

The lowest value in the allowable range is 15 μ s and the highest is 256 ms. The default value is 125 μ s.

Arbiter Type

You can use the **Arbiter Type** feature to configure the VXI-MXI-2 as either a Priority or Round Robin VMEbus arbiter. This control is applicable only if the VXI-MXI-2 you are configuring is a VXIbus Slot 0 device. The default value is **Priority**.

When configured for **Priority** arbitration, the VXI-MXI-2 grants the bus to the highest pending bus request level. In **Round Robin** arbitration mode, the VXI-MXI-2 grants the bus to the next highest bus request level after the level of the previous bus owner. This effectively gives the same priority to each bus request level. Refer to the VMEbus specification for more information on the different types of arbiters.

Arbiter Timeout

An arbitration timeout feature is available on the VXI-MXI-2 when it is acting as the VMEbus arbiter. This feature applies only to a VXIbus Slot 0 VXI-MXI-2. The default value is **Enabled**.

The timer begins when the arbiter circuit on the VXI-MXI-2 drives one of the *BGOUT* lines on the backplane. If no device takes over the bus within the timeout limit, the *BGOUT* is removed and the bus is either idle or granted to another requester.

Fair Requester

The VXI-MXI-2 is always a Release On Request requester. However, you can configure whether the VXI-MXI-2 acts as either a fair or unfair requester on the VXIbus. The default value for this control is **Enabled**, signifying a fair requester. For more information on the different types of requesters, refer to the VMEbus specification.

Request Level

The VXI-MXI-2 uses one of the four VMEbus request levels (0 to 3) to request use of the VME Data Transfer Bus (DTB). The VXI-MXI-2 requests use of the DTB whenever an external MXIbus device attempts a transfer that maps into the VXIbus mainframe.

The VXI-MXI-2 uses VMEbus request level 3 in its factory-default setting. This is suitable for most systems. However, you can change the VXI-MXI-2 to use any of the other three request levels (0, 1, or 2) by changing the setting of the **Request Level** control. You may want to change request levels to change the priority of the VXI-MXI-2 request signal. For more information, refer to the VMEbus specification.

Transfer Limit

You can use this feature to control how many data transfers the VXI-MXI-2 will perform on the VXIbus before releasing it to another master device that is requesting use of the bus.

The available options you can choose from are **16**, **64**, and **256** transfers. If you do not want the VXI-MXI-2 to hold the VXIbus long enough to perform 256 transfers (the default value), you can use this control to select a smaller value.

Auto Retry

The VXI-MXI-2 has an automatic retry feature for cycles that map from the VXIbus to the MXIbus. You can select **Enabled** or **Disabled** for this control. By default this option is disabled.

Normally, when a cycle maps from the VXIbus to the MXIbus, any retry response received on the MXIbus is passed to the VXIbus. If you enable the **Auto Retry** feature, the VXI-MXI-2 automatically retries any MXI cycle that receives a retry response instead of passing a retry response back to the VXIbus. The VXI-MXI-2 automatically continues to retry the MXI cycle until it receives either a *DTACK* or *BERR* response, which it then passes to the VXIbus.

Notice that the VXI-MXI-2 has a limit on the number of automatic retries it will perform on any one cycle. If the limit is exceeded and the VXI-MXI-2 receives another retry, it will pass a retry back to the VXIbus even though **Auto Retry** is enabled.

MXI Bus Settings

Use the options in this group to control features of the MXIbus interface on the VXI-MXI-2 module. Access these controls by setting the **View** control to **MXIbus** as shown in Figure 7-3.

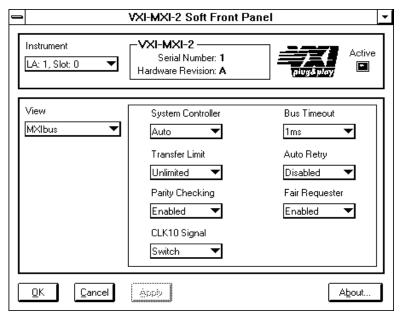


Figure 7-3. VXI-MXI-2 VXI plug&play Soft Front Panel MXI bus Settings

System Controller

You can use the **System Controller** control to determine whether the VXI-MXI-2 acts as the MXIbus System Controller. When the **Auto** setting (the default setting) is active, the VXI-MXI-2 automatically can sense from the MXIbus cable whether it should be the controller.

You can select either **Yes** or **No** to manually determine if the VXI-MXI-2 should be the MXIbus System Controller. You must still be certain to cable the MXIbus system appropriately when you make either of these selections.

Bus Timeout

The MXIbus Bus Timeout (BTO) is a watchdog timer for transfers on the MXIbus. The MXIbus BTO unit operates only when the VXI-MXI-2 is acting as the MXIbus System Controller. The functionality of this control is similar to that of the **Bus Timeout** control described previously under the *VXI Bus Settings* section. The options range from 8 µs to 128 ms, with a default value of 1 ms.

After the specified amount of time has elapsed, the BTO circuitry terminates a MXIbus cycle if no slave has responded. The BTO circuitry is automatically deactivated when the VXI-MXI-2 is not acting as the MXIbus System Controller. The BTO is also disabled when the current MXIbus cycle maps to the VXIbus through a VXI-MXI-2.

Transfer Limit

You can use this feature to control how many data transfers the VXI-MXI-2 will perform on the MXIbus before releasing it to another master device that is requesting use of the bus. The default setting holds the MXIbus for an **Unlimited** period of time.

The other options you can choose from are **16**, **64**, and **256** transfers. If you do not want the VXI-MXI-2 to hold the MXIbus for an unlimited period of time, you can use this control to select one of these values.

Auto Retry

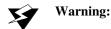
The VXI-MXI-2 has an automatic retry feature for cycles that map from the MXIbus to the VXIbus. This feature works in the same manner as the **Auto Retry** control described previously under the *VXI Bus Settings* section. You can select **Enabled** or **Disabled** for this control. By default, this option is disabled.

Normally, when a cycle maps from the MXIbus to the VXIbus, any retry response received on the VXIbus is passed to the MXIbus. If you enable the **Auto Retry** feature, the VXI-MXI-2 automatically retries any VXI cycle that receives a retry response instead of passing a retry response on to the MXIbus. The VXI-MXI-2 automatically continues to retry the VXI cycle until it receives either a *DTACK* or *BERR* response, which it then passes to the MXIbus.

Notice that the VXI-MXI-2 has a limit on the number of automatic retries it will perform on any one cycle. If the limit is exceeded and the VXI-MXI-2 receives another retry, it will pass a retry back to the MXIbus even though **Auto Retry** is enabled.

Parity Checking

You can use the **Parity Checking** control if you want to disable MXIbus parity checking. By default, MXIbus parity checking is set to **Enabled**, and should not be disabled under normal circumstances. MXIbus parity is always generated regardless if checking is enabled or disabled.


Fair Requester

You can use the **Fair Requester** control to configure the VXI-MXI-2 as either a fair or unfair requester on the MXIbus. The default setting is **Enabled** (fair requester), which causes the VXI-MXI-2 to request the MXIbus only when there are no requests pending from other masters. This prevents other MXIbus masters from being starved of bandwidth. The VXI-MXI-2 will request the bus at any time when this setting is disabled (unfair requester).

CLK10

The VXI-MXI-2 can either receive or drive the MXIbus CLK10 signal. In the default setting of **Switch**, the C-size VXI-MXI-2 uses the switch setting of S7 for this determination; use switch S1 if you have a VXI-MXI-2/B.

You can use the **Drive** or **Receive** options of the **CLK10** feature to override the switch setting and control the direction of the MXIbus CLK10 signal. When receiving the MXIbus CLK10 signal, configure the W3 jumper setting on the C-size VXI-MXI-2 (or the W1 jumper setting on the VXI-MXI-2/B) to use the MXIbus as the source for generating the VXIbus CLK10 (applicable only if the VXI-MXI-2 is a Slot 0 device). When driving the MXIbus CLK10, the VXIbus CLK10 is used as the source. In this case, change the jumper setting so that it does *not* use the MXIbus CLK10 as the source for the VXIbus CLK10.

Do not configure more than one MXIbus device to drive the MXIbus CLK10. Setting up a second device to drive MXIbus CLK10 could damage the device.

VXI-MXI-2 VXI*plug&play* Knowledge Base File

A VXI*plug&play* Knowledge Base File is included on the VXI*plug&play* disk in this kit. This file conforms to VPP-5, *VXI* Component Knowledge Base Specification. This file contains detailed information about the VXI-MXI-2 such as address space requirements and power consumption. The knowledge base file is intended to be used with software tools that aid in system design, integration, and verification.

The knowledge base file is directly accessible on the disk as a text file with a .kb extension. It is also installed on your system when the Setup program is executed as described earlier in this chapter. The knowledge base file is directly accessible for users who are not running Windows and cannot use the Setup program to install the file.

Specifications

This appendix lists various module specifications of the VXI-MXI-2, such as physical dimensions and power requirements. These specifications apply equally to the VXI-MXI-2/B unless otherwise noted.

MXIbus Capability Descriptions

- Master-mode A32, A24, and A16 addressing
- Master-mode block transfers and synchronous block transfers
- Slave-mode A32, A24, and A16 addressing
- Slave-mode block transfers and synchronous block transfers
- Master-mode D32, D16, and D08 data sizes
- Slave-mode D32, D16, and D08 data sizes
- Optional MXIbus System Controller
- Can be a fair MXIbus requester
- Can lock the MXIbus for indivisible transfers
- Can terminate the MXIbus
- MXIbus master retry support
- MXIbus slave retry support
- Interrupt handler for levels 7 to 1
- Interrupt requester for levels 7 to 1
- MXIbus D32, D16, D08(O) interrupt handler
- MXIbus D32, D16, D08(O) interrupter
- Release on Acknowledge or Register Access interrupter
- MXIbus bus timer (programmable limit)
- Automatic MXIbus System Controller detection
- Automatic MXIbus termination detection

VMEbus Capability Codes

Capability Code	Description
A32, A24, A16 (master)	VMEbus master A32, A24, and A16 addressing
A32, A24, A16 (slave)	VMEbus slave A32, A24, and A16 addressing
D32, D16, D08(EO) (master)	VMEbus master D32, D16, and D08 data sizes
D32, D16, D08(EO) (slave)	VMEbus slave D32, D16, and D08 data sizes
BLT, MBLT (master)	VMEbus master block and D64 transfers
BLT, MBLT (slave)	VMEbus slave block and D64 transfers
RMW (master)	VMEbus master read/modify/write transfers
RMW (slave)	VMEbus slave read/modify/write transfers
RETRY (master)	VMEbus master retry support
RETRY (slave)	VMEbus slave retry support
FSD	First slot detector
SCON	VMEbus System Controller
PRI, RRS	Prioritized or Round Robin Select arbiter
ROR, FAIR	Release on Request and FAIR bus requester
IH(7–1)	Interrupt handler for levels 7–1
I(7-1)	Interrupt requester for levels 7–1
D32, D16, D08(O) (Interrupt Handler)	VMEbus D32, D16, D08(O) interrupt handler
D32, D16, D08(O) (Interrupter)	VMEbus D32, D16, D08(O) interrupter
ROAK, RORA	Release on Acknowledge or Register Access interrupter
BTO(x)	VMEbus bus timer (programmable limit)

Environmental

C-Size VXI-MXI-2		
Characteristic	Specification	
Temperature	0° to 55° C operating; -40° to 85° C storage	
Relative Humidity	0% to 95% noncondensing, operating; 0% to 95% noncondensing, storage	
EMI	FCC Class A Verified	
Random Vibration	Operational: 5 to 500 Hz, 0.3 g, 3 axes Non-operational: 5 to 500 Hz, 2.41 g, 3 axes	
Functional Shock (see Note below)	MIL-T-28800E Class 3 (per Section 4.5.5.4.1) Half-Sine Shock Pulse (11 ms duration, 30 g peak, 3 shocks per face)	

Note:

Random vibration profiles were developed in accordance with MIL-T-28800E and MIL-STD-810E Method 514. Test levels exceed those recommended in MIL-STD-810E for Category 1 (Basic Transportation, Figures 514.4-1 through 514.4-3). Test report available upon request.

B-Size VXI-MXI-2/B		
Characteristic	Specification	
Temperature	0° to 55° C operating; -40° to 85° C storage	
Relative Humidity	0% to 95% noncondensing, operating; 0% to 95% noncondensing, storage	
EMI	FCC Class A Verified	

Requirements

Characteristic	Specification	
VXIbus Configuration Space	64 B	
A24 or A32 Space	16 KB minimum (programmable)	

Physical

C-Size VXI-MXI-2		
Characteristic	Specification	
Board Dimensions	Fully enclosed, shielded VXI C-size board 233.35 by 340 mm (9.187 by 13.386 in.)	
Connectors	Single fully implemented MXI-2 bus connector and three SMB connectors	
Slot Requirements	Single VXI C-size slot	
Compatibility	Fully compatible with VXI specification	
VXI Keying Class	Class 1 TTL	
MTBF	77000 hours @ 25° C	
Weight	1.027 Kg (2.26 lb) typical (no DRAM installed)	

B-Size VXI-MXI-2/B		
Characteristic	Specification	
Board Dimensions	VXI B-size board 233.36 by 160 mm (9.187 by 6.2999 in.)	
Connectors	Single fully implemented MXI-2 bus connector and three SMB connectors	
Slot Requirements	Single VXI B-size slot	
Compatibility	Compatible with VXIbus specification	
VXI Keying Class	Class 1 TTL	
Weight	0.36 Kg (0.79 lb) typical (no DRAM installed)	

Electrical

	DC Current Ratings	
Source	Typical	Maximum
+5 VDC	2.5 A	3.5 A
-5.2 VDC	180 mA	225 mA
-2 VDC	80 mA	100 mA

Performance

VME Transfer Rate		
Peak	33 MB/s	
Sustained	23 MB/s	

Programmable Configurations

This appendix describes some features of the VXI-MXI-2 that are configured by programming an onboard EEPROM through software rather than by onboard switches or jumpers.

Configuring the EEPROM

The EEPROM settings are loaded into the VXI-MXI-2 registers after each power-up or hard reset. The VXI-MXI-2 must be reset either with a power cycle or by asserting the VMEbus SYSRESET* signal after the EEPROM is written for the changes to take effect. The EEPROM retains its settings even when power is removed from the VXI-MXI-2. Once you program the settings into the EEPROM, they need not be programmed again unless you want to make further changes to the settings.

The EEPROM is accessible in the VXI-MXI-2 A24 or A32 memory region defined by the VIDR, VDTR, VCR, and VOR registers. It is required that when the Resource Manager executes, it allocates A24 or A32 space to the VXI-MXI-2 before the EEPROM can be accessed. If you are not using a multiframe VXIbus Resource Manager, you must allocate A24 or A32 space to the VXI-MXI-2 by writing a base address to the VOR and then setting the A24/A32 ENABLE bit in the VCR. The space (either A24 or A32) and amount of address space that the VXI-MXI-2 requires can be determined by reading the VIDR and VDTR. Following this allocation, the IOCONFIG bit in the VXI-MXI-2 Control Register 2 (VMCR2) must be written with a 1 before the EEPROM is accessible. The IOCONFIG bit should be written with a 0 after accesses to the EEPROM are complete to prevent unintentional accesses to the EEPROM.

The EEPROM must be written with 8-bit accesses. Also, after each write access to the EEPROM, the location written should be continuously read back until the value written is returned before attempting any further write accesses.

After all changes have been written to the EEPROM, the 32-bit value stored at offset 2FFC hex from the VXI-MXI-2 A24 or A32 base address should be incremented. This 32-bit value stores the number of times the EEPROM has been written, since there is a limit of 10,000 writes before writes to the part become unreliable. The 32-bit value can be read with a 32-bit access but must be written with 8-bit accesses followed by reads as described in the previous paragraph.

The following pseudo code is an example of a VXI-MXI-2 EEPROM programming sequence. Assume that the VXI-MXI-2 has been allocated 200000 hex for its base A24 address. All numbers in the example are in hexadecimal. The four lines of code labeled with the comment "/* set options here */" should be repeated for each configuration setting that is being written to the EEPROM. xxxxxx represents the address of the EEPROM location being changed, and xx represents the value to change it to.

```
/* program variables */
LONG writecount, temp;
a24_byte_write(address, data);
                                   /* function prototype */
                                   /* function prototype */
a24_byte_read(address, data);
                                    /* function prototype */
a24_long_read(address, data);
a24_byte_write(20075B, 81);
                                    /* set IOCONFIG in VMCR2 */
a24_long_read(202FFC, writecount);
                                   /* get EEPROM write count */
                                   /* check limit (10,000 dec) */
  a24_byte_write(xxxxxx, xx);
                                    /* set options here */
  a24_byte_read(xxxxxx, temp);
  } while (temp != xx);
  a24_byte_write(202FFC, (writecount & FF000000) >> 24);
  do {
  a24_byte_read(202FFC, temp);
   } while (temp != (writecount & FF000000) >> 24);
  a24_byte_write(202FFD, (writecount & 00FF0000) >> 16);
  do {
  a24_byte_read(202FFD, temp);
   } while (temp != (writecount & 00FF0000) >> 16);
  a24_byte_write(202FFE, (writecount & 0000FF00) >> 8);
  do {
  a24_byte_read(202FFE, temp);
   } while (temp != (writecount & 0000FF00) >> 8);
```

The following sections describe the features that you can configure by writing to the EEPROM on the VXI-MXI-2.

VXI-MXI-2 Requested Memory Space

The VXI-MXI-2 requires at least 16 KB of either A24 or A32 space. You might want to change the amount of space requested or whether the VXI-MXI-2 is an A24 or A32 device. This is especially important when changing the amount of DRAM installed on the VXI-MXI-2. The amount of space requested by the VXI-MXI-2 should match the amount of DRAM installed. Set it to 16 KB when no DRAM is installed.

If you install DRAM into the VXI-MXI-2, do not attempt to use the first 4 KB of memory space. This 4 KB space maps to the registers on the VXI-MXI-2 and does not access onboard DRAM. Accessing this region will cause your VXI-MXI-2 to behave incorrectly.

If you do not want to lose 4 KB of DRAM you can get around this limitation by setting the requested memory to double the amount that is installed on the VXI-MXI-2, because the DRAM is aliased throughout the remainder of the requested memory space. The DRAM should then be accessed in the upper half of the requested memory space.

To change whether the VXI-MXI-2 is an A24 or A32 device, write the EEPROM byte at offset 2016 hex from the VXI-MXI-2 base address. Write a 4F hex for A24 or a 5F hex for A32.

To change the amount of space that the VXI-MXI-2 requests, write the EEPROM byte at offset 201E hex from the VXI-MXI-2 base address. The following table gives the value that should be written for the corresponding size. Notice that the value you should write for any given size differs depending on whether you are requesting A24 or A32 space.

Size	A24 Value (Hex)	A32 Value (Hex)
16 KB	9F	N/A
32 KB	8F	N/A
64 KB	7F	FF
128 KB	6F	EF
256 KB	5F	DF
512 KB	4F	CF
1 MB	3F	BF
2 MB	2F	AF
4 MB	1F	9F
8 MB	0F	8F
16 MB	N/A	7F
32 MB	N/A	6F
64 MB	N/A	5F
128 MB	N/A	4F
256 MB	N/A	3F
512 MB	N/A	2F
1 GB	N/A	1F
2 GB	N/A	0F

VMEbus Timer Limit

The VMEbus Bus Timeout (BTO) is a watchdog timer for transfers on the VMEbus Data Transfer bus. After the specified amount of time has elapsed, the BTO circuitry terminates a VMEbus cycle if no slave has responded. The VXI-MXI-2 must provide the VMEbus BTO for proper operation because when a MXIbus cycle is involved, the VMEbus timeout must be disabled and the MXIbus BTO enabled. You should disable the BTO of any other BTO module residing in the mainframe. If this is not possible, set it to its maximum setting to give the MXIbus cycles as much time as possible to complete.

The lowest value in the allowable range is 15 μ s and the highest is 256 ms. The default value is 125 μ s.

To change the VMEbus timeout limit of the VXI-MXI-2, write the EEPROM byte at offset 206F hex from the VXI-MXI-2 base address. The following table gives the value that should be written for the corresponding time limit.

Time Limit	Value (Hex)
Timer Disabled	C0
15 μs	C1
30 μs	C2
60 μs	C3
125 μs	C4 (default)
250 μs	C5
500 μs	C6
1 ms	C7
2 ms	C8
4 ms	C9
8 ms	CA
16 ms	СВ
32 ms	CC
64 ms	CD
128 ms	CE
256 ms	CF

VMEbus Arbiter

Arbiter Type

You can configure the VXI-MXI-2 as either a Priority or Round Robin VMEbus arbiter. This setting is applicable only if the VXI-MXI-2 you are configuring is the first slot device. The default is Priority.

When configured for Priority arbitration, the VXI-MXI-2 grants the bus to the highest bus request level pending. In Round Robin arbitration mode, the VXI-MXI-2 grants the bus to the next highest bus request level after the level of the previous bus owner. This effectively gives the same priority to each bus request level. Refer to the VMEbus specification for more information on the different types of arbiters.

Arbiter Timeout

An arbitration timeout feature is available on the VXI-MXI-2 when it is acting as the VMEbus arbiter. This feature applies only to a VXI Slot 0VXI-MXI-2. This feature is enabled by default.

The timer begins when the arbiter circuit on the VXI-MXI-2 drives one of the *BGOUT* lines on the backplane. If no device takes over the bus within the timeout limit, the *BGOUT* is removed and the bus is either idle or granted to another requester.

To change the VMEbus arbiter type of the VXI-MXI-2, write the EEPROM byte at offset 20B4 hex from the VXI-MXI-2 base address. The following table gives the value that should be written for the corresponding arbiter type. The values shown in the table are hexadecimal.

Timeout Status	Priority Arbiter	Round Robin Arbiter
Arbiter Timeout Enabled	00 (default)	80
Arbiter Timeout Disabled	40	C0

VMEbus Requester

Request Level

The VXI-MXI-2 uses one of the four VMEbus request levels (0 to 3) to request use of the VME Data Transfer Bus (DTB). The VXI-MXI-2 requests use of the DTB whenever an external MXIbus device attempts a transfer that maps into the VXIbus mainframe.

The VXI-MXI-2 uses VMEbus request level 3 in its factory-default setting, as required by the VXIbus specification. This is suitable for most VXIbus systems. However, you can change the VXI-MXI-2 to use any of the other three request levels (0, 1, or 2) by writing to the EEPROM. You may want to change request levels to change the priority of the VXI-MXI-2 request signal.

Fair Request

The VXI-MXI-2 is always a Release On Request requester. However, you can configure whether the VXI-MXI-2 acts as either a fair or unfair requester on the VMEbus. By default, the VXI-MXI-2 is a fair requester. For more information on the different types of requesters, refer to the VMEbus specification.

To change the VMEbus requester type of the VXI-MXI-2, write the EEPROM byte at offset 20B5 hex from the VXI-MXI-2 base address. The following table gives the value that should be written for the corresponding requester type. The values shown in the table are hexadecimal.

Bus Request Level	Fair Requester	Unfair Requester
Bus Request Level 3	07 (default)	17
Bus Request Level 2	06	16
Bus Request Level 1	05	15
Bus Request Level 0	04	14

MXIbus Timer Limit

The MXIbus Bus Timeout (BTO) is a watchdog timer for transfers on the MXIbus. The MXIbus BTO unit operates only when the VXI-MXI-2 is acting as the MXIbus System Controller. The functionality is similar to that of the VMEbus timer limit described previously. The options range from 8 μ s to 128 ms, with a default value of 1 ms.

After the specified amount of time has elapsed, the BTO circuitry terminates a MXIbus cycle if no slave has responded. The BTO circuitry is automatically deactivated when the VXI-MXI-2 is not acting as the MXIbus System Controller. The BTO is also disabled when the current MXIbus cycle maps to the VXIbus through a VXI-MXI-2.

To change the MXIbus timeout limit of the VXI-MXI-2, write the EEPROM byte at offset 2067 hex from the VXI-MXI-2 base address. The following table gives the value that should be written for the corresponding time limit.

Time Limit	Value (hex)
Timer Disabled	00
8 μs	01
15 μs	02
30 μs	03
60 μs	04
125 μs	05
250 μs	06
500 μs	07
1 ms	08 (default)
2 ms	09
4 ms	0A
8 ms	0B
16 ms	0C
32 ms	0D
64 ms	0E
128 ms	0F

MXIbus Fair Requester and MXIbus Parity Checking

You can configure whether the VXI-MXI-2 acts as either a fair or unfair requester on the MXIbus. The default is a fair requester, which causes the VXI-MXI-2 to request the MXIbus only when there are no requests pending from other masters. This prevents other masters from being starved of bandwidth. The VXI-MXI-2 will request the bus at any time when configured for unfair operation.

MXIbus parity checking can also be disabled in the same EEPROM location as the MXIbus fair requester setting. By default, MXIbus parity checking is enabled and should not be disabled under normal circumstances. MXIbus parity is always generated regardless if checking is enabled or disabled.

To change the MXIbus requester type or the MXIbus parity checking setting of the VXI-MXI-2, write the EEPROM byte at offset 2065 hex from the VXI-MXI-2 base address. The following table gives the value that should be written for the corresponding requester type and parity checking combination.


Parity Checking Status	Fair Requester	Unfair Requester
Parity Checking Enabled	E5 (default)	C5
Parity Checking Disabled	E1	C1

Interlocked Arbitration Mode

Interlocked arbitration mode is an optional mode of operation in which at any given moment the system can perform as if it were one large VXIbus mainframe with only one master of the entire system—VXIbus and MXIbus. This mode of operation prevents deadlocks by interlocking all arbitration in the VXIbus/MXIbus system.

To change the arbitration mode of the VXI-MXI-2, the EEPROM bytes at offsets 2035 and 2037 must be written. Write a 0 to each location for normal arbitration mode, or write a 1 to each location for interlocked arbitration mode.

For more information on interlocked mode, refer to Chapter 7, *VXIplug&play for the VXI-MXI-2*.

VXI-MXI-2 Front Panel Configuration

This appendix describes the front panel and connectors on the VXI-MXI-2 interface module. This material contains the information relevant to VXI*plug&play* Specification VPP-8, *VXI Module/Mainframe to Receiver Interconnection*.

The VXI-MXI-2 module is National Instruments part number 183345*x*-01 and the VXI-MXI-2/B is part number 183105*x*-11, where *x* is the hardware revision letter.

Front Panel

Figure C-1 shows the front panel layout of the C-size VXI-MXI-2 and Figure C-2 shows the layout for the B-size VXI-MXI-2/B. The drawings show dimensions relevant to key elements on the front panel. Dimensions are in mm (inches). The VXI-MXI-2 and VXI-MXI-2/B front panel thickness is 2.5 mm (0.098 in.).

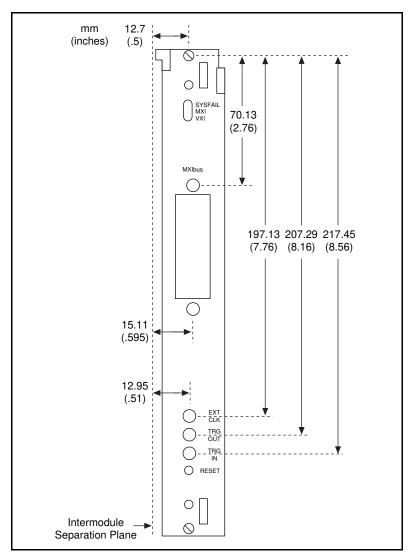


Figure C-1. C-Size VXI-MXI-2 Front Panel Layout

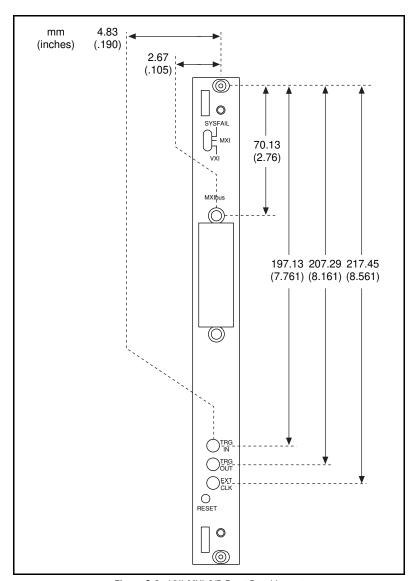


Figure C-2. VXI-MXI-2/B Front Panel Layout

Front Panel Connectors

The front panel has a MXI-2 connector that connects the VXI-MXI-2 to the MXIbus, and three type SMB connectors for connection to the external clock, trigger output, and trigger input.

MXI-2 Connector

The MXI-2 connector is a 144-pin female connector manufactured by Meritec (Meritec part number 182800A-01). The mating cable assembly is National Instruments part number 182801A-xxx, where xxx is the length in meters.

Figure C-3 shows the MXI-2 connector on the VXI-MXI-2. The drawing shows the pinout assignments for each pin, which are described in Table C-1.

A35 A33 A31 A29 A27 A25 A23 A21 A19 A17 A15 A13 A11 A9 A7 A5 A3 A1 A36 A34 A32 A30 A28 A26 A24 A22 A20 A18 A16 A14 A12 A10 A8 A6 A4 A2 B35 B33 B31 B29 B27 B25 B23 B21 A19 B17 B15 B13 B11 B9 B7 B5 B3 B1 B36 B34 B32 B30 B28 B26 B24 B22 B20 B18 B16 B14 B12 B10 B8 B6 B4 B2 C35 C33 C31 C29 C27 C25 C23 C21 C19 C17 C15 C13 C11 C9 C7 C5 C3 C1 C36 C34 C32 C30 C28 C26 C24 C22 C20 C18 C16 C14 C12 C10 C8 C6 C4 C2 D35 D33 D31 D29 D27 D25 D23 D21 D19 D17 D15 D13 D11 D9 D7 D5 D3 D1 D36 D34 D32 D30 D28 D26 D24 D22 D20 D18 D16 D14 D12 D10 D8 D6 D4 D2

Figure C-3. MXI-2 Connector

Table C-1 lists the signal assignments for the MXI-2 connector.

Table C-1. MXI-2 Connector Signal Assignments

Pin	Signal Name						
A1	MBAD(31)*	B1	MBAD(14)*	C1	MBAM(4)*	D1	MBBUSY*
A2	GND	B2	GND	C2	GND	D2	GND
A3	MBAD(30)*	В3	MBAD(13)*	C3	MBAM(3)*	D3	MBIRQ(1)*
A4	GND	B4	GND	C4	GND	D4	GND
A5	MBAD(29)*	B5	MBAD(12)*	C5	MBAM(2)*	D5	MBIRQ(2)*
A6	GND	В6	GND	C6	GND	D6	GND
A7	MBAD(28)*	В7	MBAD(11)*	C7	MBAM(1)*	D7	MBIRQ(3)*

Table C-1. MXI-2 Connector Signal Assignments (Continued)

Pin	Signal Name						
A8	GND	В8	GND	C8	GND	D8	GND
A9	MBAD(27)*	В9	MBAD(10)*	C9	MBAM(0)*	D9	MBIRQ(4)*
A10	GND	B10	GND	C10	GND	D10	GND
A11	MBAD(26)*	B11	MBAD(9)*	C11	MBWR*	D11	MBIRQ(5)*
A12	GND	B12	GND	C12	GND	D12	GND
A13	MBAD(25)*	B13	MBAD(8)*	C13	MBSIZE*	D13	MBIRQ(6)*
A14	GND	B14	GND	C14	GND	D14	GND
A15	MBAD(24)*	B15	MBAD(7)*	C15	MBIRQBTO*	D15	MBIRQ(7)*
A16	GND	B16	GND	C16	GND	D16	GND
A17	MBAD(23)*	B17	MBAD(6)*	C17	MBACFAIL*	D17	MBTRG(0)+
A18	GND	B18	GND	C18	GND	D18	MBTRG(0)-
A19	MBAD(22)*	B19	MBAD(5)*	C19	MBSYSRESET*	D19	MBTRG(1)+
A20	GND	B20	GND	C20	GND	D20	MBTRG(1)-
A21	MBAD(21)*	B21	MBAD(4)*	C21	MBSYSFAIL*	D21	MBTRG(2)+
A22	GND	B22	GND	C22	GND	D22	MBTRG(2)-
A23	MBAD(20)*	B23	MBAD(3)*	C23	MBBERR*	D23	MBTRG(3)+
A24	GND	B24	GND	C24	GND	D24	MBTRG(3)-
A25	MBAD(19)*	B25	MBAD(2)*	C25	MBDTACK*	D25	MBTRG(4)+
A26	GND	B26	GND	C26	GND	D26	MBTRG(4)-
A27	MBAD(18)*	B27	MBAD(1)*	C27	MBDS*	D27	MBTRG(5)+
A28	GND	B28	GND	C28	GND	D28	MBTRG(5)-
A29	MBAD(17)*	B29	MBAD(0)*	C29	MBAS*	D29	MBTRG(6)+
A30	GND	B30	GND	C30	GND	D30	MBTRG(6)-
A31	MBAD(16)*	B31	MBCONVERT*	C31	MBBREQ*	D31	MBTRG(7)+
A32	GND	B32	GND	C32	GND	D32	MBTRG(7)-
A33	MBAD(15)*	B33	MBPAR*	C33	MBGIN*	D33	MBCLK10+
A34	GND	B34	GND	C34	GND	D34	MBCLK10-
A35	5 V	B35	TERMPOWER	C35	MBGOUT*	D35	SC*
A36	5 V	B36	TERMPOWER	C36	GND	D36	ENDDEV

The characteristic impedance of the MXIbus signals is 120 Ω . Table C-2 lists additional characteristics of the MXIbus signals.

Signal Category	Voltage Range	Max Current	Frequency Range
Each single-ended signal	0 to 3.4 V	60 mA	DC to 10 Mhz
Each differential signal (D17–D34)	0 to 5 V	80 mA	DC to 10 Mhz
Each 5 V (A35, A36)	5 V	1.75 A fused	DC
Each TERMPOWER (B35, B36)	3.4 V	1.75 A fused	DC

Table C-2. MXIbus Signal Characteristics

External Clock Connector

The external clock (EXT CLK) connector is a male SMB connector manufactured by Applied Engineering Products, part number 2110-1511-000. The mating connector is Applied Engineering Products part number 2002-1551-003.

Figure C-4 shows the EXT CLK connector on the VXI-MXI-2.

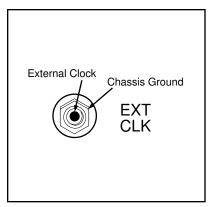


Figure C-4. EXT CLK Connector

Table C-3 lists characteristics of the EXT CLK connector.

Table C-3. EXT CLK Signal Characteristics

Impedance	Voltage Range	Max Current	Frequency Range
50 Ω	0 to 5 V	100 mA	10 Mhz

Trigger Output Connector

The trigger output (TRG OUT) connector is a male SMB connector manufactured by Applied Engineering Products, part number 2110-1511-000. The mating connector is Applied Engineering Products part number 2002-1551-003.

Figure C-5 shows the TRG OUT connector on the VXI-MXI-2.

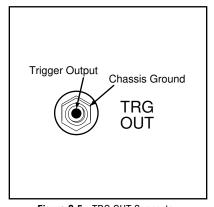


Figure C-5. TRG OUT Connector

Table C-4 lists characteristics of the TRG OUT connector.

Table C-4. TRG OUT Signal Characteristics

Impedance	Voltage Range	Max Current	Frequency Range
50 Ω	0 to 5 V	100 mA	DC to 5 Mhz

Trigger Input Connector

The trigger input (TRG IN) connector is a male SMB connector manufactured by Applied Engineering Products, part number 2110-1511-000. The mating connector is Applied Engineering Products part number 2002-1551-003.

Figure C-6 shows the TRG IN connector on the VXI-MXI-2.

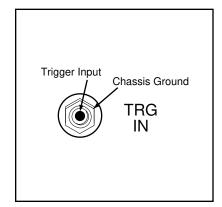


Figure C-6. TRG IN Connector

Table C-5 lists characteristics of the TRG IN connector.

Table C-5. TRG IN Signal Characteristics

Impedance	Voltage Range	Max Current	Frequency Range
50 Ω	0 to 5 V	100 mA	DC to 5 Mhz

Differences and Incompatibilities between the VXI-MXI and the VXI-MXI-2

This appendix describes the differences and incompatibilities between the first-generation MXIbus-to-VXIbus interface, the VXI-MXI, and the VXI-MXI-2. This information may be helpful for users of the VXI-MXI who are moving to the VXI-MXI-2.

MXIbus Connector

The VXI-MXI-2 interfaces the VXIbus to the National Instruments next-generation MXIbus (MXI-2), while the VXI-MXI used the first-generation MXIbus. MXI-2 uses new higher-density connectors and cables, which means that the VXI-MXI-2 cannot be readily connected to any first-generation MXIbus device such as the VXI-MXI.

A major benefit of MXI-2 is that it combines the MXIbus functionality with all the functionality of the INTX enhancement for the VXI-MXI onto a single connector. The INTX enhancement extends the VMEbus utility signals (ACFAIL*, SYSRESET*, and SYSFAIL*), all seven VMEbus interrupts, the eight VXIbus TTL trigger lines, and the VXIbus CLK10± signals.

As the following table shows, you need only one cable with the VXI-MXI-2 module, whereas the Enhanced VXI-MXI requires an additional cable for INTX functionality.

First-Generation MXIbus	MXI-2	
Enhanced VXI-MXI	VXI-MXI-2	
MXIbus Cable	MXI-2 Cable	
INTX Cable		

In addition to the INTX functionality, MXI-2 incorporates new data transfer protocols that achieve higher performance than is possible on the first-generation MXIbus.

Configuration Switches and Jumpers

Some of the configurable features of the VXI-MXI are software programmable settings on the VXI-MXI-2; some others are now implemented by automatic configuration circuits on the VXI-MXI-2 instead of by onboard switches or jumpers.

One configuration switch on the VXI-MXI selected whether the front-panel pushbutton asserted the VMEbus SYSRESET* or ACFAIL* signal. This is not implemented on the VXI-MXI-2. The VXI-MXI-2 will always assert SYSRESET* when the pushbutton is pressed.

The following table lists the configurable features that are automatic on the VXI-MXI-2 and require no attention.

Configurable Feature	VXI-MXI-2 Implementation
MXIbus System Controller	Automatic
MXIbus Termination	Switches available to override automatic detection
VXIbus Slot 0	Jumper available to override automatic detection

The following table lists the configurable features that are programmable on the VXI-MXI-2, either through a writable register or a writable location in the onboard EEPROM. Keep in mind that configurations you write to a register will be lost during any hard reset or power cycle, while configurations you write to the EEPROM will remain even through resets and power cycles. You can easily configure these features through the VXI*plug&play* soft front panel, as described in Chapter 7, *VXIplug&play for the VXI-MXI-2*.

Configurable Feature	VXI-MXI-2 Implementation
Interlocked Arbitration Mode	VXI-MXI-2 Status/Control Register (VMSR/VMCR) or EEPROM
VMEbus Timeout Length	EEPROM
VMEbus Request Level	EEPROM

Α	nr	en	di	X	D
٠,	۲۲	,011	u	^	$\boldsymbol{\mathcal{L}}$

Configurable Feature	VXI-MXI-2 Implementation
MXIbus Timeout Length	Shared MXIbus Status/Control Register (SMSR/SMCR) or EEPROM
MXIbus Fair Requester	Shared MXIbus Status/Control Register (SMSR/SMCR) or EEPROM
MXIbus Parity Checking	Shared MXIbus Status/Control Register (SMSR/SMCR) or EEPROM

VXIbus Model Code

The VXIbus Device Type Register (VDTR) on the VXI-MXI-2 returns a different model code than the VXI-MXI because it includes new capabilities and is not an identical replacement for the VXI-MXI.

Required Memory Space

The VXI-MXI-2 register set is too large to fit in its 64-byte VXIbus configuration area. In addition, you can install onboard DRAM on the VXI-MXI-2. For both of these reasons the VXI-MXI-2 will request at least 16 KB of either A24 or A32 space, whereas the VXI-MXI was an A16-only device. As a result, the VXI-MXI-2 has a VXIbus Offset Register (VOR), a Required Memory field in the VXIbus Device Type Register (VDTR), and an A24/A32 ENABLE bit in the VXIbus Status/Control Register (VSR/VCR).

Sysfail Inhibit

The VXI-MXI-2 provides a Sysfail Inhibit bit in the VXIbus Status/Control Register (VSR/VCR) to prevent it from asserting the SYSFAIL* signal as defined by the VXIbus specification. The first-generation VXI-MXI did not.

VXI-MXI-2 Status/Control Register (VMSR/VMCR)

The Long MXIbus System Controller Timeout bit (LNGMXSCTO) is no longer implemented. The MXIbus timer of the VXI-MXI-2 is programmable in the EEPROM and covers an even broader range of times than the MXIbus timer of the VXI-MXI.

The Backoff Condition Clear bit (BOFFCLR) is no longer implemented. It is not necessary because the BKOFF bit in the VXIbus Interrupt Status Register (VISTR) now clears automatically when read.

The MXTRIGINT, MXSRSTINT, MXACFAILINT, and MXSYSFINT bits are no longer implemented in the VXI-MXI-2 Status Register (VMSR). Likewise, the MXTRIGEN, MXSRSTEN, and MXACFAILEN bits in the VXI-MXI-2 Control Register (VMCR) are no longer implemented. For more information about these bits, refer to the following section, *Local Interrupt Conditions*.

Local Interrupt Conditions

The first-generation MXIbus has a single interrupt line. MXI-2 has seven interrupt lines, which correspond to the VMEbus interrupt lines. The VXI-MXI has some interrupt conditions which would assert the single MXIbus interrupt directly. Since MXI-2 does not have this single MXIbus interrupt, the register bits that would enable these conditions are not implemented on the VXI-MXI-2. Specifically, the MXTRIGINT, MXTRIGEN, MXSRSTINT, MXSRSTEN, MXACFAILINT, MXACFAILEN, and MXSYSFINT bits in the VXI-MXI-2 Status/Control Register (VMSR/VMCR) are not implemented. Also, the entire MXIbus IRQ Configuration Register (offset 24 hex on the VXI-MXI) is not implemented.

As an alternative, all these interrupt conditions, with the exception of MXTRIGINT, can be routed to one of the VMEbus interrupt lines, which then can be routed to the corresponding MXI-2 interrupt line. Also, the utility signals SYSRESET*, ACFAIL*, and SYSFAIL* can be routed to MXI-2 to be detected at the destination as a utility signal rather than generating an interrupt and sending the interrupt to the destination. In fact, this is the only solution available for the SYSRESET* signal on the VXI-MXI-2. The VXI-MXI-2 cannot generate an interrupt from SYSRESET*.

The VXI-MXI-2 also cannot generate an interrupt from any trigger condition. The TRIGINT and TRIGINTIE bits in the VXIbus Interrupt Status/Control Register (VISTR/VICTR) are not implemented. Instead, the VXI-MXI-2 allows the TTL trigger lines to be routed from the VXIbus to the MXIbus so that the destination receives them as triggers rather than as an interrupt. Refer to the register descriptions for the VXIbus Interrupt Configuration Register (VICR), VXIbus Trigger Configuration Register (VTCR), VXIbus Utility Configuration Register (VUCR), and VXIbus Interrupt Status/Control Register

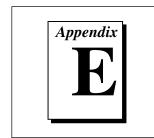
Appendix D

(VISTR/VICTR) in Chapter 5 for more information on these alternatives to the local interrupt conditions on the single MXIbus interrupt line. Notice that these same registers and solutions work on an Enhanced VXI-MXI when the destination has an INTX connection.

VXIbus Trigger Functionality

The PULSE bit in the VXIbus Trigger Drive Register (VTDR) and the OMS[2:0], ITS[3:0], ETOEN, OTS[3:0], ETRIG, ASINT*, ASIE, SSINT*, and SSIE bits in the VXIbus Trigger Mode Selection Register (VTMSR) are not implemented. Also, the entire Trigger Synchronous Acknowledge Register (write offset 34 hex on the VXI-MXI) and the Trigger Asynchronous Acknowledge Register (write offset 36 hex on the VXI-MXI) are not implemented. The VXI-MXI-2 does not provide the functionality that these bits control on the VXI-MXI.

Hard Reset


The VXIbus Status/ID Register (VSIDR) on the VXI-MXI-2 is cleared on a hard reset. This register was unaffected by a hard reset on the VXI-MXI.

The INTLK bit in the VXI-MXI-2 Status Register (VMSR) is set to the value stored in the EEPROM on a hard reset. By default, the value is 0. The INTLK bit was unaffected by a hard reset on the VXI-MXI since it was an onboard switch.

Soft Reset

The following register bits, which are cleared by a soft reset on the VXI-MXI, are unaffected by a soft reset on the VXI-MXI-2.

- OE in the VXIbus MODID Register (VMIDR)
- CMODE in the VXI-MXI-2 Status/Control Register (VMSR/VMCR)
- DTTRIG[7:0] in the VXIbus Trigger Drive Register (VTDR)
- DETRIG[1:0] in the VXIbus Trigger Drive Register (VTDR)
- DIRQ[7:1] in the VXIbus Interrupt Control Register (VICTR)

Configuring a Two-Frame System

This appendix describes how to configure a system containing two mainframes linked by VXI-MXI-2 mainframe extenders.

Configuring Two VXI-MXI-2 Modules for a Two-Frame System

The factory configuration of the VXI-MXI-2 is suitable for the most common system configurations. However, if you are setting up a VXI system using VXI-MXI-2 modules to extend from one mainframe to another, you need to reconfigure the VXI-MXI-2 interfaces. You can find more information about configuring a multiframe system in Chapter 3, VXI-MXI-2 Configuration and Installation, which describes the switch settings on a C-size VXI-MXI-2 (or Chapter 4 if you have a VXI-MXI-2/B), and Chapter 6, System Configuration, which describes the partitions of system resources, including logical addresses. This appendix is a quick reference for systems such as the one in Figure E-1, which consists of two VXI mainframes connected by a single MXIbus link.

This appendix shows illustrations for both the C-size VXI-MXI-2 and the B-size VXI-MXI-2/B.

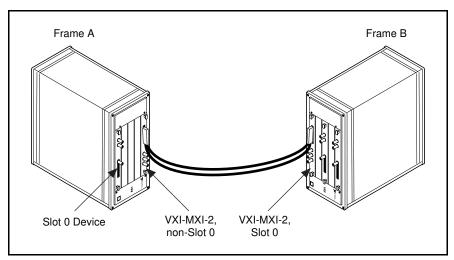


Figure E-1. A Two-Frame VXI System

In the example shown in Figure E-1, Frame A contains a VXI-MXI-2 configured as a non-Slot 0 device. It is logical address 1 and maps CLK10 from the VXIbus to the MXIbus. Frame B contains a Slot 0 VXI-MXI-2. It is logical address 80 (hex) and maps CLK10 from the MXIbus to the VXIbus.

Figure E-2 points out which hardware switches you need to change on a C-size VXI-MXI-2 in either Frame A or Frame B of a two-frame VXI system. Refer to Figure E-3 if you are using VXI-MXI-2/B modules.

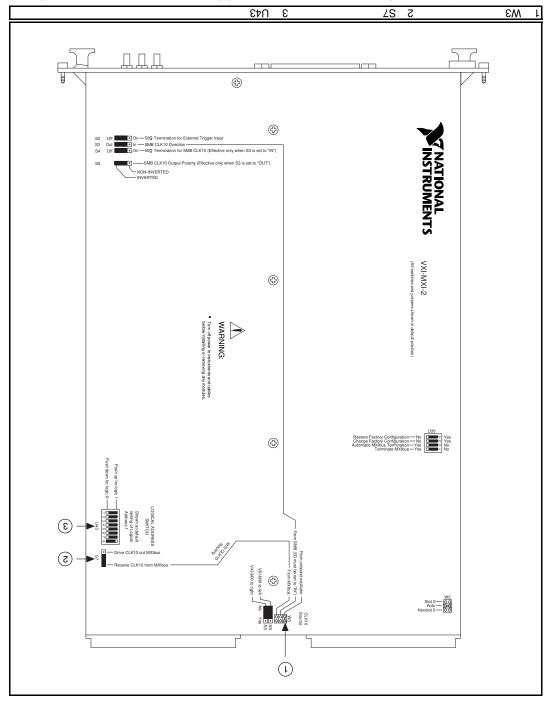


Figure E-2. Hardware Switches You Need to Reconfigure on C-Size VXI-MXI-2 Modules for a Two-Frame System

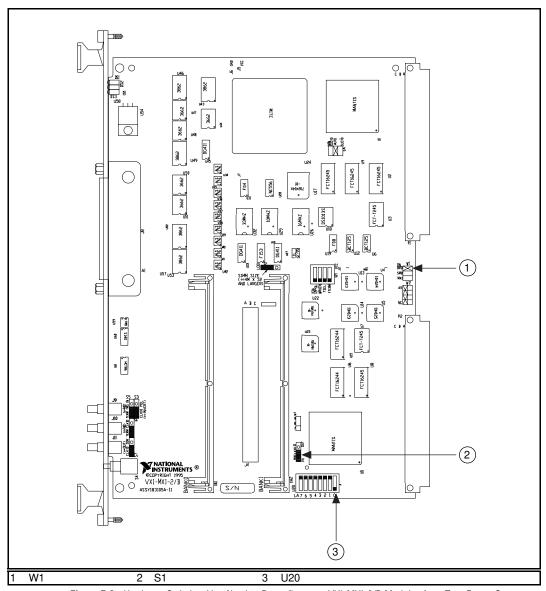
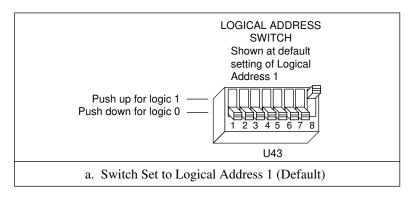



Figure E-3. Hardware Switches You Need to Reconfigure on VXI-MXI-2/B Modules for a Two-Frame System

Frame A contains logical addresses in the range of 0 to 7F hex. The Resource Manager must be logical address 0. The VXI-MXI-2 has logical address 1, which is the default logical address. Figure E-4a shows the switch setting for logical address 1 on a C-size VXI-MXI-2. See Figure E-5a if you have a VXI-MXI-2/B. Ensure that no other devices in that frame have either of these logical addresses. In addition, no devices in Frame A should have logical addresses of 80 hex or above (except for FF hex).

Appendix E

Frame B contains logical addresses from 80 hex to FE hex. The VXI-MXI-2 in Frame B is logical address 80 hex, as shown in Figure E-4b for a C-size VXI-MXI-2, or in Figure E-5b for a VXI-MXI-2/B. Make sure that no other devices in Frame B have logical addresses of 80 hex or below.

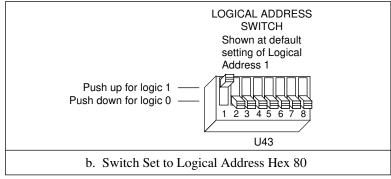
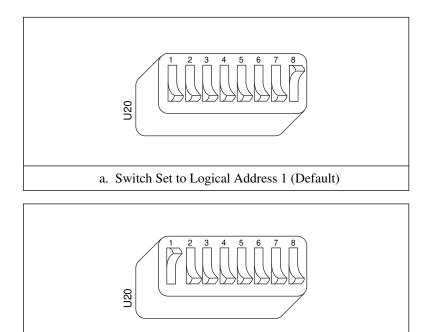



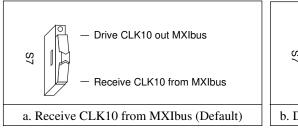
Figure E-4. Logical Address Selection on a C-Size VXI-MXI-2

Figure E-5 shows switch settings for logical address hex 1 and 80 on a VXI-MXI-2/B.

b. Switch Set to Logical Address Hex 80

Figure E-5. Logical Address Selection on a VXI-MXI-2/B

VXIbus CLK10 Routing for a Two-Frame System


The VXI-MXI-2 in Frame A routes CLK10 from the VXIbus to the MXIbus. The Slot 0 device in Frame A is responsible for generating CLK10 in that frame.

The VXI-MXI-2 in Frame B routes CLK10 from the MXIbus to the VXIbus, which allows CLK10 to be synchronous between the two frames.

Notice that the VXI-MXI-2 in Frame B must be the Slot 0 device in that frame. Otherwise, it could not drive CLK10 on the backplane.

To configure the Frame A VXI-MXI-2 to drive the MXIbus CLK10, change the setting of S7 as shown in Figure E-6b if you have a C-size VXI-MXI-2, or change the setting of S1 as shown in Figure E-7b if you have a VXI-MXI-2/B. The setting of the W3 jumper (W1 on a VXI-MXI-2/B) does not matter because the VXI-MXI-2 is not in Slot 0 and will not be driving the VXIbus CLK10.

To configure the Frame B VXI-MXI-2 to route the MXIbus CLK10 to the VXIbus, keep S7 in its default setting as shown in Figure E-6a, or see Figure 7a for the default setting of S1 if you have a VXI-MXI-2/B. Change the setting of the W3 jumper on the C-size VXI-MXI-2 as shown in Figure E-8. If you have a VXI-MXI-2/B, see Figure E-9 for the proper setting of the W1 jumper.

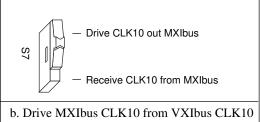
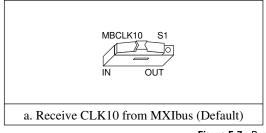



Figure E-6. Receiving or Driving MXIbus CLK10 on a C-Size VXI-MXI-2

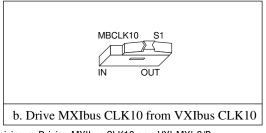
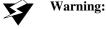



Figure E-7. Receiving or Driving MXIbus CLK10 on a VXI-MXI-2/B

Do not configure more than one MXIbus device to drive the MXIbus CLK10. Having a second device driving MXIbus CLK10 could damage the device.

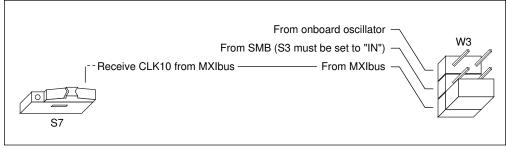


Figure E-8. CLK10 Generated from MXIbus on a C-Size VXI-MXI-2

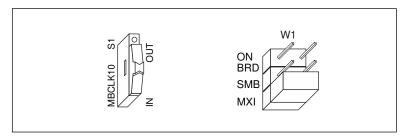


Figure E-9. CLK10 Generated from MXIbus on a VXI-MXI-2/B

VXIbus Slot 0

The default setting of the VXI-MXI-2 is to automatically detect if it is installed in Slot 0. With automatic detection, you can install the VXI-MXI-2 in any slot of a VXIbus mainframe. In the two-frame system described in this appendix, the VXI-MXI-2 is installed in Slot 0 in Frame B, but in a different slot in Frame A. You could also install both in Slot 0 of their respective mainframes, or both in slots other than Slot 0. However, CLK10 will not be synchronous between the two frames if the VXI-MXI-2 configured to receive MXIbus CLK10 is not installed in Slot 0.

MXIbus System Controller

The default setting of the VXI-MXI-2 is to automatically detect from the MXIbus cable if it is the MXIbus System Controller. With automatic detection, you can connect the cable in either direction. Notice that one end of the cable is labeled to designate it as the end to attach to the MXIbus System Controller. The VXI-MXI-2 you connect to the labeled end of the cable will take on the responsibilities of the MXIbus System Controller.

VMEbus BTO Unit

In each mainframe, the VXI-MXI-2 must be the sole bus timer on the VMEbus regardless of its slot location within the mainframe. Be sure to disable the bus timers on all other modules in the mainframes for proper operation.

DMA Programming Examples

This appendix contains two example programs for using the DMA controllers on the VXI-MXI-2. If you are using a version of the National Instruments NI-VXI software that has remote DMA controller functionality, this information is not necessary because you can make use of the VXI-MXI-2 module's DMA controllers from the NI-VXI high-level function calls.

Overview of Programming Examples

The DMA controllers each have registers that define the source and destination of the data. Data is always transferred from the source to the destination during a DMA operation. The DMA controllers can transfer data between devices located on different buses—VMEbus, MXIbus, and DRAM onboard the VXI-MXI-2—as well as between devices located on the same bus. The only limitation regarding location of the devices is that MXIbus synchronous burst transfers cannot be used for either the source or destination when both devices are located on the MXIbus. The source and destination can each use differing data widths, address spaces, and transfer types (single or block) during a DMA operation. Detailed descriptions of each DMA register can be found in the VXIbus A24/A32 Registers section of Chapter 5, Register Descriptions.

The only difference between the two examples in this appendix is that Example 1 does not make use of the DMA interrupt; Example 2 does show this functionality. The examples use pseudo code that mostly resembles the C language. Constant numbers in the examples preceded by 0x are in hexadecimal notation. Both examples contain the two functions write and read. These are meant to represent the method for performing VMEbus or MXIbus data transfers to (write) and from (read) devices.

Parameter Descriptions

The parameters for both functions are ADDRESS_SPACE, ADDRESS, TRANSFER_SIZE, and DATA.

- ADDRESS_SPACE represents the VMEbus address space in which
 the write or read will take place. The examples assume the
 VXI-MXI-2 is located in A24 space.
- ADDRESS represents the address in the memory space to which to
 perform the write or read. In the examples, A24BASE represents
 the base A24 address of the VXI-MXI-2. Any register name in the
 examples represents the offset of that register defined in Chapter 5,
 Register Descriptions.
- The TRANSFER_SIZE parameter can be one of BYTE, WORD, or LONGWORD representing 8-bit, 16-bit, and 32-bit data transfers, respectively.
- The DATA parameter is a constant for writes that represents the data to be written and is a program variable for reads that store the data read.

Example 1: DMA Operation without Interrupt

This example simply programs DMA controller 1 to move data from the source on the VMEbus to the destination on the MXIbus. The source is located in A24 space beginning at address location 200000 hex. VMEbus 32-bit block cycles are used to read data from the source. The destination is located in A32 space beginning at address location 40000000 hex. MXIbus 32-bit synchronous burst cycles are used to write data to the destination.

/* The following write causes any block transfer to the MXIbus from either DMA controller to be a synchronous burst transfer by setting both DMAxMBS bits in the SMCR. You can modify this write so that both DMA controllers perform normal MXIbus block transfers, or you can have one DMA controller perform normal MXIbus block transfers and the other perform synchronous burst transfers. Remember that MXIbus synchronous burst transfers cannot be used when both the source and destination are located on the MXIbus. */

write (A24, A24BASE + SMCR, BYTE, 0x38);

/* The following write is required to initialize the CHCRx for the DMA controller that will be used. If you will be using both DMA controllers, perform this write to both CHCR1 and CHCR2. */

write (A24, A24BASE + CHCR1, LONGWORD, 0x00004000);

/* The following write sets up the DMA Source Configuration Register. It indicates that the source is located on the VMEbus and that 32-bit block transfers with the address modifier code 0x3B will be used to access it. Table F-1, at the end of this appendix, describes the address modifier codes that can be written to this register. Remember that if the source is DRAM onboard the VXI-MXI-2, the address modifier code should be written with 0. This step can be skipped if SCR1 was already written with the same value from a previous DMA operation. This is useful if you will be performing several DMA operations where the source device remains constant. */

write (A24, A24BASE + SCR1, LONGWORD, 0x00E047BB);

/* The following write sets up the base address at which the data will be acquired from the source. Remember that if the source is DRAM onboard the VXI-MXI-2, the offset within the module's space should be written to this register, not the VMEbus address of the source. To compute this value from the source's VMEbus address, just subtract the VXI-MXI-2 module's A24 or A32 base address. */

write (A24, A24BASE + SAR1, LONGWORD, 0x00200000);

/* The following write sets up the DMA Destination Configuration Register. It indicates that the destination is located on the MXIbus and that 32-bit block transfers with the address modifier code 0x0B will be used to access it. Synchronous burst transfers will actually be used because the DMA1MBS bit in the SMCR was set in the Initialization section of this example. Table F-1, at the end of this appendix, describes the address modifier codes that can be written to this register. Remember that if the destination is DRAM onboard the VXI-MXI-2, the address modifier code should be written with 0. This step can be skipped if DCR1 was already written with the same value from a previous DMA operation. This is useful if you will be performing several DMA operations where the destination device remains constant. */

write (A24, A24BASE + DCR1, LONGWORD, 0x00E047CB);

/* The following write sets up the base address at which the data will be written to the destination. Remember that if the destination is DRAM onboard the VXI-MXI-2, the offset within the module's space should be written to this register, not the VMEbus address of the destination. To compute this value from the destination's VMEbus address, just subtract the VXI-MXI-2 module's A24 or A32 base address. */

write (A24, A24BASE + DAR1, LONGWORD, 0x40000000);

/* The following write sets up the transfer count for the DMA operation. Remember that TCRx is written with the number of bytes to be transferred regardless of the data width being used for the source or destination. In this example, 4 KB will be transferred. Also remember the limits imposed on the transfer count when performing MXIbus synchronous burst operations described in the TCRx register description in Chapter 5, Register Descriptions. */

write (A24, A24BASE + TCR1, LONGWORD, 0x00001000);

/* The following write sets the START bit in CHOR1. This causes the DMA controller to actually begin the operation. */

write (A24, A24BASE + CHOR1, LONGWORD, 0x00000001);

```
* Operation Termination: This section waits for the DMA
 * operation to complete. It is important that the
 * operation complete before either using the data that
 * is being sent to the destination or reprogramming any
 * of the DMA registers for another operation.
 ***********************
/* The following do-while loop waits for the DMA operation to
complete by polling for the DONE bit in CHSR1 to be 1. After
leaving this loop, the DMA operation has completed either
successfully or due to an error. */
   do {
      read(A24, A24BASE + CHSR1, LONGWORD, value);
   } while ((value & 0 \times 020000000) == 0);
/* The following if statement checks if any errors occurred during
the DMA operation by checking the state of the ERROR bit that was
read from CHSR1 when the DONE bit became 1. If the expression is
false, the DMA operation completed successfully and the data at
the destination can now be used. If the expression is true, the
SERR[1:0] and DERR[1:0] bits of CHSR1 should be checked to
determine what type of error occurred. */
   if (value & 0x00008000) {
      /* The DMA operation encountered an error. */
   }
```

Example 2: DMA Operation with Interrupt

This example is similar to Example 1 in that it programs DMA controller 1 to perform the same data transfer from the source on the VMEbus to the destination on the MXIbus. The source is located in A24 space beginning at address location 200000 hex. VMEbus 32-bit block cycles are used to read data from the source. The destination is located in A32 space beginning at address location 40000000 hex. MXIbus 32-bit synchronous burst cycles are used to write data to the destination.

This example adds code to make use of the DMA interrupt functionality on the VXI-MXI-2. Using the interrupt to determine when a DMA operation is complete can improve performance over the polling method described in Example 1 because the read cycles used to poll CHSRx will be using bandwidth on whichever bus (VMEbus or MXIbus) the host is located. The bandwidth the host is using to poll CHSRx will not be available to the VXI-MXI-2 module's DMA controller. Using the DMA interrupt alleviates this problem since the host is not required to poll. Because the DMA interrupt is common between the two DMA controllers, you must be especially careful to ensure that no interrupts are lost when both DMA controllers are running. This example demonstrates how this can be achieved even though only one DMA controller is being used in the example.

/* The following write causes any block transfer to the MXIbus from either DMA controller to be a synchronous burst transfer by setting both DMAxMBS bits in the SMCR. You can modify this write so that both DMA controllers perform normal MXIbus block transfers, or you can have one DMA controller perform normal MXIbus block transfers and the other perform synchronous burst transfers. Remember that MXIbus synchronous burst transfers cannot be used when both the source and destination are located on the MXIbus. */

```
write (A24, A24BASE + SMCR, BYTE, 0x38);
```

/* The following write is required to initialize the CHCRx for the DMA controller that will be used. Notice that the DONE interrupt condition is being enabled here but the overall DMA interrupt for this controller is not being enabled yet. This is because the DMA controller is already in the DONE state on power up. The DMA interrupt for the controller being used will be enabled after starting the operation because the DONE condition will then be clear until the operation is complete. If you will be using both DMA controllers you should perform this write to both CHCR1 and CHCR2. */

write (A24, A24BASE + CHCR1, LONGWORD, 0x02004000);

/* The following write is required to initialize the DMAICR. In this example, the DMA interrupt is being routed to VMEbus IRQ5*. You can route the DMA interrupt to any VMEbus interrupt level in the DMAICR. You can put the DMA interrupt on the same level as other interrupt conditions on the VXI-MXI-2 as well as interrupt conditions on other devices. This write is also programming the DMA interrupt condition to use a 16-bit Status ID when being acknowledged. You can change this write if you prefer an 8-bit Status ID. If you select an 8-bit Status ID you should also decide if you want the contents of the DMAISIDR or the VXI-MXI-2 module's logical address returned during the interrupt acknowledge cycle. */

write (A24, A24BASE + DMAICR, WORD, 0x2805);

/* The following write is required to initialize the DMAIER. This is simply enabling the DMA interrupt condition to be routed to the VMEbus. $^{\star}/$

write (A24, A24BASE + DMAIER, BYTE, 0x09);

/* The following write sets up the DMAISIDR. This is just a Status ID code that the VXI-MXI-2 will return during an interrupt acknowledge cycle for the DMA interrupt condition. You should program a code that you can use in your interrupt service routine to uniquely identify the VXI-MXI-2 module's DMA interrupt condition. Remember that you can change only the 5 most significant bits of the Status ID using the DMAISIDR. For a 16-bit Status ID, the VXI-MXI-2 always uses 011 binary for bits 10 through 8 and its logical address for bits 7 through 0. For an 8-bit Status ID, the VXI-MXI-2 can return either the contents of the DMAISIDR (the value you write here with bits 2 through 0 forced to 011 binary) or the logical address of the VXI-MXI-2 module. */

write (A24, A24BASE + DMAISIDR, WORD, 0x0013);

/* The following write sets up the DMA Source Configuration Register. It indicates that the source is located on the VMEbus and that 32-bit block transfers with the address modifier code 0x3B will be used to access it. Table F-1, at the end of this appendix, describes the address modifier codes that can be written to this register. Remember that if the source is DRAM onboard the VXI-MXI-2, the address modifier code should be written with 0. This step can be skipped if SCR1 was already written with the same value from a previous DMA operation. This is useful if you will be performing several DMA operations where the source device remains constant. */

write (A24, A24BASE + SCR1, LONGWORD, 0x00E047BB);

/* The following write sets up the base address at which the data will be acquired from the source. Remember that if the source is DRAM onboard the VXI-MXI-2, the offset within the module's space should be written to this register, not the VMEbus address of the source. To compute this value from the source's VMEbus address, just subtract the VXI-MXI-2 module's A24 or A32 base address. */

write (A24, A24BASE + SAR1, LONGWORD, 0x00200000);

/* The following write sets up the DMA Destination Configuration Register. It indicates that the destination is located on the MXIbus and that 32-bit block transfers with the address modifier code 0x0B will be used to access it. Synchronous burst transfers will actually be used since the DMA1MBS bit in the SMCR was set in the Initialization section of this example. Table F-1, at the end of this appendix, describes the address modifier codes that can be written to this register. Remember that if the destination is DRAM onboard the VXI-MXI-2, the address modifier code should be written

with 0. This step can be skipped if DCR1 was already written with the same value from a previous DMA operation. This is useful if you will be performing several DMA operations where the destination device remains constant. */

write (A24, A24BASE + DCR1, LONGWORD, 0x00E047CB);

/* The following write sets up the base address at which the data will be written to the destination. Remember that if the destination is DRAM onboard the VXI-MXI-2, the offset within the module's space should be written to this register, not the VMEbus address of the destination. To compute this value from the destination's VMEbus address, just subtract the VXI-MXI-2 module's A24 or A32 base address. */

write (A24, A24BASE + DAR1, LONGWORD, 0x40000000);

/* The following write sets up the transfer count for the DMA operation. Remember that the TCRx is written with the number of bytes to be transferred, regardless of the data width being used for the source or destination. In this example 4 KB will be transferred. Also remember the limits imposed on the transfer count when performing MXIbus synchronous burst operations described in the TCRx register description in Chapter 5, Register Descriptions. */

write (A24, A24BASE + TCR1, LONGWORD, 0x00001000);

/* The following write sets the START bit in CHOR1. This causes the DMA controller to actually begin the operation. */

write (A24, A24BASE + CHOR1, LONGWORD, 0x00000001);

/* The following write enables the DMA interrupt condition from DMA controller 1. Since this occurs after the Start bit is set in CHOR1, the DONE bit will be clear and the interrupt will not assert until the DMA operation completes. */

write (A24, A24BASE + CHCR1, LONGWORD, 0x80004000);

/*****************************

- * Interrupt service routine: This section demonstrates
- * how an interrupt service routine should handle the DMA *

*

/* The following read generates a 16-bit interrupt acknowledge cycle for level 5 and stores the Status ID returned in the value variable. */

read(IACK, LEVEL5, WORD, value);

/* The following if statement checks if the Status ID returned from the interrupt acknowledge cycle matches the code for the VXI-MXI-2 module's DMA interrupt condition (assuming the logical address of the VXI-MXI-2 module is 1). The upper bits of the Status ID code were written to the DMAISIDR in the Initialization section of this example. If the expression is false, some other condition asserted the interrupt. */

if (value == 0x1301) {

/* At this point it is known that the VXI-MXI-2 module's DMA interrupt condition is the highest priority interrupter because of the Status ID from the interrupt acknowledge cycle. The following two sections of code are identical. The first section applies if DMA controller 1 interrupted, and the second section applies if DMA controller 2 interrupted. */

/* DMA controller 1 section */
read(A24, A24BASE + CHSR1, LONGWORD, value);
/* The following if statement checks if DMA controller 1 is

currently interrupting. */
if (value & 0x80000000) {

/* At this point it is known that DMA controller 1 is the interrupter. The DONE and ERROR bits of CHSR1 should be checked for a successful operation. This could be handled either here or in the main program after the interrupt service routine has exited. If handled here, the value variable already contains a copy of CHSR1. The following three writes re-arm the DMA interrupt condition. This must be done because it is possible that the other DMA controller is also interrupting. Notice that the overall DMA interrupt in CHCR1 (for DMA controller 1) is left disabled when the interrupt service routine exits. It will be re-enabled the next time DMA controller 1 is started (as shown in the last write of the operation setup section earlier in this example). */

```
write (A24, A24BASE + CHCR1, LONGWORD, 0x40004000);
          write (A24, A24BASE + DMAIER, BYTE, 0x09);
          return_from_interrupt();
      /* DMA controller 2 section */
      read(A24, A24BASE + CHSR2, LONGWORD, value);
      /* The following if statement checks if DMA controller 2 is
      currently interrupting. */
      if (value & 0x80000000) {
          /* At this point it is known that DMA controller 2 is
          the interrupter. The DONE and ERROR bits of CHSR2 should
          be checked for a successful operation. This could be
          handled either here or in the main program after the
          interrupt service routine has exited. If handled here,
          the value variable already contains a copy of CHSR2. The
          following three writes re-arm the DMA interrupt
          condition. This must be done because it is possible that
          the other DMA controller is also interrupting. Notice
          that the overall DMA interrupt in CHCR2 (for DMA
          controller 2) is left disabled when the interrupt
          service routine exits. It will be re-enabled the next
          time DMA controller 2 is started (as shown in the last
          write of the operation setup section earlier in this
          example). */
          write(A24, A24BASE + DMAIER, BYTE, 0x08);
          write (A24, A24BASE + CHCR2, LONGWORD, 0x40004000);
          write (A24, A24BASE + DMAIER, BYTE, 0x09);
          return_from_interrupt();
/* The interrupt service routine should never reach this point. If
it did, it would indicate that the Status ID of the VXI-MXI-2
module's DMA interrupt condition was returned during the interrupt
acknowledge cycle yet neither DMA controller indicated it was
interrupting. */
   print("Error message.");
   return_from_interrupt();
}
```

write (A24, A24BASE + DMAIER, BYTE, 0x08);

Table F-1. Address Modifier Codes

Code (Hex)	Description		
3F	A24 supervisory block transfer		
3E	A24 supervisory program access		
3D	A24 supervisory data access		
3C	A24 supervisory 64-bit block transfer		
3B	A24 nonprivileged block transfer		
3A	A24 nonprivileged program access		
39	A24 nonprivileged data access		
38	A24 nonprivileged 64-bit block transfer		
37	Reserved		
36	Reserved		
35	Reserved		
34	Reserved		
33	Reserved		
32	Reserved		
31	Reserved		
30	Reserved		
2F	Reserved		
2E	Reserved		
2D	A16 supervisory access		
2C	Reserved		
2B	Reserved		
2A	Reserved		
29	A16 nonprivileged access		
28	Reserved		
27	Reserved		
26	Reserved		

Table F-1. Address Modifier Codes (Continued)

Code (Hex)	Description		
25	Reserved		
24	Reserved		
23	Reserved		
22	Reserved		
21	Reserved		
20	Reserved		
1F	User-defined		
1E	User-defined		
1D	User-defined		
1C	User-defined		
1B	User-defined		
1A	User-defined		
19	User-defined		
18	User-defined		
17	User-defined		
16	User-defined		
15	User-defined		
14	User-defined		
13	User-defined		
12	User-defined		
11	User-defined		
10	User-defined		
0F	A32 supervisory block transfer		
0E	A32 supervisory program access		
0D	A32 supervisory data access		
0C	A32 supervisory 64-bit block transfer		
0B	A32 nonprivileged block transfer		

Table F-1. Address Modifier Codes (Continued)

Code (Hex)	Description		
0A	A32 nonprivileged program access		
09	A32 nonprivileged data access		
08	A32 nonprivileged 64-bit block transfer		
07	Reserved		
06	Reserved		
05	Reserved		
04	Reserved		
03	Reserved		
02	Reserved		
01	Reserved		
00	Reserved		

Mnemonics Key

This appendix contains an alphabetical listing of mnemonics used in this manual to describe signals and terminology specific to MXIbus, VMEbus, VXIbus, and register bits. Refer also to the *Glossary*.

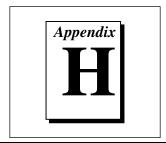
The mnemonic types are abbreviated as follows:

Abbreviation	Meaning
В	Bit
MBS	MXIbus Signal
MXI	MXIbus Terminology
R	Register
VBS	VMEbus Signal
VME	VMEbus Terminology
VXI	VXIbus Terminology
VXS	VXIbus Signal

Mnemonic	Type	Definition
Numbers		
'011'	В	DMA Status/ID 2 through 0
A		
A16BASE[7:0]	В	Extender A16 Window Base
A16DIR	В	Extender A16 Window Direction
A16EN	В	Extender A16 Window Enable
A16SIZE[2:0]	В	Extender A16 Window Size
A24/A32 ACTIVE	В	A24/A32 Active
A24/A32 ENABLE	В	A24/A32 Enable
A24BASE[7:0]	В	Extender A24 Window Base
A24DIR	В	Extender A24 Window Direction
A24EN	В	Extender A24 Window Enable
A24SIZE[2:0]	В	Extender A24 Window Size
A32BASE[7:0]	В	Extender A32 Window Base
A32DIR	В	Extender A32 Window Direction
A32EN	В	Extender A32 Window Enable
A32SIZE[2:0]	В	Extender A32 Window Size
ABORT	В	Abort DMA Operation
ACCDIR	В	Access Direction
ACFAIL	В	ACFAIL* Status
ACFAIL*	VBS	VME ACFAIL Signal
ACFIN	В	ACFAIL* In
ACFOUT	В	ACFAIL* Out
ADSPC[1:0]	В	Address Space
AFIE	В	ACFAIL* Interrupt Enable
AFINT	В	VMEbus ACFAIL* Interrupt Status
AM[5:0]	В	Address Modifiers
ASCEND	В	Ascending Addresses

Mnemonic	Type	Definition
В		
BERR*	VBS/MBS	Bus Error
BLOCKEN	В	Block Mode DMA
BKOFF	В	Back Off Status
BKOFFIE	В	Back Off Interrupt Enable
C		
CHCRx	R	DMA Channel Control Register
CHORx	R	DMA Channel Operation Register
CHSRx	R	DMA Channel Status Register
CLK10	VXS	VXIbus 10-MHz System Clock
CLR DMAIE	В	Clear DMA Interrupt Enable
CLRDONE	В	Clear DONE
CLR DONEIE	В	Clear DONE Interrupt Enable
CMODE	В	Comparison Mode
CONVERT*	MBS	Convert
D		
DA[31:0]	В	Destination Address
DARx	R	DMA Destination Address Register
DCRx	R	DMA Destination Configuration Register
DERR[1:0]	В	Destination Error Status
DETRIG[1:0]	В	Drive VXIbus P2 ECL Trigger Line [1:0]
DEVCLASS[1:0]	В	Device Class
DIRQ[7:1]	В	Drive VMEbus Interrupt Request [7:1]
DMA1MBS	В	DMA Controller 1 MXIbus Block Select
DMA2MBS	В	DMA Controller 2 MXIbus Block Select
DMAICR	R	DMA Interrupt Configuration Register
DMAIEN	В	DMA Interrupt Enable

Mnemonic	Type	Definition
DMAIER	R	DMA Interrupt Enable Register
DMAISIDR	R	DMA Interrupt Status/ID Register
DMAMB S/N*	В	DMA MXIbus Block Synchronous/Normal
DONE	В	DMA Done
DSYSFAIL	В	Drive SYSFAIL*
DSYSFAIL	В	Drive SYSFAIL* Status
DMASID[7:3]	В	DMA Status/ID 7 through 3
DSYSRST	В	Drive SYSRESET*
DTTRIG[7:0]	В	Drive VXIbus TTL Trigger Line [7:0]
E		
ECL2*	В	P2 ECL Trigger Support
ECL3*	В	P3 ECL Trigger Support
ECLDIR[0]	В	ECL Trigger [0] Direction
ECLDIR[1]	В	ECL Trigger [1] Direction
ECLEN[0]	В	ECL Trigger [0] Enable
ECLEN[1]	В	ECL Trigger [1] Enable
ECLTRG[1-0]	VXI	ECL Trigger Lines
ECR[7:0]	В	Empty Count Register
EDTYPE[3:0]	В	Extended Device Type Class
ENABLE	В	Enable Interrupt
ERROR	В	DMA Error
ETRIG[1:0]	В	VXIbus P2 ECL Trigger Line [1:0] Status
F		
FAIR	В	MXIbus Fair Requester
FCR[7:0]	В	Full Count Register
FCRx	R	DMA FIFO Count Register
FRESET	В	DMA FIFO Reset


Mnemonic	Type	Definition
1		
I1[15:0]	В	Level 1 Interrupter Status ID
I2[31:0]	В	Level 2 Interrupter Status ID
I3[15:0]	В	Level 3 Interrupter Status ID
I4[31:0]	В	Level 4 Interrupter Status ID
I5[15:0]	В	Level 5 Interrupter Status ID
I6[31:0]	В	Level 6 Interrupter Status ID
I7[15:0]	В	Level 7 Interrupter Status ID
IACK*	VME	VMEbus Interrupt Acknowledge
ILVL[2:0]	В	DMA Interrupt Level
INT	В	DMA Interrupt
INTDIR[7:1]	В	Interrupt Direction
INTEN[7:1]	В	Interrupt Enable
INTLCK	В	Interlocked Mode
INTX	MXI	Interrupt and Trigger Extension Connector
IOCONFIG	В	I/O Configuration Space Enable
IRQ*	MBS	MXIbus Interrupt Request
IRQ[7:1]	В	VMEbus Interrupt Request [7:1] Status
ISTAT	В	DMA Interrupt Status
L		
LA[7:0]	В	Logical Address Status
LABASE[7:0]	В	Extender Logical Address Window Base
LADIR	В	Extender Logical Address Window Direction
LAEN	В	Extender Logical Address Window Enable
LASIZE[2:0]	В	Extender Logical Address Window Size
LINT[3:1]	В	Local Interrupt Level
LOCKED	В	VXIbus or MXIbus Locked

Mnemonic	Type	Definition
M		
MANID[11:0]	В	Manufacturer ID
MBERR	В	MXIbus Bus Error Status
MBTO[3:0]	В	MXIbus Timeout Value
MODEL[11:0]	В	Model Code
MODID*	В	MODID Line Status
MODID[12:0]	В	MODID Lines
MXISC	В	MXIbus System Controller Status
MXSCTO	В	MXIbus System Controller Timeout Status
0		
0		
OFFSET[15:0]	В	VXIbus Offset
OUTEN	В	MODID Output Enable
Р		
PAREN	В	MXIbus Parity Enable
PARERR	В	Parity Error Status
PASSED	В	Passed
PORT[1:0]	В	Port
POSTERR	В	Write Post Error Status
PRI ARBITER	VME	VMEbus Prioritized Arbiter
R		
	_	
READY	В	Ready
REQMEM[3:0]	В	Required Memory
RESET	В	Soft Reset
RETRY*	VBS	Retry signal
ROAK	VME	Release on Interrupt Acknowledge
RR ARBITER	VME	VMEbus Round Robin Arbiter

Mnemonic	Type	Definition
S		
S[15:0]	В	Status ID
SA[31:0]	В	Source Address
SABORT	В	DMA Software Abort
SARx	R	DMA Source Address Register
SC[15:0]	В	Subclass
SCFG	В	Self Configuration Status
SCRx	R	DMA Source Configuration Register
SERR[1:0]	В	Source Error Status
SET DMAIE	В	Set DMA Interrupt Enable
SET DONEIE	В	Set DONE Interrupt Enable
SFIE	В	SYSFAIL* Interrupt Enable
SFIN	В	SYSFAIL* In
SFINH	В	Sysfail Inhibit
SFINT	В	VMEbus SYSFAIL* Interrupt Status
SFOUT	В	SYSFAIL* Out
SID8	В	8-bit Status/ID
SIDLA	В	Logical Address/Status/ID
SMCR	R	Shared MXIbus Control Register
SMSR	R	Shared MXIbus Status Register
SRIN	В	SYSRESET* In
SROUT	В	SYSRESET* Out
START	В	Start DMA Operation
Status/ID	VME	VMEbus Interrupt Status/Identification Data
STOP	В	Stop DMA Operation
STOPS	В	DMA Stopped Status
SYSFAIL	В	SYSFAIL* Status
SYSFAIL*	VME	System Failure
SYSRESET*	VME	System Reset

Mnemonic	Type	Definition
T		
TC[31:0]	В	Transfer Count
TCRx	R	DMA Transfer Count Register
TRIG[7:0]	В	VXIbus TTL Trigger Line [7:0] Status
TRIGDIR[7:0]	В	Trigger Direction
TRIGEN[7:0]	В	Trigger Enable
TRIGIN	В	Trigger In SMB Status
TRIGOUT	В	Trigger Out SMB Status
TSIZE[1:0]	В	Transfer Size
TTL*	В	TTL Trigger Support
TTLTRG[7:0]	VXI	VXIbus TTL Trigger Lines 7 through 0
TTLTRGDIR[7:0]	В	TTL Trigger Direction
TTLTRGEN[7:0]	В	TTL Trigger Enable
U		
UTIL*	В	Utility Signal Support
V		
VCR	R	VXIbus Control Register
VDTR	R	VXIbus Device Type Register
VERSION[3:0]	В	Version Number
VIAR1	R	VXIbus Interrupt Acknowledge Register 1
VIAR2	R	VXIbus Interrupt Acknowledge Register 2
VIAR3	R	VXIbus Interrupt Acknowledge Register 3
VIAR4	R	VXIbus Interrupt Acknowledge Register 4
VIAR5	R	VXIbus Interrupt Acknowledge Register 5
VIAR6	R	VXIbus Interrupt Acknowledge Register 6
VIAR7	R	VXIbus Interrupt Acknowledge Register 7
VICR	R	VXIbus Interrupt Configuration Register

Mnemonic	Type	Definition
VICTR	R	VXIbus Interrupt Control Register
VIDR	R	VXIbus ID Register
VISTR	R	VXIbus Interrupt Status Register
VLAR	R	VXIbus Logical Address Register
VLR	R	VXIbus Lock Register
VMCR	R	VXI-MXI-2 Control Register
VMCR2	R	VXI-MXI-2 Control Register 2
VMIDR	R	VXIbus MODID Register
VMSR	R	VXI-MXI-2 Status Register
VMSR2	R	VXI-MXI-2 Status Register 2
VMTCR	R	VXI-MXI-2 Trigger Control Register
VOR	R	VXIbus Offset Register
VSCR	R	VXIbus Subclass Register
VSIDR	R	VXIbus Status ID Register
VSR	R	VXIbus Status Register
VTCR	R	VXIbus Trigger Configuration Register
VTDR	R	VXIbus Trigger Drive Register
VTMSR	R	VXIbus Trigger Mode Select Register
VUCR	R	VXIbus Utility Configuration Register
VWR0	R	Extender Logical Address Window Register
VWR1	R	Extender A16 Window Register
VWR2	R	Extender A24 Window Register
VWR3	R	Extender A32 Window Register
X		
XFERR	В	Transfer Error

Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary to help us solve technical problems you might have as well as a form you can use to comment on the product documentation. Filling out a copy of the *Technical Support Form* before contacting National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S. and Canada, applications engineers are available Monday through Friday from 8:00 a.m. to 6:00 p.m. (central time). In other countries, contact the nearest branch office. You may fax questions to us at any time.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files and documents to answer most common customer questions. From these sites, you can also download the latest instrument drivers, updates, and example programs. For recorded instructions on how to use the bulletin board and FTP services and for BBS automated information, call (512) 795-6990. You can access these services at:

United States: (512) 794-5422 or (800) 327-3077 Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422

Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59

Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support

To access our FTP site, log on to our Internet host, ftp.natinst.com, as anonymous and use your Internet address, such as joesmith@anywhere.com, as your password. The support files and documents are located in the /support directories.

FaxBack Support

FaxBack is a 24-hour information retrieval system containing a library of documents on a wide range of technical information. You can access FaxBack from a touch-tone telephone at the following number: (512) 418-1111

E-Mail Support (currently U.S. only)

You can submit technical support questions to the appropriate applications engineering team through e-mail at the Internet addresses listed below. Remember to include your name, address, and phone number so we can contact you with solutions and suggestions.

GPIB: gpib.support@natinst.com DAO: daq.support@natinst.com VXI: vxi.support@natinst.com LabVIEW: lv.support@natinst.com LabWindows: lw.support@natinst.com Lookout: lookout.support@natinst.com HiQ: hiq.support@natinst.com VISA: visa.support@natinst.com

Fax and Telephone Support

National Instruments has branch offices all over the world. Use the list below to find the technical support number for your country. If there is no National Instruments office in your country, contact the source from which you purchased your software to obtain support.

	Telephone	Fax
Australia	03 9879 5166	03 9879 6277
Austria	0662 45 79 90 0	0662 45 79 90 19
Belgium	02 757 00 20	02 757 03 11
Canada (Ontario)	905 785 0085	905 785 0086
Canada (Quebec)	514 694 8521	514 694 4399
Denmark	45 76 26 00	45 76 26 02
Finland	90 527 2321	90 502 2930
France	01 48 14 24 24	01 48 14 24 14
Germany	089 741 31 30	089 714 60 35
Hong Kong	2645 3186	2686 8505
Israel	03 5734815	03 5734816
Italy	02 48301892	02 48301915
Japan	03 5472 2970	03 5472 2977
Korea	02 596 7456	02 596 7455
Mexico	95 800 010 0793	5 520 3282
Netherlands	0348 433466	0348 430673
Norway	32 84 84 00	32 84 86 00
Singapore	2265886	2265887
Spain	91 640 0085	91 640 0533
Sweden	08 730 49 70	08 730 43 70
Switzerland	056 200 51 51	056 200 51 55
Taiwan	02 377 1200	02 737 4644
U.K.	01635 523545	01635 523154

Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware, and use the completed copy of this form as a reference for your current configuration. Completing this form accurately before contacting National Instruments for technical support helps our applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem, include the configuration forms from their user manuals. Include additional pages if necessary. Company _____ Fax (___)_____ Phone (___)____ Computer brand _____ Model ____ Processor _____ Operating system (include version number) Clock Speed _____MHz RAM ____MB Display adapter _____ Mouse ____yes ____no Other adapters installed _____ Hard disk capacity _____MB Brand _____ Instruments used _____ National Instruments hardware product model ______ Revision _____ Configuration _____ National Instruments software product Version Configuration The problem is _____ List any error messages _____ The following steps will reproduce the problem

Hardware and Software Configuration Form

Record the settings and revisions of your hardware and software on the line to the right of each item. Complete a new copy of this form each time you revise your software or hardware configuration, and use this form as a reference for your current configuration. Completing this form accurately before contacting National Instruments for technical support helps our applications engineers answer your questions more efficiently.

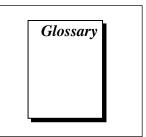
National Instruments Products

VXI-MXI-2 Module Part Number

SMB CLK10 (S7, S6, S3)		
Receiving or Driving MXIbus CLK10 (S1)		
Trigger Input Termination (S5)		
MXIbus Termination (U21 switches 3 and 4)		
EEPROM Operation (U21 switches 1 and 2)		
Onboard DRAM SIMM Size (S2)		
DRAM SIMMs Installed		
Other Products		
Computer Make and Model		
Mainframe Make and Model		
Microprocessor		
Clock Frequency		
Type of Video Board Installed		
Operating System		
Operating System Version		
Operating System Mode		
Other MXIbus Devices in System		
Other VXIbus Devices in System		
Base I/O Address of Other Boards		
DMA Channels of Other Boards		
Interrupt Level of Other Boards		
VXIbus/MXIbus Resource Manager (Make, Model, Version, Software Version)		

Documentation Comment Form

VXI-MXI-2 User Manual


Austin, TX 78730-5039

Edition Date: August 1996

Title:

National Instruments encourages you to comment on the documentation supplied with our products. This information helps us provide quality products to meet your needs.

Part Number: 371692A-01 Please comment on the completeness, clarity, and organization of the manual. If you find errors in the manual, please record the page numbers and describe the errors. Thank you for your help. Name _____ Title _____ Company _____ Address _____ Phone (_____)____ Mail to: **Technical Publications** Fax to: **Technical Publications** National Instruments Corporation National Instruments Corporation 6504 Bridge Point Parkway (512) 794-5678

Prefix	Meaning	Value
n-	nano-	10 ⁻⁹
μ-	micro-	10 ⁻⁶
m-	milli-	10-3
K-	kilo-	10^{3}
M	mega-	10 ⁶
G-	giga-	109

Symbols

degrees

 Ω ohms

% percent

± plus or minus

A

A amperes

A16 space VXIbus address space equivalent to the VME 64 KB short

address space. In VXI, the upper 16 KB of A16 space is allocated for use by VXI devices configuration registers. This 16 KB region is referred to as VXI configuration space.

A24/A32 Decoder The logic circuit on the VXI-MXI-2 that is responsible for

detecting data transfers to the module's registers or DRAM in

A24 or A32 address space.

A24 space VXIbus address space equivalent to the VME 16 MB *standard*

address space.

A32 space VXIbus address space equivalent to the VME 4 GB extended

address space.

ACFAIL A VMEbus backplane signal that is asserted when a power

failure has occurred (either AC line source or power supply malfunction), or if it is necessary to disable the power supply

(such as for a high temperature condition).

address Character code that identifies a specific location (or series of

locations) in memory.

address modifier One of six signals in the VMEbus specification used by

VMEbus masters to indicate the address space in which a data

transfer is to take place.

address space A set of 2ⁿ memory locations differentiated from other such sets

in VME/VXIbus systems by six addressing lines known as address modifiers. *n* is the number of address lines required to uniquely specify a byte location in a given space. Valid numbers for *n* are 16, 24, and 32. In VME/VXI, because there are six address modifiers, there are 64 possible address spaces.

address window A portion of address space that can be accessed from the

application program.

ANSI American National Standards Institute

arbiter Circuitry providing the bus arbitration mechanism for a system.

arbitration A process in which a potential bus master gains control over a

particular bus.

asynchronous Not synchronized; not controlled by time signals.

В

B bytes

backplane An assembly, typically a printed circuit board, with 96-pin

connectors and signal paths that bus the connector pins. A C-size VXIbus system will have two sets of bused connectors called J1 and J2. A D-size VXIbus system will have three sets of bused

connectors called J1, J2, and J3.

backoff condition A method used to resolve a deadlock situation by acknowledging

one of the bus masters with either a RETRY or BERR, allowing

the data transfer from the other master to complete.

base address A specified address that is combined with a *relative* address to

determine the *absolute* address of a data location. All VXI address windows have an associated base address for their

assigned VXI address spaces.

BERR* Bus Error signal. This signal is asserted by either a slave device

or the BTO unit when an incorrect transfer is made on the Data Transfer Bus (DTB). The BERR* signal is also used in VXI for certain protocol implementations such as writes to a full Signal register and synchronization under the Fast Handshake Word

Serial Protocol.

binary A numbering system with a base of 2.

bit Binary digit. The smallest possible unit of data: a two-state,

yes/no, 0/1 alternative. The building block of binary coding and

numbering systems. Eight bits make up a *byte*.

block data rate Transfer rate when using MXIbus block-mode transfers.

block-mode transfer An uninterrupted transfer of data elements in which the master

sources only the first address at the beginning of the cycle. The slave is then responsible for incrementing the address on subsequent transfers so that the next element is transferred to or from the proper storage location. In VME, the data transfer may

have no more than 256 elements; MXI does not have this

restriction.

BTO unit Bus Timeout Unit; a functional module that times the duration of

each data transfer and terminates the cycle if the duration is excessive. Without the termination capability of this module, a bus master attempt to access a nonexistent slave could result in

an indefinitely long wait for a slave response.

bus master A device that is capable of requesting the Data Transfer Bus

(DTB) for the purpose of accessing a slave device.

byte A grouping of adjacent binary digits operated on as a single unit.

Most commonly consists of eight bits.

C

C Celsius

clearing Replacing the information in a register, storage location, or

storage unit with zeros or blanks.

CLK10 A 10 MHz, ± 100 ppm, individually buffered (to each module

slot), differential ECL system clock that is sourced from Slot 0 of a VXIbus mainframe and distributed to Slots 1 through 12 on P2. It is distributed to each slot as a single-source, single-destination signal with a matched delay of under 8 ns.

CMOS Complementary Metal Oxide Semiconductor; a process used in

making chips.

Commander A message-based device which is also a bus master and can

control one or more Servants.

configuration registers A set of registers through which the system can identify a

module device type, model, manufacturer, address space, and memory requirements. In order to support automatic system and memory configuration, the VXIbus specification requires that all

VXIbus devices have a set of such registers.

configuration space The upper 16 KB of A16 space in which the configuration

registers for VXI and MXIbus devices exist.

controller An intelligent device (usually involving a CPU) that is capable

of controlling other devices.

D

daisy-chain A method of propagating signals along a bus, in which the

devices are prioritized on the basis of their position on the bus.

Data Transfer Bus DTB; one of four buses on the VMEbus backplane. The DTB is

used by a bus master to transfer binary data between itself and a

slave device.

deadlock Unresolved situation in which two devices are vying for the use

of a resource.

DIP Dual Inline Package

DMA Direct Memory Access; a method by which data is transferred

between devices and internal memory without intervention of

the central processing unit.

DRAM Dynamic RAM (Random Access Memory)

DTACK* Data Acknowledge signal

DTB See Data Transfer Bus.

dynamic configuration A method of automatically assigning logical addresses to

VXIbus devices at system startup or other configuration times.

dynamically configured device A device that has its logical address assigned by the Resource

Manager. A VXI device initially responds at Logical Address 255 when its MODID line is asserted. A MXIbus device responds at Logical Address 255 during a priority select cycle. The Resource Manager subsequently assigns it a new logical address, which the device responds to until powered down.

E

ECL Emitter-Coupled Logic

EEPROM Electronically Erasable Programmable Read Only Memory

embedded controller An intelligent CPU (controller) interface plugged directly into

the VXI backplane, giving it direct access to the VXIbus. It must

have all of its required VXI interface capabilities built in.

EMC Electromechanical Compliance

EMI Electromagnetic Interference

external controller In this configuration, a plug-in interface board in a computer is

connected to the VXI mainframe via one or more VXIbus extended controllers. The computer then exerts overall control

over VXIbus system operations.

F

fair requester A MXIbus master that will not arbitrate for the MXIbus after

releasing it until it detects the bus request signal inactive. This ensures that all requesting devices will be granted use of the bus.

Н

hard reset Occurs when the mainframe is powered on and when the

VMEbus SYSRESET signal is active. A hard reset restores all

the registers on the VXI-MXI-2 to their initial values.

hex Hexadecimal; the numbering system with base 16, using the

digits 0 to 9 and letters A to F.

Hz hertz; cycles per second.

I

IACK Interrupt Acknowledge; a special data transfer generated by the

interrupt handler in response to an interrupt.

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

IEEE-1014 The VME specification.

in. inches

I/O input/output; the techniques, media, and devices used to achieve

communication between machines and users.

interlocked arbitration mode Contrasted with normal operating mode; an optional mode of

operation in which the system performs as one large VXIbus mainframe with only one master of the entire system (VXIbus and MXIbus) at any given moment. In this mode there is no

chance for a deadlock situation.

interrupt A means for a device to request service from another device.

interrupt handler A VMEbus functional module that detects interrupt requests

generated by interrupters and responds to those requests by

requesting status and identify information.

interrupter A device capable of asserting interrupts and responding to an

interrupt acknowledge cycle.

interrupt level The relative priority at which a device can interrupt.

INTX Interrupt and Timing Extension; a daughter card option that

plugs into the two daughter card connectors on the first-generation VXI-MXI. It extendes the seven VMEbus interrupt lines, the eight VXIbus TTL trigger lines, the VXIbus CLK10

signal, and the VMEbus utility signals SYSRESET*,

SYSFAIL*, and ACFAIL*. This functionality is built into the

VXI-MXI-2, so this daughter card is not required.

inward cycle A data transfer cycle that maps from the MXIbus to the VXIbus.

IRQ* Interrupt signal

K

KB Kilobytes of memory

L

LED Light Emitting Diode

logical address An 8-bit number that uniquely identifies each VXIbus device in

a system. It defines the A16 register address of a device, and

indicates Commander and Servant relationships.

LSB Least Significant Bit (bit 0)

M

MB Megabytes of memory

m meters

mainframe extender A device such as the VXI-MXI-2 that interfaces a VXIbus

mainframe to an interconnect bus. It routes bus transactions from the VXIbus to the interconnect bus or vice versa. A mainframe

extender has a set of registers that defines the routing

mechanisms for data transfers, interrupts, triggers, and utility bus

signals, and has optional VXIbus Slot 0 capability.

mapping Establishing a range of address space for a one-to-one

correspondence between each address in the window and an

access in VXIbus memory.

master A functional part of a MXI/VME/VXIbus device that initiates

data transfers on the backplane. A transfer can be either a read or

a write.

master-mode operation A device is in master mode if it is performing a bus cycle which

it initiated.

memory device A VXIbus device that not only has configuration registers, but

also has memory that is accessible through addresses on the

VME/VXI data transfer bus.

message-based device An intelligent device that implements the defined VXIbus

registers and communication protocols. These devices are able to

use Word Serial Protocol to communicate with one another

through communication registers.

MBLT Multiplexed Block Transfer; 8-byte block transfers in which

both the Address bus and the Data bus are used to transfer data.

MITE A National Instruments custom ASIC, a sophisticated dual-

channel DMA controller that incorporates the Synchronous MXI

and VME64 protocols to achieve high-performance block

transfer rates.

MODID Module Identification lines

MSB Most Significant Bit (such as bit 15 in a 16-bit register)

MTBF Mean Time Between Failure

multiframe A system consisting of more than one mainframe connected

together to act as one; it can have multiple Slot 0 devices but

only one global Resource Manager.

MXI-2 The second generation of the National Instruments MXIbus

product line. MXI-2 expands the number of signals on a standard MXIbus cable by including VXI triggers, all VXI interrupts,

CLK10, SYSFAIL*, SYSRESET*, and ACFAIL*.

MXIbus Multisystem eXtension Interface Bus; a high-performance

communication link that interconnects devices using round,

flexible cables.

MXIbus System Controller A functional module that has arbiter, daisy-chain driver, and

MXIbus cycle timeout responsibility. Always the first device in

the MXIbus daisy-chain.

N

nonprivileged access One of the defined types of VMEbus data transfers; indicated by

certain address modifier codes. Each of the defined VMEbus address spaces has a defined nonprivileged access mode.

Non-Slot 0 device A device configured for installation in any slot in a VXIbus

mainframe other than Slot 0. Installing such a device into Slot 0 can damage the device, the VXIbus backplane, or both. The VXI-MXI-2 can be configured to be in either slot, or

automatically detect whether it is installed in Slot 0.

normal operating mode Contrasted with *interlocked arbitration mode*; in this mode there

can be masters operating simultaneously in the VXIbus/MXIbus

system. Vulnerable to deadlock situations.

0

onboard RAM The optional RAM installed into the SIMM slots of the

VXI-MXI-2 module.

outward cycle A data transfer cycle that maps from the VXIbus to the MXIbus.

P

P1 The minimum connector required for a VMEbus system. It

includes 24 address lines, 16 data lines, and all control,

arbitration, and interrupt signals.

P2 A second VMEbus connector providing 32 bits of address and

data. In VXI, the P2 connector adds trigger, MODID, and

CLK10 signals.

P3 A third connector defined by the VXIbus specification that adds

a 100 MHz CLK and additional triggering capabilities. The

VXI-MXI-2 does not have support for P3.

parity Ensures that there is always either an even number or an odd

number of asserted bits in a byte, character, or word, according to the logic of the system. If a bit should be lost in data

transmission, its loss can be detected by checking the parity.

PASSED state The state a VXIbus device enters after its self-tests are complete

and the device is ready for normal operation.

PRI Priority

privileged access See *supervisory access*.

propagation The transmission of signal through a computer system.

R

read To get information from any input device or file storage media.

register-based device A Servant-only device that supports VXIbus configuration

registers. Register-based devices are typically controlled by message-based devices via device-dependent register reads and

writes.

retry An acknowledge by a destination that signifies that the cycle did

not complete and should be repeated.

Resource Manager A message-based Commander located at Logical Address 0,

which provides configuration management services such as address map configuration, Commander and Servant mappings,

and self-test and diagnostic management.

response A signal or interrupt generated by a device to notify another

device of an asynchronous event. Responses contain the

information in the Response register of a sender.

RM See Resource Manager.

RMW Read-Modify-Write cycle; a bus cycle in which data from a

single location is read, modified, and then written back.

ROAK Release On Acknowledge; a type of VXI interrupter which

always deasserts its interrupt line in response to an IACK cycle

on the VXIbus.

ROR Release On Request; a type of VMEbus arbitration where the

current VMEbus master relinquishes control of the bus only

when another bus master requests the VMEbus.

S

seconds

Semi-Synchronous Protocol A one-line, open-collector, multiple-device handshake trigger

protocol.

Servant A device controlled by a Commander; there are message-based

and register-based Servants.

setting To place a binary cell into the 1 state (non-zero).

Shared Memory Protocol A communication protocol that uses a block of memory that is

accessible to both a client and a server. The memory block

operates as a message buffer for communications.

signal Any communication between message-based devices consisting

of a write to a Signal register. Sending a signal requires that the

sending device have VMEbus master capability.

SIMM Single In-line Memory Module

Glossary

slave A functional part of a MXI/VME/VXIbus device that detects

data transfer cycles initiated by a VMEbus master and responds to the transfers when the address specifies one of the device's

registers.

slave-mode operation A device is in slave mode it if is responding to a bus cycle.

Slot 0 device A device configured for installation in Slot 0 of a VXIbus

mainframe. This device is unique in the VXIbus system in that it performs the VMEbus System Controller functions, including clock sourcing and arbitration for data transfers across the backplane. Installing such a device into any other slot can damage the device, the VXIbus backplane, or both. The VXI-MXI-2 can be configured to be in either slot, or automatically detect whether it is installed in Slot 0.

SMB Sub-miniature BNC; a miniature connector for coaxial cable

connections.

soft reset Occurs when the RESET bit in the VXIbus Control Register of

the VXI-MXI-2 is set. A soft reset clears signals that are asserted

by bits in the configuration registers but does not clear

configuration information stored in the configuration registers.

Start/Stop Protocol A one-line, multiple-device protocol, which can be sourced only

by the VXI Slot 0 device and sensed by any other device on the

VXI backplane.

statically configured device A device whose logical address cannot be set through software;

that is, it is not dynamically configurable.

Status/ID A value returned during an IACK cycle. In VME, usually an

8-bit value which is either a status/data value or a vector/ID value used by the processor to determine the source. In VXI, a 16-bit value used as a data; the lower 8 bits form the VXI logical address of the interrupting device and the upper 8 bits specify

the reason for interrupting.

supervisory access One of the defined types of VMEbus data transfers; indicated by

certain address modifier codes.

synchronous communications A communications system that follows the command/response

cycle model. In this model, a device issues a command to another device; the second device executes the command and then returns a response. Synchronous commands are executed in

the order they are received.

Synchronous MXI Block Protocol A block data transfer protocol defined by the MXI-2

specification for high-performance data transfers.

Synchronous Protocol The most basic trigger protocol, simply a pulse of a minimum

duration on any one of the trigger lines.

SYSFAIL A VMEbus signal that is used by a device to indicate an internal

failure. A failed device asserts this line. In VXI, a device that

fails also clears its PASSed bit in its Status register.

SYSRESET A VMEbus signal that is used by a device to indicate a system

reset or power-up condition.

System Controller See MXIbus System Controller, VXIbus System Controller.

system hierarchy The tree structure of the Commander/Servant relationships of all

devices in the system at a given time. In the VXIbus structure, each Servant has a Commander. A Commander can in turn be a

Servant to another Commander.

system RAM RAM installed on your personal computer and used by the

operating system, as contrasted with onboard RAM, which is

installed on the VXI-MXI-2.

Т

terminators Also called *terminating networks*; devices located at the ends of

a MXIbus daisy-chain that are used to minimize reflections and

bias signals to their unasserted states.

TERMPWR Termination Power; 3.4 VDC for the MXIbus.

trigger Either TTL or ECL lines used for intermodule communication.

TTL Transistor-Transistor Logic

V

V volts

VDC volts direct current

VME Versa Module Eurocard or IEEE 1014; the IEEE Standard for a

Versatile Backplane Bus.

VME64 ANSI/VITA 1-1994; defines additional VMEbus protocols such

as MBLT and RETRY.

VMEbus System Controller A device configured for installation in Slot 0 of a VXIbus

mainframe or Slot 1 of a VMEbus chassis. This device is unique in the VMEbus system in that it performs the VMEbus System Controller functions, including clock sourcing and arbitration for data transfers across the backplane. Installing such a device into any other slot can damage the device, the VMEbus/VXIbus

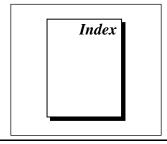
backplane, or both.

VXIbus VMEbus Extensions for Instrumentation

VXIbus System Controller A functional module with circuitry that generates the 16 MHz

system clock, provides the VMEbus arbiter and the VMEbus

Bus Timer Unit, and drives the VXIbus CLK10 signal.


W

write Copying data to a storage device.

Word Serial Protocol The simplest required communication protocol supported by

message-based devices in a VXIbus system. It utilizes the A16 communication registers to transfer data using a simple polling

handshake method.

A16EN bit, 5-14

A16SIZE[2:0] bits, 5-15 `011' bits, 5-58 A24 address window configuring, 6-44 Α overview, 2-6 A24/A32 ACTIVE bit, 5-6 A16 address map for VXIbus/MXIbus A24/A32 decoder, 2-5 system, 6-23 to 6-28 A24/A32 ENABLE bit, 5-8 A16 space allocations for all size values A24/A32 write posting, 7-4 (figure), 6-24 A24BASE[7:0] bits, 5-17 amount of A16 space allocated A24DIR bit, 5-17 (table), 6-23 A24EN bit, 5-16 example A16 space address map A24SIZE[2:0] bits, 5-17 diagram, 6-28 A32 address window example VXIbus/MXIbus system configuring, 6-44 diagram, 6-27 overview, 2-6 required A16 space for example A32BASE[7:0] bits, 5-19 VXIbus/MXIbus system (table), 6-27 A32DIR bit, 5-19 worksheets A32EN bit, 5-18 A16 space address map A32SIZE[2:0] bits, 5-19 diagram, 6-33 ABORT bit, 5-66 MXIbus #1 A16 address map, 6-35 ACCDIR bit, 5-7 MXIbus #1 A16 address map ACFAIL bit, 5-38 example, 6-30 to 6-31 ACFAIL* signal, D-4 MXIbus #2 A16 address map, 6-36 ACFIN bit, 5-24 MXIbus #3 A16 address map, 6-37 ACFOUT bit, 5-24 MXIbus #3 A16 address map address, logical. See logical address, example, 6-32 VXIbus. MXIbus #4 A16 address map, 6-38 address and address modifier transceivers summary of A16 address map MXI-2, 2-6 blank form, 6-34 VMEbus, 2-6 example, 6-29 Address Space control, 7-3 to 7-4 A16 window, 2-6 ADSPC[1:0] bits, 5-4 A16 write posting, 7-4 AFIE bit, 5-40 A16BASE[7:0] bits, 5-15 AFINT bit, 5-37 A16DIR bit, 5-15

Numbers

AM[5:0] bits	A32DIR, 5-19
DMA Destination Configuration	A32EN, 5-18
Register (DCRx), 5-79	A32SIZE[2:0], 5-19
DMA Source Configuration Register	ABORT, 5-66
(SCRx), 5-74	ACCDIR, 5-7
arbiter timeout	ACFAIL, 5-38
VMEbus, B-6	ACFIN, 5-24
VXIbus, 7-9	ACFOUT, 5-24
arbiter type	ADSPC[1:0], 5-4
VMEbus, B-6	AFIE, 5-40
VXIbus, 7-8	AFINT, 5-37
arbitration mode, interlocked, B-9	AM[5:0], 5-74, 5-79
VXIbus, 7-5 to 7-6	ASCEND, 5-73, 5-78
ASCEND bit	ASIE, D-5
DMA Destination Configuration	ASINT*, D-5
Register (DCRx), 5-78	BKOFF, 5-37, D-4
DMA Source Configuration Register	BKOFFIE, 5-39
(SCRx), 5-73	BLOCKEN, 5-73, 5-78
ASIE bit, D-5	BOFFCLR, D-4
ASINT* bit, D-5	CLR DMAIE, 5-68
auto retry, configuring	CLR DONEIE, 5-69
MXIbus, 7-12	CLRDONE, 5-65
VXIbus, 7-10	CMODE, 5-27, 5-30 to 5-31, D-5
	DA[31:0], 5-80 to 5-81
В	DERR[1:0], 5-84
_	DETRIG[1:0], 5-35, D-5
base/size configuration format address range allocation for different	DEVCLASS[1:0], 5-4
size values (figure), 6-5	DIRQ[7:1], 5-40, D-5
· · ·	DMA1MBS, 5-62
base and size combinations (figure & table), 6-4	DMA2MBS, 5-61 to 5-62
description, 6-3 to 6-5	DMAIEN, 5-55
bits	DMAMB S/N*, 5-62
`011,' 5-58	DMASID[7:3], 5-57
A16BASE[7:0], 5-15	DONE, 5-82 to 5-83
A16DIR, 5-15	DSYSFAIL, 5-28, 5-32
A16EN, 5-14	DSYSRST, 5-32
A16SIZE[2:0], 5-15	DTTRIG[7:0], 5-35, D-5
A24/A32 ACTIVE, 5-6	ECL2*, 5-23
A24/A32 ENABLE, 5-8	ECL3*, 5-23
A24BASE[7:0], 5-17	ECLDIR[0], 5-32
A24DIR, 5-17	ECLDIR[1], 5-31
A24EN, 5-16	ECLEN[0], 5-31
A24SIZE[2:0], 5-17	ECLEN[1], 5-31
A32BASE[7:0], 5-19	ECR[1:0], 5-85

EDTYPE[3:0], 5-6	MXSCTO, 5-28
ENABLE, 5-56	MXSRSTEN, D-4
ERROR, 5-83	MXSRSTINT, D-4
ETOEN, D-5	MXSYSFINT, D-4
ETRIG, D-5	MXTRIGEN, D-4
ETRIG[1:0], 5-36	MXTRIGINT, D-4
FAIR, 5-28, 5-62	OE, D-5
FCR[7:0], 5-85	OFFSET[15:0], 5-10
FRESET, 5-66	OMS[2:0], D-5
I1[15:0], 5-43	OTS[3:0], D-5
I2[31:0], 5-44	OUTEN, 5-11
I3[15:0], 5-45	PAREN, 5-63
I4[31:0], 5-46	PARERR, 5-29
I5[15:0], 5-47	PASSED, 5-1, 5-7
I6[31:0], 5-48	PORT[1:0], 5-74, 5-79
I7[15:0], 5-49	POSTERR, 5-27
ILVL[2:0], 5-54	PULSE, D-5
INT, 5-82	READY, 5-7
INTDIR[7:1], 5-21	REQMEM[3:0], 5-5
INTEN[7:1], 5-20	RESET, 5-1, 5-7, 5-9
INTLCK, 5-28, 5-32, 7-6	S[15:0], 5-41
INTLK, D-5	SA[31:0], 5-75 to 5-76
IOCONFIG, 5-59	SABORT, 5-83
IRQ[7:1], 5-38	SC[15:0], 5-26
ISTAT, 5-53	SCFG, 5-28
ITS[3:0], D-5	SERR[1:0], 5-84
LA[7:0], 5-34	SET DMAIE, 5-68
LABASE[7:0], 5-13	SET DONEIE, 5-69
LADIR, 5-13	SFIE, 5-40
LAEN, 5-12	SFIN, 5-24
LASIZE[2:0], 5-13	SFINH, 5-7, 5-8
LINT[3:1], 5-37, 5-39	SFINT, 5-38
LNGMXSCTO, D-3	SFOUT, 5-24
LOCKED, 5-33	SID8, 5-52
MANID[11:0], 5-4	SIDLA, 5-53
MBERR, 5-29	SRIN, 5-25
MBTO[3:0], 5-63 to 5-64	SROUT, 5-25
mnemonics key, G-1 to G-9	SSINT*, D-5
MODEL[11:0], 5-5	START, 5-67
MODID*, 5-6	STOP, 5-66
MODID[12:0], 5-11	STOPS, 5-83
MXACFAILEN, D-4	SYSFAIL, 5-38
MXACFAILINT, D-4	TC[31:0], 5-70 to 5-71
MXISC, 5-28	TRGIN, 5-36

TRGOUT, 5-36	CLK10 generated from onboard
TRIG[7:0], 5-34	oscillator (figure), 3-8
TRIGDIR[7:0], 5-42	CLK10 generated from SMB
TRIGEN[7:0], 5-42	(figure), 3-8
TRIGINT, D-4	drive inverted external CLK SMB
TRIGINTIE, D-4	(figure), 3-10
TSIZE[1:0], 5-74, 5-79	drive non-inverted external CLK
TTL*, 5-23	SMB (figure), 3-10
TTLTRGDIR[7:0], 5-22	receive external CLK SMB
TTLTRGEN[7:0], 5-22	(figure), 3-10
UTIL*, 5-24	receive external CLK SMB with
VERSION[3:0], 5-7	50 Ω termination (figure), 3-10
XFERR, 5-83	receiving or driving MXIbus
BKOFF bit, 5-37, D-4	CLK10 (figure), 3-11
BKOFFIE bit, 5-39	VXI-MXI-2/B, 4-7 to 411
BLOCKEN bit	CLK10 generated from MXIbus
DMA Destination Configuration	(figure), 4-8
Register (DCRx), 5-78	CLK10 generated from onboard
DMA Source Configuration Register	oscillator (figure), 4-8
(SCRx), 5-73	CLK10 generated from SMB
BOFFCLR bit, D-4	(figure), 4-8
BTO. See Bus Timeout (BTO).	drive inverted external CLK SMB
bulletin board support, H-1	(figure), 4-10
Bus Timeout (BTO)	drive non-inverted external CLK
MXIbus, 7-11, B-8	SMB (figure), 4-10
VMEbus, 2-5, B-5, E-9	receive external CLK SMB
VXIbus, 7-8	(figure), 4-10
	receive external CLK SMB with
C	50 Ω termination (figure), 4-10
	receiving or driving MXIbus
cables for MXIbus, connecting	CLK10 (figure), 4-11
VXI-MXI-2, 3-20	CLR DMAIE bit, 5-68
VXI-MXI-2/B, 4-19	CLR DONEIE bit, 5-69
CLK10 signal	CLRDONE bit, 5-65
transceivers, 2-7	CMODE bit
trigger circuitry, 2-7	soft reset, D-5
trigger transceivers, 2-7	VXI-MXI-2 Control Register (VMCR)
CLK10 signal configuration, MXIbus, 7-13	5-30 to 5-31
CLK10 signal configuration, VXIbus	VXI-MXI-2 Status Register
routing for two-frame system,	(VMSR), 5-27
E-6 to E-8	configuration
VXI-MXI-2, 3-7 to 3-11	CLK10 signal. See CLK10 signal
CLK10 generated from MXIbus (figure), 3-8	configuration.

system configuration. See system	VXIbus CLK10 routing, E-6 to E-8
configuration.	VXIbus logical address, E-4 to E-5
two-frame system. See configuration of	VXIbus Slot 0, E-8
two-frame system.	connectors
VXI-MXI and VXI-MXI-2 differences	external clock connector, C-6 to C-7
and incompatibilities, D-2	EXT CLK connector (figure), C-6
VXI-MXI-2, 3-1 to 3-20	EXT CLK signal characteristics
damage from electrostatic	(table), C-7
discharge (warning), 3-1	MXI-2 connector (figure), C-4
MXIbus termination, 3-13 to 3-14	MXI-2 connector signal assignments
onboard DRAM, 3-17 to 3-18	(table), C-4 to C-5
removing metal enclosure, 3-3	trigger input connector, C-8
right-side cover of VXI-MXI-2	TRG IN connector (figure), C-8
(figure), 3-2	TRG IN signal characteristics
trigger input termination, 3-12	(table), C-8
VXIbus CLK10 routing,	trigger output connector, C-7
3-7 to 3-11	TRG OUT (figure), C-7
VXIbus local bus, 3-6 to 3-7	TRG OUT signal characteristics
VXIbus logical address, 3-3 to 3-4	(table), C-7
VXIbus Slot 0/non-Slot 0,	VXI-MXI and VXI-MXI-2 differences
3-5 to 3-6	and incompatibilities, D-1 to D-2
VXI-MXI-2/B, 4-1 to 4-19	control signals transceivers
damage from electrostatic	MXI-2, 2-4
discharge (warning), 4-1	VMEbus, 2-3
MXIbus termination, 4-12 to 4-13	cover of VXI-MXI-2
onboard DRAM, 4-16 to 4-17	removing metal enclosure, 3-3
parts locator diagram, 4-2	right-side cover of VXI-MXI-2
trigger input termination, 4-12	(figure), 3-2
VXIbus CLK10 routing,	customer communication, xvi, H-1 to H-2
4-7 to 4-11	
VXIbus local bus, 4-6 to 4-7	D
VXIbus logical address, 4-3 to 4-4	_
VXIbus Slot 0/non-Slot 0,	DA[31:0] bits, 5-80 to 5-81
4-5 to 4-6	data and address modifier transceivers,
configuration EEPROM. See EEPROM	MXI-2, 2-6
configuration.	data transceivers, VMEbus, 2-7
configuration of two-frame system,	decoder
E-1 to E-9	A24/A32, 2-5
hardware switches required (figure)	logical address, 2-5
VXI-MXI-2, E-3	DERR[1:0] bits, 5-84
VXI-MXI-2/B, E-4	DETRIG[1:0] bits, 5-35, D-5
MXIbus System Controller, E-8	DEVCLASS[1:0] bits, 5-4
two-frame VXI system (figure), E-2	DIRQ[7:1] bits, 5-40, D-5
VMEbus BTO unit, E-9	

DMA Channel Control Register (CHCRx),	DONE bit, 5-82 to 5-83
5-68 to 5-69	DRAM. See onboard DRAM.
DMA Channel Operation Register	DSYSFAIL bit
(CHORx), 5-65 to 5-67	VXI-MXI-2 Control Register (VMCR)
DMA Channel Status Register (CHSRx),	5-32
5-82 to 5-84	VXI-MXI-2 Status Register (VMSR),
DMA controllers 1 and 2, 2-3	5-28
DMA Destination Address Register	DSYSRST bit, 5-32
(DARx), 5-80 to 5-81	DTTRIG[7:0] bits, 5-35, D-5
DMA Destination Configuration Register	dynamically configurable logical address
(DCRx), 5-77 to 5-79	VXI-MXI-2, 3-3
DMA FIFO Count Register (FCRx), 5-85	VXI-MXI-2/B, 4-3
DMA Interrupt Configuration Register	,
(DMAICR), 5-52 to 5-54	E
DMA Interrupt Enable Register (DMAIER),	-
5-55 to 5-56	ECL2* bit, 5-23
DMA Interrupt Status/ID Register	ECL3* bit, 5-23
(DMAISDR), 5-57 to 5-58	ECLDIR[0] bit, 5-32
DMA programming examples, F-1 to F-14	ECLDIR[1] bit, 5-31
address modifier codes (table),	ECLEN[0] bit, 5-31
F-12 to F-14	ECLEN[1] bit, 5-31
DMA operation	ECR[7:0] bits, 5-85
with interrupt, F-5 to F-11	EDTYPE[3:0] bits, 5-6
without interrupt, F-2 to F-5	EEPROM configuration, B-1 to B-9
overview, F-1	interlocked arbitration mode, B-9
parameter descriptions, F-2	MXIbus fair requester and MXIbus
DMA Source Address Register (SARx),	parity checking, B-9
5-75 to 5-76	MXIbus timer limit, B-8
DMA Source Configuration Register	overview, B-1 to B-3
(SCRx), 5-72 to 5-74	pseudocode example of VXI-MXI-2
DMA Transfer Count Register (TCRx),	EEPROM programming sequence,
5-70 to 5-71	B-2 to B-3
DMA1MBS bit, 5-62	VMEbus arbiter, B-6
DMA2MBS bit, 5-61 to 5-62	VMEbus requester, B-7
DMAIEN bit, 5-55	VMEbus timer limit, B-5
DMAMB S/N* bit, 5-62	VXI-MXI-2
DMASID[7:3] bits, 5-57	Change Factory Configuration
documentation	switch, 3-15
conventions used in manual, xv	jumper and switch settings,
how to use this manual, xvi	3-15 to 3-16
organization of manual, <i>xiii-xv</i>	requested memory space,
related documentation, xvi	B-3 to B-4
	Restore Factory Configuration
	switch, 3-15

VXI-MXI-2/B	fair requester
Change Factory Configuration	MXIbus, 7-12, B-9
switch, 4-14	VMEbus, B-7
jumper and switch settings,	VXIbus, 7-9
4-14 to 4-15	fax and telephone support, H-2
Restore Factory Configuration	FaxBack support, H-2
switch, 4-14	FCR[7:0] bits, 5-85
electrical specifications, A-5	FRESET bit, 5-66
electronic support, H-1 to H-2	front panel of VXI-MXI-2, C-1 to C-8
electrostatic discharge, damage from	external clock connector, C-6 to C-7
(warning)	EXT CLK connector (figure), C-6
VXI-MXI-2, 3-1	EXT CLK signal characteristics
VXI-MXI-2/B, 4-1	(table), C-7
e-mail support, H-2	features, 1-5
ENABLE bit, 5-56	layout
environmental specifications	VXI-MXI-2 (figure), C-2
B-size VXI-MXI-2, A-3	VXI-MXI-2/B (figure), C-3
C-size VXI-MXI-2, A-3	MXI-2 connector (figure), C-4
equipment, optional, 1-5 to 1-6	MXI-2 connector signal assignments
ERROR bit, 5-83	(table), C-4 to C-5
ETOEN bit, D-5	MXIbus signal characteristics
ETRIG bit, D-5	(table), C-6
ETRIG[1:0] bits, 5-36	trigger input connector, C-8
Extender A16 Window Register (VWR1),	TRG IN connector (figure), C-8
5-14 to 5-15	TRG IN signal characteristics
Extender A24 Window Register (VWR2),	(table), C-8
5-16 to 5-17	trigger output connector, C-7
Extender A32 Window Register (VWR3),	TRG OUT (figure), C-7
5-18 to 5-19	TRG OUT signal characteristics
Extender Logical Address Window Register	(table), C-7
(VWR0), 5-12 to 5-13	FTP support, H-1
external clock connector, C-6 to C-7	• •
EXT CLK connector (figure), C-6	Н
EXT CLK signal characteristics	
(table), C-7	hard reset of registers, 5-1, D-5
	high/low configuration format, 6-5
F	
FAIR bit	I1[15:0] bits, 5-43
Shared MXIbus Status/Control Register	I2[31:0] bits, 5-44
(SMSR/SMCR), 5-62	I3[15:0] bits, 5-45
VXI-MXI-2 Status Register	I4[31:0] bits, 5-46
(VMSR), 5-28	I5[15:0] bits, 5-47
	I6[31:0] bits, 5-48
	- L : - J : - : - : - : - : - : - :

I7[15:0] bits, 5-49	J
ILVL[2:0] bits, 5-54	jumper and switch settings
installation. See also configuration.	
requirements for VXI-MXI-2 interfaces,	two-frame system
6-3	CLK10 routing, E-6 to E-8
VXI-MXI-2	VXIbus logical address, E-4 to E-5
connecting MXIbus cable, 3-20	VXI-MXI and VXI-MXI-2 differences
damage from electrostatic	and incompatibilities, D-2 to D-3
discharge (warning), 3-1	VXI-MXI-2
<u> </u>	EEPROM, 3-15 to 3-16
general instructions, 3-19	MXIbus termination, 3-13 to 3-14
VXI-MXI-2/B	onboard DRAM, 3-17 to 3-18
connecting MXIbus cable, 4-19	trigger input termination, 3-12
damage from electrostatic	VXIbus CLK10 routing,
discharge (warning), 4-1	3-7 to 3-11
general instructions, 4-18	VXIbus local bus, 3-6 to 3-7
INT bit, 5-82	
INTDIR[7:1] bits, 5-21	VXIbus logical address, 3-4
INTEN[7:1] bits, 5-20	VXIbus Slot 0/non-Slot 0, 3-5
interlocked arbitration mode, 7-5 to 7-6, B-9	VXI-MXI-2/B
interrupt and utility signal circuitry, 2-7	EEPROM, 4-14 to 4-15
interrupt and utility signal transceivers	MXIbus termination, 4-12 to 4-13
MXI-2, 2-7	onboard DRAM, 4-16 to 4-17
VMEbus, 2-7	trigger input termination, 4-12
interrupt conditions, local, D-4 to D-5	VXIbus CLK10 routing,
INTLCK bit	4-7 to 4-11
enabling interlocked arbitration mode,	VXIbus local bus, 4-6 to 4-7
	VXIbus logical address, 4-4
7-6	VXIbus Slot 0/non-Slot 0, 4-5
VXI-MXI-2 Control Register (VMCR),	
5-32	L
VXI-MXI-2 Status Register (VMSR),	L
5-28	LA window. See logical address (LA)
INTLK bit, D-5	window.
INTX enhancement for VXI-MXI, D-1	LA[7:0] bits, 5-34
IOCONFIG bit, 5-59	LABASE[7:0] bits, 5-13
IRQ[7:1] bits, 5-38	LADIR bit, 5-13
ISTAT bit, 5-53	LAEN bit, 5-12
ITS[3:0] bits, D-5	LASIZE[2:0] bits, 5-13
	LINT[3:1] bits
	VXIbus Interrupt Control Register
	(VICTR), 5-39
	VXIbus Interrupt Status Register
	(VISTR), 5-37

LNGMXSCTO bit, D-3	required logical addresses, example
local bus configuration, VXIbus	VXIbus/MXIbus system (table), 6-7
VXI-MXI-2, 3-6 to 3-7	steps to follow, 6-6 to 6-11
VXI-MXI-2/B, 4-6 to 47	tree topologies, 6-1
local interrupt conditions, D-4 to D-5	worksheets
LOCKED bit, 5-33	alternative worksheets,
logical address, VXIbus	6-20 to 6-22
configuring	logical address map diagram for
for two-frame system, E-4 to E-5	VXIbus/MXIbus system, 6-15
VXI-MXI-2, 3-3 to 3-4	MXIbus #1 of example
VXI-MXI-2/B, 4-3 to 4-4	VXIbus/MXIbus system, 6-13
decoder, 2-5	MXIbus #1 of VXIbus/MXIbus
definition, 3-3, 4-3	system, 6-17
logical address, VXIplug&play	MXIbus #2 of example
Logical Address control, 7-3	VXIbus/MXIbus system, 6-14
Logical Address Selection control, 7-3	MXIbus #2 of VXIbus/MXIbus
logical address (LA) window	system, 6-18
configuring, 6-39 to 6-40	MXIbus #3 of example
example, 6-40 to 6-43	VXIbus/MXIbus system, 6-14
logical address assignments for	MXIbus #3 of VXIbus/MXIbus
example VXIbus/MXIbus system	system, 6-19
(table), 6-41	summary of example
overview, 2-6	VXIbus/MXIbus system, 6-12
logical address map for VXIbus/MXIbus	summary of VXIbus/MXIbus
system, 6-2 to 6-14	system, 6-16
address range allocation for different	
size values (figure), 6-5	M
base/size configuration format,	MANID[11:0] bits, 5-4
6-3 to 6-5	manual. See documentation.
base and size combinations	master state machine
(figure), 6-4	MXI-2, 2-4
base and size combinations	VMEbus, 2-3
(table), 6-4	MBERR bit, 5-29
changing default address for PC with	MBTO[3:0] bits, 5-63 to 5-64
MXIbus interface (note), 6-8	memory space. See also onboard DRAM.
example VXIbus/MXIbus system	avoiding first 4 KB of memory space
(figure), 6-7	(caution), 7-4
high/low configuration format, 6-5	Requested Memory control,
logical address map diagram for	VXI-MXI-2, 7-3 to 7-4
example VXIbus/MXIbus system	required memory space for VXI-MXI
(figure), 6-10	and VXI-MXI-2, D-3
multiframe RM in VXIbus mainframe	VXI-MXI-2 requested memory space,
(figure), 6-3	B-3 to B-4
multiframe RM on PC (figure), 6-2	metal enclosure, removing, 3-3
	metar cherobare, removing, 5 5

mnemonics key, G-1 to G-9	fair requester, B-9
MODEL[11:0] bits, 5-5	parity checking, B-9
MODID* bit, 5-6	signal characteristics (table), C-6
MODID[12:0]bits, 5-11	System Controller, 2-3, E-8
multiframe RM	termination
multiframe RM in VXIbus mainframe	VXI-MXI-2, 3-13 to 3-14
(figure), 6-3	VXI-MXI-2/B, 4-12 to 4-13
multiframe RM on PC (figure), 6-2	timer limit, B-8
overview, 6-1	MXIbus configuration options
tree topologies, 6-1	auto retry, 7-12
multiframe RM operation, 6-39 to 6-44	bus timeout, 7-11
configuring A24 and A32 addressing	CLK10, 7-13
windows, 6-44	fair requester, 7-12
configuring logical address window,	illustration, 7-10
6-39 to 6-40	parity checking, 7-12
example, 6-40 to 6-43	System Controller, 7-11
logical address assignments for example	transfer limit, 7-11
VXIbus/MXIbus system (table), 6-41	MXISC bit, 5-28
system administration and	MXSCTO bit, 5-28
initiation, 6-44	MXSRSTEN bit, D-4
MXACFAILEN bit, D-4	MXSRSTINT bit, D-4
MXACFAILINT bit, D-4	MXSYSFINT bit, D-4
MXI-2. See also VXI-MXI-2.	MXTRIGEN bit, D-4
address/data and address modifier	MXTRIGINT bit, D-4
transceivers, 2-6	
control signals transceivers, 2-4	N
description, 1-2	
interrupt and utility signal	non-Slot 0 configuration, VXIbus
transceivers, 2-7	VXI-MXI-2, 3-5 to 3-6
master state machine, 2-4	VXI-MXI-2/B, 4-5 to 4-6
parity check and generation, 2-6	
slave state machine, 2-5	0
System Controller, 2-3	OE bit, D-5
termination, 2-6	OFFSET[15:0] bits, 5-10
MXI-2 connector	OMS[2:0] bits, D-5
figure, C-4	onboard DRAM
signal assignments (table), C-4 to C-5	avoiding first 4 KB of memory space
VXI-MXI and VXI-MXI-2 differences	(caution), 7-4, B-3
and incompatibilities, D-1 to D-2	configuration, VXI-MXI-2,
MXIbus	3-17 to 3-18
capability descriptions, A-1	SIMM size configuration
connecting MXIbus cable	(figure), 3-17
VXI-MXI-2, 3-20	VXI-MXI-2 DRAM configurations
VXI-MXI-2/B, 4-19	(table), 3-18
	(11010), 5 10

configuration, VXI-MXI-2/B,	requested memory space, VXI-MXI-2,
4-16 to 4-17	B-3 to B-4
SIMM size configuration (figure),	requester, VMEbus, B-7
4-16	reset, hard and soft, 5-1, D-5
VXI-MXI-2/B DRAM	RESET bit
configurations (table), 4-17	soft resets, 5-1
overview, 2-7	VXIbus Control Register (VCR), 5-9
optional equipment for VXI-MXI-2,	VXIbus Status Register (VSR), 5-7
1-5 to 1-6	RM operation, multiframe. See multiframe
OTS[3:0] bits, D-5	RM operation.
OUTEN bit, 5-11	
	S
P	
DADEN hit 5 62	S[15:0] bits, 5-41
PAREN bit, 5-63	SA[31:0] bits, 5-75 to 5-76
PARERR bit, 5-29	SABORT bit, 5-83
parity checking	SC[15:0] bits, 5-26
MXI-2, 2-6, 7-12 MXIbus, B-9	SCFG bit, 5-28
PASSED bit	SERR[1:0] bits, 5-84
	SET DONELE bit, 5-68
description, 5-7	SET DONEIE bit, 5-69
hard and soft resets, 5-1	SFIE bit, 5-40
performance specifications, A-5	SFIN bit, 5-24
physical specifications	SFINH bit
B-size VXI-MXI-2, A-4	VXIbus Control Register (VCR), 5-8
C-size VXI-MXI-2, A-4	VXIbus Status Register (VSR), 5-7
PORT[1:0] bits	SFINT bit, 5-38
DMA Destination Configuration	SFOUT bit, 5-24
Register (DCRx), 5-79	Shared MXIbus Status/Control Register
DMA Source Configuration Register	(SMSR/SMCR), 5-61 to 5-64
(SCRx), 5-74	SID8 bit, 5-52
POSTERR bit, 5-27	SIDLA bit, 5-53
programmable configurations. See	signal transceivers. <i>See</i> transceivers.
EEPROM configuration.	signals
PULSE bit, D-5	EXT CLK signal characteristics (table), C-7
R	MXI-2 connector signal assignments
READY bit, 5-7	(table), C-4 to C-5
	MXIbus signal characteristics (table),
registers. See VXIbus A24/A32 Registers;	C-6
VXIbus Configuration Registers.	TRG IN signal characteristics (table),
REQMEM[3:0] bits, 5-5 request level, VXI-MXI-2, 7-9	C-8
Requested Memory control, VXI-MXI-2,	TRG OUT signal characteristics (table),
7-3 to 7-4	C-7

slave state machine	configuring logical address window
MXI-2, 2-5	example, 6-40 to 6-43
VMEbus, 2-4	logical address assignments for
Slot 0, VXIbus	example VXIbus/MXIbus system
configuring	(table), 6-41
two-frame system, E-8	system administration and
VXI-MXI-2, 3-5 to 3-6	initiation, 6-44
VXI-MXI-2/B, 4-5 to 4-6	overview, 6-1
functions, 2-3	planning VXIbus/MXIbus system A16
reconfiguring for Slot 0 devices placed	address map, 6-23 to 6-28
in another slot (warning)	A16 space allocations for all size
VXI-MXI-2, 3-5	values (figure), 6-24
VXI-MXI-2/B, 4-5	amount of A16 space allocated
SMB transceivers, 2-7	(table), 6-23
soft reset of registers, 5-1, D-5	example A16 space address map
specifications	diagram, 6-28
electrical, A-5	example VXIbus/MXIbus system
environmental, A-3	diagram, 6-27
MXIbus capability descriptions, A-1	required A16 space for example
performance, A-5	VXIbus/MXIbus system
physical, A-4	(table), 6-27
requirements, A-4	planning VXIbus/MXIbus system
VMEbus capability codes, A-2	logical address map, 6-2 to 6-14
SRIN bit, 5-25	address range allocation for
SROUT bit, 5-25	different size values (figure), 6-5
SSINT* bit, D-5	base and size combinations
START bit, 5-67	(figure), 6-4
STOP bit, 5-66	base and size combinations
STOPS bit, 5-83	(table), 6-4
switches. See jumper and switch settings.	base/size configuration format,
SYSFAIL bit, 5-38	6-3 to 6-5
Sysfail inhibit bit, D-3	basic requirements for VXI-MXI-2
SYSFAIL* signal, D-4	interfaces, 6-3
SYSRESET* signal, 5-1, D-4	changing default address for PC
system configuration. See also	with MXIbus interface
configuration; configuration of two-frame	(note), 6-8
system.	example VXIbus/MXIbus system
multiframe RM operation, 6-39 to 6-44	(figure), 6-7
configuring A24 and A32	high/low configuration format, 6-5
addressing windows, 6-44	logical address map diagram for
configuring logical address	example VXIbus/MXIbus system
window, 6-39 to 6-40	(figure), 6-10

System Controller
MXI-2, configuring, 7-11
VXIbus
configuring, 7-7 to 7-8
installing in different slot
(warning), 7-8
System Controller, MXIbus, 2-3, E-8
•
Т
•
TC[31:0] bits, 5-70 to 5-71
technical support, H-1 to H-2
termination
MXI-2, 2-6
VXI-MXI-2
MXIbus, 3-13 to 3-14
trigger input, 3-12
VXI-MXI-2/B
MXIbus, 4-12 to 4-13
trigger input, 4-12
timeout
bus. See Bus Timeout (BTO).
VMEbus arbiter, B-6
VXIbus arbiter, 7-9
timer limit
MXIbus, B-8
VMEbus, B-5
transceivers
CLK10 and trigger transceivers, 2-7
MXI-2
address/data and address modifier
transceivers, 2-6
control signal transceivers, 2-4
interrupt and utility signal
transceivers, 2-7
SMB transceivers, 2-7
VMEbus
address and address modifier
transceivers, 2-6
control signal transceivers, 2-3
data transceivers, 2-7
interrupt and utility signal
transceivers, 2-7
VXIbus CLK10 and TTL and ECL
trigger transceivers, 2-7

transfer limit, configuring	V
MXIbus, 7-11	VERSION[3:0] bits, 5-7
VXIbus, 7-9	VMEbus
TRGIN bit, 5-36	Bus Timeout (BTO)
TRGOUT bit, 5-36	for two-frame system, E-9
TRIG[7:0] bits, 5-34	overview, 2-5
TRIGDIR[7:0] bits, 5-42	VMEbus timer limit, B-5
TRIGEN[7:0] bits, 5-42	
trigger circuitry, CLK10, 2-7	capability codes, A-2 control signals transceivers, 2-3
trigger input connector, C-8	data transceivers, 2-7
TRG IN connector (figure), C-8	•
TRG IN signal characteristics	interrupt and utility signal transceivers, 2-7
(table), C-8	
trigger output connector, C-7	master state machine, 2-3
TRG OUT (figure), C-7	slave state machine, 2-4
TRG OUT signal characteristics	timer limit, B-5
(table), C-7	VMEbus arbiter
triggers	arbiter timeout, B-6
CLK10 and trigger transceivers, 2-7	arbiter type, B-6
CLK10 and TTL and ECL trigger	VMEbus requester
transceivers, 2-7	fair request, B-7
input termination	request level, B-7
VXI-MXI-2, 3-12	VXIbus A24/A32 Registers
VXI-MXI-2/B, 4-12	DMA Channel Control Register
VXIbus functionality, D-5	(CHCRx), 5-68 to 5-69
TRIGINT bit, D-4	DMA Channel Operation Register
TRIGINTIE bit, D-4	(CHORx), 5-65 to 5-67
TSIZE[1:0] bits	DMA Channel Status Register
DMA Destination Configuration	(CHSRx), 5-82 to 5-84
Register (DCRx), 5-79	DMA Destination Address Register
DMA Source Configuration Register	(DARx), 5-80 to 5-81
(SCRx), 5-74	DMA Destination Configuration
TTL* bit, 5-23	Register (DCRx), 5-77 to 5-79
TTLTRGDIR[7:0] bits, 5-22	DMA FIFO Count Register
TTLTRGEN[7:0] bits, 5-22	(FCRx), 5-85
two-frame system. See configuration of	DMA Interrupt Configuration Register
two-frame system.	(DMAICR), 5-52 to 5-54
	DMA Interrupt Enable Register
U	(DMAIER), 5-55 to 5-56
	DMA Interrupt Status/ID Register
UTIL* bit, 5-24	(DMAISDR), 5-57 to 5-58

DMA Source Address Register (SARX),	nard and soft reset, 5-1
5-75 to 5-76	mnemonics key, G-1 to G-9
DMA Source Configuration Register	register map (table), 5-2 to 5-3
(SCRx), 5-72 to 5-74	VXIbus Control Register (VCR),
DMA Transfer Count Register (TCRx),	5-8 to 5-9
5-70 to 5-71	VXIbus Device Type Register (VDTR),
hard and soft reset, 5-1, D-5	5-5, D-3
mnemonics key, G-1 to G-9	VXIbus ID Register (VIDR), 5-4
register map (table), 5-51	VXIbus Interrupt Acknowledge
Shared MXIbus Status/Control Register	Register 1 (VIAR1), 5-43
(SMSR/SMCR), 5-61 to 5-64	VXIbus Interrupt Acknowledge
VXI-MXI-2 Status/Control Register 2	Register 2 (VIAR2), 5-44
(VMSR2/VMCR2), 5-59 to 5-60,	VXIbus Interrupt Acknowledge
D-3 to D-5	Register 3 (VIAR3), 5-45
VXIbus Bus Timeout (BTO), 7-8	VXIbus Interrupt Acknowledge
VXIbus CLK10 and TTL and ECL trigger	Register 4 (VIAR4), 5-46
transceivers, 2-7	VXIbus Interrupt Acknowledge
VXIbus configuration	Register 5 (VIAR5), 5-47
two-frame system	VXIbus Interrupt Acknowledge
CLK10 routing, E-6 to E-8	Register 6 (VIAR6), 5-48
logical address, E-4 to E-5	VXIbus Interrupt Acknowledge
Slot 0/non-Slot 0, E-8	Register 7 (VIAR7), 5-49
VXI-MXI-2	VXIbus Interrupt Configuration
CLK10 routing, 3-7 to 3-11	Register (VICR), 5-20 to 5-21
local bus, 3-6 to 3-7	VXIbus Interrupt Control Register
logical address, 3-3 to 3-4	(VICTR), 5-39 to 5-40
Slot 0/non-Slot 0, 3-5 to 3-6	VXIbus Interrupt Status Register
VXI-MXI-2/B	(VISTR), 5-37 to 5-38
CLK10 routing, 4-7 to 4-11	VXIbus Lock Register (VLR), 5-33
local bus, 4-6 to 4-7	VXIbus Logical Address Register
logical address, 4-3 to 4-4	(VLAR), 5-34
Slot 0/non-Slot 0, 4-5 to 4-6	VXIbus MODID Register (VMIDR),
VXIbus Configuration Registers, 5-2 to 5-49	5-11, D-5
accessing, 5-2	VXIbus Offset Register (VOR),
Extender A16 Window Register	5-10, D-3
(VWR1), 5-14 to 5-15	VXIbus Status ID Register (VSIDR),
Extender A24 Window Register	5-41, D-5
(VWR2), 5-16 to 5-17	VXIbus Status Register (VSR),
Extender A32 Window Register	5-6 to 5-7
(VWR3), 5-18 to 5-19	VXIbus Subclass Register
Extender Logical Address Window	(VSCR), 5-26
Register (VWR0), 5-12 to 5-13	

V Albus Trigger Drive Register	VAI-IVIAI-2
(VTDR), 5-35, D-5	block diagram, 2-2
VXIbus Trigger Mode Select Register	description, 1-2 to 1-5
(VTMSR), 5-36	features, 1-3 to 1-5
VXIbus TTL Trigger Configuration	front panel features, 1-5
Register (VTCR), 5-22	functional description, 2-1 to 2-7
VXIbus Utility Configuration Register	MXI-2 description, 1-2
(VUCR), 5-23 to 5-25	optional equipment, 1-5 to 1-6
VXI-MXI-2 Control Register (VMCR),	overview, 1-1
5-30 to 5-32, D-4	requirements for getting started,
VXI-MXI-2 Status Register (VMSR),	1-1 to 1-2
5-27 to 5-29, D-4	VXI-MXI-2 Control Register (VMCR),
VXI-MXI-2 Trigger Control Register	5-30 to 5-32, D-4
(VMTCR), 5-42	VXI-MXI-2 Status Register (VMSR),
VXIbus logical address. See logical address,	5-27 to 5-29, D-4
VXIbus.	VXI-MXI-2 Status/Control Register 2
VXIbus model code differences between	(VMSR2/VMCR2), 5-59 to 5-60,
VXI-MXI and VXI-MXI-2, D-3	D-3 to D-5
VXIbus settings	VXI-MXI-2 Trigger Control Register
arbiter timeout, 7-9	(VMTCR), 5-42
arbiter type, 7-8	VXI-MXI-2 VXIplug&play soft front panel,
auto retry, 7-10	7-1 to 7-13
bus timeout, 7-8	Board settings, 7-3 to 7-6
fair requester, 7-9	A16 write post and A24/A32 write
illustration, 7-7	post, 7-4
request level, 7-9	address space and requested
System Controller, 7-7 to 7-8	memory, 7-3 to 7-4
transfer limit, 7-9	interlocked, 7-5 to 7-6
VXIbus Slot 0. See Slot 0, VXIbus.	logical address select and logical
VXIbus trigger functionality, D-5	address, 7-3
VXI-MXI and VXI-MXI-2 differences and	installing soft front panel, 7-1 to 7-2
incompatibilities, D-1 to D-5	Knowledge Base File, 7-13
configuration switches and jumpers,	MXIbus configuration options
D-2 to D-3	auto retry, 7-12
hard reset, D-5	bus timeout, 7-11
local interrupt conditions, D-4 to D-5	CLK10, 7-13
MXIbus connector, D-1 to D-2	fair requester, 7-12
required memory space, D-3	illustration, 7-10
soft reset, D-5	parity checking, 7-12
Sysfail inhibit bit, D-3	System Controller, 7-11
VXIbus model code, D-3	transfer limit, 7-11
VXIbus trigger functionality, D-5	using soft front panel, 7-2 to 7-3
VXI-MXI-2 Status/Control Register	-
(VMSR/VMCR), D-3 to D-4	

VXIbus settings
arbiter timeout, 7-9
arbiter type, 7-8
auto retry, 7-10
bus timeout, 7-8
fair requester, 7-9
illustration, 7-7
request level, 7-9
System Controller, 7-7 to 7-8
transfer limit, 7-9
VXIplug&play soft front panel. See
VXI-MXI-2 VXIplug&play soft front panel.

W

write posting, A16 and A24/A32, 7-4

X

XFERR bit, 5-83