COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs. We Sell For Cash We Get Credit We Receive a Trade-In Deal

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

APEX WAVES

Bridging the gap between the manufacturer and your legacy test system.

1-800-915-6216
www.apexwaves.com
sales@apexwaves.com

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote CLICK HERE CRIO-9073

AM-9898 HART Communications CompactRIO Module

AM-9898

Getting Started (LabVIEW Help) Manual Revision 1.6 April 24, 2015

Amtec Solutions Group, Inc.

Revision History

Version	Date	Description
1.0	04/30/2014	Initial version
1.1	07/15/2014	Added safety and installation information
1.2	10/07/2014	Added information based on conformance and beta testing
1.3	12/02/2014	Updated certification date of issue; added latch composition
1.4	01/08/2015	Updated module image; updated text and French verbiage
1.5	01/19/2015	Added ingress protection rating to specifications
1.6	04/24/2015	Added ATEX information and updated standards table

Drawing Number

STD-HART-30001 UM

Headquarters

4808 Bradford Drive Huntsville, AL USA 35805 256-319-6126

http://www.amtecsolutionsgroup.com

Shipping & Receiving

4808 Bradford Drive Huntsville, AL USA 35805

© 2015 Amtec Solutions Group, Inc. All rights reserved.

Important Information

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of ASG.

ASG respects the intellectual property of others, and we ask our users to do the same. ASG software is protected by copyright and other intellectual property laws. Where ASG software may be used to reproduce software or other materials belonging to others, you may use ASG software only to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

Trademarks

Amtec Solutions Group, Inc. and www.amtecsolutionsgroup.com are trademarks of The Servus Group. Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Contents

Introduction	.7
HART Communications	. 7
CompactRIO System	. 7
AM-9898 Module	. 8
AM-9898 Software	. 8
Supported Hardware Platforms	. 8
Installation	. 9
Installing the Module	. 9
Condition of Safe Use	10
Removing the Module	10
Wiring for High-Vibration Applications	10
Safety Guidelines	11
Safety Standards	12
Enclosure Material Grade	13
Application Development	13
Software Configuration	14
FPGA Example	15
FPGA Functions	16
RT Example – Read AI Current	17
RT Example – HART Scan	18
RT Example – HART Multidrop	19
RT Example – RS-232 Echo	20
Appendix A – Changing cRIO Targets	21
Appendix B – Changing Module Slots	22
Appendix C – Multidrop Mode	23
Appendix D – Terminal Assignment	23
Appendix E – Specifications	24
Appendix F – Network Connections	25

List of Figures

Figure 2 – Connecting Ferules10Figure 3 – Application Architecture13Figure 4 – HART Module Project14Figure 5 – FPGA Example15Figure 6 – RT Example (Read AI)17Figure 7 – RT Example (HART Scan)18Figure 8 – RT Example (HART Multidrop)19Figure 9 – RT Example (RS-232 Echo)20Figure 10 – Changing cRIO Targets21Figure 11 – Changing Module Slots22Figure 12 – Terminal Assignment23Figure 13 – Point to Point Network25Figure 14 – Multidrop Network25	Figure 1 – Installing Module	9
Figure 3 – Application Architecture13Figure 4 – HART Module Project14Figure 5 – FPGA Example15Figure 6 – RT Example (Read AI)17Figure 7 – RT Example (HART Scan)18Figure 8 – RT Example (HART Multidrop)19Figure 9 – RT Example (RS-232 Echo)20Figure 10 – Changing cRIO Targets21Figure 11 – Changing Module Slots22Figure 12 – Terminal Assignment23Figure 13 – Point to Point Network25Figure 14 – Multidrop Network25	Figure 2 – Connecting Ferules	10
Figure 4 – HART Module Project14Figure 5 – FPGA Example15Figure 6 – RT Example (Read AI)17Figure 7 – RT Example (HART Scan)18Figure 8 – RT Example (HART Multidrop)19Figure 9 – RT Example (RS-232 Echo)20Figure 10 – Changing cRIO Targets21Figure 11 – Changing Module Slots22Figure 12 – Terminal Assignment23Figure 13 – Point to Point Network25Figure 14 – Multidrop Network25	Figure 3 – Application Architecture	
Figure 5 – FPGA Example15Figure 6 – RT Example (Read AI)17Figure 7 – RT Example (HART Scan)18Figure 8 – RT Example (HART Multidrop)19Figure 9 – RT Example (RS-232 Echo)20Figure 10 – Changing cRIO Targets21Figure 11 – Changing Module Slots22Figure 12 – Terminal Assignment23Figure 13 – Point to Point Network25Figure 14 – Multidrop Network25	Figure 4 – HART Module Project	14
Figure 6 – RT Example (Read AI)17Figure 7 – RT Example (HART Scan)18Figure 8 – RT Example (HART Multidrop)19Figure 9 – RT Example (RS-232 Echo)20Figure 10 – Changing cRIO Targets21Figure 11 – Changing Module Slots22Figure 12 – Terminal Assignment23Figure 13 – Point to Point Network25Figure 14 – Multidrop Network25	Figure 5 – FPGA Example	15
Figure 7 – RT Example (HART Scan)18Figure 8 – RT Example (HART Multidrop)19Figure 9 – RT Example (RS-232 Echo)20Figure 10 – Changing cRIO Targets21Figure 11 – Changing Module Slots22Figure 12 – Terminal Assignment23Figure 13 – Point to Point Network25Figure 14 – Multidrop Network25	Figure 6 – RT Example (Read AI)	17
Figure 8 – RT Example (HART Multidrop)19Figure 9 – RT Example (RS-232 Echo)20Figure 10 – Changing cRIO Targets21Figure 11 – Changing Module Slots22Figure 12 – Terminal Assignment23Figure 13 – Point to Point Network25Figure 14 – Multidrop Network25	Figure 7 – RT Example (HART Scan)	
Figure 9 – RT Example (RS-232 Echo).20Figure 10 – Changing cRIO Targets21Figure 11 – Changing Module Slots22Figure 12 – Terminal Assignment23Figure 13 – Point to Point Network25Figure 14 – Multidrop Network25	Figure 8 – RT Example (HART Multidrop)	19
Figure 10 – Changing cRIO Targets21Figure 11 – Changing Module Slots22Figure 12 – Terminal Assignment23Figure 13 – Point to Point Network25Figure 14 – Multidrop Network25	Figure 9 – RT Example (RS-232 Echo)	
Figure 11 – Changing Module Slots22Figure 12 – Terminal Assignment23Figure 13 – Point to Point Network25Figure 14 – Multidrop Network25	Figure 10 – Changing cRIO Targets	
Figure 12 – Terminal Assignment	Figure 11 – Changing Module Slots	
Figure 13 – Point to Point Network25Figure 14 – Multidrop Network25	Figure 12 – Terminal Assignment	
Figure 14 – Multidrop Network	Figure 13 – Point to Point Network	
	Figure 14 – Multidrop Network	

About This Manual

Use this manual to configure the AM-9898 CompactRIO module hardware and software. This manual will also help in learning the basics of HART communications, as well as how to develop an application.

Related Documentation

The following links contain information that you might find helpful as you read this manual.

How HART Works http://en.hartcomm.org/hcp/tech/aboutprotocol/aboutprotocol_how.html

About HART http://www.analogservices.com/about_part0.htm

What is NI CompactRIO? http://www.ni.com/compactrio/whatis

Please note the previous links (and any other links throughout the manual) are valid at time of publication but not maintained by ASG.

Introduction

This chapter provides an introduction to the HART Communications, National Instruments CompactRIO system, and the ASG AM-9898 cRIO module.

Warning – If the equipment is used in a manner not specified by the manufacturer, the overall safety may be impaired. **Avertissement** – Si l'équipement est utilisé d'une manière non spécifiée par le fabricant, la sécurité d'ensemble peut être réduite.

HART Communications

The HART (Highway Addressable Remote Transducer) Protocol is the global standard for sending and receiving digital information across analog wires between smart devices and control or monitoring system.

More specifically, HART is a bi-directional communication protocol that provides data access between intelligent field instruments and host systems. A host can be any software application from technician's hand-held device or laptop to a plant's process control, asset management, safety or other system using any control platform.

Refer to the HART Communication Foundation <www.hartcomm.org> for a more detailed summary of the HART Communication Standard.

CompactRIO System

National Instruments CompactRIO is an advanced embedded control and acquisition system powered by NI reconfigurable I/O (RIO) technology. CompactRIO combines low power consumption, real-time embedded processor with a high-performance RIO FPGA chipset. The RIO core has built-in data transfer mechanisms to pass data to the embedded processor for real-time analysis, post processing, data logging, or communication to a networked host computer. CompactRIO provides direct hardware access to the I/O circuitry of each I/O module using LabVIEW FPGA I/O functions. Each I/O module includes built-in connectivity, signal conditioning, conversion circuitry (such as ADC or DAC), and an optional isolation barrier.

Refer to National Instruments <www.ni.com/compactrio> for more information about CompactRIO.

AM-9898 Module

The ASG AM-9898 is a single slot HART communication and current input module for the CompactRIO platform. Each module has four (4) HART communication channels and four (4) 4 to 20 mA current inputs. The AM-9898, as well as the CompactRIO controller, is intended for use in industrial locations.

Note – The nominal voltage range across each 4 to 20 mA loop is 1 to 5 VDC.

AM-9898 Software

The ASG AM-9898 module includes all software necessary to operate without any knowledge of the LabVIEW development environment. All code is written in LabVIEW 2012 and is not backwards compatible.

The software architecture is broken up into two (2) main parts.

FPGA - The FPGA application is designed to handle all communication with the AM-9898 module. This communication is handled through the RT application. The FPGA code can be modified to accommodate other cRIO modules or other functionality as needed by the user.

Real-Time - There are several RT applications that are included. The main applications included are as follows:

AI Read Currents – reads currents as well as read the module serial number, vendor ID and module ID.

HART Scan Devices – scans all HART short addresses (0 - 15) on a specific channel (0 - 3)

HART Multidrop – continually scans a list of HART long addresses for their primary variable values

HART Echo – will receive any cRIO RS-232 characters and transmit via HART as well as receive any HART characters and transmit via RS-232.

Supported Hardware Platforms

The AM-9898 module is fully compliant with MDK 2.0 therefore is compatible with any NI CompactRIO System.

Installation

This section explains how to install and remove the ASG AM-9898 module from a CompactRIO (cRIO) chassis.

Installing the Module

Complete the following steps to install the AM-9898 module in the chassis.

- 1. Make sure that no I/O-side power is connected to the module. If the system is in a non-hazardous location, the chassis power can be on when you install module(s).
- 2. Align the module with an I/O module slot in the chassis as shown in Figure 1. The module slots are labeled 1 to 8, left to right.
- 3. Squeeze the latches and insert the module into the module slot.
- 4. Press firmly on the connector side of the module until the latches lock the module into place.
- 5. Repeat these steps to install additional modules.

Figure 1 – Installing Module

Warning – The module is intended to be installed in an Approved chassis powered from a source rated Limited-Energy Circuit or Limited Power Source.

Avertissement – Le module est destiné à être installé dans un châssis approuvé et alimenté par un circuit à énergie limitée ou par une source à puissance limitée.

Condition of Safe Use

The enclosure for the equipment shall provide a degree of protection not less than IP54 in accordance with IEC 60529 unless the equipment is intended to be afforded an equivalent degree of protection by location.

Removing the Module

Complete the following steps to remove the AM-9898 module from the chassis.

- 1. Make sure that no I/O-side power is connected to the module. If the system is in a non-hazardous location, the chassis power can be on when you remove module(s).
- 2. Squeeze the latches on both sides of the module and pull the module out of the chassis.

Wiring for High-Vibration Applications

If an application is subject to high vibration, ASG recommends that you either use ferrules to terminate wires to the detachable screw-terminal connector or use the National Instruments NI-9932 backshell kit to protect the connections. Refer to Figure 2 for an illustration of using ferrules.

Si une application est soumise à de fortes vibrations, ASG recommande que soit vous utilisez les embouts sur le connecteur à bornes à vis amovible soit vous utilisez le kit de raccord arrière NI-9932 de National Instruments afin de protéger les connexions. Reportez- vous à la figure2 pour une illustration de l'utilisation de viroles.

Figure 2 – Connecting Ferules

Safety Guidelines

WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS;

AVERTISSEMENT - RISQUE D'EXPLOSION -AVANT DE DECONNECTER L'EQUIPEMENT, COUPER LE COURANT OU S'ASSURER QUE L'EMPLACEMENT EST DESIGNE NON DANGEREUX.

The AM-9898 module is suitable for use in Class I, Division 2, Groups A, B, C, D, T4 hazardous locations; Class 1, Zone 2, AEx nA IIC T4 and Ex nA IIC T4 hazardous locations; and non-hazardous locations only. Follow these guidelines if you are installing the AM-9898 in a potentially explosive environment. Not following these guidelines may result in serious injury or death.

Le module AM-9898 est adapté pour une utilisation en les emplacements dangereux T4 de Classe I, Division 2, Groupes A, B, C, D; en les emplacements dangereux AEx nA IIC T4 et Ex nA IIC T4 de Classe 1, Zone 2; et en les emplacements non dangereux. Suivez ces instructions si vous installez l'AM-9898 dans un environnement potentiellement explosif. Ne pas suivre ces directives peut entraîner des blessures graves ou la mort.

Warning Do not disconnect the power supply wires and connectors from the controller unless power has been switched off;

Avertissement Ne débranchez pas les câbles d'alimentation et les connecteurs du contrôleur à moins que l'alimentation soit coupée.

Warning Do not remove module unless power has been switched off or the area is known to be non-hazardous;

Avertissement Ne retirez pas le module à moins que l'alimentation soit coupée ou que la zone soit connue d'être non dangereux.

Warning Substitution of components may impair suitability for Class I, Division 2;

Avertissement La substitution de composants peut nuire à la conformité de Classe I, Division 2.

Warning For Zone 2 applications, install the CompactRIO system in an enclosure rated to at least IP 54 as defined by IEC 60529 and EN 60079-0;

Avertissement Pour les applications de Zone 2, installez le système CompactRIO dans un boîtier classé au moins IP 54 selon les normes IEC 60529 et EN 60079-0.

Safety Standards

The AM-9898 module meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

Le module AM-9898 répond aux exigences suivants des normes de sécurité pour appareils électriques de mesure, de régulation et de laboratoire:

Standard of Safety	Issue Date
EN 60079-0. Edition 6.0 2012	10/15/2014
EN 60079-15 Edition 4.0 2010	10/15/2014
UL 60079-0 Sixth Edition, Dated July 26, 2013	10/15/2014
CAN/CSA-C22.2 No.60079-0:11, December 2011	10/15/2014
UL 60079-15, Edition Date: February 15, 2013	10/15/2014
CAN/CSA-C22.2 No. 60079-15:January 2012	10/15/2014
UL 61010-1, 3rd Ed., 2012-05-11	10/15/2014
CAN/CSA-C22.2 No. 61010-1-12, 3rd Ed, 2012-05-11	10/15/2014

Conforms to ANSI/ISA Std. 12.12.01 & UL Stds 61010-1, 60079-0, 60079-15 Certified to CAN/CSA Std. C22.2 Nos. 213, 61010-1, 60079-0 & 60079-15

ATEX Certificate ITS14ATEX18145X

Enclosure Material Grade

The AM-9898 module housing meets the requirements of the IECEx (Hazardous Location) standard with the following composition.

Le boîtier du module AM-9898 répond aux exigences des normes de l'IECEx (emplacements dangereux) avec la composition suivante.

Part	Material
Blue Die Cast Enclosure Part	A380 Aluminum
Silver Enclosure Part	1100-H25 Aluminum
Latches	301/304 Stainless Steel

Application Development

This chapter describes how to implement and utilize the AM-9898 module quickly and efficiently within your application.

As described before, the software supplied with the AM-9898 module is broken up into two (2) parts. Both sections will be described in detail. Please note that the top level VI's for each section can be modified according to the user's needs.

- cRIO FPGA application Interface with the HART hardware
- cRIO RT application Handles all AM-9898 configuration and communication

Figure 3 – Application Architecture

Step 1. Open the AM-9898 HART Module Project file (.lvproj).

Figure 4 – HART Module Project

Step 2. Configure the CompactRIO IP address in the project to match your cRIO IP address. The example code is configured for the cRIO-9074 but can be modified for other cRIO chassis. Refer to Appendix A for instructions on changing targets.

Step 3. Verify the AM-9898 HART module is placed in the first slot of the cRIO chassis. Refer to **Appendix B** for instructions on changing module slot position.

Step 4. Open the top-level FPGA example (AM-9898 FPGA Main Example.vi) and compile the FPGA code.

Step 5. Open one of the Real-Time examples, make sure the FPGA reference is pointing to the correct FPGA, then save and run.

FPGA Example

The FPGA application is designed to communication with the AM-9898 hardware, onboard CPLD, and EEPROM. The FPGA code need not be opened and/or run separately as the RT application handles opening, running, and configuring the FPGA as needed.

The FPGA application need only be modified if other modules are added or other FPGA operations need be performed.

Edit	View	Project	Operate	Tools	Windo	ow Help	EIII
4	> ֎		15pt Arial		► Sea	rch 🔍	
This	VI provi	des all fu	nctionality t	o/from t	he AM-	9898 HART Interfac	e Module.
FPO	GA Actio	n			0	Module ID	1,2,3
	Get	Module	ID		0	Serial Number	
	Per	form Act	ion		0	Vendor ID	
	0	Actio	n Count	A	Channe	10 HART Channel	Selection 4
					Change	e Channel Timed O	ut?
					HART	Carrier Detected?	5
				0	Carrier	Detect Timed Out?	
				A rate	0	HART Tx Byte	6
					HART	Tx Timed Out?	
				0	Rx Data	Available?	7
				0	Rx Read	dy Timed Out?	
					0	HART Rx Byte	8
					HART F	Rx Timed Out?	
					Get A	I Data	9
					AI Data	Complete?	
					0.000	AI0 (mA)	
				1	0.000	All (mA)	
				T	0.000	AI2 (mA)	
					0.000	AI3 (mA)	

Figure 5 – FPGA Example

FPGA Functions

The FPGA example is comprised of all FPGA functions.

Module ID – returns the module ID (ex. 77A2)
Serial Number – returns the module serial number
Vendor ID – returns the vendor ID (ex. 414D)

Change HART	Channel	– chang	ges the	curre	nt
HART channel.	Available	channels	are Ch	0, 1,	2,
and 3.					

Check Carrier Detect - determines if a HART device is transmitting on the currently connected HART channel

Write HART Byte - transmits a HART character on the currently connected HART channel

Check HART Rx Ready - determines if a HART character is available to be read from the CPLD buffer (CPLD buffer can hold a maximum of 10 characters)

Read HART Byte – receives a HART character from the CPLD buffer

Mod1	
Change HART Channel	
Channel Select	
Timed Out2	

Mod1

Module ID Serial Number Vendor ID

--C

••• Mod1	
Check Carrier Detect	
Carrier Detected?	Þ
Timed Out?	Þ

1	Hod1	
	Write HART Byte	
Þ	Data	
	Timed Out?	Þ

	Mod1	
Ch	eck HART Rx Ready	
F	🛚 🗛 🗛 🗛 🗛 🗛 🗛	Þ
	Timed Out?	۲

nu)	Mod1	
Rea	d HART Byte	
	Data	Þ
Т	imed Out?	Þ

	Timed Out?
	Mod1
Chec	k Carrier Detect

Read Analog Input – reads current loop value (maximum rate of 80 samples / second is throttled by the FPGA)

RT Example – Read AI Current

The AI Read Currents example is designed to get the module ID, serial number, and vendor ID as well as continually acquire all four (4) current input channels.

ile	Edit Viev	v Proje	ct Operate To	ools Windo	w H	lelp	AM-9
	今函		15pt Arial	Search		<u> </u>	HEx.
	This VI v	vill contir	nually acquire ana	olog input cu	rents	until stopped.	
)	Loop Iterations	
				0.0	00	AI0 (mA)	
	8	0	Module ID	0.0	00	All (mA)	
		0	Serial Number	0.0	00	AI2 (mA)	
		0	Vendor ID	0.0	00	AB (mA)	
				Error O	UT		
				status	cod	de	
				2	0		
				source			
						*	
				- 24		*	
					Stop	Read	

Figure 6 – RT Example (Read AI)

RT Example – HART Scan

The HART scan devices example will connect to a specific HART channel, then poll up to sixteen (16) short addresses and display the connected devices data. This example serves as a great "getting started" example as the user can simply press run and connected devices will be populated in the table.

[\$ ֎ @	II 15p	t Arial	* * * •	ia• ≝• 🔅•					+ Search	<u>, </u> ?⊞
				Use this exar	nple to scan short addre	sses (0 - 15) and will dis	play each devi	ices applicable info	ormation.	Error OUT	
Chi	annel Select	Ctart /	ddrace	Stop Address	Current Address	O Data Transmitter	2			status code	1.1.1.1.1.2
Cin	hannel 0	A	0	A 15	0	Data Received?				I 0	
£) -		- VP		<i>w</i>		1				source	
					Abort Scan	J					^
Con	nected Devi										÷
Con	Channel	Attempts	Short Address	Long Address	Manufacturer Name	Device Type / Model	Category	Description	"254" (extension)	Expanded Device Type	Min # of P
1	Channel	Attempts	Short Address	Long Address		Device Type / Woder	category	Description	254 (Extension)	Expanded Device Type	IVIIII. # OF PT
2											
2				-						-	
4				2)	
5					-				-		
6				-			-				-
7											
8											
9	-										
10				1							1
11											
12											-
13											
14											
15)	
16											
-				the second s							*

Figure 7 – RT Example (HART Scan)

RT Example – HART Multidrop

The HART multidrop example will continually acquire the primary variable data for a selected list of connected devices. This example is intended to be run after the previous (Scan Devices) example. Refer to Appendix \mathbb{C} for information on connecting multiple sensors.

Ed	it View Proj	ect O	perate	Tool	s Window He	lр				E	TH
	수 🕹 🔘 II	15pt	Arial		▼	•0	≝ ► S	earch		a 👂 E	ΤΗĽ
		This e	xample	vill q	uery a list of devi	ces via	multi	drop mode			
HAI	RT Channel Sele	ct									
3	Channel 0	<u> </u>									
	Long Addre	esses		Prir	mary Variable Data	,	# of	Attempts		Time (ms)	
0	0000000	000	0		0.000	0	10	0	0	0	
	0000000	000		1	0.000		1	0		0	
	0000000	000		đ	0.000		d.	0		0 0	
	0000000	000			0.000		1	0		0	
	0000000	000		4	0.000			0		0	
	0000000	000		1	0.000		4	0		0	
	0000000	000		đ	0.000		0	0		0	
	0000000	000		-	0.000		19	0		0	
	0000000	000			0.000		19	0		0	
	0000000	000		4	0.000			0		0	
	0000000	000		4	0.000		6	0		0 0	
	0000000	000			0.000		d.	0		0	
	0000000	000		1	0.000		10	0		0	
	0000000	000		0	0.000		10	0		0	
	0000000	000		4	0.000		R	0		0	
	Step 1. Enter lor	ng addr	esses								
Ref	resh Rate (ms)	Iotal	lime (m:	;)				Error OL	л 		r -
W.	10000	Loon	terations					status	0		
			0	_				source			
		Device	e Iteration	15	O.u.s.					*	
		J	0		HART Data T HART Data R	ransmi leceiver	tted? d?				
								5	STOP E	xample	

Figure 8 – RT Example (HART Multidrop)

RT Example – RS-232 Echo

The RS-232 to HART emulator example's purpose is to allow the AM-9898 module (and cRIO) to be used with an off-the-shelf RS-232 HART master application. The emulator will continually read the RS-232 port on the cRIO and will echo any data through the AM-9898 module, and vice versa. This emulator has been thoroughly tested using HART Server v3.1 master application and is delivered as is.

ile Edit View Project Op 수 & @ II 14+ S	erate Tools Window H	1-98 IBT
RS-232 to H This application will receive RS-2	ART Emulator 32 to transmit HART and vice versa.	
Channel Select	Serial Received	
Channel 0	0	
	HART Received	
Change Channel	0	
	Tick Count(mSec)	1
Error Status	0	
status code		
0		
source		
<u> </u>	STOP Application	-

Figure 9 – RT Example (RS-232 Echo)

Appendix A – Changing cRIO Targets

The AM-9898 Project example includes support for the cRIO-9074 real-time controller and FPGA target. If another cRIO target is used (example cRIO-9073), you must add your target to the AM-9898 Project. After adding your target, you can move the contents from the cRIO-9074 target to your new target.

Create a new real-time target in the **Project Explorer** window.

File Edit View Project Operat 1 1 1 1 1 1 Items Files	e Tools Window Help		
Project: AM-9898 HART M	New	•	Target Folder
- Proving Compared	Explore		Targets and Devices
Build Specifications → M RT CompactRIO Target –	Show in Files View	Ctrl+E	New
AM-9898_AI_Rea AM-9898_HART_ AM-9898_HART_ AM-9898_HART_ AM-9898_HART_ AM-9898_HART_ Chassis (cRIO-9074) FPGA Target (RIC Chassis I/O Mod1	Save As Save All (this Project) Mass Compile View Find Items with No Callers Find Missing Items Find Items Incorrectly Claimed by a Library	•	
- 🔜 AM-9898 FPG	Import	•	
→ 🔐 Mod1 (Slot 1, ⊕ 🐨 Dependencies	Find Project Items		
⊕ Suild Specific ☐ P ☐ Dependencies Build Specifications	Arrange By Expand All Collapse All	*	
	Rename	F2	
	Properties		

Figure 10 – Changing cRIO Targets

Supporting Links:

Moving Examples to Another FPGA Target

http://zone.ni.com/devzone/cda/tut/p/id/5075

Reusing FPGA VIs and FPGA Items among Multiple FPGA Targets

http://zone.ni.com/reference/en-XX/help/371599B-01/lvfpgahelp/reusing_fpgaio/

Appendix B – Changing Module Slots

The example project is configured to have the module inserted into the first cRIO slot but the module can be inserted in any available slot. This appendix describes how to change the slot position.

Figure 11 – Changing Module Slots

Step 1. Insert the module into the desired cRIO slot

Step 2. Right-click the FPGA Target and add New...C Series Modules

Step 3. Click *Existing target or device* in order to scan for inserted module

Step 4. Remove the previous Mod1 module as well as the Mod1 virtual folder

Step 5. Open the AM-9898 FPGA Main Example.vi

Step 6. Link all nodes to new module (AI, property nodes, etc...)

Appendix C – Multidrop Mode

The AM-9898 module is designed for a normal 4-20 mA input loop range. To use the module for more than 5 sensors in multidrop mode, each set to its minimum (assuming 4 mA), an external component is required to limit the current through the loop to a maximum of 20 mA. The recommended component is a 100 mH inductor rated for the maximum expected current (60 mA for 15 sensors). Refer to Figure 14 when wiring a multidrop network.

Recommended Inductor

Digikey P/N Bourns Mfg. P/N Description M8337-ND 5900-104-RC 100 mH Hi current choke, 65 mA

Appendix D – Terminal Assignment

The AM-9898 module consists of a 10-position screw-terminal as shown below. There are a total of four (4) channels that can be wired for the AM-9898 module (Ch 0, Ch 1, Ch 2, and Ch 3). The input for each channel shall be wired to the + side while the return shall be wired to the – side. The N/C (pin 2 and pin 7) are not used.

Appendix E – Specifications

This appendix describes the physical characteristics of the AM-9898 hardware, along with the recommended operating conditions.

Power Requirements

Power Consumption (from cha	ssis)
Active Mode	325 mW max
Sleep Mode	5 mW max
Operating Voltage	5 ± 5 % VDC

Thermal Dissipation (at 70 °C)

Active Mode	657 mW max
Sleep Mode	466 mW max

Physical

Form Factor	NI CompactRIO module
Height	3.5 inches (88.9 mm)
Depth	2.8 inches (71.1 mm)
Width	0.9 inches (22.86 mm)
Weight	138.5 grams
•	•

Environmental

AM-9898 modules are intended for indoor use only, but may be used outdoors if installed in a suitable enclosure. Refer to the installation instructions for the CompactRIO chassis you are using for more information about meeting these specifications.

40 to 70 °C
10 to 90 % RH, non-condensing
2
2,000 meters

Analog Input Accuracy Specification

Max Accuracy over Temp at Full Scale	1.0	%
Typical Accuracy at 25 Deg C	0.1	%

HART Specification

RX Impedance	272Ω
Capacitance	13 nF
Max Input Current per Channel	20 mA

Ingress Protection

AM 9898	IP 30
AM 9898 with screw connector attached	IP 40

Appendix F – Network Connections

This appendix describes how to make point to point as well as multidrop network connections.

Figure 14 – Multidrop Network

Continue adding devices as shown for multidrop mode. As noted in Appendix C, ensure an inductor is in place if using multidrop with more than five (5) devices otherwise damage to the module can occur.