

https://www.apexwaves.com/modular-systems/national-instruments/compactrio-controllers/cRIO-FRC?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/compactrio-controllers/cRIO-FRC?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/compactrio-controllers/cRIO-FRC?aw_referrer=pdf

LabVIEW

Getting Started with LabVIEW
for theFIRSTRobotics Competition

October 2008 ¢ NATIONAL
372600A-01 "INSTRUMENTS’”

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters
11500 North Mopac Expressway AumstTexas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599,
Canada 800 433 3488, China 86 21 5050 9800, KRapublic 420 224 235 774, Denmark 45 45 76 26 00,
Finland 358 (0) 9 725 72511, France 01 57 66 24 24, Germany 49 89 7413130, India 91 80 41190000,

Israel 972 3 6393737, Italy 39 02 4130923@pan 0120-527196, Korea 82 02 3451 3400,

Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710, kel 800 010 0793, Netherlands 31 (0) 348 433 466,
New Zealand 0800 553 322, Norway 47 (0) 66 90 76@@land 48 22 3390150, Portugal 351 210 311 210,
Russia 7 495 783 6851, Singapore 1800 226 5886, Slaadt 3 425 42 00, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151, Taiwan 886 02 2377 2222,
Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545

For further support information, refer to thiechnical Support and Bfessional Servicesppendix. To comment
on National Instruments docuntation, refer to the Natioh#nstruments Web site at.com/info and enter
the info coddeedback .

© 2008 National Instruments Corpaion. All rights reserved.

Important Information

Warranty

The media on which you receive Nationadtiuments software are warranted not to fail to execute programming instructions,diéfiects
in materials and workmanship, for a perimidd0 days from date of shipment, as evickEhby receipts or other documentatiomtiNinal
Instruments will, at its option, repair or replace software métt do not execute programmiimstructions if National Instments receives
notice of such defects during the warranty period. Nationatunments does not warrant that the operation of the softwalieogha
uninterrupted or error free.

A Return Material Authorization (RMA) numbenust be obtained from the factory aneacly marked on the outside of the packagf®re any
equipment will be accepted for warramigrk. National Instruments will pay the shippicosts of returning to the owner pavtsich are covered by
warranty.

National Instruments believes that the information in this document is accurate. The document has been vawkdyaeechnical accuracy. In
the event that technical or typaghical errors exist, Nianal Instruments reserves the riglhimake changes to subsequaetitiens of this document
without prior notice to holders of this edition. The reader shoohsult National Instruments if errors are suspected. évexat shall National
Instruments be liable for amlamages arising out of ofaed to this document orghinformation contained in it.

ExcepTas SPECIFIEDHEREIN, NATIONAL INSTRUMENTSMAKES NO WARRANTIES, EXPRESSOR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESSFORA PARTICULAR PURPOSE CUSTOMER S RIGHT TO RECOVERDAMAGES CAUSEDBY FAULT OR NEGLIGENCEON THE PART OF NATIONAL
INSTRUMENTSSHALL BE LIMITED TO THE AMOUNT THERETOFOREPAID BY THE CUSTOMER NATIONAL INSTRUMENTSWILL NOT BE LIABLE FOR DAMAGES RESULTING

FROM LOSSOF DATA, PROFITS USE OF PRODUCTS OR INCIDENTAL OR CONSEQUENTIALDAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOR This limitation of

the liability of National Instruments will apply regardless offimen of action, whether in contract or tort, including ngefice. Any action against
National Instruments must be brought withime year after the cause of action acsridational Instruments shall not be lefior any delay in
performance due to causes beyond its reasonable control. Thetyvpreaded herein does not covdtamages, defects, malfunctions, or service
failures caused by owner’s failure to folf the National Instruments installationgogtion, or maintenance instructions; owner's modification of the
product; owner’s abuse, misuse, or negligent acts; and power failure or surgispfirexccident, actions of third parties other events outside
reasonable control.

Copyright

Under the copyright laws, this publication may not be reprodacadnsmitted in any form,@ttronic or mechanical, includipphotocopying,
recording, storing in an information retved system, or translating, in whole or in part, without the prior written con$&dtmnal
Instruments Corporation.

National Instruments respects the intellatproperty of others, and we ask our agerdo the same. NI software is protedig copyright and other
intellectual property law&Vhere NI software may be used to reproduce softwarther materials belonging to others, you raag NI software only
to reproduce materials that you nraproduce in accordance with the terms of @pplicable license arther legal restrictian

Trademarks

National Instruments, NI, ni.com, and LabVIEW are tradem of National Instruments Corporation. Refer toTkeems of Useection
on ni.com/legal for more information about Ni@nal Instruments trademarks.

Other product and company nasmaentioned herein are trademarks adérnames of their respective companies.

Members of the National Instruments Alliance Partner Prograrbuginess entities independenbirNational Instruments andveno agency,
partnership, or joint-veure relationship with National Instruments.

Patents

For patents covering National Instruments prasittechnology, refer to the appropriate locatideip»Patentsin your software,
the patents.txt file on your media, or thBlational Instruments Patent Notiegni.com/patents

WARNING REGARDING USE GFOWARL INSTRUMENTS PRODUCTS

(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORBAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATINGYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE
COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES,
TRANSIENT FAILURES OF ELECTRONIC SYSHMS (HARDWARE AND/ORSOFTWARE), UNANTICIPATED USES OR MISUSES, OR
ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF
HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY
UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH,
THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES,
INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS
CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION
DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY
RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER
NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT
LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Contents

About This Manual

CONVENTIONS Leutiiiii it s e st e s e e e e e e e eeaeaeeeeeeeeeeeeeesssssere [X
Chapter 1
Introduction to LabVIEW
LabVIEW VI Templates and EXGIE VIScoooiiiiiiiiiiiiieiiiiieee e 1-1
LabVIEW VI TEMPIALES......eeiiiiiiiiiieiiiiece et 1-1
LabVIEW EXaMPIE VIS ..coiiiiiiiiiiiieieee et 1-2
Related DOCUMENTALION.ccieeiiiieeeeeeeee e e e e e e e e e e e e s e et e e e e e s eeaa s eeeeeeaees 1-2
LABVIEW HEIP .o 1-2
LABVIEW MaANUAIS.......ciiiiiieiiie ettt e e e e enaaans 1-3
FRC-SPECIfIC RESOUICES.eiiiiiiiiiiie ettt 1-3
Chapter 2
Introduction to Virtual Instruments
FrONE PNl ... ettt e e 2:2.......
1] [oTod 1 BT To | =11 TR T PRSP 2-2
TEIMINAIS ...cvti et e e e et e e e e e e et e e e e e eebaanns 2-3
[N LoTo [T SRR 2-4
LA T T PO 2-4
SHTUCTUIES ..ot e e e e e e e e e e e e e et e e eaaans 2-5
IcoN and CONNECION PANEooiiiiie et e e 2-5
Using and Customizing VIS @and SUDVIS ..o 2-6
Chapter 3
LabVIEW Environment
Getting Started WINGOWueuueiiiiiiiis e e e e e ee e ee e s 3-1
Context HElp WINAOWcooo i eeaaeaeanenne 3-2
Project EXPIOrer WINGOWuuuuiueieiiiiiiiisis e e e e e e e e e eeeeee e e e et e e e e eeeeeeeee e eernennennnnnnanas 3-2
N E= AV o F= Lo o T VAV T o (o L 3-3
CONIOIS Plvveiie et e a e T SUUT 3
FUNCHIONS PalBtB. .. et e e e aaaaas 4. 3-
Navigating the Controls and Functions PaletteS...........cccceee e 3-4
TOOIS PAIBLLE ...cvvvieeeee e e e e e e e et eeeeeaaan 3:4........
MeENUS AN TOOIDAIS........ooiiiii e e e e e e e b s 3-5
SROMCUL MENUS ... e e e e e e e e et e e e e 3-5
Shortcut Menus in RUN MOAE........ccoiiiiiiiiiiieeee e 3-5

© National Instruments Corporation % Getting Started with LabVIEW for FRC

Contents

RV I o T | o -V O SRRRRR 3-5
Project Explorer Window Ta@bars ... 3-6
Customizing Your Work ENVIFONMENTccouueiiiiiiiieiiiiiee et 3-6
Chapter 4
Building the Front Panel
Front Panel Controls and INAICALOrSooiiiiiiiiiiiieii e 4-1
Numeric Controls and INAICALOrSooiiiiiiiiiiiiiii e 4-1
Boolean Controls and INdICAtOrS...........uuuiiiiiiiiiiiiiee e 4-2
String Controls and INAICALOrSooiiiiiiiiiiii e 4-2
Configuring Front Panel ObJECTS..........uuuiiiiiiiieiiie e 4-3
Changing Controls to Indicators and Icaliors to Controls.............ccccceeeeee. 4-3
Replacing Front Panel ObjectS.........oooiiiiiiiiiiiee e 4-3
Configuring the Front PANelooooi e 4-4
(00] (o] g1 0T [@] o] =T ox 13U UURR TR 4-4
Aligning and Distributing OBJECESuueiiiiiiieiiiee e 4-5
Grouping and Locking ObJeCtS........ooiiiiiiiiiiiiieeee e e 4-5
RESIZING ODJECLS ... 4-5
Adding Space to the Front Panel with&®dsizing the Window................. 4-6
1= o111 o o PP 4:6.....
Designing User INtEIfaCeS.uiiii i s 4-7
Chapter 5
Building the Block Diagram
(2] oTol 1l DI To |- Ta a1 @] o] [=]ox £ PP 5-1
Block Diagram TermMiNalS.........c.ceeiiiiiiiiiiiiiieieee e eecierie e e e e e e s snvareeeeeeae s 5-1
Control and Indicator Data TYPESuvvveiviieeeeiiiiiiiiieeeee e e e e s e 5-2
CONSLANES ...t 5-3
(=] (o o1 QI IT= To [ir= 1 4 TN N[0 To 1= PP 5-3
FUNCHIONS OVEIVIEW........eiiiiiiiiiiiee ettt e e e s e e e 5-4
Adding Terminals t0 FUNCLONS..........uiiiiiiiiiiei e 5-4
BUilt-In VIS and FUNCHIONS........coiiiiiiiiiiiiiccc e 5-4
Using Wires to Link Block Diagram ODjJECtSum....cvvvivieiieiiiiiiiiiiiiiisss e e e e e 5-5
Wire Appearance and StrUCLUIEcccoeiiiiieiee e 5-5
L AT T o T] o] = £ PSPPI 5-5
SEIECHNG WIIES ..ttt e e e e e e e e e e aaaeees 5-6
Correcting BroKEN WIMESuuuuieie it 5-6
(21 (oot QI T= Ve [ir= 1 ¢ I = = B [1 5-7
Designing the BIOCK DIiagramcooviiiiiiiiiiiiiiiiirisss s e e e e e e e e e e e e e e aeeeeeeeeeeeeaaesenrnne 5-8

Getting Started with LabVIEW for FRC Vi ni.com

Contents

Chapter 6
Running and Debugging VIs
RUNNING VIS ...ttt e e e e e e beeeeed N 6
Correcting BroKeNn VIS ...t e e e e e 6-2
Finding Causes for BroKen VIS ... 6-2
Common Causes Of BIOKENS/L.......ooiuiiiiiiiiiiiieee e 6-3
Debugging TECHNIQUEScooiieieeeeee ettt e e e e e e e e e e e e 6-3
Execution Highlightingcooooooii e 6-3
Sy [ae | (RS (=T o] o1 o To [P PP UUT TP 6-4
[(0] ¢TI o Lo | PO PPPRP 6-4
BIEaKPOINTSeeeiiiiiee ettt e e e e e aaa e e 6-4
EFTOF CIUSTEIS. .. ceiiiiiee ittt e e e e e e et eeeaaaae s 6-5
Chapter 7
Creating VIs and SubVIs
Using Built-In VIS @nd FUNCHONScceiiiiiiiiiiiiiiiiee et e e e e e st ee e e e e e e e e ennes
Creating SUDVISo et e e e e e e e e e st e e e e ae e e s e s e nenrrnae e
(1= Y= 4] oo =10 1 (oo] o [P EERR P
Building the Connector Pane.................
Creating SubVIs from Sections of a VI
Designing SUbVI Front Panels ...t
ST= Y/ Vo Y £ PRSP 1-4......
L1013 (o] 3114 oo IV £ SRR 7-5
Chapter 8
Loops and Structures
For Loop and While LOOP STIUCERScoocueeeiieiiiiiiie it eeeeaes 8-2
T] 0 Lo L= TP PP T PTPPTR T 8-2
WHIlE LOOPS ...ttt et 8-3
CoNtrolling TIMINGveeeee e 8-4
AULO-INAEXING LOOPS.....eeiiiiiiiiiiiee ettt 8-5
Auto-Indexing to Set the For LoopoGntccoocvveeveiniiieeeniinnenn. 8-5
Auto-Indexing with WhileLoopsoccovveiiiiiiiiiiiiee e, 8-6
USiNG LOOPS t0 BUIIA AITAYS.....ccciiiiiiiiiiiiiiee ettt 8-6
Shift REQISIErS iN LOOPSvviiiiiiiiiiie e 8-7
Initializing Shift REGISIErSccoiiiiieiiiie e 8-8
Stacked Shift REQISLErSocuuviiiiiiiiiiii e 8-9
Default Data in LOOPSovveiieiiiiieee ittt 8-10
CASE STTUCTUIES ...ttt e e e e e e e e e e e e e e e 10....... 8-
Case Selector Values and Dat@ TYPES e ceeeirrreeeeriiiiieeesiniiieeeesnieeeeeenaes 8-11
INput and OULPUL TUNNEISeeei i 8-12

© National Instruments Gmration vii Getting Started with LabVIEW for FRC

Contents

Chapter 9
Grouping Data Using Stigs, Arrays, and Clusters
Grouping Data With StrNGS........ceeeiiiiriiiiiiiie e 9-1
SENG CONLIOIS e e e e e s 9-1
Table CONLIOIS.....eeiiiiiiieeee e e e 9-1
Grouping Data with Arrays and CIUSTEISccecccuiiiiiiiiiieae e 9-2
F N £ €=\ T TP T PP T PP TR TP 9-2
RESICHONS ...ttt 9-2
INOEXES ..ttt 9-2
Creating Array Controls, Indicatorand Constants.............cccccee.... 9-3
ATy FUNCHONS ...ttt 9-3
CIUSTEIS ...ttt et e e e st e e s bbb e e s s s 9-4
Order of Cluster EIEMENtSoeeiiiiiiiieeiiieeee e 9-4
ClUSTEr FUNCHIONS ...ttt 9-5
Creating Cluster Controls, Indicatoesyd Constants....................... 9-5
Chapter 10
Formula and MathScript Nodes
Creating FOrmula NOAES.uuiiiiiieie e e e e e e e e e e e e eae e s e e s nnnnnes 10-1
Creating MathScript NOUESc.coi i e e ae e 10-2
Chapter 11
Local Variables, Global \feables, and Race Conditions
LOCAl VariADIES. ... ~1..... 11
GIODAl VarTADIES ... 2....11-
RACE CONAIIONS.eeiiiieee ettt e e bbb e e e e e 2.11-
Chapter 12
State Machines
StAte DIAGIAIMS. . cci i ittt e e e e e et et e e e e e e e e e e nb e beeeeeaaeaeaeaaand ALl 12
Using the Standard State Machine VI Templateccccooiiiiiiiiiiiiiieiieeee e 12-2
Modifying the Standard Stateddhine VI.............ccccoiiiiiiiiii e, 12-4
Designing the Front Panel Window ... 12-4
Arranging the Controls and Indicators e Block Diagram 12-5
Defining the States of tHetate Machine...........ccccccoviiii e, 12-6
Configuring the No Money State....ece.oooeeiiiiiiiiiiiieiiieee e 12-7
Configuring the Five Cents State.........c..uvveiieiieiiiiiiiieieeeeeee, 12-9
Configuring the Ten Cents State ... 12-11

Getting Started with LabVIEW for FRC viii ni.com

Contents

Chapter 13
Developing a Program
BraiNStOrMINGueeeeeiiiaaeiiiiiiiiie it eee e e e e e e e s sinnresseeeeaeeeesssssnnnnsseeeesa il 13
Identifying INPUES/OULPULS........ooiiiiiie ettt 13-2
Identifying Potential Problems.............c..euiii e 13-2
Developing FIOWCRHAISueiiiie e 13-3
IMplementing the COE....... ... e e e e e 13-4
Verifying the COOE.... ...t e e e e e 13-5
Programming iN @ GIOUPeeeeiaaaaai ittt e e e et e e e e e e e e e abb e e e e e e aaae s e s aannnbbeeeeeas 13-6
ANAIYZING the PrOJECT. a e e e enb e 13-6
Appendix A

Technical Support androfessional Services

© National Instruments Corporation ix Getting Started with LabVIEW for FRC

About This Manual

Conventions

Use this manual as a tutorial to familiarize yourself with the LabVIEW
graphical programming environment and the basic LabVIEW features you
can use to builéFIRSTRobotics Competitio(FRC) applications.

This manual describes LabVIEW programming concepts, techniques,
features, VIs, and functions you case to create FRC plications. This
manual does not include specififdnmation about each palette, tool,
menu, dialog box, control or indicator, or built-in VI or function. Refer to
theLabVIEW Heldor more information abodhese items and for detailed,
step-by-step instructis for using LabVIEW features and for building
specific applications. Refer to tielated Documentatiosection of
Chapter 1)ntroduction to LabVIEWfor more information about the
LabVIEW Helpand how to access it.

TheRobotics Programming Guide for the FIRST Robotics Competition
provides information about robotics programming concepts and reference
information about th&€IRSTRobotics Competition Vis. Refer to the
Related Documentatiosection of Chapter Introduction to LabVIEW

for more information about thRobotics Programming Guide for the

FIRST Robotics Competitiand how to access it.

»

> @

bold

This manual uses the following conventions:

The» symbol leads you through nested menu items and dialog box options
to a final action. The sequenEde»Page Setup»Optionglirects you to

pull down theFile menu, select thBage Setuptem, and seledDptions

from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.
This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

Bold text denotes items that you mastect or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names, controls and indicators on tranfrpanel, dialog boxes, sections of
dialog boxes, menu names, and palette names.

© National Instruments Corporation Xi Getting Started with LabVIEW for FRC

About This Manual

italic

monospace

monospace bold

Italic text denotes variables, emphasisross-reference, or an introduction
to a key concept. Italic text also deestext that is a placeholder for a word
or value that you must supply.

Text in this font denotes text orafacters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the propenres of disk drives, paths, directories,
programs, subprograms, subroutirdeyice names, operations, variables,
filenames, and extensions.

Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. Thisit also emphasizes lines of code
that are different fronthe other examples.

Getting Started with LabVIEW for FRC Xii ni.com

Introduction to LabVIEW

LabVIEW (Laboratory Virtual Instrum# Engineering Workbench) is a
graphical programming language that usess instead of lines of text to
create applications. In contrast to text-based programming languages,
where instructions determine thaler of program execution, LabVIEW
uses dataflow programming, where tfiow of data through the nodes on
the block diagram determines the exemuorder of the VIs and functions.
VIs, or virtual instruments, are b IEW programs thaitmitate physical
instruments.

In LabVIEW, you build a user interface by using a set of tools and objects.
The user interface is known as therit panel. You then add code using
graphical representations of functidiescontrol the front panel objects.

The block diagram contains this codéis graphical source code is also
known as G code or block diagram code. In some ways, the block diagram
resembles a flowchart.

Refer to Chapter &Building the Front Panelfor more information about
the front panel. Refer to ChapterBjilding the Block Diagraifor more
information about the block diagram.

LabVIEW VI Templates and Example Vis

Use the LabVIEW VI templates, exarepVls, and tools as a starting point
to help you design and build Vis.

LabVIEW VI Templates

The built-in VI templates include ¢hsubVIs, functions, structures, and
front panel objects you need to get started building common applications.
VI templates open as untitled Vls that you must save. SeleciNewto
display theNew dialog box, which lists the built-in VI templates. You also
can display thé&ew dialog box by clicking th&lew link in the Getting

Started window.

© National Instruments Corporation 1-1 Getting Started with LabVIEW for FRC

Chapter 1 Introduction to LabVIEW

LabVIEW Example Vs

LabVIEW searches among hundreds of example VIs you can use and
incorporate into VIs thatou create. You can modifgn example to fit an
application, or you can copy and maftom one or more examples into a
VI that you create. Browse or seatble example Vs with the NI Example
Finder by selectingielp»Find Examples

The FRC software provides exampes that demonstrate how to use
the FRC VIs to build robotics apphtions. Access these example VIs
by navigating to thélational Instruments\LabVIEW 8.5\

examples\FRC Examples directory.

Refer to NI Developer Zone atcom/zone for additional example VIs.

Related Documentation

LabVIEW includes extensive documation for new and experienced
LabVIEW users.

LabVIEW Help

Use theLabVIEW Helpto access informin about LabVIEW
programming concepts, step-by-step instructions for using LabVIEW,
and reference information about LabWIEVIs, functions, palettes, menus,
and tools. Thé.abVIEW Helpalso contains refenee informaion about
FRC-specific VIs and dialog boxes.

TheLabVIEW Helpincludes links to theethnical support resources
on the National Instruments Web site, such as NI Developer Zone,
the KnowledgeBase, and the Product Manuals Library.

Access tha.abVIEW Helpby selectindHelp»Search the LabVIEW
Help. You also can print a help topic or a book of help topics from the
LabVIEW Help

Refer to thd.abVIEW Helpfor more information about printing help
topics.

Getting Started with LabVIEW for FRC 1-2 ni.com

Chapter 1 Introduction to LabVIEW

LabVIEW Manuals

The following manuals contain information that you might find helpful as
you use LabVIEW:

» Getting Started with LabVIEWUse this manual as a tutorial to
familiarize yourself with the LabVIEW graphical programming
environment and the basic LabVIEf@atures you use to build data
acquisition and instrument control applications.

« LabVIEW Quick Reference CardJse this card as a reference for
information about documentation resources, keyboard shortcuts, data
type terminals, and tools for editing, execution, and debugging.

* LabVIEW FundamentalsUse this manual to learn about LabVIEW
programming concepts, techniqusstures, VIs, and functions you
can use to create test and measurement, data acquisition, instrument
control, dataloggingneasurement analysis, and report generation
applications. Th&abVIEW Helpncludes all the content in this manual.

These documents are available as PDFs iNlienal Instruments\
LabVIEW 8.5\manuals directory. You must have Adobe Reader 6.0.1 or
later installed to view or search the PDFs.

Refer to the Adobe Systems Incorporated Web sitevatadobe.com

to download Acrobat Reader. Refer to the National Instruments Product
Manuals Library abhi.com/manuals for updated documentation
resources.

FRC-Specific Resources

The following resources contain information that you might find helpful as
you use LabVIEW to build FRC applications:

* Robotics Programming Guide for the FIRST Robotics
Competitior—Use this manual to access information about robotics,
programming concepts, refeiee information about thelRST
Robotics Competition VIs, and guidelines for troubleshooting in
LabVIEW. Access this marml by navigating to th&lational
Instruments\LabVIEW 8.5\manuals directory and opening
FRC_Programming_Guide.pdf

* cRIO-FRC Operating Instructions and Specificatieridse this
manual to learn about installing, configuring, and using the
CompactRIO device for tHeIRSTRobotics Competition.
Access this manual by navigating to thational Instruments\
CompactRIO\manuals directory and opening
crio-frc_Operating_Instructions.pdf

© National Instruments Corporation 1-3 Getting Started with LabVIEW for FRC

Chapter 1 Introduction to LabVIEW

¢ FRC Community-Refer to the FRC Community Web site at
www.usfirst.org/community/frc for official information about

the FRC competition, including rules and regulations as well as
support information.

Getting Started with LabVIEW for FRC 1-4 ni.com

Introduction to Virtual Instruments

LabVIEW programs are called virtualstnuments, or Vs, because their
appearance and operation imitatgsibal instruments, such as
oscilloscopes and multimeters. Every Wes functions that manipulate
input from the user interface or other sourcesdisplay that information
or move it to other files or other computers.

A VI contains the following three components:
» Front panel—Serves as the user interface.

» Block diagram—Contains the graphical source code that defines the
functionality of the VI.

* Icon and connector pane—Identifies the interface to the VI so that
you can use the VI innother VI. A VI within another VI is called a
subVI. A subVI corresponds #subroutine in text-based
programming languages.

Click theBlank VI link in theGetting Started window to create a new,
blank VI. You also can create a ndank VI by pressing the <Ctrl-N>
keys.

© National Instruments Corporation 2-1 Getting Started with LabVIEW for FRC

Chapter 2 Introduction to Virtual Instruments

Front Panel

The front panel is the user interface of the VI.

Figure 2-1. Front panel of a VI

You build the front panel using controls and indicators, which are the
interactive input and output terminals, respectively, of the VI. Controls are
knobs, push buttons, dials, and other input mechanisms. Indicators are
graphs, LEDs, and other output displays. Controls simulate instrument
input mechanisms and supply data to the block diagram of the VI.
Indicators simulate instrument output mechanisms and display data the
block diagram acquires or generates.

Refer to Chapter Building the Front Panelfor more information about
the front panel.

Block Diagram

After you build the front panel, you add code using graphical
representations of functions to contitee front panel objects. The block
diagram contains this graphical source code, also known as G code or block
diagram code. Front panel objects appear as terminals on the block
diagram.

Getting Started with LabVIEW for FRC 2-2 ni.com

Chapter 2 Introduction to Virtual Instruments

The following VI contains several primary block diagram
objects—terminals, functions, and wires.

Figure 2-2. Block diagram and oesponding front panel

Refer to Chapter Building the Block Diagramfor more information
about the block diagram.

Terminals

Terminals represent the data typecohtrols and indicators. You can
configure front panel controls or indicas to appear as icon or data type
terminals on the block diagram. By default, front panel objects appear as
icon terminals. For example, a knob icon terminal, shown as follows,
represents a knob on the front panel.

The DBL at the bottom of the minal represents a data type of
double-precision, floating-point numeric.

© National Instruments Corporation 2-3 Getting Started with LabVIEW for FRC

Chapter 2 Introduction to Virtual Instruments

Terminals are entry and exit portatlexchange information between the
front panel and block diagram. Datawyenter into the front panel controls
enters the block diagram through the control terminals. Returned data
values pass from the block diagram to the front panel through the indicator
terminals. In Figure 2- andb are control terminals, argd-b anda—b are
indicator terminals.

Refer to theControl and Indicator Data Typesection of Chapter 5,
Building the Block Diagramfor more information about data types in
LabVIEW.

Nodes

Nodes are objects on the block diagram that have inputs and/or outputs and
perform operations when a VI rurighey are analogous to statements,
operators, functions, and subroutines in text-based programming
languages. The Add and Subtract functions in Figure 2-2 are examples of
nodes.

Refer to théBlock Diagram Nodesection of Chapter Building the Block
Diagram, for more information about nodes.

Wires

Wires transfer data among block diagram objects. In Figure 2-2, wires
connect the control and indicatorrténals to the Add and Subtract
functions. Each wire has a single data source, but you can wire the data
source to many Vls and functions tmaad the data. Wires are different
colors, styles, and thicknesses, dapirg on their data types. A broken
wire appears as a dashed black line with xiedhe middle. Broken wires
occur for a variety of reasepsuch as when you try to wire two objects with
incompatible data types.

Refer to thdJsing Wires to Link Block Diagram Objeasction of
Chapter 5Building the Block Diagramfor more information about wires.

Getting Started with LabVIEW for FRC 2-4 ni.com

Chapter 2 Introduction to Virtual Instruments

Structures

Structures are graphicalmesentations of the los@nd case statements of
text-based programming languages. Use structures on the block diagram to
repeat blocks of code and to execute code conditionally or in a specific
order.

Refer to Chapter 8,00ps and Structuregor more information about
structures.

Icon and Connector Pane

After you build a VI front panel and block diagram, build the icon and the
connector pane so you can use the VI as a subVI. The icon and connector
pane correspond to the function prototype in text-based programming
languages. Every VI displays an icon, such as the one shown as follows,
in the upper right corner of the front panel and block diagram windows.

Refer to theCreating an Icorsection of Chapter Greating VIs and
SubVls for more information about icons.

You also need to build a connector pane, shown as follows, to use a Vl as a
subVI.

The connector pane is a set of terminals that correspond to the controls and
indicators of that VI, similar to the parameter list of a function call in
text-based programming languages.

Refer to theBuilding the Connector Pargection of Chapter Treating
VIs and SubV|gor more information about setting up connector panes.

@ Note Try not to assign more than 16 terminals VI. Too many teninals can reduce the
readability and usability of the VI.

© National Instruments Corporation 2-5 Getting Started with LabVIEW for FRC

Chapter 2 Introduction to Virtual Instruments

Using and Customizing VIs and SubVIs

After you build a VI and create its icon and connector pane, you can use it
as a subVl.

Refer to theCreating SubVIsection of Chapter Greating VIs and
SubVIs for more information about subVis.

You also can customize the agwance and behavior of a VI.

Refer to theCustomizing Visection of Chapter Creating VIs and
SubVIs for more information about customizing a VI.

Getting Started with LabVIEW for FRC 2-6 ni.com

LabVIEW Environment

The LabVIEW environment includes ti@etting Started window, the
Context Help window, theProject Explorer window, and th&lavigation
window. LabVIEW also includes palettes, tools, and menus to build the
front panels and block diagrams\dk. LabVIEW includes three palettes:
theControls palette, thé-unctions palette, and th€ools palette. You can
customize th&€ontrols andFunctions palettes, and you can set several
work environment options.

Getting Started Window

The Getting Started window appears when you launch LabVIEW. Use
this window to create new VIs, et among the mosécently opened
LabVIEW files, find examples, and launch thebVIEW Help You also
can access information and resourcelsetip you learn about LabVIEW,
such as specific manuals, help tgpiand resources on the National
Instruments Web sitej.com .

In LabVIEW for FRC, theetting Started window contains links to
FRC-specific resources and examphsu also can create an FRC cRIO
robotics project or an FRC dashboard project from@bting Started
window. Refer to th&obotics Programming Guide for the FIRST
Robotics Competitigraccessible by navigating to tNational
Instruments\LabVIEW 8.5\manuals directory and opening
FRC_Programming_Guide.pdf , for more information about creating
FRC projects and developing a robotics application.

TheGetting Started window disappears when you open an existing file or
create a new file. Th@etting Started window reappears when you close

all open front panels and block diagrams. You also can display the window
by selectingview»Getting Started Window.

© National Instruments Corporation 3-1 Getting Started with LabVIEW for FRC

Chapter 3 LabVIEW Environment

Context Help Window

The Context Help window displays basic information about LabVIEW
objects when you move the cursoeoeach object. Objects with context
help information include VIs, functits, constants, structures, palettes,
properties, methods, events, dialog box components, and items in the
Project Explorer window. You also can use ti@ontext Help window

to determine exactly where to carut wires to a VI or function.

Refer to thdJsing Wires to Link Block Diagram Objeasction of
Chapter 5Building the Block Diagramfor more information about using
the Context Help window to wire objects.

SelectHelp»Show Context Helpto display theContext Help window.
You also can display théontext Help window by clicking theshow
Context Help Window button, shown as follows, on the toolbar.

You also can display the window by pressing the <Ctrl-H> keys.

If a correspondingabVIEW Helptopic exists for an object tf@ontext
Help window describes, a blugetailed helplink appears in th€ontext
Help window. Also, théDetailed helpbutton in theContext Help window,
shown as follows, is enabled.

Click the link or the button to display more information about the object.

Project Explorer Window

Use theProject Explorer window to create and edit LabVIEW projects.
Use projects to group together LaAEW files and non-LabVIEW files,

create build specifications, and deploy or download files to targets. Select
File»New Projectto display theProject Explorer window.

TheProject Explorer window includes two pages, thems page and the
Files page. Thdtems page displays the project items as they exist in

the project tree. ThEiles page displays the project items that have a
corresponding file on disk. You can organize filenames and folders on this

Getting Started with LabVIEW for FRC 3-2 ni.com

Chapter 3 LabVIEW Environment

page. Project operations on thiées page both reflect and update the
contents on disk.

Refer to thd_abVIEW Helpfor more information about tHeroject
Explorer window.

Navigation Window

The Navigation window displays an overview of the active front panel in
edit mode or the activilock diagram. Use thidavigation window to

navigate large front panels or block diagrams. Click an area of the image in
the Navigation window to display that area in the front panel or block
diagram window. You also can click and drag the image ilN&wgation
window to scroll through the front pdra block diagram. Portions of the
front panel or block diagram that are not visible appear dimmed in the
Navigation window.

SelectView»Navigation Window to display theNavigation window.
You also can display the window by pressing the <Ctrl-Shift-N> keys.

Controls Palette

The Controls palette is available only on the front panel. Tantrols
palette contains the controls and indicatyou use to create the front panel.
The controls and indicators are locatedsubpalettes based on the types of
controls and indicators.

Refer to the=ront Panel Controls and Indicatosection of Chapter 4,
Building the Front Paneffor more information about the types of controls
and indicators.

SelectView»Controls Paletteor right-click the front panel workspace to
display theControls palette.

© National Instruments Corporation 3-3 Getting Started with LabVIEW for FRC

Chapter 3 LabVIEW Environment

Functions Palette

TheFunctions palette is available onlyn the block diagram. The
Functions palette contains the VIs and functions you use to build the block
diagram. The VIs and functions are located on subpalettes based on the
types of ViIs and functions.

Refer to the_abVIEW Heldor more information about the types of built-in
VIs and functions.

SelectView»Functions Paletteor right-click the block diagram
workspace to display tHeunctions palette.

Navigating the Controls and Functions Palettes

Click an object on the palette taapk the object on the cursor so you can
place it on the front panel or blockadiram. You also can right-click a VI
icon on the palette and selé€pen VI from the shortcut menu to open
the VI.

Click the black arrows on the left side of thentrols or Functions palette
to expand or collapse subpalettese3darrows appeanly if you set the
palette format t&Category (Standard)or Category (Icons and Text)

Click the Searchbutton on th&Controls or Functions palette toolbar to
perform text-based searches to loaaietrols, VIs, or functions on the

palettes. While a paletteiis search mode, click tHeeturn button to exit
search mode and return to the palette.

Tools Palette

TheTools palette is available on the front panel and the block diagram.
A tool is a special operating modéthe mouse cursor. The cursor
corresponds to the icon of the tool yaelect on the palette. Use the tools
to operate and modify front panel and block diagram objects.

If automatic tool selection is enabladd you move the cursor over objects
on the front panel or block diagratrgbVIEW automatically selects the
corresponding tool from thools palette. Automatic tool selection is
enabled by default.

Getting Started with LabVIEW for FRC 3-4 ni.com

Chapter 3 LabVIEW Environment

SelectView»Tools Paletteto display theTools palette.

Tip Press the <Shift> key and right-click to display a temporary version dfabls
palette at the location of the cursor.

Menus and Toolbars

Use the menu and toolbar items to operate and modify front panel and block
diagram objects.

The menus at the top of a VI window contain items common to other
applications, such &@pen, Save Copy, andPaste and other items
specific to LabVIEW. Some menu items also list keyboard shortcuts.

The menus display only the most reitgnised items by default. Click

the arrows at the bottom of a menu to display all items. You can display
all menu items by default by selectimgols»Options selecting
Environment from theCategory list, and removing the checkmark from
theUse abridged menusheckbox.

@ Note Some menu items are urgable while a VI runs.

Shortcut Menus

All LabVIEW objects have associatsortcut menus. As you create a VI,
use the shortcut menu items to chatigeappearance or behavior of front
panel and block diagram objects. decess the shortcut menu, right-click
the object.

Shortcut Menus in Run Mode

When a VI is running or is in runade, all front panel objects have an
abridged set of shortcut menu itemsdafault. Use the abridged shortcut
menu items to cut, copy, or paste thateats of the object, to set the object
to its default value, or to read the description of the object.

VI Toolbar

Use the buttons on the VI toolbarrtm VIs, pause Visabort Vis, debug
VIs, configure fonts, and align, group, and distribute objects.

Refer to Chapter &Running and Debugging V/I&r more information
about some of the toolbar buttons, or refer toLifieVIEW Helpfor a
complete list and description of the toolbar buttons.

© National Instruments Corporation 3-5 Getting Started with LabVIEW for FRC

Chapter 3 LabVIEW Environment

Project Explorer Window Toolbars

Use the buttons on ti&tandard, Project, Build, andSource Control
toolbars to perform operations in a LabVIEW project. The toolbars are
available at the top of tHeroject Explorer window. You might need to
expand thé’roject Explorer window to view all of the toolbars.

Refer to theProject Explorer Windowgection of this chapter for more
information about LabVIEW projects.

Customizing Your Work Environment

You can use th®ptions dialog box, available by selectidigols»

Options, to select a paletfermat and set other work environment options.
Use theDptions dialog box to set options for front panels, block diagrams,
paths, performance and disk issubs,alignment grid, palettes, undo,
debugging tools, colors, fonts, printing, tHestory window, and other
LabVIEW features.

Use theCategory list at the left side of th®ptions dialog box to select
among the different categories of options.

Getting Started with LabVIEW for FRC 3-6 ni.com

Building the Front Panel

The front panel is the user interfacead?l. Generally, you design the front
panel first and then design the block diagram to perform tasks on the inputs
and outputs you create on the front panel.

Refer to Chapter Building the Block Diagramfor more information
about the block diagram.

You can select controls and indicators from@uatrols palette and place
them on the front panel. Selagew»Controls Paletteto display the
Controls palette.

Front Panel Controls and Indicators

Use the front panel contragsd indicators located on tlR®ntrols palette

to build the front panel. Controls are knobs, push buttons, dials, and other
input mechanisms. Indicaware graphs, LEDs, and other output displays.
Controls simulate instrument input mechanisms and supply data to the
block diagram of the VI. Indicators simulate instrument output mechanisms
and display data the block diagram acquires or generates. The most
common controls and indicators are numeric, Boolean, and string controls
and indicators.

Numeric Controls and Indicators

Use numeric controls and indicatorstter and display numeric data. You
can resize these front panel objdutsizontally to accommodate more
digits. Change the value of a numeric control in any of the following ways:

» Use the Operating tool or the Labeling tool to click inside the digital
display window and enter numbers from the keyboard.

» Use the Operating tool to clitke increment or decrement arrow
buttons of a numeric control.

» Use the Operating tool or the Lalmgjitool to place the cursor to the
right of the digit you want to change and press the up or down arrow
keys.

© National Instruments Corporation 4-1 Getting Started with LabVIEW for FRC

Chapter 4

Building the Front Panel

By default, LabVIEW displays argtores numbers lé&ka calculator.

A numeric control or indicator displays up to six digits before
automatically switching to exponential notation. You can configure the
number of digits LabVIEW displays before switching to exponential
notation by right-clicking the numeric object and selecEogmat and
Precisionfrom the shortcut menu to display thermat and Precision
page of theNumeric Properties dialog box.

Boolean Controls and Indicators

Use the Boolean controls and indicators located oBtiméeanand

Classic Boolearpalettes to create buttons, switches, and lights.

Use Boolean controls and indicators to enter and display Boolean
(TRUE/FALSE) values. For exanglif you are monitoring the

temperature of an experiment, you can place a Boolean warning light on the
front panel to indicate when tiemperature exceeds a certain level.

Boolean controls have six typesméchanical action #t allow you to
customize the behavior of Boolean etts. Use Boolean controls to create
front panels that resemble the behavior of physical instruments. Use the
shortcut menu to customize the appearance and behavior of Boolean
objects.

String Controls and Indicators

Use string controls or indicators to manipulate and display text. Use the
Operating or Labeling tool to enter or edit text in a string control on the
front panel. By default, new or changed text does not pass to the block
diagram until you terminate the edit session. At run time, you terminate the
edit session by clicking elsewhere thie panel, changing to a different
window, clicking theEnter button on the toolbar, or pressing the <Enter>
key on the numeric keypad. Pressing the <Enter> key on the keyboard
enters a carriage return.

Right-click a string control or indicator to select a display type for the text
in the control or indicator, such as password display or hex display.

Refer to theGrouping Data with Stringsection of Chapter 93rouping
Data Using Strings, Arrays, and Clustefer more information about
string display types.

Getting Started with LabVIEW for FRC 4-2 ni.com

Chapter 4 Building the Front Panel

Configuring Front Panel Objects

UseProperties dialog boxes or shortcut menus to configure how controls
and indicators appear or behave on the front panelPusggerties dialog
boxes when you want to set several properties of an object at once. Use
shortcut menus to configure common control and indicator properties. The
options available iProperties dialog boxes and shortcut menus differ for
different front panel objects. Any option you set using a shortcut menu is
reflected in théroperties dialog box, and any option you set using the
Properties dialog box is reflected in the shortcut menu.

Right-click a control or indicator on the front panel and sdteaperties
from the shortcumenu to access tiRroperties dialog box for that object.
You cannot accegroperties dialog boxes for a control or indicator while
a Vlruns.

Changing Controls to Indicagand Indicators to Controls

LabVIEW initially configures objects in theontrols palette as controls or
indicators based on their typical use. For examphlgufplace a toggle
switch on the front panel, it appearsaasontrol because a toggle switch is
usually an input mechanism. If you place an LED on the front panel, it
appears as an indicator becaus&@D is usually an output device.

Some palettes contain a control andraficator for the same type or class
of object. For example, théumeric palette contains a numeric control and
a numeric indicator because you ¢eve a numeric input or a numeric
output.

You can change a control to an indaraby right-clicking the object and
selectingChange to Indicator from the shortcut menu, and you can
change an indicator toantrol by right-clicking the object and selecting
Change to Controlfrom the shortcut menu.

Replacing Front Panel Objects

You can replace a front panel objectiwa different control or indicator.
When you right-click an object and sel&gplacefrom the shortcut menu,

a temporangontrols palette appears. Select atol or indicator from the
temporaryControls palette to replace the current object on the front panel.

SelectingReplacefrom the shortcut menu prewes as much information
as possible about the original objectisas its name, description, default
data, dataflow direction (control or indicator), color, size, and so on. If you

© National Instruments Corporation 4-3 Getting Started with LabVIEW for FRC

Chapter 4 Building the Front Panel

replace a numeric terminal with ahet numeric terminal, LabVIEW tries

to preserve the original represeratiHowever, if the control does not
support the new data type, the new object retains its own data type. Wires
from the terminal of the object remain on the block diagram, but they might
be broken. For example, if you repk a numeric terminal with a string
terminal, the original wire remains on the block diagram, but is broken.

The more the new object resembles the object you are replacing, the more
original characteristics you can peege. For example, if you replace a

slide with a different sty slide, the new slide h#fse same height, scale,
value, name, descriptioand so on. If you replace the slide with a string
control instead, LabVIEW preservesly the name, description, and

dataflow direction because a slide do®t have much in common with a
string control.

You also can sele@dit»Copy andEdit»Pasteto copy objects to the
clipboard and paste them from the clipboard to replace existing front panel
controls and indicators. This methddes not preserve any characteristics
of the old object, but the wirgemain connected to the object.

Configuring the Front Panel

You can customize the front panel dtyanging the color of front panel
objects, aligning and distributing front panel objects, and so on.

Coloring Objects

You can change the color of most front panel objects and the front panel
and block diagram workspaces. You ranchange the color of system
controls and indicators because thegeaib appear in the colors you have
set up for your system.

Use the Coloring tool taght-click an object oworkspace to change the
color of front panel objects or tifie front panel and block diagram
workspaces. You also can change thiaulécolors for some objects by
selectingTools»Optionsand selectingolors from theCategory list.

Color can distract the user framportant information so use color
logically, sparingly, and consistently, if at all.

Getting Started with LabVIEW for FRC 4-4 ni.com

Chapter 4 Building the Front Panel

Aligning and Distributing Objects

Use grid alignment to align objects to the front panel grid when you place,
move, or resize them. Seldetlit>Enable Panel Grid Alignmentto

enable grid alignment on the front panel. Setatit»Disable Panel Grid
Alignment to disable grid alignment and use the visible grid to align
objects manually. You also can press the <Ctrl-#> keys to enable or disable
the grid alignment.

SelectTools»Optionsand selecAlignment Grid from theCategory list
to hide or customize the grid.

To align objects after you place these|ect the objects and select &lign
Objects pull-down menu, shown at left, on the toolbar or setelit»Align
ltems.

To space objects evenly, select the objects and seleRidtnbute
Obijects pull-down menu, shown at left, on the toolbar or sei&tit»
Distribute Items.

You also can use grid alignment on the block diagram.

Grouping and Locking Objects

Grouped objects maintain their relative arrangement and size when you use
the Positioning tool to move and resize them. Locked objects maintain their
location on the front panel, and you cannot delete them until you unlock
them. Use the Positioning tool to select the front panel objects you want to
group and lock together. Click tiReorder button, shown at left, on the
toolbar and selec®roup or Lock from the pull-down menu. You can set
objects to be grouped and lockedrat same time. Tools other than the
Positioning tool work normally with grouped or locked objects.

Resizing Objects

You can change the size of most frpanel objects. When you move the
Positioning tool over a resizable ebj, resizing handles or circles appear
at the points where you can resize the object. When you resize an object,
the font size remains the same. Regjz group of objects resizes all the
objects within the group.

Some objects change size only horizontally or vertically when you resize
them, such as digital nume controls and indicator®thers keep the same
proportions when you resize them, such as knobs. The Positioning cursor
appears the same, but the dashed border that surrounds the object moves in
only one direction.

© National Instruments Corporation 4-5 Getting Started with LabVIEW for FRC

Chapter 4 Building the Front Panel

You can manually restrict the growdirection when you resize an object.
To restrict the growth vertically or horizontally or to maintain the current
proportions of the object, press the <Shift> key while you click and drag
the resizing handles or circles. flasize an object around its center point,
press the <Ctrl> key while you click and drag the resizing handles or
circles.

To resize multiple objects to the sanmeesiselect the objects and select the
Resize Objectpull-down menu, shown at left, on the toolbar. You can
resize all the selected objects to the Winit height of the largest or smallest
object, and you can resize all the selected objects to a specific size in pixels.

Adding Space to the Front Pamvathout Resizing the Window

Labeling

You can add space to the front panwéhout resizing the window. To
increase the space between crowdetigbitly grouped objects, press the
<Ctrl> key and use the Positioning taolclick the front panel workspace.
While holding the key combination, drag out a region the size you want to
insert.

A rectangle marked by a dashedd®r defines where space will be
inserted. Release the mouse buttod te <Ctrl> key to add the space.

Use labels to identify objects on the front panel and block diagram.

LabVIEW includes two kinds of labels—owned labels and free labels.
Owned labels belong to and move with a particular object and annotate that
object only. You can move an owned label independently, but when you
move the object that owns the label, the label moves with the object. You
can hide owned labels, but you cannot copy or delete them independently
of their owners. You can display a separate owned label called a unit label
for numeric controls and indicators by right-clicking the numeric control or
indicator and selectingisible ltems»Unit Label from the shortcut menu.

Free labels are not attached to anyeobjand you can create, move, rotate,
or delete them independently. Use thienannotate front panels and block
diagrams. Free labels are useful documenting code on the block
diagram and for listing user instructions on the front panel. Double-click an
open space or use the Labeling tool to er&ate labels or tedit either type

of label.

Getting Started with LabVIEW for FRC 4-6 ni.com

Chapter 4 Building the Front Panel

Designing User Interfaces

If a VI serves as a user interfaceadatialog box, front panel appearance and
layout are important. Design the front panel so users can identify what
actions to perform. You can design front panels that look similar to
instruments or other devices.

Controls and indicators are the main components of the front panel. When
you design the front panel, consider how users interact with the VI and
group controls and indicators logicallyséveral controls are related, add a
decorative border around them or purthin a cluster. Use the decorations
located on th®ecorationspalette to group or separate objects on a front
panel with boxes, lines, or arrows. These objects are for decoration only
and do not display data.

© National Instruments Corporation 4-7 Getting Started with LabVIEW for FRC

Building the Block Diagram

After you build the front panel, you add code using graphical
representations of functions to cortiive front panel objects. The block
diagram contains this graphical source code, also known as G code or block
diagram code.

Block Diagram Objects

Objects on the block diagram include terminals and nodes. You build block
diagrams by connectingetobjects with wires. Tehcolor and symbol of

each terminal indicate the data tygfethe corresponding control or
indicator. Constants are terminals on the block diagram that supply fixed
data values to the block diagram.

Block Diagram Terminals

Front panel objects appear as temtsron the block diagram. Double-click
a block diagram terminal to highlight the corresponding control or indicator
on the front panel.

Terminals are entry and exit portattfexchange information between the
front panel and block diagram. Data values you enter into the front panel
controls enter the block diagram through the control terminals. During
execution, the output data values flmthe indicator terminals, where they
exit the block diagram, reenter the front panel, and appear in front panel
indicators.

LabVIEW has control and indicator terminals, node terminals, constants,
and specialized terminals on structunésu use wires to connect terminals
and pass data to other terminals. Right-click a block diagram object and
selectVisible ltems»Terminals from the shortcut menu to view the
terminals. Right-click the object and sel¥@sible Items»Terminals

again to hide the terminals. This shortcut menu item is not available for
expandable VIs and functions.

© National Instruments Corporation 5-1 Getting Started with LabVIEW for FRC

Chapter 5

Buildintpe Block Diagram

You can configure front panel controls or indicators to appear as icon or
data type terminals on the block diagram. By default, front panel objects
appear as icon terminals. For exde) a knob icon terminal, shown as
follows, represents a knob control on the front panel.

The DBL at the bottom of the tainal represents a data type of
double-precision, floating-point numeric.

A DBL terminal, shown as follows, represents a double-precision,
floating-point numeric control.

Right-click a terminal and remre the checkmark next to théew As Icon
shortcut menu item to display the data type for the terminal. Use icon
terminals to display the types of front panel objects on the block diagram,
in addition to the data types of the front panel objects. Use data type
terminals to conserve space on the block diagram.

Note Icon terminals are larger than data type terminals, so you might unintentionally
obscure other block diagram objects when you convert a data type terminal to an icon

Control terminals have a thicker border than indicator terminals. Also,
arrows appear on front pdrierminals to indicate wdther the terminal is a
control or an indicator. An arrow appears on the right if the terminal is a
control, and an arrow appears on tHeifehe terminal is an indicator.

Control and Indicator Data Types

Common control and indicator data types include floating-point numeric,
integer numeric, time stamp, enumerated, Boolean, string, array, cluster,
path, dynamic, waveform, refnum, and I/O name. Refer tbdab&1EW

Help for the complete list of control and indicator data types with their
symbols and uses.

The color and symbol of each termlrindicate the data type of the
corresponding control or indicator. Many data types have a corresponding
set of functions that can manipulate the data, such as the String functions
on theString palette that correspond to the string data type.

Getting Started with LabVIEW for FRC 5-2 ni.com

Chapter 5 Building the Block Diagram

Constants

Constants are terminals on the blockgtam that supply fixed data values
to the block diagram. Universal constsiare constants with fixed values,
such as pi () and infinity (). User-defined constants are constants you
define and edit before you run a VI.

Most constants are located at twtom or top of their palettes.

Create a user-defined constant by riglitking an input terminal of a VI

or function and selectinGreate»Constantfrom the shortcut menu. Use

the Operating or Labeling tool to click the constant and edit its value. If
automatic tool selection is enabled, double-click the constant to switch to
the Labeling tool and edit the value.

Block Diagram Nodes

Nodes are objects on the block diagram that have inputs and/or outputs and
perform operations when a VI ruriey are analogous to statements,
operators, functions, and subroutines in text-based programming
languages. LabVIEW includes the following types of nodes:

» Functions—Built-in execution elementgomparable to operators,
functions, or statements.

e SubVIs—VIs used on the block diagramhanother VI, comparable to
subroutines.

Refer to theCreating SubVIsection of Chapter TCreating VIs and
SubVls for more information about using subVIs on the block
diagram.

» Express VIs—SubVIs designed to aid in common measurement tasks.
You configure an Express VI using a configuration dialog box.

e Structures—Execution control elements, such as For Loops, While
Loops, Case structures, Flat éidicked Sequence structures, Timed
structures, and Event structures.

Refer to Chapter 8,00ps and Structuregor more information about
using structures.

Refer to thd_abVIEW Helpfor the complete list of block diagram nodes.

© National Instruments Corporation 5-3 Getting Started with LabVIEW for FRC

Chapter 5 Buildintpe Block Diagram

Functions Overview

Functions are the essential opergtelements of LabVIEW. Function

icons on thd-unctions palette have pale yellow backgrounds and black
foregrounds. Functions do not have front panels or block diagrams but do
have connector panes. You cannot open or edit a function.

Adding Terminals to Functions

You can change the numbafrterminals for some functions. For example,
to build an array with 10 elements, you must add 10 terminals to the Build
Array function.

You can add terminals to functions by using the Positioning tool to drag the
top or bottom borders of the function up or down, respectively. You also can
use the Positioning tool to remove terminals from functions, but you cannot
remove a terminal that is already wired. You must first delete the existing
wire to remove the terminal.

Refer to thdJsing Wires to Link Block Diagram Objedsction of this
chapter for more information about wiring objects.

Built-In VIs and Functions

TheFunctions palette also includes the Vls that ship with LabVIEW. Use
these Vls and functions as subVIsimapplication to reduce development
time. Click theView button on thd-unctions palette and seleélways
Visible Categories»®ow All Categoriesfrom the shortcut menu to
display all categories on tlaunctions palette.

Refer to thdJsing Built-In VIs and Functionsection of Chapter 7,
Creating VIs and SubV,lfor more information about using the built-in VIs
and functions.

Refer to thd.abVIEW Helpfor detailed information about all built-in VIs
and functions.

Getting Started with LabVIEW for FRC 5-4 ni.com

Chapter 5 Building the Block Diagram

Using Wires to Link Block Diagram Objects

You transfer data among block diagrabjects through wires. Each wire

has a single data source, but you can wire the data source to many VIs and
functions that read the data, similar to passing required parameters in
text-based programming languages. You must wire all required block
diagram terminals. Otherwise, theiglbroken and cannot run. Display the
Context Help window to see which terminals a block diagram node
requires. The labels of requiregtrminals appear bold in ti@ontext Help
window.

Refer to theCorrecting Broken Visection of Chapter &®unning and
Debugging Visfor more information about broken Vis.

Wire Appearance and Structure

Wires are different colors, styles, and thicknesses depending on their data
types, similar to how the color andnsyol of a terminal indicate the data
type of the corresponding control or indicator.

Refer to theControl and Indicator Data Typesection of this chapter for
more information about data types. Refer toBleek Diagram Data Flow
section of this chapter for more information about data flow.

Wiring Objects

Use the Wiring tool to manually connect the terminals on one block
diagram node to the terminals on another block diagram node. The cursor
point of the tool is the tip of the unwound wire spool. When you move the
Wiring tool over a ternmal, the terminal bliks. When you move the

Wiring tool over a VI or function terminal, a tip strip also appears, listing
the name of the terminal.

Use theContext Help window to determine ectly where to connect

wires. When you move the cursor over a VI or functionQbetext Help
window lists each terminal of the VI or function. T@entext Help

window does not display terminals for expandable VIs and functions, such
as the Build Array function. Click tighow Optional Terminals and Full

Path button in theContext Help window to display the optional terminals

of the connector pane.

When you cross wires, a small gap eps in the first wire you drew to
indicate that the first wire is under the second wire.

© National Instruments Corporation 5-5 Getting Started with LabVIEW for FRC

Chapter 5 Buildintpe Block Diagram

Selecting Wires

Select wires by using the Positioning tool to single-click, double-click, or
triple-click them. Single-clicking a wé selects one segment of the wire.
Double-clicking a wire selects a wireanrch. Triple-clicking a wire selects
the entire wire.

Correcting Broken Wires

A broken wire appears as asti@d black line with a redin the middle.
Broken wires occur for a variety of rees, such as when you try to wire
two objects with incompatible data types. Move the Wiring tool over a
broken wire to display a tip strip that describes why the wire is broken. This
information also appears in tl®ntext Help window when you move the
Wiring tool over a broken wirdright-click the wire and selettst Errors

from the shortcut menu to display tBeror list window. Click theHelp

button to display more information about why the wire is broken.

Triple-click the wire with the Positioning tool and press the <Delete> key
to remove a broken wire. You also aaght-click the wire and select from
shortcut menu options such@slete Wire Branch, Create Wire Branch,
Remove Loose EndsClean Up Wire, Change to Control Change to
Indicator, Enable Indexing at Source andDisable Indexing at Source
These options change depending on the reason for the broken wire.

You can remove all broken wires by selectitdjt»Remove Broken
Wires or by pressing the <Ctrl-B> keys.

Caution Use caution when removing all brokerr@g. Sometimes a wire appears broken
because you are not finishedting the block diagram.

Getting Started with LabVIEW for FRC 5-6 ni.com

Chapter 5 Building the Block Diagram

Block Diagram Data Flow

LabVIEW follows a dataflow model for running VIs. A block diagram

node executes when it receives atjuiged inputs. When a node executes,

it produces output data and passes the data to the next node in the dataflow
path. The movement of data through the nodes determines the execution
order of the VIs and functions on the block diagram.

In LabVIEW, the flow of data rathéhan the sequential order of commands
determines the execution order of laltagram elements. Therefore, you

can create block diagrams that have simultaneous operations. For example,
you can run two For Loops simultaneously and display the results on the
front panel, as shown in the following block diagram.

In the preceding figure, each For Loogn execute when it receives all
required inputs. The onkequired input foeach For Loop is the value of
the count terminal, which theof data pointscontrol specifies. Therefore,
when the# of data pointscontrol passes a value to the For Loops, both For
Loops can execute simultaneously.

© National Instruments Corporation 5-7 Getting Started with LabVIEW for FRC

Chapter 5 Buildintpe Block Diagram

Designing the Block Diagram

Use the following guidelines to design block diagrams:

Use a left-to-right and top-to-bottom layout. Although the positions of
block diagram elements do not determine execution order, avoid
wiring from right to left to keephe block diagram organized and easy
to understand. Only wires and structures determine execution order.

Avoid creating a block diagram that occupies more than one or
two screens. If a block diagram becomes large and complex, it can be
difficult to understand or debug.

Decide if you can reuse some components of the block diagram in
other Vis or if a section of thelock diagram works as a logical
component. If so, divide the block diagram into subVIs that perform
specific tasks. Using subVIs helps you manage changes and debug the
block diagrams quickly.

Refer to theCreating SubVIsection of Chapter Treating VIs and
SubVIs for more information about subVis.

Use the error handling Vls, functions, and parameters to manage errors
on the block diagram.

Refer to theError Clusterssection of Chapter &®unning and
Debugging Vlisfor more information about handling errors.

Avoid wiring under a structure baedor between overlapped objects
because LabVIEW might hide sorsegments of the resulting wire.

Avoid placing objects on top of wires. Placing a terminal or icon on top
of a wire gives the appearance taatonnection exists when it does
not.

Use free labels to document code on the block diagram.

Refer to thd_abelingsection of Chapter Building the Front Pangl
for more information about using free labels.

Getting Started with LabVIEW for FRC 5-8 ni.com

Running and Debugging VIs

To run a VI, you must wire all the BWIs, functions, and structures with

the correct data types for the teras Sometimes a VI produces data

or runs in a way you do not expect. You can use LabVIEW to identify
problems with block diagram organization or with the data passing through
the block diagram.

Running Vs

Running a VI executes the operation for which you designed the VI. You
can run a VI if thérun button on the toolbar appears as a solid white arrow,
shown as follows.

The solid white arrow also indicates yocan use the VI as a subVI if you
create a connector pane for the VI.

Refer to theBuilding the Connector Parsection of Chapter Greating
VIs and SubVIdor more information abowtreating connector panes.

A VI runs when you click th&un or Run Continuously buttons or the
single-stepping buttons on the block diagram toolbar. While the VI runs,
theRun button changes to a darkened atrshown as follows, to indicate
that the VI is running.

You cannot edit a VI while the VI runs.

Clicking theRun button runs the VI once. The VI stops when the VI
completes its data flow. Clicking th&un Continuously button, shown
as follows, runs the VI continuously until you stop it manually.

© National Instruments Corporation 6-1 Getting Started with LabVIEW for FRC

Chapter 6 Running and Debugging Vs

Clicking the single-stepping buttonsns the VI in incremental steps.

Refer to theSingle-Steppingection of this chapter for more information
about using the single-stepping buttons to debug a VI.

Correcting Broken Vs

If a VI does not run, it is bBroken, or nonexecutable, VI. TRen button
appears broken, shown as follows amtthe VI you are creating or editing
contains errors.

If the button still appears broken when you finish wiring the block diagram,
the VI is broken and cannot run.

Finding Causes for Broken VIs

Warnings do not prevent you from running a VI. They are designed to help
you avoid potential problems in Vls. Errors, however, can break a VI. You
must resolve any errors before you can run the VI.

Click the brokerRun button or selectiew»Error List to find out why a

VI is broken. TheError list window lists all the errors. THeems with
errors section lists the names of akibs in memory, such as VIs and
project libraries, that have errorstwo or more items have the same name,
this section shows the specific application instance for each item. The
errors and warnings section lists therrors and warnings for the VI you
select in thétems with errors section. Théetails section describes the
errors and in some cases recommdraig to correct therrors. Click the
Help button to display a topic in theabVIEW Helphat describes the error
in detail and includes step-by-stegtiuctions for coecting the error.

Click the Show Error button or double-click the error description to
highlight the area on the block diagram or front panel that contains the
error.

The toolbar includes thé/arning button, shown as follows, if a VI
includes a warning and yougaed a checkmark in ti&how Warnings
checkbox in thérror list window.

Getting Started with LabVIEW for FRC 6-2 ni.com

Chapter 6 Running and Debugging Vs

Common Causes of Broken Vls
The following list contains common reasons why a VI might be broken:

» The block diagram contains a broke&ite because of a mismatch of
data types or a loose, unconnected end.

Refer to theCorrecting Broken Wiresection of Chapter Building
the Block Diagramfor information aboutorrecting broken wires.

» Arequired block diagram terminal is unwired.

Refer to thdJsing Wires to Link Block Diagram Objeasction of
Chapter 5Building the Block Diagranfor information about setting
required inputs and outputs.

* AsubVlis broken or you edited it®nnector pane & you placed its
icon on the block diagram of the VI.

Refer to theCreating SubVIsection of Chapter Greating Vis and
SubVIs for information about subVis.

Debugging Techniques

If a VI is not broken, but you getnexpected data, you can use several
techniques to identify and corrgmoblems with the VI or the block
diagram data flow.

Execution Highlighting

View an animation of the execution tbfe block diagram by clicking the
Highlight Execution button, shown as follows.

Execution highlighting shows the movement of data on the block diagram
from one node to another using bubbles that move along the wires. Use
execution highlighting in conjunction with single-stepping to see how data
values move from node to node through a VI.

@ Note Execution highlighting greatly reductse speed at wth the VI runs.

During execution highlighting, if therror out cluster reports an error, the
error value appears nexteoror out with a red bordetf no error occurs,
OKappears next terror out with a green border.

© National Instruments Corporation 6-3 Getting Started with LabVIEW for FRC

Chapter 6 Running and Debugging Vs

Single-Stepping

Refer to theError Clusterssection of this chapter for more information
about error clusters.

Single-step through a VI to view each action of the VI on the block diagram
as the VI runs. The single-steppingttons, shown as follows, affect
execution only in a VI or subVI in single-step mode.

Step Into Step Over Step Out

Enter single-step mode by clicking t8&ep Overor Step Into button on

the block diagram toolbar. Move the cursor overStep Over, Step Into,

or Step Outbutton to view a tip strip that describes the next step if you click
that button. You can single-step through subVIs or run them normally.

If you single-step through a VI with execution highlighting on, an
execution glyph, shown as follows, appears on the icons of the subViIs that
are currently running.

Probe Tool
Use a generic probe to view the dat fhasses through a wire. Right-click
a wire and selec€ustom Probe»Generic Probdrom the shortcut menu
to use the generic probe.

@ Note You mustrun a VI in order to see data pass through a probe in the VI.

Breakpoints

Use the Breakpoint tool, shown as flis, to place a breakpoint on a VI,
node, or wire on the block diagraand pause execution at that location.

Getting Started with LabVIEW for FRC 6-4 ni.com

Chapter 6 Running and Debugging Vs

When you set a breakpoint on a wire, execution pauses after data passes
through the wire. Place a breakpoint on the block diagram to pause
execution after all nodes on the block diagram execute.

When a VI pauses at a breakpoint, LabVIEW brings the block diagram to
the front and uses a marquee to highlight the node or wire that contains the
breakpoint. When you move the cursor over an existing breakpoint, the
black area of the Breakpoitdol cursor appears white.

When you reach a breakpoint duriexgcution, the VI pauses and the
Pausebutton appears red. You can take the following actions:

» Single-step through execution using the single-stepping buttons.
» Probe wires to check intermediate values.
e Change values of front panel controls.

» Click thePausebutton to continue running to the next breakpoint or
until the VI finishes running.

LabVIEW saves breakpoints with a \Hut they are active only when
you run the VI. You can view all breakpoints by selectiyerate»
Breakpoints and clicking thé=ind button.

Error Clusters

By default, LabVIEW automatically handles any error when a VI runs by
suspending execution, highlighting the subVI or function where the error
occurred, and displaying an error dialog box.

VIs and functions return errors @me of two ways—with numeric error
codes or with an error cluster. Typlgafunctions use numeric error codes,
and VIs use an error cluster, usually with error inputs and outputs.

Error handling in LabVIEW follows the dataflow model. Just as data values
flow through a VI, so can error infimation. Wire the error information

from the beginning of the VI to the @éninclude an errdnandler VI at the

end of the VI to determine if the VI ran without errors. Useether in and
error out clusters in each VI you use oriloLto pass the error information
through the VI.

As the VI runs, LabVIEW tests ferrors at eachxecution node.

If LabVIEW does not find any errors, the node executes normally.

If LabVIEW detects an error, the node passes the error to the next node
without executing that part of the code. The next node does the same thing,
and so on. At the end of the exeoutflow, LabVIEW reports the error.

© National Instruments Corporation 6-5 Getting Started with LabVIEW for FRC

Chapter 6 Running and Debugging Vs

Theerror in anderror out clusters include the following components of
information:

e statusis a Boolean value that repeTRUE if an error occurred.

e codeis a 32-bit signed integer that identifies the error numerically.
A nonzero error codeoupled with astatus of FALSE signals a
warning rather than a error.

e sourceis a string that identiis where the error occurred.
Some VIs, functions, and structureatthccept Boolean data also recognize
an error cluster. For example, you agire an error cluster to the Boolean

inputs of the Select, Quit LabVIEW) Stop functions. If an error occurs,
the error cluster passes a TRUE value to the function.

Refer to theClusterssection of Chapter %Grouping Data Using Strings,
Arrays, and Clustetsfor more information about clusters.

Getting Started with LabVIEW for FRC 6-6 ni.com

Creating VIs and SubVIs

A VI can serve as a user interfaceasran operation you use frequently.
After you learn how to build a front panel and block diagram, you can
create your own VIs and subVIs and customize these Vis.

Using Built-In VIs and Functions

LabVIEW includes built-in VIs and functions to help you build specific
applications, such as data acquisi VIs and functions, VIs that access
other Vls, VIs that communicate with other applications, and so on. You
can use these VIs as subVIs in aplacation to reduce development time.
Before you build a new Viconsider searching thainctions palette for
similar VIs and functions and using an existing VI as the starting point for
the new VI.

Creating SubVIs

After you build a VI, you can useiit another VI. A VI called from the
block diagram of another VI is calledsubVI. To create a subVI, you need
to build a connector pe and create an icon.

A subVI node corresponds to a subroutine call in text-based programming
languages. The node is not the subVI itself, just as a subroutine call
statement in a program it the subroutine itself. A block diagram that
contains several identical subVI nodes calls the same subVI several times.

The subVI controls and indicators recetlaga from and return data to the
block diagram of the calling VI. Click thgelect a Vlicon or text on the
Functions palette, navigate to and doahtlick a VI, and place the Vlon a
block diagram to create a subVI call to that VI.

You can edit a subVI by using the Operating or Positioning tool to
double-click the subVI on the block diagram. When you save the subVI,
the changes affect all calls to the subVI, not just the current instance.

To create a subVI, you need to create an icon and build a connector pane.

© National Instruments Corporation 7-1 Getting Started with LabVIEW for FRC

Chapter 7 Creating VIs and SubVIs

Creating an Icon

Every VI displays an icon, such as the one shown as follows, in the upper
right corner of the front panel and block diagram windows.

Anicon is a graphical representatiored¥|. It can contai text, images, or
a combination of both. If you use a ¥$ a subVI, the icon identifies the
subVI on the block diagram of the VI.

The default icon contains a number that indicates how many new VIs you
have opened since launching LabVIE@Veate custom icons to replace the
default icon by right-clicking the icoim the upper right corner of the front
panel or block diagram and selectiggit Icon from the shortcut menu, or

by double-clicking the icon in the upper right corner of the front panel.

You also can drag a graphic from anywhere in your file system and drop it
in the upper right corner of the front panel or block diagram. LabVIEW
converts the graphic to a 32 x 32 pixel icon.

Refer to the National Instruments Web sitai@bm/info and enter the
info codeexpnr7 for standard graphics to use in a VI icon.

Building the Connector Pane

To use a VIl as a subVI, you nedbuild a connector pane, shown as
follows.

The connector pane defines the inputs and outputs you wire to the VI so you
can use it as a subVI. It receives datt#s input terminals and passes the
data through the front panel controls to the block diagram code. The
connector pane then receives the rasaftits output terminals from the

front panel indicators.

Define connections by assigning a frganel control oimdicator to each
of the connector pane terminals. To define a connector pane, right-click the
icon in the upper right corner of the front panel and s8leatv Connector

Getting Started with LabVIEW for FRC 7-2 ni.com

Chapter 7 Creating VIs and SubVIs

from the shortcut menu to display the connector pane. The connector pane
appears in place of the icon.

When you view the connector pane for the first time, you see a connector
pattern. You can select a differenttpan by right-clicking the connector
pane and selectirfeatterns from the shortcut menu. For example, you can
select a connector pane pattern wittreelerminals. You can leave the extra
terminals unconnected until you needrth This flexibility enables you to
make changes with minimal effect on the hierarchy of the Vis.

Each rectangle on the connector pane represents a terminal. Use the
rectangles to assign inputs and outputs. The default connector pane pattern
is 4x 2x 2x 4, If you anticipate changesttoe VI that require a new input

or output, keep the default connegbane pattern to leave extra terminals
unassigned.

You can assign up to 28 terminalssteonnector pane. If the front panel
contains more than 28 controls and indicators that you want to use
programmatically, group some of them into a cluster and assign the cluster
to a terminal on the connector pane.

Refer to theClusterssection of Chapter rouping Data Using Strings,
Arrays, and Clusterdor more information about grouping data using
clusters.

Creating SubVIs fror8ections of a VI

Convert a section of a VI into a subVI bging the Positioning tool to select
the section of the block diagram you want to reuse and selé&dibg

Create SubVI. Anicon for the new subVI replaces the selected section of
the block diagram. LabVIEW creates controls and indicators for the new
subVI, automatically configures the connector pane based on the number
of control and indicator terminals yselected, and wires the subVI to the
existing wires.

Creating a subVI from a selection iswenient but still requires careful
planning to create a logl hierarchy of VIs. Qasider which objects to
include in the selection and avoid changing the functionality of the
resulting VI.

© National Instruments Corporation 7-3 Getting Started with LabVIEW for FRC

Chapter 7 Creating VIs and SubVIs

Designing SubVI Front Panels

Saving Vls

If users do not need to view the front panel of a subVI, you can spend less
time on its appearance, including colard fonts. However, front panel
organization is still impdant because you mighéed to view the front

panel while you debug the VI.

Place the controls and indicators on fiteait panel as they appear in the
connector pane. Place thentrols on the left ofhe front panel and the
indicators on the right. Place aagror in clusters on the lower left of the
front panel and angrror out clusters on the lower right.

Refer to theBuilding the Connector Pargection of this chapter for more
information about setting up a connector pane.

Selectrile»Saveto save a VI. When you save a VI, use a descriptive name
so you can identify the VI lateDescriptive names, such®smperature
Monitor.vi andSerial Write & Read.vi , make a VI easy to identify.

If you use ambiguous names, suclved.vi , you might find it difficult

to identify Vs, especially if you have saved several Vls.

Consider whether your users will run the VIs on another platform. Avoid
using characters that some operasggtems reserve for special purposes,
such as:/?*<> and#.

@ Note If you have several Vis of the same name saved on your computer, carefully organize
the VIs in different directories or LLBs tvoid LabVIEW referencing the wrong subVI
when running the top-level VI.

Getting Started with LabVIEW for FRC 7-4 ni.com

Chapter 7 Creating VIs and SubVIs

Customizing VIs

You can configure VIs ansubVIs to work accordig to your application
needs. For example, if you plan to use a VI as a subVI that requires user
input, configure the VI so that ifsont panel appeamach time you call it.

SelectFile»VI Properties to configure the appearance and behavior of a
VI. Use theCategory pull-down menu at the top of thd Properties
dialog box to select from several different option categories.

TheVI Properties dialog box includes the following option categories:

© National Instruments Corporation

General—Use this page to determine the current path where a VI is
saved, its revision number, revision history, and any changes made
since the VI was last saved. You also can use this page to edit the icon
for the VI.

Documentation—Use this page to add a description of the VI and link
to a help file topic.

Security—Use this page to lock or password-protect a VI.

Window Appearance—Use this page to customize the window
appearance of Vls, such as the window title and style.

Window Size—Use this page to set the size of the window.

Execution—Use this page to configure how a VI runs. For example,
you can configure a VI to run imrdiately when it opens or to pause
when called as a subVI.

Editor Options—Use this page to set thesiof the alignment grid for
the current VI and to change the style of the it indicator
LabVIEW creates when you riglatick a terminal and select
Create»Control or Create»Indicator from the shortcut menu.

Refer to theAligning and Distributing Objectsection of Chapter 4,
Building the Front Panelfor more information about the alignment
grid.

7-5 Getting Started with LabVIEW for FRC

Loops and Structures

Structures are graphicajmesentations of the los@nd case statements of
text-based programming languages. Use structures on the block diagram to
repeat blocks of code and to execute code conditionally or in a specific
order.

Like other nodes, structures have terats that connect #m to other block
diagram nodes, execute automatically when input data are available, and
supply data to output wires when execution completes.

Each structure has a distinctive, resizable border to enclose the section of
the block diagram that executes accogdim the rules of the structure.
The section of the block diagram insitthe structure border is called a
subdiagram. The terminals that feedadiato and out of structures are
called tunnels. A tunnel is a connection point on a structure border.

Use the following structures located on Bteuctures palette to control
how a block diagram executes processes:

» For Loop—Executes a subdiagram a set number of times.

* While Loop—Executes a subdiagram until a condition occurs.

e Case structure—Contains multiple subdiagrams, only one of which
executes depending on the input value passed to the structure.

Right-click the border of a structure to display its shortcut menu.

© National Instruments Corporation 8-1 Getting Started with LabVIEW for FRC

Chapter 8 Loops and Structures

For Loop and While Loop Structures

For Loops

Use the For Loop and the While Loop to control repetitive operations.

A For Loop, shown as follows, executes a subdiagram a set number of
times.

The value in the count terminal (an input terminal), shown as follows,
specifies how many times to repeat the subdiagram.

Set the count explicitly by wiring a value from outside the loop to the left
or top side of the count terminal, or set the count implicitly with
auto-indexing.

Refer to theAuto-Indexing to Set the For Loop Cogettion of this chapter
for more information about setting the count implicitly.

The iteration terminal (an output terrally shown as follows, contains the
number of completed iterations.

The iteration count always starts at zero. During the first iteration, the
iteration terminal returng.

Both the count and iteration terminals are 32-bit signed integers. If you wire
a floating-point number to the count terminal, LabVIEW rounds it and
coerces it to withimange. If you wired or a negative number to the count
terminal, the loop does not execute and the output contains the default data
for that data type.

Add shift registers to the For Loop to pass data from the current iteration to
the next iteration.

Getting Started with LabVIEW for FRC 8-2 ni.com

While Loops

Chapter 8 Loops and Structures

Refer to theshift Registers in Loopsection of this chapter for more
information about adding shift registers to a loop.

Similar to a Do Loop or a Repeattil Loop in text-based programming
languages, a While Loop, shownfallows, executes a subdiagram until a
condition occurs.

The While Loop executes the subdiagram until the conditional terminal, an
input terminal, receives a specific Beah value. The default behavior and
appearance of the conditional terminabtsp if True, shown as follows.

When a conditional terminal Btop if True, the While Loop executes its
subdiagram until the conttbnal terminal receives a TRUE value. You can
change the behavior and appearasfdihe conditional terminal by
right-clicking the terminal or the border of the While Loop and selecting
Continue if True, shown as follows, from the shortcut menu.

When a conditional terminal Gontinue if True, the While Loop executes
its subdiagram until the conditionafteinal receives a FALSE value. You
also can use the Operatitapl to click the conditional terminal to change
the condition.

© National Instruments Corporation 8-3 Getting Started with LabVIEW for FRC

Chapter 8 Loops and Structures

If the conditional terminal iStop if True, you place the corresponding
Boolean control outside the While &, and you set the Boolean control
to FALSE, you cause an infinite loop, as shown in the following figure.

You also cause an infinite loop if the Boolean control outside the loop is set
to TRUE and the conditional terminal@ontinue if True. Changing the
value of the Boolean control doestistop the infinite loop because the
value is read only once before the loop starts. To stop an infinite loop, you
must abort the VI by clicking th&bort Execution button on the toolbar.

The iteration terminal (an output terminal) of a While Loop, shown as
follows, contains the number of completed iterations.

The iteration count always starts at zero. During the first iteration, the
iteration terminal returng.

Add shift registers to the While Loop to pass data from the current iteration
to the next iteration.

Refer to theShift Registers in Loopsection of this chapter for more
information about adding shift registers to a loop.

Controlling Timing

You might want to control the speedvettich a process executes, such as
the speed at which data values are plotted to a chart. You can use a Wait
function in the loop to wait an amount of time before the loop re-executes.

Getting Started with LabVIEW for FRC 8-4 ni.com

Chapter 8 Loops and Structures

Auto-Indexing Loops

If you wire an array to a For Loop or While Loop input tunnel, you can read
and process every element in that array by enabling auto-indexing.

Refer to theArrays section of Chapter Grouping Data Using Strings,
Arrays, and Clusterdor more information about arrays.

When you wire an array to an input tunnel on the loop border and enable
auto-indexing on the input tunnel, elements of that array enter the loop one
at a time, starting with the first elemt. When auto-indexing is disabled,

the entire array is passed into thep. When you autindex an array

output tunnel, the outpatray receives a new element from every iteration

of the loop. Therefore, auto-indexed output arrays are always equal in size
to the number of iterations. For example, if the loop executes 10 times, the
output array has 10 elements. If you disable auto-indexing on an output
tunnel, only the element from the last iteration of the loop passes to the next
node on the block diagram.

Right-click the tunnel at thloop border and seleEnable Indexing or
Disable Indexingfrom the shortcut menu to enable or disable
auto-indexing. Auto-indexing for While Loops is disabled by default.

A bracketed glyph appears on the loopdao to indicate tht auto-indexing

is enabled. The thickness of the wietween the output tunnel and the next
node also indicates the loop is using auto-indexing. The wire is thicker
when you use auto-indexd because the wire contains an array instead of
a scalar.

The loop indexes scalar elemefrtsm 1D arrays, 1D arrays from

2D arrays, and so on. The oppositewrs at output tunnels. Scalar
elements accumulate sequentially ihf® arrays, 1D arrays accumulate
into 2D arrays, and so on.

Auto-Indexing to Se¢he For Loop Count

If you enable auto-indexing on an array wired to a For Loop input terminal,
LabVIEW sets the count terminal to the array size so you do not need to
wire the count terminal. Because yoan use For Loops to process arrays
an element at a time, LabVIEW enabbauto-indexing by default for every
array you wire to a For Loop. Disable auto-indexing if you do not need to
process arrays one element at a time.

© National Instruments Corporation 8-5 Getting Started with LabVIEW for FRC

Chapter 8

Loops and Structures

If you enable auto-indexing for more than one tunnel or if you wire the
count terminal, the count becomes lgser of the choices. For example,

if two auto-indexed arrays enter the loop, with 10 and 20 elements
respectively, and you wire a valueld to the count terminal, the loop
executes 10 times, and the loop indexes only the first 10 elements of the
second array. As another examplg;dti plot data from two sources on

one graph and you want to plot the first 100 elements, wire 100 to the count
terminal. If one of the data sourdesludes only 50 elements, the loop
executes 50 times and indexes onlyfitse 50 elements. Use the Array Size
function to determine the size of arrays.

Auto-Indexing with While Loops

If you enable auto-indexing for an array entering a While Loop, the While
Loop indexes the array the same way a For Loop does. However, the
number of iterations a While Loop exéeslis not limited by the size of the
array because the While Loop itestentil a specific condition occurs.

When a While Loop indexes past the end of the input array, the default
value for the array element type pass#o the loop. You can prevent the
default value from passing into the While Loop by using the Array Size
function. The Array Size function indiegt how many elements are in the
array. Set up the While Loop to stop executing when it has iterated the same
number of times as the array size.

Caution Because you cannot determine the sizhefoutput array in advance, enabling
auto-indexing for the output of a For Loigpmore efficient than with a While Loop.
Iterating too many times can cays®ir system to run out of memory.

Using Loops to Build Arrays

In addition to using loops to read and process elements in an array, you also
can use the For Loop and the While Loop to build arrays. Wire the output
of a VI or function in the loop to thloop border. If you use a While Loop,
right-click the resultig tunnel and seleé&nable Indexing from the

shortcut menu. On the For Loop, indexing is enabled by default. The output
of the tunnel is an array of every valthe VI or function returns after each
loop iteration.

Refer to théArrays section of Chapter Grouping Data Using Strings,
Arrays, and Clusterdor more information about arrays.

Refer to theNational Instruments\LabVIEW 8.5\examples\
general\arrays.llb for examples of building arrays.

Getting Started with LabVIEW for FRC 8-6 ni.com

Chapter 8 Loops and Structures

Shift Registers in Loops

Use shift registers with For Loops \&ile Loops to trasfer values from
one loop iteration to the next.

Use shift registers when you wantpass values from previous iterations
through the loop to the next iteratioh shift register appears as a pair of
terminals, shown as follows, directhpposite each other on the vertical
sides of the loop border.

The terminal on the right side of th@op contains an up arrow and stores
data on the completion of an iéion. LabVIEW transfers the data
connected to the right sidéthe register to the next iteration. After the loop
executes, the terminal on the right sadehe loop returns the last value
stored in the shift register.

Create a shift register by right-clicking the left or right border of a loop and
selectingAdd Shift Register from the shortcut menu.

A shift register transfers any datgpé and automatically changes to the
data type of the first object wired to the shift register. The data you wire to
the terminals of each shift reger must be the same type.

You can add more than one shift register to a loop. If you have multiple
operations that use previous iteration values within your loop, use multiple
shift registers to store the data valfresn those different processes in the
structure, as shown in the following figure.

© National Instruments Corporation 8-7 Getting Started with LabVIEW for FRC

Chapter 8 Loops and Structures

Initializing Shift Registers

Initializing a shift register resets the value the shift register passes to the
first iteration of the loop when the VI runs. Initialize a shift register by
wiring a control or constant to the shift register terminal on the left side of
the loop, as shown in the following figure.

In the preceding figure, the For Loegecutes five times, incrementing the
value the shift register carries by ogach time. After five iterations of the
For Loop, the shift register passes the final vaugg the indicator and the
VI quits. Each time you run the VI, the shift register begins with a value
of 0.

If you do not initialize the shift register, the loop uses the value written to
the shift register when the loop last executed or the default value for the data
type if the loop has never executed.

Use an uninitialized shift register to preserve state information between
subsequent executions of a VI. The faling figure shows an uninitialized
shift register.

Getting Started with LabVIEW for FRC 8-8 ni.com

Chapter 8 Loops and Structures

In the preceding figure, the For Loegecutes five times, incrementing the
value the shift register carries byeoeach time. The first time you run the
VI, the shift register begins with a value of 0, which is the default value for
a 32-bit integer. After five iterations of the For Loop, the shift register
passes the final valug, to the indicator, and the VI quits. The next time
you run the VI, the shift register begins with a valug,afhich was the last
value from the previous execution. After five iterations of the For Loop, the
shift register passes the final valae, to the indicator. If you run the VI
again, the shift register begins with a valua@fand so on. Uninitialized
shift registers retain the value of the previous iteration until you close

the VI.

Stacked Shift Registers

Stacked shift registers let you access data from previous loop iterations.
Stacked shift registers remember values from multiple previous iterations
and carry those values to the niggtations. To create a stacked shift
register, right-click the feterminal and seledkdd Element from the
shortcut menu.

Stacked shift registers can occur only on the left sif the loop because
the right terminal transfers the datanerated only from the current
iteration to the next iteration, as shown in the following figure.

In the preceding block diagram, valdiesm previous iterations pass to the
next iteration, with the &t recent iteration value stat in the top-left shift
register. The bottom shift registeoss the second-rstrecent iteration
value.

© National Instruments Corporation 8-9 Getting Started with LabVIEW for FRC

Chapter 8 Loops and Structures

Default Data in Loops
While Loops produce default data when the shift register is not initialized.

For Loops produce default data if you wiréo the count terminal of the

For Loop or if you wire an empty array to the For Loop as an input with
auto-indexing enabled. The loop does not execute, and any output tunnel
with auto-indexing disabled contains the default value for the tunnel data
type. Use shift registers to transfer values through a loop regardless of
whether the loop executes.

Refer to the_abVIEW Quick Reference Camlailable by navigating to the
National Instruments\LabVIEW 8.5\manuals directory and
openingLV_Quick _Reference.pdf , for more information about default
values for data types.

Case Structures

A Case structure, shown as follows, has two or more subdiagrams or cases.

Only one subdiagram is visible atime, and the structure executes only
one case at a time. An input valugeateines which subdiagram executes.
The Case structure is similar to sstitstatements df...then...else
statements in text-bas@dogramming languages.

The case selector label at the tophef Case structure, shown as follows,
contains the name of the selector ealhat corresponds the case in the
center and decrement and increment arrows on each side.

Click the decrement anddrement arrows to sdtdhrough the available
cases. You also can click the down arrow next to the case name and select
a case from the pull-down menu.

Wire an input value, aselector, to the selector terminal, shown as follows,
to determine which case executes.

i

Getting Started with LabVIEW for FRC 8-10 ni.com

Chapter 8 Loops and Structures

You must wire an integer, Boolean vaJistring, or enumerated type value

to the selector terminal. You can position the selector terminal anywhere on
the left border of the Case structure. If the data type of the selector terminal
is Boolean, the structure ha3RUEcase and BALSE case. If the selector
terminal is an integer, string, or@merated type value, the structure can
have any number of cases.

Specify a default case for the Casedtite to handle out-of-range values.
Otherwise, you must explicitly list every possible input value. For example,
if the selector is an integer and you specify cases,fprand3, you must
specify a default case to execute if the input valdedsany other
unspecified integer value.

Case Selector Values and Data Types

You can enter a single value or listelaanges of values in the case selector
label. For lists, use commas to sepakalues. For numierranges, specify
arange as$0..20 , meaning all numbers from 10 to 20 inclusively. You
also can use open-ended ranges. For exane, represents all
numbers less than or equal to 100, ag@l. represents all numbers
greater than or equal to 100. You also can combine lists and ranges, for
example.5, 6, 7..10, 12, 13, 14 . When you enter values that
contain overlapping ranges in thereacase selector label, the Case
structure redisplays the labelarmore compact form. The previous

example redisplays a40, 12..14 . For string ranges, a rangeaokt
includes all ofa andb, but notc. A range ofa..c,c includes the ending
value ofc.

If you enter a selector value that is not the same type as the object wired to
the selector terminal, the value appears red to indicate that you must delete
or edit the value before the structusn execute, and the VI will not run.
Also, because of the possible round-&ffor inherent in floating-point
arithmetic, you cannot use floating-pbirumbers as case selector values.

If you wire a floating-point value to the case, LabVIEW rounds the value

to the nearest integer. If you type edling-point value in the case selector
label, the value appears red to indicate that you must delete or edit the value
before the structure can execute.

© National Instruments Corporation 8-11 Getting Started with LabVIEW for FRC

Chapter 8 Loops and Structures

Input and Output Tunnels

You can create multiple input and output tunnels for a Case structure.
Inputs are available toladases, but cases do not have to use each input.
However, you must define each put tunnel for each case. When you
create an output tunnel ame case, tunnels appear at the same position on
the border in all the other cases. If ewa® output tunnel is not wired, all
output tunnels on the structure appear as white squares. You can define a
different data source for the samepuittunnel in each case, but the data
types must be compatible for each c&&mu also can right-click the output
tunnel and seledtise Default If Unwired from the shortcut menu to use

the default value for the tunnel data type for all unwired tunnels.

Getting Started with LabVIEW for FRC 8-12 ni.com

Grouping Data Using Strings,
Arrays, and Clusters

Use strings, arrays, and clustergtoup data. Strings group sequences of
ASCII characters. Arrays group datemlents of the same type. Clusters
group data elements of mixed types.

Grouping Data with Strings

A string is a sequence of displayablenon-displayable ASCII characters.
Strings provide a platform-independent format for information and data.
Some of the more common applicatsoof strings include the following:

» Creating simple text messages

» Passing numeric data as charasténgs to instruments and then
converting the strings to numeric values

e Storing numeric data to disk
» Instructing or prompting the user with dialog boxes
On the front panel, strings appear as tables, text entry boxes, and labels.

LabVIEW includes built-in VIs and fuctions you can use to edit, format,
and parse strings.

String Controls

Use string controls and indicators to simulate text entry boxes and labels.

Refer to theString Controls and Indicatorsection of Chapter 4uilding
the Front Panelfor more information about string controls and indicators.

Table Controls

Use the table control to create a tablef@nfront panel. Each cell in a table
is a string, and each cell resides icotumn and a row. Therefore, a table
is a display for a 2D array of strings.

© National Instruments Corporation 9-1 Getting Started with LabVIEW for FRC

Chapter 9 Grouping Data UsBtgngs, Arrays, and Clusters

Refer to theArrays section of this chapter for more information about
arrays.

Grouping Data with Arrays and Clusters

Use the array and cluster controls &nttions to grouplata. Arrays group
data elements of the same type. Clusters group data elements of mixed
types.

Arrays

An array consists of elements agichensions. Elements are the data
that make up the array. A dimensiorthe length, height, or depth of

an array. An array can have onenoore dimensions and as many as
(239 — 1 elements per dimension, memory permitting.

You can build arrays of numeric, Blean, path, string, waveform, and
cluster data types. Consider usingagis when you workvith a collection

of similar data and when you perform repetitive computations. Arrays are
ideal for storing data you collect from waveforms or data generated in
loops, where each iteration of a lopmduces one element of the array.

Restrictions

You cannot create arrays of arrays. However, you can use a
multidimensional array or create amagr of clustersvhere each cluster
contains one or more arrays. Also, you cannot create an array of subpanel
controls, tab controls, .NET controls, ActiveX controls, charts, or multiplot
XY graphs.

Refer to theClusterssection of this chapter for more information about
clusters.

Indexes

Locating a particular element in an array requires one index per dimension.
In LabVIEW, indexes let you navitathrough an array and retrieve
elements, rows, columns, and paffesn an array on the block diagram.

Getting Started with LabVIEW for FRC 9-2 ni.com

Chapter 9 Grouping Data UsBtgngs, Arrays, and Clusters

Creating Array Controls, dicators, and Constants

Create an array control exdicator on the front panel by placing an array
shell on the front panel, as shown in the following figure, and dragging a
data object or element, which ch@ a numeric, Boolean, string, path,
refnum, or cluster control or indicator, into the array shell.

The array shell automatically ress to accommodate the new object.

To create an array constant on the kldiagram, select an array constant
on theFunctions palette, place the array shell on the block diagram, and
place a string constant, numeric constantluster constant in the array
shell. You can use an array constargttire constant data or as a basis for
comparison with another array.

Array Functions

Use the Array functions to createdamanipulate arrays. For example,
you can perform tasks similar to the following:

e Extracting individual data elements from an array
* Inserting, deleting, or replacirdata elements in an array
» Splitting arrays

Use the Build Array function to build an array programmatically. You also
can use a loop to build an array.

Refer to thdJsing Loops to Build Arraysection of Chapter &,00ps and
Structures for information about using loops to build arrays.

Refer to thd.abVIEW Style Checkligh theLabVIEW Helpfor more
information about minimizing memory usage when using Array functions
in a loop.

© National Instruments Corporation 9-3 Getting Started with LabVIEW for FRC

Chapter 9

Clusters

Grouping Data UsBtgngs, Arrays, and Clusters

Clusters group data elements of mixgoes. An example of a cluster is the
LabVIEW error cluster, which combinesBoolean value, a numeric value,
and a string. A cluster is similar sorecord or a struct in text-based
programming languages.

Refer to theerror Clusterssection of Chapter &unning and Debugging
VIs, for more information about using error clusters.

Bundling several data elements into clusters eliminates wire clutter on the
block diagram and reduces the number of connector pane terminals that
subVIs need. The connector pane hamadt, 28 terminals. If your front
panel contains more than 28 controls and indicators that you want to pass
to another VI, group some of them into a cluster and assign the cluster to a
terminal on the connector pane.

Most clusters on the block diagram have a pink wire pattern and data type
terminal. Clusters of numeric values, sometimes referred to as points, have
a brown wire pattern and data type terminal. You can wire brown numeric
clusters to Numeric functions, such as Add or Square Root, to perform the
same operation simultaneously on all elements of the cluster.

Order of Cluster Elements

Although cluster and array elements are both ordered, you must unbundle
all cluster elements at once or use the Unbundle By Name function to
access specific cluster elements. Clusters also differ from arrays in that they
are a fixed size. Like anrawy, a cluster is eithex control or an indicator.

A cluster cannot contain a mixe of controls and indicators.

Cluster elements have a logical order unrelated to their position in the shell.
The first object you place in the ctasis element 0, the second is

element 1, and so on. If you delete element, the order adjusts
automatically. The cluster order determines the order in which the elements
appear as terminals on the Bundle and Unbundle functions on the block
diagram. You can view and modify the cluster order by right-clicking the
cluster border and selectifgorder Controls In Cluster from the

shortcut menu.

Getting Started with LabVIEW for FRC 9-4 ni.com

Chapter 9 Grouping Data UsBtgngs, Arrays, and Clusters

To wire clusters to each other, both clusters must have the same number of
elements. Correspondingeehents, determined by the cluster order, must
have compatible data types. For example, if a double-precision
floating-point numeric value in one ches corresponds in cluster order to

a string in another cluster, the wire on the block diagram appears broken
and the VI does not run. If the nunevialues are different representations,
LabVIEW coerces them tilne same representation.

Cluster Functions

Use the Cluster functions to createlananipulate clusters. For example,
you can perform tasks similar to the following:

« Extracting individual data elements from a cluster
» Adding individual data elements to a cluster
* Breaking a cluster out into its individual data elements

Creating Cluster Control#ndicators, and Constants

Create a cluster control or indicator on the front panel by placing a cluster
shell on the front panel, as shown in the following figure, and dragging a
data object or element, which cha a numeric, Boolean, string, path,
refnum, array, or cluster control mdicator, into the cluster shell.

To create a cluster constant on the kldiagram, select a cluster constant
on theFunctions palette, place the cluster shell on the block diagram, and
place a string constant, numeric constantluster constant in the cluster
shell. You can use a cluster constargttire constant data or as a basis for
comparison with another cluster.

© National Instruments Corporation 9-5 Getting Started with LabVIEW for FRC

10

Formula and MathScript Nodes

The Formula Node is a convenient text-based node you can use to perform
mathematical operations on the block diagram. You do not have to access
any external code or applications, and you do not have to wire low-level
arithmetic functions to create equations. In addition to text-based equation
expressions, the Formula Node @atept text-based versions of if
statements, while loops, for loops, and do loops, which are familiar to

C programmers. These prognanimg elements are sitar to what you find

in C programming but are not identical.

Formula Nodes are useful for equatidihat have many variables or are
otherwise complicated and for usiagisting text-basedode. You can

copy and paste the existing text-based code into a Formula Node rather than
recreating it graphically.

The MathScript Node also is a téxdsed node you can use to perform
mathematical operations on the block diagram. However, the MathScript
Node can execute LabVIEW MathScripts amdfiles.

Creating Formula Nodes

Complete the following steps to create a Formula Node.
1. Place a Formula Node on the block diagram.

2. Use the Labeling tool or the Operating tool to enter the equations you
want to calculate inside the ForraiNlode. Each assignment must have
only a single variable on the lefide of the assignment (=). Each
assignment must end with a semicolon (;). Confirm that you are using
the correct Formula Node syntax.

If a syntax error occurs, click the brokRun button to display the
Error list window. LabVIEW marks the syntax error witk dymbol.

@ Tip Add comments to the text in a Formula Nbgeenclosing them inside a slash-asterisk
pair (*comment*/), or after a double-slastidomment).

© National Instruments Corporation 10-1 ettig Started with LabVIEW for FRC

Chapter 10 Formula and MathScript Nodes

3. Create an inputtminal for each input variable by right-clicking the
Formula Node border and selectiadd Input from the shortcut
menu. Type the variable name iretterminal that appears. You can
edit the variable name at any #msing the Labeling tool or the
Operating tool, except when the VI is running.

Variable terminals are case sensitiVaere is no limit to the number
of terminals or equations informula Node. You can change a
terminal type or remove a terminal.

4. Create an output terminal for eachputitvariable by right-clicking the
Formula Node border and selectiadd Output from the shortcut
menu. Type the variable name iretterminal that appears. You can
edit the variable name at any #msing the Labeling tool or the
Operating tool, except when the VI is running. Output variables have
thicker borders than input variables.

Note No two inputs and no two outputs can have the same name. However, an output can
have the same name as an input.

5. (Optional) The default data type for output terminals is
double-precision, floating-point numeric. To change the data type,
create an input terminal with exactly the same name as the output
terminal and wire a data type to that input terminal. Doing so also
provides a default value for the tdmal. You also can use the Formula
Node syntax to define the variable inside the Formula Node. For
examplejnt32y; changes the data type of the output termyrtal
32-bit integer.

6. Wire the input and output terminals of the Formula Node to their
corresponding terminals on the block diagram. All input terminals
must be wired. Output terminals do not have to be wired.

Refer to thd.abVIEW Helpfor more information about the Formula Node.

Creating MathScript Nodes

Complete the following steps to creand run a VI that uses a LabVIEW
MathScript.

1. Place a MathScript Nodmn the block diagram.

2. Use the Operating or Labeling tool to enter the following script in the
MathScript Node:

a =rand(50, 1)
plot(a)

Getting Started with LabVIEW for FRC 10-2 ni.com

Chapter 10 Formula and MathScript Nodes

3. Add an output to the MathScript Node and create an indicator for the
output.
a. Right-click the right side of thdathScript Node frame and select
Add Output from the shortcut menu.

b. Entera in the output terminal to add an output for éheariable
in the MathScript.

c. Change the data type of thetut terminal. In MathScript, the
default data type for any new input or output Scalar»DBL.
Right-click thea output and selec€hoose Data Type»Matrix»
Real Matrix from the shortcut menu.

d. Right-click thea output terminal and seleCreate»Indicator
from the shortcut menu to create a matrix indicator labeeled

4. Right-click theerror out output terminal and seleCteate»Indicator
from the shortcut menu to createemor out indicator.

5. Runthe VI. LabVIEW invokes the MathScript server, creates a vector
of random values, plots that information to a graph, and displays the
values that make uiine vector in th&eal Matrix front panel
indicator.

Refer to thd_abVIEW Helpfor more information about the MathScript
Node.

© National Instruments Corporation 10-3 ettig Started with LabVIEW for FRC

Local Variables, Global

Variables, and Race Conditions

In LabVIEW, you read data from or writiata to a front panel object using
its block diagram terminal. However, a front panel object has only

one block diagram terminal, and y@application might need to access the
data in that terminal from more than one location.

Local and global variables pass information between locations in the
application that you cannot connedtiwa wire. Use local variables to
access front panel objects from morarttone location in a single VI.
Use global variables to access gas data among several Vis.

Local Variables

Use local variables to access frpainel objects from more than
one location in a single VI and pass data between block diagram nodes
that you cannot coratt with a wire.

With a local variable, you can write to read from a autrol or indicator

on the front panel. Writing to a local variable is similar to passing data to
any other terminal. However, with a local variable you can write to it even
if itis a control or read from it evenitfis an indicator. In effect, with a local
variable, you can access a front panééotas both amput and an output.

For example, if the user interface regsiusers to log jryou can clear the
Login andPassword prompts each time a new user logs in. Use a local
variable to read from theogin andPasswordstring controls when a user
logs in and to write empty strings to these controls when the user logs out.

© National Instruments Corporation 11-1 ettig Started with LabVIEW for FRC

Chapter 11

Local Variables, Glataiables, and Race Conditions

Global Variables

Use global variables to access and pass data among several Vls that run
simultaneously. Global variables arelbin LabVIEW objects. When you
create a global variable, LabVIEW antatically createa special global

VI, which has a front panel but no block diagram. Add controls and
indicators to the front panel of the global VI to define the data types of the
global variables it contas. In effect, this front panel is a container from
which several VIs can access data.

For example, suppose you have two VIs running simultaneously. Each VI
contains a While Loop and writes dataints to a waveform chart. The first

VI contains a Boolean camt to terminate both VIs. You must use a global
variable to terminate both loops with a single Boolean control. If both loops
were on a single block diagram within the same VI, you could use a local
variable to terminate the loops.

Race Conditions

A race condition occurs when two or more pieces of code that execute in
parallel change the value of the sashared resource. Because the outcome
of the VI depends on which action ex&sion the shared resource first,
race conditions cause unpredictablecoutes. Race conditions often occur
with the use of local and global varieb or an external file, although race
conditions can exist any termore than one action wgtés the value of the
same stored data. The following bkatiagram shows an example of a race
condition with a local variable.

Getting Started with LabVIEW for FRC 11-2 ni.com

Chapter 11 Local Variables, Glatmiables, and Race Conditions

The output of this VI, the value of local varialledepends on which
operation runs first. Because eackeigtion writes a different value xg

you cannot determine whether the outcome wilf lme 3. In some
programming languages, a top-dowmadaw paradigm ensures execution
order. In LabVIEW, you can use wiring to perform multiple operations on
a variable while avoidig race conditions. Thellowing block diagram
performs addition operations using wiring instead of a local variable.

@ Tip If you must perform more than one action on a local or global variable, make sure you
determine the order of execution.

Race conditions also oacwhen two operations try to update a global
variable in parallel. In order to uptk the global variable, an operation
reads the value, modifies &nd writes it back to the location. When the first
operation performs the read-modify-write action and the second operation
follows after, the outcome is correantid predictable. When the first
operation reads, and théme second operation reads, both operations
modify and write a value. This action causes the-readify-write race
condition and produces invalid or missing values.

You can avoid race conditions assoethtvith global variables by using
functional global variables. Functional global variables are VIs that use
loops with uninitialized shift registers to hold global data. A functional
global variable usually has action input parameter that specifies which
task the VI performs. The VI uses an uninitialized shift register in a While
Loop to hold the result of the operation. Using one functional global
variable instead of multiple local or global variables ensures that only
one operation executes at a time, so you never perform conflicting
operations or assign conflicting values to stored data.

© National Instruments Corporation 11-3 ettig Started with LabVIEW for FRC

12

Use the state machine architecturaiplement complex decision-making
algorithms represented by state diagsaor flow charts. A state machine
consists of multiple states, eachwdfich executes codnd determines the
next code to which to transition. Thiate machine can have an initial state
and a terminal state, as well@se or more intermediate states.

State Machines

State Diagrams

You can use a state diagram to reprefenstates and transitions of a state
machine graphically. To create anesffive state diagram, you must know
the various states of the applicatiom dow they relate to one another. By
visualizing the various execution statéshe applicationyou improve the
overall design of the application.

For example, consider a vending maehtimat sells candfpr 10 cents. The
vending machine can have the following states: No Money, Five Cents, and
Ten Cents. The No Money state is thiiahstate. In the No Money state,

the vending machine continues to wait for money to be inserted. In the
Five Cents state, the vending machinatams five cents and continues to
wait for additional money to be inserted. The Ten Cents state is the terminal
state. In the terminal state etkhending machine returns the candy.

To transition between the initial stadnd the second state of the vending
machine, you must insert a nickel. To transition between the second state
and the terminal state, you must insert another nickel or a dime. You also
can transition directly from the initial state to the terminal state by inserting
a dime. The following state diagram describes this behavior.

© National Instruments Corporation 12-1 ettig Started with LabVIEW for FRC

Chapter 12 State Machines

Nickel Nickel
—> —>

Default Default

~_

Dime

This state diagram can help you visualize how to design the actual state
machine.

Using the Standard State Machine VI Template

You can use a VI to represent thatetmachine of the vending machine.
You can create the VI from scratar,you can use a VI template that
LabVIEW provides.

Complete the following steps toeate a VI using the Standard State
Machine VI template.

1.

Click theNewlink in theGetting Started window or selecFile»New
to display theNew dialog box.

From theCreate Newlist, navigate td/I»From Template»
Frameworks»Design Patterns»Standard State Machine

Click theOK button.

SelecWindow»Show Block Diagramor press the <Ctrl-E> buttons
to display the block diagram. The VI looks similar to the following
figure.

Getting Started with LabVIEW for FRC 12-2 ni.com

Chapter 12 State Machines

5. Save the VI agending Machine.vi in an easily accessible location.

Notice that this VI consists of a Whileop and a Case structure, as well

as an enum constant that specifieschrrent state. In this template, only

two states are available: Initializech8top. The Case structure determines
the code that each state executes. The While Loop executes until the Stop
state is reached.

If you run this VI without any modifications, the state machine begins in
the Initialize state. The&/hile Loop passes this state value to the Case
structure, and the Initialize casetb&é Case structure executes. The only
code in the Initialize case sets thetsate to Stop. The Case structure
passes this state value to the shift register on the right border of the While
Loop, which in turn passes the value back to the beginning of the next
iteration of the While Loop. Becauseethtate value now is Stop, the While
Loop stops.

© National Instruments Corporation 12-3 ettig Started with LabVIEW for FRC

Chapter 12 State Machines

Modifying the Standard State Machine VI

You can modify the Vending Machine Y8 behave according to the state
diagram you outlined in thtate Diagramsection of this chapter.

Designing the Front Panel Window
Complete the following steps to design the front panel window.
1. Press the <Ctrl-E> buttons to display the front panel window.

2. Place an OK Buttoripcated on thdlodern»Booleanpalette, on the
front panel window.

@ Note Front panel objects appeas terminals on the blockatjram. By default, these
terminals appear as icon terminals. To coresepace on the block diagram, right-click a
terminal and remove theheckmark next to théiew As Icon shortcut menu item to
display the data type for the terminal. You can configure LabVIEW to display terminals for
new front panel objects you create as data types by default by selembisgOptionsto
display theOptions dialog box, clickingBlock Diagram in theCategory list, and
removing the checkmark from tiface front panel terminals as icongheckbox.

3. Triple-click theOK Button label above the OK Button and enter
Nickel to change the label of the control.

4. Repeat steps 2 and 3 to create a Dime button.

5. Place a String Indicator, located on edern»String & Path
palette, on the front panel window and labaliney Deposited

6. Place a Round LED, located on ledern»Booleanpalette, on the
front panel window and label @andy Returned ?.

7. Arrange the controls and indicators on the front panel similar to the
following figure.

Getting Started with LabVIEW for FRC 12-4 ni.com

Chapter 12 State Machines

Arranging the Controls and lmditors on the Block Diagram

Complete the following steps to ange the controls and indicators on the
block diagram.

1.
2.

Press the <Ctrl-E> buttons to display the block diagram.

Move theNickel andDime controls to the left athe Case structure but
inside the While Loop.

Move theMoney Depositedindicator to the right of the While Loop.

Move theCandy Returned?indicator inside th&hile Loop near the
conditional terminal.

Right-click theMoney Depositedindicator and select
Create»Constantfrom the shortcut menu.

Enter0 in theMoney Depositedconstant to initialize the value of the
Money Depositedindicator to O.

Delete both th&qual? function wired to the conditional terminal of
the While Loop and the enuoonstant wired to thEqual? function.

Press the <Ctrl-B> keys to delalébroken wires. The block diagram
should look similar to the following figure.

© National Instruments Corporation

12-5 ettig Started with LabVIEW for FRC

Chapter 12 State Machines

Defining the States of the State Machine

Complete the following steps to defittee states of the state machine and
configure the Case structure tankée each state in a separate case.

1.

Right-click theBeginning Stateenum constant and sel€xpen Type
Def. from the shortcut menu to displayCantrol Editor window.

Right-click theStatesenum control and seleEdit Items from the
shortcut menu to display tlnum Properties dialog box.

Modify theltems list to contain the following enumerated values:

Items Digital Display

No Money 0

Five Cents 1

Ten Cents 2

Click theOK button to return to th€ontrol Editor window.

Save the control ag&nding States.ctl in an easily accessible
location and close th@ontrol Editor window. Notice that the enum
constants on the block diagram of the Vlending Machine VI update to
use the states you defined.

Right-click the case selector lalatlthe top of the case structure and
selectAdd Case for Every Valuefrom the shortcut menu. You now
can configure a case of the Casedtrte for each of the states of the
vending machine.

Getting Started with LabVIEW for FRC 12-6 ni.com

Chapter 12 State Machines

Configuring the No Money State

Complete the following steps tmnfigure the No Money state.

1.

10.

11.

12.

13.

© National Instruments Corporation

Click the increment or decrementaw of the selector label of the
Case structure to switch to the No Money case.

Place a Select function, located onBmegramming»Comparison
palette, on the block diagram inside the No Money case.

Wire theNickel control to thes input of the Select function.

Place a Vending States constant, accessible by cli€ldlegt a Vion
theFunctions palette and navigating to the Vending States control you
saved, on the block diagram to the left of the Select function.

Selectrive Centsfrom the drop-down list of the Vending States
constant.

Wire the Vending States constant tothaput of the Select function.

Wire the selector terminaf the Case structure to thénput of the
Select function. The Select functioriums the Five Cents state, if the
Nickel control is TRUE, or the current state, if the Nickel control is
FALSE.

Repeat steps 2 through 6 using the Dime control and a Ten Cents state.

Wire thes? t:f output of the first Select function to theput of the
second Select function. The second Select function returns the
Ten Cents state, if the Dime control is TRUE, or the state
corresponding to the result of the first Select function, if the Dime
control is FALSE.

Delete théext Stateenum control and the wire connecting it to the
enum output tunnel of the Case structure.

Wire thes? t:f output of the second Select function to the enum output
tunnel of the Case structure. & butput state of the No Money case
passes to the shift register on the right border of the While Loop, which
in turn passes the value back to the beginning of the next iteration of
the While Loop.

Place a False Constant, located orPteggramming»Boolean
palette, on the block diagram inside the No Money case.

Wire theFalse Constantto both the conditional terminal of the While
Loop and to th&€€andy Returned?indicator.

12-7 ettig Started with LabVIEW for FRC

Chapter 12 State Machines

The No Money case should look similar to the following figure.

Getting Started with LabVIEW for FRC 12-8 ni.com

Chapter 12 State Machines

Configuring the Five Cents State

Complete the following steps tmnfigure the Five Cents state.

1.

10.

11.

12.

13.
14.

15.

16.

© National Instruments Corporation

Click the increment or decrementaw of the selector label of the
Case structure to switch to the Five Cents case.

Place an Or function, located on thmgramming»Booleanpalette,
on the block diagram inside the Five Cents case.

Wire theDime control to thex input of the Or function.
Wire theNickel control to they input of the Or function.

Place a Select function on the tatagram to the right of the
Or function.

Wire thex .or. y? output of the Or function to theinput of the
Select function.

Place a Vending States controltbe block diagram between the
Or function and the Select function.

SelecfTen Centsfrom the drop-down list of the Vending States
constant.

Wire the Vending States constant tothaput of the Select function.

Wire the selector terminaf the Case structure to thénput of the
Select function. The Select funatioeturns the Ten Cents state, if
either the Nickel control or theie control is TRUE, or the current
state, if neither the Nickel cawnt nor the Dime control are TRUE.

Delete théNext Stateenum control and the wire connecting it to the
enum output tunnel of the Case structure.

Wire thes? t:f output of the Select function to the enum output tunnel
of the Case structure. The outputstat the Five Cents case passes to
the shift register on the right border of the While Loop, which in turn
passes the value back to the beginwoiftipe next iteration of the While
Loop.

Place a False Constant inside the Five Cents case.

Wire theFalse Constantto the Boolean output tunnel of the Case
structure.

Right-click theMoney Depositedindicator, selecCreate»Local
Variable from the shortcut menu, andapk the local variable in the
Five Cents case of the Case structure.

Right-click theMoney Depositedlocal variable and seleCireate»
Constant from the shortcut menu.

12-9 ettig Started with LabVIEW for FRC

Chapter 12 State Machines

17. Enters in the Money Deposited constaWhen the vending machine
is in the Five Cents case, thtoney Depositedindicator displays a
value of5.

The Five Cents case should look similar to the following figure.

Getting Started with LabVIEW for FRC 12-10 ni.com

Chapter 12 State Machines

Configuring the Ten Cents State

Complete the following steps tmnfigure the Ten Cents state.

1.

Click the increment or decrementaw of the selector label of the
Case structure to switch to the Ten Cents case.

Wire the selector terminal of ti@ase structure to the enum output
tunnel. After the vending machineaches the Ten Cents state, the
While Loop stops, and the statelnager changes. Therefore, the
current state passes directiyough the Ten Cents case.

Place a True Constant, located onrRhegramming»Booleanpalette,
inside the Ten Cents case.

Wire theTrue Constant to the Boolean output tunnel of the Case
structure. In the Ten Cents state, Tmee Constant passes a value of
TRUE to theCandy Returned?indicator and to the conditional
terminal of the While Loop. Becaa the value of the conditional
terminal isStop if True, the While Loop then stops.

Right-click theMoney Depositedindicator, selecCreate»Local
Variable from the shortcut menu, andapk the local variable in the
Ten Cents case of the Case structure.

Right-click theMoney Depositedlocal variable and seleCreate»
Constant from the shortcut menu.

Enter10 in the Money Deposited conataWhen the vending machine
is in the Ten Cents case, thi®ney Depositedindicator displays a
value of10.

© National Instruments Corporation 12-11 Getting Started with LabVIEW for FRC

Chapter 12 State Machines

The Ten Cents case should look similar to the following figure.

You now can run the VI and observe the values oMbeey Deposited
andCandy Returned?indicators on the front panel when you click the
Nickel andDime buttons.

Getting Started with LabVIEW for FRC 12-12 ni.com

Developing a Program

The basic features of LabVIEW programming were covered in previous
chapters. You can use these feattwedevelop a program in LabVIEW.
Before developing a program, yonust plan accordingly. Program
development often includes the following stages: brainstorming,
developing flowcharts, implementing the code, and verifying the code.

Brainstorming

Start a project by brainstorming. Consider the following questions during
brainstorming:

* What do you want to accomplish with the program?

* What do you want the outcomes of the program to be? What actions
must the program perform in order to return the outcomes you want?

* Whatresources do you need to @tetthe program correctly? Can you
think of any potential problems that might disrupt the execution of the
program?

Write down ideas for the program during brainstorming so others can see
the thoughts and ideas. If a project involves multiple participants, group
brainstorming sessions allow participants to share thoughts.

Refer to theProgramming in a Grougection of this chapter for more
information about programming in a group.

During brainstorming, write dowaverything that comes to mind,
no matter how unfeasible an idea seems. When you consider ideas for a
project, you can establish a clearer understanding of the program.

Consider, for example, a program falling train tickets. The program
must account for several factors suclhasprices of diffeznt train tickets,
types of discounts, methods of payment, and train schedules.

During brainstorming, you might consider actions of the ticket program to
include selling tickets, providing train schedules, selling different classes
of service, accepting credit cardslculating change, and selling
refreshments. Selling refreshments might be an unlikely action of the ticket

© National Instruments Corporation 13-1 ettig Started with LabVIEW for FRC

Chapter 13

Developing a Program

program. However, you can excuse unnecessary ideas later during
development.

When you list actions the program might perform, you also can identify
possible inputs and outputs of the program.

Identifying Inputs/Outputs

Every program has inputs and outpuitguts include dlelements the
program uses to make calculations and process data to produce the end
results, or outputs. Without inputs and outputs, the program has no
functionality.

Inputs of the ticket program might include train destinations, ticket types,
discount types, and currencies. The purpose of a program is to manipulate
the inputs you enter and return output values. Therefore, outputs of the
ticket program might be the ticket information, ticket type, and change
amount.

By considering possible inputs and outputs, you gain an understanding of
the program before actual programming begins.

Identifying Potential Problems

By identifying potential problems before program development, you can
reduce delays in programming ancpiementation. In the ticket program,
some problems might include train schedule updates due to delays,
incorrect money amountsna limited train capacities.

Getting Started with LabVIEW for FRC 13-2 ni.com

Chapter 13 Developing a Program

Developing Flowcharts

After brainstorming, map out a program by developing a flowchart.
Flowcharts illustrate the program steps from start to finish. For the ticket
program example, the following figel shows a flowchart for when a
customer purchases a ticket.

Start Legend
A = Money received from customer
* P = Price of ticket
Read A
No
Yes
I Print
Ticket ves
No
v v
Dispense
Change o Stop

The rectangular symbols in the figirepresent actions. These actions
include starting the program, reading input values, returning output values,
and stopping the program. An example of reading input values is reading
the amount of money a customer pays. An example of returning output
values is displaying change amounts. Flowchart action symbols can have a
maximum of one exiting arrow because each symbol must represent a
single action with a single output.

Always include the start and stopiaas when you develop flowcharts.
These symbols represent when agsam starts and stops execution.

The diamond symbols in the flowchaepresent decisions. Decisions
determine the flow of a flowchart. Use decisions to check conditions based
on input. The next path of the execution depends on whether the specified

© National Instruments Corporation 13-3 ettig Started with LabVIEW for FRC

Chapter 13

Developing a Program

condition is met. In thpreceding flowchart, whethe program reaches the

first decision, the program checks whetthe money the customer pays is
greater than or equal to the ticket price. If the customer does not pay enough
money, the program returns to tRead Aaction. If the customer pays

enough money and the condition is met, the ticket prints and the program
continues.

By developing flowcharts, you can illustrate the flow of a program before
writing code. You also casfetermine whether certaimputs are appropriate
for a program, and whether they produce the outputs you map out.

Implementing the Code

After brainstorming and developing a flowchart for a program, you can
start writing code. Use the resources you created during brainstorming as
references during this stage.

During implementation, use the following programming practices:
e Thoroughly document all code.

< Give controls and indicators relevant names.
« Make code spacing readable and clean.
Provide thorough documentation with the code so other programmers can

view the code and understand the task you are trying to implement.
Thorough documentation saves time when others work with the code.

Also make sure labels describe the behavior of controls and indicators.
Consider the following block diagram.

Getting Started with LabVIEW for FRC 13-4 ni.com

Chapter 13 Developing a Program

The block diagram is difficult to read, and the purpose of the program is
unclear. The following figure shows the same program in a readable and
linear style.

Detailed documentation clarifies the purpose of the program. The code
flows left-to-right, and spacing makéhe block diagram readable. By
documenting all code, giving controls and indicators relevant names, and
making code spacing readable and clean, you reduce confusion when
others read the program you write.

Verifying the Code

In the last stage of program development, you must verify the code. You
must complete extensive testing to make sure the program is error- and
bug-free. Define and exemutests to account for as many use cases as
possible. Also implement and test #reor-handling that checks for invalid
inputs.

You can use the following scenariostést the train ticket program:
» Buy a ticket with insufficient money.

» Purchase a ticket for a train that has left.

» Pay more money than the amount due.

Testing is necessary to ensure tHabdity of a progam. For example,
consider an automated toll roadchine that accepts nexact change.

Toll road machines must process and calculate a variety of coins in a brief
amount of time. If a machine doest poocess the coirorrectly, drivers

might receive tickets mistakenly. Tegf the processing of different coin
combinations can reduce calation errors. Similarlyyou can test different

use cases of a program you develop to identify and correct bugs before you
implement the program.

© National Instruments Corporation 13-5 ettig Started with LabVIEW for FRC

Chapter 13 Developing a Program

Programming in a Group

Complex projects require the contribution of multiple team members.

If multiple developers work on the same project, define programming
responsibilities, interfaces, and coding standards at the beginning of the
project. If you develop a programttva group, consider the following
practices:

« Split up portions of code suchateveryone can program efficiently.

e Select the team integrator. The integrator is responsible for combining
all code written by the team into the final program. The integrator must
communicate with the programmeosensure all code can work
together effectively.

< Ensure each workload is realistic. Certain portiofthe project
require more work than others. Fatample, the integrator typically
has a larger workload.

* Set realistic deadlireand communicate thernreelrly to the team. By
planning specific deadlines for project milestoryesj can measure
progress more effectively.

Analyzing the Project

At the end of the development process, consider having a post-project
analysis meeting to discuss whatnwevell and what did not. Each
developer must evaluate the project honestly and discuss obstacles that
reduced the quality level of the pect. Consider the following questions
during a post-projecnalysis meeting:

¢ What are we doing right? What works well?
« What are we doing wrong? What can we improve?
« Do any specific areas of the design or code need work?

* Are the quality systems working? €ae catch more problems if we
change the quality requirements™hQee find better ways to get the
same results?

Similar analysis meetings at majorlestones help the team to correct
problems mid-schedule instead of waitumtil the end of the release cycle.

Getting Started with LabVIEW for FRC 13-6 ni.com

Technical Support and
Professional Services

Visit the following sections of the award-winning National Instruments
Web site ahi.com for technical support and professional services:

» Support—Technical support ati.com/support includes the
following resources:

— Self-Help Technical Resources-For answers and solutions,
visit ni.com/support for software drivers and updates,
a searchable KnowledgeBasepguct manuals, step-by-step
troubleshooting wizards, thousands of example programs,
tutorials, application notes, instrument drivers, and so on.
Registered users also receive access to the NI Discussion Forums
atni.com/forums . NI Applications Engineers make sure every
guestion submitted online receives an answer.

— Standard ServiceProgram Membership—This program
entitles members to direct accéss\| Applications Engineers
via phone and email for one-to-one technical support as well as
exclusive access to on demand training modules via the Services
Resource Center. NI offers compientary membership for a full
year after purchase, after which you may renew to continue your
benefits.

For information about other technical support options in your
area, visihi.com/services , or contact your local office at
ni.com/contact

e Training and Certification —Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program informatio You also can register for
instructor-led, hands-on courses at locations around the world.

» System Integration—If you have time constraints, limited in-house
technical resources, or other projebtllenges, National Instruments
Alliance Partner members can hélp.learn more, call your local
NI office or visit ni.com/alliance

© National Instruments Corporation A-1 Getting Started with LabVIEW for FRC

Appendix A Technical Suppantd Professional Services

If you searchedi.com and could not find thanswers you need, contact
your local office or NI corporatedadquarters. Phone numbers for our
worldwide offices are listed at the froof this manual. You also can visit
the Worldwide Offices section af.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addses, and current events.

Getting Started with LabVIEW for FRC A-2 ni.com

