

 cRIO-FRC

https://www.apexwaves.com/modular-systems/national-instruments/compactrio-controllers/cRIO-FRC?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/compactrio-controllers/cRIO-FRC?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/compactrio-controllers/cRIO-FRC?aw_referrer=pdf

LabVIEW
TM

Getting Started with LabVIEW
for the FIRST Robotics Competition

Getting Started with LabVIEW for FRC

October 2009

372600B-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599,

Canada 800 433 3488, China 86 21 5050 9800, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00,

Finland 358 (0) 9 725 72511, France 01 57 66 24 24, Germany 49 89 7413130, India 91 80 41190000,

Israel 972 3 6393737, Italy 39 02 41309277, Japan 0120-527196, Korea 82 02 3451 3400,

Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 (0) 348 433 466,

New Zealand 0800 553 322, Norway 47 (0) 66 90 76 60, Poland 48 22 328 90 10, Portugal 351 210 311 210,

Russia 7 495 783 6851, Singapore 1800 226 5886, Slovenia 386 3 425 42 00, South Africa 27 0 11 805 8197,

Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151, Taiwan 886 02 2377 2222,

Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment

on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter

the info code feedback.

© 2008–2009 National Instruments Corporation. All rights reserved.

http://www.ni.com/
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=feedback

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In
the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document
without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING
FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of
the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the
product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only
to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

Trademarks
National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section
on ni.com/legal for more information about National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency,
partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software,
the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE
COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES,
TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR
ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF
HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY
UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH,
THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES,
INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS
CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION
DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY
RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER
NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT
LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v Getting Started with LabVIEW for FRC

Contents

About This Manual
Conventions ...xi

Chapter 1
Introduction to LabVIEW

LabVIEW VI Templates and Example VIs ...1-1

LabVIEW VI Templates..1-1

LabVIEW Example VIs ..1-2

Related Documentation..1-2

LabVIEW Help..1-2

LabVIEW Manuals..1-3

FRC-Specific Resources..1-3

Chapter 2
Introduction to Virtual Instruments

Front Panel ...2-2

Block Diagram...2-2

Terminals...2-3

Nodes...2-4

Wires..2-4

Structures...2-4

Icon and Connector Pane ...2-5

Using and Customizing VIs and SubVIs ...2-5

Chapter 3
LabVIEW Environment

Getting Started Window ..3-1

Context Help Window ...3-2

Project Explorer Window ..3-2

Navigation Window...3-3

Controls Palette..3-3

Functions Palette..3-3

Navigating the Controls and Functions Palettes ..3-4

Tools Palette ..3-4

Contents

Getting Started with LabVIEW for FRC vi ni.com

Menus and Toolbars .. 3-4

Shortcut Menus ... 3-5

Shortcut Menus in Run Mode ... 3-5

VI Toolbar... 3-5

Project Explorer Window Toolbars .. 3-5

Customizing Your Work Environment ... 3-6

Chapter 4
Building the Front Panel

Front Panel Controls and Indicators .. 4-1

Numeric Controls and Indicators .. 4-1

Boolean Controls and Indicators... 4-2

String Controls and Indicators .. 4-2

Configuring Front Panel Objects... 4-3

Changing Controls to Indicators and Indicators to Controls........................... 4-3

Replacing Front Panel Objects.. 4-3

Configuring the Front Panel .. 4-4

Coloring Objects ... 4-4

Aligning and Distributing Objects .. 4-5

Grouping and Locking Objects ... 4-5

Resizing Objects ... 4-5

Adding Space to the Front Panel without Resizing the Window.................... 4-6

Labeling... 4-6

Designing User Interfaces ... 4-7

Chapter 5
Building the Block Diagram

Block Diagram Objects ... 5-1

Block Diagram Terminals ... 5-1

Control and Indicator Data Types .. 5-2

Constants .. 5-2

Block Diagram Nodes... 5-3

Functions Overview... 5-4

Adding Terminals to Functions... 5-4

Built-In VIs and Functions.. 5-4

Using Wires to Link Block Diagram Objects.. 5-5

Wire Appearance and Structure .. 5-5

Wiring Objects .. 5-5

Selecting Wires ... 5-6

Correcting Broken Wires .. 5-6

Block Diagram Data Flow... 5-7

Designing the Block Diagram ... 5-8

Contents

© National Instruments Corporation vii Getting Started with LabVIEW for FRC

Chapter 6
Running and Debugging VIs

Running VIs ...6-1

Correcting Broken VIs...6-2

Finding Causes for Broken VIs ...6-2

Common Causes of Broken VIs ..6-2

Debugging Techniques ..6-3

Execution Highlighting ...6-3

Single-Stepping ...6-3

Probe Tool ...6-4

Breakpoints..6-4

Error Clusters...6-5

Chapter 7
Creating VIs and SubVIs

Using Built-In VIs and Functions ..7-1

Creating SubVIs...7-1

Creating an Icon ..7-2

Building the Connector Pane...7-2

Creating SubVIs from Sections of a VI...7-3

Designing SubVI Front Panels ..7-3

Saving VIs..7-4

Customizing VIs ..7-4

Chapter 8
Loops and Structures

For Loop and While Loop Structures ..8-1

For Loops...8-1

While Loops ..8-2

Controlling Timing..8-3

Auto-Indexing Loops...8-4

Auto-Indexing to Set the For Loop Count ..8-4

Auto-Indexing with While Loops ...8-5

Using Loops to Build Arrays...8-5

Shift Registers in Loops ..8-6

Initializing Shift Registers ..8-7

Stacked Shift Registers ...8-8

Default Data in Loops ...8-8

Case Structures ..8-9

Case Selector Values and Data Types ...8-10

Input and Output Tunnels..8-10

Contents

Getting Started with LabVIEW for FRC viii ni.com

Chapter 9
Grouping Data Using Strings, Arrays, and Clusters

Grouping Data with Strings... 9-1

String Controls .. 9-1

Table Controls... 9-1

Grouping Data with Arrays and Clusters .. 9-2

Arrays.. 9-2

Restrictions ... 9-2

Indexes.. 9-2

Creating Array Controls, Indicators, and Constants......................... 9-3

Array Functions .. 9-3

Clusters.. 9-4

Order of Cluster Elements .. 9-4

Cluster Functions .. 9-5

Creating Cluster Controls, Indicators, and Constants....................... 9-5

Chapter 10
Formula and MathScript Nodes

Creating Formula Nodes.. 10-1

Creating MathScript Nodes ... 10-3

Chapter 11
Local Variables, Global Variables, and Race Conditions

Local Variables.. 11-1

Global Variables .. 11-2

Race Conditions... 11-2

Chapter 12
State Machines

State Diagrams... 12-1

Using the Standard State Machine VI Template ... 12-2

Modifying the Standard State Machine VI.. 12-4

Designing the Front Panel Window .. 12-4

Arranging the Controls and Indicators on the Block Diagram 12-5

Defining the States of the State Machine.. 12-6

Configuring the No Money State.. 12-7

Configuring the Five Cents State.. 12-9

Configuring the Ten Cents State .. 12-11

Contents

© National Instruments Corporation ix Getting Started with LabVIEW for FRC

Chapter 13
Developing a Program

Brainstorming ..13-1

Identifying Inputs/Outputs...13-2

Identifying Potential Problems ..13-2

Developing Flowcharts ..13-3

Implementing the Code..13-4

Verifying the Code...13-5

Programming in a Group ...13-6

Analyzing the Project...13-6

Appendix A
Technical Support and Professional Services

© National Instruments Corporation xi Getting Started with LabVIEW for FRC

About This Manual

Use this manual as a tutorial to familiarize yourself with the LabVIEW

graphical programming environment and the basic LabVIEW features you

can use to build FIRST Robotics Competition (FRC) applications.

This manual describes LabVIEW programming concepts, techniques,

features, VIs, and functions you can use to create FRC applications. This

manual does not include specific information about each palette, tool,

menu, dialog box, control or indicator, or built-in VI or function. Refer to

the LabVIEW Help for more information about these items and for detailed,

step-by-step instructions for using LabVIEW features and for building

specific applications. Refer to the Related Documentation section of

Chapter 1, Introduction to LabVIEW, for more information about the

LabVIEW Help and how to access it.

The LabVIEW Robotics Programming Guide for the FIRST Robotics

Competition provides information about robotics programming concepts

and reference information about the FIRST Robotics Competition VIs.

Refer to the Related Documentation section of Chapter 1, Introduction to

LabVIEW, for more information about the LabVIEW Robotics

Programming Guide for the FIRST Robotics Competition and how to

access it.

Conventions

This manual uses the following conventions:

» The » symbol leads you through nested menu items and dialog box options

to a final action. The sequence File»Page Setup»Options directs you to

pull down the File menu, select the Page Setup item, and select Options

from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to

avoid injury, data loss, or a system crash.

About This Manual

Getting Started with LabVIEW for FRC xii ni.com

bold Bold text denotes items that you must select or click in the software, such

as menu items and dialog box options. Bold text also denotes parameter

names, controls and indicators on the front panel, dialog boxes, sections of

dialog boxes, menu names, and palette names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction

to a key concept. Italic text also denotes text that is a placeholder for a word

or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the

keyboard, sections of code, programming examples, and syntax examples.

This font is also used for the proper names of disk drives, paths, directories,

programs, subprograms, subroutines, device names, operations, variables,

filenames, and extensions.

monospace bold Bold text in this font denotes the messages and responses that the computer

automatically prints to the screen. This font also emphasizes lines of code

that are different from the other examples.

© National Instruments Corporation 1-1 Getting Started with LabVIEW for FRC

1
Introduction to LabVIEW

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a

graphical programming language that uses icons instead of lines of text to

create applications. In contrast to text-based programming languages,

where instructions determine the order of program execution, LabVIEW

uses dataflow programming, where the flow of data through the nodes on

the block diagram determines the execution order of the VIs and functions.

VIs, or virtual instruments, are LabVIEW programs that imitate physical

instruments.

In LabVIEW, you build a user interface by using a set of tools and objects.

The user interface is known as the front panel. You then add code using

graphical representations of functions to control the front panel objects.

The block diagram contains this code. This graphical source code is also

known as G code or block diagram code. In some ways, the block diagram

resembles a flowchart.

Refer to Chapter 4, Building the Front Panel, for more information about

the front panel. Refer to Chapter 5, Building the Block Diagram, for more

information about the block diagram.

LabVIEW VI Templates and Example VIs

Use the LabVIEW VI templates, example VIs, and tools as a starting point

to help you design and build VIs.

LabVIEW VI Templates
The built-in VI templates include the subVIs, functions, structures, and

front panel objects you need to get started building common applications.

VI templates open as untitled VIs that you must save. Select File»New to

display the New dialog box, which lists the built-in VI templates. You also

can display the New dialog box by clicking the New link in the Getting

Started window.

Chapter 1 Introduction to LabVIEW

Getting Started with LabVIEW for FRC 1-2 ni.com

LabVIEW Example VIs
LabVIEW searches among hundreds of example VIs you can use and

incorporate into VIs that you create. You can modify an example to fit an

application, or you can copy and paste from one or more examples into a

VI that you create. Browse or search the example VIs with the NI Example

Finder by selecting Help»Find Examples.

The FRC software provides example VIs that demonstrate how to use

the FRC VIs to build robotics applications. Access these example VIs

by navigating to the National Instruments\LabVIEW 8.6\

examples\FRC directory.

Refer to the NI Developer Zone at ni.com/zone for additional

example VIs.

Related Documentation

LabVIEW includes extensive documentation for new and experienced

LabVIEW users.

LabVIEW Help
Use the LabVIEW Help to access information about LabVIEW

programming concepts, step-by-step instructions for using LabVIEW,

and reference information about LabVIEW VIs, functions, palettes, menus,

and tools. The LabVIEW Help also contains reference information about

FRC-specific VIs and dialog boxes.

The LabVIEW Help includes links to the technical support resources

on the National Instruments Web site, such as NI Developer Zone,

the KnowledgeBase, and the Product Manuals Library.

Access the LabVIEW Help by selecting Help»Search the LabVIEW

Help. You also can print a help topic or a book of help topics from the

LabVIEW Help.

Refer to the LabVIEW Help for more information about printing help

topics.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdbp05

Chapter 1 Introduction to LabVIEW

© National Instruments Corporation 1-3 Getting Started with LabVIEW for FRC

LabVIEW Manuals
The following manuals contain information that you might find helpful as

you use LabVIEW:

• Getting Started with LabVIEW—Use this manual as a tutorial to

familiarize yourself with the LabVIEW graphical programming

environment and the basic LabVIEW features you use to build data

acquisition and instrument control applications.

• LabVIEW Quick Reference Card—Use this card as a reference for

information about documentation resources, keyboard shortcuts, data

type terminals, and tools for editing, execution, and debugging.

These documents are available as PDFs in the National Instruments\

LabVIEW 8.6\manuals directory. You must have Adobe Reader 6.0.1 or

later installed to view or search the PDFs.

Refer to the Adobe Systems Incorporated Web site at www.adobe.com

to download Acrobat Reader. Refer to the National Instruments Product

Manuals Library at ni.com/manuals for updated documentation

resources.

FRC-Specific Resources
The following resources contain information that you might find helpful as

you use LabVIEW to build FRC applications:

• LabVIEW Robotics Programming Guide for the FIRST Robotics

Competition—Use this manual to access information about robotics,

programming concepts, reference information about the FIRST

Robotics Competition VIs, and guidelines for troubleshooting in

LabVIEW. Access this manual by navigating to the National

Instruments\LabVIEW 8.6\manuals directory and opening

FRC_Programming_Guide.pdf.

• cRIO-FRC Operating Instructions and Specifications—Use this

manual to learn about installing, configuring, and using the

CompactRIO device for the FIRST Robotics Competition.

Access this manual by navigating to the National Instruments\

CompactRIO\manuals directory and opening

crio-frc_Operating_Instructions.pdf.

• FRC Community—Refer to the FRC Community Web site at

http://firstcommunity.usfirst.org/ for official information

about the FRC competition, including rules and regulations as well as

support information.

http://www.adobe.com
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdbp02
http://firstcommunity.usfirst.org/

© National Instruments Corporation 2-1 Getting Started with LabVIEW for FRC

2
Introduction to Virtual Instruments

LabVIEW programs are called virtual instruments, or VIs, because their

appearance and operation imitate physical instruments, such as

oscilloscopes and multimeters. Every VI uses functions that manipulate

input from the user interface or other sources and display that information

or move it to other files or other computers.

A VI contains the following three components:

• Front panel—Serves as the user interface.

• Block diagram—Contains the graphical source code that defines the

functionality of the VI.

• Icon and connector pane—Identifies the interface to the VI so that

you can use the VI in another VI. A VI within another VI is called a

subVI. A subVI corresponds to a subroutine in text-based

programming languages.

Click the Blank VI link in the Getting Started window to create a new,

blank VI. You also can create a new, blank VI by pressing the <Ctrl-N>

keys.

Chapter 2 Introduction to Virtual Instruments

Getting Started with LabVIEW for FRC 2-2 ni.com

Front Panel

The front panel is the user interface of the VI.

Figure 2-1. Front panel of a VI

You build the front panel using controls and indicators, which are the

interactive input and output terminals, respectively, of the VI. Controls are

knobs, push buttons, dials, and other input mechanisms. Indicators are

graphs, LEDs, and other output displays. Controls simulate instrument

input mechanisms and supply data to the block diagram of the VI.

Indicators simulate instrument output mechanisms and display data the

block diagram acquires or generates.

Refer to Chapter 4, Building the Front Panel, for more information about

the front panel.

Block Diagram

After you build the front panel, you add code using graphical

representations of functions to control the front panel objects. The block

diagram contains this graphical source code, also known as G code or

block diagram code. Front panel objects appear as terminals on the block

diagram.

Chapter 2 Introduction to Virtual Instruments

© National Instruments Corporation 2-3 Getting Started with LabVIEW for FRC

The following VI contains several primary block diagram

objects—terminals, functions, and wires.

Figure 2-2. Block diagram and corresponding front panel

Refer to Chapter 5, Building the Block Diagram, for more information

about the block diagram.

Terminals
Terminals represent the data type of controls and indicators. You can

configure front panel controls or indicators to appear as icon or data type

terminals on the block diagram. By default, front panel objects appear as

icon terminals. For example, a knob icon terminal, shown at left, represents

a knob on the front panel. The DBL at the bottom of the terminal represents

a data type of double-precision, floating-point numeric.

Terminals are entry and exit ports that exchange information between the

front panel and block diagram. Data you enter into the front panel controls

enters the block diagram through the control terminals. Returned data

values pass from the block diagram to the front panel through the indicator

terminals. In Figure 2-2, a and b are control terminals, and a+b and a–b are

indicator terminals.

Chapter 2 Introduction to Virtual Instruments

Getting Started with LabVIEW for FRC 2-4 ni.com

Refer to the Control and Indicator Data Types section of Chapter 5,

Building the Block Diagram, for more information about data types in

LabVIEW.

Nodes
Nodes are objects on the block diagram that have inputs and/or outputs and

perform operations when a VI runs. They are analogous to statements,

operators, functions, and subroutines in text-based programming

languages. The Add and Subtract functions in Figure 2-2 are examples of

nodes.

Refer to the Block Diagram Nodes section of Chapter 5, Building the Block

Diagram, for more information about nodes.

Wires
Wires transfer data among block diagram objects. In Figure 2-2, wires

connect the control and indicator terminals to the Add and Subtract

functions. Each wire has a single data source, but you can wire the data

source to many VIs and functions that read the data. Wires are different

colors, styles, and thicknesses, depending on their data types. A broken

wire appears as a dashed black line with a red X in the middle. Broken wires

occur for a variety of reasons, such as when you try to wire two objects with

incompatible data types.

Refer to the Using Wires to Link Block Diagram Objects section of

Chapter 5, Building the Block Diagram, for more information about wires.

Structures
Structures are graphical representations of the loops and case statements of

text-based programming languages. Use structures on the block diagram to

repeat blocks of code and to execute code conditionally or in a specific

order.

Refer to Chapter 8, Loops and Structures, for more information about

structures.

Chapter 2 Introduction to Virtual Instruments

© National Instruments Corporation 2-5 Getting Started with LabVIEW for FRC

Icon and Connector Pane

After you build a VI front panel and block diagram, build the icon and the

connector pane so you can use the VI as a subVI. The icon and connector

pane correspond to the function prototype in text-based programming

languages. Every VI displays an icon, such as the one shown at left, in the

upper right corner of the front panel and block diagram windows.

Refer to the Creating an Icon section of Chapter 7, Creating VIs and

SubVIs, for more information about icons.

You also need to build a connector pane, shown at left, to use a VI as a

subVI.

The connector pane is a set of terminals that correspond to the controls and

indicators of that VI, similar to the parameter list of a function call in

text-based programming languages.

Refer to the Building the Connector Pane section of Chapter 7, Creating

VIs and SubVIs, for more information about setting up connector panes.

Note Try not to assign more than 16 terminals to a VI. Too many terminals can reduce the

readability and usability of the VI.

Using and Customizing VIs and SubVIs

After you build a VI and create its icon and connector pane, you can use it

as a subVI.

Refer to the Creating SubVIs section of Chapter 7, Creating VIs and

SubVIs, for more information about subVIs.

You also can customize the appearance and behavior of a VI.

Refer to the Customizing VIs section of Chapter 7, Creating VIs and

SubVIs, for more information about customizing a VI.

© National Instruments Corporation 3-1 Getting Started with LabVIEW for FRC

3
LabVIEW Environment

The LabVIEW environment includes the Getting Started window, the

Context Help window, the Project Explorer window, and the Navigation

window. LabVIEW also includes palettes, tools, and menus to build the

front panels and block diagrams of VIs. LabVIEW includes three palettes:

the Controls palette, the Functions palette, and the Tools palette. You can

customize the Controls and Functions palettes, and you can set several

work environment options.

Getting Started Window

The Getting Started window appears when you launch LabVIEW. Use

this window to create new VIs, select among the most recently opened

LabVIEW files, find examples, and launch the LabVIEW Help. You also

can access information and resources to help you learn about LabVIEW,

such as specific manuals, help topics, and resources on the National

Instruments Web site, ni.com.

In LabVIEW for FRC, the Getting Started window contains links to

FRC-specific resources and examples. You also can create an FRC cRIO

robotics project or an FRC dashboard project from the Getting Started

window. Refer to the LabVIEW Robotics Programming Guide for the

FIRST Robotics Competition, accessible by navigating to the National

Instruments\LabVIEW 8.6\manuals directory and opening

FRC_Programming_Guide.pdf, for more information about creating

FRC projects and developing a robotics application.

The Getting Started window disappears when you open an existing file or

create a new file. The Getting Started window reappears when you close

all open front panels and block diagrams. You also can display the window

by selecting View»Getting Started Window.

http://www.ni.com
http://www.ni.com

Chapter 3 LabVIEW Environment

Getting Started with LabVIEW for FRC 3-2 ni.com

Context Help Window

The Context Help window displays basic information about LabVIEW

objects when you move the cursor over each object. Objects with context

help information include VIs, functions, constants, structures, palettes,

properties, methods, events, dialog box components, and items in the

Project Explorer window. You also can use the Context Help window

to determine exactly where to connect wires to a VI or function.

Refer to the Using Wires to Link Block Diagram Objects section of

Chapter 5, Building the Block Diagram, for more information about using

the Context Help window to wire objects.

Select Help»Show Context Help to display the Context Help window.

You also can display the Context Help window by clicking the Show

Context Help Window button, shown at left, on the toolbar.

You also can display the window by pressing the <Ctrl-H> keys.

If a corresponding LabVIEW Help topic exists for an object the Context

Help window describes, a blue Detailed help link appears in the Context

Help window. Also, the Detailed help button in the Context Help window,

shown at left, is enabled.

Click the link or the button to display more information about the object.

Project Explorer Window

Use the Project Explorer window to create and edit LabVIEW projects.

Use projects to group together LabVIEW files and non-LabVIEW files,

create build specifications, and deploy or download files to targets. Select

File»New Project to display the Project Explorer window.

The Project Explorer window includes two pages, the Items page and the

Files page. The Items page displays the project items as they exist in

the project tree. The Files page displays the project items that have a

corresponding file on disk. You can organize filenames and folders on this

page. Project operations on the Files page both reflect and update the

contents on disk.

Refer to the LabVIEW Help for more information about the Project

Explorer window.

Chapter 3 LabVIEW Environment

© National Instruments Corporation 3-3 Getting Started with LabVIEW for FRC

Navigation Window

The Navigation window displays an overview of the active front panel in

edit mode or the active block diagram. Use the Navigation window to

navigate large front panels or block diagrams. Click an area of the image in

the Navigation window to display that area in the front panel or block

diagram window. You also can click and drag the image in the Navigation

window to scroll through the front panel or block diagram. Portions of the

front panel or block diagram that are not visible appear dimmed in the

Navigation window.

Select View»Navigation Window to display the Navigation window.

You also can display the window by pressing the <Ctrl-Shift-N> keys.

Controls Palette

The Controls palette is available only on the front panel. The Controls

palette contains the controls and indicators you use to create the front panel.

The controls and indicators are located on subpalettes based on the types of

controls and indicators.

Refer to the Front Panel Controls and Indicators section of Chapter 4,

Building the Front Panel, for more information about the types of controls

and indicators.

Select View»Controls Palette or right-click the front panel workspace to

display the Controls palette.

Functions Palette

The Functions palette is available only on the block diagram. The

Functions palette contains the VIs and functions you use to build the block

diagram. The VIs and functions are located on subpalettes based on the

types of VIs and functions.

Refer to the LabVIEW Help for more information about the types of built-in

VIs and functions.

Select View»Functions Palette or right-click the block diagram

workspace to display the Functions palette.

Chapter 3 LabVIEW Environment

Getting Started with LabVIEW for FRC 3-4 ni.com

Navigating the Controls and Functions Palettes

Click an object on the palette to place the object on the cursor so you can

place it on the front panel or block diagram. You also can right-click a VI

icon on the palette and select Open VI from the shortcut menu to open

the VI.

Click the black arrows on the left side of the Controls or Functions palette

to expand or collapse subpalettes. These arrows appear only if you set the

palette format to Category (Standard) or Category (Icons and Text).

Click the Search button on the Controls or Functions palette toolbar to

perform text-based searches to locate controls, VIs, or functions on the

palettes. While a palette is in search mode, click the Return button to exit

search mode and return to the palette.

Tools Palette

The Tools palette is available on the front panel and the block diagram.

A tool is a special operating mode of the mouse cursor. The cursor

corresponds to the icon of the tool you select on the palette. Use the tools

to operate and modify front panel and block diagram objects.

If automatic tool selection is enabled and you move the cursor over objects

on the front panel or block diagram, LabVIEW automatically selects the

corresponding tool from the Tools palette. Automatic tool selection is

enabled by default.

Select View»Tools Palette to display the Tools palette.

Tip Press the <Shift> key and right-click to display a temporary version of the Tools

palette at the location of the cursor.

Menus and Toolbars

Use the menu and toolbar items to operate and modify front panel and block

diagram objects.

The menus at the top of a VI window contain items common to other

applications, such as Open, Save, Copy, and Paste, and other items

specific to LabVIEW. Some menu items also list keyboard shortcuts.

Chapter 3 LabVIEW Environment

© National Instruments Corporation 3-5 Getting Started with LabVIEW for FRC

The menus display only the most recently used items by default. Click

the arrows at the bottom of a menu to display all items. You can display

all menu items by default by selecting Tools»Options, selecting

Environment from the Category list, and removing the checkmark from

the Use abridged menus checkbox.

Note Some menu items are unavailable while a VI runs.

Shortcut Menus
All LabVIEW objects have associated shortcut menus. As you create a VI,

use the shortcut menu items to change the appearance or behavior of front

panel and block diagram objects. To access the shortcut menu, right-click

the object.

Shortcut Menus in Run Mode
When a VI is running or is in run mode, all front panel objects have an

abridged set of shortcut menu items by default. Use the abridged shortcut

menu items to cut, copy, or paste the contents of the object, to set the object

to its default value, or to read the description of the object.

VI Toolbar
Use the buttons on the VI toolbar to run VIs, pause VIs, abort VIs, debug

VIs, configure fonts, and align, group, and distribute objects.

Refer to Chapter 6, Running and Debugging VIs, for more information

about some of the toolbar buttons, or refer to the LabVIEW Help for a

complete list and description of the toolbar buttons.

Project Explorer Window Toolbars
Use the buttons on the Standard, Project, Build, and Source Control

toolbars to perform operations in a LabVIEW project. The toolbars are

available at the top of the Project Explorer window. You might need to

expand the Project Explorer window to view all of the toolbars.

Refer to the Project Explorer Window section of this chapter for more

information about LabVIEW projects.

Chapter 3 LabVIEW Environment

Getting Started with LabVIEW for FRC 3-6 ni.com

Customizing Your Work Environment

You can use the Options dialog box, available by selecting Tools»

Options, to select a palette format and set other work environment options.

Use the Options dialog box to set options for front panels, block diagrams,

paths, performance and disk issues, the alignment grid, palettes, undo,

debugging tools, colors, fonts, printing, the History window, and other

LabVIEW features.

Use the Category list at the left side of the Options dialog box to select

among the different categories of options.

© National Instruments Corporation 4-1 Getting Started with LabVIEW for FRC

4
Building the Front Panel

The front panel is the user interface of a VI. Generally, you design the front

panel first and then design the block diagram to perform tasks on the inputs

and outputs you create on the front panel.

Refer to Chapter 5, Building the Block Diagram, for more information

about the block diagram.

You can select controls and indicators from the Controls palette and place

them on the front panel. Select View»Controls Palette to display the

Controls palette.

Front Panel Controls and Indicators

Use the front panel controls and indicators located on the Controls palette

to build the front panel. Controls are knobs, push buttons, dials, and other

input mechanisms. Indicators are graphs, LEDs, and other output displays.

Controls simulate instrument input mechanisms and supply data to the

block diagram of the VI. Indicators simulate instrument output mechanisms

and display data the block diagram acquires or generates. The most

common controls and indicators are numeric, Boolean, and string controls

and indicators.

Numeric Controls and Indicators
Use numeric controls and indicators to enter and display numeric data. You

can resize these front panel objects horizontally to accommodate more

digits. Change the value of a numeric control in any of the following ways:

• Use the Operating tool or the Labeling tool to click inside the digital

display window and enter numbers from the keyboard.

• Use the Operating tool to click the increment or decrement arrow

buttons of a numeric control.

• Use the Operating tool or the Labeling tool to place the cursor to the

right of the digit you want to change and press the up or down arrow

keys.

Chapter 4 Building the Front Panel

Getting Started with LabVIEW for FRC 4-2 ni.com

By default, LabVIEW displays and stores numbers like a calculator.

A numeric control or indicator displays up to six digits before

automatically switching to exponential notation. You can configure the

number of digits LabVIEW displays before switching to exponential

notation by right-clicking the numeric object and selecting Format and

Precision from the shortcut menu to display the Format and Precision

page of the Numeric Properties dialog box.

Boolean Controls and Indicators
Use the Boolean controls and indicators located on the Boolean and

Classic Boolean palettes to create buttons, switches, and lights.

Use Boolean controls and indicators to enter and display Boolean

(TRUE/FALSE) values. For example, if you are monitoring the

temperature of an experiment, you can place a Boolean warning light on the

front panel to indicate when the temperature exceeds a certain level.

Boolean controls have six types of mechanical action that allow you to

customize the behavior of Boolean objects. Use Boolean controls to create

front panels that resemble the behavior of physical instruments. Use the

shortcut menu to customize the appearance and behavior of Boolean

objects.

String Controls and Indicators
Use string controls or indicators to manipulate and display text. Use the

Operating or Labeling tool to enter or edit text in a string control on the

front panel. By default, new or changed text does not pass to the block

diagram until you terminate the edit session. At run time, you terminate the

edit session by clicking elsewhere on the panel, changing to a different

window, clicking the Enter button on the toolbar, or pressing the <Enter>

key on the numeric keypad. Pressing the <Enter> key on the keyboard

enters a carriage return.

Right-click a string control or indicator to select a display type for the text

in the control or indicator, such as password display or hex display.

Refer to the Grouping Data with Strings section of Chapter 9, Grouping

Data Using Strings, Arrays, and Clusters, for more information about

string display types.

Chapter 4 Building the Front Panel

© National Instruments Corporation 4-3 Getting Started with LabVIEW for FRC

Configuring Front Panel Objects

Use Properties dialog boxes or shortcut menus to configure how controls

and indicators appear or behave on the front panel. Use Properties dialog

boxes when you want to set several properties of an object at once. Use

shortcut menus to configure common control and indicator properties. The

options available in Properties dialog boxes and shortcut menus differ for

different front panel objects. Any option you set using a shortcut menu is

reflected in the Properties dialog box, and any option you set using the

Properties dialog box is reflected in the shortcut menu.

Right-click a control or indicator on the front panel and select Properties

from the shortcut menu to access the Properties dialog box for that object.

You cannot access Properties dialog boxes for a control or indicator while

a VI runs.

Changing Controls to Indicators and Indicators to Controls
LabVIEW initially configures objects in the Controls palette as controls or

indicators based on their typical use. For example, if you place a toggle

switch on the front panel, it appears as a control because a toggle switch is

usually an input mechanism. If you place an LED on the front panel, it

appears as an indicator because an LED is usually an output device.

Some palettes contain a control and an indicator for the same type or class

of object. For example, the Numeric palette contains a numeric control and

a numeric indicator because you can have a numeric input or a numeric

output.

You can change a control to an indicator by right-clicking the object and

selecting Change to Indicator from the shortcut menu, and you can

change an indicator to a control by right-clicking the object and selecting

Change to Control from the shortcut menu.

Replacing Front Panel Objects
You can replace a front panel object with a different control or indicator.

When you right-click an object and select Replace from the shortcut menu,

a temporary Controls palette appears. Select a control or indicator from the

temporary Controls palette to replace the current object on the front panel.

Selecting Replace from the shortcut menu preserves as much information

as possible about the original object, such as its name, description, default

data, dataflow direction (control or indicator), color, size, and so on. If you

Chapter 4 Building the Front Panel

Getting Started with LabVIEW for FRC 4-4 ni.com

replace a numeric terminal with another numeric terminal, LabVIEW tries

to preserve the original representation. However, if the control does not

support the new data type, the new object retains its own data type. Wires

from the terminal of the object remain on the block diagram, but they might

be broken. For example, if you replace a numeric terminal with a string

terminal, the original wire remains on the block diagram, but is broken.

The more the new object resembles the object you are replacing, the more

original characteristics you can preserve. For example, if you replace a

slide with a different style slide, the new slide has the same height, scale,

value, name, description, and so on. If you replace the slide with a string

control instead, LabVIEW preserves only the name, description, and

dataflow direction because a slide does not have much in common with a

string control.

You also can select Edit»Copy and Edit»Paste to copy objects to the

clipboard and paste them from the clipboard to replace existing front panel

controls and indicators. This method does not preserve any characteristics

of the old object, but the wires remain connected to the object.

Configuring the Front Panel

You can customize the front panel by changing the color of front panel

objects, aligning and distributing front panel objects, and so on.

Coloring Objects
You can change the color of most front panel objects and the front panel

and block diagram workspaces. You cannot change the color of system

controls and indicators because these objects appear in the colors you have

set up for your system.

Use the Coloring tool to right-click an object or workspace to change the

color of front panel objects or of the front panel and block diagram

workspaces. You also can change the default colors for some objects by

selecting Tools»Options and selecting Colors from the Category list.

Color can distract the user from important information so use color

logically, sparingly, and consistently, if at all.

Chapter 4 Building the Front Panel

© National Instruments Corporation 4-5 Getting Started with LabVIEW for FRC

Aligning and Distributing Objects
Use grid alignment to align objects to the front panel grid when you place,

move, or resize them. Select Edit»Enable Panel Grid Alignment to

enable grid alignment on the front panel. Select Edit»Disable Panel Grid

Alignment to disable grid alignment and use the visible grid to align

objects manually. You also can press the <Ctrl-#> keys to enable or disable

the grid alignment.

Select Tools»Options and select Alignment Grid from the Category list

to hide or customize the grid.

To align objects after you place them, select the objects and select the Align

Objects pull-down menu, shown at left, on the toolbar or select Edit»Align

Items.

To space objects evenly, select the objects and select the Distribute

Objects pull-down menu, shown at left, on the toolbar or select Edit»

Distribute Items.

You also can use grid alignment on the block diagram.

Grouping and Locking Objects
Grouped objects maintain their relative arrangement and size when you use

the Positioning tool to move and resize them. Locked objects maintain their

location on the front panel, and you cannot delete them until you unlock

them. Use the Positioning tool to select the front panel objects you want to

group and lock together. Click the Reorder button, shown at left, on the

toolbar and select Group or Lock from the pull-down menu. You can set

objects to be grouped and locked at the same time. Tools other than the

Positioning tool work normally with grouped or locked objects.

Resizing Objects
You can change the size of most front panel objects. When you move the

Positioning tool over a resizable object, resizing handles or circles appear

at the points where you can resize the object. When you resize an object,

the font size remains the same. Resizing a group of objects resizes all the

objects within the group.

Some objects change size only horizontally or vertically when you resize

them, such as digital numeric controls and indicators. Others keep the same

proportions when you resize them, such as knobs. The Positioning cursor

appears the same, but the dashed border that surrounds the object moves in

only one direction.

Chapter 4 Building the Front Panel

Getting Started with LabVIEW for FRC 4-6 ni.com

You can manually restrict the growth direction when you resize an object.

To restrict the growth vertically or horizontally or to maintain the current

proportions of the object, press the <Shift> key while you click and drag

the resizing handles or circles. To resize an object around its center point,

press the <Ctrl> key while you click and drag the resizing handles or

circles.

To resize multiple objects to the same size, select the objects and select the

Resize Objects pull-down menu, shown at left, on the toolbar. You can

resize all the selected objects to the width or height of the largest or smallest

object, and you can resize all the selected objects to a specific size in pixels.

Adding Space to the Front Panel without Resizing the Window
You can add space to the front panel without resizing the window. To

increase the space between crowded or tightly grouped objects, press the

<Ctrl> key and use the Positioning tool to click the front panel workspace.

While holding the key combination, drag out a region the size you want to

insert.

A rectangle marked by a dashed border defines where space will be

inserted. Release the mouse button and the <Ctrl> key to add the space.

Labeling

Use labels to identify objects on the front panel and block diagram.

LabVIEW includes two kinds of labels—owned labels and free labels.

Owned labels belong to and move with a particular object and annotate that

object only. You can move an owned label independently, but when you

move the object that owns the label, the label moves with the object. You

can hide owned labels, but you cannot copy or delete them independently

of their owners. You can display a separate owned label called a unit label

for numeric controls and indicators by right-clicking the numeric control or

indicator and selecting Visible Items»Unit Label from the shortcut menu.

Free labels are not attached to any object, and you can create, move, rotate,

or delete them independently. Use them to annotate front panels and block

diagrams. Free labels are useful for documenting code on the block

diagram and for listing user instructions on the front panel. Double-click an

open space or use the Labeling tool to create free labels or to edit either type

of label.

Chapter 4 Building the Front Panel

© National Instruments Corporation 4-7 Getting Started with LabVIEW for FRC

Designing User Interfaces

If a VI serves as a user interface or a dialog box, front panel appearance and

layout are important. Design the front panel so users can identify what

actions to perform. You can design front panels that look similar to

instruments or other devices.

Controls and indicators are the main components of the front panel. When

you design the front panel, consider how users interact with the VI and

group controls and indicators logically. If several controls are related, add a

decorative border around them or put them in a cluster. Use the decorations

located on the Decorations palette to group or separate objects on a front

panel with boxes, lines, or arrows. These objects are for decoration only

and do not display data.

© National Instruments Corporation 5-1 Getting Started with LabVIEW for FRC

5
Building the Block Diagram

After you build the front panel, you add code using graphical

representations of functions to control the front panel objects. The block

diagram contains this graphical source code, also known as G code or block

diagram code.

Block Diagram Objects

Objects on the block diagram include terminals and nodes. You build block

diagrams by connecting the objects with wires. The color and symbol of

each terminal indicate the data type of the corresponding control or

indicator. Constants are terminals on the block diagram that supply fixed

data values to the block diagram.

Block Diagram Terminals
Front panel objects appear as terminals on the block diagram. Double-click

a block diagram terminal to highlight the corresponding control or indicator

on the front panel.

Terminals are entry and exit ports that exchange information between the

front panel and block diagram. Data values you enter into the front panel

controls enter the block diagram through the control terminals. During

execution, the output data values flow to the indicator terminals, where they

exit the block diagram, reenter the front panel, and appear in front panel

indicators.

LabVIEW has control and indicator terminals, node terminals, constants,

and specialized terminals on structures. You use wires to connect terminals

and pass data to other terminals. Right-click a block diagram object and

select Visible Items»Terminals from the shortcut menu to view the

terminals. Right-click the object and select Visible Items»Terminals

again to hide the terminals. This shortcut menu item is not available for

expandable VIs and functions.

Chapter 5 Building the Block Diagram

Getting Started with LabVIEW for FRC 5-2 ni.com

You can configure front panel controls or indicators to appear as icon or

data type terminals on the block diagram. By default, front panel objects

appear as icon terminals. For example, a knob icon terminal, shown at left,

represents a knob control on the front panel.

The DBL at the bottom of the terminal represents a data type of

double-precision, floating-point numeric.

A DBL terminal, shown at left, represents a double-precision,

floating-point numeric control.

Right-click a terminal and remove the checkmark next to the View As Icon

shortcut menu item to display the data type for the terminal. Use icon

terminals to display the types of front panel objects on the block diagram,

in addition to the data types of the front panel objects. Use data type

terminals to conserve space on the block diagram.

Note Icon terminals are larger than data type terminals, so you might unintentionally

obscure other block diagram objects when you convert a data type terminal to an icon

terminal.

Control terminals have a thicker border than indicator terminals. Also,

arrows appear on front panel terminals to indicate whether the terminal is a

control or an indicator. An arrow appears on the right if the terminal is a

control, and an arrow appears on the left if the terminal is an indicator.

Control and Indicator Data Types
Common control and indicator data types include floating-point numeric,

integer numeric, time stamp, enumerated, Boolean, string, array, cluster,

path, dynamic, waveform, refnum, and I/O name. Refer to the LabVIEW

Help for the complete list of control and indicator data types with their

symbols and uses.

The color and symbol of each terminal indicate the data type of the

corresponding control or indicator. Many data types have a corresponding

set of functions that can manipulate the data, such as the String functions

on the String palette that correspond to the string data type.

Constants
Constants are terminals on the block diagram that supply fixed data values

to the block diagram. Universal constants are constants with fixed values,

such as pi (π) and infinity (∞). User-defined constants are constants you

define and edit before you run a VI.

Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-3 Getting Started with LabVIEW for FRC

Most constants are located at the bottom or top of their palettes.

Create a user-defined constant by right-clicking an input terminal of a VI

or function and selecting Create»Constant from the shortcut menu. Use

the Operating or Labeling tool to click the constant and edit its value. If

automatic tool selection is enabled, double-click the constant to switch to

the Labeling tool and edit the value.

Block Diagram Nodes
Nodes are objects on the block diagram that have inputs and/or outputs and

perform operations when a VI runs. They are analogous to statements,

operators, functions, and subroutines in text-based programming

languages. LabVIEW includes the following types of nodes:

• Functions—Built-in execution elements, comparable to operators,

functions, or statements.

• SubVIs—VIs used on the block diagram of another VI, comparable to

subroutines.

Refer to the Creating SubVIs section of Chapter 7, Creating VIs and

SubVIs, for more information about using subVIs on the block

diagram.

• Express VIs—SubVIs designed to aid in common measurement tasks.

You configure an Express VI using a configuration dialog box.

• Structures—Execution control elements, such as For Loops, While

Loops, Case structures, Flat and Stacked Sequence structures, Timed

structures, and Event structures.

Refer to Chapter 8, Loops and Structures, for more information about

using structures.

Refer to the LabVIEW Help for the complete list of block diagram nodes.

Chapter 5 Building the Block Diagram

Getting Started with LabVIEW for FRC 5-4 ni.com

Functions Overview

Functions are the essential operating elements of LabVIEW. Function

icons on the Functions palette have pale yellow backgrounds and black

foregrounds. Functions do not have front panels or block diagrams but do

have connector panes. You cannot open or edit a function.

Adding Terminals to Functions
You can change the number of terminals for some functions. For example,

to build an array with 10 elements, you must add 10 terminals to the Build

Array function.

You can add terminals to functions by using the Positioning tool to drag the

top or bottom borders of the function up or down, respectively. You also can

use the Positioning tool to remove terminals from functions, but you cannot

remove a terminal that is already wired. You must first delete the existing

wire to remove the terminal.

Refer to the Using Wires to Link Block Diagram Objects section of this

chapter for more information about wiring objects.

Built-In VIs and Functions
The Functions palette also includes the VIs that ship with LabVIEW. Use

these VIs and functions as subVIs in an application to reduce development

time. Click the View button on the Functions palette and select Always

Visible Categories»Show All Categories from the shortcut menu to

display all categories on the Functions palette.

Refer to the Using Built-In VIs and Functions section of Chapter 7,

Creating VIs and SubVIs, for more information about using the built-in VIs

and functions.

Refer to the LabVIEW Help for detailed information about all built-in VIs

and functions.

Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-5 Getting Started with LabVIEW for FRC

Using Wires to Link Block Diagram Objects

You transfer data among block diagram objects through wires. Each wire

has a single data source, but you can wire the data source to many VIs and

functions that read the data, similar to passing required parameters in

text-based programming languages. You must wire all required block

diagram terminals. Otherwise, the VI is broken and cannot run. Display the

Context Help window to see which terminals a block diagram node

requires. The labels of required terminals appear bold in the Context Help

window.

Refer to the Correcting Broken VIs section of Chapter 6, Running and

Debugging VIs, for more information about broken VIs.

Wire Appearance and Structure
Wires are different colors, styles, and thicknesses depending on their data

types, similar to how the color and symbol of a terminal indicate the data

type of the corresponding control or indicator.

Refer to the Control and Indicator Data Types section of this chapter for

more information about data types. Refer to the Block Diagram Data Flow

section of this chapter for more information about data flow.

Wiring Objects
Use the Wiring tool to manually connect the terminals on one block

diagram node to the terminals on another block diagram node. The cursor

point of the tool is the tip of the unwound wire spool. When you move the

Wiring tool over a terminal, the terminal blinks. When you move the

Wiring tool over a VI or function terminal, a tip strip also appears, listing

the name of the terminal.

Use the Context Help window to determine exactly where to connect

wires. When you move the cursor over a VI or function, the Context Help

window lists each terminal of the VI or function. The Context Help

window does not display terminals for expandable VIs and functions, such

as the Build Array function. Click the Show Optional Terminals and Full

Path button in the Context Help window to display the optional terminals

of the connector pane.

When you cross wires, a small gap appears in the first wire you drew to

indicate that the first wire is under the second wire.

Chapter 5 Building the Block Diagram

Getting Started with LabVIEW for FRC 5-6 ni.com

Selecting Wires
Select wires by using the Positioning tool to single-click, double-click, or

triple-click them. Single-clicking a wire selects one segment of the wire.

Double-clicking a wire selects a wire branch. Triple-clicking a wire selects

the entire wire.

Correcting Broken Wires
A broken wire appears as a dashed black line with a red X in the middle.

Broken wires occur for a variety of reasons, such as when you try to wire

two objects with incompatible data types. Move the Wiring tool over a

broken wire to display a tip strip that describes why the wire is broken. This

information also appears in the Context Help window when you move the

Wiring tool over a broken wire. Right-click the wire and select List Errors

from the shortcut menu to display the Error list window. Click the Help

button to display more information about why the wire is broken.

Triple-click the wire with the Positioning tool and press the <Delete> key

to remove a broken wire. You also can right-click the wire and select from

shortcut menu options such as Delete Wire Branch, Create Wire Branch,

Remove Loose Ends, Clean Up Wire, Change to Control, Change to

Indicator, Enable Indexing at Source, and Disable Indexing at Source.

These options change depending on the reason for the broken wire.

You can remove all broken wires by selecting Edit»Remove Broken

Wires or by pressing the <Ctrl-B> keys.

Caution Use caution when removing all broken wires. Sometimes a wire appears broken

because you are not finished wiring the block diagram.

Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-7 Getting Started with LabVIEW for FRC

Block Diagram Data Flow

LabVIEW follows a dataflow model for running VIs. A block diagram

node executes when it receives all required inputs. When a node executes,

it produces output data and passes the data to the next node in the dataflow

path. The movement of data through the nodes determines the execution

order of the VIs and functions on the block diagram.

In LabVIEW, the flow of data rather than the sequential order of commands

determines the execution order of block diagram elements. Therefore, you

can create block diagrams that have simultaneous operations. For example,

you can run two For Loops simultaneously and display the results on the

front panel, as shown in the following block diagram.

In the preceding figure, each For Loop can execute when it receives all

required inputs. The only required input for each For Loop is the value of

the count terminal, which the # of data points control specifies. Therefore,

when the # of data points control passes a value to the For Loops, both For

Loops can execute simultaneously.

Chapter 5 Building the Block Diagram

Getting Started with LabVIEW for FRC 5-8 ni.com

Designing the Block Diagram

Use the following guidelines to design block diagrams:

• Use a left-to-right and top-to-bottom layout. Although the positions of

block diagram elements do not determine execution order, avoid

wiring from right to left to keep the block diagram organized and easy

to understand. Only wires and structures determine execution order.

• Avoid creating a block diagram that occupies more than one or

two screens. If a block diagram becomes large and complex, it can be

difficult to understand or debug.

• Decide if you can reuse some components of the block diagram in

other VIs or if a section of the block diagram works as a logical

component. If so, divide the block diagram into subVIs that perform

specific tasks. Using subVIs helps you manage changes and debug the

block diagrams quickly.

Refer to the Creating SubVIs section of Chapter 7, Creating VIs and

SubVIs, for more information about subVIs.

• Use the error handling VIs, functions, and parameters to manage errors

on the block diagram.

Refer to the Error Clusters section of Chapter 6, Running and

Debugging VIs, for more information about handling errors.

• Avoid wiring under a structure border or between overlapped objects

because LabVIEW might hide some segments of the resulting wire.

• Avoid placing objects on top of wires. Placing a terminal or icon on

top of a wire gives the appearance that a connection exists when it

does not.

• Use free labels to document code on the block diagram.

Refer to the Labeling section of Chapter 4, Building the Front Panel,

for more information about using free labels.

© National Instruments Corporation 6-1 Getting Started with LabVIEW for FRC

6
Running and Debugging VIs

To run a VI, you must wire all the subVIs, functions, and structures with

the correct data types for the terminals. Sometimes a VI produces data

or runs in a way you do not expect. You can use LabVIEW to identify

problems with block diagram organization or with the data passing through

the block diagram.

Running VIs

Running a VI executes the operation for which you designed the VI. You

can run a VI if the Run button on the toolbar appears as a solid white arrow,

shown at left.

The solid white arrow also indicates you can use the VI as a subVI if you

create a connector pane for the VI.

Refer to the Building the Connector Pane section of Chapter 7, Creating

VIs and SubVIs, for more information about creating connector panes.

A VI runs when you click the Run or Run Continuously buttons or the

single-stepping buttons on the block diagram toolbar. While the VI runs,

the Run button changes to a darkened arrow, shown at left, to indicate that

the VI is running.

You cannot edit a VI while the VI runs.

Clicking the Run button runs the VI once. The VI stops when the VI

completes its data flow. Clicking the Run Continuously button, shown at

left, runs the VI continuously until you stop it manually.

Clicking the single-stepping buttons runs the VI in incremental steps.

Refer to the Single-Stepping section of this chapter for more information

about using the single-stepping buttons to debug a VI.

Chapter 6 Running and Debugging VIs

Getting Started with LabVIEW for FRC 6-2 ni.com

Correcting Broken VIs

If a VI does not run, it is a broken, or nonexecutable, VI. The Run button

appears broken, shown at left, when the VI you are creating or editing

contains errors.

If the button still appears broken when you finish wiring the block diagram,

the VI is broken and cannot run.

Finding Causes for Broken VIs
Warnings do not prevent you from running a VI. They are designed to help

you avoid potential problems in VIs. Errors, however, can break a VI. You

must resolve any errors before you can run the VI.

Click the broken Run button or select View»Error List to find out why a

VI is broken. The Error list window lists all the errors. The Items with

errors section lists the names of all items in memory, such as VIs and

project libraries, that have errors. If two or more items have the same name,

this section shows the specific application instance for each item. The

errors and warnings section lists the errors and warnings for the VI you

select in the Items with errors section. The Details section describes the

errors and in some cases recommends how to correct the errors. Click the

Help button to display a topic in the LabVIEW Help that describes the error

in detail and includes step-by-step instructions for correcting the error.

Click the Show Error button or double-click the error description to

highlight the area on the block diagram or front panel that contains the

error.

The toolbar includes the Warning button, shown at left, if a VI includes a

warning and you placed a checkmark in the Show Warnings checkbox in

the Error list window.

Common Causes of Broken VIs
The following list contains common reasons why a VI might be broken:

• The block diagram contains a broken wire because of a mismatch of

data types or a loose, unconnected end.

Refer to the Correcting Broken Wires section of Chapter 5, Building

the Block Diagram, for information about correcting broken wires.

Chapter 6 Running and Debugging VIs

© National Instruments Corporation 6-3 Getting Started with LabVIEW for FRC

• A required block diagram terminal is unwired.

Refer to the Using Wires to Link Block Diagram Objects section of

Chapter 5, Building the Block Diagram, for information about setting

required inputs and outputs.

• A subVI is broken or you edited its connector pane after you placed its

icon on the block diagram of the VI.

Refer to the Creating SubVIs section of Chapter 7, Creating VIs and

SubVIs, for information about subVIs.

Debugging Techniques

If a VI is not broken, but you get unexpected data, you can use several

techniques to identify and correct problems with the VI or the block

diagram data flow.

Execution Highlighting
View an animation of the execution of the block diagram by clicking the

Highlight Execution button, shown at left.

Execution highlighting shows the movement of data on the block diagram

from one node to another using bubbles that move along the wires. Use

execution highlighting in conjunction with single-stepping to see how data

values move from node to node through a VI.

Note Execution highlighting greatly reduces the speed at which the VI runs.

During execution highlighting, if the error out cluster reports an error, the

error value appears next to error out with a red border. If no error occurs,

OK appears next to error out with a green border.

Refer to the Error Clusters section of this chapter for more information

about error clusters.

Single-Stepping
Single-step through a VI to view each action of the VI on the block diagram

as the VI runs. The single-stepping buttons, shown below, affect execution

only in a VI or subVI in single-step mode.

Step Into Step Over Step Out

Chapter 6 Running and Debugging VIs

Getting Started with LabVIEW for FRC 6-4 ni.com

Enter single-step mode by clicking the Step Over or Step Into button on

the block diagram toolbar. Move the cursor over the Step Over, Step Into,

or Step Out button to view a tip strip that describes the next step if you click

that button. You can single-step through subVIs or run them normally.

If you single-step through a VI with execution highlighting on, an

execution glyph, shown at left, appears on the icons of the subVIs that are

currently running.

Probe Tool
Use a generic probe to view the data that passes through a wire. Right-click

a wire and select Custom Probe»Generic Probe from the shortcut menu

to use the generic probe.

Note You must run a VI in order to see data pass through a probe in the VI.

Breakpoints
Use the Breakpoint tool, shown at left, to place a breakpoint on a VI, node,

or wire on the block diagram and pause execution at that location.

When you set a breakpoint on a wire, execution pauses after data passes

through the wire. Place a breakpoint on the block diagram to pause

execution after all nodes on the block diagram execute.

When a VI pauses at a breakpoint, LabVIEW brings the block diagram to

the front and uses a marquee to highlight the node or wire that contains the

breakpoint. When you move the cursor over an existing breakpoint, the

black area of the Breakpoint tool cursor appears white.

When you reach a breakpoint during execution, the VI pauses and the

Pause button appears red. You can take the following actions:

• Single-step through execution using the single-stepping buttons.

• Probe wires to check intermediate values.

• Change values of front panel controls.

• Click the Pause button to continue running to the next breakpoint or

until the VI finishes running.

LabVIEW saves breakpoints with a VI, but they are active only when

you run the VI. You can view all breakpoints by selecting Operate»

Breakpoints and clicking the Find button.

Chapter 6 Running and Debugging VIs

© National Instruments Corporation 6-5 Getting Started with LabVIEW for FRC

Error Clusters
By default, LabVIEW automatically handles any error when a VI runs by

suspending execution, highlighting the subVI or function where the error

occurred, and displaying an error dialog box.

VIs and functions return errors in one of two ways—with numeric error

codes or with an error cluster. Typically, functions use numeric error codes,

and VIs use an error cluster, usually with error inputs and outputs.

Error handling in LabVIEW follows the dataflow model. Just as data values

flow through a VI, so can error information. Wire the error information

from the beginning of the VI to the end. Include an error handler VI at the

end of the VI to determine if the VI ran without errors. Use the error in and

error out clusters in each VI you use or build to pass the error information

through the VI.

As the VI runs, LabVIEW tests for errors at each execution node.

If LabVIEW does not find any errors, the node executes normally.

If LabVIEW detects an error, the node passes the error to the next node

without executing that part of the code. The next node does the same thing,

and so on. At the end of the execution flow, LabVIEW reports the error.

The error in and error out clusters include the following components of

information:

• status is a Boolean value that reports TRUE if an error occurred.

• code is a 32-bit signed integer that identifies the error numerically.

A nonzero error code coupled with a status of FALSE signals a

warning rather than a error.

• source is a string that identifies where the error occurred.

Some VIs, functions, and structures that accept Boolean data also recognize

an error cluster. For example, you can wire an error cluster to the Boolean

inputs of the Select, Quit LabVIEW, or Stop functions. If an error occurs,

the error cluster passes a TRUE value to the function.

Refer to the Clusters section of Chapter 9, Grouping Data Using Strings,

Arrays, and Clusters, for more information about clusters.

© National Instruments Corporation 7-1 Getting Started with LabVIEW for FRC

7
Creating VIs and SubVIs

A VI can serve as a user interface or as an operation you use frequently.

After you learn how to build a front panel and block diagram, you can

create your own VIs and subVIs and customize these VIs.

Using Built-In VIs and Functions

LabVIEW includes built-in VIs and functions to help you build specific

applications, such as data acquisition VIs and functions, VIs that access

other VIs, VIs that communicate with other applications, and so on. You

can use these VIs as subVIs in an application to reduce development time.

Before you build a new VI, consider searching the Functions palette for

similar VIs and functions and using an existing VI as the starting point for

the new VI.

Creating SubVIs

After you build a VI, you can use it in another VI. A VI called from the

block diagram of another VI is called a subVI. To create a subVI, you need

to build a connector pane and create an icon.

A subVI node corresponds to a subroutine call in text-based programming

languages. The node is not the subVI itself, just as a subroutine call

statement in a program is not the subroutine itself. A block diagram that

contains several identical subVI nodes calls the same subVI several times.

The subVI controls and indicators receive data from and return data to the

block diagram of the calling VI. Click the Select a VI icon or text on the

Functions palette, navigate to and double-click a VI, and place the VI on a

block diagram to create a subVI call to that VI.

You can edit a subVI by using the Operating or Positioning tool to

double-click the subVI on the block diagram. When you save the subVI,

the changes affect all calls to the subVI, not just the current instance.

To create a subVI, you need to create an icon and build a connector pane.

Chapter 7 Creating VIs and SubVIs

Getting Started with LabVIEW for FRC 7-2 ni.com

Creating an Icon
Every VI displays an icon, such as the one shown at left, in the upper right

corner of the front panel and block diagram windows.

An icon is a graphical representation of a VI. It can contain text, images, or

a combination of both. If you use a VI as a subVI, the icon identifies the

subVI on the block diagram of the VI.

The default icon contains a number that indicates how many new VIs you

have opened since launching LabVIEW. Create custom icons to replace the

default icon by right-clicking the icon in the upper right corner of the front

panel or block diagram and selecting Edit Icon from the shortcut menu, or

by double-clicking the icon in the upper right corner of the front panel.

You also can drag a graphic from anywhere in your file system and drop it

in the upper right corner of the front panel or block diagram. LabVIEW

converts the graphic to a 32 × 32 pixel icon.

Refer to the National Instruments Web site at ni.com/info and enter the

info code expnr7 for standard graphics to use in a VI icon.

Building the Connector Pane
To use a VI as a subVI, you need to build a connector pane, shown at left.

The connector pane defines the inputs and outputs you wire to the VI so you

can use it as a subVI. It receives data at its input terminals and passes the

data through the front panel controls to the block diagram code. The

connector pane then receives the results at its output terminals from the

front panel indicators.

Define connections by assigning a front panel control or indicator to each

of the connector pane terminals. To define a connector pane, right-click the

icon in the upper right corner of the front panel and select Show Connector

from the shortcut menu to display the connector pane. The connector pane

appears in place of the icon.

When you view the connector pane for the first time, you see a connector

pattern. You can select a different pattern by right-clicking the connector

pane and selecting Patterns from the shortcut menu. For example, you can

select a connector pane pattern with extra terminals. You can leave the extra

terminals unconnected until you need them. This flexibility enables you to

make changes with minimal effect on the hierarchy of the VIs.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=expnr7

Chapter 7 Creating VIs and SubVIs

© National Instruments Corporation 7-3 Getting Started with LabVIEW for FRC

Each rectangle on the connector pane represents a terminal. Use the

rectangles to assign inputs and outputs. The default connector pane pattern

is 4 × 2 × 2 × 4. If you anticipate changes to the VI that require a new input

or output, keep the default connector pane pattern to leave extra terminals

unassigned.

You can assign up to 28 terminals to a connector pane. If the front panel

contains more than 28 controls and indicators that you want to use

programmatically, group some of them into a cluster and assign the cluster

to a terminal on the connector pane.

Refer to the Clusters section of Chapter 9, Grouping Data Using Strings,

Arrays, and Clusters, for more information about grouping data using

clusters.

Creating SubVIs from Sections of a VI
Convert a section of a VI into a subVI by using the Positioning tool to select

the section of the block diagram you want to reuse and selecting Edit»

Create SubVI. An icon for the new subVI replaces the selected section of

the block diagram. LabVIEW creates controls and indicators for the new

subVI, automatically configures the connector pane based on the number

of control and indicator terminals you selected, and wires the subVI to the

existing wires.

Creating a subVI from a selection is convenient but still requires careful

planning to create a logical hierarchy of VIs. Consider which objects to

include in the selection and avoid changing the functionality of the

resulting VI.

Designing SubVI Front Panels
If users do not need to view the front panel of a subVI, you can spend less

time on its appearance, including colors and fonts. However, front panel

organization is still important because you might need to view the front

panel while you debug the VI.

Place the controls and indicators on the front panel as they appear in the

connector pane. Place the controls on the left of the front panel and the

indicators on the right. Place any error in clusters on the lower left of the

front panel and any error out clusters on the lower right.

Refer to the Building the Connector Pane section of this chapter for more

information about setting up a connector pane.

Chapter 7 Creating VIs and SubVIs

Getting Started with LabVIEW for FRC 7-4 ni.com

Saving VIs

Select File»Save to save a VI. When you save a VI, use a descriptive name

so you can identify the VI later. Descriptive names, such as Temperature

Monitor.vi and Serial Write & Read.vi, make a VI easy to identify.

If you use ambiguous names, such as VI#1.vi, you might find it difficult

to identify VIs, especially if you have saved several VIs.

Consider whether your users will run the VIs on another platform. Avoid

using characters that some operating systems reserve for special purposes,

such as \:/?*<> and #.

Note If you have several VIs of the same name saved on your computer, carefully organize

the VIs in different directories or LLBs to avoid LabVIEW referencing the wrong subVI

when running the top-level VI.

Customizing VIs

You can configure VIs and subVIs to work according to your application

needs. For example, if you plan to use a VI as a subVI that requires user

input, configure the VI so that its front panel appears each time you call it.

Select File»VI Properties to configure the appearance and behavior of a

VI. Use the Category pull-down menu at the top of the VI Properties

dialog box to select from several different option categories.

The VI Properties dialog box includes the following option categories:

• General—Use this page to determine the current path where a VI is

saved, its revision number, revision history, and any changes made

since the VI was last saved. You also can use this page to edit the icon

for the VI.

• Documentation—Use this page to add a description of the VI and link

to a help file topic.

• Security—Use this page to lock or password-protect a VI.

• Window Appearance—Use this page to customize the window

appearance of VIs, such as the window title and style.

• Window Size—Use this page to set the size of the window.

• Execution—Use this page to configure how a VI runs. For example,

you can configure a VI to run immediately when it opens or to pause

when called as a subVI.

Chapter 7 Creating VIs and SubVIs

© National Instruments Corporation 7-5 Getting Started with LabVIEW for FRC

• Editor Options—Use this page to set the size of the alignment grid for

the current VI and to change the style of the control or indicator

LabVIEW creates when you right-click a terminal and select

Create»Control or Create»Indicator from the shortcut menu.

Refer to the Aligning and Distributing Objects section of Chapter 4,

Building the Front Panel, for more information about the alignment grid.

© National Instruments Corporation 8-1 Getting Started with LabVIEW for FRC

8
Loops and Structures

Structures are graphical representations of the loops and case statements of

text-based programming languages. Use structures on the block diagram to

repeat blocks of code and to execute code conditionally or in a specific order.

Like other nodes, structures have terminals that connect them to other block

diagram nodes, execute automatically when input data are available, and

supply data to output wires when execution completes.

Each structure has a distinctive, resizable border to enclose the section of

the block diagram that executes according to the rules of the structure.

The section of the block diagram inside the structure border is called a

subdiagram. The terminals that feed data into and out of structures are

called tunnels. A tunnel is a connection point on a structure border.

Use the following structures located on the Structures palette to control

how a block diagram executes processes:

• For Loop—Executes a subdiagram a set number of times.

• While Loop—Executes a subdiagram until a condition occurs.

• Case structure—Contains multiple subdiagrams, only one of which

executes depending on the input value passed to the structure.

Right-click the border of a structure to display its shortcut menu.

For Loop and While Loop Structures

Use the For Loop and the While Loop to control repetitive operations.

For Loops
A For Loop, shown at left, executes a subdiagram a set number of times.

The value in the count terminal (an input terminal), shown at left, specifies

how many times to repeat the subdiagram.

Chapter 8 Loops and Structures

Getting Started with LabVIEW for FRC 8-2 ni.com

Set the count explicitly by wiring a value from outside the loop to the left or

top side of the count terminal, or set the count implicitly with auto-indexing.

Refer to the Auto-Indexing to Set the For Loop Count section of this chapter

for more information about setting the count implicitly.

The iteration terminal (an output terminal), shown at left, contains the

number of completed iterations.

The iteration count always starts at zero. During the first iteration, the

iteration terminal returns 0.

Both the count and iteration terminals are 32-bit signed integers. If you wire

a floating-point number to the count terminal, LabVIEW rounds it and

coerces it to within range. If you wire 0 or a negative number to the count

terminal, the loop does not execute and the output contains the default data

for that data type.

Add shift registers to the For Loop to pass data from the current iteration to

the next iteration.

Refer to the Shift Registers in Loops section of this chapter for more

information about adding shift registers to a loop.

While Loops
Similar to a Do Loop or a Repeat-Until Loop in text-based programming

languages, a While Loop, shown at left, executes a subdiagram until a

condition occurs.

The While Loop executes the subdiagram until the conditional terminal, an

input terminal, receives a specific Boolean value. The default behavior and

appearance of the conditional terminal is Stop if True, shown at left.

When a conditional terminal is Stop if True, the While Loop executes its

subdiagram until the conditional terminal receives a TRUE value. You can

change the behavior and appearance of the conditional terminal by

right-clicking the terminal or the border of the While Loop and selecting

Continue if True, shown at left, from the shortcut menu.

When a conditional terminal is Continue if True, the While Loop executes

its subdiagram until the conditional terminal receives a FALSE value. You

also can use the Operating tool to click the conditional terminal to change

the condition.

Chapter 8 Loops and Structures

© National Instruments Corporation 8-3 Getting Started with LabVIEW for FRC

If the conditional terminal is Stop if True, you place the corresponding

Boolean control outside the While Loop, and you set the Boolean control

to FALSE, you cause an infinite loop, as shown in the following figure.

You also cause an infinite loop if the Boolean control outside the loop is set

to TRUE and the conditional terminal is Continue if True. Changing the

value of the Boolean control does not stop the infinite loop because the

value is read only once before the loop starts. To stop an infinite loop, you

must abort the VI by clicking the Abort Execution button on the toolbar.

The iteration terminal (an output terminal) of a While Loop, shown at left,

contains the number of completed iterations.

The iteration count always starts at zero. During the first iteration, the

iteration terminal returns 0.

Add shift registers to the While Loop to pass data from the current iteration

to the next iteration.

Refer to the Shift Registers in Loops section of this chapter for more

information about adding shift registers to a loop.

Controlling Timing
You might want to control the speed at which a process executes, such as

the speed at which data values are plotted to a chart. You can use a Wait

function in the loop to wait an amount of time before the loop re-executes.

Chapter 8 Loops and Structures

Getting Started with LabVIEW for FRC 8-4 ni.com

Auto-Indexing Loops
If you wire an array to a For Loop or While Loop input tunnel, you can read

and process every element in that array by enabling auto-indexing.

Refer to the Arrays section of Chapter 9, Grouping Data Using Strings,

Arrays, and Clusters, for more information about arrays.

When you wire an array to an input tunnel on the loop border and enable

auto-indexing on the input tunnel, elements of that array enter the loop one

at a time, starting with the first element. When auto-indexing is disabled,

the entire array is passed into the loop. When you auto-index an array

output tunnel, the output array receives a new element from every iteration

of the loop. Therefore, auto-indexed output arrays are always equal in size

to the number of iterations. For example, if the loop executes 10 times, the

output array has 10 elements. If you disable auto-indexing on an output

tunnel, only the element from the last iteration of the loop passes to the next

node on the block diagram.

Right-click the tunnel at the loop border and select Enable Indexing

or Disable Indexing from the shortcut menu to enable or disable

auto-indexing. Auto-indexing for While Loops is disabled by default.

A bracketed glyph appears on the loop border to indicate that auto-indexing

is enabled. The thickness of the wire between the output tunnel and the next

node also indicates the loop is using auto-indexing. The wire is thicker

when you use auto-indexing because the wire contains an array instead of

a scalar.

The loop indexes scalar elements from 1D arrays, 1D arrays from

2D arrays, and so on. The opposite occurs at output tunnels. Scalar

elements accumulate sequentially into 1D arrays, 1D arrays accumulate

into 2D arrays, and so on.

Auto-Indexing to Set the For Loop Count
If you enable auto-indexing on an array wired to a For Loop input terminal,

LabVIEW sets the count terminal to the array size so you do not need to

wire the count terminal. Because you can use For Loops to process arrays

an element at a time, LabVIEW enables auto-indexing by default for every

array you wire to a For Loop. Disable auto-indexing if you do not need to

process arrays one element at a time.

Chapter 8 Loops and Structures

© National Instruments Corporation 8-5 Getting Started with LabVIEW for FRC

If you enable auto-indexing for more than one tunnel or if you wire the

count terminal, the count becomes the lesser of the choices. For example,

if two auto-indexed arrays enter the loop, with 10 and 20 elements

respectively, and you wire a value of 15 to the count terminal, the loop

executes 10 times, and the loop indexes only the first 10 elements of the

second array. As another example, if you plot data from two sources on

one graph and you want to plot the first 100 elements, wire 100 to the count

terminal. If one of the data sources includes only 50 elements, the loop

executes 50 times and indexes only the first 50 elements. Use the Array Size

function to determine the size of arrays.

Auto-Indexing with While Loops
If you enable auto-indexing for an array entering a While Loop, the While

Loop indexes the array the same way a For Loop does. However, the

number of iterations a While Loop executes is not limited by the size of the

array because the While Loop iterates until a specific condition occurs.

When a While Loop indexes past the end of the input array, the default

value for the array element type passes into the loop. You can prevent the

default value from passing into the While Loop by using the Array Size

function. The Array Size function indicates how many elements are in the

array. Set up the While Loop to stop executing when it has iterated the same

number of times as the array size.

Caution Because you cannot determine the size of the output array in advance, enabling

auto-indexing for the output of a For Loop is more efficient than with a While Loop.

Iterating too many times can cause your system to run out of memory.

Using Loops to Build Arrays
In addition to using loops to read and process elements in an array, you also

can use the For Loop and the While Loop to build arrays. Wire the output

of a VI or function in the loop to the loop border. If you use a While Loop,

right-click the resulting tunnel and select Enable Indexing from the

shortcut menu. On the For Loop, indexing is enabled by default. The output

of the tunnel is an array of every value the VI or function returns after each

loop iteration.

Refer to the Arrays section of Chapter 9, Grouping Data Using Strings,

Arrays, and Clusters, for more information about arrays.

Refer to the National Instruments\LabVIEW 8.6\examples\

general\arrays.llb for examples of building arrays.

Chapter 8 Loops and Structures

Getting Started with LabVIEW for FRC 8-6 ni.com

Shift Registers in Loops
Use shift registers with For Loops or While Loops to transfer values from

one loop iteration to the next.

Use shift registers when you want to pass values from previous iterations

through the loop to the next iteration. A shift register appears as a pair of

terminals, shown at left, directly opposite each other on the vertical sides of

the loop border.

The terminal on the right side of the loop contains an up arrow and stores

data on the completion of an iteration. LabVIEW transfers the data

connected to the right side of the register to the next iteration. After the loop

executes, the terminal on the right side of the loop returns the last value

stored in the shift register.

Create a shift register by right-clicking the left or right border of a loop and

selecting Add Shift Register from the shortcut menu.

A shift register transfers any data type and automatically changes to the

data type of the first object wired to the shift register. The data you wire to

the terminals of each shift register must be the same type.

You can add more than one shift register to a loop. If you have multiple

operations that use previous iteration values within your loop, use multiple

shift registers to store the data values from those different processes in the

structure, as shown in the following figure.

Chapter 8 Loops and Structures

© National Instruments Corporation 8-7 Getting Started with LabVIEW for FRC

Initializing Shift Registers
Initializing a shift register resets the value the shift register passes to the

first iteration of the loop when the VI runs. Initialize a shift register by

wiring a control or constant to the shift register terminal on the left side of

the loop, as shown in the following figure.

In the preceding figure, the For Loop executes five times, incrementing the

value the shift register carries by one each time. After five iterations of the

For Loop, the shift register passes the final value, 5, to the indicator and the

VI quits. Each time you run the VI, the shift register begins with a value

of 0.

If you do not initialize the shift register, the loop uses the value written to

the shift register when the loop last executed or the default value for the data

type if the loop has never executed.

Use an uninitialized shift register to preserve state information between

subsequent executions of a VI. The following figure shows an uninitialized

shift register.

In the preceding figure, the For Loop executes five times, incrementing the

value the shift register carries by one each time. The first time you run the VI,

the shift register begins with a value of 0, which is the default value for a

32-bit integer. After five iterations of the For Loop, the shift register passes

Chapter 8 Loops and Structures

Getting Started with LabVIEW for FRC 8-8 ni.com

the final value, 5, to the indicator, and the VI quits. The next time you run the

VI, the shift register begins with a value of 5, which was the last value from

the previous execution. After five iterations of the For Loop, the shift register

passes the final value, 10, to the indicator. If you run the VI again, the shift

register begins with a value of 10, and so on. Uninitialized shift registers

retain the value of the previous iteration until you close the VI.

Stacked Shift Registers
Stacked shift registers let you access data from previous loop iterations.

Stacked shift registers remember values from multiple previous iterations

and carry those values to the next iterations. To create a stacked shift

register, right-click the left terminal and select Add Element from the

shortcut menu.

Stacked shift registers can occur only on the left side of the loop because

the right terminal transfers the data generated only from the current

iteration to the next iteration, as shown in the following figure.

In the preceding block diagram, values from previous iterations pass to the

next iteration, with the most recent iteration value stored in the top-left shift

register. The bottom shift register stores the second-most-recent iteration

value.

Default Data in Loops
While Loops produce default data when the shift register is not initialized.

For Loops produce default data if you wire 0 to the count terminal of the

For Loop or if you wire an empty array to the For Loop as an input with

auto-indexing enabled. The loop does not execute, and any output tunnel

with auto-indexing disabled contains the default value for the tunnel data

type. Use shift registers to transfer values through a loop regardless of

whether the loop executes.

Chapter 8 Loops and Structures

© National Instruments Corporation 8-9 Getting Started with LabVIEW for FRC

Refer to the LabVIEW Quick Reference Card, available by navigating to the

National Instruments\LabVIEW 8.6\manuals directory and

opening LV_Quick_Reference.pdf, for more information about default

values for data types.

Case Structures

A Case structure, shown at left, has two or more subdiagrams or cases.

Only one subdiagram is visible at a time, and the structure executes only

one case at a time. An input value determines which subdiagram executes.

The Case structure is similar to switch statements or if...then...else

statements in text-based programming languages.

The case selector label at the top of the Case structure, shown at left,

contains the name of the selector value that corresponds to the case in the

center and decrement and increment arrows on each side.

Click the decrement and increment arrows to scroll through the available

cases. You also can click the down arrow next to the case name and select

a case from the pull-down menu.

Wire an input value, or selector, to the selector terminal, shown at left, to

determine which case executes.

You must wire an integer, Boolean value, string, or enumerated type value

to the selector terminal. You can position the selector terminal anywhere on

the left border of the Case structure. If the data type of the selector terminal

is Boolean, the structure has a TRUE case and a FALSE case. If the selector

terminal is an integer, string, or enumerated type value, the structure can

have any number of cases.

Specify a default case for the Case structure to handle out-of-range values.

Otherwise, you must explicitly list every possible input value. For example,

if the selector is an integer and you specify cases for 1, 2, and 3, you must

specify a default case to execute if the input value is 4 or any other

unspecified integer value.

Chapter 8 Loops and Structures

Getting Started with LabVIEW for FRC 8-10 ni.com

Case Selector Values and Data Types
You can enter a single value or lists and ranges of values in the case selector

label. For lists, use commas to separate values. For numeric ranges, specify

a range as 10..20, meaning all numbers from 10 to 20 inclusively. You

also can use open-ended ranges. For example, ..100 represents all

numbers less than or equal to 100, and 100.. represents all numbers

greater than or equal to 100. You also can combine lists and ranges, for

example ..5, 6, 7..10, 12, 13, 14. When you enter values that

contain overlapping ranges in the same case selector label, the Case

structure redisplays the label in a more compact form. The previous

example redisplays as ..10, 12..14. For string ranges, a range of a..c

includes all of a and b, but not c. A range of a..c,c includes the ending

value of c.

If you enter a selector value that is not the same type as the object wired to

the selector terminal, the value appears red to indicate that you must delete

or edit the value before the structure can execute, and the VI will not run.

Also, because of the possible round-off error inherent in floating-point

arithmetic, you cannot use floating-point numbers as case selector values.

If you wire a floating-point value to the case, LabVIEW rounds the value

to the nearest integer. If you type a floating-point value in the case selector

label, the value appears red to indicate that you must delete or edit the value

before the structure can execute.

Input and Output Tunnels
You can create multiple input and output tunnels for a Case structure.

Inputs are available to all cases, but cases do not have to use each input.

However, you must define each output tunnel for each case. When you

create an output tunnel in one case, tunnels appear at the same position on

the border in all the other cases. If even one output tunnel is not wired, all

output tunnels on the structure appear as white squares. You can define a

different data source for the same output tunnel in each case, but the data

types must be compatible for each case. You also can right-click the output

tunnel and select Use Default If Unwired from the shortcut menu to use

the default value for the tunnel data type for all unwired tunnels.

© National Instruments Corporation 9-1 Getting Started with LabVIEW for FRC

9
Grouping Data Using Strings,
Arrays, and Clusters

Use strings, arrays, and clusters to group data. Strings group sequences of

ASCII characters. Arrays group data elements of the same type. Clusters

group data elements of mixed types.

Grouping Data with Strings

A string is a sequence of displayable or non-displayable ASCII characters.

Strings provide a platform-independent format for information and data.

Some of the more common applications of strings include the following:

• Creating simple text messages

• Passing numeric data as character strings to instruments and then

converting the strings to numeric values

• Storing numeric data to disk

• Instructing or prompting the user with dialog boxes

On the front panel, strings appear as tables, text entry boxes, and labels.

LabVIEW includes built-in VIs and functions you can use to edit, format,

and parse strings.

String Controls
Use string controls and indicators to simulate text entry boxes and labels.

Refer to the String Controls and Indicators section of Chapter 4, Building

the Front Panel, for more information about string controls and indicators.

Table Controls
Use the table control to create a table on the front panel. Each cell in a table

is a string, and each cell resides in a column and a row. Therefore, a table

is a display for a 2D array of strings.

Refer to the Arrays section of this chapter for more information about

arrays.

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

Getting Started with LabVIEW for FRC 9-2 ni.com

Grouping Data with Arrays and Clusters

Use the array and cluster controls and functions to group data. Arrays group

data elements of the same type. Clusters group data elements of mixed

types.

Arrays
An array consists of elements and dimensions. Elements are the data

that make up the array. A dimension is the length, height, or depth of

an array. An array can have one or more dimensions and as many as

(231) – 1 elements per dimension, memory permitting.

You can build arrays of numeric, Boolean, path, string, waveform, and

cluster data types. Consider using arrays when you work with a collection

of similar data and when you perform repetitive computations. Arrays are

ideal for storing data you collect from waveforms or data generated in

loops, where each iteration of a loop produces one element of the array.

Restrictions
You cannot create arrays of arrays. However, you can use a

multidimensional array or create an array of clusters where each cluster

contains one or more arrays. Also, you cannot create an array of subpanel

controls, tab controls, .NET controls, ActiveX controls, charts, or multiplot

XY graphs.

Refer to the Clusters section of this chapter for more information about

clusters.

Indexes
Locating a particular element in an array requires one index per dimension.

In LabVIEW, indexes let you navigate through an array and retrieve

elements, rows, columns, and pages from an array on the block diagram.

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

© National Instruments Corporation 9-3 Getting Started with LabVIEW for FRC

Creating Array Controls, Indicators, and Constants
Create an array control or indicator on the front panel by placing an array

shell on the front panel, as shown in the following figure, and dragging a

data object or element, which can be a numeric, Boolean, string, path,

refnum, or cluster control or indicator, into the array shell.

The array shell automatically resizes to accommodate the new object.

To create an array constant on the block diagram, select an array constant

on the Functions palette, place the array shell on the block diagram, and

place a string constant, numeric constant, or cluster constant in the array

shell. You can use an array constant to store constant data or as a basis for

comparison with another array.

Array Functions
Use the Array functions to create and manipulate arrays. For example,

you can perform tasks similar to the following:

• Extracting individual data elements from an array

• Inserting, deleting, or replacing data elements in an array

• Splitting arrays

Use the Build Array function to build an array programmatically. You also

can use a loop to build an array.

Refer to the Using Loops to Build Arrays section of Chapter 8, Loops and

Structures, for information about using loops to build arrays.

Refer to the LabVIEW Style Checklist in the LabVIEW Help for more

information about minimizing memory usage when using Array functions

in a loop.

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

Getting Started with LabVIEW for FRC 9-4 ni.com

Clusters
Clusters group data elements of mixed types. An example of a cluster is the

LabVIEW error cluster, which combines a Boolean value, a numeric value,

and a string. A cluster is similar to a record or a struct in text-based

programming languages.

Refer to the Error Clusters section of Chapter 6, Running and Debugging

VIs, for more information about using error clusters.

Bundling several data elements into clusters eliminates wire clutter on the

block diagram and reduces the number of connector pane terminals that

subVIs need. The connector pane has, at most, 28 terminals. If your front

panel contains more than 28 controls and indicators that you want to pass

to another VI, group some of them into a cluster and assign the cluster to a

terminal on the connector pane.

Most clusters on the block diagram have a pink wire pattern and data type

terminal. Clusters of numeric values, sometimes referred to as points, have

a brown wire pattern and data type terminal. You can wire brown numeric

clusters to Numeric functions, such as Add or Square Root, to perform the

same operation simultaneously on all elements of the cluster.

Order of Cluster Elements
Although cluster and array elements are both ordered, you must unbundle

all cluster elements at once or use the Unbundle By Name function to

access specific cluster elements. Clusters also differ from arrays in that they

are a fixed size. Like an array, a cluster is either a control or an indicator.

A cluster cannot contain a mixture of controls and indicators.

Cluster elements have a logical order unrelated to their position in the shell.

The first object you place in the cluster is element 0, the second is

element 1, and so on. If you delete an element, the order adjusts

automatically. The cluster order determines the order in which the elements

appear as terminals on the Bundle and Unbundle functions on the block

diagram. You can view and modify the cluster order by right-clicking the

cluster border and selecting Reorder Controls In Cluster from the

shortcut menu.

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

© National Instruments Corporation 9-5 Getting Started with LabVIEW for FRC

To wire clusters to each other, both clusters must have the same number of

elements. Corresponding elements, determined by the cluster order, must

have compatible data types. For example, if a double-precision

floating-point numeric value in one cluster corresponds in cluster order to

a string in another cluster, the wire on the block diagram appears broken

and the VI does not run. If the numeric values are different representations,

LabVIEW coerces them to the same representation.

Cluster Functions
Use the Cluster functions to create and manipulate clusters. For example,

you can perform tasks similar to the following:

• Extracting individual data elements from a cluster

• Adding individual data elements to a cluster

• Breaking a cluster out into its individual data elements

Creating Cluster Controls, Indicators, and Constants
Create a cluster control or indicator on the front panel by placing a cluster

shell on the front panel, as shown in the following figure, and dragging a

data object or element, which can be a numeric, Boolean, string, path,

refnum, array, or cluster control or indicator, into the cluster shell.

To create a cluster constant on the block diagram, select a cluster constant

on the Functions palette, place the cluster shell on the block diagram, and

place a string constant, numeric constant, or cluster constant in the cluster

shell. You can use a cluster constant to store constant data or as a basis for

comparison with another cluster.

© National Instruments Corporation 10-1 Getting Started with LabVIEW for FRC

10
Formula and MathScript Nodes

The Formula Node is a convenient text-based node you can use to perform

mathematical operations on the block diagram. You do not have to access

any external code or applications, and you do not have to wire low-level

arithmetic functions to create equations. In addition to text-based equation

expressions, the Formula Node can accept text-based versions of if

statements, while loops, for loops, and do loops, which are familiar to

C programmers. These programming elements are similar to what you find

in C programming but are not identical.

Formula Nodes are useful for equations that have many variables or are

otherwise complicated and for using existing text-based code. You can

copy and paste the existing text-based code into a Formula Node rather than

recreating it graphically.

The MathScript Node also is a text-based node you can use to perform

mathematical operations on the block diagram. However, the MathScript

Node can execute LabVIEW MathScripts and .m files.

Creating Formula Nodes

Complete the following steps to create a Formula Node.

1. Place a Formula Node on the block diagram.

2. Use the Labeling tool or the Operating tool to enter the equations you

want to calculate inside the Formula Node. Each assignment must have

only a single variable on the left side of the assignment (=). Each

assignment must end with a semicolon (;). Confirm that you are using

the correct Formula Node syntax.

If a syntax error occurs, click the broken Run button to display the

Error list window. LabVIEW marks the syntax error with a # symbol.

Tip Add comments to the text in a Formula Node by enclosing them inside a slash-asterisk

pair (/*comment*/), or after a double-slash (//comment).

Chapter 10 Formula and MathScript Nodes

Getting Started with LabVIEW for FRC 10-2 ni.com

3. Create an input terminal for each input variable by right-clicking the

Formula Node border and selecting Add Input from the shortcut

menu. Type the variable name in the terminal that appears. You can

edit the variable name at any time using the Labeling tool or the

Operating tool, except when the VI is running.

Variable terminals are case sensitive. There is no limit to the number

of terminals or equations in a Formula Node. You can change a

terminal type or remove a terminal.

4. Create an output terminal for each output variable by right-clicking the

Formula Node border and selecting Add Output from the shortcut

menu. Type the variable name in the terminal that appears. You can

edit the variable name at any time using the Labeling tool or the

Operating tool, except when the VI is running. Output variables have

thicker borders than input variables.

Note No two inputs and no two outputs can have the same name. However, an output can

have the same name as an input.

5. (Optional) The default data type for output terminals is

double-precision, floating-point numeric. To change the data type,

create an input terminal with exactly the same name as the output

terminal and wire a data type to that input terminal. Doing so also

provides a default value for the terminal. You also can use the Formula

Node syntax to define the variable inside the Formula Node. For

example, int32 y; changes the data type of the output terminal y to

32-bit integer.

6. Wire the input and output terminals of the Formula Node to their

corresponding terminals on the block diagram. All input terminals

must be wired. Output terminals do not have to be wired.

Refer to the LabVIEW Help for more information about the Formula Node.

Chapter 10 Formula and MathScript Nodes

© National Instruments Corporation 10-3 Getting Started with LabVIEW for FRC

Creating MathScript Nodes

Complete the following steps to create and run a VI that uses a LabVIEW

MathScript.

1. Place a MathScript Node on the block diagram.

2. Use the Operating or Labeling tool to enter the following script in the

MathScript Node:

a = rand(50, 1)

plot(a)

3. Add an output to the MathScript Node and create an indicator for the

output.

a. Right-click the right side of the MathScript Node frame and select

Add Output from the shortcut menu.

b. Enter a in the output terminal to add an output for the a variable

in the MathScript.

c. Change the data type of the output terminal. In MathScript, the

default data type for any new input or output is a Scalar»DBL.

Right-click the a output and select Choose Data Type»Matrix»

Real Matrix from the shortcut menu.

d. Right-click the a output terminal and select Create»Indicator

from the shortcut menu to create a matrix indicator labeled a.

4. Right-click the error out output terminal and select Create»Indicator

from the shortcut menu to create an error out indicator.

5. Run the VI. LabVIEW invokes the MathScript server, creates a vector

of random values, plots that information to a graph, and displays the

values that make up the vector in the Real Matrix front panel

indicator.

Refer to the LabVIEW Help for more information about the MathScript

Node.

© National Instruments Corporation 11-1 Getting Started with LabVIEW for FRC

11
Local Variables, Global
Variables, and Race Conditions

In LabVIEW, you read data from or write data to a front panel object using

its block diagram terminal. However, a front panel object has only

one block diagram terminal, and your application might need to access the

data in that terminal from more than one location.

Local and global variables pass information between locations in the

application that you cannot connect with a wire. Use local variables to

access front panel objects from more than one location in a single VI.

Use global variables to access and pass data among several VIs.

Local Variables

Use local variables to access front panel objects from more than

one location in a single VI and pass data between block diagram nodes

that you cannot connect with a wire.

With a local variable, you can write to or read from a control or indicator

on the front panel. Writing to a local variable is similar to passing data to

any other terminal. However, with a local variable you can write to it even

if it is a control or read from it even if it is an indicator. In effect, with a local

variable, you can access a front panel object as both an input and an output.

For example, if the user interface requires users to log in, you can clear the

Login and Password prompts each time a new user logs in. Use a local

variable to read from the Login and Password string controls when a user

logs in and to write empty strings to these controls when the user logs out.

Chapter 11 Local Variables, Global Variables, and Race Conditions

Getting Started with LabVIEW for FRC 11-2 ni.com

Global Variables

Use global variables to access and pass data among several VIs that run

simultaneously. Global variables are built-in LabVIEW objects. When you

create a global variable, LabVIEW automatically creates a special global

VI, which has a front panel but no block diagram. Add controls and

indicators to the front panel of the global VI to define the data types of the

global variables it contains. In effect, this front panel is a container from

which several VIs can access data.

For example, suppose you have two VIs running simultaneously. Each VI

contains a While Loop and writes data points to a waveform chart. The first

VI contains a Boolean control to terminate both VIs. You must use a global

variable to terminate both loops with a single Boolean control. If both loops

were on a single block diagram within the same VI, you could use a local

variable to terminate the loops.

Race Conditions

A race condition occurs when two or more pieces of code that execute in

parallel change the value of the same shared resource. Because the outcome

of the VI depends on which action executes on the shared resource first,

race conditions cause unpredictable outcomes. Race conditions often occur

with the use of local and global variables or an external file, although race

conditions can exist any time more than one action updates the value of the

same stored data. The following block diagram shows an example of a race

condition with a local variable.

Chapter 11 Local Variables, Global Variables, and Race Conditions

© National Instruments Corporation 11-3 Getting Started with LabVIEW for FRC

The output of this VI, the value of local variable x, depends on which

operation runs first. Because each operation writes a different value to x,

you cannot determine whether the outcome will be 7 or 3. In some

programming languages, a top-down dataflow paradigm ensures execution

order. In LabVIEW, you can use wiring to perform multiple operations on

a variable while avoiding race conditions. The following block diagram

performs addition operations using wiring instead of a local variable.

Tip If you must perform more than one action on a local or global variable, make sure you

determine the order of execution.

Race conditions also occur when two operations try to update a global

variable in parallel. In order to update the global variable, an operation

reads the value, modifies it, and writes it back to the location. When the

first operation performs the read-modify-write action and the second

operation follows after, the outcome is correct and predictable. When the

first operation reads, and then the second operation reads, both operations

modify and write a value. This action causes the read-modify-write race

condition and produces invalid or missing values.

You can avoid race conditions associated with global variables by using

functional global variables. Functional global variables are VIs that use

loops with uninitialized shift registers to hold global data. A functional

global variable usually has an action input parameter that specifies which

task the VI performs. The VI uses an uninitialized shift register in a While

Loop to hold the result of the operation. Using one functional global

variable instead of multiple local or global variables ensures that only

one operation executes at a time, so you never perform conflicting

operations or assign conflicting values to stored data.

© National Instruments Corporation 12-1 Getting Started with LabVIEW for FRC

12
State Machines

Use the state machine architecture to implement complex decision-making

algorithms represented by state diagrams or flow charts. A state machine

consists of multiple states, each of which executes code and determines the

next code to which to transition. The state machine can have an initial state

and a terminal state, as well as one or more intermediate states.

State Diagrams

You can use a state diagram to represent the states and transitions of a state

machine graphically. To create an effective state diagram, you must know

the various states of the application and how they relate to one another. By

visualizing the various execution states of the application, you improve the

overall design of the application.

For example, consider a vending machine that sells candy for 10 cents. The

vending machine can have the following states: No Money, Five Cents, and

Ten Cents. The No Money state is the initial state. In the No Money state,

the vending machine continues to wait for money to be inserted. In the

Five Cents state, the vending machine contains five cents and continues to

wait for additional money to be inserted. The Ten Cents state is the terminal

state. In the terminal state, the vending machine returns the candy.

To transition between the initial state and the second state of the vending

machine, you must insert a nickel. To transition between the second state

and the terminal state, you must insert another nickel or a dime. You also

can transition directly from the initial state to the terminal state by inserting

a dime. The following state diagram describes this behavior.

Chapter 12 State Machines

Getting Started with LabVIEW for FRC 12-2 ni.com

This state diagram can help you visualize how to design the actual state

machine.

Using the Standard State Machine VI Template

You can use a VI to represent the state machine of the vending machine.

You can create the VI from scratch, or you can use a VI template that

LabVIEW provides.

Complete the following steps to create a VI using the Standard State

Machine VI template.

1. Click the New link in the Getting Started window or select File»New

to display the New dialog box.

2. From the Create New list, navigate to VI»From Template»

Frameworks»Design Patterns»Standard State Machine.

3. Click the OK button.

4. Select Window»Show Block Diagram or press the <Ctrl-E> keys to

display the block diagram. The VI looks similar to the following

figure.

Dime

NickelNickel

Ten Cents

Default

No Money Five Cents

Default

Chapter 12 State Machines

© National Instruments Corporation 12-3 Getting Started with LabVIEW for FRC

5. Save the VI as Vending Machine.vi in an easily accessible location.

Notice that this VI consists of a While Loop and a Case structure, as well

as an enum constant that specifies the current state. In this template, only

two states are available: Initialize and Stop. The Case structure determines

the code that each state executes. The While Loop executes until the Stop

state is reached.

If you run this VI without any modifications, the state machine begins in

the Initialize state. The While Loop passes this state value to the Case

structure, and the Initialize case of the Case structure executes. The only

code in the Initialize case sets the next state to Stop. The Case structure

passes this state value to the shift register on the right border of the While

Loop, which in turn passes the value back to the beginning of the next

iteration of the While Loop. Because the state value now is Stop, the While

Loop stops.

Chapter 12 State Machines

Getting Started with LabVIEW for FRC 12-4 ni.com

Modifying the Standard State Machine VI

You can modify the Vending Machine VI to behave according to the state

diagram you outlined in the State Diagrams section of this chapter.

Designing the Front Panel Window
Complete the following steps to design the front panel window.

1. Press the <Ctrl-E> keys to display the front panel window.

2. Place an OK Button, located on the Modern»Boolean palette, on the

front panel window.

Note Front panel objects appear as terminals on the block diagram. By default, these

terminals appear as icon terminals. To conserve space on the block diagram, right-click a

terminal and remove the checkmark next to the View As Icon shortcut menu item to

display the data type for the terminal. You can configure LabVIEW to display terminals for

new front panel objects you create as data types by default by selecting Tools»Options to

display the Options dialog box, clicking Block Diagram in the Category list, and

removing the checkmark from the Place front panel terminals as icons checkbox.

3. Triple-click the OK Button label above the OK Button and enter

Nickel to change the label of the control.

4. Repeat steps 2 and 3 to create a Dime button.

5. Place a String Indicator, located on the Modern»String & Path

palette, on the front panel window and label it Money Deposited.

6. Place a Round LED, located on the Modern»Boolean palette, on the

front panel window and label it Candy Returned?.

7. Arrange the controls and indicators on the front panel similar to the

following figure.

Chapter 12 State Machines

© National Instruments Corporation 12-5 Getting Started with LabVIEW for FRC

Arranging the Controls and Indicators on the Block Diagram
Complete the following steps to arrange the controls and indicators on the

block diagram.

1. Press the <Ctrl-E> keys to display the block diagram.

2. Move the Nickel and Dime controls to the left of the Case structure but

inside the While Loop.

3. Move the Money Deposited indicator to the right of the While Loop.

4. Move the Candy Returned? indicator inside the While Loop near the

conditional terminal.

5. Right-click the Money Deposited indicator and select

Create»Constant from the shortcut menu.

6. Enter 0 in the Money Deposited constant to initialize the value of the

Money Deposited indicator to 0.

7. Delete both the Equal? function wired to the conditional terminal of

the While Loop and the enum constant wired to the Equal? function.

8. Press the <Ctrl-B> keys to delete all broken wires. The block diagram

should look similar to the following figure.

Chapter 12 State Machines

Getting Started with LabVIEW for FRC 12-6 ni.com

Defining the States of the State Machine
Complete the following steps to define the states of the state machine and

configure the Case structure to handle each state in a separate case.

1. Right-click the Beginning State enum constant and select Open Type

Def. from the shortcut menu to display a Control Editor window.

2. Right-click the States enum control and select Edit Items from the

shortcut menu to display the Enum Properties dialog box.

3. Modify the Items list to contain the following enumerated values:

4. Click the OK button to return to the Control Editor window.

5. Save the control as Vending States.ctl in an easily accessible

location and close the Control Editor window. Notice that the enum

constants on the block diagram of the Vending Machine VI update to

use the states you defined.

6. Right-click the case selector label at the top of the case structure and

select Add Case for Every Value from the shortcut menu. You now

can configure a case of the Case structure for each of the states of the

vending machine.

Items Digital Display

No Money 0

Five Cents 1

Ten Cents 2

Chapter 12 State Machines

© National Instruments Corporation 12-7 Getting Started with LabVIEW for FRC

Configuring the No Money State
Complete the following steps to configure the No Money state.

1. Click the increment or decrement arrow of the selector label of the

Case structure to switch to the No Money case.

2. Place a Select function, located on the Programming»Comparison

palette, on the block diagram inside the No Money case.

3. Wire the Nickel control to the s input of the Select function.

4. Place a Vending States constant, accessible by clicking Select a VI on

the Functions palette and navigating to the Vending States control you

saved, on the block diagram to the left of the Select function.

5. Select Five Cents from the drop-down list of the Vending States

constant.

6. Wire the Vending States constant to the t input of the Select function.

7. Wire the selector terminal of the Case structure to the f input of the

Select function. The Select function returns the Five Cents state, if the

Nickel control is TRUE, or the current state, if the Nickel control is

FALSE.

8. Repeat steps 2 through 6 using the Dime control and a Ten Cents state.

9. Wire the s? t:f output of the first Select function to the f input of the

second Select function. The second Select function returns the

Ten Cents state, if the Dime control is TRUE, or the state

corresponding to the result of the first Select function, if the Dime

control is FALSE.

10. Delete the Next State enum control and the wire connecting it to the

enum output tunnel of the Case structure.

11. Wire the s? t:f output of the second Select function to the enum output

tunnel of the Case structure. The output state of the No Money case

passes to the shift register on the right border of the While Loop, which

in turn passes the value back to the beginning of the next iteration of

the While Loop.

12. Place a False Constant, located on the Programming»Boolean

palette, on the block diagram inside the No Money case.

13. Wire the False Constant to both the conditional terminal of the While

Loop and to the Candy Returned? indicator.

Chapter 12 State Machines

Getting Started with LabVIEW for FRC 12-8 ni.com

The No Money case should look similar to the following figure.

Chapter 12 State Machines

© National Instruments Corporation 12-9 Getting Started with LabVIEW for FRC

Configuring the Five Cents State
Complete the following steps to configure the Five Cents state.

1. Click the increment or decrement arrow of the selector label of the

Case structure to switch to the Five Cents case.

2. Place an Or function, located on the Programming»Boolean palette,

on the block diagram inside the Five Cents case.

3. Wire the Dime control to the x input of the Or function.

4. Wire the Nickel control to the y input of the Or function.

5. Place a Select function on the block diagram to the right of the

Or function.

6. Wire the x .or. y? output of the Or function to the s input of the

Select function.

7. Place a Vending States control on the block diagram between the

Or function and the Select function.

8. Select Ten Cents from the drop-down list of the Vending States

constant.

9. Wire the Vending States constant to the t input of the Select function.

10. Wire the selector terminal of the Case structure to the f input of the

Select function. The Select function returns the Ten Cents state, if

either the Nickel control or the Dime control is TRUE, or the current

state, if neither the Nickel control nor the Dime control are TRUE.

11. Delete the Next State enum control and the wire connecting it to the

enum output tunnel of the Case structure.

12. Wire the s? t:f output of the Select function to the enum output tunnel

of the Case structure. The output state of the Five Cents case passes to

the shift register on the right border of the While Loop, which in turn

passes the value back to the beginning of the next iteration of the While

Loop.

13. Place a False Constant inside the Five Cents case.

14. Wire the False Constant to the Boolean output tunnel of the Case

structure.

15. Right-click the Money Deposited indicator, select Create»Local

Variable from the shortcut menu, and place the local variable in the

Five Cents case of the Case structure.

16. Right-click the Money Deposited local variable and select Create»

Constant from the shortcut menu.

Chapter 12 State Machines

Getting Started with LabVIEW for FRC 12-10 ni.com

17. Enter 5 in the Money Deposited constant. When the vending machine

is in the Five Cents case, the Money Deposited indicator displays a

value of 5.

The Five Cents case should look similar to the following figure.

Chapter 12 State Machines

© National Instruments Corporation 12-11 Getting Started with LabVIEW for FRC

Configuring the Ten Cents State
Complete the following steps to configure the Ten Cents state.

1. Click the increment or decrement arrow of the selector label of the

Case structure to switch to the Ten Cents case.

2. Wire the selector terminal of the Case structure to the enum output

tunnel. After the vending machine reaches the Ten Cents state, the

While Loop stops, and the state no longer changes. Therefore, the

current state passes directly through the Ten Cents case.

3. Place a True Constant, located on the Programming»Boolean palette,

inside the Ten Cents case.

4. Wire the True Constant to the Boolean output tunnel of the Case

structure. In the Ten Cents state, the True Constant passes a value of

TRUE to the Candy Returned? indicator and to the conditional

terminal of the While Loop. Because the value of the conditional

terminal is Stop if True, the While Loop then stops.

5. Right-click the Money Deposited indicator, select Create»Local

Variable from the shortcut menu, and place the local variable in the

Ten Cents case of the Case structure.

6. Right-click the Money Deposited local variable and select Create»

Constant from the shortcut menu.

7. Enter 10 in the Money Deposited constant. When the vending machine

is in the Ten Cents case, the Money Deposited indicator displays a

value of 10.

Chapter 12 State Machines

Getting Started with LabVIEW for FRC 12-12 ni.com

The Ten Cents case should look similar to the following figure.

You now can run the VI and observe the values of the Money Deposited

and Candy Returned? indicators on the front panel when you click the

Nickel and Dime buttons.

© National Instruments Corporation 13-1 Getting Started with LabVIEW for FRC

13
Developing a Program

The basic features of LabVIEW programming were covered in previous

chapters. You can use these features to develop a program in LabVIEW.

Before developing a program, you must plan accordingly. Program

development often includes the following stages: brainstorming,

developing flowcharts, implementing the code, and verifying the code.

Brainstorming

Start a project by brainstorming. Consider the following questions during

brainstorming:

• What do you want to accomplish with the program?

• What do you want the outcomes of the program to be? What actions

must the program perform in order to return the outcomes you want?

• What resources do you need to operate the program correctly? Can you

think of any potential problems that might disrupt the execution of the

program?

Write down ideas for the program during brainstorming so others can see

the thoughts and ideas. If a project involves multiple participants, group

brainstorming sessions allow participants to share thoughts.

Refer to the Programming in a Group section of this chapter for more

information about programming in a group.

During brainstorming, write down everything that comes to mind,

no matter how unfeasible an idea seems. When you consider ideas for a

project, you can establish a clearer understanding of the program.

Consider, for example, a program for selling train tickets. The program

must account for several factors such as the prices of different train tickets,

types of discounts, methods of payment, and train schedules.

During brainstorming, you might consider actions of the ticket program to

include selling tickets, providing train schedules, selling different classes

of service, accepting credit cards, calculating change, and selling

refreshments. Selling refreshments might be an unlikely action of the ticket

Chapter 13 Developing a Program

Getting Started with LabVIEW for FRC 13-2 ni.com

program. However, you can excuse unnecessary ideas later during

development.

When you list actions the program might perform, you also can identify

possible inputs and outputs of the program.

Identifying Inputs/Outputs
Every program has inputs and outputs. Inputs include all elements the

program uses to make calculations and process data to produce the end

results, or outputs. Without inputs and outputs, the program has no

functionality.

Inputs of the ticket program might include train destinations, ticket types,

discount types, and currencies. The purpose of a program is to manipulate

the inputs you enter and return output values. Therefore, outputs of the

ticket program might be the ticket information, ticket type, and change

amount.

By considering possible inputs and outputs, you gain an understanding of

the program before actual programming begins.

Identifying Potential Problems
By identifying potential problems before program development, you can

reduce delays in programming and implementation. In the ticket program,

some problems might include train schedule updates due to delays,

incorrect money amounts, and limited train capacities.

Chapter 13 Developing a Program

© National Instruments Corporation 13-3 Getting Started with LabVIEW for FRC

Developing Flowcharts

After brainstorming, map out a program by developing a flowchart.

Flowcharts illustrate the program steps from start to finish. For the ticket

program example, the following figure shows a flowchart for when a

customer purchases a ticket.

The rectangular symbols in the figure represent actions. These actions

include starting the program, reading input values, returning output values,

and stopping the program. An example of reading input values is reading

the amount of money a customer pays. An example of returning output

values is displaying change amounts. Flowchart action symbols can have a

maximum of one exiting arrow because each symbol must represent a

single action with a single output.

Always include the start and stop actions when you develop flowcharts.

These symbols represent when a program starts and stops execution.

The diamond symbols in the flowchart represent decisions. Decisions

determine the flow of a flowchart. Use decisions to check conditions based

on input. The next path of the execution depends on whether the specified

Start

Print

Ticket

Read A

Yes

Yes

No

A = P?

A ≥ P?

Dispense

Change
Stop

A = Money received from customer

P = Price of ticket

Legend

No

Chapter 13 Developing a Program

Getting Started with LabVIEW for FRC 13-4 ni.com

condition is met. In the preceding flowchart, when the program reaches the

first decision, the program checks whether the money the customer pays is

greater than or equal to the ticket price. If the customer does not pay enough

money, the program returns to the Read A action. If the customer pays

enough money and the condition is met, the ticket prints and the program

continues.

By developing flowcharts, you can illustrate the flow of a program before

writing code. You also can determine whether certain inputs are appropriate

for a program, and whether they produce the outputs you map out.

Implementing the Code

After brainstorming and developing a flowchart for a program, you can

start writing code. Use the resources you created during brainstorming as

references during this stage.

During implementation, use the following programming practices:

• Thoroughly document all code.

• Give controls and indicators relevant names.

• Make code spacing readable and clean.

Provide thorough documentation with the code so other programmers can

view the code and understand the task you are trying to implement.

Thorough documentation saves time when others work with the code.

Also make sure labels describe the behavior of controls and indicators.

Consider the following block diagram.

Chapter 13 Developing a Program

© National Instruments Corporation 13-5 Getting Started with LabVIEW for FRC

The block diagram is difficult to read, and the purpose of the program is

unclear. The following figure shows the same program in a readable and

linear style.

Detailed documentation clarifies the purpose of the program. The code

flows left-to-right, and spacing makes the block diagram readable. By

documenting all code, giving controls and indicators relevant names, and

making code spacing readable and clean, you reduce confusion when

others read the program you write.

Verifying the Code

In the last stage of program development, you must verify the code. You

must complete extensive testing to make sure the program is error- and

bug-free. Define and execute tests to account for as many use cases as

possible. Also implement and test the error-handling that checks for invalid

inputs.

You can use the following scenarios to test the train ticket program:

• Buy a ticket with insufficient money.

• Purchase a ticket for a train that has left.

• Pay more money than the amount due.

Testing is necessary to ensure the reliability of a program. For example,

consider an automated toll road machine that accepts only exact change.

Toll road machines must process and calculate a variety of coins in a brief

amount of time. If a machine does not process the coins correctly, drivers

might receive tickets mistakenly. Testing the processing of different coin

combinations can reduce calculation errors. Similarly, you can test different

use cases of a program you develop to identify and correct bugs before you

implement the program.

Chapter 13 Developing a Program

Getting Started with LabVIEW for FRC 13-6 ni.com

Programming in a Group

Complex projects require the contribution of multiple team members.

If multiple developers work on the same project, define programming

responsibilities, interfaces, and coding standards at the beginning of the

project. If you develop a program with a group, consider the following

practices:

• Split up portions of code such that everyone can program efficiently.

• Select the team integrator. The integrator is responsible for combining

all code written by the team into the final program. The integrator must

communicate with the programmers to ensure all code can work

together effectively.

• Ensure each workload is realistic. Certain portions of the project

require more work than others. For example, the integrator typically

has a larger workload.

• Set realistic deadlines and communicate them clearly to the team. By

planning specific deadlines for project milestones, you can measure

progress more effectively.

Analyzing the Project

At the end of the development process, consider having a post-project

analysis meeting to discuss what went well and what did not. Each

developer must evaluate the project honestly and discuss obstacles that

reduced the quality level of the project. Consider the following questions

during a post-project analysis meeting:

• What are we doing right? What works well?

• What are we doing wrong? What can we improve?

• Do any specific areas of the design or code need work?

• Are the quality systems working? Can we catch more problems if we

change the quality requirements? Can we find better ways to get the

same results?

Similar analysis meetings at major milestones help the team to correct

problems mid-schedule instead of waiting until the end of the release cycle.

© National Instruments Corporation A-1 Getting Started with LabVIEW for FRC

A
Technical Support and
Professional Services

Visit the following sections of the award-winning National Instruments

Web site at ni.com for technical support and professional services:

• Support—Technical support at ni.com/support includes the

following resources:

– Self-Help Technical Resources—For answers and solutions,

visit ni.com/support for software drivers and updates,

a searchable KnowledgeBase, product manuals, step-by-step

troubleshooting wizards, thousands of example programs,

tutorials, application notes, instrument drivers, and so on.

Registered users also receive access to the NI Discussion Forums

at ni.com/forums. NI Applications Engineers make sure every

question submitted online receives an answer.

– Standard Service Program Membership—This program

entitles members to direct access to NI Applications Engineers

via phone and email for one-to-one technical support as well as

exclusive access to on demand training modules via the Services

Resource Center. NI offers complementary membership for a full

year after purchase, after which you may renew to continue your

benefits.

For information about other technical support options in your

area, visit ni.com/services, or contact your local office at

ni.com/contact.

• Training and Certification—Visit ni.com/training for

self-paced training, eLearning virtual classrooms, interactive CDs,

and Certification program information. You also can register for

instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house

technical resources, or other project challenges, National Instruments

Alliance Partner members can help. To learn more, call your local

NI office or visit ni.com/alliance.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exxz8m
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdbp04
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdbp04
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdbpex
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdbp08
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exiw3z
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdcont

Appendix A Technical Support and Professional Services

Getting Started with LabVIEW for FRC A-2 ni.com

If you searched ni.com and could not find the answers you need, contact

your local office or NI corporate headquarters. Phone numbers for our

worldwide offices are listed at the front of this manual. You also can visit

the Worldwide Offices section of ni.com/niglobal to access the branch

office Web sites, which provide up-to-date contact information, support

phone numbers, email addresses, and current events.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdbp10

	Getting Started with LabVIEW for the FIRST Robotics Competition
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions

	Chapter 1 Introduction to LabVIEW
	LabVIEW VI Templates and Example VIs
	LabVIEW VI Templates
	LabVIEW Example VIs

	Related Documentation
	LabVIEW Help
	LabVIEW Manuals
	FRC-Specific Resources

	Chapter 2 Introduction to Virtual Instruments
	Front Panel
	Figure 2-1. Front panel of a VI

	Block Diagram
	Figure 2-2. Block diagram and corresponding front panel
	Terminals
	Nodes
	Wires
	Structures

	Icon and Connector Pane
	Using and Customizing VIs and SubVIs

	Chapter 3 LabVIEW Environment
	Getting Started Window
	Context Help Window
	Project Explorer Window
	Navigation Window
	Controls Palette
	Functions Palette
	Navigating the Controls and Functions Palettes
	Tools Palette
	Menus and Toolbars
	Shortcut Menus
	Shortcut Menus in Run Mode
	VI Toolbar
	Project Explorer Window Toolbars

	Customizing Your Work Environment

	Chapter 4 Building the Front Panel
	Front Panel Controls and Indicators
	Numeric Controls and Indicators
	Boolean Controls and Indicators
	String Controls and Indicators

	Configuring Front Panel Objects
	Changing Controls to Indicators and Indicators to Controls
	Replacing Front Panel Objects

	Configuring the Front Panel
	Coloring Objects
	Aligning and Distributing Objects
	Grouping and Locking Objects
	Resizing Objects
	Adding Space to the Front Panel without Resizing the Window

	Labeling
	Designing User Interfaces

	Chapter 5 Building the Block Diagram
	Block Diagram Objects
	Block Diagram Terminals
	Control and Indicator Data Types
	Constants

	Block Diagram Nodes

	Functions Overview
	Adding Terminals to Functions
	Built-In VIs and Functions

	Using Wires to Link Block Diagram Objects
	Wire Appearance and Structure
	Wiring Objects
	Selecting Wires
	Correcting Broken Wires

	Block Diagram Data Flow
	Designing the Block Diagram

	Chapter 6 Running and Debugging VIs
	Running VIs
	Correcting Broken VIs
	Finding Causes for Broken VIs
	Common Causes of Broken VIs

	Debugging Techniques
	Execution Highlighting
	Single-Stepping
	Probe Tool
	Breakpoints
	Error Clusters

	Chapter 7 Creating VIs and SubVIs
	Using Built-In VIs and Functions
	Creating SubVIs
	Creating an Icon
	Building the Connector Pane
	Creating SubVIs from Sections of a VI
	Designing SubVI Front Panels

	Saving VIs
	Customizing VIs

	Chapter 8 Loops and Structures
	For Loop and While Loop Structures
	For Loops
	While Loops
	Controlling Timing
	Auto-Indexing Loops
	Auto-Indexing to Set the For Loop Count
	Auto-Indexing with While Loops

	Using Loops to Build Arrays
	Shift Registers in Loops
	Initializing Shift Registers
	Stacked Shift Registers

	Default Data in Loops

	Case Structures
	Case Selector Values and Data Types
	Input and Output Tunnels

	Chapter 9 Grouping Data Using Strings, Arrays, and Clusters
	Grouping Data with Strings
	String Controls
	Table Controls

	Grouping Data with Arrays and Clusters
	Arrays
	Restrictions
	Indexes
	Creating Array Controls, Indicators, and Constants
	Array Functions

	Clusters
	Order of Cluster Elements
	Cluster Functions
	Creating Cluster Controls, Indicators, and Constants

	Chapter 10 Formula and MathScript Nodes
	Creating Formula Nodes
	Creating MathScript Nodes

	Chapter 11 Local Variables, Global Variables, and Race Conditions
	Local Variables
	Global Variables
	Race Conditions

	Chapter 12 State Machines
	State Diagrams
	Using the Standard State Machine VI Template
	Modifying the Standard State Machine VI
	Designing the Front Panel Window
	Arranging the Controls and Indicators on the Block Diagram
	Defining the States of the State Machine
	Configuring the No Money State
	Configuring the Five Cents State
	Configuring the Ten Cents State

	Chapter 13 Developing a Program
	Brainstorming
	Identifying Inputs/Outputs
	Identifying Potential Problems

	Developing Flowcharts
	Implementing the Code
	Verifying the Code
	Programming in a Group
	Analyzing the Project

	Appendix A Technical Support and Professional Services

