The DTB with Digital Delay

The delayed time base is started (or triggered) when the MTB sweep has reached a certain level, which is compared to a preset dc level. The preset level is thus reached a certain time after the MTB has started. This time is determined by the TIME/0 1v setting of the MTB. If the signal possesses a jitter, the display of the OTB will not be stable when operated in the START mode. Usually, selecting the TRIG mode of the OTB will eliminate this trouble.  If, however, the jitter is considerable, it can exceed the time between two adjacent waveforms. This may be the case with mechanical devices, such as tape or disk units of computer systems. Not even in the TRIG mode of the OTB can a unique display be obtained, because one delayed sweep may be triggered at waveform number 67 and the next one may be at waveform number 69. If all waveforms are identical (pulses), however, the display will be stable, although the observer will not know which pulse he or she is viewing.

Continue reading “The DTB with Digital Delay”

Random Sampling vs. Sequential Sampling

The two sampling techniques most commonly applied are random sampling and sequential sampling. In the random-sampling technique, no time relation exists between the timing-ramp voltage (trigger-source functioning) and the sampling instant. Owing to this, the picture on the screen is built up with samples which appear at places scattered at random over the waveform. In the sequential-sampling technique, which is the technique most frequently employed, the successive samples appear on the screen at adjacent places over the waveform because a comparison circuit links the sampling instants to the timing ramp voltages when triggered by the input signal.

Continue reading “Random Sampling vs. Sequential Sampling”

Construction of the Variable-Persistence Tube Part 2

The flood guns are located just outside the horizontal deflection plates. A cloud of electrons is emitted by each flood-gun cathode. These clouds are combined, shaped, and accelerated by the two control grids, as well as the collimator. The collimator consists of a coating on the inside of the tube. The positive voltage on the collimator is adjusted so the flood-gun electron cloud only fills the CRT viewing screen. The cloud is further accelerated towards the storage mesh and viewing screen by the collector mesh. After passing through the collector mesh, the flood electrons are further controlled by the potentials of the storage mesh and storage layer. The cathode side of the storage mesh is coated with the nonconductive storage material, which is where the pattern to be displayed is stored. Because of the nonconductive property, only a capacitive coupling exists between the storage layer and the storage mesh. This capacitive coupling is required for the storage and erase functions. The rest potential of the storage mesh is approximately + 1 V with respect to the flood-gun cathodes. In the write and erase routines, the potential of the storage layer varies from O V to negative. This is accomplished through the storage mesh and the capacitive coupling.

Continue reading “Construction of the Variable-Persistence Tube Part 2”

The Storage Oscilloscope: Storage Principles

Storage oscilloscopes are used in applications where the display time at the screen is too short to examine the signals to be measured. If a single-shot signal is to be measured, only one sweep is generated. During this sweep, the screen is excited by the high-energy electron beam. When the beam is suppressed at the end of the single sweep, a phosphorescence remains for some time. The time that the phosphorescence remains visible is dependent upon the type of phosphor used and is referred to as the persistence of the tube. The persistence is the time that the intensity, after the excitation, takes to decay to a level of I/ e of the level attained during excitation (e = 2.72 = base of natural logarithms).

Continue reading “The Storage Oscilloscope: Storage Principles”

Triggering the Delayed Time Base

Trigger Modes

The delayed timebase may start immediately after the main timebase has reached the level at the DELAY potentiometer. But now the following may happen. Assume that the signal to be tested is a pulse train and that the time between two successive pulses is not constant, but varies a little around the set repetition rate. The result will be a somewhat unstable display; this is known as jitter. The time between the first and the second pulses varies a little, as does the time between the second and the third pulses. The third pulse varies twice as much with respect to the first one as the second pulse does. The fourth pulse varies three times as much, and so on.

Continue reading “Triggering the Delayed Time Base”

Variable Hold-Off and Time-Bases on Oscilloscopes


Suppose a series of double pulses must be displayed. The end of the first time-base ramp is reached after pulse 5 and the end of the hold-off period is reached before pulse 6. The second sweep will then be triggered at pulse 6. This means that the following pulses appear at the screen. By making the hold-off period longer, the second sweep will be triggered by pulse 7. As a result, the waveforms during the first and second sweeps will coincide, and the proper picture will be obtained. The same result could have been obtained by shortening the time­ base sweep by means of the Vernier control, but then the time scale would no longer be calibrated. For this reason, a variable hold-off control is sometimes built into an oscilloscope. However, relatively few oscilloscopes possess this feature, such as the Philips PM 3260 and PM 3265. The hold-off time must be related to the time-base sweep speed. If not, at high sweep speeds the hold-off time would be too long, and the successive sweeps will appear only after a relatively long time. Consequently, a fast sweep would be displayed at a low repetition rate, which would reduce the light output (brightness) to a large extent. For this reason, the range of the hold-off time is automatically set appropriately with the TIME/mv switch.

Continue reading “Variable Hold-Off and Time-Bases on Oscilloscopes”

What Is the Potential of Oscilloscopes in Electrical Testing?

Extreme closeup of waveform on screen of digital oscilloscope

The oscilloscope has been a shining example of innovation in electrical testing disciplines for more than 50 years. It has remained a vital tool for scientists, engineers, and professionals working in fields like aerospace and defense ever since it was first developed. In contrast to conventional meters, which only display numerical data, an oscilloscope shows test signals visually, revealing complex characteristics including amplitudes, frequencies, forms, and distortions. This article explores the oscilloscope’s historical significance, development, and essential function in contemporary testing techniques.

Continue readingWhat Is the Potential of Oscilloscopes in Electrical Testing?